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Abstract

Statistical and informatics methods for analyzing next generation sequencing
data

By Li Chen

In the era of genomic big data, it is demanded to develop statistical and
informatics methods for the analysis of big data. The integrative analysis of
datasets generated from different sources or in different biological conditions
is of particular interest. First, we develop a statistical method ChIPComp
to perform quantitative comparison of multiple ChIP-seq datasets in different
biological conditions. ChIPComp detects genomic regions showing differen-
tial protein binding or histone modification by considering data from control
experiments, signal to noise ratios, biological variations, and multiple-factor
experimental designs in a linear model framework. Simulations and real data
analyses demonstrate that ChIPComp provides more accurate and robust re-
sults compared with existing methods. By utilizing tens of thousands of trait-
associated GWAS SNPs cataloged, we present traseR, a computational tool
that could explore the collection of trait-associated SNPs to indicate whether
a given genomic interval or intervals is likely to be functionally connected with
certain phenotypes or diseases. Real data results indicate that traseR offers
a turnkey solution for enrichment analysis of trait-associated SNPs. Besides
analyzing datasets from a single source (GWAS or epigenomics), we perform a
joint analysis for multiple data sources by annotating GWAS SNPs using thou-
sands of genomic and epigenomic datasets, and building DIVAN, a data-driven
machine learning approach that aims to identify disease-specific noncoding risk
variants in a genome-wide scale, which is helpful to understand the cryptic link
between non-coding sequence variants and the pathophysiology of complex dis-
eases/phenotypes. By being disease-specific, DIVAN demonstrates to be more
powerful than competing methods in the identification of disease-specific non-
coding risk variants.
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1

Chapter 1

Introduction

1.1 Background

With the recent development of next generation sequencing (NGS), array-based

technologies have being gradually replaced by sequencing-based technologies as

NGS could dramatically improve the quantity and quality of high throughput

genomic data compared to array-based technologies. NGS is growing more

and more popular in different research areas of genomics and genetics, such as

epigenetics and Genome-Wide Association Study (GWAS).

Among those NGS technologies, ChIP-seq is such as technology that com-

bines Coupling chromatin immunoprecipitation (ChIP) and next-generation

sequencing (seq), which gradually replaces ChIP-chip, a technology that com-

bines chromatin immunoprecipitation (ChIP) with microarray (chip). Though

both technologies have the advantage to investigate protein-DNA interaction

in vivo. ChIP-seq is capable of revealing protein-DNA interaction in a whole

genome-scale and could achieve high-resolution of profiling DNA-protein inter-

action, compared to ChIP-chip, which might introduce some bias, as an array
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is restricted to a fixed number of probes. Due to the advantage of ChIP-seq,

it has been widely used in epigenetics research to study the mechanisms of

gene expression change without the involvement of underlying DNA sequence

change. Particularly, transcription factors (TFs) and histone marks play an

important role in epigenetic modification on gene regulation. To be specific, it

is common that TFs activate the gene expression by binding in the promoter

or enhancer regions of the gene. Histone marks such as H3K4me1, H3K4me3,

and H3K36me3 have the same role to activate the gene expression but differ

in the modifications sites: H3K4me1 in enhancer regions, H3K4me3 in pro-

moter regions while H3K36me3 in gene body. Other histone marks such as

H3K27me3 usually repress the gene expression. By measuring the genome-

wide profiling of either TF or histone modification, ChIP-seq helps reveal the

status of gene regulation. Moreover, the status of gene regulation might differ

in in different conditions, e.g. cell lines, tissues, cell cycle. Therefore, to com-

pare genome-wide profiling of either TF or histone modification measured by

ChIP-seq among multiple conditions will unveil the dynamic changes of gene

regulation.

GWAS mainly focus on the study of associations between single-nucleotide

polymorphisms (SNPs) and diseases or traits in different populations by set-

ting up the case-control. The identified disease/trait-associated SNPs might be

potential biomarkers. The high-throughput genomic technology also facilitates

the GWAS, which utilizes high-density the SNP genotyping array, a type of

DNA microarray, to detect the SNPs that are disease/trait-associated. With

the decreasing cost of NGS, whole genome sequencing (WGS) has been fre-

quently used in GWAS as WGS not only is presented as an alternative to, but

also could overcome the limitation of genotyping array-based GWA studies.
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First, WGS provides a whole genome coverage by investigating approximate

3 billion bases compared to 10 million SNPs covered by a typical genotyping

array. Second, WGS provides more opportunities to discover the rare variants

(MAF ă 1%) compared with that the genotyping array-based GWA studies

focus on common variants (MAF ą 5%). Third, besides SNPs, WGS could

detect other types of variants including structural variants and copy number

variants (CNVs). Thus, due to the advantages of WGS, WGS grows more

popular in the identification of genomic mutations including GWAS SNPs.

The accumulation of ”omics” data from different data sources or data types

provides an unique opportunity to investigate multiple datasets for novel bi-

ological discovery, which cannot be done by single dataset or datasets from

single source. For GWAS, multiple data sources collect genetic variants associ-

ated with different diseases/traits in thousands of literature are publicly avail-

able such as Association Results Browser (http://www.ncbi.nlm.nih.gov/

projects/gapplusprev/sgap_plus.htm and GRASP [1]. For epigenetics, the

decreasing cost of NGS results in massive public available epigenetic datasets in

different biological context. Large national consortiums such as ENCODE [2]

and modENCODE [3] contain a comprehensive collection of genomic and epige-

nomic datasets including TF ChIP-seq, Histone modification ChIP-seq, Open

Chromatin-seq (FAIRE-seq, DNase-seq) and DNA methylation across hundreds

of cell lines. Roadmap Epigenomics ( [4]) is another comprehensive consortium

that collects Histone modification ChIP-seq and DNase-seq across hundreds of

cell lines.

With those public datasets, it is possible to perform the study such as the

change of epigenetic profiles among different cell types, the change of epigenetic

profiles between risk SNPs and benign SNPs for the disease of interest. The

http://www.ncbi.nlm.nih.gov/projects/gapplusprev/sgap_plus.htm
http://www.ncbi.nlm.nih.gov/projects/gapplusprev/sgap_plus.htm
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complicated mechanisms in biological systems could only be unveiled in the era

of ”Big Data”.

1.2 Outline of the dissertation

This thesis consists of three chapters that each addresses an independent sta-

tistical/informatics problem in high-throughput genomic data analysis.

An important problem in ChIP-seq data analysis is to detect loci that show

differential binding for a transcription factor or histone modification across mul-

tiple conditions (e.g. between cancer and normal tissues). Most of the existing

methods do not consider data from control experiment, signal to noise ratios,

biological variations and multiple-factor experimental designs, which may lead

to biased results. In chapter 2, we develop a statistical method ChIPComp

to perform quantitative comparison of multiple ChIP-seq datasets. The key

advantage of ChIPComp is that it considers data from control experiment, and

is developed in a rigorous and coherent statistical framework. To be specific,

the read counts from IP experiment at the candidate regions are assumed to

follow Poisson distribution. The underlying Poisson rates are modeled as an

experiment-specific function of artifacts and biological signals. Biological sig-

nals are estimated and compared through the hypothesis testing procedure in a

linear model framework. Simulations and real data analyses demonstrate that

the proposed method provides more accurate and robust results compared with

existing ones.

Understanding the link between non-coding sequence variants especially

SNPs, identified in GWAS, and the pathophysiology of complex diseases re-

mains challenging due to a lack of annotations in non-coding regions. To



5

overcome this, we develop a machine learning method DIVAN for the accurate

identification of non-coding disease-specific risk variants using multi-omics pro-

files in chapter 3. DIVAN is essentially a novel feature selection and ensemble

learning framework, which identifies disease-specific risk variants by leverag-

ing a comprehensive collection of genome-wide epigenomic profiles across cell

types and factors, along with other static genomic features. DIVAN accurately

and robustly recognizes non-coding disease-specific risk variants under multiple

testing scenarios; among all the features, histone marks, especially those mark

repressed chromatin, are often more informative than others.

Tens of thousands of disease/trait-associated GWAS SNPs have already

been cataloged, which we believe form a great resource for genomic research.

Recent studies have demonstrated that the collection of trait-associated SNPs

can be exploited to indicate whether a given genomic interval or intervals are

likely to be functionally connected with certain phenotypes or diseases. Despite

this importance, currently there is no ready-to-use computational tool able to

connect genomic intervals to phenotypes. In chapter 4, we present traseR, an

easy-to-use R Bioconductor package that performs enrichment analyses of trait-

associated SNPs in arbitrary genomic intervals with flexible options, including

testing method, type of background, and inclusion of SNPs in LD.
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Chapter 2

ChIPComp : A novel statistical

method for quantitative

comparison of multiple

ChIP-seq datasets

2.1 Introduction

Coupling chromatin immunoprecipitation (ChIP) and next-generation sequenc-

ing (seq), ChIP-seq is a powerful technology for profiling protein bindings or

histone modifications in the whole genome scale. Since the introduction of

the technology [5], a large number of experiments were conducted to create

genome-wide profiles for many DNA-binding proteins and different types of

histone modifications under various biological contexts, for example, by large

national consortiums such as ENCODE [2] and modENCOD [3].

The main goal of analyzing data from a single ChIP-seq experiment is to de-
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tect protein binding or histone modification regions, often referred to as “peaks”

. The raw data produced from ChIP-seq experiments are many short DNA seg-

ments called “reads”. After aligning the reads to the reference genome, genomic

regions with unusually large number of reads clustered are often deemed peaks.

In recent years, a number of methods and software tools are developed for peak

detection. Two benchmark studies have also been conducted to compare dif-

ferent peak calling methods [6,7]. With the continuous reduction of sequencing

costs and the rapid accumulation of public data, it is now a common practice

to compare data from different ChIP-seq experiments, for example, to com-

pare the binding of certain protein under different biological conditions. Such

analysis provides important information for studying the dynamics of epige-

netic regulations. Results from the analysis can be further associated with

other data, such as gene expressions, to better understand the gene regulation

mechanisms.

The comparisons of ChIP-seq data have been widely performed. The most

straightforward method is the “overlapping analysis”, which is to compare the

peaks called from different experiments and defines “common peaks” or “unique

peaks”, then represents them by Venn diagram [8]. This method, however, is

highly dependent on the thresholds used for calling peaks. Genomic regions

barely over the threshold in one sample but under the threshold in the other

will be declared as unique peaks even if the quantitative difference is small.

