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Abstract 
 

Exposure Misclassification and Selection Bias in a Case-Control Study of 
Prepregnancy Body Mass Index and Neural Tube Defects 

 
By Candice Y. Johnson 

 
 
We explored potential contributions of exposure misclassification, selection bias, and 
confounding to a study of prepregnancy body mass index (BMI) and neural tube defects 
(NTDs), severe birth defects of the brain and spinal cord. Over a dozen studies have 
found associations between BMI and NTDs, with obese mothers the most likely to have 
an affected pregnancy. Investigators have suggested that exposure misclassification or 
selection bias could account for the observed associations; however, no previous study 
has quantitatively addressed the potential effects of these three biases together. We 
investigated hypothesized mechanisms for selection bias, examined effects of making 
inaccurate assumptions of nondifferential or differential misclassification when adjusting 
for exposure misclassification, and proposed a method to simultaneously adjust for 
exposure misclassification, selection bias, and confounding using weighted logistic 
regression. Using information from these studies, we simultaneously adjusted for these 
three biases in a case-control study of prepregnancy BMI and two common NTDs, 
anencephaly and spina bifida, using data from the National Birth Defects Prevention 
Study. Given our assumptions, adjustment for multiple biases had little effect on 
associations between BMI and anencephaly. However, associations between obesity and 
spina bifida were attenuated following multiple bias analysis; it is possible that reported 
associations between obesity and spina bifida that do not take into account the potential 
effects of exposure misclassification or selection bias are overestimates, partially driven 
by bias. Although misclassification, selection bias, and confounding have the potential to 
affect results, multiple bias analysis remains uncommonly used. Our proposed method is 
one option to incorporate adjustment for multiple biases into epidemiologic studies. 
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CHAPTER 1 

Introduction 

 

OBESITY, NEURAL TUBE DEFECTS, AND EPIDEMIOLOGIC BIAS 

Obesity is a well-recognized risk factor for chronic diseases such as type 2 diabetes and 

cardiovascular disease (1). The potential harmful effects of obesity during pregnancy are 

now receiving considerable attention given the growing number of women entering 

pregnancy who are classified as obese (2).  

 

Neural tube defects (NTDs) are serious defects of the brain or spinal cord consistently 

found to be associated with prepregnancy obesity. Over a dozen epidemiologic studies 

have reported that obese mothers are almost twice as likely as normal weight mothers to 

have a child with an NTD (3, 4). Although the consistency of study results suggests that 

prepregnancy obesity might cause NTDs, investigators have also hypothesized that the 

association could be non-causal and attributable to bias (5-7). In most studies of 

prepregnancy obesity and NTDs, investigators have addressed potential bias from 

confounding using statistical methods such as multivariable modeling. However, the 

potential effects of other biases such as exposure misclassification and selection bias have 

infrequently been addressed quantitatively. 

 

In epidemiologic studies of birth defects, body mass index (BMI) is a widely used 

measure of obesity and is commonly categorized into 4 groups: underweight (BMI < 18.5 

kg/m2), normal weight (18.5-24.9 kg/m2), overweight (25.0-29.9 kg/m2), and obese (≥30 

kg/m2). BMI is often calculated from maternal report of height and prepregnancy weight; 
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however, these are sometimes inaccurately self-reported, leading to exposure 

misclassification (5, 8). Previous studies have shown that on average American women 

tend to over-report height and under-report weight, resulting in underestimation of BMI; 

however, the direction of error is also dependent on the woman’s true BMI (9, 10). 

Because obesity is defined using a categorized form of an imprecisely measured 

continuous variable, BMI, the expected direction of bias from misclassification is 

difficult to predict (11, 12). 

 

In studies of prepregnancy obesity and NTDs, selection bias is thought to arise from 

differences in the likelihood of prenatal diagnosis and pregnancy termination between 

obese and non-obese mothers (7). The directed acyclic graph in Figure 1.1 illustrates the 

pathway through which this potential source of bias might occur. An abnormal result 

from maternal serum alpha-fetoprotein (MSAFP) screening is often the first indication 

that a fetus has an open NTD, but ultrasonography is commonly used for both screening 

and diagnosis of these defects. Visualization of fetal structures and prenatal detection of 

birth defects by ultrasound are more difficult in obese than in non-obese mothers (13, 14). 

Following prenatal diagnosis of an NTD, many pregnancies end in termination (15). 

Because obese mothers might be less likely to have the defect detected prenatally, they 

might also be more likely to carry the pregnancy to term than non-obese mothers, who 

might have opted for termination of pregnancy following prenatal diagnosis. If all cases 

of NTDs among terminations were included in epidemiologic studies, no bias would 

result; however, fetuses with NTDs among terminations are difficult to ascertain, and are 

often incompletely ascertained or excluded from studies for this reason. As a result, non-
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obese mothers might be under-represented among ascertained NTD case mothers, leading 

to a spurious association. Adjustment for selection bias is simple if selection probabilities 

for each exposure-outcome combination are available; however, selection probabilities, 

or reasonable estimates, are usually unknown (16).  

 

No study to date has presented a quantitative assessment of the potential effects of both 

exposure misclassification and selection bias on results from a study of prepregnancy 

BMI and NTDs. The overarching goal of this dissertation is to quantitatively evaluate the 

contributions of these biases, in addition to confounding, to associations between 

prepregnancy BMI and the two most common NTDs, anencephaly and spina bifida, and 

to investigate if the previously observed associations might be explained by bias. 

 

PREPREGNANCY OBESITY 

It is estimated that in 2009-2010 over one-third of American women aged 20-39 were 

obese (17). In the United States, the prevalence of self-reported prepregnancy obesity 

among mothers delivering liveborn infants has been estimated at 22% using data from the 

Behavioral Risk Factor Surveillance System in 9 states in 2003 (2) and 19% using data 

from the Pregnancy Risk Assessment Monitoring System in 26 states and New York City 

in 2004 and 2005 (18). 

 

Epidemiologic studies have reported associations between prepregnancy obesity and 

preterm birth (19, 20), gestational diabetes (21), stillbirth (22), birth defects (4), and other 

adverse pregnancy outcomes and complications (23). Clinical guidelines now recommend 



4 
 

that women achieve a healthy weight prior to pregnancy to prevent these adverse 

outcomes (23-25).   

 

NEURAL TUBE DEFECTS 

NTDs occur during the third and fourth week of embryonic development if the neural 

tube, precursor of the central nervous system, fails to fully close (26). The prevalence of 

NTDs varies geographically, although it is difficult to determine the extent to which this 

represents differences in occurrence versus differences in use of prenatal diagnosis and 

pregnancy termination or differences in coding or case classification (27). The two most 

common types of NTDs are anencephaly and spina bifida. Rarer NTDs include 

encephalocele, a herniation of brain tissue through a defect in the skull; 

craniorachischisis, a lethal failure of neural tube closure at multiple points which results 

in an exposed brain and spinal cord (combination of anencephaly and spina bifida); and 

iniencephaly, a typically fatal defect of the spine and brain that results in a shortened or 

absent neck (28-30). 

 

Anencephaly  

Anencephaly is thought to result from a defect in closure of the neural tube at the cranial 

end of the developing embryo during the fourth week of gestation (26, 31). It is 

characterized by lack of skull bones and scalp above the level of the eyes and absence of 

most of the brain tissue. The abnormally developing brain is thought to degenerate after 

continued exposure to the amniotic fluid so that at the time of birth anencephalic infants 

have only small amounts of brain tissue remaining (26). Anencephaly is a lethal defect, 
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and if a prenatal diagnosis is made, pregnancy termination is the most common outcome 

of pregnancy (15). If pregnancy termination is not sought, intrauterine death is common. 

Liveborn infants might survive for hours or days, and rarely to several weeks (32, 33). 

 

Spina Bifida 

Failure of the neural tube to close at the caudal end of the neural tube is believed to result 

in spina bifida (31). The two main types are spina bifida occulta and spina bifida cystica. 

Spina bifida cystica is further classified as meningocele and myelomeningocele. Spina 

bifida occulta involves incomplete formation of the vertebrae only, and because it is 

typically asymptomatic it is excluded from epidemiologic studies of spina bifida. Spina 

bifida cystica (henceforth referred to simply as “spina bifida”) is a more severe form of 

the defect. Both meningocele and myelomeningocele involve herniation of a sac 

containing meninges and cerebrospinal fluid through the incompletely formed vertebrae 

(26). In myelomeningocele, the spinal cord is also involved in the herniation and the 

defect is frequently not covered by skin (“open” spina bifida) (28).  

 

In the United States, it is estimated that over 90% of liveborn infants with spina bifida 

survive the first year of life, and nearly 80% of affected children survive to adulthood 

(34). Herniation of neural tissues, particularly when the spinal cord is involved, results in 

various degrees of paralysis and mobility impairment. Myelomeningocele is also 

associated with anomalies of the brain known as the Arnold-Chiari II malformation, in 

which a part of the cerebellum is positioned downward out of the skull and toward the 

spine (35). Although the Arnold-Chiari II malformation can be asymptomatic, mortality 



6 
 

rates are high among infants and young children who exhibit symptoms such as difficulty 

breathing and swallowing (36). Hydrocephaly is frequently observed in spina bifida 

patients and cerebrospinal fluid shunts are placed for its treatment. Surgeries to replace 

malfunctioning shunts and shunt infections are common complications of shunt 

placement (36). Both urinary and bowel incontinence affect the quality of life of many 

individuals with spina bifida and neurogenic bladder can lead to kidney disease and end-

stage renal failure (36, 37).      

 

Although the herniation of nervous tissue itself is believed to be responsible for much of 

the paralysis and mobility impairment observed in patients with myelomeningocele, 

further damage to the unprotected spinal cord is thought to occur in utero from continued 

exposure of the spinal cord to the amniotic fluid during fetal development (36). Recently, 

a randomized controlled trial of in utero spina bifida repair has been completed (38). 

Compared to infants receiving postnatal intervention only, infants randomized to fetal 

surgery had a lower incidence of death and shunt placement, and in childhood had better 

cognitive and motor function. However, prenatal surgery resulted in a high incidence of 

complications to both mother and child, including preterm birth, oligohydramnios, and 

separation of the chorioamniotic membrane. 

  

RISK FACTORS FOR NEURAL TUBE DEFECTS 

Several risk factors for NTDs have been identified, including genetic syndromes and use 

of certain anticonvulsants, such as valproic acid, during early pregnancy (39, 40),,the risk 

factor that has received the most attention and that has been translated into successful 
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population-level intervention is folic acid supplementation. Results from randomized 

controlled trials in the 1980s and 1990s demonstrated that folic acid supplementation 

during the periconceptional period could prevent a substantial proportion of NTDs (41-

43). Since then, folic acid fortification programs have been introduced in over 50 

countries. Studies comparing the pre- and post-fortification prevalence of NTDs in these 

areas have found reductions in prevalence following fortification (44-48).  

 

In the United States in 2004-2006, the birth prevalence of NTDs was estimated to be over 

6/10,000 live births in the presence of folic acid fortification (49). Because the proportion 

of NTDs attributable to genetic syndromes, maternal use of anticonvulsants, or other 

recognized causes remains small, investigators continue to search for risk factors for 

NTDs to better understand their etiology and develop strategies for their prevention. 

 

PREPREGNANCY OBESITY AND NEURAL TUBE DEFECTS 

Epidemiologic Evidence 

Numerous epidemiologic studies have found that obese mothers are more likely to have 

an NTD-affected pregnancy than normal weight mothers. Meta-analyses (3, 4) 

summarizing the evidence have come to this same conclusion and have found that the 

association is stronger for spina bifida (odds ratio [OR] 2.24, 95% confidence interval 

[CI] 1.86, 2.69) than anencephaly (OR 1.39, 95% CI 1.03, 1.87) (4). Both meta-analyses 

investigated effects of study-level variables on meta-analysis results (study design, study 

size, year of publication, control for confounders, inclusion of cases among terminations 
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of pregnancy, exclusion of mothers with pregestational diabetes); however, there was no 

evidence that these variables affected the observed associations (3, 4).  

 

Hypothesized Mechanisms Explaining the Association Between Maternal Obesity 

and NTDs 

The mechanism whereby maternal obesity might cause NTDs remains unknown. Several 

lines of research have been investigated, most focusing on differences in nutritional status 

between obese and normal weight women. Given the known role of folate and folic acid 

in NTD prevention, study of the differences in folic acid supplementation and folate 

intake and metabolism between obese and non-obese women has been an area of specific 

research interest. Several studies have reported that obese women of childbearing age are 

less likely to consume multivitamin supplements (50, 51), have lower dietary folate 

consumption (50, 52), and have lower serum folate levels (50) than normal weight 

women. 

 

Prepregnancy obesity has been reported to be associated with a generally poorer quality 

of diet during pregnancy (52). Intakes of sweets (53), sugars (54), and foods with high 

glycemic index or glycemic load (54-56) during the periconceptional period have been 

reported to be higher among mothers of NTD cases than mothers of infants without birth 

defects. Investigators have suggested that insulin and glycemic control might be the 

mechanisms underlying the reported associations of both obesity and diabetes with 

NTDs, although how hyperinsulinemia or hyperglycemia might cause NTDs is not 

understood (54, 55, 57). 
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The aforementioned non-causal mechanisms (misclassification of BMI category, 

selection bias through prenatal diagnosis and termination of pregnancy) have also been 

proposed to explain the association between obesity and NTDs (5-7). However, to date 

this possibility has not been explored in depth. 

 

BIAS ANALYSIS 

The three main threats to internal validity of epidemiologic studies are confounding, 

information bias (measurement error and misclassification), and selection bias (16). 

Although confounding is the bias whose effect is most commonly explored in 

epidemiologic studies, measurement error and selection bias could have important effects 

on results. Quantitative adjustment for the effects of these biases is rarely presented (58, 

59). 

 

Bias (sensitivity) analysis is a technique that allows investigators to make assumptions 

about the magnitude and direction of biases thought to be occurring, and to use these 

assumptions to quantitatively explore the potential effect of these biases on results of a 

study (59). Bias analyses can have varying levels of complexity (60). A simple bias 

analysis involves choosing one or a few plausible values for bias parameters (selection 

probabilities for analyses of selection bias; sensitivity, specificity or predictive values for 

misclassification; strength of association with exposure and disease for unmeasured 

confounding) and using these parameters to make an “adjustment” for the bias. 

Probabilistic bias analysis is an extension of simple bias analysis in which a probability 
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distribution is created for the bias parameter. A value is randomly sampled from this 

distribution and used in the analysis to adjust for bias and this process is repeated over 

many iterations to generate a distribution of the adjusted measure of association. Multiple 

bias analysis is a further extension of the bias analyses described above that involves 

taking into account, in the same analysis, potential effects of more than one type of bias 

(60, 61).  

 

Many different approaches for conducting bias analysis have been described, including 

methods applying formulae for bias adjustment to data from contingency tables (59), 

adjusting observed measures of association by multiplication with error terms (62, 63), 

and making record-level adjustments (as opposed to contingency table-level adjustments) 

to simulate the “true” data for individual study participants (64). Although the results of 

sensitivity analyses are highly dependent on the choice of bias parameters, evidence-

based choices and transparent reporting of methods and results allow readers to judge for 

themselves the appropriateness of the assumptions made (59). 

 

Quantitative Analyses for Exposure Misclassification and Selection Bias: Previous 

Studies of Prepregnancy BMI and NTDs 

To date, no study of prepregnancy BMI and NTDs has presented quantitative assessment 

of the potential impact of misclassification of BMI on study results. Two studies have 

attempted to quantify the direction and magnitude of selection bias in case-control studies 

of prepregnancy obesity and NTDs. 
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A simple bias analysis was presented for an association between obesity and spina bifida 

in a study from the Atlanta Birth Defects Case-Control Study (7). The authors assumed 

that obese mothers were 17% less likely to receive a prenatal diagnosis than non-obese 

mothers and that 26% of affected pregnancies ended in termination. They concluded that 

selection bias could result in an overestimation of the strength of association. Given their 

assumptions, the crude OR for obesity and spina bifida decreased from 2.56 to 2.02 after 

adjustment for selection bias.  

 

A similar bias analysis was conducted using data from the National Birth Defects 

Prevention Study (5). The authors assumed that the true proportion of pregnancies ending 

in termination was twice that observed in the data. They found little effect on results, 

given their assumptions. The crude OR for obesity and spina bifida (obese versus normal 

weight) decreased from 2.25 to 2.12 after adjustment for selection bias, and the crude OR 

for anencephaly changed from 0.97 to 0.94. 

 

In both of these bias analyses, a single scenario was considered. Because the results of 

bias analyses are dependent on assumptions made in the analysis and on the bias 

parameters used as inputs, consideration of a wider range of plausible scenarios using 

probabilistic bias analysis could give a better sense of the variability in magnitude of bias 

that might reasonably occur (60). Such an analysis has not been conducted to date. In 

addition, no study has simultaneously combined adjustment for exposure 

misclassification, selection bias, and confounding to investigate the potential joint effects 

of these three biases on results. 
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SOURCE OF DATA FOR THE DISSERTATION 

The National Birth Defects Prevention Study (NBDPS) is a large, multi-site case-control 

study of genetic and environmental risk factors for birth defects, with participant 

enrollment at multiple sites in the United States beginning October 1997 and continuing 

to date. Detailed descriptions of NBDPS study design are available elsewhere (65-68). 

 

NBDPS ascertains cases of over 30 types of major structural birth defects from existing 

population-based birth defect surveillance systems in 10 states which have active case-

finding methods and use multiple sources of ascertainment: Arkansas, California, 

Georgia, Iowa, Massachusetts, New Jersey, New York, North Carolina, Texas, and Utah 

(Table 1.1). Eight of the 10 study sites systematically ascertain cases of birth defects 

among live births, stillbirths (fetal deaths ≥20 gestational weeks), and terminations of 

pregnancy (any gestational age); New York began case ascertainment among 

terminations of pregnancy in 2000. New Jersey only systematically includes live births 

and stillbirths, and Massachusetts only systematically includes live births. 

 

Mothers who are residents of the study catchment area at the time of the birth and whose 

child has an NBDPS-eligible birth defect are invited to serve as case mothers for the 

study. Cases of birth defects believed to be caused by single-gene conditions or 

chromosome abnormalities are excluded by clinical geneticists who perform a detailed 

review of data abstracted from medical records of every potential case to determine 

eligibility, and if eligible, to further classify the case (68). Cases can be classified as 
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isolated (no other major unrelated birth defect), multiple (one or more other, unrelated 

defects), or as part of a sequence or association (several defects believed to be related) 

(68).  

 

Methods for control selection vary by study site, but in all sites only liveborn infants with 

no major birth defect and whose mothers are residents of the study catchment area at the 

time of the birth are eligible. Controls are randomly selected from either birth certificates 

or birth hospitals (Table 1.2). Between 1997 and 2003, control participation rates ranged 

from 65% to 77% across sites, with some differences in maternal characteristics such as 

race/ethnicity, education, and timing of entry into prenatal care observed between control 

participants and the source population (66).  

 

Between 6 weeks and 24 months following the estimated date of delivery, mothers of 

eligible cases and controls are contacted by mail and are provided an introductory letter 

explaining the study. Trained interviewers contact the mothers by telephone to administer 

the computer-assisted telephone interview, which includes questions on 

sociodemographic factors, illnesses, medication use, prenatal care, household and 

occupational exposures, and family history of birth defects, as well as a food frequency 

questionnaire. Following the interview, mothers are invited to participate in the genetic 

component of the study and are sent a buccal (cheek) cell collection kit to sample DNA 

from themselves, their baby (if living) and the baby’s father (67).  

 

Prepregnancy BMI and NTDs in NBDPS Data 
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NBDPS data on associations between maternal prepregnancy BMI and NTDs have been 

published previously; results from a simple bias analysis to investigate the impact of 

selection bias using NBDPS data were described in the previous section (5). Consistent 

with the results of other studies and meta-analyses, the analysis suggested that obese 

mothers are approximately twice as likely to have a pregnancy affected by spina bifida as 

normal weight mothers (Table 1.3). In contrast to several other studies, no association 

with anencephaly was observed. The association between prepregnancy BMI and 

anencephaly has been less consistently observed in the literature (4).  

 

The biases hypothesized to be contributing to associations between prepregnancy BMI 

and NTDs are also thought to occur in NBDPS. Selection bias is possible because some 

NBDPS study sites exclude pregnancy terminations from their case definition; even 

among sites including terminations, case ascertainment among pregnancy terminations is 

believed to be incomplete. NBDPS collects maternal height and prepregnancy weight by 

self-report up to 2 years following the mother’s expected date of delivery, making 

misclassification of BMI category possible. 

 

Our overarching goal is to re-analyze NBDPS data on prepregnancy BMI and NTDs, 

conducting a probabilistic multiple bias analysis taking into account exposure 

misclassification, selection bias, and confounding to determine how adjusting for these 

biases might affect study results. Prior to conducting the bias analysis, we will need 

sufficient information on the strength of associations between variables of interest to 

assign plausible probability distributions to bias parameters. In particular, we will need to 
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determine whether or not prenatal diagnosis of NTDs is less common in obese mothers 

than normal weight mothers, and what proportion of pregnancies end in termination of 

pregnancy following prenatal diagnosis of NTDs. 

 

EPIDEMIOLOGY OF PRENATAL DIAGNOSIS AND TERMINATION OF 

PREGNANCY 

Prenatal Screening for and Diagnosis of Neural Tube Defects 

Prenatal screening for NTDs has been possible since the early 1970s when it was first 

found that high amniotic fluid levels of alpha-fetoprotein (AFP) were predictive of open 

NTDs (NTD types in which the brain or spinal cord come into contact with the amniotic 

fluid). Several years later, screening programs using AFP measured from maternal serum 

were introduced (69-71). In the years following introduction of serum screening 

programs, ultrasonography has become widely used for prenatal detection of birth 

defects, and the continued need for serum screening for NTDs in centers in which all 

women are also offered ultrasonography has been questioned (72). Although the 

performance of ultrasound-only screening for NTDs has not been well-studied, in some 

centers serum screening has been discontinued in favor of ultrasound (72-74).  

 

Anencephaly 

Anencephaly might be suspected when elevated MSAFP levels are detected through 

serum screening. Prenatal diagnosis of anencephaly can be easily achieved by 

ultrasonography because of the conspicuous absence of skull bones that characterizes this 

defect. Because skull bones do not fully develop until the 12th gestational week, 
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anencephaly cannot be reliably prenatally diagnosed by ultrasound before then (75). A 

multi-site study from the EUROCAT registry in 18 regions of Europe estimated that 96% 

(range: 83-100%) of fetuses with anencephaly in the registry had been first diagnosed 

prenatally (76). In many parts of Europe, mothers have better access to and uptake of 

prenatal care than in other regions such as the United States, meaning that the proportion 

of anencephalic fetuses detected prenatally in the Untied States might be substantially 

lower than in Europe, despite how readily these defects are seen on ultrasound. 

  

Spina bifida 

Elevated MSAFP levels could also indicate the presence of open spina bifida, but 

screening for closed spina bifida (when the defect is covered by skin) must be 

accomplished through ultrasonography. Ultrasound screening for spina bifida is achieved 

in two main ways. The first is by observing changes in the shape of the skull and 

cerebellum commonly seen in affected fetuses between the 13th and 24th gestational 

weeks; these ultrasound signs are referred to the “lemon sign” and “banana sign” (75). 

The second is by visualization of the defect itself. Ultrasound visualization of the defect 

can be useful for providing information about its severity. The location of the defect on 

the spine is fairly predictive of the level of impairment, with defects lower on the spine 

associated with less physical impairment than defects higher on the spine (75). Although 

prenatal diagnosis of spina bifida is typically fairly common, a EUROCAT study found 

more variability in the proportion of spina bifida cases prenatally diagnosed than 

anencephaly, estimating that 68% of all cases of spina bifida in the registry had been 
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prenatally diagnosed (range: 38-100%) (76). As discussed above, the prevalence of 

prenatal diagnosis might be higher in Europe than other regions. 

 

Maternal Obesity and Prenatal Detection of Birth Defects 

Difficulty in ultrasound visualization of the fetus among obese mothers is widely 

recognized (77). Images from ultrasound are less clear in obese mothers because extra 

adipose tissue on the abdomen means a greater distance between the ultrasound 

transducer and the fetus (78). Studies attempting to quantify differences in suboptimal 

visualization of the fetus between obese and normal weight mothers have consistently 

found greater likelihood of suboptimal visualizations in mothers with greater BMI. 

 

Visualization of the fetal anatomy 

Standard ultrasound examination of the fetal anatomy can be conducted reliably after 18 

weeks’ gestation and involves visualization of the head, face, neck, heart, abdomen, spine 

and limbs (79). A study of prenatal ultrasounds performed in the late 1980s suggested 

that visualization was poorest among mothers in the 90th percentile of BMI (> 36 kg/m2) 

(78). Similar results were shown in studies from Texas, in which inadequate visualization 

occurred in 28% of normal weight mothers compared to 43-70% of obese mothers (13), 

and from Toronto, in which the fetal anatomical survey was inconclusive in 3% of 

normal weight but 26% of obese mothers (80). 

 

The same trends are shown for visualization of specific parts of the fetal anatomy. A 

multicenter study of visualization of ultrasound markers that might indicate genetic 
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disorders found that most markers were more difficult to visualize among obese mothers 

(77). For example, inadequate estimation of nuchal translucency occurred in 3-8% of 

obese mothers but only 1% of normal weight mothers. Suboptimal visualization of the 

fetal heart was observed more commonly among obese compared to normal weight 

mothers in studies from Michigan (37% versus 19%) (81) and Ohio (51% versus 27%) 

(82). It has been suggested that better visualization of the fetal heart might occur when 

the ultrasound is repeated later in the pregnancy, although it is estimated that 12-17% of 

obese mothers will have suboptimal visualization on both ultrasounds (83).  

 

Because ultrasound visualization of fetal structures appears to be more difficult among 

obese mothers, one study in Michigan compared two types of ultrasound equipment 

(standard equipment versus a more advanced system) to determine if visualization could 

be improved through use of more advanced technology. Although results suggested that 

the advanced ultrasound equipment improved visualization of the fetal heart among non-

obese women, among obese women visualization was generally similar using both 

instruments (84).   

 

Detection of birth defects 

Because visualization of the fetal anatomy is reduced for obese mothers, studies have 

investigated whether or not obesity also affects the likelihood of prenatal diagnosis. Most 

studies follow a retrospective study design in which records of cases with postnatally 

confirmed birth defects are reviewed to determine what proportion had been prenatally 

diagnosed by ultrasound, and if this proportion differed between obese and normal 



19 
 

weight mothers. One study from Texas found that 25-49% of cases had been prenatally 

diagnosed among obese mothers, compared to 66% among normal weight mothers (14). 

The investigators reported similar results when restricting to targeted ultrasounds 

(ultrasounds conducted for high-risk pregnancies or when anomalies are suspected on 

routine ultrasound): 75-88% of birth defects had been detected prenatally among obese 

mothers compared to 97% in normal weight mothers. One multicenter study from the 

United States showed that obese mothers were less likely than normal weight mothers to 

report prenatal diagnosis of cleft lip with or without cleft palate (adjusted OR 0.59, 95% 

CI 0.41-0.85) (85).  

 

Of the studies conducted to date, most have combined different types of birth defects in 

the analysis and none has investigated how maternal obesity might affect prenatal 

diagnosis of NTDs specifically. Unlike other birth defects such as cleft lip with or 

without cleft palate in which ultrasound is the only method for prenatal screening and 

diagnosis, anencephaly and open spina bifida might be suspected prior to ultrasound on 

the basis of MSAFP screening. In addition, some birth defects are more readily seen on 

ultrasound than others. For defects such as cleft lip with or without cleft palate, which are 

difficult to see on ultrasound even among normal weight mothers, prenatal diagnosis in 

obese mothers could be challenging. For defects such as anencephaly, however, presence 

of the defect might be noticeable enough that obesity would not affect ability to make a 

prenatal diagnosis. For these reasons, we expect that the association between obesity and 

prenatal diagnosis might differ among defects. 
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Pregnancy Termination Following Prenatal Diagnosis of NTDs 

When an NTD is prenatally diagnosed, termination of pregnancy is a common pregnancy 

outcome. One review article estimated that over 80% of pregnancies in which 

anencephaly was prenatally diagnosed ended in termination, as did over 60% of those in 

which spina bifida was detected prenatally (15). Most of the recent studies of pregnancy 

termination following prenatal diagnosis have been conducted in Europe. In the few 

studies conducted in the United States over the last 20 years, the proportions of 

pregnancies ending in termination have been on average lower than estimates from 

Europe (86-88). The reasons for these differences have not been well explored. It is 

possible that in Europe, families choose termination of pregnancy more often than in 

North America. However, these results could also be explained by mothers in Europe 

having better access to prenatal care and earlier prenatal diagnosis. If prenatal diagnosis 

is made late in pregnancy, termination is often no longer an available option. 

 

Little is known about what maternal characteristics (e.g., race/ethnicity, household 

income, education) are associated with having a prenatal diagnosis and having a prenatal 

diagnosis early in pregnancy. Understanding factors associated with prenatal diagnosis 

will help to identify subgroups of women who might not have access to or are not using 

prenatal diagnostic services, or who use these services, but not until late in the pregnancy. 

Prenatal diagnosis not only allows family to decide whether or not to continue the 

pregnancy, but provides an opportunity for the family to learn about the defect, discuss 

options for fetal or postnatal surgical intervention, plan for the delivery to occur at a 
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facility better equipped to treat the newborn, and make other decisions in anticipation of 

the infant’s hospital stay.     

 

CONTRIBUTIONS OF THE DISSERTATION 

This dissertation will provide quantitative evaluation of evidence concerning bias in 

studies of prepregnancy BMI and NTDs, fill gaps in the literature regarding the 

epidemiology of prenatal diagnosis and pregnancy termination, and demonstrate a 

method to simultaneously adjust for exposure misclassification, selection bias, and 

confounding using logistic regression. An important result will be providing bias-

corrected estimates of the association, if any, between prepregnancy BMI and NTDs, and 

characterizing the associated uncertainty in these estimates. Additional evidence 

concerning whether or not this association is attributable to bias will aid health care 

professionals to more accurately counsel women about their risk of having a pregnancy 

affected by an NTD. 
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Table 1.1. Study Sites, Years of Case and Control Recruitment, and Study Catchment 

Areas for the National Birth Defects Prevention Study, 1997-2007. 

Study Site Recruitment Years Catchment Area 

Arkansas 1997 – 2007 State-wide 

California 1997 – 2007 8 counties 

Georgia 1997 – 2007  Five-county metropolitan Atlanta 

Iowa 1997 – 2007 State-wide 

Massachusetts 1998 – 1999 State-wide 

 2000 – 2007 State-wide except 5 western counties 

New Jersey 1997 – 2002 Random sample of births state-wide 

New York 1997 – 2007 Western New York, lower Hudson valley 

North Carolina 2003 – 2007 19 counties 

Texas 1997 – 1998  State-wide except Houston, Galveston, 

Nacogdoches, Beaumont 

 1998 – 2001  San Antonio, West Texas, Panhandle 

 2002 – 2003 West Texas, Panhandle 

 2004 – 2007  South Texas 

Utah 2003 – 2007 State-wide 
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Table 1.2. Source of Control Mothers in the National Birth Defects Prevention Study, 

1997-2007. 