Moreover, it completely ignores the quantitative differences of peaks, that is,

Genomic regions being peaks in both samples will be deemed common peaks,

even if the quantitative difference is large. Due to these reasons, quantitative

comparison is more desirable to compare ChIP-seq datasets.

The quantitative comparison of ChIP-seq can be performed by comparing
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the read counts among different experiments, which is similar to RNA-seq dif-

ferential expression (DE) analysis. However it is a more complicated problem

due to several reasons. First, the data from the IP experiments are affected

by the genomic background, such as chromatin structures and DNA sequence.

These backgrounds are non-uniform across the genome, and could be highly

variable across different experiments. The backgrounds, measured by control

experiments, need to be taken into account in quantitative comparison of multi-

ple ChIP-seq datasets. Another complication arises from the different signal to

noise ratios (SNRs) of the experiments. Many technical or biological artifacts

contribute to SNRs. For example, sample with less binding sites will have taller

peaks because reads are allocated into narrower genomic regions. Moreover,

different SNRs may result from differences of antibody qualities, experimental

protocols or lab technician skills, etc. Therefore, correctly accounting for SNRs

is important in quantitative comparison of ChIP-seq. In addition, considera-

tions for biological variance and experimental designs remain, similar to that

in differential expression analysis of RNA-seq.

Quantitative comparison of ChIP-seq (often referred to as “differential bind-

ing” problem) has gained some interests recently, and several methods have

been proposed for two-condition comparison. There are two methods take

the approach to model the differences of normalized read counts from two IP

experiments: ChIPDiff [9] applies hidden Markov model on the differences

to identify differential histone modification regions, and DIME [10, 11] uses a

finite exponential-normal mixture model on the differences to detect differen-

tial binding sites. However, neither the control experiment nor the biological

replicates are considered in these methods. Moreover, these methods do not

account for SNRs and cannot be easily extended for multiple condition compar-
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ison. MAnorm [12] and ChIPnorm [13] consider different SNRs. Both methods

normalize the data before comparison: MAnorm performs normalization based

on MA-plot, and ChIPnorm uses quantile normalization. But again, neither

considers control data at the normalization step, and these methods cannot be

easily extended to handle more complicated experimental designs.

There are two software packages provide functionalities to consider the con-

trol data: DBChIP [14] and DiffBind [15]. Both methods directly apply existing

methods and software package developed for RNA-seq DE analysis. They start

from a list of candidate regions which are unions of peaks called for each in-

dividual experiment. These regions are then treated like genes, and RNA-seq

DE methods are directly applied for comparison. To account for the control

experiment, the software provide option to subtract the normalized control

counts from IP counts, then round the differences and use them as inputs for

the software. There are several problems with this approach. First, the under-

lying assumption of the methods is that the background noise and biological

signals are additive, which is not always true based on our real data observa-

tion (details in later section). Second, these methods don’t consider the SNRs

from different experiments. Finally, most RNA-seq DE methods are developed

based on negative binomial distribution assumption of the gene counts. Sub-

tracting control from IP counts then rounding will likely to violate that model

assumption, which lead to incorrect statistical inferences.

In this work, we develop a comprehensive and rigorous statistical method,

named “ChIPComp ”, to perform quantitative comparison of multiple ChIP-

seq data from experiments with narrow peaks, including data for most of the

protein binding, some histone modifications if the modification regions are nar-

row, and the DNase-seq experiments. ChIPComp takes into consideration of
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(1) genomic background measured by the control data; (2) SNRs in different ex-

periments; (3) biological variances from the replicates; and (4) multiple-factor

experimental designs. We demonstrate using simulations and real data analy-

ses that ChIPComp provides more accurate and robust results compared with

existing methods.

2.2 Methods

We use a two-step procedure for the quantitative comparison of ChIP-seq

datasets. In the first step, we apply existing peak calling algorithm to each

individual dataset to identify peaks. We then obtain the union of peaks called

from all datasets as the candidate regions for quantitative comparison. Since

the first step peak calling method is well developed, we will only present the

method for quantitative comparison in this section.

2.2.1 The data model

Suppose there are D datasets and N candidate regions. For candidate region

i (i “ 1, 2, . . . , N) in dataset j (j “ 1, 2, . . . , D), let Yij be the observed IP

counts. We assume that Yij follow a Poisson distribution with underlying rate

µij, which is a function of the background λij and ChIP signal Sij, e.g., µij “

fpλij, Sijq. Here λij represents the background signals caused by technical or

biological artifacts. The observed read counts from the control experiment

can be considered as realizations of the backgrounds, and can be used for

estimating λij (details of the estimation procedure is presented in later section).

Sij represents the non-control-related signals in the IP sample. Further, we

assume that Sij “ bjsij, where bj is a constant representing the SNR from
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dataset j, and sij measures the relative biological signals (e.g., protein binding

or histone modification strength up to a constant).

Now consider a set of general, multiple-factor experiments with design ma-

trix X. At candidate region i, the logarithm of the relative biological signals

are assumed to be from a linear model:

logpsijq “ xjβi ` εij, εij „ Np0, σ2
i q

where xj is the jth row of X, and βi is a vector of coefficient for the ith candidate

region. εij is a random term accounting for the variations among biological

replicates. Putting all pieces together, we have the following model for data at

the candidate regions:

Yij|µij „ Poissonpµijq

µij “ fpλij, bjsijq

logpsijq “ xjβi ` εij, εij „ Np0, σi2q

Under this setup, the quantitative comparison for factor k at candidate

region i can be achieved by testing: H0 : βik “ 0.

2.2.2 Estimate the background signal from control data

Obtaining good estimates of the background signal λij is the crucial first step.

Some existing methods (e.g., DBChIP or DiffBind) simply treat the counts from

control experiment as background signals. However, the background noises

are generated by artifacts such as chromatin structures and DNA sequence

contexts, therefore, the noises fluctuate in genomic regions much wider than
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the peaks. Using the read counts at peaks regions only to estimate background

is inaccurate and has large variances. The spatial correlations of the read counts

from control experiment can be utilized to obtain better background estimates.

Here we adopt the smoothing technique used in MACS [16] to obtain estimated

background, denoted by λ̂ij. Once λ̂ij’s are obtained, we treat them as known

and constant for the rest of the procedures.

2.2.3 Model the IP-background relationship

The most important component for the proposed data model is to characterize

the relationship of IP and background signals, which is the f function. The

approaches taken by DBChIP and DiffBind, e.g, subtracting the normalized

control data, implicitly assume that the IP signal is the sum of the background

and biological signals, or µij “ λij ` sij. Another possible solution for quan-

titative comparison is to put the IP and background data into a 2 ˆ 2 table

at each candidate region, and then use χ2 or Fisher’s exact test for hypothesis

testing. The underlying assumption for such approach is that the background

and biological signals are multiplicative, e.g., µij “ λij ˆ sij.

In order to discover the true IP-background relationship, we obtain several

public ChIP-seq datasets from ENCODE project (a description of the data is

provided in the Results section) and perform exploratory analyses. For peaks

in an experiment, we obtain the read counts from IP experiments and estimate

backgrounds from control, then plot the IP counts versus backgrounds in the

logarithm scale.
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Figure 2.1: Scatterplots of IP counts versus estimated background signals from
the peak regions, in logarithm scale. The red dashed line is the result from cubic
smoothing spline fitting.

Figure 2.1 shows such scatterplots from two ChIP-seq dataset: H3K27

acetylation (H3K27ac) in K562 cell line and RNA polymerase II (PolII) binding

in HelaS3 cell line. These figures reveal several important aspects for the IP-

background relationship. First, the IP and background signals are positively

correlated, as expected. Second, the IP-background relationship is neither ad-

ditive nor multiplicative. The relationship is non-linear in the log scale. Finally,

the IP-background relationship is different in different datasets, demonstrated

by the different slopes of the scatterplots in two datasets. This emphasizes

the importance of building individual background model for each dataset sep-

arately.

Based on these observations, we use a smooth function to model the IP-

background relationship in logarithm scale. The IP-background response func-

tion in dataset j is described by the following model:

log µij “ gjplog λijq ` logSij “ gjplog λijq ` log bj ` log sij
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Here gj is a experimental specific smooth function. This model assumes

that at a candidate region, the IP signal is the sum of background-related

noise (which is a smooth function of log λij), SNR and biological signal in the

logarithm scale.

2.2.4 The final model

Plugging in the IP-background model, the data model as described in Equation

2.1 can be written as:

Yij|µij „ Poissonpµijq

log µij “ gjplog λijq ` log bj ` log sij

log sij “ xjβi ` εij, εij „ Np0, σ2
i q (2.1)

This model implies that at a candidate region in an experiment, the underlying

rates for the read counts are from a lognormal distribution. The mean of the

distribution depends on the genomic background, the SNR for the experiment,

and the true biological signal. In this model, the observed data are Yij from

IP experiment. Background λij can be estimated from the control experiment

data, and gj can be estimated from IP-background model. β are parameters

of interests that one wants to make inference about.

2.2.5 The procedures for quantitative comparison

In our approach for quantitative comparison of ChIP-seq datasets, the quanti-

ties to be compared across experiments are the log biological signals log sij.

For each dataset, we first obtain the signals by removing the estimates of

background-related noises and SNRs from observed read counts from IP ex-
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periment, and then perform statistical tests. The differential protein binding

or histone modifications regions are defined based on test results. The rest

of this section provide detailed descriptions of the estimation and hypothesis

testing procedures.

Estimating gj and bj

At a candidate region, the IP signals from different experiments might exhibit

quantitative differences. These differences could be due to differences in biologi-

cal signals, or simply because different experiments have different backgrounds,

SNRs, or the IP-background responses. In order for data from different exper-

iments to be comparable, a proper baseline is needed for normalization. A

common normalization approach for ChIP-seq comparison uses the total num-

ber of reads under the peaks for adjustment. However, this approach only

works for correcting technical artifacts. Biological differences such as different

number of peaks cannot be corrected by this approach. For example, even if

the total numbers of reads from all peaks are identical in two conditions, the

peak height can still be different due to different number of peaks.

We make a crucial assumption that there exists a subset of all candidate

regions, where the averages of logarithm biological signals are identical in all

datasets conditional on the background signals. This is a similar assumption

used by MAnorm, and by some methods for gene expression microarray data

normalization where the expressions of house keeping genes are assumed con-

stant across conditions. Denoted such set by A, A P t1, 2, . . . , Nu. By default,

A is chosen as the common peaks from all datasets, or can be specified by user.

Further, we define a new function g1jplog λijq “ gjplog λijq` log bj to absorb

the SNR into the background noise function. We take the following approach
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to estimate g1j functions. For each individual dataset, we first obtain the IP

counts (Yij) and estimated background signals (λ̂ij) for all peaks in A. Next,

a cubic smoothing spline is fitted for log Yij versus log λ̂ij. The fitted spline

function is deemed ĝ1j.

Hypothesis testing

The hierarchical model in equation 2.1 essentially describes the data as lognormal-

Poisson compound distribution. The hypothesis testing can be performed us-

ing either likelihood ratio or Wald-based test. However either method requires

numerical integration to obtain the marginal likelihood of β, which are compu-

tationally too intensive to be practically useful given large number of candidate

regions. Further, with limited number of biological replicates, it is desirable to

borrow information across different candidate regions to improve the estima-

tion of biological variances and hence statistical inference, similar to that in

many other high-throughput data analysis methods [17–19]. Such information

sharing is usually achieved by adding another hierarchy in the model, for exam-

ple, imposing a parametric distribution on the biological variances (σ2
i ). That

will further increase the complexity of the model and make the model fitting

more difficult. To overcome these difficulties, we use following approximate

procedures to fit the model and perform hypothesis testing at each candidate

region.

We first obtain {logpsijq as

{log sij “ logpYij ` c0q ´ ĝj1plog λ̂ijq

Here c0 is a small constant (0.5) added to the IP counts to avoid having
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Yij “ 0. The estimated {log sij can be viewed as “normalized relative log fold

changes”. They are quantities representing log fold changes between IP sig-

nals and background noises. They are further normalized to remove SNRs,

and are values relative to the average log sij’s from peaks in A and with sim-

ilar background. Under our model assumptions, these quantities are directly

comparable across datasets.

We then fit linear regression of {log sij on X, and obtain the estimates

for coefficient β and residual variances σ2
i . To overcome the small sample size

problem, we apply existing variance shrinkage method developed for microarray

analyses [17] to obtain the shrunk estimates of σ2
i , denoted by σ̃2

i . For statistical

inference, an approximate estimate of the variances of β̂ with consideration of

the read counts can be derived as:

{

varpˆqβ “ pX 1Xq´1X 1
pΣXpX 1Xq´1.

Here Σ is a diagonal matrix with the diagonal elements being varp{log sijq. The

detailed derivation of pΣ is provided in the Appendix. In a nutshell, Σ takes

into consideration of both the biological variances σ2
i and the uncertainty of

logpsijq point estimation affected by the read count Yij.

Hypothesis testing of H0 : βik “ 0 can be perform via Wald test, with the

test statistics being t “ xβik{
{

varpxqβij. The test statistics approximately follows

normal distribution under null hypothesis. P-values and false discovery rate

(FDR) can be obtained using canonical procedures [20].

In real data analyses, however, we found that the results from the Wald

test are often influenced by the read counts, because candidate region with

larger counts have greater power to detect differences. At these regions, the
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statistical significance is usually greater, e.g., with smaller p-values, even when

the effect size is small. This is undesirable since the statistical significance

doesn’t necessarily imply biological significance. To overcome this problem,

we provide an alternative approach in Bayesian framework. Assuming a non-

informative prior on βik, e.g., P pβikq91, the following posterior probabilities

are used to rank candidate regions:

Prp|βik| ą c|Yij, ĝ, λ̂ijqq (2.2)

Here c is a user specified threshold. In two-group comparison case, c repre-

sents the log fold change of biological signals. Under the normality assumption

of β̂ik, the posterior probability can be obtained from normal p-values and

used to rank the candidate regions. We find that this procedure often provides

better results in real data analyses.

The above procedures are developed for data with biological replicates.

When replicate is unavailable in the comparison, ChIPComp will use the differ-

ence in the estimated biological signals between two conditions, e.g., {logpsi1q´

{logpsi2q, to rank the candidate regions.

2.3 Results

2.3.1 Data description

Both simulation and real data analysis results are based on a number of public

ChIP-seq datasets. We obtain several public ChIP-seq datasets generated by

ENCODE consortium [2], including three cell lines (HelaS3, GM12878, and

HUVEC) for RNA polymerase II binding (PolII), and three cell lines (H1, K562,
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and HelaS3) for H3K27 acetylation (H3K27ac). Both the aligned sequence files

(aligned to human reference genome build hg19, in BAM format) and peak

calling results are obtained from ENCODE.

2.3.2 Simulation

We first perform several simulation studies, based on parameters estimated

from real data, to evaluate the performance of ChIPComp . All simulations

are for two-condition comparison, with 10,000 candidate regions, and 20% of

these regions are true differential regions. Data are simulated based on two

different data generative models: the proposed data model as described in

equation 2.1; and an additive model where the underlying IP rates (µij) are

sums of background (λij) and biological signals (sij). The additive model is

the underlying assumption of DBChIP and DiffBind. We include the additive

model in order to demonstrate that the proposed model work fine even under

this assumption.

For the simulation results shown here, the simulation parameters are sam-

pled from the real data estimates from H3K27ac and PolII. Parameters include

background rate (λij), biological signals (sij), and the IP-background relation-

ship (g1j) for the proposed model. For non differential candidate regions, the

biological signals are made identical for two conditions. For differential re-

gions, we randomly sample biological signals from real data for two conditions

independently, so that they are different.

Since the differential analyses of ChIP-seq data is often used as a hypothesis

generating tool, the goal is to have as many true positives as possible in the

top-ranked candidate regions. We compare the proportions of true positives

(i.e. true discovery rate, or TDR) in the top-ranked regions from different
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methods. The methods in comparison include the ChIPComp using the poste-

rior probability in Equation 2.2, MAnorm, edgeR with and without subtracting

controls, and DIME. Both DBChIP and DiffBind require aligned read files as

inputs, which pose difficulties in simulations. Since both methods are based on

existing RNA-seq DE detection methods, we use edgeR to approximate their

performances in simulations.
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Figure 2.2: Comparison of differential peak detection accuracies from simula-
tions. The proportions of true discovery among top-ranked candidate regions is
plotted against the number of top-ranked regions. (a) and (b): data are gener-
ated based on the proposed model. (c) and (d): data are generated based on
the additive model. (a) and (c) are based on H3K27ac. (b) and (d) are based
on PolII.

Figure 2.2 compares the TDR curves of differential peak detection from
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different methods in several simulation scenarios. Figure 2.2 (a) and (b) shows

the results when data are generated from the proposed model. In these cases,

ChIPComp provides the best performance among the methods in comparison,

and the gain of accuracy could be significant. It also shows that when data

are generated from proposed model, subtracting control does not necessarily

provide better results, that is, edgeR with and without subtracting control

perform similarly. Figure 2.2 (c) and (d) shows the results when data are

generated from the additive model. Not surprisingly, edgeR with subtracting

control provides the best results. However, ChIPComp performs the second

best and significantly outperforms all other method. These simulation results

show good performance of ChIPComp . The results from the additive model

further demonstrate its robustness.

In addition to detection accuracy, statistical inference is another important

aspect in the differential analysis. We first investigate the empirical distribution

of Wald test statistics to check whether they follow normal distribution under

the null hypothesis. Figure 2.3 shows the empirical distribution of Wald test

statistics by histogram and normal QQ plot. Figure 2.3 (a) and (b) are based on

data simulated from the proposed model, and (c) and (d) are for data simulated

from the additive model. shows that the central part of histogram of Wald test

statistics approximates normal distribution even when model is mis-specified

as the additive model, demonstrating the robustness of ChIPComp .

Another commonly used distribution assumption for sequencing read counts

is negative binomial distribution, or the Gamma-Poisson compound distribu-

tion. The difference is that it assumes the underlying Poisson rate follows

Gamma distribution instead of lognormal. We perform additional simula-

tions when data are generated from negative binomial distribution, which is
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Figure 2.3: Histogram and normal QQ plot for Wald test statistics. (a) and
(b) are based on data generated from the proposed model. (c) and (d) are based
on data generated from the additive model.

a gamma-Poisson compound distribution. (results shown in Figure 2.4). The

TDR curves show that the proposed method is robust to that distribution

assumption, and ChIPComp still performs the best overall.
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Figure 2.4: Comparison of differential peak detection accuracies from simula-
tions when the data are generated from negative binomial distribution instead
of lognormal-Poisson distribution. The proportions of true discovery among top-
ranked candidate regions is plotted against the number of top-ranked regions.
(a): real data-based simulation from one H3K27ac dataset. (b): real data-based
simulation from one PolII dataset.

Furthermore, we perform an additional “null” simulation when there are

no differential peaks. The data are generated from the proposed model using

the same settings as the previous simulation. Because there are no differential

peaks, the result p-values should follow uniform distribution. Figure 2.5 shows

the histogram of p-values from different method, Results from edgeR ignoring

control reports many false positives. P-values from MAnorm and edgeR sub-

tracting control are heavily skewed toward 1 and tend to be over-conservative

(number of false positives under different p-value threshold are shown in Ta-

ble 2.1). Overall, ChIPComp provides the most uniform p-value distribution,

which again indicates that the statistical inference will be the most accurate.

Similar simulation is conducted when data are generated from additive model

(results shown in Figure 2.6 and Table 2.2 ). Again, p-values from ChIPComp

are more uniform compared than others when data are generated from additive

model.
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Figure 2.5: Histogram of p-values reported from different methods, based on
null model that there’s no differential regions. The data are generated from the
proposed model.
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Figure 2.6: Histogram of p-values reported from different methods, based on
null hypothesis that there’s no differential binding sites. The data are generated
from the additive model.