Study Site Recruitment Years Source of Control Mothers 

Arkansas 1997 – 2000 Hospitals 

 2001 – 2007 Birth certificates 

California 1997 – 2007 Hospitals 

Georgia 1997 – 1999 Hospitals 

 2000 – 2007 Birth certificates 

Iowa 1997 – 2007 Birth certificates 

Massachusetts 1997 – 2007 Birth certificates 

New Jersey 1997 – 2002 Birth certificates 

New York 1997 – 2007 Hospitals 

North Carolina 2003 – 2007 Hospitals 

Texas 1997 – 2007 Hospitals 

Utah 2003 – 2007 Birth certificates 
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Table 1.3. Associations Between Maternal Prepregnancy Obesity and Neural Tube 

Defects Reported by the National Birth Defects Prevention Study (5) and a Recent Meta-

Analysis (4). 

 Odds Ratio (95% Confidence Interval) 

Neural Tube Defect NBDPSa  Meta-Analysisb 

Anencephaly 0.96 (0.62, 1.48) 1.39 (1.03, 1.87) 

Spina bifida 2.10 (1.63, 2.71) 2.24 (1.86, 2.69) 

Abbreviations: NBDPS, National Birth Defects Prevention Study. 

a BMI ≥ 30 kg/m2 versus BMI 18.5-24.9 kg/m2; adjusted for age, ethnicity, education, 

parity, smoking, folic acid use; excluded mothers with prepregnancy diabetes. 

b NBDPS results are included in the meta-analysis; comparison is ‘obese’ versus ‘normal 

weight’ as defined by the authors of each study. 
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Figure 1.1. Directed acyclic graph illustrating a potential mechanism for selection bias in 

studies of prepregnancy body mass index and neural tube defects. Abbreviation: BMI, 

body mass index.  
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CHAPTER 2 

Epidemiologic Evidence for an Association Between Maternal Obesity and Neural 

Tube Defects: a Systematic Review and Meta-Analysis of the Published Literature 

 

INTRODUCTION 

Based on self-reported data from the Behavioral Risk Factor Surveillance System and the 

Pregnancy Risk Assessment Monitoring System, it is estimated that approximately 20% 

of American women enter pregnancy obese (1, 2). Prepregnancy obesity is associated 

with adverse pregnancy outcomes and complications such as gestational diabetes (3), 

preterm birth (4, 5), stillbirth (6), and birth defects (7). Among the most consistently 

reported adverse pregnancy outcomes associated with prepregnancy obesity is the 

increased risk of having a pregnancy affected by a neural tube defect (NTD) (7, 8). Due 

to the strength of the epidemiologic evidence to date, clinical guidelines recommend that 

obese women be counseled prior to pregnancy regarding their increased risk of having an 

affected pregnancy (9, 10).   

 

Two meta-analyses investigating associations between maternal obesity and NTDs have 

been published recently: one reporting associations between maternal overweight and 

obesity and NTDs (8), and the other considering anencephaly and spina bifida separately 

(7). Both meta-analyses found that obese mothers were more likely than normal weight 

mothers to have an NTD-affected pregnancy.  
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In the present analysis, we extend the previously published meta-analyses in three ways. 

First, we update the results with more recently published studies of prepregnancy obesity 

and NTDs. Second, because the previous meta-analyses used crude effect estimates in the 

analysis, we conduct the analysis using covariate-adjusted estimates and investigate the 

extent to which covariate adjustment affects results. Third, we explore an alternate 

categorization of obesity. Both previous meta-analyses compared obese to normal weight 

mothers. Here, we additionally provide a comparison between obese mothers and non-

obese mothers, an exposure categorization reported in several studies of obesity and 

NTDs. 

 

METHODS 

Identification of Studies 

Medline and Embase were searched through the end of July 2010 according to the search 

strategy presented in Table 2.1. Titles and abstracts were screened, and full texts of 

relevant articles were retrieved. We included epidemiologic studies reporting associations 

between prepregnancy body mass index (BMI) and NTDs (anencephaly, spina bifida, or a 

combined category of NTDs which could include other, rarer, NTD types). We also 

included studies not reporting these associations, but from which sufficient information 

was available to calculate the necessary measures. We excluded review articles, 

commentaries or editorials without original data, studies reporting weight but not BMI, 

studies reporting BMI as a continuous variable, and studies not separating NTDs from 

other defects of the central nervous system. There was no restriction by language or study 

design. When more than one study reported data from the same population, the article 
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with the primary hypothesis most relevant to prepregnancy obesity and NTDs was 

retained. If there was more than one of these, the largest or most recent study was 

included. Reference lists of included studies and the two previously published meta-

analyses were searched for additional studies. Google Scholar (http://scholar.google.com) 

was searched through the end of August 2010 to identify articles that had cited each 

included study. 

 

Data Abstraction 

Information abstracted from each article included location, years of participant 

recruitment, study design, source of BMI information, BMI cutpoints, NTD phenotypes, 

covariates in multivariable models, exclusion criteria, and number, source and pregnancy 

outcomes of cases and controls.  

 

Meta-Analysis 

Three outcomes were investigated separately: anencephaly, spina bifida, and a combined 

category of NTDs. When studies only provided separate estimates for anencephaly and 

spina bifida, these categories were combined and included in the meta-analysis of 

combined NTDs.  

 

We investigated two exposure categorizations: obese compared to normal weight 

mothers, and obese compared to non-obese mothers. We defined obese as BMI ≥30 

kg/m2, non-obese as BMI <30kg/m2, and normal weight as BMI 18.5-24.9 kg/m2. If the 

article did not provide these exact cutpoints, the closest available cutpoint was used (e.g. 

http://scholar.google.com/
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BMI ≥ 29 instead of ≥ 30 kg/m2). Adjusted odds ratios were abstracted from the articles 

whenever possible; otherwise, crude estimates were abstracted or calculated from 

available information.  

 

Random-effects meta-analysis was used for quantitative synthesis of results using Stata 

version 10 (Statacorp, College Station, TX). We calculated summary odds ratios (ORs) 

and 95% confidence intervals (CIs) for each meta-analysis, and Cochran Q and I2 

statistics were used to quantify between-study heterogeneity (11). Potential for 

publication bias was assessed using Egger’s test (12). The influence of individual studies 

was assessed by repeating the meta-analysis with each of the studies removed in turn. 

 

Review of Potential Confounders 

Articles were included in this analysis if both crude and adjusted ORs were available. We 

abstracted the list of stratification variables used in the article, including covariates 

entered into the multivariable model and covariates controlled for by restriction. We 

calculated two metrics: the ratio of the adjusted to the crude OR, which showed the effect 

of covariate adjustment on the magnitude of the association, and the ratio of the adjusted 

to the crude precision, which showed its effect on precision. Precision was defined as the 

ratio of the upper to the lower 95% confidence bound. This analysis was conducted 

separately for anencephaly and spina bifida to investigate possible differences in the 

effect of covariate adjustment between the two phenotypes. 

 

RESULTS 
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Search Strategy 

Using the electronic search strategy, we identified 377 articles whose titles and abstracts 

were screened for inclusion (Figure 2.1). Twelve met inclusion criteria (13-24). An 

additional 3 articles meeting inclusion criteria were found by searching reference lists 

(25-27), and a fourth was found by searching for articles citing included articles (28). 

Three of these four studies were likely not found by the electronic search strategy 

because results for several birth defects were presented in the article and NTDs were not 

specifically mentioned in the abstract (25, 26, 28). In the fourth, the word “weight” was 

used in the title and abstract, and words “body mass index” and “obesity” were only 

included in the full text of the article (27).  

 

Characteristics of the 16 included studies are shown in Table 2.2. Most studies used a 

case-control design, were conducted in the United States, used birth defect surveillance as 

a source of cases, and obtained information on BMI from maternal self-report.   

 

Meta-Analyses 

There were 13 studies of NTDs (13-18, 20-23, 25, 27, 28), 6 studies of spina bifida (15, 

16, 18, 22, 23, 28), and 5 studies of anencephaly (16, 18, 22, 23, 28) in which infants of 

obese mothers were compared to those of normal weight mothers, and 15 studies of 

NTDs (13-23, 25-27), 7 studies of spina bifida (15, 16, 18, 20-23), and 6 studies of 

anencephaly (16, 18, 20-23) in which infants of obese mothers were compared to those of 

non-obese mothers. All studies published after 2000 used a BMI cutpoint of 30 kg/m2 for 

obesity, except one that used a cutpoint of 27 kg/m2 (26). Studies published in 2000 and 
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prior used cutpoints of 28 kg/m2 (25), 29 kg/m2 (15, 19, 20, 24), 31 kg/m2 (21), and 32 

kg/m2 (27) for obesity. 

 

When obese mothers were compared to normal weight mothers, we found a weak 

association between prepregnancy obesity and anencephaly (summary OR 1.12, 95% CI: 

0.80, 1.58; Figure 2.2, Table 2.3). The association was stronger when using non-obese 

mothers as the reference group (summary OR 1.34, 95% CI 1.07-1.70, Figure 2.3). 

Restricting only to studies that had contributed to both meta-analyses did not change 

results; the association was again stronger when using the dichotomized version of 

obesity (Table 2.4). 

 

For spina bifida, the association was stronger when using non-obese compared to normal 

weight mothers as the reference group (summary OR using normal weight reference 

group: 1.66, 95% CI: 1.20, 2.29, Figure 2.4; summary OR using non-obese reference 

group: 1.88, 95% CI 1.47-2.40, Figure 2.5). When restricting the analysis to studies 

appearing in both meta-analyses, the magnitudes of the associations were similar to each 

other (Table 2.4). 

 

Between-study heterogeneity was low for studies of anencephaly and moderate for 

studies of spina bifida, but no one study appeared to explain the heterogeneity (Table 

2.5). The study by Waller et al. (22) was the largest study included in the meta-analysis 

and had the greatest influence on results. Based on the results of Egger’s test, publication 

bias was not a likely explanation for the observed association. 
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Review of Potential Confounders 

Three studies of anencephaly (16, 18, 22) and 4 of spina bifida (15, 16, 18, 22) presented 

both adjusted and crude estimates (Table 2.6). In 6 of the 7 studies (16, 18, 22), 

adjustment for covariates moved the OR downward, and in the seventh, there was no 

difference (15). Adjustment had more effect on precision in studies of anencephaly than 

studies of spina bifida. Every study adjusted for maternal education, and most for 

maternal age, ethnicity, and folic acid or vitamin use. 

 

DISCUSSION 

Similar to results from previous meta-analyses, we found that obese mothers were more 

likely to have a child with an NTD than non-obese or normal weight mothers. Low to 

moderate between-study heterogeneity was detected in each meta-analysis, reflecting the 

consistency with which most studies have reported this association. In the present 

analyses, we additionally found that adjusting for some commonly-investigated maternal 

sociodemographic and behavioral covariates had little effect on results.  

 

Overall, our meta-analysis results are similar to those of Rasmussen et al. (8) but the 

magnitudes of the association are not as strong as those of Stothard et al. (7) (Table 2.7). 

In particular, the association reported by Stothard et al. between maternal obesity and 

anencephaly was not observed in the present study when comparing obese to normal 

weight mothers, although we did find an association when dichotomizing obesity. Each 

meta-analysis included different sets of studies, based on variations in inclusion and 



44 
 

exclusion criteria and the studies that had been published at the time the meta-analysis 

was conducted. In addition, the present study used adjusted estimates in the meta-analysis 

while crude estimates were used in the previous studies. This could account for the 

attenuation of results because we found that control for confounders decreased the OR 

estimates.  

 

If we assume the covariates included in each study were truly confounders of the 

association, we can conclude that confounding led to a positive bias (i.e., adjusted 

estimates were smaller than crude estimates). However, the magnitude of the bias was not 

large. It is possible that other combinations of covariates, not investigated in any of the 

included studies, could have greater effects on the magnitude of the association.  

 

BMI is a continuous variable that is commonly categorized in epidemiologic studies. We 

presented results using two common categorizations of BMI: a 4-level version in which 

obese mothers are compared to normal weight mothers (with underweight and 

overweight being the other 2 categories), and a dichotomized version in which obese 

mothers are compared to non-obese mothers. Choice of categorization for BMI will 

depend on which contrast is more relevant for the research question being investigated. 

Using normal weight mothers as the reference group would be more appropriate if one 

were interested in the potential effects of interventions that would move all mothers from 

the obese category to the normal weight category. Using non-obese mothers as the 

reference group would be more appropriate if the interest was in an intervention which 
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would move all mothers from the obese category and distribute them into the other three 

BMI categories. 

 

The results from this meta-analysis are consistent with previous work demonstrating an 

association between maternal obesity and NTDs; however the specific mechanisms 

underlying this association remain poorly understood. 
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Table 2.1. Electronic Search Strategy Used to Identify Articles From Embase and 

Medline Through the end of July 2010. 

(‘obesity’/exp OR obesity OR obese OR overweight OR (body AND mass AND index)) 

AND (‘neural tube defect’/exp OR anencephaly OR anencephalus OR (spina AND 

bifida) OR (neural AND tube AND (defect OR defects)) OR ntd OR meningocele OR 

myelomeningocele) 
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Table 2.2. Characteristics of Studies Included in the Meta-Analysis of Maternal Obesity and Neural Tube Defects. 

    Cases Controls or Non-Cases  

Study Location Years Design N Source Outcomes N Source Outcomes Source of BMI 

Waller 

1994 (21) 

Illinois and 

California, 

USA 

1985-

1987 

Case-

control 

499 NTD 

 

Multiple 

sources 

Live births, 

stillbirths, 

TOP 

534 Birth certificates, 

hospitals, mothers 

undergoing serum 

screening, 

ultrasonography, 

amniocentesis 

Live births, 

stillbirths, 

TOP 

Self-reported 

height, weight 

Shaw 

1996 (20) 

California, 

USA 

1989-

1991 

Case-

control 

538 NTD 

217 AN 

296 SB 

Surveillance 

(multiple-

source) 

Live births, 

stillbirths, 

TOP 

539 Hospitals Live births Self-reported 

height, weight 

Watkins 

1996 (24) 

Atlanta, USA 1968-

1980 

Case-

control 

307 NTD Surveillance 

(multiple-

source) 

Live births, 

stillbirths 

2,755 Birth certificates Live births Self-reported 

height, weight: 

(weight at 

delivery minus 

weight gain) 
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Werler 

1996 (27) 

Boston, USA, 

Philadelphia, 

USA, 

Toronto, 

Canada 

1992-

1994 

Case-

control 

45 NTD Birth and 

tertiary care 

hospitals 

Live births, 

fetal deaths, 

TOP 

91 Hospitals (non-

malformed control 

group)  

“Infants” Self-reported 

height, weight 

Kallen 

1998 (15) 

Sweden 1983-

1993 

Cohort 338 NTD 2 registries “Infants”  665,706 births Live births, 

stillbirths 

Recorded height, 

weight (weight at 

delivery minus 

self-reported 

weight gain) 

Moore 

2000 (25) 

USA 

(multiple 

sites) 

1984-

1987 

Cohort 49 NTD 

 

Mothers 

undergoing 

serum screening 

Live births, 

stillbirths, 

TOP 

 22,951 births Live births, 

stillbirths, 

TOP 

Self-reported 

height, weight 

Shaw 

2000 (19) 

California, 

USA 

1987-

1988 

Case-

control 

247 NTD Surveillance 

(multiple-

source) 

Live births, 

stillbirths, 

TOP 

461 Same geographic 

area 

Live births Self-reported 

height, weight 

  



49 
 

Hendricks 

2001 (14) 

Texas, USA 1995-

2000 

Case-

control 

149 NTD Surveillance; 

Mexican-

American 

women 

“Delivered” 

infants, TOP 

178 Hospitals, birthing 

centers; Mexican-

American women 

Live births Self-reported 

height, weight 

Mikhail 

2002 (26) 

Chicago, 

USA 

1981-

1994 

Case-

control 

17 NTD Clinical 

records; 

African-

American 

women 

“Delivered” 

infants, TOP 

144 Clinical records; 

African-American 

women 

“Delivered” 

infants 

Medical record 

Watkins 

2003 (23) 

Atlanta, USA 1993-

1997 

Case-

control 

43 NTD 

12 AN 

22 SB 

Surveillance 

(multiple-

source) 

Live births, 

stillbirths, 

TOP 

330 Hospitals “Births” Self-reported 

height, weight 

Waller 

2007 (22) 

USA (8 sites) 1997-

2002 

Case-

control 

193 AN 

425 SB 

Surveillance Live births, 

stillbirths, 

TOP 

3,904 Birth certificates, 

hospitals 

Live births Self-reported 

height, weight 

Shaw 

2008 (18) 

California, 

USA 

1999-

2004 

Case-

control 

125 AN 

164 SB 

Surveillance 

(multiple-

source) 

Live births, 

stillbirths, 

TOP 

541 Hospitals Live births Self-reported 

height, weight 
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Oddy 

2009 (17) 

Western 

Australia, 

Australia 

1997-

2000 

Case-

control 

27 NTD Registry 

(multiple-

source) 

Live births, 

stillbirths, 

TOP 

418 Midwives’ 

Notification 

System in Western 

Australia 

Live births Height recorded 

in Midwives’ 

Notification 

System, self-

reported weight 

Blomberg 

2010 (13) 

Sweden 1995-

2007 

Cohort 389 NTD 3 registries Live births, 

stillbirths 

 1,235,877 total 

births 

Live births, 

stillbirths 

Recorded at first 

prenatal visit 

Li 2010 

(16) 

Shanxi, China 2003-

2007 

Case-

control 

511 NTD 

232 AN 

238 SB 

Surveillance Live births, 

stillbirths, 

TOP 

687  “Infants” Self-reported 

height, weight 

Rankin 

2010 (28) 

North of 

England 

2003-

2005 

Cohort 23 NTD 

7 AN 

15 SB 

5 maternity 

hospitals; 

registry 

Live births, 

stillbirths, 

TOP 

 30,703 births 

 

Live births, 

stillbirths, 

TOP 

“BMI at the first 

antenatal visit” 

Abbreviations: AN, anencephaly; BMI, body mass index; N, number; NTD, neural tube defect; SB, spina bifida; TOP, termination of 

pregnancy.
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Table 2.3. Results From Random-Effects Meta-Analyses of Associations Between 

Maternal Obesity and Neural Tube Defects. 

  Summary Estimate Heterogeneity Cochran Q 

p-value 

Egger’s  

p-value Meta-Analysis N OR 95% CI I2 95% UI 

Obese versus 

normal weighta 

       

     Anencephaly 5 1.12 0.80, 1.58 6 0, 80 0.37 0.54 

     Spina bifida 6 1.66 1.20, 2.29 43 0, 77 0.12 0.55 

     All NTDs 13 1.72 1.47, 2.01 21 0, 58 0.22 0.65 

Obese versus  

non-obeseb 

       

     Anencephaly 6 1.34 1.07, 1.70 0 0, 64 0.63 0.37 

     Spina bifida 7 1.88 1.47, 2.40 42 0, 76 0.11 0.43 

     All NTDs 15 1.73 1.55, 1.93 0 0, 49 0.54 0.43 

Abbreviations: BMI, body mass index; CI, confidence interval; N, number of included 

studies; NTDs, neural tube defects; OR, summary odds ratio; UI, uncertainty interval. 

a As defined in each study; most common contrast: BMI ≥ 30 versus 18.5-24.9 kg/m2. 

b As defined in each study; most common contrast: BMI ≥ 30 versus < 30 kg/m2. 
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Table 2.4. Comparison of Results From Random-Effects Meta-Analyses of Associations 

Between Maternal Obesity and Neural Tube Defects Using two Different Reference 

Groups for Exposure.  

  Normal Weight  

Reference Group 

Non-Obese 

Reference Group 

Meta-Analysis N OR 95% CI OR 95% CI 

Anencephaly 4 1.12 0.75, 1.68 1.31 0.96, 1.79 

Spina bifida 5 1.61 1.12, 2.31 1.66 1.17, 2.35 

All NTDs 13 1.71 1.45, 2.02 1.73 1.54, 1.95 

Abbreviations: CI, confidence interval; N, number of included studies; NTDs, neural tube 

defects; OR, summary odds ratio. 
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Table 2.5. Influence of Individual Studies on Results of Random-Effects Meta-Analyses 

of Obesity (Obese Versus Normal Weight) and Anencephaly or Spina Bifida. 

 Summary Estimate Heterogeneity Cochran Q 

p-value Study Removed OR 95% CI I2 95% UI 

Anencephaly      

     None 1.12 0.80, 1.58 6 0, 80 0.37 

     Watkins 2003 (23) 1.06 0.77, 1,47 0 0, 81 0.48 

     Waller 2007 (22) 1.31 0.78, 2.19 9 0, 86 0.35 

     Shaw 2008 (18) 1.02 0.64, 1.61 9 0, 86 0.35 

     Li 2010 (16) 1.18 0.85, 1.64 0 0, 84 0.40 

     Rankin 2010 (28) 1.12 0.75, 1.68 25 0, 71 0.26 

Spina bifida      

     None 1.66 1.20, 2.29 43 0, 77 0.12 

     Kallen 1998 (15) 1.71 1.13, 2.59 35 0, 74 0.11 

     Watkins 2003 (23) 1.56 1.12, 2.17 30 0, 72 0.13 

     Waller 2007 (22) 1.44 1.00, 2.07 0 0, 74 0.29 

     Shaw 2008 (18) 1.80 1.28, 2.55 18 0, 63 0.19 

     Li 2010 (16) 1.77 1.31, 2.39 19 0, 64 0.19 

     Rankin 2010 (28) 1.61 1.12, 2.31 42 0, 77 0.07 

Abbreviations: CI, confidence interval; OR, summary odds ratio; UI, uncertainty interval. 
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Table 2.6. Comparison of Adjusted to Crude Analyses of Maternal Obesity and Anencephaly or Spina Bifida. 

 Adjusteda Crudea Ratio of 

ORb 

Ratio of 

Precisionc 

Stratification Variables (Covariates in 

Multivariable Model; Exclusion Criteria) Study OR 95% CI OR 95% CI 

Anencephaly        

   Waller 2007 (22) 0.96 0.62, 1.48 1.06  0.69, 1.59 0.91 1.04 Age, ethnicity, education, parity, smoking, 

folic acid use; diabetes 

   Shaw 2008 (18) 1.4 0.8, 2.4 1.6 1.0, 2.6 0.88 1.15 Race/ethnicity, education, vitamin use, energy 

intake, height, dietary folate intake; diabetes, 

use of seizure medications, history of birth 

defect in previous pregnancy 

   Li 2010 (16) 0.62 0.22, 1.81 0.84 0.35, 2.02 0.74 1.43 Age, education, occupation, parity, history of 

birth defect in previous pregnancy, folic acid 

use; not Han ethnicity 
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Spina bifda        

   Kallen 1998 (15) 1.49 0.92, 2.43 1.48 0.91, 2.32 1.01 1.04 Year of birth, age, parity, education, smoking, 

immigrant status 

   Waller 2007 (22) 2.10 1.63, 2.71 2.25 1.76, 2.87 0.93 1.02 Age, ethnicity, education, parity, smoking, 

folic acid use; diabetes 

   Shaw 2008 (18) 1.2 0.7, 2.0 1.4 0.8, 2.2 0.86 1.04 Race/ethnicity, education, vitamin use, energy 

intake, height, dietary folate intake; diabetes, 

use of seizure medications, history of birth 

defect in previous pregnancy 

   Li 2010 (16) 0.78 0.28, 2.23 0.84 0.33, 2.13 0.93 1.23 Age, education, occupation, parity, history of 

birth defect in previous pregnancy, folic acid 

use; not Han ethnicity 

Abbreviations: CI, confidence interval; OR, odds ratio. 

a All contrasts are body mass index ≥ 30 versus 18.5-24.9 kg/m2 except Kallen et al. (15) which is ≥ 29 versus < 29 kg/m2. 

b Ratio of adjusted OR to crude OR. 

c Ratio of adjusted OR precision to crude OR precision, where precision is defined as the ratio of the upper to lower confidence bound. 
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Table 2.7. Summary of Results From Three Meta-Analyses of Obesity and Neural Tube 

Defects (Obese Versus Normal Weight). 

 Neural Tube Defects Anencephaly Spina Bifida 

Meta-Analysis OR 95% CI OR 95% CI OR 95% CI 

Rasmussen 2008 (8) 1.70 1.34, 2.15     

Stothard 2009 (7) 1.87 1.62, 2.15 1.39 1.03, 1.87 2.24 1.86, 2.69 

Present meta-analysis 1.71 1.48, 1.97 1.12 0.80, 1.58 1.66 1.20, 2.29 

Abbreviations: CI, confidence interval; OR, summary odds ratio. 
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Figure 2.1. Flow of studies into and out of the systematic review of maternal obesity and 

neural tube defects. Abbreviations: BMI, body mass index; CNS, central nervous system; 

NTD, neural tube defect. 
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Figure 2.2. Forest plot of studies reporting associations between maternal obesity (obese 

compared to normal weight mothers) and anencephaly, with summary estimate from 

random-effects meta-analysis. 
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Figure 2.3. Forest plot of studies reporting associations between maternal obesity (obese 

compared to non-obese mothers) and anencephaly, with summary estimate from random-

effects meta-analysis. 
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Figure 2.4. Forest plot of studies reporting associations between maternal obesity (obese 

compared to normal weight mothers) and spina bifida, with summary estimate from 

random-effects meta-analysis. 
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Figure 2.5. Forest plot of studies reporting associations between maternal obesity (obese 

compared to non-obese mothers) and spina bifida, with summary estimate from random-

effects meta-analysis. 
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ABSTRACT 

In regions where screening for anencephaly and spina bifida is widespread, most cases of 

these defects are first diagnosed prenatally. The purpose of this study was to collect 

contemporary estimates of the frequency of termination of pregnancy (TOP) following 

prenatal diagnosis of anencephaly or spina bifida and to investigate factors associated 

with TOP which might contribute to selection bias in epidemiologic studies. Medline and 

Embase were searched from 1990 to 2011 for studies reporting the frequency of TOP 

following prenatal diagnosis of anencephaly or spina bifida. We included studies with 

English-language abstracts, with ≥ 20 prenatally diagnosed cases of either defect, and in 

which the majority of cases were ascertained in 1990 or later. Among the 15 studies 

identified, 7 included anencephaly and 14 included spina bifida. Six were from North 

America and 9 from Europe. The overall frequency of TOP following prenatal diagnosis 

was 86% for anencephaly and 64% for spina bifida. TOP for spina bifida was more 

common when the prenatal diagnosis occurred before 24 weeks gestation, in cases with 

greater severity, and in Europe versus North America. Most pregnancies in which 

anencephaly or spina bifida is prenatally diagnosed will end in TOP. Because 

epidemiologic studies and surveillance systems might be more likely to underascertain 

birth defects when the pregnancy ends in TOP and the frequency of TOP following 

prenatal diagnosis might vary by maternal and case characteristics, investigators should 

be alert to the possibility of selection bias in epidemiologic studies of these defects. 
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INTRODUCTION 

Neural tube defects (NTDs) are birth defects caused by failure of the neural tube to close 

completely, resulting in incomplete formation of the brain or spinal cord (1, 2). The two 

most common types of NTDs are anencephaly, characterized by absence of much of the 

skull and brain, and spina bifida, a herniation of neural tissue through an incompletely 

formed spine (1). Anencephaly is a lethal condition and liveborn infants typically survive 

less than one day (3, 4). The severity of spina bifida is more variable, often corresponding 

to the location of the defect on the spine (5). In the most severe cases, complications of 

spina bifida can lead to death; however, this is not the most common outcome, with over 

90% of liveborn infants with spina bifida in the United States surviving the first year of 

life, although with varying levels of sensory loss and paralysis (5, 6). There is marked 

geographic variability in reported prevalence of NTDs, depending on whether or not the 

pregnancy occurs in a country requiring folic acid fortification of grain products and 

whether or not cases among termination of pregnancy (TOP) are included in the estimate 

(7-10).  

 

Prenatal detection of NTDs is now common in many countries. Screening for elevated 

maternal serum alpha-fetoprotein levels in the second trimester of pregnancy can identify 

over two-thirds of cases of open neural tube defects, including almost all cases of 

anencephaly (11, 12). Ultrasound visualization of the defect has also become a common 

and effective method for prenatal detection of NTDs and other defects, with use of 

second and third trimester ultrasound rapidly increasing since the 1970s (13). In one 

European study, 80% of postnatally confirmed NTD cases had been identified prenatally 
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in countries in which ultrasound screening was routine (14). Given the often severe 

nature of NTDs, TOP is common following prenatal diagnosis if the diagnosis is made 

early enough for this to be an available option. A systematic review of studies published 

between 1987 and 1995 estimated that 84% and 64% of pregnancies known to be affected 

with anencephaly and spina bifida, respectively, ended in TOP (15). Since that review 

was published, the frequency of prenatal diagnosis has continued to increase but no 

updated comprehensive summary of the frequency of TOP has been performed to 

determine if these estimates accurately reflect the present-day situation.   

 

The increasing use of prenatal diagnosis and TOP has important implications for the 

interpretation of results from epidemiologic studies of birth defects such as NTDs, for 

which both prenatal diagnosis and TOP are relatively common. Not all cases of NTDs are 

able to be included in epidemiologic studies because cases from pregnancies ending in 

TOP are more difficult to ascertain than those ending in live birth and typically require 

inclusion of additional case ascertainment sources. Descriptive studies underestimate the 

number of pregnancies with recognized NTDs when only live births are included or some 

proportion of affected pregnancies resulting in TOPs is missed (8, 16, 17). In etiologic 

studies, exclusion or incomplete ascertainment of NTDs among TOPs can lead to 

selection bias when the exposure of interest is associated with likelihood of TOP (18). In 

addition, clinical studies of long-term outcomes observed in cases followed from birth 

might not be useful for counseling parents with prenatally diagnosed fetuses about 

prognosis if liveborn cases represent only a small, selected subset of all cases.   
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Quantifying the frequency of TOP and factors associated with TOP is important for 

understanding how underascertainment of cases might affect study results. The purpose 

of the present review is to collect contemporary estimates of the proportion of 

pregnancies ending in TOP following prenatal diagnosis of anencephaly or spina bifida 

and to investigate factors associated with TOP that could contribute to selection bias. 

 

METHODS 

Search Strategy 

We searched Medline and Embase from 1990 through May 2011 for epidemiologic 

studies reporting both the number of cases of anencephaly or spina bifida prenatally 

diagnosed in a specific time period and the number of these cases in which the pregnancy 

outcome was TOP. The search strategy included search terms and synonyms for “neural 

tube defect”, “anencephaly”, “spina bifida”, “prenatal diagnosis”, and “pregnancy 

termination” (Appendix). We also identified studies by searching reference lists of 

included articles and by using Google Scholar to search for more recently published 

articles citing the included studies. Information abstracted from each article included 

location and dates of participant recruitment, number of prenatally diagnosed cases of 

anencephaly or spina bifida, the number of these cases with TOP as the pregnancy 

outcome, and characteristics investigated in association with TOP. 