Specifically, Table 2.1 and Table 2.2 show that the numbers of false positives

when the p-value is set at different threshold for data simulated from proposed

model and additive model respectively under the null hypothesis. Since p-

value is defined as the expected number of false positives, the ideal method

should report number of false positives close to the expected number of false

positives as much as possible. Table 2.1 shows that ChIPComp has the most

accurate number of false positives compared to other methods. Table 2.2 shows

that when the generating model is mis-specified as additive model, ChIPComp

reports biased number of false positives, but is still on par with edgeR with
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p-value ChIPComp MAnorm edgeR - ignore control edgeR, subtract control
0.001 36 46 838 191
0.005 91 80 1282 335
0.01 147 102 1543 456
0.05 532 241 2590 910
0.1 975 366 3351 1334

Table 2.1: Number of false positive with different p-value threshold (data gen-
erated from proposed model)

p-value ChIPComp MAnorm edgeR - ignore control edgeR, subtract control
0.001 351 15 3014 18
0.005 454 44 3689 36
0.01 534 62 4027 48
0.05 877 183 5091 170
0.1 1224 284 5681 300

Table 2.2: Number of false positive with different p-value threshold (data gen-
erated from additive model)

subtracting control and MAnorm.

We further investigate the FDR for different estimated models. For each

candidate region, one minus the posterior probability obtained from Equation

2.2 can be viewed as local FDR. Based on the connection between the local

FDR and the classical global FDR [21], the local FDR can be converted to the

global FDR. Figure 2.7 shows the comparison of global FDR estimates from

different methods, when data are generated from the proposed and additive

model. When data are from the proposed model, ChIPComp provides accurate

FDR estimation. DIME performs well too but all other methods have poor

performances. From other methods, the estimations of the FDR in the top-

ranked regions are too liberal and give overly optimistic results. When data

are generated from additive models, none of the methods provide very accurate

FDR estimation, but ChIPComp still has the best performance relatively.
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Figure 2.7: Comparison of FDR estimations from different methods, based on
simulation. X-axis shows the FDR reported from different methods, and y-axis
shows the observed FDR.

All simulation results demonstrate that ChIPComp is more accurate and

robust compared to existing methods. It provides better ranking and statistical

inference in detecting differential peaks. It is also fairly robust against model

mis-specification, for example, when data are from additive model.

2.3.3 Implementation

The proposed method is implemented in an R Bioconductor [22] package ChIP-

Comp , which is currently available at

http://bioconductor.org/packages/release/bioc/html/ChIPComp .html. The

function takes detected peaks from all datasets and the aligned sequence files

as inputs, and reports a list of genomic regions showing differential binding or

histone modification, with estimated p-values and FDRs.
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2.3.4 Real data results

We further evaluate the performance of ChIPComp in several real datasets. The

analyses are based on two-condition comparisons. Since the gold standards for

quantitative differences between ChIP-seq data are not available, we utilize

other data to create “silver standard” to compare different methods. It was

known that PolII binding and H3K27ac are positively correlated with gene

expressions. We obtain the gene expression data from RNA-seq experiments

for these samples (also from ENCODE), and then use them to create silver

standard for comparison. To be specific, in a two-condition comparison, we

first perform differentially expression (DE) analyses on the RNA-seq data using

edgeR. Genes with FDR less than 0.01 are deemed DE, with FDR greater

than 0.2 are deemed non-DE, and the rest are deemed unknown. Next, we

keep candidate regions that are within 1000 base pairs of the transcriptional

start sites (TSS) of a gene. Finally, a region will be deemed differential or

non-differential for the protein binding or histone modification between two

conditions if its corresponding gene is DE or non-DE.

Since there are three cell lines (HelaS3, GM12878, and HUVEC) for PolII

and another three cell lines (H1, K562, and HelaS3) for H3K27ac, we perform

following pairwise two-condition comparisons: HelaS3 versus K562, H1 versus

K562, H1 versus K562 for H3K27ac; HelaS3 versus HUVEC, GM12878 versus

HelaS3, GM12878 versus HUVEC for PolII. The performance of the proposed

method is compared with MAnorm, DBChIP ignoring or subtracting control,

and DIME. DiffBind essentially uses the same algorithm as DBChIP (apply

existing RNA-seq DE methods), so they are not included in the comparison.

We use c “ 1 in ChIPComp to generate and rank the differential binding regions

for the results presented below.
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Figure 2.8: Comparison of differential peak accuracies from real datasets. All
results are for two-condition comparisons on different histone modification or
protein binding, as marked in figure titles.

Figure 2.8 shows the detection accuracies from all the comparisons. For

H3K27ac comparisons, ChIPComp performs best except that DIME slightly
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outperforms at a small number of top peaks in HelaS3 versus K562 and H1

versus HelaS3. However, DIME fails badly in the H1 versus K562 comparison.

In practice, we found that DIME is sometimes unstable, perhaps due to the

convergence problem in EM algorithm. Compared with other methods, gains

of detection accuracies from ChIPComp is usually over 10%. For comparisons

in PolII binding data, ChIPComp and DIME are the best performers across

three cell lines. Overall, these real data analyses demonstrate that ChIPComp

provides the most accurate and robust results compared with other methods.

In addition, we notice that subtracting control, based on the assumption of

additive model, does not necessarily provide better performance than ignor-

ing control from the results of DBChIP. In H1 versus K562 comparison for

H3K27ac data, ignoring control actually provides much better performance

than subtracting control. This is consistent with the results from simulation

studies, and further demonstrates that simply subtracting control from IP is

not an optimal way to use the data from control experiment in quantitative

comparison of ChIP-seq data.

Although the posterior probability threshold c could have some impacts on

the performance of ChIPComp , the overall performance of ChIPComp remains

stable with reasonable choice of c value. Since the default c value is 1, we try

using different c values (0.5 and 2), and obtain similar TDR curves as using

default c value (Figure 2.9 and Figure 2.10). We also plot the TDR curves

by using p-values from hypothesis test instead of the posterior probabilities to

rank peaks, and find similar results (Figure 2.11).
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Figure 2.9: Comparison of differential peak accuracies from real datasets (c “

0.5)
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Figure 2.10: Comparison of differential peak accuracies from real datasets
(c “ 2)
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Figure 2.11: Comparison of differential peak accuracies from real datasets
using ChIPComp p-value instead of posterior probability

In addition, we exam the FDR estimation accuracies from all methods in

real datasets, using gene expression as gold standard. We plot the observed vs.
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reported FDR from different methods (Figure 2.12). In general, none of the

methods provide very accurate FDR estimation, but ChIPComp still has the

best performance overall.
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Figure 2.12: Comparison FDR estimation for real datasets
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Furthermore, we generate the ROC curves and use AUC (Area Under the

Curve) as another criteria to compare the performance of different methods

(Figure 2.13). Overall ChIPComp has the highest AUC value.
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Figure 2.13: Comparison of differential peak accuracies from real datasets
using ROC curve
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2.4 Discussion

In this work, we develop a novel statistical method to perform quantitative com-

parisons of multiple ChIP-seq datasets and detect differential protein binding

or histone modification regions. Statistical methods of differential analysis for

other sequencing data such as RNA-seq have been well developed. The com-

parison of ChIP-seq data, however, is more complicated because of different

background noises and signal to noise ratios in distinct experiments. Existing

methods either ignore the data from control experiments (such as MAnorm

or DIME), or directly apply RNA-seq methods without proper normalization

(such as DBChIP or DiffBind). The proposed method describes the data by

a rigorous statistical model with the considerations of control data, signal to

noise ratios, biological variations, and general experimental designs. Statistical

test procedures are developed for detecting differential regions. Simulation and

real data analyses results demonstrate that ChIPComp provides more accurate

and robust results compared with existing methods.

The essence of the method is to extract biological signals from different

experiments and then compare. The process involves estimating and removing

biological and technical artifacts, and normalization of the biological signals.

In order to ensure that the estimated biological signals are comparable across

different experiments, proper references are needed for normalization and put

the biological signals in a common baseline. In that regard, the proposed

method relies on two important assumptions. First, the ChIP-seq datasets in

comparison need to have a non-trivial number of common peaks. In fact, when

there are very few common peaks among datasets, a simple overlapping analysis

of the peak will be adequate. Second, it is assumed that there’s no global

difference in the true biological signals for the common peaks across all datasets,
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which is the same assumption used by MAnorm. This assumption provides a

common baseline for different datasets for comparison. Similar assumption has

been used in differential expression analysis for many years: a majority of the

genes show no differential expression.

The hypothesis test is performed base on the log biological signals, which

is derived based on log counts. When the counts at candidate regions are very

small, this procedure could bring some biases and high variance. To overcome

that, we added a small constant in the counts to “squeeze” the lower end of

the log count distribution, and carefully derived the variances for estimated

parameters to take the raw counts into consideration. A similar approach has

been proposed in a recently developed RNA-seq DE method, voom [23], and

proved to have good performance.

The proposed method describes the count data from replicated samples

through a lognormal-Poisson model. More often, these data are described by

negative binomial, which is a Gamma-Poisson compound distribution. In our

model, the underlying Poisson rate is assumed to follow a lognormal, instead of

Gamma distribution. This is mainly motivated by methodological convenience.

However, when the shape parameter in Gamma distribution is reasonably large,

the Gamma and lognormal distributions become very similar. Simulation re-

sults show that the results from ChIPComp is robust and still provides good

results when the data are from negative binomial. So we believe that our

method will perform well in real data settings.

The method is specifically designed for comparison of ChIP-seq with short

peaks, including most of the protein binding data, some histone modification

data and DNase-seq. For histones modification data with long peaks/blocks

such as H3K9me3, the method is not directly applicable. However the problems
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presented in those data are similar: consideration of backgrounds, different

signal to noise ratios, biological variances, etc. To design method working for

the quantitative comparison of data with long peaks is our research plan in the

near future.

2.5 Appendix

As described in the manuscript, the data model is:

Yij|µij „ Poissonpµijq

log µij “ log sij ` g
1

jpλijq

log sij “ xjβi ` εij, εij „ Np0, σ2
i q

We denote Yij as the observed read counts in candidate region i in dataset

j, and µij as the corresponding underlying poisson rate. The approach for

differential binding analysis is to estimate βi and varpβ̂iq and then perform

Wald test for each candidate region i. First of all, log sij, the “normalized

relative log fold changes”, is estimated as {log sij “ logpYijq ´ ĝ1jplog λ̂ijq. Here

ĝ1jplog λ̂ijq is estimated previously and deemed constant in below derivations.

Then, we obtain the estimates of β through a linear model:

β̂ “ pXTXq´1XT
{logpSq

The variances of β̂, according to linear model theory, is:

V arpβ̂q “ pXTXq´1XTV arpzlogSqXpXTXq´1 ” Σ
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To perform Wald test, we need to obtain estimates of the variances. Notice

that

V arp{logSq “ V arplogY ´ ĝpλ̂qq “ V arplogY q,

where V arplogY q is a matrix with V arplog Yijq in the diagonal. The derivation

of V arplog Yijq is provided below.

We expand log Yij around log µij by Taylor expansion to the first order term:

logpYijq « log µij `
1

µij
pYij ´ µijq

Then we have:

V arplog Yijq « V ar

„

log µij `
1

µij
pYij ´ µij



“ E

"

V ar

„

log µij `
1

µij
pYij ´ µijq

ˇ

ˇ

ˇ

ˇ

µij

*

` V ar

"

E

„

log µij `
1

µij
pYij ´ µijq

ˇ

ˇ

ˇ

ˇ

µij

*

“ E

"

V ar

„

Yij
µij

ˇ

ˇ

ˇ

ˇ

µij

*

` V arplog µijq

“ E

„

1

µij



` V arplog µijq

The above derivations use the fact that EpYijq “ V arpYijq “ µij, since Yij is

from Poisson distribution. The second term V arplog µijq “ σ2
i because of the

linear model assumption. The first term can be directly obtained from log-

normal distribution, since it is assumed that log µij „ Npµ0, σ
2
i q. Here µ0 is

defined to be µ0 “ gjpλijq ` xjβi. We have:

E

„

1

µij



“ e´µ0`σ
2
i {2
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Put all pieces together, we have

V arplog Yijq « e´gjpλijq´xjβi`σ
2
i {2 ` σ2

i

Plugging in the estimates of gj, βi, and σ2
i , we obtain the estimated variance

as:

{V arplog Yijq « e´ĝjpλ̂ijq´xj β̂i`σ̂
2
i {2 ` σ̂2

i .

The variance/covariance matrix of β, denoted by Σ, is then a diagonal

matrix with diagonal elements being {V arplog Yijq.
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Chapter 3

DIVAN : accurate identification

of non-coding disease-specific

risk variants using multi-omics

profiles

3.1 Introduction

With the development of high-density genotyping arrays, over the past ten

years, investigators have conducted thousands of GWAS studies, which have

identified tens of thousands of loci associated with a host of human traits and

diseases. There are now resources established to catalog a comprehensive col-

lection of trait-associated SNPs. One example, the Association Results Browser

(ARB) (http://www.ncbi.nlm.nih.gov/projects/gapplusprev/sgap_plus.

htm, accessed May 28, 2016) currently contains 44,124 SNP trait association

results, which correspond to 30,553 (autosomes plus chromosome X) unique

http://www.ncbi.nlm.nih.gov/projects/gapplusprev/sgap_plus.htm
http://www.ncbi.nlm.nih.gov/projects/gapplusprev/sgap_plus.htm
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trait-associated SNPs linked to 573 phenotypes. Overall, 90 percent of those

SNPs are located in non-coding regions (introns and intergenic regions), which

is consistent with the observation that over 70% of the risk-association loci in

the National Human Genome Research Institute (NHGRI) GWAS catalog lack

variants that map to exons within their haplotype block [24].

Unlike coding variants, whose functional impact can be gauged by checking

whether the DNA sequence variant affects the translated protein sequence [25],

there is little we can say for non-coding variants, except about evolutionary

conservation at the loci. Therefore, one needs information beyond the DNA

sequence level to identify variants that functionally link to a disease or phe-

notype. Since non-coding SNPs are suspected of disrupting normal regulatory

control mechanisms of target genes, and we know that epigenetic information,

such as DNase hypersensitivity and histone modifications, is closely related to

regulatory function [26–28] and has been linked to the enrichment of GWAS

SNPs [29], epigenetics data have thus been recognized as an important source

of functional annotation for non-coding variants [26].

Taking advantage of the powerful high-throughput technologies, such as

next-generation sequencing (NGS), experimental assays have been developed

to comprehensively survey the entire genome for such regulatory events. Major

experiments in this category include ChIP-seq (coupling chromatin immunopre-

cipitation and next-generation sequencing) [30–32] to identify in vivo binding of

transcription factors (TFs) and histone marks; DNase-seq(DNase I hypersen-

sitive sites sequencing) [33,34] and FAIRE-seq(formaldehyde-assisted isolation

of regulatory elements sequencing) [35], both for identifying open chromatin re-

gions. Given the importance of such regulatory information, large international

consortia, like the Encyclopedia of DNA Elements (ENCODE) [36] and the
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Roadmap Epigenomics Mapping Consortium (REMC) [4] have been formed to

systematically conduct these experiments to identify functional elements with

regulatory activities across hundreds of cell lines/tissues. These datasets offer

a great opportunity to link sequence variants to regulatory elements, including

TF binding, histone modification, and open chromatin.

Taking advantage of these resources, researchers have developed multiple

computational approaches to identify non-coding risk variations. Ritchie et al.

developed a supervised approach called Genome-Wide Annotation of Variants

(GWAVA) [37], which is a modified random forest classifier [38], to distinguish

disease-implicated variants from benign variants using various static genomic

and epigenomic annotations, such as genic context, phylogenetic conservation

scores, TF binding sites, and histone modifications. Kircher et al. developed

a supervised learning approach named CADD [39], which is a support vector

machine classifier that integrates 63 annotations, including phylogenetic conser-

vation scores, genic context, and scaled p-values derived from ENCODE, as fea-

tures of the classifier. Lu et al. developed an EM-based algorithm called Geno-

Canyon [40] that models the non-coding variant using a two-component mix-

ture model (risk or benign). Recently, Ionita-Laza et al. developed Eigen [41],

another unsupervised approach adopting a more sophisticated two-component

mixture model by imposing a predefined block-wise structure among features

in the model-fitting process.

A common feature of all the above methods is that they are disease/phenotype

neutral; that is, variants associated with all diseases/phenotypes are included

in the training set. As an example, GWAVA uses all regulatory mutations

from the public release of the Human Gene Mutation Database (HGMD) [42].

Eigen and CADD use GWAS index SNPs found in the US National Human
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Genome Research Institute’s GWAS catalog. GenoCanyon uses all the an-

notated variants from ClinVar [43]. However, it is likely that the biological

functions underlying a risk variant for type 2 diabetes, a metabolic disorder,

is different from that for Alzheimer’s disease, a neurodegenerative disorder.

Furthermore, the regulatory activities of TFs and histone marks are different

in different cell lines/tissues, sometimes dramatically, so it is not clear which

combination of cell line/tissue and TFs/histone modifications could better dis-

tinguish risk variants of a particular disease/phenotype from benign variants.

Therefore, we believe it is desirable and appropriate to develop a method that

can identify disease-specific risk variants. This is particularly important for

interpreting variants identified via personal genome sequencing (PGS), since

most of the variants identified by PGS are rare variants (minor allele frequency

less than 1%), making their association with disease difficult to measure using

GWAS.

Here we present DIVAN (DIsease-specific Variant ANnotation), a novel

method to identify disease-specific risk variants. DIVAN adopts an ensem-

ble learning framework with a feature selection step to annotate and prioritize

non-coding variants using a large collection of genomic and epigenomic annota-

tions. To evaluate DIVAN ’s performance, we conduct comprehensive analyses

using data from two different databases. One study involves 45 different dis-

eases/phenotypes across 12 disease/phenotype classes, and the other includes

36 diseases/phenotypes.

In this work, we treat the trait-associated index SNPs identified by GWAS

and reported in the ARB as surrogates for the functional SNPs. This is be-

cause validated or annotated bona fide functional SNPs are too rare for most

diseases/phenotypes to form a meaningful training set. Furthermore, the belief
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is that real functional variants are enriched among GWAS index SNPs than

random background SNPs.

3.2 Methods

3.2.1 Software and data package availability

To maximize DIVAN ’s utility, we pre-computed DIVAN score for every base

of the human genome (hg19), and for each of the 45 diseases, using either

the TSS-matched criterion or the region-matched criterion. DIVAN offers two

options to query and retrieve these scores: by variant identifier (for known vari-

ants) or by genomic regions. For known variants, DIVAN allows the user to

retrieve scores for all known variants found in the Ensembl variation database

(release 70, including 49,999,357 variants), COSMIC database [44] (v78, in-

cluding 3,153,949 variants by excluding variants on Mitochondrial DNA and

variants without genomic position) and 1000 Genome variants (Phase I, includ-

ing 17,076,840 variants). For genomic regions, users can select either to retrieve

scores from all known variants within the genomic regions or obtain the average

base-level scores for each genomic region. Correspondingly, DIVAN provides

R scripts for both options. The DIVAN software toolkit and the pre-computed

scores are freely available at https://sites.google.com/site/emoryDIVAN

under the GNU General Public License v3.

https://sites.google.com/site/emoryDIVAN
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3.2.2 Data sources

Construction of disease-specific risk variants and benign variants

The risk variants chosen from ARB include 28,713 unique non-coding SNPs

(12,159 intronic SNPs and 16,803 intergenic SNPs) spanning 555 diseases/phenotypes

across 33 disease/phenotype classes. In the present study, to maintain enough

risk variants in the training set, we chose 45 diseases/phenotypes spanning 12

disease/phenotype classes, with at least 50 disease-SNP associations. The 45

diseases/phenotypes with the numbers of risk variants are summarized in Table

3.2.

To construct a set of benign variants for each disease/phenotype, we apply

the same strategy used in GWAVA by sampling variants not reported to be

disease-implicated and by requiring the distances between these benign variants

and their nearest transcription start sites (TSSs) to have the same empirical

distribution as those risk variants. All benign variants are sampled from the

1000 Genomes Project Phase I catalog (with minor allele frequency higher than

5%), excluding all variants found in the ARB. Similar to GWAVA, ten times

more benign variants than risk variants are selected for each disease/phenotype.

Merge replicates

Most of the experiments in ENCODE and RMEC contain biological replicates.

To simplify the analysis, we merge reads produced from replicated ChIP-seq

experiments if both the factor (TF/Histone) and cell line are the same, and

reads from open chromatin experiments conducted on the same cell line are also

merged. Since all ENCODE/REMC ChIP-seq experiments are performed with

ChIP and matched input samples, we calculate the normalized read count by
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subtracting the number of input reads from the ChIP reads after adjusting the

sequencing depth. For open chromatin experiments, DNase-seq and FAIRE-

seq, we use the ChIP reads directly, as there is no matching input sample. For

preprocessed peak files of the same factor and the same cell line, overlapped

peaks are merged by taking the union.