 

Inclusion and Exclusion Criteria 

Two types of studies were eligible for inclusion: studies following a prospective or 

retrospective cohort of prenatally diagnosed fetuses to determine outcome of pregnancy 
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and studies using birth defects surveillance or registries that ascertain prenatally 

diagnosed cases and pregnancies ending in TOP. Additional inclusion criteria were: an 

English-language abstract, pregnancy outcome known for at least 20 prenatally diagnosed 

cases of anencephaly or of spina bifida, and at least half the study years in 1990 or later. 

We restricted our analysis to studies of at least 20 prenatally diagnosed cases to ensure 

the estimates were fairly stable. The restriction to studies mostly conducted in 1990 or 

later was made because after this time fetal ultrasound was in widespread use and the 

decision to continue or end an affected pregnancy would have likely involved not only 

serum screen results but also ultrasound confirmation of the specific defect. 

  

We excluded studies restricted to fetuses with NTDs in combination with other specific 

non-NTD diagnoses (e.g., studies of fetuses with both NTDs and chromosomal 

abnormalities) or specific indications on ultrasound (e.g. studies of fetuses with both 

NTDs and increased nuchal translucency). We also excluded studies conducted 

exclusively in non-singletons. When two studies included information from overlapping 

populations, we included the most recent study or the study with the largest catchment 

area (e.g., a national study would be chosen over a regional study). Studies were also 

excluded if they were conducted in a location where TOP was not legally permitted at 

any gestational age. 

 

Statistical Analyses 

We calculated the frequency of TOP as the number of pregnancies ending in TOP among 

those in which a prenatal diagnosis was made and pregnancy outcome was known. When 
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reporting results summarized across studies we divided the sum of the number of 

pregnancies ending in TOP across studies by the sum of the prenatally diagnosed 

pregnancies and provided 95% confidence intervals (CI). 

 

In some studies, pregnancies were lost to follow-up and the outcome of pregnancy was 

unknown. When this occurred, we restricted the analysis to the subset of pregnancies 

with known outcomes to make these studies comparable to studies which reported no 

pregnancies lost to follow-up; it was often not possible to determine if a study truly had 

no pregnancies lost to follow-up or if these pregnancies were excluded prior to analysis. 

 

When fetuses undergoing surgery for in utero spina bifida repair had been excluded from 

the original study we added them back into our analysis and categorized them as 

pregnancies not ending in TOP. 

 

In our analysis of factors associated with TOP, we categorized studies according to study 

design (cohort vs. surveillance or registry), case type (all cases vs. isolated defects), 

defect type (open vs. closed, for spina bifida only), geographic region (Europe vs. North 

America), and gestational age at prenatal diagnosis (<24 weeks vs. ≥24 weeks). If studies 

reported information for more than one stratum (e.g., results for open and closed defects 

presented separately within the same article) they were included once in each category.  

 

RESULTS 
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We identified 13 articles meeting inclusion criteria using the search strategy (19-31). One 

additional article was found using Google Scholar (this article had cited one of the 

articles identified using the search strategy) (32) and one article was known to the authors 

and included (33). Of these 15 included articles, 7 reported information on anencephaly 

and 14 on spina bifida. Six studies were from North America and 9 were from Europe. 

 

Frequency of TOP in Included Studies 

The overall frequency of TOP following prenatal diagnosis in the 7 studies of 

anencephaly was 86% (95% CI: 83-89%) and ranged from 64% to 97% in individual 

studies (Table 3.1). In the 14 studies of spina bifida, the overall frequency was 64% (95% 

CI: 61-67%) and estimates from individual studies ranged from 31% to 89%. 

 

Factors Associated With Frequency of TOP 

There were too few studies of anencephaly to investigate factors associated with 

frequency of TOP between studies; therefore, only results for spina bifida are shown 

(Table 3.2). No study reported associations between maternal sociodemographic 

characteristics and TOP after prenatal diagnosis of spina bifida.  

 

Geographic region 

In both North America and Europe, the frequency of TOP following prenatal diagnosis of 

spina bifida was variable. Estimates ranged from 31% to 82% in North America and from 

41% to 89% in Europe. Overall, frequency of TOP was higher in Europe (69%) than 

North America (49%). 
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Study design 

Of the 14 studies, 3 used data from birth defect surveillance or registries and the 

remainder followed a cohort of prenatally diagnosed fetuses for pregnancy outcome. 

Frequency of TOP in studies using surveillance or registries was higher than in those 

using a cohort design; however, results from the surveillance and registry studies were 

highly influenced by one study with large sample size (n = 405) and high prevalence of 

TOP (78%). 

 

Case type 

Five studies presented analyses restricted to fetuses with isolated spina bifida and the 

remainder of the studies included all types of cases. The frequency of TOP was higher for 

studies including all types of cases than those restricted to fetuses with isolated defects 

(67% vs. 55%). 

  

Defect type 

Two studies presented results for closed spina bifida and five for open spina bifida. In the 

two studies of closed spina bifida, the frequency of TOP was 22% and 50%, but both 

estimates were based on fewer than 10 prenatally diagnosed fetuses. For open spina 

bifida, the frequency of TOP ranged from 36% to 91% with an overall frequency of 57%.  

 

Gestational age at prenatal diagnosis 
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Four studies (all from Europe) reported frequency of TOP stratified by gestational age at 

prenatal diagnosis (< 24 versus ≥ 24 gestational weeks) with frequency of TOP higher 

when prenatal diagnosis was made before 24 weeks rather than  later (88% vs. 31%). 

Gestational age at prenatal diagnosis appeared to be responsible for some of the between-

study variability in frequency of TOP (Table 3.3). For example, the overall frequency of 

TOP was lower in the Netherlands (49%) than other European countries (78%); however, 

once restricted to prenatal diagnoses made <24 weeks, the Netherlands and other 

European countries had similar estimates (92% vs. 91%). In the Netherlands over half of 

prenatal diagnoses were made ≥24 gestational weeks, compared to 26% in the other 

European countries. 

 

DISCUSSION 

Among the studies identified in this review, 86% of pregnancies known to be affected 

with anencephaly and 64% of those known to be affected with spina bifida ended in TOP. 

However, none of the included studies presumably had 100% sensitivity for ascertaining 

NTDs and sensitivity likely varied between included studies. Because epidemiologic 

studies and surveillance programs are more likely to underascertain pregnancies ending 

in TOP than those ending in live births (34), these are likely to be underestimates of the 

prevalence of TOP. 

  

These estimates are similar to those from a previous systematic review of the frequency 

of TOP published over a decade ago which reported frequencies of 84% (95% CI: 82-

86%) for anencephaly and 64% (95% CI: 61-67%) for spina bifida (15). The similarity 
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between estimates in the present and previous studies suggests that the frequency of TOP 

following prenatal diagnosis of anencephaly or spina bifida has not appreciably changed 

over time; however, an analysis of time trends within the same study would be needed to 

rule out the similarities being explained by systematic differences in study design or 

characteristics of included studies between the previous and the present reviews. 

 

With a substantial proportion of pregnancies in which a prenatal diagnosis was made 

ending in TOP, investigators should be aware that epidemiologic studies conducted only 

among live births include a highly selected sample of the total population of fetuses with 

NTDs. Previous studies have reported that maternal characteristics such as education, 

age, and race/ethnicity are associated with pregnancy outcome of NTD-affected 

pregnancies (35, 36); however, these studies have not separated the effects of differences 

in whether or not a pregnancy ends in termination following prenatal diagnosis from 

differences in whether or not a prenatal diagnosis was made. Only one study included in 

this review investigated maternal characteristics associated with TOP following prenatal 

diagnosis, but it did not present results separately for the NTDs included (anencephaly, 

spina bifida, and encephalocele) (20). This study found that TOP following prenatal 

diagnosis of NTDs was more common in older than younger mothers, in Asian compared 

to white mothers, and in certain areas of their study catchment area in Hawaii. In studies 

of other types of birth defects, the frequency of TOP following prenatal diagnosis has 

also been shown to vary by maternal characteristics such as education (37), age (37, 38), 

and race/ethnicity (38). Because these characteristics are associated with TOP and 

therefore with which cases will be included in epidemiologic studies, selection bias is 
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possible in studies investigating these factors in relation to NTD etiology (18). No study 

included in the present review reported associations between maternal characteristics and 

TOP following prenatal diagnosis of anencephaly or spina bifida separately. Additional 

studies are warranted to further address how maternal characteristics relate to TOP for 

these subtypes of NTDs and if other maternal and fetal characteristics are associated with 

TOP following prenatal diagnosis.  

 

We found an association between gestational age at prenatal diagnosis and frequency of 

TOP. Differences in average gestational age at prenatal diagnosis are a possible 

explanation for the wide variability in frequency of TOP observed between studies. An 

association with gestational age is expected because many regions have laws governing 

the gestational ages at which TOP may be performed, meaning that if a prenatal diagnosis 

is made at a late gestational age, TOP may no longer be an available option. These results 

suggest the importance of considering characteristics that could delay prenatal diagnosis 

as explanations for variability in the frequency of TOP following prenatal diagnosis and 

as potential sources of selection bias. As an example, ultrasound visualization of the fetus 

can be difficult when mothers are obese, with prenatal diagnosis of birth defects less 

likely in obese mothers than normal weight mothers (39, 40). The ultrasound examination 

might need to be repeated later in pregnancy, as the fetus grows larger, to complete the 

fetal anatomic examination (41, 42). This might cause obese mothers to have on average 

a later gestational age at prenatal diagnosis and therefore be less likely to be able to 

consider a TOP. As a result, obese mothers might be more likely to have a live birth and 

to be included in epidemiologic studies of these birth defects than non-obese mothers.  



78 
 

 

Another important consideration in the likelihood of continuning or terminating a 

pregnancy following prenatal diagnosis is the severity of the defect identified prenatally 

(13, 38, 43). A more severe NTD or one accompanied by multiple major malformations 

might be more likely to end in TOP than an isolated NTD or a less severe case. Severity 

of the defect might be more relevant for spina bifida than anencephaly since the latter is 

uniformly lethal. In our review there was little information on the effect of severity of 

spina bifida on likelihood of TOP, but the results suggested a higher frequency of TOP 

for fetuses with multiple malformations than isolated cases and for those with open 

defects than closed defects. This point is important when results from studies reporting 

clinical outcomes such as shunting or mobility impairment are used to counsel families 

with a prenatally diagnosed fetus on long-term prognosis. Consideration should be given 

to the possibility that the fetuses most likely to be liveborn and to have follow-up 

information available are those with the least severe defects; thus, results from studies 

based on liveborn infants may not be generalizable to all prenatally diagnosed fetuses. 

 

Incomplete ascertainment of cases of anencephaly or spina bifida among pregnancies 

ending in TOP also pose problems for evaluating population-based interventions for the 

prevention of these defects. Using data from surveillance to evaluate the success of folic 

acid fortification programs is difficult because of the high frequency of prenatal diagnosis 

and TOP and the difficulty in separating the effects of the intervention from changes in 

prenatal diagnosis and TOP over time (44). 
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One limitation of this study was the inability of our search strategy to identify all relevant 

articles. Restricting the search databases to Medline and Embase likely resulted in missed 

articles in languages other than English and articles from journals not indexed by these 

databases, particularly those outside North America and Europe. Because reporting the 

proportion of pregnancies with prenatal diagnosis ending in TOP is not a common study 

objective, this information is often presented in the text and not the abstract. There might 

be other articles reporting the frequency of TOP following prenatal diagnosis that are not 

captured by a search strategy that exclusively searches abstracts; this could affect our 

results if study results systematically differ between studies identified and not identified 

by our search strategy. A second limitation of our analysis was the exclusion of 

prenatally diagnosed fetuses with unknown pregnancy outcomes by us or by authors of 

the included studies. This exclusion would likely produce underestimates of the 

frequency of TOP if pregnancies with unknown outcomes are more likely to represent 

TOP than the more easily ascertained live births. 

 

Our results suggest, in accordance with previous studies, that TOP is the most common 

outcome of pregnancy following prenatal diagnosis of anencephaly and spina bifida, 

particularly when the prenatal diagnosis is made prior to 24 weeks of gestation. The 

relatively small proportion of fetuses with NTDs presenting as live births will present 

challenges to investigators conducting studies in which not all NTD-affected pregnancies 

among TOPs are included. For some types of studies, such as evaluation of interventions 

for prevention, use of alternate sources of data might be warranted; however, a better 

understanding of factors associated with TOP following prenatal diagnosis of 
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anencephaly or spina bifida will provide much needed information on the potential for 

selection bias in etiologic studies and generalizability in studies of the prognosis of 

prenatally diagnosed fetuses. 
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Table 3.1. Proportion of Pregnancies Ending in Termination of Pregnancy Following 

Prenatal Diagnosis of Anencephaly or Spina Bifida, by Geographic Region. 

   Anencephaly Spina Bifida 

Study Location Years n/Na % n/Na % 

North America       

Tairou 2006 Quebec City, 

Canada 

1993-

2002 

27/40 68 56/85 66 

Biggio 2004 Birmingham, USA 1996-

2000 

  20/56 36 

Forrester 2000 Hawaii, USA 1986-

1997 

64/78 82 32/65 49 

Waller 2000 Texas, USA 1995 23/36 64 10/27 37 

Harmon 1995 Indianapolis, USA 1988-

1994 

  19/61 31 

Shulman 1994 Memphis, USA 1988-

1993 

  18/22 82 

Europe       

Amari 2010 Lübeck, Germany 1993-

2008 

  68/103 66 

Aguilera 2009 Bristol, UK 1999-

2007 

  53/74 72 

D’Addario 2008 Bari, Italy 2005-

2006 

  38/49 78 
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Poretti 2008 Switzerlandb 2001-

2007 

20/22 91 35/85 41 

Ghi 2006 Bologna, Italy 1997-

2004 

  59/66 89 

Nikkila 2006 Malmöhus County 1984-

1999 

63/69 91   

Garne 2005 Europec 1995-

1999 

421/469 90 314/405 78 

Adama van Scheltema 

2003 

Leiden, Netherlands 1993-

1998 

19/24 79 11/26 42 

Olde Scholtenhuis 

2003 

Netherlandsd 1996-

1999 

  43/88 49 

a Number of pregnancies ending in termination of pregnancy/number of fetuses prenatally 

diagnosed. 

b Basle, Geneva, Lucerne, Zurich. 

c Belgium (Antwerp, Hainaut), Bulgaria (Sofia), Croatia, Denmark (Funen County), 

France (Paris, Strasbourg), Germany (Mainz, Saxony-Anhalt), Italy (Campania, 

Tuscany), Malta, Portugal (South), Spain (Asturias, Basque Country), Switzerland 

(Vaud), and the United Kingdom (Wales). 

d Amsterdam, Rotterdam, Utrecht. 
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Table 3.2. Proportion of Pregnancies Affected by Spina Bifida Ending in Termination of 

Pregnancy Following Prenatal Diagnosis, by Fetal and Study Characteristics. 

  Proportion Ending in Termination 

 Number of 

Studiesa 

n/Nb Percentage  

 

95% 

CI 

Range of 

Estimatesc 

All studies 14 776/1212 64 61, 67 31-89 

Geographic region      

   Europe 8 621/896 69 66, 72 41-89 

   North America 6 155/316 49 44, 55 31-82 

Study design      

   Cohort 11 420/715 59 55, 62 31-89 

   Surveillance/registry 3 356/497 72 68, 75 37-78 

Case type      

   All cases 10 635/941 67 64, 70 41-82 

   Isolated defects 5 185/334 55 50, 61 31-89 

Defect type      

   Open 5 197/347 57 52, 62 36-91 

   Closed 2 4/13 31 11, 59 22-50 

Gestational age at 

prenatal diagnosis 

     

   <24 weeks 5 419/477 88 85, 91 77-92 

   ≥24 weeks 4 60/195 31 25, 38 16-41 

Abbreviations: CI, confidence interval. 
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a Studies do not sum to total because studies can be counted in none or more than one 

category. 

b Number of pregnancies ending in termination of pregnancy/number of fetuses 

prenatally diagnosed. 

c Studies with lowest and highest estimates. 
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Table 3.3. Proportion of Pregnancies Affected by Spina Bifida Ending in Termination of 

Pregnancy Following Prenatal Diagnosis, by Gestational Age at Prenatal Diagnosis. 

  All Fetuses Prenatal 

Diagnosis 

< 24 Weeks 

Prenatal 

Diagnosis 

≥ 24 Weeks 

Study Country n/Na % n/Na % n/Na % 

Garne 2005 Europeb 314/405 78 253/278 91 44/107 41 

Aguilera 2009 United 

Kingdom 

53/74 72 50/65 77 3/9 33 

Amari 2010 Germany 68/103 66 63/74 85 5/29 17 

Olde Scholtenhuis 

2003 

Netherlands 43/88 49 35/38 92 8/50 16 

a Number of pregnancies ending in termination of pregnancy/number of fetuses prenatally 

diagnosed. 

b Belgium, Bulgaria, Croatia, Denmark, France, Germany, Italy, Malta, Portugal, Spain, 

Switzerland, and the United Kingdom. 
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APPENDIX 

Electronic Search Strategy 

The following search strategy was used to identify articles eligible for inclusion using 

http://www.embase.com (simultaneous search of Embase and Medline) for articles 

published between 1990 and 12 May 2011: 

 

('neural tube defect'/exp OR 'neural tube defect' OR ntd* OR 'anencephalus'/exp OR 

anencephaly OR anencephalus OR 'spina bifida'/exp OR 'spina bifida' OR 

'meningomyelocele'/exp OR myelomeningocele OR meningomyelocele OR 

'meningocele'/exp OR meningocele) AND ('prenatal diagnosis'/exp OR 'prenatal 

diagnosis' OR prenatal* OR antenatal* OR ultraso* OR sonogra* OR amniocentes* OR 

chorion*) AND ('abortion'/exp OR 'pregnancy termination'/exp OR 'pregnancy 

termination' OR terminat* OR abort* OR interrupt*) 

http://www.embase.com/
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ABSTRACT 

With routine use of maternal serum screening and prenatal ultrasound, spina bifida is 

commonly diagnosed prenatally. Our aims were to investigate characteristics associated 

with prenatal diagnosis of spina bifida and to evaluate the agreement between maternal 

report and medical record report of prenatal diagnosis. We included 714 mothers of 

infants with spina bifida from the National Birth Defects Prevention Study, 1998-2005. 

We assessed sensitivity of maternal report compared to medical record abstract of 

prenatal diagnosis (reported vs. not reported) and timing of prenatal diagnosis (<24 vs. 

≥24 gestational weeks) and used logistic regression to identify characteristics associated 

with prenatal diagnosis and timing of prenatal diagnosis. Sensitivity of maternal report 

was 83% for prenatal diagnosis and 98% for timing of prenatal diagnosis. Prenatal 

diagnosis and early prenatal diagnosis were associated with maternal serum screening, 

periconceptional folic acid supplementation, household income ≥$50,000, and having 

more than a high school education. Maternal report could be a reliable source of data for 

future studies investigating factors associated with prenatal diagnosis and timing of 

prenatal diagnosis such as health-seeking behaviors and socioeconomic status.  
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INTRODUCTION 

Spina bifida is a birth defect resulting from failure of the neural tube to close completely 

during embryonic development (1). Use of prenatal screening for the detection of spina 

bifida and other birth defects has increased rapidly over the last several decades (2). 

Maternal serum alpha-fetoprotein (MSAFP) screening in the second trimester of 

pregnancy can identify open spina bifida and fetal imaging studies such as 

ultrasonography are commonly used for screening or for confirmation of the defect (3).  

 

The frequency of prenatal diagnosis of spina bifida has been estimated at 42-59% in the 

United States (4-6). Prenatal diagnosis allows families who want this information the 

opportunity to make decisions about continuing the pregnancy or to plan for the birth, 

including arranging to deliver in a facility better equipped to treat the newborn and 

exploring options such as fetal surgery (5). Understanding factors associated with 

prenatal diagnosis is important for identifying subgroups of mothers who are less likely 

to have a prenatal diagnosis and therefore would not be able to consider all available 

options prior to the infant’s birth. Previous studies have reported that the frequency of 

prenatal diagnosis of birth defects varies by maternal race/ethnicity, prepregnancy body 

mass index, household income, and other characteristics (4-9). Few studies, however, 

have examined if any of these characteristics are specifically associated with prenatal 

diagnosis of spina bifda. 

 

Investigating prenatal diagnosis in population-based studies can be challenging if data 

from medical records are not available to confirm if a prenatal diagnosis was made. 
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Using maternal self-report of prenatal diagnosis is an alternative to medical records data. 

Although studies comparing maternal report to medical record report of pregnancy-

related events have shown good agreement (10-13), the accuracy of maternally reported 

prenatal diagnosis has not been well studied. 

 

The purpose of this study is two-fold: to evaluate agreement between maternal and 

medical record abstract of prenatal diagnosis of spina bifida and to investigate maternal 

and pregnancy characteristics associated with prenatal diagnosis. 

 

METHODS 

Population 

The National Birth Defects Prevention Study is an ongoing, population-based case-

control study of risk factors for major structural birth defects (14). Cases are identified 

through active birth defect surveillance in Arkansas, California, Georgia, Iowa, 

Massachusetts, New York, New Jersey, North Carolina, Texas, and Utah. Eight sites 

systematically ascertain cases among live births, stillbirths (fetal deaths ≥ 20 gestational 

weeks), and terminations of pregnancy (any gestational age). New Jersey includes cases 

among live births and stillbirths only, and Massachusetts only systematically includes 

live births. 

 

Clinical geneticists review data from medical records for all potentially eligible cases to 

determine eligibility and to classify the case into the appropriate defect group (15). Cases 

with confirmed or suspected chromosomal anomalies or single-gene disorders are 
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excluded. Mothers agreeing to participate in the study are contacted 6 weeks to 2 years 

following delivery to complete a telephone interview including questions on maternal 

sociodemographics, pregnancy history, and chronic and acute illnesses, medication use, 

diet, smoking, alcohol use, and occupation during pregnancy. Information on the 

mother’s reproductive and pregnancy histories are also abstracted from medical records. 

Institutional review board approval was obtained from all participating sites. 

 

For this study, eligible mothers were case mothers who completed the interview and who 

had a child with spina bifida with a date of delivery on or after January 1, 1998 and with 

an expected date of delivery on or before December 31, 2005.  

 

Definition of Prenatal Diagnosis 

In the interview, mothers were asked, “Did you have any ultrasounds which showed any 

abnormalities with the fetus, placenta, or fluid?” and were then asked to describe the 

abnormality. Fetuses were classified as prenatally diagnosed if the maternal report fell 

into at least one of the following categories: 

 

• The defect was identified by name (e.g., “spina bifida” or synonym) 

• The defect was not identified by name but an anatomical description consistent 

with the defect was given (e.g., “herniation of spinal cord”) 

• The defect was not identified by name but an anomaly was reported that most 

likely represents the defect (e.g., “there was a lump on the spine”) 
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• Fetal surgery for in utero spina bifida repair was reported, implying a prenatal 

diagnosis. 

 

Determination of prenatal diagnosis status was made with knowledge of the true 

(postnatally confirmed) diagnosis to give the benefit of the doubt that a prenatal diagnosis 

was made when the description would have otherwise been too vague to determine the 

exact type of defect. We also classified as prenatal diagnosis those diagnoses reported in 

the interview in response to questions about amniocentesis, chorionic villus sampling, 

MSAFP screening, and other prenatal imaging and tests. Although most of these test 

results would not be diagnostic for spina bifida, we assume that prenatal diagnoses 

reported in response to these questions reflect that a prenatal diagnosis was made but the 

mother did not remember which test provided the definitive diagnosis. 

 

Gestational Age at Prenatal Diagnosis 

Gestational age at prenatal diagnosis was only calculated for mothers who self-reported 

that a prenatal diagnosis was made. In some pregnancies, the defect was only suspected at 

first and was confirmed at a later date, after further testing. Because it was difficult to 

evaluate the level of certainty for any given ultrasound result, the earliest prenatal test 

result with any mention of the defect was used to determine the date of prenatal 

diagnosis. 

 

If the number of completed gestational weeks at prenatal diagnosis was reported, this was 

used as the gestational age at prenatal diagnosis. Otherwise, we calculated gestational age 



99 
 

by counting the number of completed weeks elapsed between the estimated date of the 

last menstrual period (due date - 280 days) and the date of the ultrasound. We categorized 

gestational age as an early prenatal diagnosis (<24 completed gestational weeks) or late 

prenatal diagnosis (≥24 weeks). We chose 24 weeks as the cutpoint because in many 

regions of the United States and other countries, this is the gestational age after which 

termination of pregnancy might not be an available option. 

 

If the mother reported only the month and year of the ultrasound, we assigned a date if 

she indicated the time of the month (beginning, middle, end) when the test was 

conducted. Ultrasounds at the beginning of the month were assigned the 5th day of the 

month, in the middle the 15th day, and at the end, the 25th day. If the mother reported only 

the month of pregnancy during which the prenatal diagnosis was made, we classified 

months 1 to 6 as <24 completed gestational weeks and months 7 to 10 as ≥24 weeks.    

 

Agreement Between Maternal and Medical Record Abstract 

Prenatal diagnosis and gestational age at prenatal diagnosis from the medical record 

abstract were defined in the same way as for maternal report. We included prenatal 

diagnoses reported in the medical record abstractor’s notes about the case even when no 

abstracted record of an ultrasound or prenatal test was available. When gestational age at 

prenatal diagnosis was estimated from both ultrasound and date of last menstrual period, 

we used the ultrasound estimate of gestational age. 
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Studying prenatal diagnosis was not a specific aim of NBDPS and as a result prenatal 

diagnoses were not systematically abstracted from medical records. For analysis of 

agreement between maternal report and medical abstracts, we excluded mothers from 

California and New Jersey because medical record abstracts were available for only a 

small subset of mothers. For the other study sites, the completeness of medical record 

abstracts for prenatal diagnoses was unknown. Because of this, we measured agreement 

using sensitivity of maternal report compared to medical record abstract. Sensitivity of 

maternal report of prenatal diagnosis was calculated as the proportion of mothers with a 

medical record abstract of prenatal diagnosis who reported that a prenatal diagnosis was 

made. Sensitivity of maternal report of timing of prenatal diagnosis was defined as the 

proportion of mothers with an early prenatal diagnosis in the medical record abstract who 

reported that an early prenatal diagnosis was made. 

 

These metrics uses as a denominator only medical record abstracts in which prenatal 

diagnoses are recorded; in this subset of mothers, medical records can be considered the 

gold standard (because there is confirmation that a prenatal diagnosis was made) and 

sensitivity of maternal report can be assessed. We assume that mothers with and without 

medical record abstracts are comparable. 

 

Characteristics Associated With Prenatal Diagnosis 

We investigated associations between prenatal diagnosis (reported versus not reported) 

and timing of prenatal diagnosis (early versus late) with the following maternal 

characteristics: age at delivery (<20, 20-24, 25-29, 30-34, ≥35), race/ethnicity (non-
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Hispanic white, non-Hispanic black, Hispanic, other), maternal education (<12 years, 12 

years, >12 years), household income (<$50,000, ≥$50,000), folic acid supplementation in 

the month before and 1st month of pregnancy (yes, no), smoking between the month prior 

to conception and the 3rd month of pregnancy (yes, no), alcohol consumption during this 

same period (yes, no), and prepregnancy body mass index (BMI; underweight [<18.5 

kg/m2], normal weight [18.5-24.9 kg/m2], overweight [25.0-29.9 kg/m2], obese [≥30 

kg/m2]). We also investigated associations between the same outcomes and pregnancy-

related characteristics: year of due date (1998-1999, 2000-2001, 2002-2003, 2004-2005), 

initiation of prenatal care (1st trimester, 2nd or 3rd trimester, no prenatal care), parity (0,  

≥1), MSAFP screening (yes, no), plurality (singleton, twins or higher order multiples), 

and presence of other major birth defects (yes, no). 

 

Statistical Analyses 

We used logistic regression to estimate crude odds ratios (OR) and 95% confidence 

intervals (CI) for associations between each characteristic and prenatal diagnosis and 

timing of prenatal diagnosis. For the analysis of timing of prenatal diagnosis, we 

performed one analysis among all mothers (mothers not reporting a prenatal diagnosis 

were classified as having a prenatal diagnosis ≥24 weeks) and another restricting to 

mothers who reported having a prenatal diagnosis. 

 

RESULTS 

Agreement 
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Agreement between maternal report and medical record abstract was better for timing of 

prenatal diagnosis (sensitivity of maternal report: 98%) than for whether or not a prenatal 

diagnosis was made (sensitivity of maternal report: 83%) (Tables 4.1 and 4.2). 

Agreement was similar between live births, stillbirths, and terminations (data not shown).  

 

For the 220 of mothers who reported prenatal diagnosis and had gestational age at 

prenatal diagnosis available from both the interview and medical record abstracts (i.e., 

sufficient information was available to determine the gestational week at prenatal 

diagnosis), 77 (35%) had exact agreement on gestational age at prenatal diagnosis, 103 

(47%) agreed within 1 week, 139 (63%) agreed within 2 weeks, and 176 (80%) agreed 

within 4 weeks.  

 

Frequency of Prenatal Diagnosis 

In our dataset, 389 of 714 mothers (54%) reported that spina bifida was identified 

prenatally (Table 4.3). Overall, 40% of mothers reported prenatal diagnosis <24 weeks; 

when restricting to mothers who reporting having a prenatal diagnosis, 82% of these 

diagnoses were made <24 weeks. 

 

Frequency of maternally-reported prenatal diagnosis varied somewhat by study side, 

ranging from 43-68% for prenatal diagnosis, 29-56% for prenatal diagnosis <24 weeks 

overall, and 71-100% for prenatal diagnosis <24 weeks among mothers reporting a 

prenatal diagnosis (Table 4.4). 
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Characteristics Associated With Prenatal Diagnosis 

Prenatal diagnosis was less likely in Hispanic mothers compared to non-Hispanic white 

mothers (OR 0.59, 95% CI 0.43, 0.83), mothers with <12 years of education compared to 

those with 12 years of education (OR 0.62, 95% CI 0.40, 0.95), and overweight mothers 

compared to normal weight mothers (OR 0.56, 95% CI 0.39, 0.85). Prenatal diagnosis 

was more likely in mothers reporting periconceptional folic acid supplementation (OR 

1.69, 95% CI 1.26, 2.28), mothers who reported having MSAFP screening (OR 1.92, 

95% CI 1.41, 2.63), and mothers of twins or higher order multiples (OR 1.95, 95% CI 

0.79, 4.81) (Tables 4.5 and 4.6). 