Annotation sources

Open chromatin

ENCODE conducts two types of sequencing experiments to profile genome-wide

open chromatin regions: DNase-seq and FAIRE-seq. We include both in the

feature collection for DIVAN. To be specific, for mapped read files, we collect

230 DNase-seq datasets (merged into 80 features) and 78 FAIRE-seq datasets

(merged into 31 features) from ENCODE, and 350 DNase-seq datasets (merged

into 73 features) from REMC; for corresponding preprocessed peak files, we col-

lect 100 DNase-peak files and 38 FAIRE-peak files (merged into 31 features)

from ENCODE, and 39 DNase-peak files from REMC.

Transcription factor binding sites (TFBS)

For mapped read files, we obtain 650 TF ChIP-seq datasets (merged into 292

features) from ENCODE/HAIB and 681 TF ChIP-seq datasets (merged into

279 features) from ENCODE/SYDH; for corresponding preprocessed peak files,

we collect 638 TF-peak files (merged into 295 features) from ENCODE/HAIB

and 321 TF-peak files (merged into 288 features) from ENCODE/SYDH.

RNA polymerase binding

For mapped read files, we collect 156 RNA polymerase binding ChIP-seq datasets

(merged into 49 features); for corresponding preprocessed peak files, we collect

92 peak files (merged into 53 features) from ENCODE.
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Histone modification

We include histone ChIP-seq datasets from both ENCODE and REMC. For

mapped read files, we collect 549 histone ChIP-seq datasets (merged into 267

features) from ENCODE and 1,407 histone ChIP-seq datasets (merged into 735

features) from REMC; for corresponding preprocessed peak files, we collect 280

histone-peak files (merged into 270 features) from ENCODE and 979 histone

ChIP-peak files from REMC.

Genomic features

Two types of static genomic features are included in DIVAN : repeated elements

and conservation scores (genomic evolutionary rate profiling (GERP) element

[45] and phastCon scores [46]). We consider all repeated elements collected in

the UCSC Genome Browser, including LINE, low complexity, satellite, simple

repeat, SINE, LTR, etc. Conservation annotations include GERP elements and

phastCon score, which are known to influence the functional consequences of

genetic variants, such as phylogenetic conservation and level of selective con-

straint. GREP elements are downloaded from the Sidow Lab (http://mendel.

stanford.edu/SidowLab/downloads/gerp/) and further treated as a binary

annotation for each variant investigated. The phastCon scores are calculated

for variants of interest using Bioconductor package phastCons100way.UCSC.hg19.

Annotation segmentation

To simplify the computation, we first cut the whole genome into 200-bp bins

and calculate the feature value, i.e., normalized mapped read count or the peak

presence for each bin. Therefore, the result is a genome-wide annotation matrix

with rows as 200-bp bins across the whole genome, and columns as genomic

and epigenomic features. With the pre-built genome-wide annotation matrix,

http://mendel.stanford.edu/SidowLab/downloads/gerp/
http://mendel.stanford.edu/SidowLab/downloads/gerp/
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we could easily retrieve feature values for each variant by simply determining

which bin the variant falls into.

3.2.3 Feature selection-based ensemble-learning frame-

work

The workflow of DIVAN is illustrated in Figure 3.1, which consists of four steps.

The first step is to build the risk variant set and the benign variant set. All risk

variants from the selected 45 diseases/phenotypes are retrieved from ASB. The

benign variants are obtained from the 1000 Genomes Project. In the second

step, variants in both sets are annotated by genomic and epigenomic sources,

including GERP elements, phastCon scores, repeat elements, and genome-wide

epigenomics profiling data collected from ENCODE and RMEC. The third step

is selecting informative features. In the last step, an ensemble module, which is

a collection of ensemble base learners, is developed to adjust the class imbalance

between risk variant set and benign variant set. The base learner could be an

arbitrary binary classifier. The default option is the decision tree. With the

test variants annotated by the same source in the second step, the trained

model would output the probability of being disease-implicated for each test

variant.
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Figure 3.1: Flow chart for the DIVAN approach



51

Feature selection

We perform feature selection to avoid over-fitting since the number of features

is far greater than the number of variants, which is a typical large p, small n

problem.

As the confidence of a feature is measured by p-values, we use different

tests for different types of annotations to obtain the p-values. For continuous

features, e.g. number of reads, we use a two-sided t-test; for binary features,

e.g., peak presence, we use Fisher’s exact test by constructing a two-by-two

contingency table. Figure 3.17A shows the distribution of t-statistics for all

epigenomic features, with the heavy tail corresponding to the informative fea-

tures. The distribution of corresponding p-values is shown in Figure 3.17B,

while the p-values obtained from Fisher’s exact test can be found in Figure

3.17C. By comparing the distribution of p-values for the two tests, we find that

p-values from Fisher’s exact test are right-skewed compared to the left-skewed

t-test p-values. This observation indicates fewer informative features would be

selected if peak is used as the feature.

After obtaining the p-values for all features, we use cross-validation to de-

fine the p-value threshold in the feature selection step, and features with a

p-value below the threshold are considered as informative features. To be spe-

cific, we set a sequence of possible p-value thresholds. For each threshold, the

mean of the predicted AUC values is calculated using five-fold cross-validation

on the training set, and the p-value threshold is chosen as the one with the

largest predicted AUC value. Actually, the selected p-value threshold could be

considered as a tuning parameter.
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Choosing the appropriate base learner

Three classifier engines have been evaluated as a base learner in the ensemble

module of DIVAN : decision tree, support vector machine (SVM), and Lasso.

For SVM, we use nonlinear classifiers with radial kernel. For Lasso, we per-

form five-fold cross-validation to choose the best tuning parameter for penalty.

Figure 3.18 shows that even if decision tree, Lasso, and SVM have comparable

AUC values, decision tree shows a better precision-recall curve. Thus, decision

tree is chosen as the default base learner for the ensemble module.

Ensemble method for class imbalance adjustment

The number of benign variants far exceeds the number of disease-associated

variants, which makes the task of discriminating disease-specific risk variants

from benign ones an inherent imbalanced two-class classification problem. A

single binary classifier usually has poor predictive performance without adjust-

ing the class imbalance. To build a balanced classifier without downsizing or

duplicating the training set, we adopt an ensemble learning approach, which

not only keeps all variants in the training set but also overcomes the class

imbalance issue. We formularize the ensemble method as below.

We denote the benign set as N , the risk variant set as P , and the num-

ber of base learners as C. Specifically, we create two balanced classes by

sampling the same number of variants Ni with replacement from the benign

set as the number of variants C in the risk variant set to form one train-

ing set Ni Y P for base learner Ci . The choice of number of base learner

would be large enough to ensure the unions of all Ni (N1 Y N2, ..., NC) could

cover most of N . The default C is set to be twice the number of benign

variants in N over risk variants in P . We further denote the annotation ma-
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trix for variants in Ni Y P as X i
train and the labeled Ni Y P as Y i

train, the

trained ensemble module is formulated as a function of training sets, which

is fpX,Y q “ cpfpX1
train, Y

1
trainq, fpX

2
train, Y

2
trainq, ..., fpX

C
train, Y

C
trainqq. With a

given variant with annotation matrix Xtest, the probability of the given variant

being disease-implicated is the average of all predictive probabilities of base

learners,

EpYtest “ 1|Xtest,fpX,Y q “
1

C

C
ÿ

i“1

EpYtest “ 1|Xtest, fpX
i
train, Y

I
trainqq

3.2.4 Competing methods

We compare DIVAN with four existing risk variant annotation and prioriti-

zation methods: GWAVA, CADD, Eigen, and GenoCanyon. For each of the

below methods, we download and retrieve the pre-computed scores for the risk

and benign variants. The scores are designed such that the higher the score,

the better chance the variant is disease-associated. For GWAVA, we only re-

port the set of scores with the best performance. For Eigen, we include both

Eigen and EigenPC scores in the method comparison.

Supervised methods: GWAVA and CADD

CADD is a SVM-based supervised learning method. It maintains a database

of pre-computed C-scores for 1000 Genomes variants and base levels for the

whole human genome. GWAVA is a random forest-based supervised learning

method. It maintains a database containing three sets of pre-computed scores

for 1000 Genomes variants (minor allele frequency ą 1%) based on different

choices of benign variants (TSS, unmatched, and region).
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Unsupervised methods: GenoCanyon and Eigen

GenoCanyon is an unsupervised learning method, which is a two-component

mixture model. It maintains a database of base-level pre-computed scores

across the whole human genome. Eigen, another unsupervised learning method,

is also a two-component mixture model; however, it considers feature correla-

tion. Eigen maintains a database containing two sets of pre-computed scores

for 1000 Genomes variants. One is Eigen score and another is a variation of

Eigen score-EigenPC score.

3.3 Results

3.3.1 Overview of the DIVAN approach

The main challenge to disease-specific variant annotation is that the size of

the training set is often small as the disease-specific risk variants identified by

GWAS with high confidence (stringent p-values) is often very limited as the

median of trait-SNP associations is only 8 for the 573 traits in the ARB. On

the other hand, to improve predictive performance, we attempt to include as

many genome-wide genomic and epigenomic features as possible, often thou-

sands of them (made possible given the abundant TFs/histone modifications

across many cell lines/tissues), resulting in a typical large p, small n prob-

lem [47]. Thus, simply fitting the predictive model with all features would

easily cause over-fitting. To accommodate as many features as possible while

avoiding over-fitting, we employ two important machine learning strategies in

DIVAN : feature selection and ensemble learning [48]. Feature selection is used

to select the informative set of features that contribute most to the predictive
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performance, and ensemble learning enables better predictive performance by

creating a balanced risk/benign variant set in each base learner. The entire

procedure of DIVAN is illustrated in Figure 3.1.

Diseases studied

We conduct extensive real data analyses to evaluate the performance of DIVAN

in detecting disease-specific risk variants. Out of the total of 573 diseases/traits

found in ARB, 45 of them, spanning 12 disease classes, contain at least 50

reported disease-SNP associations. These diseases are included in our study.

A complete list of the diseases/phenotypes along with the number of associated

risk variants are summarized in Table 3.2.

Features considered

As shown in Table 3.1, we use 1,806 epigenomic features in this study, includ-

ing features related to histone modification (1002), TF binding (571), open

chromatin (184), and RNA Pol II/III binding (49), spanning 261 cell lines.