 

Timing of prenatal diagnosis overall was associated with these same variables, with 

similar magnitudes and directions of the association. However, differences were noted 

when restricting to mothers who reported prenatal diagnosis. In this restricted subgroup, 

timing of prenatal diagnosis was no longer inversely associated with Hispanic ethnicity 

(OR 0.92, 95% CI 0.48, 1.76), less than high school education (OR 0.95, 95% CI 0.40, 

2.26), and overweight (OR 0.70, 95% CI 0.46, 1.06). In this subgroup, mothers reporting 

smoking during pregnancy were less likely to have an early prenatal diagnosis (OR 0.52, 

95% CI 0.26, 1.02), as were mothers entering prenatal care after the 1st trimester of 

pregnancy (OR 0.52, 95% CI 0.25, 1.09), and mothers with prepregnancy obesity (OR 

1.46, 95% CI 0.62, 3.43) (Tables 4.7 and 4.8). 

 

DISCUSSION 
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In this study, we found moderate agreement between maternal report and medical record 

abstract of prenatal diagnosis of NTDs and high agreement for timing of prenatal 

diagnosis among mothers reporting prenatal diagnosis. Using maternal report in our 

further analyses, we found that several characteristics, such as MSAFP screening, folic 

acid supplementation, household income, and maternal education were associated with 

prenatal diagnosis and timing of prenatal diagnosis.  

 

Understanding factors associated with prenatal diagnosis and early prenatal diagnosis is 

important to determine if there are certain subgroups of mothers less likely to have a 

prenatal diagnosis and therefore be unable to consider all available options for the 

pregnancy. This could include deciding whether or not to continue the pregnancy, 

choosing to deliver at a hospital better equipped to treat the newborn, researching 

postnatal interventions, or investigating options for fetal surgery. A recent trial of in utero 

spina bifida repair found that infants randomized to fetal surgery had lower rates of death 

and shunt placement than those randomized to receive no surgery, although the surgery 

was associated with important adverse outcomes such as preterm birth (16). Investigators 

suggest that surgeries be performed between 19 and 25 gestational weeks (16, 17), 

highlighting the potential benefits of an early prenatal diagnosis.  

 

In studies in which data from medical records are unavailable, using maternally-reported 

prenatal diagnosis could be an option for studying factors related to prenatal diagnosis. In 

our population, 83% of mothers reported prenatal diagnosis when a prenatal diagnosis 

was indicated in the medical record abstract. Of the remaining 17% of mothers, a small 
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proportion could represent mothers who truly did not know a prenatal diagnosis of spina 

bifida had been made. More likely, the remaining mothers are those whose answers to the 

questions on prenatal diagnosis were too vague for us to confidently code as a prenatal 

diagnosis of spina bifida. In future analyses, we will determine if this is the case and if 

there are specific maternal characteristics associated with quality of the maternal report.  

 

Among mothers reporting a prenatal diagnosis, 98% of maternal reports agreed with 

medical record abstracts indicating an early prenatal diagnosis. When gestational ages at 

prenatal diagnosis were compared between the two sources, there was a difference of 5 or 

more weeks for 20% of mothers. This suggests that studies requiring exact week of 

prenatal diagnosis might not find maternal report to be reliable, but that mothers can 

provide an approximate gestational age sufficient for categorization of prenatal diagnosis 

as early or late in pregnancy. It should be noted that in this analysis medical record 

abstracts were not necessarily the gold standard; it is possible that the ultrasound date 

abstracted from the medical record was not the earliest ultrasound that identified the 

defect.   

 

There was variability in the frequency of prenatal diagnosis and timing of prenatal 

diagnosis between NBDPS study sites, which could indicate differences in prenatal care 

access or use. Despite availability of second trimester MSAFP screening and 

ultrasonograpy, in all sites aside from Utah, fewer than half of mothers reported that a 

prenatal diagnosis was made before 24 weeks. Differences in ascertainment of cases of 

spina bifida among terminations of pregnancy are other possible reasons for variability 
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between sites. Terminations of pregnancy are difficult to identify and require multiple 

sources of ascertainment; some study sites do not systematically ascertain cases among 

terminations, and in the other study sites, ascertainment is likely incomplete. Because 

terminations of pregnancy occur following prenatal diagnosis and are only <24 weeks in 

some regions, underascertainment of terminations would result in an underestimation of 

the proportion of fetuses prenatally diagnosed and an underestimation of the proportion 

of prenatal diagnoses occurring <24 weeks. In future analyses, the number of 

terminations of pregnancy missed will be estimated and used to adjust results for 

underascertainment. 

 

Because of this underascertainment, in the analysis of chraracteristics associated with 

prenatal diagnosis, selection bias could arise if termination of pregnancy is associated 

with the characteristic under investigation (18). In future analyses, we will adjust for this 

potential selection bias. Until then, selection bias could be hypothesized to explain some 

of the results we discuss next.   

 

Mothers reporting MSAFP screening during pregnancy were more likely to report 

prenatal diagnosis and early prenatal diagnosis (both in the overall sample and among 

mothers who reported prenatal diagnosis). MSAFP screening is recommended for all 

women during pregnancy and can identify most fetuses with open spina bifida (19). High 

MSAFP levels would likely prompt a thorough sonographic examination of the fetal 

anatomy and increase the likelihood a prenatal diagnosis is made; prenatal diagnosis 

might therefore occur earlier with MSAFP screening than without. Because both MSAFP 
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screening and prenatal diagnosis by ultrasound depend on mothers presenting for prenatal 

care at gestational ages during which these tests can be conducted, the association could 

be confounded by patterns of prenatal care use; future analyses conducted separately for 

open and closed spina bifida will provide evidence if this might be the case.  

 

Previous studies have shown that prenatal diagnosis of birth defects is less likely in obese 

mothers than mothers who are normal weight because of suboptimal visualization of the 

fetus (8, 9, 20). In this study, we did not find the clear dose-response effect that has been 

observed in studies of other types of birth defects; overweight but not obesity was 

associated with decreased likelihood of prenatal diagnosis. Unlike most other birth 

defects, open spina bifida can be detected not only by ultrasound but through MSAFP 

screening, which is less susceptible to differences in detection rates by BMI, and so we 

might not expect to see the same relationship between BMI and prenatal diagnosis for 

these defects.  

 

Household income, maternal education, and folic acid supplementation were fairly 

strongly associated with prenatal diagnosis, but none of these characteristics or behaviors 

would directly affect whether or not a prenatal diagnosis is made by the sonographer. 

Instead, these variables could be markers of health literacy, acceptance of prenatal 

testing, or attendance at scheduled prenatal care visits. Because maternal education was 

not associated with timing of prenatal diagnosis when restricted to mothers who reported 

prenatal diagnosis, it is possible that maternal education affects only the likelihood a 

mother has prenatal testing, but not the time at which the test is performed. In contrast, 
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household income and folic acid supplementation were associated both with prenatal 

diagnosis and the gestational age at which the prenatal diagnosis was made.  

 

One limitation of our dataset was that investigation of prenatal diagnosis was not a 

specific aim of NBDPS, and as a result information on prenatal diagnosis from the 

interview was limited. We had no information about ultrasounds returning normal results 

and so we could not distinguish between mothers who had multiple ultrasounds during 

pregnancy but the defect was missed and mothers who had no ultrasound at all or no 

ultrasound during gestational ages at which prenatal diagnosis would be most likely. In 

addition, medical record abstraction of prenatal diagnoses was likely incomplete. Having 

no prenatal diagnosis reported in the medical record abstract could indicate either that the 

defect was not seen on ultrasound or that the prenatal diagnosis was not abstracted. 

Although agreement was good between maternal report and medical record abstract, it 

was not perfect, raising the possibility that associations we observed are characteristics 

associated with reporting a prenatal diagnosis and not prenatal diagnosis itself. 

 

Although in our analyses we identified several characteristics associated with prenatal 

diagnosis and timing of prenatal diagnosis, the reasons for these associations remain 

unclear. Further studies will be needed to determine the reasons for the associations with 

prenatal diagnosis; for example, if they are markers for compliance with recommended 

prenatal care visits, access to health care, health literacy, or other factors related to 

prenatal diagnosis. In addition, the potential roles for confounding, misclassification, and 

selection bias should be further explored. In future studies, maternally-reported prenatal 
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diagnosis might be a useful and convenient measure of prenatal diagnosis and could 

allow exploration of characteristics associated with prenatal diagnosis in population-

based studies. 
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Table 4.1. Agreement Between Maternal Report and Medical Record Abstract of Prenatal 

Diagnosis of Spina Bifida. 

 Medical Record Abstract 

 Reported Not Reported 

Maternal Report   

     Reported 243 62 

     Not Reported 49 170 

Sensitivitya, % (95% CI) 83 (79, 87) 

Abbreviations: CI, confidence interval. 

a Sensitivity of maternal report compared to medical record abstract. 

 

 

 

 

 

 

  



111 
 

Table 4.2. Agreement Between Maternal Report and Medical Record Abstract of 

Whether Prenatal Diagnosis of Spina Bifida was Made <24 or ≥24 Weeks of Gestation. 

 All Mothers 

(n = 449) 

Mothers Reporting 

Prenatal Diagnosis 

(n = 194) 

 Medical Record Abstract 

 <24 ≥24 <24 ≥24 

Maternal Report     

     <24 weeks 141 52 141 19 

     ≥24 weeks 28 228 3 31 

Sensitivitya, % (95% CI) 83 (77, 88) 98 (94, 99) 

Abbreviations: CI, confidence interval.  

a Sensitivity of maternal report compared to medical record abstract. 
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Table 4.3. Frequency of Maternal Self-Report of Prenatal Diagnosis of Spina Bifida, 

National Birth Defects Prevention Study, 1998-2005. 

 n/N % 

Prenatal diagnosisa 389/714 54 

Diagnosis < 24 weeks   

   Overallb 252/633 40 

   Prenatal diagnosesc 252/308 82 

a Number of mothers reporting prenatal diagnosis over total number of mothers. 

b Number of mothers reporting prenatal diagnosis <24 gestational weeks over total 

number of mothers. 

c Number of mothers reporting prenatal diagnosis <24 gestational weeks over total 

number of mothers reporting prenatal diagnosis. 
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Table 4.4. Frequency of Maternal Report of Prenatal Diagnosis and Early Prenatal 

Diagnosis of Spina Bifida, by National Birth Defects Prevention Study Site, 1997-2005. 

  Prenatal Diagnosis < 24 Gestational Weeks 

 Prenatal diagnosis All Fetuses Prenatally Diagnoseda 

Study Site n/N % n/N % n/N % 

Arkansas 47/90 52 26/78 33 26/35 74 

California 60/138 43 35/120 29 35/42 83 

Georgia 49/80 61 30/65 46 30/34 88 

Iowa 59/96 61 42/87 48 42/50 84 

Massachusetts 26/47 55 15/42 36 15/21 71 

New Jersey 24/52 46 16/47 34 16/19 84 

New York 30/44 68 18/38 47 18/24 75 

North Carolina 12/28 43 11/27 41 11/11 100 

Texas 49/89 55 32/81 40 32/41 78 

Utah 33/50 66 27/48 56 27/31 87 

a Mothers reporting prenatal diagnosis. 
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Table 4.5. Maternal Characteristics Investigated in Association With Maternal Report of 

Prenatal Diagnosis of Spina Bifida.  

 n/N % OR 95% CI 

Age at delivery     

   <20 41/77 53 1.09 0.65, 1.83 

   20-24 92/167 55 1.18 0.79, 1.75 

   25-29 119/233 51 1.00 Referent 

   30-34 86/146 59 1.37 0.90, 2.09 

   ≥35 51/91 56 1.22 0.75, 1.99 

Race/ethnicity     

   NH white 227/382 59 1.00 Referent 

   NH black 33/62 53 0.78 0.45, 1.33 

   Hispanic 106/228 46 0.59 0.43, 0.83 

   Other 21/40 53 0.76 0.39, 1.45 

   Missing 2/2 100   

Education     

   <12 years 59/141 42 0.62 0.40, 0.95 

   12 years 110/204 54 1.00 Referent 

   >12 years 220/369 60 1.26 0.89, 1.78 

Household income     

   <$50,000 260/499 52 0.60 0.41, 0.86 

   ≥$50,000 104/161 65 1.00 Referent 

   Missing 25/54 46   
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Folic acid     

   No 179/371 48 1.00 Referent 

   Yes 210/343 61 1.69 1.26, 2.28 

Smoking     

   No 314/483 54 1.00 Referent 

   Yes 73/129 57 1.12 0.76, 1.64 

   Missing 2/2 100   

Alcohol use     

   No 250/473 53 1.00 Referent 

   Yes 137/239 57 1.20 0.88, 1.64 

   Missing 2/2 100   

Prepregnancy BMI     

   Underweight 16/25 64 1.28 0.55, 2.99 

   Normal weight 183/315 58 1.00 Referent 

   Overweight 72/162 44 0.56 0.39, 0.85 

   Obese 99/171 58 0.99 0.68, 1.45 

   Missing 19/41 46   

Abbreviations: BMI, body mass index; CI, confidence interval; n/N, mothers reporting 

prenatal diagnosis over total number of mothers; OR, odds ratio. 
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Table 4.6. Pregnancy-Related Characteristics Investigated in Association With Maternal 

Report of Prenatal Diagnosis of Spina Bifida. 

 n/N % OR 95% CI 

Due datea     

   1998-1999 85/160 53 1.00 Referent 

   2000-2001 87/160 54 1.05 0.68, 1.63 

   2002-2003 75/151 53 1.00 0.64, 1.58 

   2004-2005 73/123 59 1.29 0.80, 2.07 

Prenatal care entry     

   1st trimester 316/581 54 1.00 Referent 

   2nd or 3rd trimester 62/109 57 1.11 0.73, 1.67 

   No prenatal care 0/10 0   

   Missing 11/14 79   

Parity     

   0 137/247 55 1.00 Referent 

   ≥1 252/467 54 0.94 0.69, 1.28 

MSAFP screening     

   No 137/294 47 1.00 Referent 

   Yes 228/364 63 1.92 1.41, 2.63 

   Missing 24/56 43   

Plurality     

   Singleton 371/688 54 1.00 Referent 

   Twins or higher 16/23 70 1.95 0.79, 4.81 
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   Missing 2/3 67   

≥1 major defect     

   No 348/633 55 1.00 Referent 

   Yes 41/81 51 0.84 0.53, 1.33 

Abbreviations: BMI, body mass index; CI, confidence interval; MSAFP, maternal serum 

alpha-fetoprotein; n/N, mothers reporting prenatal diagnosis over total number of 

mothers; OR, odds ratio. 
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Table 4.7. Maternal Characteristics Investigated in Association With Maternal Report of Timing of Prenatal Diagnosis of Spina 

Bifida. 

 All Fetuses Prenatally Diagnosed 

 n/Na % OR 95% CI n/Nb % OR 95% CI 

Age at delivery         

   <20 22/65 34 0.95 0.53, 1.72 22/29 76 0.95 0.36, 2.51 

   20-24 61/146 42 1.34 0.87, 2.07 61/71 86 1.84 0.81, 4.18 

   25-29 73/209 35 1.00 Referent 73/95 77 1.00 Referent 

   30-34 63/135 47 1.63 1.05, 2.54 63/75 84 1.58 0.73, 3.45 

   ≥35 33/78 42 1.37 0.80, 2.33 33/38 87 1.99 0.69, 5.71 

Race/ethnicity         

   Non-Hispanic white 150/339 44 1.00 Referent 150/184 82 1.00 Referent 

   Non-Hispanic black 21/54 39 0.80 0.45, 1.44 21/25 84 1.19 0.38, 3.69 

   Hispanic 69/208 33 0.63 0.44, 0.90 69/86 80 0.92 0.48, 1.76 

   Other 10/30 33 0.63 0.29 ,1.39 10/11 91 2.27 0.28, 18.31 
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   Missing 2/2 100   2/2 100   

Education         

   <12 years 35/127 28 0.61 0.38, 1.00 35/45 78 0.95 0.40, 2.26 

   12 years 70/183 38 1.00 Referent 70/89 79 1.00 Referent 

   >12 years 147/323 46 1.35 0.93, 1.95 147/174 84 1.48 0.77, 2.84 

Household income         

   <$50,000 164/443 37 0.51 0.35, 0.75 164/204 80 0.53 0.25, 1.12 

   ≥$50,000 77/144 53 1.00 Referent 77/87 89 1.00 Referent 

   Missing 11/46 24   11/17 65   

Folic acid         

   No 97/327 30 1.00 Referent 97/135 72 1.00 Referent 

   Yes 155/306 51 2.43 1.76, 3.37 155/173 90 3.37 1.82, 6.24 

Smoking         

   No 211/521 41 1.00 Referent 211/252 84 1.00 Referent 

   Yes 40/111 36 0.83 0.54, 1.27 40/55 73 0.52 0.26, 1.02 
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   Missing 1/1 100   1/1 100   

Alcohol use         

   No 157/413 38 1.00 Referent 157/190 83 1.00 Referent 

   Yes 94/218 43 1.24 0.89, 1.73 94/116 81 0.90 0.49, 1.63 

   Missing 1/2 50   1/2 50   

Prepregnancy BMI         

   Underweight 13/22 59 1.95 0.81, 4.71 13/13 100   

   Normal weight 118/277 43 1.00 Referent 118/145 81 1.00 Referent 

   Overweight 51/149 34 0.70 0.46, 1.06 51/59 86 1.46 0.62, 3.43 

   Obese 55/144 38 0.83 0.55, 1.26 55/72 76 0.74 0.37, 1.47 

   Missing 15/41 37   15/19 79   

Abbreviations: BMI, body mass index; CI, confidence interval; OR, odds ratio. 

a Mothers reporting early prenatal diagnosis over total number of mothers. 

b Mothers reporting early prenatal diagnosis over mothers reporting prenatal diagnosis. 
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Table 4.8. Pregnancy-Related Characteristics Investigated in Association With Maternal Report of Timing of Prenatal Diagnosis of 

Spina Bifida. 

 All Fetuses Prenatally Diagnosed 

 n/Na % OR 95% CI n/Nb % OR 95% CI 

Due datec         

   1998-1999 44/134 33 1.00 Referent 44/59 75 1.00 Referent 

   2000-2001 58/146 40 1.35 0.83, 2.20 58/73 79 1.32 0.58, 2.98 

   2002-2003 48/125 38 1.28 0.77, 2.12 48/59 81 1.49 0.62, 3.58 

   2004-2005 48/106 45 1.69 1.00, 2.86 48/56 86 2.05 0.79, 5.29 

Prenatal care entry         

   1st trimester 215/523 41 1.00 Referent 215/258 83 1.00 Referent 

   2nd or 3rd trimester 31/90 34 0.75 0.47, 1.20 31/43 72 0.52 0.25, 1.09 

   No prenatal care 0/10 0       

   Missing 6/10 60   6/7 86   

MSAFP screening         
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   No 84/265 32 1.00 Referent 84/108 78 1.00 Referent 

   Yes 156/319 49 2.06 1.47, 2.90 156/183 85 1.65 0.90, 3.04 

   Missing 12/49 24   12/17 71   

Parity         

   0 87/216 40 1.00 Referent 87/106 82 1.00 Referent 

   ≥1 165/417 40 0.97 0.69, 1.36 165/202 82 0.97 0.53, 1.79 

Plurality         

   Singleton 238/609 39 1.00 Referent 238/292 82 1.00 Referent 

   Twins or higher 12/21 57 2.08 0.86, 5.01 12/14 86 1.36 0.30, 6.26 

   Missing 2/3 67   2/2 100   

≥1 major defect         

   No 224/560 40 1.00 Referent 224/275 81 1.00 Referent 

   Yes 28/73 38 0.93 0.57, 1.54 28/33 85 1.28 0.47, 3.46 

Abbreviations: CI, confidence interval; MSAFP, maternal serum alpha-fetoprotein; OR, odds ratio. 

a Mothers reporting early prenatal diagnosis over total number of mothers. 

b Mothers reporting early prenatal diagnosis over mothers reporting prenatal diagnosis. 



123 
 

c Restricted to study sites contributing cases and controls in all study years: Arkansas, California, Georgia, Iowa, Massachusetts, New 

York, Texas. 
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ABSTRACT 

Results of bias analyses (sensitivity analyses) for exposure misclassification are 

dependent on assumptions made in the analysis. Few studies have described how 

adjustment for misclassification is affected by incorrect assumptions about whether 

sensitivity and specificity were the same (nondifferential) or different (differential) for 

cases and non-cases. The authors evaluated the effects of making incorrect assumptions 

about differential and nondifferential misclassification when adjusting for exposure 

misclassification. First, they used simulated datasets in which nondifferential and 

differential misclassification were introduced. When incorrect assumptions were made 

(for example, assuming nondifferential misclassification when it was truly differential), 

the median misclassification-adjusted odds ratios (OR) from simulation were biased, 

ranging from 51% to 315% of the true OR, given the authors’ assumptions. Then, they 

used data on obesity and diabetes from the National Health and Nutrition Examination 

Survey in which both self-reported (misclassified) and measured (true) obesity were 

available. The true OR between obesity and diabetes was 6.00, but incorrect assumptions 

produced misclassification-adjusted ORs ranging from 7.49 to 9.48, farther from the truth 

than the OR unadjusted for misclassification, 5.55. Choice of nondifferential or 

differential misclassification is an important consideration when adjusting for exposure 

misclassification because an incorrect assumption can lead to biased results.  
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INTRODUCTION 

Bias analysis (also referred to as sensitivity analysis) has been proposed as an 

improvement over the qualitative descriptions of study limitations and potential sources 

of bias typically provided by investigators. The quantitative nature of these analyses 

allows a more transparent assessment of the potential direction and magnitude of bias and 

guards against the tendency of investigators to favor causation over bias as the most 

likely explanation for observed results (1, 2). Some investigators have advocated for 

greater incorporation of quantitative analyses for exposure misclassification and other 

forms of bias into epidemiologic studies (3-7) and many examples are now available in 

the published literature (8-12).  

 

Bias analysis for exposure misclassification involves identifying potential sources of 

misclassification, estimating bias parameters (for example, sensitivity [Se] and specificity 

[Sp] of exposure classification) from validation studies or literature review, and using this 

information to adjust study results, often using simple algebraic manipulations of the 

contingency table. Probabilistic bias analysis extends this basic approach by allowing the 

investigator to assign a probability distribution to each bias parameter, sample randomly 

from the distribution, and perform the bias analysis repeatedly to produce a distribution 

of the adjusted measure of association. These probabilistic methods allow investigators to 

acknowledge uncertainty in choice of bias parameters and are more frequently used now 

that they are available in widely used software such as SAS, Stata, and Excel (1, 8, 13).  
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Much of the literature on bias analysis for exposure misclassification focuses on choosing 

values or creating distributions for Se and Sp (1, 2). Less emphasis has been given to the 

importance of correctly specifying whether misclassification is nondifferential or 

differential. In many studies, it might not be obvious whether nondifferential 

misclassification (Se and Sp are the same for cases and non-cases) or differential 

misclassification (Se and Sp differ between cases and non-cases) is the more appropriate 

assumption unless internal validation data are available, in which case these parameters 

can be estimated directly, albeit often with error. Assuming nondifferential 

misclassification in a bias analysis when misclassification is truly differential might not 

produce an estimate closer to the truth than the unadjusted estimate (14, 15). However, 

investigators might be hesitant to assume differential misclassification unless outcome-

specific estimates of Se and Sp are available or the investigator has some indication of 

how they differ between cases and non-cases.  

 

The purpose of this study is to illustrate the potential sensitivity of bias analysis results to 

incorrect assumptions of nondifferential or differential misclassification. Using 

simulation, we create datasets with nondifferential and differential exposure 

misclassification and adjust for misclassification using correct and incorrect assumptions 

about nondifferential and differential misclassification. We then use data on obesity and 

diabetes from the National Health and Nutrition Examination Survey (NHANES) to 

provide an example of how correct and incorrect assumptions might affect the results of a 

bias analysis in an epidemiologic study. In the simulated datasets and NHANES, both 
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true and misclassified versions of exposure are known so we can evaluate the success of 

correct and incorrect assumptions on the adjustment for misclassification. 

 

MATERIALS AND METHODS 

Example 1: Simulated Data 

We created 12 datasets for the analysis (Figure 5.1). For each, we created a population of 

10,000 simulated study participants in which 10% of participants were randomly assigned 

to be exposed using Bernoulli trials and disease status was randomly assigned using 

Bernouilli trials with probability of disease (D) following a logistic model conditional on 

exposure (E) of the form logit p(D) = E.  

 

Three types of exposure misclassification were then introduced, with each type of 

misclassification applied to 4 datasets. For the first type of misclassification, we used 

Bernoulli trials to randomly misclassify 10% of the population, independent of disease 

status (nondifferential misclassification); accuracy of exposure classification between 

cases and non-cases could differ by chance. For the second type of misclassification, 

cases were misclassified with 5% probability and non-cases with 10% probability. For 

convenience, any misclassification scenario in which cases have more accurate 

classification than non-cases will be referred to as “differential A” in this paper. For the 

third type of misclassification, cases were misclassified with 10% probability and non-

cases with 5% probability. Any misclassification scenario in which cases have less 

accurate classification than non-cases will be referred to as “differential B” in this paper.  
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After creating datasets with misclassified exposure, we attempted to adjust for exposure 

misclassification in these datasets to determine if we could obtain a valid estimate of the 

true odds ratio (OR) even when using incorrect assumptions about nondifferential or 

differential misclassification in the analysis. We used a common algebraic method that 

involves calculating expected cell counts for the correctly classified contingency table 

given cell counts for the misclassified contingency table and estimates of Se and Sp (2). 

The formulae in Table 5.1 are applied to back-calculate the true (correctly classified) data 

from the observed (misclassified) data given estimates of Se and Sp, assuming these 

estimates are accurate. 

 

For each of the 3 misclassification types discussed previously, we made 4 different 

assumptions about exposure misclassification in the analysis: exactly nondifferential 

misclassification, approximately nondifferential misclassification, differential A, and 

differential B (described in further detail below). Correct assumptions were those in 

which the assumption made in the analysis matched the true type of misclassification in 

the population. For example, a correct assumption would be assuming differential A in 

the analysis when the misclassification truly was differential A; an incorrect assumption 

would be assuming differential A in the analysis when misclassification was truly 

nondifferential. Both “exactly nondifferential” and “approximately nondifferential” 

misclassification were considered to be correct assumptions for the nondifferential 

misclassification type. 

 

Se and Sp values for each assumption were calculated as follows: 
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Nondifferential misclassification 

Two types of nondifferential misclassification were investigated: exactly nondifferential 

misclassification and approximately nondifferential misclassification. The distinction 

between these types are explained further below. For both, Se and Sp were calculated 

from the total simulated population (cases and non-cases combined). Both cases and non-

cases were assigned these values in the adjustment.  

 

Differential A 

Se and Sp for non-cases were calculated from the non-cases in the simulated population. 

The Se and Sp values used for cases depended on the analysis. When making a correct 

assumption (i.e., for the population with differential A misclassification), Se and Sp for 

cases were calculated from the cases in the simulated population. When making incorrect 

assumptions (i.e., for populations with nondifferential or differential B misclassification), 

the Se for cases was assigned to be the Se for non-cases + 0.05, and the Sp for cases to be 

the Se for non-cases + 0.02. 

 

Differential B 

Se and Sp for non-cases were calculated from the non-cases in the simulated population. 

When making a correct assumption (i.e., for populations with differential B 

misclassification), Se and Sp for cases was calculated from the cases in the simulated 

population. When making incorrect assumptions (i.e., for populations with 
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nondifferential or differential A misclassification), the Se for cases was assigned to be the 

Se for non-cases - 0.05, and the Sp for cases to be the Se for non-cases - 0.02. 

 

We implemented a probabilistic analysis by specifying triangular distributions for Se and 

Sp (1, 2). Se and Sp were calculated from the simulated data as described previously at 

each of 1,000 iterations of the simulation and the calculated values were used as the mode 

of the respective distributions. The maximum and minimum values for the triangular 

distributions were assigned to be +/- 0.05 of the mode for Se and +/- 0.02 for Sp. The 

distributions were truncated when necessary so all values of Se and Sp fell between 0.5 

and 1, inclusive. For each of the 1,000 iterations, one value of Se and one value of Sp 

were randomly chosen for cases and for non-cases and these values were used to 

calculate the misclassification-adjusted OR.  

 

The ratio of the misclassification-adjusted OR to the true OR (calculated from the source 

population without misclassification at each iteration) was calculated and will be referred 

to as the ratio of odds ratios (ROR). Results are presented as the median ROR and 95% 

simulation interval (SI). The 95% SI represents the 2.5th and 97.5th percentiles of the 

ROR distribution generated by simulation.  

 

We make a distinction between two types of nondifferential misclassification in the 

analyses, which we refer to as “exactly nondifferential misclassification” and 

“approximately nondifferential misclassification”. When exactly nondifferential 

misclassification was assumed, one value of Se and one value of Sp were selected from 
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the distribution and those Se and Sp values were assigned to both cases and to non-cases; 

as a result, at every iteration of the simulation, cases and non-cases had exactly than same 

values of Se and Sp. For approximately nondifferential misclassification, values of Se 

and Sp for cases and for non-cases were independently chosen from the same 

distributions, so that the values were similar but not necessarily the same between cases 

and non-cases at each iteration of the simulation. We use the term “approximately 

nondifferential” to mean that the distributions of Se and Sp for cases and non-cases were 

the same (nondifferential), even though the values used in the analysis could differ 

(differential).  

   

Example 2: Data From an Epidemiologic Study 

We included non-pregnant women aged 18 to 49 participating in the National Health and 

Nutrition Examination Survey (NHANES) between 1999 and 2008. NHANES uses a 

complex, multistage, probability sampling design to select participants from the civilian, 

non-institutionalized population of the United States (16). NHANES participants 

complete an in-person interview during which they self-report height and weight. One or 

two weeks later, they visit a mobile examination center during which their height and 

weight are measured. Women with missing values for self-reported or measured height or 

weight were excluded. 

 

Obesity (exposure) was defined as body mass index ≥ 30 kg/m2, calculated as weight in 

kilograms divided by squared height in meters.  We will refer to obesity status calculated 

from self-reported height and weight as “self-reported obesity” (misclassified exposure), 
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and obesity status calculated from measured height and weight as “measured obesity” 

(true exposure).  

 

Self-reported diagnosis of diabetes (outcome) was obtained by questionnaire. No 

distinction was made between type 1 and type 2 diabetes. Women who reported 

“borderline” diabetes were categorized as having no diabetes diagnosis and women with 

missing data on diabetes status were excluded. 

 

We conducted a literature review (Appendix A) to identify estimates of Se and Sp for 

obesity misclassification from studies comparing self-reported to measured obesity 

among adult females in the United States. We excluded studies conducted exclusively in 

children, teenagers, or the elderly as well as estimates from published NHANES data 

because our purpose was to approximate an adjustment for misclassification when 

internal validation data were unavailable.  