Features are represented by read counts in the neighborhoods of each variant,

and reads from biological replicates (same factor and same cell line) are fur-

ther merged. More detailed descriptions of these features can be found in the

Methods section.

3.3.2 Characteristics of epigenomic profiles around risk

variants

Open chromatin regions marked by selected histone marks or DNA hyper-

sensitivity are known to harbor GWAS risk variants [4]. For demonstration
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Table 3.1: Summary of feature categories in DIVAN

Data Source Cell Lines Factors Features
REMC DNase 73 - 73
REMC Histone 109 31 735
ENCODE DNase 80 - 80
ENCODE FAIRE 31 - 31
ENCODE TF(HAIB) 19 76 292
ENCODE TF(SYDH) 31 100 279
ENCODE Histone 18 42 267
ENCODE RNA Polymerase 31 2 49
Total 261* 217* 1806
* The same cell lines or factors may appear in multiple sources

purposes, we present the sequencing read abundance pattern of selected epige-

nomic marks in the neighborhoods of a type 1 diabetes-associated risk vari-

ant (rs3024505) and a benign variant (rs114490664) on chromosome 1 (Figure

3.2A). One can see that the neighborhoods of risk variant rs3024505 are en-

riched in the active chromatin marks, H3K27ac and H3K4me1, as well as an

open chromatin regions defined by DNase-seq and FAIRE-seq in the CD14 or

K562 cell line. In contrast, repressive chromatin marks, such as H3K9me3 and

H3K27me3 in the CD14 cell line, are depleted around risk variant rs3024505

versus benign variant rs114490664.

We further investigate whether some epigenomic features differ in terms of

the distribution of neighborhood read counts between risk variants and benign

ones. Those epigenomic features showing a significant distribution difference

are considered informative features. As an example, FAIRE-seq in the K562

cell line shows significant read enrichment (t-test statistics 6.03, p-value ă 10´8

) around risk variants associated with type 1 diabetes compared to benign ones,

while H3K9me3 in the CD14 cell line shows significant read depletion around

risk variants (t-test statistics -6.65, p-value ă 10´10) (Figure 3.2B).

For illustration purposes, Figure 3.2C shows 200 epigenomic profiles rep-
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resented by read counts in the neighborhoods of 147 risk variants associated

with type I diabetes and 147 randomly selected benign variants. The top 100

features that are mostly enriched in risk variants compared to benign ones and

the bottom 100 features that are mostly depleted in risk variants. Clearly,

there exist different enrichment patterns for the two sets of variants in these

selected features.

For the informative features with p-values of t-test below 0.09 (0.09 is the

selected p-value threshold for type 1 diabetes using the method described in the

Methods section), we find that more features associated with open chromatin

or TF binding show enrichment around risk variants, while more features asso-

ciated with histone modifications show depletion around risk variants (Figure

3.2D). As type 1 diabetes is an immune-related disease, it is interesting to ob-

serve that all eight features associated with open chromatin in the cluster of

differentiation (CD) cell line show enrichment in risk variants, while 14 features

associated with H3K9me3 in the CD cell line show depletion.
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Figure 3.2: Epigenomic profiles of risk variants and benign variants. (A)
Epigenomic profiles of active chromatin marks, H3K27ac and H3K4me1, re-
pressive chromatin marks, H3K9me3 and H3K27me3, open chromatin regions
in the CD14 and K562 cell lines in the neighborhoods of a risk variant,
rs3024505 (chr1:206939904), associated with type 1 diabetes, and a benign vari-
ant, rs114490664 (chr1:968345). (B) Distribution of read counts for FAIRE-seq
in the K562 cell line across 147 risk variants associated with type 1 diabetes and
corresponding benign variants; distribution of read counts of H3K9me3 ChIP-
seq in the CD14 cell line across 147 risk variants associated with type 1 diabetes
and corresponding benign variants. (C) Heatmap of standardized read counts
of top 100 epigenomic features and bottom 100 epigenomic features across 147
risk variants associated with type 1 diabetes and 147 corresponding benign risk
variants. Epigenomic features are ranked by the t-statistics from the most en-
riched to the most depleted in risk variants compared to benign variants. Read
counts are standardized by subtracting the average of read counts of each fea-
ture and divided by the standard deviation of read counts of each feature. (D)
Distribution of t-statistics for three types of epigenomic features: TF binding,
histone modification, and open chromatin. Within the informative features, 33
informative open chromatin-associated features are enriched while 17 informative
open chromatin-associated features are depleted; 96 TF-associated informative
features are enriched while 26 TF-associated informative features are depleted;
145 informative histone-associated features are enriched while 187 informative
histone-associated features are depleted.
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3.3.3 Disease-specific variant prioritization evaluation us-

ing cross-validation

Five-fold cross-validation is used to evaluate the predictive performance of dif-

ferent methods, and results are presented in the form of receiver operator char-

acteristics (ROC) curves with corresponding area under the curve (AUC) val-

ues. For demonstration purposes, we present here results from four diseases:

carotid artery disease (cardiovascular disease), macular degeneration (eye dis-

ease), ulcerative colitis (digestive system disease/immune disease), and multiple

sclerosis (immune disease) in Figure 3.3A.Figure 3.8 shows the corresponding

precision recall curves for the four diseases. The remaining 41 ROC curves are

presented in Figure 3.9. Overall, DIVAN achieves the best predictive perfor-

mance among all methods, with AUC values ranging from 0.65 to 0.88 (median

0.74), followed by GWAVA and GenoCanyon. For a comprehensive compari-

son, we present the AUC values of all methods compared across 45 diseases in

a heatmap (Figure 3.4A). The AUC values are included in Table 3.3, and the

average Matthews correlation coefficient (MCC) values of different methods

across 45 diseases are shown in Table 3.4. Moreover, we find DIVAN performs

the best among immune-related diseases, followed by multiple eye diseases and

urogenital disorders. On the other hand, identifying risk variants associated

with mental disorders and cardiovascular diseases seems more challenging for

DIVAN (Figure 3.4B).



60

A

B

Figure	3
Carotid Artery Diseases

False positive rate

Tr
ue

 p
os

itiv
e 

ra
te

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

●

●

●

●

DIVAN 0.759
GWAVA 0.606
CADD 0.568
Eigen 0.633
EigenPC 0.576
GenoCanyon 0.57

Ulcerative Colitis

False positive rate

Tr
ue

 p
os

itiv
e 

ra
te

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

●

●

●

●

DIVAN 0.83
GWAVA 0.675
CADD 0.548
Eigen 0.544
EigenPC 0.603
GenoCanyon 0.598

Multiple Sclerosis

False positive rate

Tr
ue

 p
os

itiv
e 

ra
te

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

●

●

●

●

DIVAN 0.817
GWAVA 0.655
CADD 0.5
Eigen 0.465
EigenPC 0.531
GenoCanyon 0.536

Macular Degeneration

False positive rate

Tr
ue

 p
os

itiv
e 

ra
te

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

●

●

●

●

DIVAN 0.781
GWAVA 0.593
CADD 0.511
Eigen 0.572
EigenPC 0.567
GenoCanyon 0.486

Carotid Artery Diseases

False positive rate

Tr
ue

 p
os

itiv
e 

ra
te

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

●

●

FS−Ensemble (DIVAN) 0.759
NoFS−Ensemble (DIVAN) 0.699
FS−NoEnsemble (DIVAN) 0.609
Base (DIVAN) 0.535

Ulcerative Colitis

False positive rate

Tr
ue

 p
os

itiv
e 

ra
te

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

●

●

FS−Ensemble (DIVAN) 0.83
NoFS−Ensemble (DIVAN) 0.768
FS−NoEnsemble (DIVAN) 0.675
Base (DIVAN) 0.624

Multiple Sclerosis

False positive rate

Tr
ue

 p
os

itiv
e 

ra
te

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

●

●

FS−Ensemble (DIVAN) 0.817
NoFS−Ensemble (DIVAN) 0.805
FS−NoEnsemble (DIVAN) 0.697
Base (DIVAN) 0.679

Macular Degeneration

False positive rate

Tr
ue

 p
os

itiv
e 

ra
te

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

●

●

FS−Ensemble (DIVAN) 0.781
NoFS−Ensemble (DIVAN) 0.772
FS−NoEnsemble (DIVAN) 0.636
Base (DIVAN) 0.588

Figure 3.3: Predictive performance of five-fold cross-validation on four diseases:
carotid artery disease, macular degeneration, ulcerative colitis, and multiple scle-
rosis. (A) ROC curves comparing the predictive performance among DIVAN and
CADD, GWAVA, Eigen, Eigen-PC, and GenoCanyon for the four diseases. (B)
ROC curves showing the effectiveness of feature selection and ensemble method
by comparing feature selection and ensemble combined, feature selection only,
ensemble only, and the baseline case: neither feature selection nor ensemble.
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Figure 3.4: Predictive performance of five-fold cross-validation across 45 dis-
eases in 12 disease classes. (A) Heatmap of five-fold cross-validation AUC values
for predictive performance comparison among DIVAN and CADD, GWAVA,
Eigen, Eigen-PC, and GenoCanyon across 45 diseases in 12 disease classes. (B)
Bar charts of five-fold cross-validation AUC values of DIVAN across 45 diseases
in 12 disease classes ranked in decreasing order. Disease classes are color-coded.
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Disease specificity of variant annotation

A key feature of DIVAN lies on its disease-specificity, which means the predic-

tive model is trained disease by disease using annotated disease-specific vari-

ants. To justify the necessity of the disease-specific assumption, we conduct an

experiment in which a model trained using variants from one disease is subse-

quently applied to classify variants annotated for a different disease. In the ex-

periment, we use four diseases from distinct disease classes: carotid artery dis-

ease (cardiovascular disease), macular degeneration (eye disease), Alzheimer’s

disease (mental disease), and multiple sclerosis (immune disease). For the

same disease training and testing, we report the AUC values of five-fold cross-

validation. As expected, we find decreased AUC values when a model trained

in one disease is applied to a different disease (Figure 3.10), which confirms the

advantage of using the disease-specific model adopted by DIVAN.