 

Based on the results of the literature review, we created triangular distributions for Se and 

Sp (further described in Results). We conducted the bias analysis under the same 4 

assumptions as in the example with simulated data: exactly nondifferential 

misclassification, approximately nondifferential misclassification, differential 

misclassification A, and differential misclassification B. Probabilistic adjustment for 

misclassification was conducted over 1,000 iterations to generate a distribution of the 

misclassification-adjusted OR. Results are presented as the median OR and 95% SI. For 

simplicity, in this example we did not take into account in the analysis the complex 
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sampling design of NHANES and as such, the results should not be interpreted as being 

representative of the United States population.     

 

RESULTS 

Example 1: Simulated Data 

In the simulated population, when correct assumptions about nondifferential or 

differential misclassification were made, results were on average unbiased; however, 

when incorrect assumptions were made, the results were on average biased (Table 5.2).  

 

Truth: nondifferential misclassification 

When misclassification was truly nondifferential, assuming either exactly nondifferential 

misclassification or approximately nondifferential misclassification produced results that 

were on average unbiased. The 95% SI was wider when assuming approximately 

nondifferential misclassification than exactly nondifferential misclassification due to the 

added variability in Se and Sp values between cases and non-cases. Assuming either 

differential A or differential B produced biased results, but the bias was in different 

directions (median ROR, differential A: 1.12; median ROR, differential B: 0.89). All 

95% SIs, however, included the null (unbiased) value. 

 

Truth: differential A 

When differential A was the true pattern of misclassification, all incorrect assumptions 

produced RORs that were too small (median ROR range: 0.51 to 0.55) and none of the 
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95% SIs included the null value. Correctly assuming differential A produced unbiased 

results on average. 

 

Truth: differential B 

When differential B was the truth, all incorrect assumptions produced RORs that were 

too large (median ROR range: 2.25 to 3.15) and none of the 95% SIs included the null 

value. Correctly assuming differential B produced unbiased results on average. 

 

Example 2: Data From an Epidemiologic Study 

We identified Se and Sp for obesity classification from five published studies meeting 

inclusion criteria (Appendix B, Table 5.B1). Because most estimates of Se were near 

0.90, we chose this as the mode of the triangular distribution and assigned a minimum 

and maximum of 0.85 and 0.95 to allow for uncertainty. For Sp, we chose a mode of 0.97 

based on the average of all estimates and the minimum (0.94) and maximum (1.00) 

values of the distribution based on the highest and lowest estimates obtained through 

literature review. No study provided diabetes-specific estimates of Se or Sp. 

 

In our NHANES population of 6,243 women, the true OR between measured obesity and 

diabetes was 6.00 and the misclassified OR between self-reported obesity and diabetes 

was 5.55. Misclassification-adjusted median ORs ranged from 6.25 to 9.48 (Table 5.3); 

all adjustments over-estimated the magnitude of the association.  
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The misclassification assumption producing estimates nearest to the truth was differential 

misclassification A, in which cases had higher Se and Sp than non-cases (OR = 6.25, 

95% SI: 5.21, 7.55). In the dataset, the true misclassification pattern most closely 

resembled differential misclassification A; however, Se was 0.10 higher in cases 

compared to non-cases, greater than the 0.05 we assumed in the analysis, and Sp was 

0.01 lower, not 0.02 higher as we had assumed (Table 5.4).  

 

We repeated the analyses using Se and Sp estimates abstracted from each individual 

study (Table 5.5). Under the correct assumption (differential misclassification A), 

misclassification-adjusted ORs ranged from 5.96 to 8.02. All but one included the true 

OR of 6.00 in the 95% SI. However, when making incorrect assumptions, 

misclassification adjustment overestimated the magnitude of the association, with median 

misclassification-adjusted ORs ranging from 7.20 to 19.17. Only 1 95% SI included the 

true value of 6.00.  

  

DISCUSSION 

We presented examples in which adjustment for exposure misclassification was 

undertaken using several different assumptions about differential and nondifferential 

misclassification. Using simulations and data from an epidemiologic study, we highlight 

that making incorrect assumptions about exposure misclassification can produce 

“adjusted” results that are biased, and in some cases more biased than the estimates that 

were not adjusted for misclassification.  
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In the simulations, we observed that when correct assumptions about nondifferential or 

differential misclassification were made, the results were on average unbiased. However, 

in these simulations we knew the true values of Se and Sp in the population. If incorrect 

estimates of Se and Sp were used to create the triangular distribution, results could have 

been biased even when making the correct assumption. In our NHANES example, our 

estimates of Se and Sp from literature review were not exactly the same as the true 

values. As a result, none of the adjustments produced an unbiased estimate on average. 

However, results closest to the truth were obtained when the correct assumption about 

differential misclassification was made. 

  

Although we have not defined it explicitly, in this study we have used the term “bias” to 

mean any difference between a given estimate and the “truth”. This definition does not 

distinguish random error from systematic error when comparing point estimates in a 

single study, and it might have been more appropriate to use the more general term 

“error” instead of “bias” to describe differences between the observed estimate and the 

truth. Using simulation, however, we have shown that inaccurate assumptions about 

nondifferential and differential misclassification can systematically produce “adjusted” 

estimates that do not converge to the true value.     

 

Investigators are encouraged to be cautious when presenting and interpreting results from 

bias analyses because results are only valid if the assumptions used in the analysis at least 

approximate the truth (1). In discussions of bias analysis in the literature, more emphasis 

has been given to choosing distributions of Se and Sp for bias analysis than choosing the 
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correct assumption regarding nondifferential or differential misclassification. In our 

examples using simulated data and NHANES data, making an incorrect assumption about 

nondifferential or differential misclassification had important effects on results. Taking 

uncertainty into account in the analysis by assigning probability distributions to Se and 

Sp was not sufficient to make up for an incorrect misclassification assumption; in the 

simulations and the NHANES example, when incorrect assumptions were made, the 95% 

SI often did not include the true value.  

 

In the absence of validation data (and even when validation data are available, because 

results of validation studies are themselves subject to error) the rationale for choosing 

nondifferential versus differential misclassification in the analysis is often left to the 

investigator’s perception of how misclassification occurred in the study. This commonly 

consists of a qualitative description of the possible sources of bias without presentation of 

evidence supporting the decision (17). This is similar to the qualitative discussion of the 

direction and magnitude of bias that quantitative bias analysis is meant to guard against. 

Unfortunately, this situation is difficult to avoid because there is rarely sufficient 

information available to determine whether nondifferential or differential 

misclassification is most likely for a given study design and method of exposure 

measurement. Even if a certain misclassification process is strongly suspected (for 

example, assuming nondifferential misclassification in a prospective cohort study in 

which exposure is measured before disease occurs), there is no guarantee that this type of 

misclassification actually occurred in the study (18).  By chance, Se and Sp could have 

differed between cases and non-cases, producing differential misclassification instead of 
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nondifferential misclassification, or vice versa (19). Factors aside from chance are also 

important. For example, when exposure categories are combined, differential 

misclassification can be produced even if the measurement error or misclassification 

process on the original variable was nondifferential (14, 18, 20).  

 

An important role for bias analysis in epidemiologic studies is producing ranges of 

plausible estimates rather than providing a single bias-adjusted effect estimate as the final 

result. Without knowing whether misclassification was truly differential or 

nondifferential in our NHANES example, we would have no evidence for choosing the 

results of one assumption over the others as the most likely. However, we might conclude 

with some confidence that exposure misclassification does not account for the observed 

association, with no 95% SI covering the null value (OR = 1), given our assumptions. 

 

In this study, we have presented examples demonstrating that making inaccurate 

assumptions about nondifferential or differential misclassification has the potential to 

produce biased results when adjusting for exposure misclassification. Investigators 

should recognize the likelihood of making one or more incorrect assumptions during bias 

adjustment and consider reporting results based on more than one assumption about 

misclassification in their analysis. Although this strategy might not provide a single point 

estimate as the result, it remains a useful method for providing plausible ranges of the 

effect estimate in the absence of exposure misclassification. 
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Table 5.1. Contingency Tables for True (Correctly Classified) and Observed 

(Misclassified) Exposures. 

 True Exposure Misclassified Exposure 

 Exposure No Exposure Exposure No Exposure 

Disease A B a = Se1*A + (1-

Sp1)*B 

b = (1-Se1)*A + 

Sp1*B 

No disease C D c = Se0*C + (1-

Sp0)*D 

d = (1-Se0)*C + 

Sp0*D 

Abbreviations: Sei, sensitivity in cases (i = 1) and non-cases (i = 0); Spi, specificity in 

cases (i = 1) and non-cases (i = 0). 
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Table 5.2. Ratio of Misclassification-Adjusted Odds Ratio to True Odds Ratio Over 

1,000 Iterations of Simulation When Making Correct and Incorrect Assumptions About 

Nondifferential and Differential Misclassification. 

  Ratio of Odds Ratios 

Trutha Adjustment Assumptionb Median 95% Simulation Intervalc 

Nondifferential Exactly nondifferentiald 1.00 0.79, 1.43 

 Approximately nondifferentiald 1.00 0.67, 1.69 

 Differential A 1.12 0.78, 1.80 

 Differential B 0.89 0.59, 1.42 

Differential  A Exactly nondifferential 0.55 0.47, 0.66 

 Approximately nondifferential 0.55 0.40, 0.76 

 Differential Ad 1.01 0.70, 1.54 

 Differential B 0.51 0.30, 0.87 

Differential B Exactly nondifferential 2.28 1.51, 5.62 

 Approximately nondifferential 2.25 1.32, 6.33 

 Differential A 3.15 1.14, 5.35 

 Differential Bd 1.01 0.71, 1.46 

a Nondifferential misclassification: cases and non-cases had 10% probability of 

misclassification. Differential A: cases had 5% probability of misclassification, non-cases 

had 10% probability of misclassification. Differential B: cases had 10% probability of 

misclassification, non-cases had 5% probability of misclassification. 

b Exactly nondifferential misclassification: cases and non-cases share identical values for 

sensitivity (Se) and specificity (Sp); the modes of the distributions are the actual values of 
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Se and Sp calculated from the data. Approximately nondifferential misclassification: 

cases and non-cases have the same distributions of Se and Sp, but not necessarily the 

same values of Se and Sp; the modes of the distributions are the actual values of Se and 

Sp calculated from the data. Differential A: for incorrect assumptions, the modes of the 

Se and Sp distributions for cases are 0.05 and 0.02 higher than for non-cases and the 

modes of the non-case distributions are the actual values of Se and Sp calculated from the 

data; for correct assumptions, the modes for Se and Sp for cases take on the true values 

from the simulated population. Differential B: for incorrect assumptions, the modes of the 

Se and Sp distributions for cases are 0.05 and 0.02 lower than for non-cases and the 

modes of the non-case distributions are the actual values of Se and Sp calculated from the 

data; for correct assumptions, the modes for Se and Sp for cases take on the true values 

from the simulated population. 

c Lower and upper bounds are the 2.5th and 97.5th percentiles of the ratio of odds ratio 

distribution generated by simulation. 

d In the text, these are referred to as the “correct” assumptions. All others are referred to 

as “incorrect” assumptions. 
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Table 5.3. Results From 1,000 Iterations of Probabilistic Adjustment for Exposure 

Misclassification Under Various Assumptions in a Study of Obesity and Diabetes, 

National Health and Nutrition Examination Survey, 1999-2008. 

 Odds Ratio 

Estimatea 

95% Simulation 

Intervalb 

Truth - measured obesityc 6.00  

Misclassified - self-reported obesityd 5.55  

Adjusted for misclassification 

assuming: 

  

     Exactly nondifferentiale,f 7.49 6.63, 8.66 

     Approximately nondifferential e,g 7.50 6.07, 9.38 

     Differential A e,h 6.25 5.21, 7.55 

     Differential B e,i 9.48 7.35, 12.42 

a Estimates for misclassification-adjusted odds ratios are the median of the odds ratio 

distribution generated by simulation. 

b Lower and upper bounds are the 2.5th and 97.5th percentiles of the odds ratio distribution 

generated by simulation. 

c Obesity (body mass index ≥ 30 kg/m2) calculated from measured height and weight. 

d Obesity calculated from self-reported height and weight. 

e Adjustment for exposure misclassification using Se and Sp estimates obtained a 

summary of the literature review estimates. Triangular distributions for non-cases 

(minimum, mode, maximum) were Se (0.85, 0.90, 0.95) and Sp (0.94, 0.97, 1.00). 
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f One value of Se and one value of Sp chosen from the non-case distributions at each 

iteration of the simulation. Cases and non-cases were assigned the same values for the 

analysis. 

g Cases and non-cases assigned the non-case distributions. Values of Se and Sp were 

chosen independently from these distributions for cases and non-cases. 

h Case distributions were Se (0.90, 0.95, 1.00) and Sp (0.96, 0.99, 1.00). 

i Case distributions were Se (0.80, 0.85, 0.90) and Sp (0.92, 0.95, 0.98). 
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Table 5.4. Contingency Tables and True Values of Sensitivity and Specificity of Obesity Classification for a Study of Self-Reported 

and Measured Obesity and Diabetes, Non-Pregnant Females Aged 18-49, National Health and Nutrition Examination Survey, 1999-

2008. 

 Self-reported Obesity Measured Obesity Sensitivitya Specificityb 

 Obese Not Obese Obese Not Obese     

All participants 1,845 4,398 2,092 4,151 1,756/2,092 0.84 4,062/4,151 0.98 

Diabetes         

     Diabetes 152 70 164 58 151/164 0.93 57/58 0.98 

     No diabetes 1,693 4,328 1,928 4,093 1,605/1,928 0.83 4,005/4,093 0.99 

a Proportion of individuals truly exposed who reported exposure. 

b Proportion of individuals truly unexposed who reported not being exposed. 
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Table 5.5. Results of Adjustment for Exposure Misclassification in a Study of Obesity 

and Diabetes Using Estimates of Sensitivity and Specificity From Literature Review, 

Non-Pregnant Females Aged 18-49, National Health and Nutrition Examination Survey, 

1999-2008. 

Adjustment Assumption and Source 

of Se and Sp 

Median Odds Ratioa 95% Simulation Intervalb 

Truth - measured obesityc 6.00  

Misclassified - self-reported 

obesityd 

5.55  

Exactly nondifferentiale   

   Krul et al., 2010 7.43 6.63, 8.57 

   Johnson et al., 2009 7.45 6.69, 8.48 

   Brunner Huber, 2007 7.20 6.46, 8.23 

   Hussain et al., 2007 8.10 7.23, 9.31 

   Nieto-Garcia et al., 1990 11.25 9.05, 15.70 

Approximately nondifferentialf   

   Krul et al., 2010 7.43 6.14, 9.15 

   Johnson et al., 2009 7.46 6.18, 9.09 

   Brunner Huber, 2007 7.20 5.99, 8.78 

   Hussain et al., 2007 8.12 6.67, 9.99 

   Nieto-Garcia et al., 1990 11.26 8.33, 16.86 

Differential Ag   

   Krul et al., 2010 6.09 5.16, 7.18 
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   Johnson et al., 2009 6.29 5.34, 7.46 

   Brunner Huber, 2007 5.96 5.07, 6.99 

   Hussain et al., 2007 6.79 5.71, 8.12 

   Nieto-Garcia et al., 1990 8.02 6.33, 10.43 

Differential Bh   

   Krul et al., 2010 9.54 7.51, 12.68 

   Johnson et al., 2009 9.29 7.43, 11.89 

   Brunner Huber, 2007 9.10 7.25, 11.88 

   Hussain et al., 2007 10.23 8.08, 13.34 

   Nieto-Garcia et al., 1990 19.17 11.99, 46.62 

a Estimates for misclassification-adjusted odds ratios are the median of the odds ratio 

distribution generated by simulation. 

b Lower and upper bounds are the 2.5th and 97.5th percentiles of the odds ratio distribution 

generated by simulation. 

c Obesity (body mass index ≥ 30 kg/m2) calculated from measured height and weight. 

d Obesity calculated from self-reported height and weight. 

e One value of Se and one value of Sp chosen from the non-case distributions (Table 

5.B2) at each iteration of the simulation. Cases and non-cases were assigned these values 

for the analysis. 

f Cases and non-cases assigned the non-case distributions (Table 5.B2). Values of Se and 

Sp were chosen independently from these distributions for cases and non-cases. 

g Case distributions assigned as the non-case distribution (Table 5.B2) shifted upward by 

0.05 for Se, upward by 0.02 for Sp. 
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h Case distributions assigned as the non-case distribution (Table 5.B2) shifted downward 

by 0.05 for Se, downward by 0.02 for Sp. 
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Figure 5.1. Creation of the 12 datasets for simulation. At each iteration of the simulation, 

exposure, disease, and misclassified exposure status are assigned and misclassification-

adjusted odds ratios are calculated under 4 different assumptions. The process is repeated 

1,000 times. Abbreviations: D, disease; E, true exposure; EM, misclassified exposure; 

OR, odds ratio. 
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APPENDIX A 

Literature Review Methods 

We searched Embase and Medline for studies published between 1985 and April 2011 

(approximately last 25 years) reporting sensitivity and specificity (or data sufficient so 

these could be calculated) of obesity classification in American adult females. Search 

terms included self-report, height, weight, BMI (body mass index), sensitivity, and 

specificity (the exact search strategy is available upon request). We identified 62 articles 

in the search and excluded articles for the following reasons: irrelevant topic (n = 18), 

commentary without original data (n = 1), included only children or the elderly (n = 12), 

included only males (n = 1), or not conducted in the United States (n = 23). Of the 7 

remaining studies, we excluded 4 because they provided estimates from NHANES; this 

exclusion was made because we wanted to approximate scenarios in which internal 

validation data was unavailable.  

 

To the 3 studies identified through the search strategy (21-23) we added 2 studies that we 

were aware of, but that were not identified by the search strategy (24, 25).  
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APPENDIX B 

Studies Identified in Review of the Literature 

Table 5.B1. Identified Published Studies Reporting Sensitivity and Specificity of Self-Reported Obesity Status in American Adult 

Females of Reproductive Age. 

 Study Population Years N Se Sp Diabetes 

1 Krul et al., 

2010 (24) 

North American females 

aged 18-65 participating in 

CAESAR project 

1999-

2000 

1,248 0.885 0.996 No information 

2 Johnson et al.,  

2009 (23) 

Females aged 18-65, 

participants in the Pennington 

Center Longitudinal Study 

1992-

2008 

9,797 EA: 0.912 

AA: 0.909 

EA: 0.964 

AA: 0.947 

No information 
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3 Brunner Huber 

2007 (25) 

Females 18-45 using birth 

control, attending suburban 

Family Medicine clinic in 

Atlanta 

2004 250 0.900 0.994 No information 

4 Hussain et al., 

2007 (22) 

English-speaking, 

nonpregnant females aged 

18-44, predominantly 

African-American, attending 

urban community health 

center for medical 

appointments 

2003 231 0.896 0.944 7.4% diagnosed, 

population 

reported to be at 

high risk 

5 Nieto-Garcia et 

al., 1990 (21) 

Females aged 20-79, 

participants in Collaborative 

Lipid Research Clinics 

Family Study 

1975-

1978 

572 0.80 0.99a No information 

Abbreviations: AA, African-American; EA, European-American; N, number; Se, sensitivity; Sp, specificity. 
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a Includes males, but reported to be similar for all participant subgroups 
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Estimates of Sensitivity and Specificity from Literature Review 

 

Table 5.B2. Triangular Distributions for Sensitivity and Specificity of Obesity 

Classification for Non-Cases, Created From Literature Review. 

 Sensitivity Specificity 

Source of Estimates Min Mode Max Min Mode Max 

Krul et al., 2010 0.84 0.89 0.94 0.97 0.99 1.00 

Johnson et al., 2009 0.86 0.91 0.96 0.94 0.96 0.98 

Brunner Huber, 2007 0.85 0.90 0.95 0.97 0.99 1.00 

Hussain et al., 2007 0.85 0.90 0.95 0.92 0.94 0.96 

Nieto-Garcia et al., 1990 0.75 0.80 0.85 0.97 0.99 1.00 

 Abbreviations: max; maximum; min, minimum.  
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ABSTRACT 

Exposure misclassification, selection bias, and confounding are important sources of bias 

in epidemiologic studies, yet only confounding is routinely addressed quantitatively. The 

authors describe a method to simultaneously adjust for these biases using weighted 

logistic regression. Selection probabilities and predictive values for exposure 

classification are used as weights to re-balance the joint distribution of exposure and 

disease to what the distribution would have been without bias. The method was applied to 

a case-control study of prepregnancy obesity (obese: body mass index ≥ 30 kg/m2 versus 

normal weight: 18.5-24.9 kg/m2) and isolated cleft lip with or without cleft palate (CL/P) 

and cleft palate (CP) using data from the National Birth Defects Prevention Study. 

Adjusting for confounding only, associations were observed between prepregnancy 

obesity and both CL/P (odds ratio [OR] 1.20, 95% confidence interval [CI] 1.05, 1.38) 

and CP (OR 1.27, 95% CI 1.05, 1.52). After adjusting for exposure misclassification, 

selection bias, and confounding, given the authors’ assumptions, associations were 

attenuated (CL/P median OR range from simulation: 0.99 to 1.04; CP median OR range: 

1.04 to 1.09). Considering the potential effects of biases other than confounding is 

important in epidemiologic studies. This approach allows simultaneous adjustment for 

multiple biases using logistic regression. 
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INTRODUCTION 

Results of an epidemiologic study might not accurately reflect the direction or magnitude 

of the true association if during the study’s design, execution, or analysis they have been 

distorted by bias (1). Confounding is often addressed in the analysis using statistical 

techniques such as multiple variable regression, but even though biases such as 

misclassification and selection bias might have equally important effects on results, they 

are not usually addressed quantitatively (2, 3). There are published examples of studies 

adjusting for more than one type of bias (3-8) and methods for multiple bias analysis 

have been implemented using widely-available software such as Excel, Stata, and SAS 

(4, 6, 9). Some methods adjust for biases using sequential contingency tables, although 

adjusting for confounding is difficult with this approach (6, 9). Other methods adjust for 

multiple biases using regression models and simulation (4, 10) or by multiplying effect 

estimates by adjustment factors (8, 11).  

 

In this paper, we describe a method for multiple bias analysis allowing simultaneous 

adjustment for exposure misclassification, selection bias, and confounding in a manner 

parallel to multiple variable logistic regression. Weights are created to rebalance the joint 

distribution of exposure and disease to the distribution that would have existed in the 

absence of bias, and the analysis is undertaken using a weighted regression model. For 

simple (non-probabilistic) multiple bias analysis, no simulation is involved and 

investigators can apply the method in standard statistical software packages without need 

for advanced programming. The approach is based on existing methods that use weighted 

logistic regression to adjust for exposure misclassification (12) and selection bias (13). 
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We will describe the method and demonstrate its application using both hypothetical and 

applied examples.  

  

EXAMPLE 1: HYPOTHETICAL CASE-CONTROL STUDY 

Study Population 

We created a source population of 100,000 individuals with dichotomous exposure (E), 

disease (D), and confounder (C), assuming that E causes D, and C causes both E and D 

(Figure 6.1, Table 6.1). We randomly assigned C with a prevalence of 0.10 and assigned 

values of E conditional on C with p(E = 1|C = 1) = 0.10 and p(E = 1|C = 0) = 0.05. We 

assigned D using Bernouilli trials in which p(D) followed a logistic model with E and C 

as predictors of D, in the form logit p(D) = -3 + 1(E) + 1(C). We will refer to this 

population of 100,000 individuals as the “source population”. 

 

We simulated a case-control study with the goal of selecting from the source population 

100% of affected individuals as cases and a 10% random sample of unaffected 

individuals as controls. However, we introduced selection bias making selection (S) 

dependent on both E and D (Figure 6.1) so that selection of participants was not truly 

random for cases and non-cases, and was incomplete for cases incomplete. Selection 

probabilities (πij, i = disease, j = exposure) were π11 = 0.900, π10 = 0.950, π01 = 0.080 and 

π00 = 0.099. We will refer to this population as the “selected population”.  

 

We misclassified exposure differentially with respect to D and assigned each individual 

in the selected population a potentially misclassified exposure value, EM. Probability of 
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misclassification for each E-D combination (pij) was assigned to be p11 = 0.02, p10 = 

0.05, p01 = 0.04, and p00 = 0.10. These data will be referred to as the “observed data” and 

represent the data investigators typically have available for analysis in epidemiologic 

studies.  

 

For simplicity, we assume in this example that C and D were measured without error and 

no participant had missing data for any variable.  

 

Estimating Exposure Misclassification Weights 

Predictive values for exposure classification can be used as the weights for a weighted 

logistic regression to adjust for exposure misclassification (12). Predictive values are 

obtained from cross-tabulations of misclassified and true exposure in the selected 

population: p(E|D,EM,S).  If control for confounding is desired, predictive values should 

be estimated conditional on C as well. Because in this example we have simulated data, 

we can calculate predictive value proportions directly; in practice, predictive value 

probabilities can be estimated from validation studies. As an example of calculation of 

these proportions in the observed data, the proportion of participants with C = 1, D = 1, 

and EM = 1 who are truly exposed, p(E = 1|C = 1, D = 1, EM = 1, S = 1), is 260/308 and 

the proportion of participants who are truly unexposed, p(E = 0|C = 1, D = 1, EM = 1, S = 

1), is 48/308 (Table 6.2). These exposure misclassification weights sum to 1 within strata 

of EM. In Appendix A, we show how to create weights when predictive values are 

unavailable but estimates of sensitivity and specificity of exposure classification are 

known. 
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Estimating Selection Weights 

Selection weights are estimated as the inverse of the probability of selection into the 

study (13). Because selection must be affected by both E and D for selection bias to 

occur, the selection probabilities are conditional on these variables: p(S|E,D). In some 

cases, to be discussed later (see “Notes on Weight Estimation”), selection probabilities 

might instead be conditional on misclassified exposure status: p(S|EM, D).  If one is 

interested in adjusting for confounding in addition to selection bias, selection 

probabilities should also be conditional on C. In our simulated data, we can calculate the 

selection proportions directly; in practice, the true selection probabilities are unknown but 

can be estimated from participation rates or similar information. As an example of 

calculation of these proportions, there are 263 individuals with C = 1, D = 1, and E = 1 in 

the selected population, of 296 originally eligible for inclusion from the source 

population (Table 6.1). The selection proportion is 263/296; the inverse selection 

proportion is 296/263 and this is the value used as the selection weight in the analysis for 

individuals with C = 1, D = 1, and E = 1. 

 

Calculation of the Point Estimate 

We start by creating a dataset in which each participant appears twice. One copy of the 

participant is assigned to be exposed (EA = 1) and the other to be unexposed (EA = 0), 

because we do not know which is the true exposure status. We use notation EA to 

distinguish the assigned exposure status from the true exposure status E (unknown in 

practice). Each copy of the participant is then assigned an exposure misclassification 
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weight for EA. For example, the weight for a participant with C = 1, D = 1, and EM = 1 

would be p(EA = 1|C = 1, D = 1, EM = 1) = 260/308 for the copy with EA = 1 and p(EA = 

0|C = 1, D = 1, EM = 1) = 48/308 for the copy with EA = 0, based on the predictive value 

proportions calculated previously (Table 6.3). The selection weights are then applied; for 

example, each participant copy with C = 1, D = 1, EA = 1 would be given a weight of 

296/263, as previously described (Table 6.4). The exposure misclassification weight and 

selection weight are multiplied to create the final weight used in the analysis. An 

algebraic demonstration of the method is provided in Appendix A and shows that the 

contingency table counts from the source population can be reproduced exactly when the 

values of the weights are known with certainty.  

 

The method can be implemented using standard statistical software. In the regression 

model, assigned exposure (EA) is used as the exposure variable instead of the exposure 

reported by the study participant (EM). The final weight (product of exposure and 

selection weights) is used as the weight. Confounding is adjusted for by entering 

suspected confounders into the multivariable model. In SAS (SAS Institute, Cary, NC), 

the multiple bias analysis can be performed using any procedure for logistic regression. 

For example, in PROC LOGISTIC the code for multiple bias analysis is as follows: 

 

proc logistic data = datasetname; 

 model disease (event = “1”) = assigned_exposure confounder; 

 weight finalweight; 

run; 
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The confidence interval produced from logistic regression should not be used because it 

does not properly take into account additional variability introduced during the 

adjustment process (6). Incorporating uncertainty using probabilistic analyses is 

discussed in the next Example. 

 

Results 

In the source population, the confounder-adjusted odds ratio (OR) for the association 

between D and E is 2.75 and in the selected population it is 3.09 (Table 6.1). The 

confounder-adjusted OR is 1.18 using the observed (misclassified) data. The change in 

the estimated OR demonstrates the cumulative effects of these biases on study results. 

 

After adjustment for exposure misclassification, selection bias, and confounding using 

the weighted analysis, the OR between exposure and disease is 2.75, which matches the 

source population.  

 

EXAMPLE 2: PREPREGNANCY OBESITY AND ISOLATED OROFACIAL 

CLEFTS 

In this example, we provide an application of this method to an epidemiologic study to 

simultaneously adjust for exposure misclassification, selection bias, and confounding 

using weighted logistic regression. These data provide a more realistic example and 

involve a multi-level exposure, missing data on exposure, and literature-based estimation 

of weights.  
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Prepregnancy obesity is associated with numerous adverse pregnancy outcomes including 

birth defects such as cleft lip with or without cleft palate (CL/P) and cleft palate (CP) (14, 

15). Studies have reported weak associations between prepregnancy obesity and isolated 

CL/P and CP with confounding-adjusted ORs ranging from 1.01 to 1.29 for CL/P and 

1.08 to 1.21 for CP for obese compared to normal weight mothers (16-18). One of these 

studies adjusted for nondifferential exposure misclassification and reported CL/P ORs 

ranging from 1.38 to 2.94, given various assumptions about sensitivity and specificity of 

exposure classification (18). No study to date has adjusted for exposure misclassification, 

selection bias, and confounding in the same analysis. 

 

Study Population 

We used data from the National Birth Defects Prevention Study (NBDPS), a multi-site 

population-based case-control study investigating genetic and environmental risk factors 

for major structural birth defects (19-21). Cases were identified from birth defect 

surveillance programs and controls were identified from birth certificates or hospital birth 

records in the same catchment areas as cases. Participating mothers were interviewed by 

telephone after delivery. For this analysis we included 1,990 mothers of infants with 

isolated CL/P, 943 mothers of infants with isolated CP, and 8,177 mothers of control 

infants who completed the interview. We excluded 36 mothers with missing data on 

race/ethnicity, a potential confounder. All mothers had infants born on or after October 1, 

1997 with an estimated date of delivery on or before December 31, 2007. All 

participating sites received institutional review board approval.   
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The exposure of interest was prepregnancy obesity, defined following standard cutpoints 

of body mass index (BMI): underweight (<18.5 kg/m2), normal weight (18.5-24.9 kg/m2), 

overweight (25.0-29.9 kg/m2) and obese (≥30 kg/m2). BMI was calculated as self-

reported prepregnancy weight in kilograms divided by squared self-reported height in 

meters. BMI was missing for 101 CL/P case mothers (5.1%), 28 CP case mothers (3.0%), 

and 337 control mothers (4.1%). 

 

Potential confounders included maternal race/ethnicity, age, and education, and smoking 

status during pregnancy. In preliminary analyses, adjusting for these variables did not 

appreciably change the effect estimate from the crude result. Therefore, for simplicity, we 

adjusted only for potential confounding by maternal race/ethnicity (non-Hispanic white, 

non-Hispanic black, Hispanic, other) in this example. 

 

Estimation of Exposure Misclassification Weights 

Lacking internal validation data for BMI classification, we chose the National Health and 

Nutrition Examination Survey (NHANES) as the source of external validation data (22). 

NHANES participants completed an in-person interview during which they self-reported 

weight and height. One or two weeks later, they underwent a physical examination during 

which their height and weight were measured.  We restricted our validation sample to 

non-pregnant females aged 16-49 who participated in NHANES between 1999 and 2008 

and who had both measured height and weight recorded. Predictive values for 4-level 

BMI classification were estimated conditional on race/ethnicity and accounting for the 
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complex sampling design using a cross-tabulation of self-reported BMI category and 

measured BMI category. An example of a classification table for Hispanic women is 

shown in Table 6.5.  

 

In NHANES, measured BMI was available for most women who had missing values for 

self-reported BMI. By treating missing data as a misclassification problem, we used the 

same approach to adjust for missing data as to adjust for misclassification. We calculated 

predictive values for exposure classification among women with missing BMI and used 

these as weights in the analysis to adjust for missing data.   

  

We had no information about whether exposure misclassification was differential or 

nondifferential by case/control status and so conducted three analyses. In the first, we 

assumed misclassification was nondifferential and assigned both cases and controls to 

have the same NHANES predictive values, conditional on maternal race/ethnicity. In the 

second, we assumed that classification was better for cases than controls. We assigned 

controls to have the NHANES predictive values, and assigned the matching predictive 

values (i.e., the predictive values corresponding to women in which the self-reported and 

measured BMI categories were the same) to be 0.02 higher for cases than controls. In the 

final analysis, we assumed classification was better for controls than cases, and assigned 

the matching predictive values to be 0.02 higher for controls than cases. 
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Because we are using an exposure variable with 4 levels (underweight, normal weight, 

overweight, obese), each participant is entered into the analysis 4 times, once for each 

potential true exposure status. 

  

Estimation of Selection Weights 

A study from the Danish National Birth Cohort (DNBC) found that mothers self-

reporting as underweight, overweight, or obese were less likely to participate in the study 

than mothers self-reporting as normal weight (23). The ratio of relative frequencies 

(frequency of the characteristic in the study divided by frequency in the source 

population) was 0.84 for underweight, 1.04 for normal weight, 0.96 for overweight, and 

0.89 for obese mothers.  

 

Participation rates from NBDPS show that case mothers were 6% more likely to agree to 

participate in the study than control mothers. No information was available, however, for 

the joint selection probabilities for BMI categories and case/control status. 

 

Because we did not have information on true selection probabilities, we used selection 

ratios as substitutes. Selection ratios were defined as the ratio of the frequency of a 

characteristic (e.g., obesity) among study participants to the expected frequency of this 

characteristic in the source population. We used the ratio of relative frequencies from 

DNBC as estimates of selection ratios for BMI categories and constructed selection ratios 

for case/control status based on NBDPS participation rates. In the analysis, the weights 

were equal to the inverse of the selection ratios. 
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Without further information on selection ratios, we assumed that participation of control 

mothers would differ between BMI categories, but that participation of case mothers 

would not. Selection ratios for controls were assigned to vary by BMI (underweight = 

0.84, normal weight = 1.04, overweight = 0.96, obese = 0.89) based on estimates from 

the DNBC (23). Cases were assigned selection ratios that did not vary by BMI. All were 

given a selection ratio of 1.10, indicating that they were 6% more likely to participate 

than normal weight controls (1.04*1.06 = 1.10). We assigned cases with missing BMI to 

have a selection ratio of 1.10 and controls with missing BMI to have a selection ratio of 

0.94, the simple average of the lowest (0.84) and highest (1.04) selection ratios in the 

DNBC. For simplicity, we assumed that selection ratios did not differ by race/ethnicity.  

 

We conducted a second analysis in which selection bias was assumed to be of a lesser 

magnitude. Cases were assigned a selection ratio of 1.10 as described above and controls 

were assigned selection ratios 0.05 higher than in the first analysis (underweight = 0.89, 

normal weight 1.09, overweight = 1.01, obese = 0.94, missing = 0.99). 

 

Incorporation of Uncertainty 

Uncertainty about the true values of the bias parameters (predictive values and selection 

probabilities) can be incorporated into bias analyses by assigning a probability 

distribution to each parameter, sampling randomly from the distribution over many 

iterations, and using the chosen values in the analysis (3, 6). Unlike a simple bias analysis 

in which a single value of the parameter is chosen and a single adjusted OR is obtained, 
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the result of a probabilistic bias analysis is a distribution of the adjusted OR, summarized 

as the median adjusted OR and 95% simulation interval (SI), the 2.5th and 97.5th 

percentiles of the adjusted OR distribution.  

 

For the analysis of exposure misclassification, we first defined triangular distributions 

around the matching predictive values (i.e., women who correctly reported their BMI 

category). The mode of the distribution was set to be the NHANES value and the 

minimum and maximum values of the distributions were set to be 0.05 lower or higher 

than the mode, with distributions truncated to fall between 0 and 1, inclusive.  All 

subsequent distributions within the same category of self-reported BMI were created 

constrained so the sum within self-reported BMI categories was 1 and the ratios of the 

predictive values were maintained. For example, the predictive values for Hispanic 

women self-reporting as obese were 0, 0.01, 0.07, and 0.92 for the underweight, normal 

weight, overweight, and obese categories (Table 6.5). The first value chosen was from 

the distribution for obesity with mode 0.92. Subsequent distributions were created 

conditional on the value drawn for the specific simulation run (e.g., if 0.95 was drawn, 

the sum of the values drawn from the other distributions was limited to 0.05). The mode 

of the distribution for overweight (original mode 0.07) was made to be larger than the 

mode for the distribution for normal weight (original mode 0.01) to preserve the same 

ratios of predictive values. Additional detail on creation of the distributions for predictive 

values is provided in Chapter 7 (Appendix B). 
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For selection ratios, we incorporated uncertainty using log-triangular distributions (log-

triangular instead of triangular because they are on the ratio scale) with the mode equal to 

the natural log of the selection ratio chosen based on DNBC and NBDPS values. The 

minimum of the distribution was defined as 0.05 less than the mode and the maximum 

was set to be 0.05 greater than the mode. After randomly selecting a value from the 

distribution, it was exponentiated to obtain the selection ratio. 

 

Each simulation was run 1,000 times, each time drawing new values for exposure 

misclassification weights and selection weights from their respective distributions. 

Median adjusted ORs and 95% SIs were produced to describe the variability in the point 

estimates attributable to bias. 

 

To additionally incorporate random error into the simulation intervals, variability was 

added to the point estimate distribution. At each iteration of the simulation, we scaled the 

standard error from the conventional analysis (unweighted logistic regression) by 

multiplying it by a randomly selected value from a standard normal distribution. This 

randomly-scaled standard error was then subtracted from the log multiple bias-adjusted 

OR and this result was exponentiated to produce the random error-added point estimate 

(6). This distribution was summarized as the median OR and random error-added 95% 

SI. 

 

Results  
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Crude and bias-adjusted OR estimates for associations between obesity and CL/P are 

shown in Table 6.6 and between obesity and CP are shown in Table 6.7. Associations 

between underweight and overweight and CL/P and CP are not discussed here, but are 

presented in Appendix Tables 6.B1 and 6.B2. For all analyses, the normal weight BMI 

category is the reference group.  

 

Adjusting for confounding moved the OR up and away from the null for associations 

between obesity and both CL/P and CP, but results were overall similar to the crude 

analyses, showing a weak association. 

  

When results were only adjusted for selection bias according to our assumptions, ORs for 

CL/P and CP were attenuated compared to the crude and confounding-adjusted estimates 

and associations were approximately null.  

 

Adjustment for misclassification and missing data also moved the magnitude of the 

association down and towards the null, but weak associations between obesity and CL/P 

and CP remained. 

 

After adjusting for exposure misclassification, selection bias, and confounding, given our 

assumptions about the values of the weights, associations between obesity and both CL/P 

and CP moved toward the null. Associations were approximately null for CL/P and very 

weak for CP. 
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NOTES ON WEIGHT ESTIMATION 

For multiple bias analysis methods in which biases are adjusted serially, the order in 

which biases are adjusted is important (3, 6). Because adjustment for all types of bias 

occurs simultaneously using our approach, order itself is unimportant. However, bias 

parameters must be estimated in a specific way. 

 

When both exposure misclassification and selection bias are present, there are four 

hypothetical datasets from which bias parameters could be estimated. In Figure 6.2, these 

hypothetical datasets are shown and their corresponding bias parameters are labeled A1, 

A2, B1, and B2. Parameters A1 and A2 correspond to Example 1 (hypothetical study). 

Predictive values for exposure classification conditional on selection (A1) were estimated 

using correctly classified exposure in the selected population. Selection probabilities (A2) 

were estimated independent of exposure misclassification  (from the source population). 

Parameters B1 and B2 correspond to Example 2 (data from NBDPS). Selection weights 

(B1) were estimated from a dataset most closely resembling a source population with 

misclassified exposure (DNBC) and predictive values (B2) were estimated from a dataset 

most closely resembling a source population with correctly classified exposure 

(NHANES). When estimating B2, we implicitly assumed that misclassification was 

nondifferential with respect to selection so that predictive values would be the same in 

people selected into the study and in people eligible but not selected, conditional on D 

and C.  
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Final weights for the analysis were calculated by multiplying the predictive values by the 

selection probabilities: A1*A2 in Example 1 and B1*B2 in Example 2. Using either of 

these final weights (A1*A2 or B1*B2) will, on average, produce results equal to the 

associations observed in the source population, given the weights are estimated correctly. 

These weights were estimated in a way that leads from the subset of the population with 

misclassified exposure (observed data) back to the complete source population with 

correctly classified exposure (source population). Any other combination of weights (i.e., 

A1*B1, A2*B2) might not produce results equal to associations observed in the source 

population, unless they are numerically equivalent to A1*A2 or B1*B2.  

 

DISCUSSION 

Using data from simulations, we have demonstrated the use of weighted logistic 

regression to simultaneously adjust for exposure misclassification, selection bias, and 

confounding. We have also provided an example of how adjustment for exposure 

misclassification and selection bias has the potential to affect study results. 

 

One of the main advantages of this approach over several previously described methods 

for multiple bias analysis is that it is implementation uses logistic regression, a commonly 

used analytic method in epidemiology. Unlike multiple bias analysis methods that rely on 

contingency tables, control of multiple confounders is easily accomplished through 

modeling. In addition, adjustment for multiple biases can be done simultaneously instead 

of serially. Methods for multiple bias analysis using regression models have been 

previously described, but these have relied on simulations to adjust for biases (4, 10). For 
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epidemiologists who are uncomfortable writing their own simulations, creating weights 

might be a simpler alternative. This method can be extended to conduct probabilistic 

multiple bias analysis. Although the extension is straightforward, implementing 

probabilistic analyses requires more complex programming. In our example , results from 

the simple bias analysis were generally similar to results from the probabilistic analysis. 

 

In our example using NBDPS data, we found that associations observed in the 

confounding-adjusted analyses were attenuated when adjustment for exposure 

misclassification and selection bias were incorporated, given our assumptions. Other 

case-control studies of obesity and isolated and non-isolated CL/P and CP have found 

crude or confounding-adjusted associations with similar magnitudes as the confounding-

adjusted estimate from NBDPS (15, 18, 24-27). The literature suggests a weak 

association between prepregnancy obesity and CL/P and CP when the effects of exposure 

misclassification or selection bias are not considered in the analysis. If adjustment for 

these biases were accounted for, our conclusions about the strength of the evidence as a 

whole could change.  

 

Two cohort studies of prepregnancy obesity and CL/P and CP (isolated and non-isolated 

cases combined) have been conducted in which measured height and weight were used, 

reducing misclassification. Both of these studies found that obesity was associated with 

increased risk of CL/P and CP (27, 28) suggesting that an association might exist when 

misclassification is absent or negligible. However, BMI was missing for 15% and 25% of 
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participants, making it difficult to draw conclusions about the potential roles for bias 

because BMI might not be missing at random (29, 30).  

 

The success of any adjustment for bias is limited by lack of knowledge of the true values 

of bias parameters. In our example using NBDPS data, there was little information to 

confirm that our chosen bias parameters accurately reflected the truth. Predictive value 

estimates from NHANES might not have generalized to NBDPS, and we had no 

information to decide if misclassification was nondifferential or differential. Joint 

selection probabilities were unavailable, and we had to assume that selection bias 

occurred with a particular direction and magnitude. In the probabilistic analyses, we 

incorporated uncertainty in parameter choice in the analyses but we cannot be certain our 

triangular distributions included the true values or were centered around them. We can 

conclude, however, that given the information available in the literature, the associations 

previously observed between obesity and CL/P and CP could be entirely attributable to 

exposure misclassification, selection bias, and confounding. The bias parameters needed 

to produce a null effect are not so extreme as to be outside the realm of possibility.  

 

Although we adjusted for three types of bias in our analyses, we did not include a 

comprehensive analysis for all types of error that could have occurred in the study, such 

as outcome misclassification, covariate misclassification, and unmeasured confounding. 

We also did not explore other issues important for making causal inference, such as the 

appropriateness of categorizing the continuous exposure measure, BMI, into four levels, 

of assuming no effect measure modification. In addition, if an association between BMI 
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and CL/P or CP exists, BMI might only be a proxy for an unknown causal exposure 

responsible for the effect such as adiposity, diet, or physical activity (31). 

 

With use of bias analysis limited by available information on bias parameters, validation 

studies and other investigations into sources of bias will be important for obtaining more 

accurate bias parameters to use in future bias analyses. Even when there is uncertainty 

about the accuracy of bias parameters, performing bias analyses using plausible 

assumptions provides quantitative estimates of the potential direction and magnitude of 

biases in the study. Weighted logistic regression is a straightforward method that can be 

used to incorporate multiple bias analysis into epidemiologic studies to investigate the 

potential impact of biases on study results.  
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Table 6.1. Contingency Tables for the Source and Selected Populations and the Observed 

Data, Stratified by a Confounder: Simulated Data. 

 C = 1 C = 0 Adjusted ORa 

Source population E = 1 E = 0 E = 1 E = 0  

   D = 1 296 1,100 528 4,092 2.75 

   D = 0 727 7,982 3,937 81,338  

Selected population E = 1 E = 0 E = 1 E  = 0  

   D = 1 263 1,056 477 3,900 3.09 

   D = 0 67 826 317 8,026  

Observed data EM = 1 EM = 0 EM = 1 EM = 0  

   D = 1 308 1,011 644 3,733 1.18 

   D = 0 142 751 1,137 7,206  

Abbreviations: C, confounder; D, disease; E, true exposure; EM, misclassified exposure; 

OR, odds ratio. 

a Mantel-Haenszel odds ratio adjusted for C.  
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Table 6.2. Exposure Classification Table From the Selected Population, Stratified by 

Disease and Confounder: Simulated Data. 

 C = 1 C = 0 

 E = 1 E = 0 Total E = 1 E = 0 Total 

D = 1       

   EM = 1 260 48 308 470 174 644 

   EM = 0 3 1,008 1,011 7 3,726 3,733 

   Total 263 1,056 1,319 477 3,900 4,377 

D = 0       

   EM = 1 65 77 142 303 834 1,137 

   EM = 0 2 749 751 14 7,192 7,206 

   Total 67 826 893 317 8,026 8,343 

Abbreviations: C, confounder; D, disease; E, true exposure; EM, misclassified exposure. 
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Table 6.3. Adjustment for Exposure Misclassification in the Observed Data: Simulated 

Data. 

C D EM EA Observed Na p(E|C,D,EM,S)b Misclassification 

Adjusted Nc 

1 1 1 1 308 260/308 260 

1 1 1 0 308 48/308 48 

1 1 0 1 1,011 3/1,011 3 

1 1 0 0 1,011 1,008/1,011 1,008 

1 0 1 1 142 65/142 65 

1 0 1 0 142 77/142 77 

1 0 0 1 751 2/751 2 

1 0 0 0 751 749/751 749 

0 1 1 1 644 470/644 470 

0 1 1 0 644 174/644 174 

0 1 0 1 3,733 7/3,733 7 

0 1 0 0 3,733 3,726/3,733 3,726 

0 0 1 1 1,137 303/1,137 303 

0 0 1 0 1,137 834/1,137 834 

0 0 0 1 7,206 14/7,206 14 

0 0 0 0 7,206 7,192/7,206 7,192 

Abbreviations: C, confounder; D, disease; EA, assigned exposure; EM, misclassified 

exposure; N, number of observations; p(E|C,D,EM,S), probability of E given C, D, and 

EM among those selected (S) into the study. 
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a Number of participants in the observed data given values of C, D, and EM (from Table 

6.1). Each participant is entered into the analysis twice: once with EA = 1 and once with 

EA = 0. 

b Predictive values proportions calculated from the selected population (from Table 6.2). 

c Product of observed N and p(E|C,D,EM,S). 
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Table 6.4. Adjustment for Selection Bias in the Selected Population: Simulated Data. 

C D EA Misclassification-

Adjusted Na 

IPSWb Final Nc 

1 1 1 260 + 3 = 263 296/263 296 

1 1 0 48 + 1,008 = 1,056 1,100/1,056 1,100 

1 0 1 65 + 2 = 67 727/67 727 

1 0 0 77 + 749 = 826 7,982/826 7,982 

0 1 1 470 + 7 = 477 528/477 528 

0 1 0 174 + 3,726 = 3,900  4,092/3,900 4,092 

0 0 1 303 + 14 = 317 3,937/317 3,937 

0 0 0 834 + 7,192 = 8,026 81,338/8,026 81,338 

Abbreviations: C, confounder; D, disease; EA, assigned exposure; IPSW, inverse 

probability of selection weight; N, number of observations. 

 

a Number of observations in strata of C, D, and EA (from Table 6.3, summed over EM). 

b Inverse of selection probabilities (from Table 6.1). 

c When predictive value and selection proportions are known with certainty, the final N is 

equal to the number of individuals in the source population (Table 6.1). Outside of 

simulation, obtaining the same counts as the source population would be unlikely.
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Table 6.5. Example of Predictive Values for Exposure Classification, Non-Pregnant 

Hispanic Women Aged 16-49, National Health and Nutrition Examination Survey, 1999-

2008. 

 Measured BMI 

Self-reported BMI Underweight Normal weight Overweight Obese 

Underweight 0.66 0.34 0 0 

Normal weight 0.03 0.78 0.18 0.01 

Overweight 0 0.05 0.74 0.21 

Obese 0 0.01 0.07 0.92 

Missing 0.01 0.32 0.26 0.41 

Abbreviations: BMI, body mass index. 
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Table 6.6. Associations Between Prepregnancy Obesity and Cleft Lip With or Without 

Cleft Palate, Adjusting for Different Combinations of Biases, National Birth Defects 

Prevention Study, 1997-2007. 

 Simple 

Analysisa 

Probabilistic Analysis 

(Bias Only)b 

Probabilistic Analysis 

(Bias + Random Error)b,c 

Bias Adjustment ORd Median 

ORd 

95% SI Median 

ORd 

95% SI + 

Error 

Unadjustede    1.15 1.00, 1.32 

Confounding onlye,f    1.20 1.05, 1.38 

Selection bias only      

   Selection 1 0.98 0.99 0.91, 1.07 0.99 0.84, 1.15 

   Selection 2 0.99 0.99 0.91, 1.08 1.00 0.85, 1.16 

Misclassification onlyg      

   Nondifferential 1.05 1.11 1.01, 1.17 1.10 0.95, 1.27 

   Differential 1 1.03 1.09 1.03, 1.15 1.08 0.93, 1.25 

   Differential 2 1.07 1.13 1.06, 1.19 1.12 0.96, 1.30 

Multiple biasesh      

   Selection 1      

      Nondifferential 0.96 1.02 0.93, 1.10 1.01 0.86, 1.19 

      Differential 1 0.94 1.00 0.93, 1.08 0.99 0.85, 1.17 

      Differential 2 0.98 1.03 0.95, 1.13 1.03 0.88, 1.21 

   Selection 2      

      Nondifferential  0.96 1.02 0.94, 1.11 1.02 0.87, 1.20 
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      Differential 1 0.95 1.00 0.92, 1.09 1.00 0.85, 1.18 

      Differential 2 0.98 1.04 0.95, 1.13 1.04 0.88, 1.22 

Abbreviations: OR, odds ratio; SI, simulation interval. 

a Single values of bias parameters chosen for the analysis. 

b Triangular distributions of bias parameters sampled over 1,000 iterations. 

c Random error incorporated as described in the text. 

d Obese (body mass index ≥ 30 kg/m2) versus normal weight (body mass index 18.5-24.9 

kg/m2). 

e Point estimate and 95% confidence interval from conventional logistic regression 

analysis. 

f Adjusted for maternal race/ethnicity. 

g Adjusted for exposure misclassification and missing exposure data.  

h Adjusted for exposure misclassification, missing exposure data, selection bias, and 

confounding by maternal race/ethnicity. 
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Table 6.7. Associations Between Prepregnancy Obesity and Cleft Palate, Adjusting for 

Different Combinations of Biases, National Birth Defects Prevention Study, 1997-2007. 

 Simple 

Analysisa 

Probabilistic Analysis 

(Bias Only)b 

Probabilistic Analysis 

(Bias + Random Error)b,c 

Bias Adjustment ORd Median 

ORd 

95% SI Median 

ORd 

95% SI + 

Error 

Unadjustede    1.20 1.00, 1.45 

Confounding onlye,f    1.27 1.05, 1.52 

Selection bias only      

   Selection 1 1.03 1.03 0.95, 1.12 1.03 0.85, 1.26 

   Selection 2 1.04 1.04 0.95, 1.13 1.04 0.85, 1.27 

Misclassification onlyg      

   Nondifferential 1.08 1.13 1.07, 1.20 1.13 0.93, 1.37 

   Differential 1 1.06 1.11 1.06, 1.17 1.11 0.91, 1.34 

   Differential 2 1.09 1.15 1.09, 1.22 1.15 0.94, 1.39 

Multiple biasesh      

   Selection 1      

      Nondifferential 1.01 1.06 0.98, 1.16 1.06 0.87, 1.30 

      Differential 1 0.99 1.04 0.96, 1.14 1.04 0.85, 1.28 

      Differential 2 1.02 1.08 1.00, 1.18 1.08 0.89, 1.33 

   Selection 2      

      Nondifferential  1.01 1.07 0.98, 1.17 1.07 0.88, 1.31 

      Differential 1 0.99 1.05 0.96, 1.15 1.05 0.86, 1.29 
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      Differential 2 1.03 1.09 1.00, 1.19 1.09 0.89, 1.34 

Abbreviations: OR, odds ratio; SI, simulation interval. 

a Single values of bias parameters chosen for the analysis. 

b Triangular distributions of bias parameters sampled over 1,000 iterations. 

c Random error incorporated as described in the text. 

d Obese (body mass index ≥ 30 kg/m2) versus normal weight (body mass index 18.5-24.9 

kg/m2). 

e Point estimate and 95% confidence interval from conventional logistic regression 

analysis. 

f Adjusted for maternal race/ethnicity. 

g Adjusted for exposure misclassification and missing exposure data.  

h Adjusted for exposure misclassification, missing exposure data, selection bias, and 

confounding by maternal race/ethnicity. 
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Figure 6.1. Directed acyclic graph illustrating relationships between exposure (E), disease 

(D), confounder (C), and selection (S). 

  

E D 

C 
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Figure 6.2. Estimation of bias parameters (A1, A2, B1, B2) when adjusting for both 

exposure misclassification and selection bias. Combinations of bias parameters that will 

produce an unbiased estimate of the correctly classified source population are A1 and A2, 

or B1 and B2. Other combinations (e.g., A1 and B2 or B1 and A2) might produce biased 

estimates. Abbreviations: NBDPS, National Birth Defects Prevention Study.
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APPENDIX A 

In this Appendix, we show algebraically that multiple bias analysis using a weighted 

analysis, when applied to observed data with exposure misclassification and selection 

bias, leads, on average, to the same joint distribution of exposure and disease as the 

source population when predictive values for exposure and selection probabilities are 

known. For demonstration purposes only, misclassification and selection bias are 

adjusted for sequentially; the same result would be obtained if the weights were applied 

simultaneously. Adjustment for confounding can also be incorporated, as shown in the 

Examples in the main text. 

 

Table 6.A1 shows the joint distribution of true exposure (E) and disease (D) in the source 

and selected populations. We assume that the selected population was obtained by 

sampling from the source population with selection probabilities πij (i = disease, j = 

exposure). Table 6.A1 shows the expected number of participants in the selected 

population, based on this selection.  

 

We assume that exposure misclassification (EM) was introduced by measuring exposure 

in the selected population with sensitivities and specificities Sei and Spi. This process 

leads to the expected number of participants in the observed data seen in Table 6.A2.  

 

We now demonstrate that the expected cell counts after adjustment for exposure 

misclassification and selection bias using a weighted analysis in the observed data leads, 
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on average, back to the cell counts of the source population contingency table when the 

predictive values for exposure classification and the selection probabilities are known.  

The exposure classification table is shown in Table 6.A3. The right marginal total is set 

to equal the expected number of participants in the selected population stratified by D and 

summed over EM. The middle columns show the expected number of participants in the 

selected population with E = 1 and E = 0 for each category of D and EM, from which the 

predictive values (exposure misclassification weights) can be calculated as the cell-

specific expected values divided by the marginal totals.  

 

To adjust for exposure misclassification, each participant is entered into the analysis 

twice: one copy of the participant is assigned to be exposed (EA = 1) and the other to be 

unexposed (EA = 0) (Table 6.A4). Each observation is then multiplied (weighted) by its 

corresponding predictive value, p(E|D,EM,S), calculated from the exposure classification 

table (Table 6.A3), to produce the expected values for the misclassification-adjusted 

counts (labeled “Misclassification Adjusted N” in Table 6.A4). 

 

Table 6.A5 shows the misclassification-adjusted counts from Table 6.A4 summed over 

EM; these expected counts are equal to the expected counts of the contingency table for 

the selected population. To adjust for selection bias, each observation is multiplied 

(weighted) by the inverse of its selection probability (inverse probability of selection 

weight). 
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After adjustment for both exposure misclassification and selection bias using the 

weighted analysis, the final expected counts are equal to the contingency table counts 

from the source population. 

 

A nearly identical argument shows that the source population counts can be replicated 

exactly if the exact predictive proportions and exact selection proportions for these 

populations are known (we define “predictive proportion positive” as the proportion of 

those measured as exposed who are truly exposed, with a similar definition for the 

unexposed). 

 

Calculation of Exposure Weights Using Sensitivity and Specificity 

If predictive values for exposure are unavailable but values of Se and Sp are available, 

these can be used to calculate the weights. Here, we derive these weights and show that 

they are equivalent to using predictive values in the weighted analysis. We use the a cell 

(D = 1, E = 1) as demonstration, but similar arguments can be used to derive weights for 

the other cells. 

 

Positive predictive value (PPV), the exposure weight for the a’ cell, can be expressed in 

terms of Se and Sp: 

 

PPV = p(E)Se1 / [p(E)Se1 + (1 - p(E))(1-Sp1)] 
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Because p(E), prevalence of E, is unknown in the observed data, we must express it in 

terms of known quantities. To do this, we first express π11a in terms of known quantities. 

Rearranging from Tables 6.A1 and 6.A2: 

 

a’ = Se1(π11a) + (1-Sp1)(M1- π11a)  

a’ = Se1(π11a) + M1 - M1Sp1 + Sp1(π11a) - π11a 

π11a = [a’ - (1-Sp1)M1] / (Se1 + Sp1 - 1) 

 

Prevalence of E becomes: 

 p(E) = π11a / M1 

 = [a’ - (1-Sp1)M1] / (Se1 + Sp1 - 1)M1 

 = [a’/M1 - (1-Sp1)] / (Se1 + Sp1 - 1) 

 

We now substitute this quantity into the equation for PVP and rearrange: 

 

PPV = [(a’/M1 - (1-Sp1))/(Se1 + Sp1 + 1)]Se1 /  

   [((a’/M1 - (1-Sp1))/(Se1 + Sp1 + 1))Se1 + ((Se1 – a’/M1)/(Se1 + Sp1 - 1))(1-

Sp1)] 

= (a’Se1/M1 - Se1 + Se1Sp1) / (a’Se1/M1 - Se1 + Se1Sp1 + Se1 – a’/M1 + 

a’Sp1/M1 -  

   Se1Sp1)  

= a’/M1(Se1 - Se1M1/a’ + Se1Sp1M1/a’) / (a’/M1)(Se1 + Sp1 - 1) 

= (Se1 - Se1M1/a’ + Se1Sp1M1/a’) / (Se1 + Sp1 - 1) 
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= Se1/a’(a’ - M1 + Sp1M1) / (Se1 + Sp1 - 1) 

= Se1 (a’ - M1 + Sp1M1) / a’(Se1 + Sp1 - 1) 

 

This quantity can be used as the exposure weight. From Table 6.A4, we see that the 

misclassification adjusted N = Se1(π11a). This is equivalent to a’PVP: 

 

a’PVP  = a’ [Se1(a’ - M1 + Sp1M1) / a’(Se1 + Sp1 - 1)]  

= Se1[(a’ - M1 + Sp1M1) / (Se1 + Sp1 - 1)] 

= Se1(π11a) 

 

Similar derivations can be used to show that Se and Sp can be substituted for other 

predictive values for the weights (Table 6.A6). 
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Table 6.A1. The Source and Selected Populations. 

 Exposure Measure 

Source Population E = 1 E = 0 

   D = 1 a b 

   D = 0 c d 

Selected Population E = 1 E = 0 

   D = 1 π11a π10b 

   D = 0 π01c π00d 

Abbreviations: D, disease; E, true exposure; EM, misclassified exposure. 
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Table 6.A2. Observed Data With Exposure Misclassification and Selection Bias. This 

Represents Data Usually Available in Epidemiologic Studies. 

Observed Data EM = 1 EM = 0 Total 

   D = 1 a’ = (Se1) π11a + (1-Sp1) 

π10b 

b’ = (1-Se1) π11a + (Sp1) π10b M1 

   D = 0 c’ = (Se0) π01c + (1-Sp0) 

π00d 

d’ = (1-Se0) π01c + (Sp0) π00d M0 

Abbreviations: D, disease; E, true exposure; EM, misclassified exposure; Sei, sensitivity; 

Spi, specificity. 
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Table 6.A3. Exposure Classification Table. 

 E = 1 E = 0 Total 

D = 1    

   EM = 1 (Se1) π11a (1-Sp1) π10b a’ = (Se1) π11a + (1-Sp1) π10b 

   EM = 0 (1-Se1) π11a (Sp1) π10b b’ = (1-Se1) π11a + (Sp1) π10b 

   Total π11a π10b M1 

D = 0    

   EM = 1 (Se0) π01c (1-Sp0) π00d c’ = (Se0) π01c + (1-Sp0) π00d 

   EM = 0 (1-Se0) π01c (Sp0) π00d d’ = (1-Se0) π01c + (Sp0) π00d 

   Total π01c π00d M0 

Abbreviations: D, disease; E, true exposure; EM, misclassified exposure; Sei, sensitivity; 

Spi, specificity. 
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Table 6.A4. Adjustment for Exposure Misclassification 

D EM EA Observed 

N 

p(E|D,EM,S) Misclassification Adjusted Na 

1 1 1 a’ (Se1) π11a/a’  (Se1) π11a 

1 1 0 a’ (1-Sp1) π10b/a’  (1-Sp1) π10b 

1 0 1 b’ (1-Se1) π11a/b’ (1-Se1) π11a 

1 0 0 b’ (Sp1) π10b/b’  (Sp1) π10b 

0 1 1 c’ (Se0) π01c/c’  (Se0) π01c 

0 1 0 c’ (1-Sp0) π00d/c’  (1-Sp0) π00d 

0 0 1 d’ (1-Se0) π01c/d’  (1-Se0) π01c 

0 0 0 d’ (Sp0) π00d/d’  (Sp0) π00d 

Abbreviations: D, disease; E, exposure; EM, misclassified exposure; N, number of 

observations; p(E|D,EM,S), probability of true exposure, given disease, misclassified 

exposure, and selection into the study; Sei, sensitivity; Spi, specificity. 

a Product of observed N and p(E|D,EM,S). 
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Table 6.A5. Adjustment for Selection Bias in Addition to Exposure Misclassification 

D EA Misclassification Adjusted Na IPSW Final Nb 

1 1 (Se1) π11a + (1-Se1) π11a = π11a  1/ π11 π11a/π11 = a 

1 0 (1-Sp1) π10b + (Sp1) π10b = π10b 1/ π10 π10b/π10 = b 

0 1 (Se0) π01c + (1-Se0) π01c = π01c 1/ π01 π01c/π01 = c 

0 0 (1-Sp0) π00d + (Sp0) π00d = π00d 1/ π00 π00d/π00 = d 

Abbreviations: D, disease; EA, assigned exposure; IPSW, inverse probability of selection 

weight; N, number of observations. 

a From Table 6.A3, summed over EM. 

b Product of misclassification adjusted N and IPSW. 
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Table 6.A6. Exposure Weights Using Sensitivity and Specificity. 

D EM EA Observed 

N 

Exposure Weight Misclassification 

Adjusted N 

1 1 1 a’ Se1 (a’ - M1 + Sp1M1) / 

 a’(Se1 + Sp1 - 1) 

(Se1)π11a 

1 1 0 a’ 1 - [Se1 (a’ - M1 + Sp1M1) /  

a’(Se1 + Sp1 - 1)] 

(1-Sp1) π10b 

1 0 1 b’ Sp1(b’ - M1 + Se1M1) /  

b’(Se1 + Sp1 - 1) 

(1-Se1) π11a 

1 0 0 b’ 1 - [Sp1(b’ - M1 + Se1M1) /  

b’(Se1 + Sp1 - 1)] 

(Sp1) π10b 

0 1 1 c’ Se0 (c’ - M0 + Sp0M0) /  

c’(Se0 + Sp0 - 1) 

(Se0) π01c 

0 1 0 c’ 1 - [Se0 (c’ - M0 + Sp0M0) /  

c’(Se0 + Sp0 - 1)] 

(1-Sp0) π00d 

0 0 1 d’ Sp0(d’ - M0 + Se0M0) /  

d’(Se0 + Sp0 - 1) 

(1-Se0) π01c 

0 0 0 d’ 1 - [Sp0(d’ - M0 + Se0M0) /  

d’(Se0 + Sp0 - 1)] 

(Sp0) π00d 

Abbreviations: D, disease; EA, assigned exposure; EM, misclassified exposure; N, 

number of observations; Sei, sensitivity; Spi, specificity. 
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APPENDIX B 

Additional Results 

 

Table 6.B1. Associations Between Prepregnancy Underweight and Overweight and Cleft 

Lip With or Without Cleft Palate, Adjusting for Different Combinations of Biases, 

National Birth Defects Prevention Study, 1997-2007. 

 Simple 

Analysisa 

Probabilistic Analysis 

(Bias Only)b 

Probabilistic Analysis 

(Bias + Random Error)b,c 

Bias Adjustment ORd Median 

ORd 

95% SI Median 

ORd 

95% SI + 

Error 

Underweight      

   Unadjustede    1.32 1.07, 1.62 

   Confounding onlye,f    1.32 1.07, 1.62 

   Selection bias only      

      Selection 1 1.06 1.06 0.98, 1.15 1.06 0.85, 1.34 

      Selection 2 1.07 1.07 1.00, 1.17 1.07 0.86, 1.35 

   Misclassification 

onlyg 

     

      Nondifferential 1.15 1.21 1.06, 1.36 1.21 0.95, 1.52 

      Differential 1 1.11 1.17 1.04, 1.33 1.17 0.93, 1.48 

      Differential 2 1.19 1.24 1.09, 1.40 1.24 0.98, 1.97 

   Multiple biasesh      

      Selection 1      
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         Nondifferential 1.01 1.06 0.92, 1.20 1.05 0.82, 1.34 

         Differential 1 0.98 1.03 0.90, 1.17 1.02 0.80, 1.30 

         Differential 2 1.05 1.09 0.95, 1.25 1.08 0.84, 1.38 

      Selection 2      

         Nondifferential 1.02 1.07 0.93, 1.21 1.06 0.83, 1.35 

         Differential 1 0.99 1.04 0.90, 1.18 1.03 0.81, 1.31 

         Differential 2 1.06 1.10 0.96, 1.25 1.09 0.85, 1.39 

Overweight      

   Unadjustede    0.99 0.87, 1.13 

   Confounding onlye,f    1.01 0.89, 1.15 

   Selection bias      

      Selection 1 0.89 0.92 0.85, 0.99 0.92 0.79, 1.06 

      Selection 2 0.90 0.92 0.85, 0.99 0.92 0.79, 1.07 

   Misclassification 

onlyg 

     

      Nondifferential 0.91 0.99 0.88, 1.10 0.99 0.83, 1.18 

      Differential 1 0.88 0.95 0.85, 1.06 0.95 0.80, 1.13 

      Differential 2 0.95 1.03 0.92, 1.15 1.03 0.87, 1.23 

   Multiple biasesh      

      Selection 1      

         Nondifferential 0.87 0.96 0.84, 1.08 0.96 0.80, 1.14 

         Differential 1 0.84 0.92 0.81, 1.03 0.92 0.77, 1.10 

         Differential 2 0.91 1.00 0.88, 1.13 1.00 0.84, 1.19 
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      Selection 2      

         Nondifferential 0.88 0.96 0.85, 1.08 0.96 0.80, 1.15 

         Differential 1 0.84 0.92 0.81, 1.03 0.92 0.77, 1.10 

         Differential 2 0.91 1.00 0.88, 1.13 1.00 0.84, 1.28 

Abbreviations: OR, odds ratio; SI, simulation interval. 

a Single values of bias parameters chosen for the analysis. 

b Triangular distributions of bias parameters sampled over 1,000 iterations. 

c Random error incorporated into the simulation interval. 

d Underweight (body mass index <18.5 kg/m2) or overweight (body mass index 25.0-29.9 

kg/m2) versus normal weight (body mass index 18.5-24.9 kg/m2). 

e Point estimate and 95% confidence interval from conventional logistic regression 

analysis. 

f Adjusted for maternal race/ethnicity. 

g Adjusted for exposure misclassification and missing exposure data.  

h Adjusted for exposure misclassification, missing exposure data, selection bias, and 

confounding by maternal race/ethnicity. 
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Table 6.B2. Associations Between Prepregnancy Underweight and Overweight and Cleft 

Palate, Adjusting for Different Combinations of Biases, National Birth Defects 

Prevention Study, 1997-2007. 

 Simple 

Analysisa 

Probabilistic Analysis 

(Bias Only)b 

Probabilistic Analysis 

(Bias + Random Error)b,c 

Bias Adjustment ORd Median 

ORd 

95% SI Median 

ORd 

95% SI + 

Error 

Underweight      

   Unadjustede    1.18 0.88, 1.59 

   Confounding onlye,f    1.18 0.88, 1.58 

   Selection bias only      

      Selection 1 0.95 0.96 0.89, 1.04 0.96 0.71, 1.31 

      Selection 2 0.96 0.97 0.89, 1.05 0.97 0.72, 1.32 

   Misclassification 

onlyg 

     

      Nondifferential 1.06 1.11 0.98, 1.26 1.12 0.81, 1.52 

      Differential 1 1.02 1.08 0.95, 1.22 1.08 0.79, 1.48 

      Differential 2 1.10 1.15 1.01, 1.30 1.15 0.84, 1.58 

   Multiple biasesh      

      Selection 1      

         Nondifferential 0.93 0.97 0.85, 1.11 0.96 0.70, 1.31 

         Differential 1 0.90 0.94 0.82, 1.08 0.93 0.68, 1.27 

         Differential 2 0.97 1.00 0.87, 1.15 1.00 0.72, 1.36 
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      Selection 2      

         Nondifferential 0.94 0.98 0.85, 1.12 0.97 0.70, 1.32 

         Differential 1 0.90 0.95 0.82, 1.09 0.94 0.68, 1.28 

         Differential 2 0.97 1.01 0.88, 1.16 1.00 0.73, 1.37 

Overweight      

   Unadjustede    1.07 0.90, 1.27 

   Confounding onlye,f    1.11 0.93, 1.31 

   Selection bias      

      Selection 1 0.96 0.99 0.92, 1.07 0.99 0.82, 1.20 

      Selection 2 0.97 0.99 0.92, 1.07 1.00 0.82, 1.20 

   Misclassification 

onlyg 

     

      Nondifferential 0.95 1.03 0.92, 1.15 1.03 0.83, 1.26 

      Differential 1 0.91 0.99 0.88, 1.10 0.99 0.80, 1.21 

      Differential 2 0.99 1.07 0.96, 1.20 1.07 0.86, 1.31 

   Multiple biasesh      

      Selection 1      

         Nondifferential 0.93 1.02 0.90, 1.15 1.02 0.83, 1.26 

         Differential 1 0.89 0.98 0.86, 1.11 0.98 0.79, 1.21 

         Differential 2 0.97 1.07 0.94, 1.20 1.06 0.86, 1.31 

      Selection 2      

         Nondifferential 0.93 1.03 0.90, 1.15 1.02 0.83, 1.26 

         Differential 1 0.89 0.98 0.86, 1.11 0.98 0.79, 1.21 
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         Differential 2 0.97 1.07 0.84, 1.20 1.06 0.86, 1.31 

Abbreviations: OR, odds ratio; SI, simulation interval. 

a Single values of bias parameters chosen for the analysis. 

b Triangular distributions of bias parameters sampled over 1,000 iterations. 

c Random error incorporated into the simulation interval. 

d Underweight (body mass index <18.5 kg/m2) or overweight (body mass index 25.0-29.9 

kg/m2) versus normal weight (body mass index 18.5-24.9 kg/m2). 

e Point estimate and 95% confidence interval from conventional logistic regression 

analysis. 

f Adjusted for maternal race/ethnicity. 

g Adjusted for exposure misclassification and missing exposure data.  

h Adjusted for exposure misclassification, missing exposure data, selection bias, and 

confounding by maternal race/ethnicity. 
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ABSTRACT 

Epidemiologic studies have consistently reported associations between prepregnancy 

body mass index (BMI) and neural tube defects such as anencephaly and spina bifida, but 

few have quantitatively addressed the potential roles of exposure misclassification or 

selection bias. The authors used data from the National Birth Defects Prevention Study, 

including 370 mothers of infants with anencephaly (cases), 738 mothers of infants with 

spina bifida (cases) and 6,030 mothers of infants with no major birth defect (controls). 

The authors investigated associations between obesity (BMI ≥30 kg/m2 versus 18.5-24.9 

kg/m2) and anencephaly or spina bifida, simultaneously adjusting for exposure 

misclassification, selection bias, and confounding using probabilistic weighted logistic 

regression. For anencephaly, the authors observed no association with obesity in the 

confounding-adjusted analyses (odds ratio [OR] 1.11, 95% confidence interval [CI] 0.83, 

1.49). Probabilistic adjustment for exposure misclassification, selection bias, and 

confounding did not appreciably change results, given the authors’ assumptions (median 

OR range: 1.05 to 1.11). For spina bifida, the confounding-adjusted estimate (OR 1.62, 

95% CI 1.33, 1.97) was stronger than when adjusting for all 3 biases (median OR range: 

1.26 to 1.46), given their assumptions. It is likely that associations between obesity and 

spina bifida are not as strong as previously reported.   
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INTRODUCTION 

Neural tube defects (NTDs), such as anencephaly and spina bifida, are severe birth 

defects of the brain and spinal cord that occur early in embryonic development (1). 

Anencephaly is characterized by absence of the brain, skull, and scalp and is a defect 

incompatible with life (2). Spina bifida results from herniation of meninges, with or 

without the spinal cord, through an incompletely formed spine (3). In the United States, 

over 90% of infants with spina bifida survive the first year of life (4), but affected 

individuals often have lifelong mobility impairment and other neurologic problems (5). 

Periconceptional folic acid supplementation has been shown to prevent NTDs in 

randomized controlled trials and observational studies (6-10). However, folic acid does 

not appear to prevent all cases of NTDs, and investigators have continued to search for 

other risk factors for NTDs. 

 

Over a dozen studies have identified prepregnancy body mass index (BMI) as a potential 

risk factor for NTDs, with obese mothers almost twice as likely to have a pregnancy 

affected by an NTD than mothers with normal weight (11-15). Several biologic 

mechanisms have been proposed to explain this association, including pathways 

involving nutrient intake, diet quality, and glycemic control (16). A non-biologic 

mechanism has also been proposed: that exposure misclassification and selection bias, 

typically not quantitatively addressed in analyses, could be driving the association (17-

19). 
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Height and weight (used to calculate BMI) are not always accurately reported by women 

(20). American women who are overweight or obese sometimes under-report BMI, and 

women who are underweight tend to over-report BMI (21). When BMI is categorized for 

analysis, as opposed to using the continuous variable, the expected direction of bias from 

misclassification is unpredictable and could be towards or away from the null (22, 23). 

Self-reported BMI has been used in the analysis of most studies of prepregnancy BMI 

and NTDs (13, 17, 24-32), making it likely that some degree of bias from 

misclassification is present in these studies.  

 

Selection bias could arise if BMI and NTDs are predictors of case ascertainment 

(selection into the study) and case ascertainment is incomplete (19). The mechanism by 

which selection bias is hypothesized to occur in studies of BMI and NTDs is illustrated 

by the directed acyclic graph in Figure 7.1. Under this mechanism of selection bias, 

normal weight case mothers are more likely than obese case mothers to learn prenatally 

that they are carrying a fetus with an NTD. Studies of other types of birth defects have 

shown that visualization of the fetal anatomy, and thus ultrasound prenatal diagnosis of a 

birth defect, is more difficult in obese mothers than normal weight mothers (33-37). Once 

a prenatal diagnosis is made of a severe birth defect such as anencephaly or spina bifida, 

termination of pregnancy is common (38). Ascertainment of cases among terminations of 

pregnancy can be difficult because they are not typically captured in vital records and 

often occur in outpatient settings. The net result of this process is that normal weight case 

mothers (more likely to have had a prenatal diagnosis of an NTD and a subsequent 

termination of pregnancy) are less likely to be included in studies than obese case 
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mothers (more likely to have carried the pregnancy to term and only learned of the NTD 

after the infant’s birth). This could produce a spurious association between obesity and 

NTDs.  

 

Although exposure misclassification and selection bias are hypothesized to be important 

sources of bias in studies of BMI and NTDs, studies to date have mainly focused on bias 

from confounding. No study to date has incorporated adjustment for both exposure 

misclassification and selection bias into the statistical analysis. The aim of our study was 

to perform a probabilistic, quantitative assessment of the potential impacts of exposure 

misclassification, selection bias, and confounding on associations between prepregnancy 

BMI and anencephaly and spina bifida.  

 

MATERIALS AND METHODS 

Population 

We used data from the National Birth Defects Prevention Study (NBDPS), an ongoing, 

population-based, case-control study of genetic and environmental risk factors for major 

structural birth defects (39, 40). Potentially eligible cases were identified from birth 

defect surveillance systems in Arkansas, California, Georgia, Iowa, Massachusetts, New 

Jersey, New York, North Carolina, Texas, and Utah. Data abstracted from medical 

records were reviewed by clinical geneticists to determine eligibility and to further 

classify the case. Cases with known or suspected chromosomal abnormalities or single-

gene disorders were excluded. Eight of the 10 study sites included live births, stillbirths 

(fetal deaths ≥20 gestational weeks), and terminations of pregnancy (any gestational age). 
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New Jersey included live births and stillbirths only, and Massachusetts included live 

births only. Live births with no major birth defects were selected as controls from birth 

certificates or hospital records in the same catchment area and during the same time 

period as cases. Between 6 weeks and 2 years following delivery, mothers were contacted 

by telephone to complete an interview including questions on sociodemographics, 

reproductive history, and nutrition, medication use, chronic and acute illnesses, and 

occupation during pregnancy. All participating sites obtained institutional review board 

approval.  

 

For the present study, we included control mothers, anencephaly case mothers, and spina 

bifida case mothers who completed the interview and who had a delivery date on or after 

October 1, 1997 and an estimated date of delivery on or before December 31, 2007. 

Unless otherwise indicated, we excluded cases and controls from study sites and years 

during which NTD cases among terminations of pregnancy were not eligible for 

inclusion: Massachusetts and New Jersey (all years) and New York (1997-1999).   

 

Exposure Measurement 

Data on height and prepregnancy weight were obtained in answer to the questions “What 

is your height without shoes?” and “How much did you weigh before your pregnancy 

with (baby’s name)?”. Prepregnancy BMI was calculated as self-reported weight in 

kilograms divided by squared self-reported height in meters and categorized into four 

standard levels: underweight (<18.5 kg/m2), normal weight (18.5-24.9 kg/m2), 
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overweight (25.0-29.9, kg/m2), and obese (≥30 kg/m2). In all analyses, normal weight 

mothers served as the reference group. 

 

Conventional Analysis 

We used logistic regression to estimate crude and confounding-adjusted odds ratios (OR) 

and 95% confidence intervals (CI) for associations between prepregnancy BMI and 

anencephaly and spina bifida. We initially identified 5 potential confounders: maternal 

race/ethnicity, household income, maternal age at delivery, maternal education, and 

periconceptional folic acid supplementation. In preliminary analyses, we found that 

adjustment for these variables had little effect on results. For simplicity, we included only 

maternal race/ethnicity (non-Hispanic white, non-Hispanic black, Hispanic, other) and 

household income (<$50,000, ≥$50,000) in the multivariable regression analyses.  

Because observations with missing data are dropped from regression models, we 

excluded mothers with missing data on these 2 potential confounders: 529 control 

mothers (8%), 40 anencephaly case mothers (10%), and 60 spina bifida case mothers 

(8%).  

 

If underascertainment of cases among terminations of pregnancy was producing selection 

bias in the way we predicted, we would expect to see stronger associations in study sites 

excluding terminations than those including them. We estimated associations between 

BMI categories and NTDs in study sites including and excluding terminations to 

investigate whether or not the magnitude of the associations differed. 
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Analysis of Exposure Misclassification 

To adjust for exposure misclassification, we used a method based on weighted logistic 

regression (41). Four copies of each participant were used in the analysis, with each copy 

assigned one of the 4 possible true BMI categories (underweight, normal weight, 

overweight, obese). Predictive values for exposure classification were estimated from 

available data (described further below). These values represent the probability that each 

assigned BMI category represented the truth, given the category self-reported by the 

participant. When used as weights in the weighted logistic regression, the predictive 

values re-distribute participants into BMI categories in proportion to the probability that 

those BMI categories were the “truth”. The predictive values sum to 1 across the 4 

assigned BMI categories so that each study participant is effectively entered into the 

analysis only once, even though 4 copies of the participant exist. Assigned BMI category 

is used as the exposure variable in the logistic regression model instead of the BMI 

category reported by the participant. 

 

We used data from the National Health and Nutrition Examination Survey (NHANES) to 

estimate predictive values for BMI classification. In NHANES, participants self-reported 

their weight and height during an initial interview. Within the next 2 weeks, they 

underwent a physical examination during which their height and weight were measured. 

The present validation data included the 7,177 non-pregnant females aged 16-49 who had 

both their height and weight measured during the NHANES cycles between 1999 and 

2008 and had no missing data on race/ethnicity or household income. 
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In NHANES, some participants had missing self-reported BMI but had measured BMI 

available. In the same way as we used predictive values to adjust for misclassification, we 

calculated predictive values for exposure classification from participants with missing 

self-reported BMI to adjust for missing data on BMI. 

 

Predictive values were estimated from NHANES data conditional on potential 

confounders race/ethnicity and household income. Race/ethnicity was defined in 

NHANES using the same 4 categories as NBDPS. Because the household income 

cutpoints used by NHANES differed from those used by NBDPS, we dichotomized 

household income as <$55,000 and ≥$55,000 in the NHANES dataset. 

 

Three exposure misclassification types were considered in the analysis: nondifferential 

misclassification (cases and controls have equivalent classification), differential 

misclassification in which cases had better classification than controls (referred in this 

manuscript as “differential 1”), and differential misclassification in which controls had 

better classification than cases (referred in this manuscript as “differential 2”). 

  

To create a probabilistic analysis (i.e., assigning probability distributions to the predictive 

values instead of using fixed values), we constructed triangular distributions around each 

predictive value. For all misclassification types, all participants were initially assigned 

the same triangular distribution: mode of the distribution equal to the predictive values 

estimated from NHANES, and minimum and maximum of the distribution 0.05 below or 

above the mode. For nondifferential misclassification, these were the triangular 
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distributions used in the analysis. These distributions were shifted upward by 0.02 for 

cases (differential 1) or downward by 0.02 for cases (differential 2).  Further details are 

provided in Appendix B. 

 

At each of 1,000 iterations of the simulation, we selected a value from each predictive 

value distribution and used it as the weight in the analysis. To incorporate random error 

into the study results, we used a previously described method involving addition of 

random error to simulation results (42). We drew a random variable from a standard 

normal distribution, multiplied it with the crude standard error, added this value to the 

beta-estimate from the bias-adjusted regression model, and exponentiated it to produce 

the random error-added OR. The results of the analysis were summarized as the median 

random error-added OR from simulation and 95% random error-added simulation 

intervals (SI+RE), the 2.5th and 97.5th percentiles of the random error-added OR 

distribution from the simulation. For all simulation results, the abbreviation “OR” means 

the random error-added OR. 

 

Analysis of Selection Bias 

We used inverse probability of selection weights to adjust for selection bias (43). In this 

method, the probability of selection (case ascertainment) is estimated, the inverse is 

taken, and this value is used as the weight in a weighted logistic regression. The weights 

are used to make copies of under-represented study participants (number of copies equal 

to the weight) so that in the analysis, the “pseudo-population” created by weighting 

approximates the population that would have existed in the absence of selection bias.  
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The extent to which cases among stillbirths and terminations of pregnancy are 

underascertained in birth defect surveillance programs is unknown, and there were few 

estimates to guide our estimation of selection probabilities. We hypothesized 2 types of 

incomplete case ascertainment. In the first (referred to in this manuscript as “selection 

1”), we assumed the proportion of pregnancies ending in stillbirth or termination of 

pregnancy differed between study sites, possibly due to differences in sociodemographic 

characteristics of the population or state laws governing termination of pregnancy. In the 

second (referred to in this manuscript as “selection 2”), we assumed that these 

proportions were constant across study sites, and any differences between sites were due 

to differences in case ascertainment.  

 

In the analysis of potential selection bias, we made the following assumptions: 

• Case ascertainment among live births is complete. 

• Case ascertainment among stillbirths and terminations is incomplete at every 

study site. 

• There is better case ascertainment among stillbirths than terminations of 

pregnancy. 

• Case ascertainment does not vary by BMI. 

• The likelihood a mother opts for termination of pregnancy does not vary by BMI. 

 

Because we assumed that ascertainment of livebirths was complete, the number of 

livebirths observed at each study site represents the true number of liveborn cases and 
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controls; however, for cases, the number of stillbirths and terminations of pregnancy are 

underestimated. Instead of estimating selection probabilities, we calculated the ratios of 

stillbirths to livebirths (SB:LB) and of terminations of pregnancy to livebirths (TOP:LB) 

for cases at each study site (Appendix Table 7.A1). 

 

To create a probabilistic analysis, we constructed triangular distributions for the SB:LB 

and TOP:LB ratios; because these are ratio measures, the triangular distributions were 

based on the ln(SB:LB) and ln(TOP:LB) values, which were then transformed back to 

their original values prior to analysis. Detailed descriptions of creation of the triangular 

distributions are provided in Appendix B. Briefly, for selection 1, ln(SB:LB) and 

ln(TOP:LB) for each site were assigned to be the minimum of the triangular distributions 

(according to our assumption that all sites underascertained these values) and the mode 

and maximum of the distributions were assigned based on the prevalence of stillbirths 

and terminations of pregnancy for anencephaly or spina bifida, as described in Appendix 

B. Each site therefore had a different distribution. For selection 2, 1 triangular 

distribution for SB:LB and 1 for TOP:LB were created for the whole dataset. The 

minimum of the distributions was assigned to be the largest values of the site-specific 

ln(SB:LB) and ln(TOP:LB) values. The mode and maximum of the distributions were 

created as described in Appendix B. For simplicity, we assumed that these ratios did not 

vary by race/ethnicity or income (confounders). 

 

The weight to be used in the weighted logistic regression was calculated as follows: 

wSB  = exp (ln(SB:LB) drawn from distribution) / observed SB:LB value 
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wTOP  = exp (ln(TOP:LB) drawn from distribution) / observed TOP:LB value 

 

A weight of 2 for TOP:LB, for example, would indicate that the ratio of terminations to 

livebirths was assumed to be twice as high as observed in the study. In the analysis, all 

pregnancies ending in termination would be assigned a weight of 2 and the livebirths a 

weight of 1 (LB:LB ratio = 1) The weights calculated here are substitutes for the inverse 

probability of selection weights and function in the same manner.  

 

In the same way as for the analysis of misclassification weighted logistic regression, 

1,000 simulations were conducted and the results were summarized as median OR and 

95% SI+RE, with random error incorporated as described above. 

 

Multiple Bias Analysis 

At each of the 1,000 simulations, the weights for exposure misclassification and selection 

bias were multiplied to obtain an overall weight for the multiple bias analysis 

(Dissertation Chapter 6). We used this weight in a weighted multivariable logistic 

regression to simultaneously adjust for exposure misclassification, selection bias, and 

confounding. We adjusted for confounding by controlling for maternal race/ethnicity and 

household income in the regression model. Results were summarized as median OR and 

95% SI+RE; however, the standard error used to incorporate random error was estimated 

from a confounding-adjusted (instead of unadjusted) conventional logistic regression 

model. 
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RESULTS 

Characteristics of study participants are shown in Table 7.1. Case mothers were more 

often of Hispanic race/ethnicity than control mothers. Case mothers were slightly more 

likely to have a household income <$50,000 than control mothers.  

 

Table 7.2 shows associations between BMI and NTDs in study sites including and 

excluding terminations of pregnancy. For both anencephaly and spina bifida, for every 

BMI category, ORs were higher in the sites excluding terminations than sites including 

these cases, adjusting for potential confounding by maternal race/ethnicity and household 

income. 

 

Bias Analyses: Anencephaly 

Crude and confounding-adjusted associations were similar (Table 7.3). After adjusting 

for only confounding, there was a weak association between anencephaly and 

underweight (OR 1.26, 95% CI 0.80, 1.98), but not with overweight (OR 0.95, 95% CI 

0.72, 1.25) or obesity (OR 1.11, 95% CI 0.83, 1.49).  

 

Adjustment for selection bias, given our assumptions, did not appreciably change the 

magnitude of the associations compared to crude or confounding-adjusted estimates. The 

greatest change was a strengthening of the association with underweight (median OR 

range: 1.35-1.39, compared to confounding-adjusted OR 1.26) There was little effect of 

adjusting for exposure misclassification under any of the 3 assumptions, except for a 
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small attenuation of the association with underweight (median OR range: 1.07-1.12, 

compared to confounding-adjusted OR 1.26).  

 

Simultaneous adjustment for three biases had little effect on results, with associations 

between overweight and obesity changing only slightly. The greatest effect was a mild 

attenuation of the association with underweight, with multiple bias-adjusted median ORs 

ranging from 1.14 to 1.21, compared to a crude OR of 1.28. 

 

Bias Analyses: Spina Bifida 

In crude and confounding-adjusted analyses (Table 7.4), dose-response associations were 

observed, with higher BMI categories associated with higher likelihood of having a child 

with spina bifida (underweight OR 0.73, 95% CI 0.47, 1.12; overweight OR 1.16, 95% 

CI 0.95, 1.42; obese OR 1.62, 95% CI 1.33, 1.97). 

 

Associations were mostly unchanged after adjustment for only selection bias when 

assuming the prevalence of stillbirths and terminations differed between sites (selection 

1). When assuming the prevalence was the same (selection 2), the dose-response pattern 

observed in the crude and confounding-adjusted analyses became less obvious.  

 

Adjustment for misclassification had little effect, except for attenuating the association 

with underweight (median OR range: 0.86 to 0.94, compared to confounding-adjusted 

OR 0.73). 
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After adjustment for multiple biases, associations were weaker for the obese category 

(multiple bias-adjusted median OR range: 1.30-1.48, compared to confounding-adjusted 

OR 1.62) and the underweight category (multiple bias-adjusted median OR range: 0.79-

1.03, compared to confounding-adjusted OR 0.73).  

 

DISCUSSION 

Given the assumptions in our analyses, we found that exposure misclassification, 

selection bias, and confounding had little effect on associations between obesity and 

anencephaly, but might account for some of the observed association with spina bifida. 

However, the analysis was complicated by lack of evidence available to guide our 

assumptions about the potential sources, magnitudes, and directions of bias in the study. 

 

Crude and confounding-adjusted results from NBDPS are fairly similar to the results of 

other studies of BMI and NTDs, including previously published estimates using NBDPS 

data from 1997-2002 (17, 44, 45). Many of these studies were conducted in the United 

States, used case-control designs, likely had underascertainment of cases among 

terminations of pregnancy, and calculated BMI from self-reported height and 

prepregnancy weight (13, 24, 25, 27, 28, 30, 31). It is possible that similar magnitudes 

and directions of bias from exposure misclassification and selection bias could be 

occurring in these studies as occurred in NBDPS, and results of our multiple bias analysis 

could be generalizable to other studies.  

 



232 
 

Our analysis of sites including and excluding selection bias produced results consistent 

with what we would expect if selection bias resulted in overestimation of the OR; 

however, there could be other differences between these 2 types of sites that explain why 

the magnitude of the association tended to be greater in the sites excluding terminations. 

There is evidence to support an association between prepregnancy BMI and NTDs even 

in the absence of selection bias: a study conducted between 1968 and 1980, a period 

during which prenatal diagnosis of NTDs was uncommon, found that obese mothers 

(BMI ≥ 29 kg/m2) were twice as likely to have an affected child as mothers with normal 

BMI (26, 46). During this time period, selection bias acting through our hypothesized 

mechanism would not have occurred.  

 

Under our 2 assumptions about selection bias, we found that each assumption produced 

different results for spina bifida. In one, the dose-response was preserved and in the 

other, it was less apparent. Although no information was available to determine which 

assumption was more accurate, under both assumptions an association between obesity 

and spina bifida remained. The small proportion of cases of spina bifida in our dataset 

ending in termination (11%, assumed to be an underestimate) suggests that even if obese 

mothers are less likely to have a termination of pregnancy, the prevalence of terminations 

might be too low to create substantial selection bias. 

 

We made 3 assumptions about the direction of misclassification in the study because we 

did not know which was the most appropriate. An incorrect assumption about 

nondifferential or differential misclassification could produce biased results when 



233 
 

adjusting for misclassification (Dissertation Chapter 5). Validation data for the accuracy 

of self-reported BMI were not available from NBDPS, and we had to assume that 

NHANES was an appropriate validation sample. Because the validation data from 

NHANES were for current and not prepregnancy BMI, the validity of this assumption is 

unclear. To our knowledge, no study has reported the accuracy of self-reported 

prepregnancy BMI categories, in particular none has reported separate estimates for 

anencephaly case mothers, spina bifida case mothers, and control mothers. However, 

results of the analyses under the 3 assumptions produced similar results, given our 

assumptions about the triangular distributions.  

 

Other investigators might disagree with some of the assumptions we have made, or might 

believe that a bias we did not include in the analysis is too important to ignore. Bias 

analysis allows investigators the opportunity to present quantitative assessments of the 

potential effects of bias on study results given their assumptions about sources and 

magnitudes of bias in the study. However, to resolve differences and determine which 

assumptions are the most accurate, studies reporting data facilitating bias analysis, such 

as validation studies or investigations of potential for selection bias, will be particularly 

important. 

 

Other important considerations that could affect our results were not addressed in this 

analysis. These include misclassification of outcome or covariates, other types of 

selection bias (exclusion of mothers with missing data on race/ethnicity and household 

income, differences in characteristics of mothers participating and not participating in the 
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study (47), other maternal characteristics associated with pregnancy outcome (48)), 

residual confounding from not conditioning selection weights on potential confounders, 

existence of unmeasured confounders, effect measure modification or interaction, or 

potential etiologic heterogeneity between spina bifida subtypes (49), among others. In 

addition, BMI is a complex exposure and likely only serves as a proxy for other 

potentially causal entities such as adiposity, diet, physical activity, genetics, or 

combinations of these and other variables (50, 51).  

 

The main challenge in our multiple bias analysis was the lack of evidence available to 

guide our assumptions about how exposure misclassification or selection bias occurred in 

the study and our inability to determine if our assumptions approximated the truth. The 

results of the multiple bias analysis therefore might not improve on the confounding-

adjusted estimates. However, the results suggest that an overestimation of the association 

between obesity and spina bifida is plausible, given our assumptions, which are not 

unrealistic. 
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Table 7.1. Characteristics of Participants, National Birth Defects Prevention Study, 1997-

2007. 

 Controls 

N = 6,030 

Anencephaly 

N = 370 

Spina Bifida 

N = 738 

 n (%)a n (%)a n (%)a 

Pregnancy outcome    

   Live birth 6,030 (100) 102 (28) 636 (86) 

   Stillbirth  94 (25) 21 (3) 

   Termination of pregnancy  174 (47)b 81 (11)b 

Case type    

   Isolated defect  335 (91) 651 (88) 

   ≥2 major birth defects  35 (10) 87 (12) 

Study site    

   Arkansas 972 (16) 51 (14) 101 (14) 

   California 894 (15) 92 (25) 145 (20) 

   Georgia 787 (13) 45 (12) 105 (14) 

   Iowa 843 (14) 42 (11) 118 (16) 

   New York 519 (9) 11 (3) 40 (5) 

   North Carolina 533 (9) 37 (10) 49 (7) 

   Texas 884 (15) 62 (17) 105 (14) 

   Utah 598 (10) 30 (8) 75 (10) 

Prepregnancy BMI    

   Underweight 309 (5) 23 (6) 24 (3) 
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   Normal weight 3,037 (50) 177 (48) 315 (43) 

   Overweight 1,400 (23) 78 (21) 171 (23) 

   Obese 1,077 (18) 69 (19) 183 (25) 

   Missing 207 (3) 23 (6) 45 (6) 

Household income    

   <$50,000 4,264 (71) 272 (74) 562 (76) 

   ≥$50,000 1,766 (29) 98 (26) 176 (24) 

Maternal race/ethnicity    

   Non-Hispanic white 3,469 (57) 184 (50) 399 (54) 

   Non-Hispanic black 701 (12) 25 (7) 61 (8) 

   Hispanic 1,466 (24) 133 (36) 235 (32) 

   Other 394 (7) 28 (8) 43 (6) 

Age at delivery    

   <20 610 (10) 41 (11) 72 (10) 

   20-24 1,532 (25) 86 (23) 170 (23) 

   25-29 1,760 (29) 115 (31) 250 (34) 

   30-34 1,380 (23) 84 (23) 156 (21) 

   ≥35 748 (12) 44 (12) 90 (12) 

Folic acid supplementation    

   Yes 3,016 (50) 191 (52) 375 (51) 

   No 3,014 (50) 179 (48) 363 (49) 

Abbreviations: BMI, body mass index; n, number of mothers with characteristic; N, total 

number of mothers. 
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a Percentages might not add exactly to 100 because of rounding. 

b n = 1 with unknown outcome categorized as termination of pregnancy for the analyses. 
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Table 7.2. Confounding-Adjusteda Associations Between Prepregnancy Obesity and Anencephaly and Spina Bifida in Study Sites 

Including and Excluding Cases Among Terminations of Pregnancy, National Birth Defects Prevention Study, 1997-2007. 

 Underweight Normal Weight Overweight Obese 

 OR 95% CI OR OR 95% CI OR 95% CI 

Anencephaly        

   All study sites 1.27 0.83, 1.96 1.00 (Referent) 1.02 0.78, 1.32 1.18 0.89, 1.57 

   Sites including TOPb 1.26 0.80, 1.98 1.00 (Referent) 0.95 0.72, 1.25 1.11 0.83, 1.49 

   Sites excluding TOPc 1.60 0.35, 7.24 1.00 (Referent) 1.55 0.62, 3.89 1.34 0.43, 4.19 

Spina bifida        

   All study sites 0.76 0.51, 1.13 1.00 (Referent) 1.23 1.02, 1.48 1.78 1.48, 2.14 

   Sites including TOPb 0.73 0.47, 1.12 1.00 (Referent) 1.16 0.95, 1.42 1.62 1.33, 1.97 

   Sites excluding TOPc 0.93 0.32, 2.65 1.00 (Referent) 1.53 0.92, 2.54 2.84 1.73, 4.68 

Abbreviations: CI, confidence interval; OR, odds ratio; TOP, terminations of pregnancy.  

a Adjusted for maternal race/ethnicity and household income. 

b Arkansas, California, Georgia, Iowa, New York, North Carolina, Texas, Utah. 

c Massachusetts, New Jersey. 
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Table 7.3. Associations Between Prepregnancy Body Mass Index and Anencephaly, Adjusted for Different Combinations of Biases, 

National Birth Defects Prevention Study, 1997-2007. 

 Underweight Normal Weight Overweight Obese 

 OR 95% SIa OR OR 95% SIa OR 95% SIa 

Unadjustedb 1.28 0.82, 2.00 1.00 (Referent) 0.96 0.73, 1.26 1.10 0.83, 1.46 

Confounding onlyb,c 1.26 0.80, 1.98 1.00 (Referent) 0.95 0.72, 1.25 1.11 0.83, 1.49 

Selection bias only        

   Selection 1 1.35 0.86, 2.20 1.00 (Referent) 0.99 0.76, 1.27 1.10 0.81, 1.49 

   Selection 2 1.39 0.90, 2.26 1.00 (Referent) 1.07 0.81, 1.37 1.06 0.78, 1.44 

Misclassification onlyd        

   Nondifferential 1.09 0.66, 1.69 1.00 (Referent) 1.01 0.76, 1.34 1.08 0.81, 1.43 

   Differential 1 1.07 0.64, 1.65 1.00 (Referent) 0.98 0.73, 1.29 1.06 0.80, 1.41 

   Differential 2 1.12 0.68, 1.73 1.00 (Referent) 1.06 0.79, 1.40 1.10 0.83, 1.46 

Multiple biasese        

   Selection 1        
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      Nondifferential 1.16 0.73, 1.82 1.00 (Referent) 1.00 0.77, 1.34 1.09 0.81, 1.48 

      Differential 1 1.14 0.72, 1.77 1.00 (Referent) 0.97 0.74, 1.29 1.07 0.79, 1.45 

      Differential 2 1.19 0.75, 1.86 1.00 (Referent) 1.04 0.80, 1.40 1.11 0.83, 1.51 

   Selection 2        

      Nondifferential 1.18 0.75, 1.85 1.00 (Referent) 1.04 0.79, 1.39 1.07 0.80, 1.46 

      Differential 1 1.16 0.73, 1.81 1.00 (Referent) 1.00 (0.76, 1.34) 1.05 0.78, 1.43 

      Differential 2 1.21 0.76, 1.90 1.00 (Referent) 1.08 (0.82, 1.44) 1.09 0.81, 1.49 

Abbreviations: OR, odds ratio; SI, simulation interval. 

a 95% simulation interval with random error incorporated. 

b 95% confidence interval. 

c Adjusted for maternal race/ethnicity and household income. 

d Adjusted for exposure misclassification and missing data. 

e Adjusted for exposure misclassification, missing data, selection bias, and confounding by maternal race/ethnicity and household 

income. 
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Table 7.4. Associations Between Prepregnancy Body Mass Index and Spina Bifida, Adjusted for Different Combinations of Biases, 

National Birth Defects Prevention Study, 1997-2007. 

 Underweight Normal Weight Overweight Obese 

 OR 95% SIa OR OR 95% SIa OR 95% SIa 

Unadjustedb 0.75 0.49, 1.15 1.00 (Referent) 1.18 0.97, 1.43 1.64 1.35, 1.99 

Confounding onlyb,c 0.73 0.47, 1.12 1.00 (Referent) 1.16 0.95, 1.42 1.62 1.33, 1.97 

Selection bias only        

   Selection 1 0.75 0.50, 1.19 1.00 (Referent) 1.11 0.91, 1.34 1.54 1.26, 1.88 

   Selection 2 0.99 0.65, 1.57 1.00 (Referent) 1.04 0.85, 1.25 1.36 1.10, 1.66 

Misclassification onlyd        

   Nondifferential 0.85 0.52, 1.29 1.00 (Referent) 1.20 0.96, 1.48 1.54 1.27, 1.88 

   Differential 1 0.81 0.50, 1.23 1.00 (Referent) 1.15 0.93, 1.43 1.52 1.25, 1.85 

   Differential 2 0.88 0.54, 1.34 1.00 (Referent) 1.24 1.00, 1.54 1.57 1.29, 1.91 

Multiple biasese        

   Selection 1        
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      Nondifferential 0.84 0.54, 1.31 1.00 (Referent) 1.12 0.91, 1.39 1.44 1.18, 1.79 

      Differential 1 0.81 0.52, 1.26 1.00 (Referent) 1.08 0.88, 1.34 1.41 1.15, 1.75 

      Differential 2 0.88 0.56, 1.37 1.00 (Referent) 1.17 0.95, 1.45 1.46 1.20, 1.82 

   Selection 2        

      Nondifferential 1.03 0.64, 1.59 1.00 (Referent) 1.07 0.86, 1.32 1.29 1.05, 1.60 

      Differential 1 0.99 0.62, 1.54 1.00 (Referent) 1.03 0.83, 1.27 1.26 1.03, 1.57 

      Differential 2 1.06 0.67, 1.65 1.00 (Referent) 1.11 0.90, 1.38 1.31 1.07, 1.63 

Abbreviations: OR, odds ratio; SI, simulation interval. 

a 95% simulation interval with random error incorporated. 

b 95% confidence interval. 

c Adjusted for maternal race/ethnicity and household income. 

d Adjusted for exposure misclassification and missing data. 

e Adjusted for exposure misclassification, missing data, selection bias, and confounding by maternal race/ethnicity and household 

income. 
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Figure 7.1. Directed acyclic graph illustrating assumed relationships between variables in 

a study of prepregnancy body mass index and neural tube defects. Potential sources of 

bias include exposure misclassification (differential, if affected by neural tube defect), 

selection bias (if the analysis is conditioned on selection, a collider), and confounding 

(household income and maternal race/ethnicity). Abbreviations: BMI, body mass index.  
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APPENDIX A 

Selection Bias Parameters 

In this Appendix, we describe how we created parameters to adjust for selection bias. 

 

We suspected there were differences in ascertainment of stillbirths and terminations of 

pregnancy between study sites because of differences in case finding methods used by 

each site. We therefore stratified the cases by outcome and by study site. We assumed 

that at each site ascertainment of cases among livebirths was 100% but ascertainment of 

stillbirths and terminations of pregnancy were <100%.  

 

For each site, we calculated the observed ratio of stillbirths to livebirths (SB:LB) among 

cases and the observed ratio of terminations of pregnancy to livebirths (TOP:LB) among 

cases (Table 7.A1). For example, for anencephaly, the TOP:LB ratio was 1.00 for New 

York and 3.50 for Iowa, suggesting that there were more terminations of pregnancy for 

anencephaly in Iowa than New York or that Iowa had more complete case ascertainment 

than New York among terminations of pregnancy.  

 

We created log-triangular distributions for SB:LB and TOP:LB to use in a probabilistic 

analysis (log-triangular instead of triangular because they are ratio measures). We 

investigated two assumptions about underascertainment in our analysis. First, we 

assumed that the SB:LB and TOP:LB ratios were truly different by study site. This might 

be because of differences in sociodemographics, access to or uptake of prenatal screening 

and prenatal care, or laws governing termination of pregnancy by site. Second, we 
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assumed that SB:LB and TOP:LB ratios were truly the same between study sites and any 

differences were due to differences in ascertainment between sites.  

 

For assumption 1, the minimum of the distributions were set to ln(observed SB:LB) and 

ln(observed TOP:LB), using the study site-specific ratios, because we assumed that the 

observed values were underestimates (i.e., the true value had to be larger than the 

observed values). For assumption 2, we chose the highest values of SB:LB and TOP:LB 

among all the sites. For example, for anencephaly, the minimum of the SB:LB 

distribution was ln(2.00) (largest value was from North Carolina) and the minimum of the 

TOP:LB distribution was ln(3.50) (largest value was from Iowa). For both assumptions, 

the mode of the distributions were set to ln(SB:LB) + 0.25 and ln(TOP:LB) + 0.50 and 

the maximum of the distributions were ln(SB:LB) + 0.50 and ln(TOP:LB) + 1.00 to 

create symmetric distributions.  

 

In the probabilistic analysis, after a value was randomly drawn from the SB:LB or 

TOP:LB log-triangular distribution, it was exponentiated (to undo the log transformation) 

and then divided by the observed SB:LB or TOP:LB ratio. For example, if a value of 

ln(4) was drawn from the anencephaly TOP:LB distribution for Iowa, the weight was 

calculated as 4/3.5  = 1.14. This weight represents that we believe there are 14% more 

cases among TOP than were included in the study. Weights for stillbirths and 

terminations of pregnancy were calculated in this way, and live births were assigned 

weights of 1 for the analysis. 
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Table 7.A1. Ratio of Stillbirths and Terminations of Pregnancy to Livebirths by Study 

Site, National Birth Defects Prevention Study, 1997-2007. 

 Total N LB SB TOP SB:LBa TOP:LBb 

Anencephaly       

   Arkansas 51 15 18 18c 1.20 1.20 

   California 92 28 20 44 0.71 1.57 

   Georgia 45 9 13 23 1.44 2.56 

   Iowa 42 8 6 28 0.75 3.50 

   New York 11 5 1 5 0.20 1.00 

   North Carolina 37 6 12 19 2.00 3.17 

   Texas 62 21 17 24 0.81 1.14 

   Utah 30 10 7 13 0.70 1.30 

   Total 370 102 94 174c 0.92 1.71 

Spina bifida       

   Arkansas 101 85 5 11 0.06 0.13 

   California 145 124 6 15 0.05 0.12 

   Georgia 105 83 5 17c 0.06 0.20 

   Iowa 118 96 1 21 0.01 0.22 

   New York 40 37 0 3 0 0.08 

   North Carolina 49 43 1 5 0.02 0.12 

   Texas 105 95 3 7 0.03 0.07 

   Utah 75 73 0 2 0 0.03 

   Total 738 636 21 81c 0.03 0.13 
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Abbreviations: LB, live birth; N, number of cases; SB, stillbirth; TOP, termination of 

pregnancy. 

a Number of stillbirths for every live birth. 

b Number of terminations of pregnancy for every live birth. 

c n = 1 with missing pregnancy outcome categorized as TOP 
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APPENDIX B 

Triangular Distributions for Misclassification 

In this Appendix we provide hypothetical data to explain, by way of example, the method 

by which triangular distributions were created for predictive values to adjust for exposure 

misclassification. In the analysis, the predictive value distributions were created 

conditional on household income and maternal race/ethnicity. 

 

Table 7.B1 shows a hypothetical classification table with predictive values corresponding 

to different combinations of self-reported and assigned BMI categories. The probabilities 

in each row sum to 1. We assumed that any probability of 0 in the classification table is 

fixed (i.e., is exactly 0 and cannot vary). This allows us to restrict the values in certain 

cells of the table. For example, participants reporting as obese could only be assigned to 

be obese in the analysis, and participants reporting as underweight could only be assigned 

to be underweight or normal weight in the analysis; the sum of the probabilities in these 

restricted categories must sum to 1.  

 

For categories in which only one value was possible (e.g., self-reporting as obese, in our 

example), we fixed the predictive value at 1. For all other categories, we began by 

creating a triangular distribution around the predictive values in the concordant cells (i.e., 

self-reported underweight/assigned underweight, self-reported obese/assigned obese, 

etc.). For the “missing” self-reported BMI category, we began with the self-reported 

missing/assigned obese cell. The triangular distributions were given the predictive value 
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in the classification table as the mode and had maxima and minima +/- 0.05 from the 

mode. 

 

We randomly selected a value from the triangular distribution to be the new predictive 

value for that cell. We then moved to a neighboring cell in the same row to create the 

next triangular distribution. If this cell was the only remaining non-zero cell in the row, 

its value was assigned to be the balance of the probability. For example, in Table 7.B1, 

once a predictive value for the self-reported underweight/assigned underweight cell was 

chosen, the value for the self-reported underweight/assigned normal weight cell had to be 

1 - (predictive value for self-reported underweight/assigned underweight). If there were at 

least 2 more non-zero cells in the row, a triangular distribution was created around one of 

these cells.  

 

To maintain the relationships between cells (e.g., for the self-reported normal weight row, 

there is higher probability of being assigned overweight than underweight), the predictive 

value of the cell was restricted to a certain range. In Table 7.B1, suppose a value of 0.75 

was chosen from the triangular distribution for the self-reported normal weight/assigned 

normal weight cell. The remaining probability for the row is 0.25. The assigned 

overweight cell should have most of the probability (0.12/0.25 = 48%), the underweight 

next (0.08/0.25 = 32%), and obese the least (0.05/0.25 = 20%). The triangular distribution 

for the assigned overweight cell was created with a mode of 0.48, and minima and 

maxima +/- 0.05 of the mode. Once a value was drawn, it was transformed back to 

predictive values by multiplying by the remaining probability for the row (0.25, in this 
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example). Predictive values were created for the remainder of the row in the same 

manner, either fixing values when there was only one non-zero cell remaining, or 

creating triangular distributions restricted to the balance of the probability remaining 

when there was more than one non-zero cell.   
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Table 7.B1. Hypothetical Data Showing an Example of a Classification Table for Body 

Mass Index Categories. 

 Assigned BMI Category 

Self-Reported BMI Category Underweight Normal Weight Overweight Obese 

Underweight 0.80 0.20 0 0 

Normal weight 0.08 0.75 0.12 0.05 

Overweight 0 0.01 0.89 0.10 

Obese 0 0 0 1 

Missing 0.10 0.20 0.30 0.40 

Abbreviation: BMI, body mass index. 
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CHAPTER 8 

Discussion and Conclusions 

 

SUMMARY OF STUDIES 

In this dissertation, we investigated the potential contributions of exposure 

misclassification, selection bias, and confounding to results of a case-control study of 

prepregnancy body mass index (BMI) and two types of neural tube defects (NTDs), 

anencephaly and spina bifida. We additionally conducted several studies to better 

understand the potential for these types of bias to occur in the study and to demonstrate 

how quantitative analyses could be used to investigate the effects of these biases on study 

results. 

 

Reviewing the literature (Chapter 2), we found that epidemiologic studies conducted 

during the past 20 years fairly consistently reported associations between prepregnancy 

BMI and NTDs, with stronger associations observed between obesity and spina bifida 

than between obesity and anencephaly. Adjustment for potential confounders in these 

studies had no appreciable effect on results, and one study incorporating adjustment for 

selection bias using a simple bias analysis found little effect of this bias on the magnitude 

of the association (1). No study investigated the potential effects of exposure 

misclassification and none provided an analysis simultaneously incorporating multiple 

biases to determine the combined effects of these biases.  
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In studies of prepregnancy BMI and NTDs, selection bias is thought to arise because of 

differential prenatal diagnosis and subsequent pregnancy termination according to BMI. 

To better understand if this bias was occurring and if so, to what extent, we first 

investigated the frequency of termination of pregnancy following prenatal diagnosis of 

NTDs (Chapter 3). Reviewing the published literature, we found that after prenatal 

diagnosis of anencephaly, 86% of pregnancies ended in termination; for spina bifida, the 

frequency was 64%. There was limited information available on factors associated with 

prenatal diagnosis, but we found that termination was more common in Europe than in 

North America, for more severe defects, and when the prenatal diagnosis was made 

before 24 gestational weeks. Although termination of pregnancy following prenatal 

diagnosis was common for NTDs, there was substantial geographic variability in its 

occurrence, the reasons for which were not clear from information available in the 

literature. 

 

In a second study to better understand the potential mechanism for selection bias, we 

used data from the National Birth Defects Prevention Study (NBDPS) to identify factors 

associated with prenatal diagnosis (prenatal diagnosis vs. postnatal diagnosis) and timing 

of prenatal diagnosis (<24 vs. ≥24 gestational weeks) of spina bifida (Chapter 4). Prenatal 

diagnosis of spina bifida was more likely among mothers who reported having maternal 

alpha fetoprotein screening during pregnancy than among mothers who reported no 

screening, and among mothers reporting folic acid supplementation periconceptionally 

than among mothers not taking supplements periconceptionally or not at all. 

Socioeconomic status was also associated with prenatal diagnosis, with mothers without a 



260 
 

high school education less likely to report a prenatal diagnosis than mothers with at least 

a high school education; prenatal diagnosis was also less common among mothers who 

reported a household income <$50,000 than among mothers with a higher household 

income. Early prenatal diagnosis was associated with the same variables, in the same 

direction, and with similar magnitudes of association. The association between 

prepregnancy BMI and prenatal diagnosis was a specific interest because of its 

hypothesized role in selection bias in studies of prepregnancy BMI and NTDs. In our 

analyses, underweight women were more likely than normal weight, overweight, and 

obese mothers to have a prenatal diagnosis and an early prenatal diagnosis. For normal 

weight, overweight, and obese mothers, increasing BMI did not correspond with 

decreasing likelihood of prenatal diagnosis or early prenatal diagnosis, as had been 

observed in studies of other types of birth defects (2, 3). From this analysis, we concluded 

that selection bias operating through differential likelihood of prenatal diagnosis by BMI 

might be of a smaller magnitude than hypothesized based on results from studies of other 

types of birth defects. 

 

In Chapter 5, we investigated how making an incorrect assumption about nondifferential 

or differential misclassification could affect the results of a bias analysis. Using 

simulations, we showed that when making an inaccurate assumption, the odds ratio 

tended to be less biased when misclassification was truly nondifferential than when 

misclassification was truly differential.  
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We then proposed a method to simultaneously adjust for exposure misclassification, 

selection bias, and confounding using weighted logistic regression (Chapter 6), an 

approach based on existing methods that use weights to rebalance the joint distribution of 

exposure and disease to what the distribution would have been in the absence of bias. We 

showed algebraically that when weights are estimated correctly (i.e., the true values of 

the weights are known) this method exactly re-creates the odds ratio from the source 

population (the unbiased odds ratio) from a dataset with bias present.  

 

We used information from Chapters 2-6 to adjust for multiple biases in a study of 

prepregnancy obesity and anencephaly and spina bifida (Chapter 7). Given our 

assumptions, we found little effect of bias adjustment on the association between obesity 

and anencephaly, with the crude and multiple bias-adjusted odds ratios similar in 

magnitude (odds ratio approximately 1.1). The multiple bias-adjusted association 

between obesity and spina bifida was attenuated compared to the crude or confounding-

adjusted associations, but not null, given our assumptions (odds ratio reduced from 

approximately 1.6 to 1.3). Although an association between obesity and spina bifida 

persisted after adjustment for multiple biases, this association could indicate the existence 

of a causal association, additional sources of bias we did not consider in the analysis, or 

incorrect choices of bias parameters. Despite the information developed in this 

dissertation, little information was available about the potential sources of bias and their 

magnitude in NBDPS data, making evidence-based bias adjustment a challenge. 

 

          



262 
 

FUTURE DIRECTIONS 

With over a dozen studies consistently reporting crude and confounding-adjusted 

associations between BMI and NTDs, there is little need for additional studies to be 

conducted to confirm the existence of this association. There remain some aspects of the 

association that warrant further attention.  

 

First, a recent study from China found an inverse association between obesity and spina 

bifida (4), contrary to the results of most previous studies; however, most of studies to 

date have been conducted in the United States or in predominantly white populations. 

This raises the possibility that the magnitude or direction of the association could differ 

by geographic region or race/ethnicity, a hypothesis that has not been formally 

investigated to date. Further examination of potential differences by race/ethnicity within 

the United States could be undertaken in studies such as NBDPS, which have a large 

sample size and include a diverse population of mothers. Valuable information could be 

obtained from studies of obesity and NTDs in regions where termination of pregnancy is 

not an available option at any gestational age. In these regions, selection bias operating 

through prenatal diagnosis and termination of pregnancy would not occur. However, if a 

substantial proportion of mothers pursued termination of pregnancy by other means, such 

as by traveling to regions where it was an available option, this selection bias might not 

be completely avoided.  

 

Second, biological mechanisms explaining why prepregnancy BMI might be associated 

with NTDs remain unknown (5). If BMI is hypothesized to be a proxy for a complex 
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exposure such as diet quality or composition, collecting information that would allow 

better characterization of periconceptional diet could be an important future direction for 

research. If BMI is thought to be a proxy for adiposity, studies providing validation data 

could be useful for use in bias analyses. Because obesity is a risk factor for diabetes and 

diabetes is a risk factor for birth defects, further attention to methods for accurately 

measuring prepregnancy diabetes are needed, given that a large proportion of women 

with diabetes remain undiagnosed (5, 6). Additional studies providing evidence in 

support of any of these mechanisms would be important next steps. 

 

Finally, to determine if a non-biological mechanism (e.g., bias) is a likely explanation for 

the association between prepregnancy BMI and NTDs, there is a need for further studies 

characterizing the types of bias that might be occurring in these studies. For adjustment 

of exposure misclassification, validation data comparing maternally-reported 

prepregnancy weight to measured prepregnancy weight are needed. Currently, validation 

studies available in the literature report agreement between self-reported and measured 

current weight, which might not be generalizable to prepregnancy weight. To determine 

whether misclassification is differential or nondifferential, validation studies will need to 

be conducted separately for cases and non-cases. However, it could prove challenging to 

identify a population from which to conduct these validation studies. Using a cohort 

study of women trying to achieve pregnancy might not be generalizable to all women 

because of the substantial proportion of pregnancies that are unplanned. Weight recorded 

at the first prenatal care visit might approximate prepregnancy weight if the first visit is 

early in pregnancy, but this would also potentially be non-generalizable to all women 
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because of differences between women who seek care early in pregnancy and those who 

initiate prenatal care in the second and third trimesters. 

  

For adjustment of selection bias, it would be most valuable to know the extent of 

underascertainment of cases among terminations of pregnancies; with an estimate of the 

extent of underascertainment, we could adjust for selection bias. In the future, we will 

pursue development of an approach to estimate the proportion of cases among 

termination of pregnancy that are missed. 

 

IMPLICATIONS FOR PUBLIC HEALTH 

Existing guidelines from the American College of Obstetricians and Gynecologists 

recommend that women achieve a healthy weight prior to pregnancy (7). Whether or not 

an association exists between obesity and NTDs, this recommendation is appropriate for 

not only potentially reducing the risk of having a child with an NTD (if there is a causal 

relationship) but for reducing the risk of other adverse reproductive and long-term health 

outcomes. However, specific recommendations that obese mothers should be counseled 

on their increased risk for having a child with an NTD and that they should be targeted 

for screening might not be warranted if there is truly no association or only a weak 

association, as this could unnecessarily elevate maternal anxiety during pregnancy.  

 

Multiple bias analysis becomes particularly important when biases are of a large enough 

magnitude to affect interpretation of existing studies and prompt reassessment of 

decisions or recommendations that have been made based on the available literature. 
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However, it is difficult to determine when this is the case because there is seldom enough 

information available to identify biases which might have important effects and to 

confirm that these hypothesized effects are indeed occurring as suspected. Until such 

information is available, bias analysis remains useful for other reasons, such as providing 

quantitative assessments of how large potential biases might be under different 

assumptions. 

  

CONCLUSIONS 

From the results of this dissertation, we conclude that, given our assumptions, exposure 

misclassification, selection bias, and confounding might not fully explain the association 

between obesity and NTDs. Although selection bias has previously been proposed as an 

explanation for the observed association, we did not find a substantial difference in the 

proportion of obese and non-obese mothers reporting prenatal diagnosis (Chapter 4) and 

did not observe a large difference between the crude and selection bias-adjusted odds 

ratio (Chapter 7), suggesting that selection bias arising by way of this mechanism might 

not be great enough to substantially affect the magnitude of the association. From our 

analyses, it also appeared that exposure misclassification and confounding are unlikely to 

generate a large enough bias to account for the observed association. In future studies, we 

will continue to characterize potential sources of exposure misclassification and selection 

bias hypothesized to occur in studies of prepregnancy BMI and NTDs to better 

understand the effects of these biases on this association. 
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