Effectiveness of feature selection and ensemble learning

To demonstrate the effectiveness of adopting the feature selection and ensemble

learning strategies, we conduct a performance comparison using four different

settings: baseline (no feature selection, no ensemble learning), feature selection

only, ensemble learning only, and feature selection combined with ensemble

learning. Again, we use the four aforementioned diseases as representatives

and five-fold cross-validation to evaluate the predictive performance, and re-

sults are presented in the form of ROC curves with corresponding AUC values

(Figure 3.3B), as well as precision recall curves (Figure 3.11). The results con-

firm that feature selection combined with ensemble learning achieves the best

performance. Moreover, either feature selection or ensemble learning alone

improves the predictive performance compared to the baseline.
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Contribution of different feature groups

Since most epigenomic features used in DIVAN come from three groups: TF

binding, histone modifications, as well as open chromatin (DNase-seq and

FAIRE-seq), it would be interesting to investigate which feature group con-

tributes relatively more to risk variant identification. In addition, existing

methods use called peaks from sequencing-based assays to represent epige-

nomics features, which is a binary indicator of whether a variant overlaps with

any peak (referred to as peak hereafter). Instead, by default DIVAN uses read

counts in the neighborhood of the variant as the feature representation (re-

ferred to as read hereafter) for the robustness of predictive performance when

limited features are available.

To compare performance with different feature groups and different feature

representations, we apply DIVAN to the aforementioned four diseases in dif-

ferent settings. We find that no matter whether peak or read is used, using all

feature groups achieves the best performance, as expected; and using features

related to histone modifications alone could achieve better predictive perfor-

mance than any other feature group. However, the contribution of each feature

group when using peak and read differs slightly (Figure 3.12). Specifically, using

features related to histone modifications alone achieves comparable predictive

performance no matter whether peak or read is used, whereas using read shows

much better performance than using peak as the feature representation for TF

binding and open chromatin. A possible explanation is that the continuous

read counts are more sensitive than peak overlap in detecting subtle differences

between risk and benign variants, especially when genome-wide coverage of the

feature is relatively sparse, such as TF binding or open chromatin.
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3.3.4 Disease-class variant prioritization

Diseases/phenotypes in the same disease/phenotype class are believed to be

likely more phenotypically related to each other, and we want to investigate the

predictive performance when including risk variants from diseases/phenotypes

that belong to the same class into the training set. This strategy is called

disease-class specificity, which is an extension of the disease-specificity strategy

adopted so far. Because only a handful of risk variants have been identified by

GWAS for most of the diseases/phenotypes, this strategy is rather attractive

since it allows the critically needed boost to the training set when only a few

variants have been identified.

To demonstrate the utility of this assumption, we perform a “leave-one-

disease-out” testing approach; that is, we build the model using known risk

variants of all but one disease within the disease class, and apply the model to

identify risk variants for the omitted disease. To illustrate the performance of

this strategy, we take five immune diseases reported in ARB, including rheuma-

toid arthritis, asthma, type 1 diabetes mellitus, systemic lupus erythematosus,

and multiple sclerosis, as examples. We observe promising predictive perfor-

mance since all AUC values are above 0.8, except for asthma (Figure 3.13).

3.3.5 Applying DIVAN to disease-specific variants in

the GRASP database

To further evaluate the performance of DIVAN, we take on a different testing

set using risk variants in the GRASP database [1], which includes around 8.87

million SNPs identified from 2,082 GWAS studies (accessed Mar 30th, 2016).

The large size of the database is mainly due to the fact that a less stringent p-
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value threshold (0.05) is used for risk SNP inclusion. For the testing set, we are

able to match 36 out of 45 ARB diseases in GRASP, and for each disease, we

only keep risk variants in non-coding regions with a p-value less than 10´4, and

further exclude risk variants collected in ARB for the same disease/phenotype,

we further remove duplicated variants (the same SNP being reported multiples

times from different platforms or different studies) in GRASP. The correspond-

ing benign variants are selected by randomly sampling ten times the number

of risk variants of each disease from the catalog of the 1000 Genomes Project,

excluding all GRASP variants.

For each of the 36 diseases, we use the same set of risk variants in ARB

as the training set, and the risk variants in GRASP but not in ARB as the

testing set. The number of training and testing variants for the 36 diseases are

summarized in Table 3.2. To avoid possible bias due to sampling variability,

for each disease, we repeat the whole procedure ten times with a different set

of benign variants (by random sampling) each time and calculate the average

AUC values. For illustration purposes, we compare the AUC values of different

methods for the four representative diseases (Figure 3.5A). DIVAN shows the

highest AUC values once again. For an overview, we present the average AUC

values of different methods across all 36 diseases in a heatmap (Figure 3.5B)

and in Table 3.5, and the average MCC values of different methods across 36

diseases are shown in Table 3.6. Overall, DIVAN shows the best performance

as it achieves the highest AUC values in 27 out of 36 diseases, and is close to

the best in the remaining nine diseases. GWAVA has the second-best predictive

performance for obtaining the highest AUC values in four diseases, followed by

GenoCanyon, with the highest AUC values in three diseases. For AUC values

achieved by DIVAN, we find it performs the best for immune-related diseases,
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which is consistent with the findings from the 45 ARB diseases using five-fold

cross-validation.
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Figure 3.5: Predictive performance on 36 diseases in GRASP database (A) Bar
charts of AUC values among DIVAN and CADD, GWAVA, Eigen, Eigen-PC,
and GenoCanyon for four diseases: hypertension, macular degeneration, ulcera-
tive colitis, and multiple sclerosis. The bar charts are sorted by the mean AUC
values, and the error bar describes the standard deviation. The training set is
risk variants collected from the ARB, and the testing set is the risk variants
collected from GRASP. (B) Heatmap of mean AUC values for predictive perfor-
mance comparison among DIVAN and CADD, GWAVA, Eigen, Eigen-PC, and
GenoCanyon across 36 diseases investigated.
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3.3.6 Applying DIVAN to regulatory variants in the

HGMD database

So far the risk variants we use are collected from ARB and GRASP databases

where the variants are disease-implicated by GWAS. It is also of great interest

to test variants from other sources. There are well-known databases available

that contain curated variants, which are often carefully selected by experts. For

example, variants with pathogenic or non-pathogenic effects in ClinVar are col-

lected from literature evaluation, clinical testing and research, and reviewed by

different expert groups. Mutations in HGMD are collected from the literature.

Unfortunately, among the collected 194 non-coding ClinVar variants used by

GWAVA, none of them are associated with any of the 45 diseases in ARB used

in the training set. This might be attributed to the fact that the majority of

the variants in ClinVar are either coding variants or associated with Mendelian

diseases. Because DIVAN is disease-specific, and requires training and testing

set from the same disease, we choose not to test DIVAN on ClinVar variants.

For HGMD, we collect 1614 disease-associated regulatory variants used by

GWAVA. In order to find out which disease is associated with each variant, we

manually query each of the 45 diseases on HGMD website to retrieve all regu-

latory variants in HGMD that are associated with any of the 45 diseases. By

looking for the overlap between the two sets of variants, we identify 117 unique

autosomal variants (excluding sex chromosomes and mitochondria) associated

with at least one of the 45 diseases.

Among these 117 variants, very few of them (less than 15) map to any one of

the 45 diseases individually, which is not enough to get meaningful comparison

results for a disease-specific study. Fortunately, we find that there are 34 vari-



69

ants associated with at least one disease in the immune disease class including

Asthma, Behcet syndrome, Ulcerative Colitis, Crohn’s disease, Inflammatory

bowel diseases and Systemic lupus erythematosus. Hence we group the 34 vari-

ants associated with diseases in the immune disease class as an independent

testing set, conduct a disease class-specific analysis using DIVAN and compare

the predictive performance with other methods. The corresponding benign

variants of the 34 immune disease-associated variants in the testing set are

chosen in the same way as for GRASP testing set. For this experiment, we do

not include GWAVA since it uses the 1614 HGMD variants as its training set.

For DIVAN, we train a disease class-specific model by pooling all the variants

in ARB that are associated with any of the aforementioned six immune-related

diseases together in the training set. For other methods that are not disease-

specific, we use their pre-computed scores. The AUC values are summarized

in Table 3.7. There we see that DIVAN virtually tied with GenoCanyon, and

is better than CADD, Eigen and EigenPC. The results demonstrate DIVAN ’s

robust performance on different independent testing sets.

3.3.7 Applying DIVAN on synonymous mutations

Though DIVAN is designed for the identification of non-coding variants, it is

interesting to see how DIVAN performs on coding variants especially synony-

mous mutations.

We collect synonymous mutations from the online database dbDSM [49],

which is a manuallycurated database that collects 1936 synonymous mutations-

disease association entries, In total, we have 1109 autosomal synonymous mu-

tations (excluding sex chromosomes and mitochondria). We find seven diseases

associated with more than 20 synonymous mutations in dbDSM are also among
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45 diseases in ARB; hence we use the seven diseases for performance compar-

ison. The corresponding benign variants for each disease in the testing set

are chosen in the same way as for GRASP testing set. The AUC values are

reported in Table 3.8.

The results show that overall GWAVA performs the best while DIVAN is

on par with the other methods, suggesting DIVAN is not as good in predicting

coding variants as it predict non-coding variants. This is not surprising since

all the features and the training procedure used by DIVAN are optimized for

prioritizing non-coding variants. On the other hand, GWAVA uses HGMD

regulatory mutations as the training set in which 75% of them lies within a

2kb window around TSS, indicating majority of HGMD mutations is close to

the coding regions. That might explain the better performance of GWAVA. In

the future, we plan to extend DIVAN ’s functionality to identify disease-specific

coding variants, by perhaps adding coding-region specific features.

3.3.8 Exploration and interpretation of features

Variability of factors across cell types

A key merit of DIVAN is its ability to consider a large number of cell type-

specific epigenomic profiles as features to accommodate the cell type-specific

nature of the epigenome, which aims to include as many features as possible,

without any screening up front, and let the algorithm select informative features

automatically. For some existing methods, such as GenoCanyon and Eigen,

epigenomic profiles of the same factor across different cell types are collapsed to

simplify the model or speed up computation. That way, the plastic epigenomic

profiles across cell types are ignored.
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To show the variability of epigenomic factors across cell types and the dy-

namic profiles of epigenomic factors across diseases, we obtain the p-values from

t-tests conducted between the risk and benign variants across 1,806 epigenomic

features for the four aforementioned diseases. We sort the factors profiled in

more than ten cell types by the number of features remaining in the informative

feature set and plot the log-transformed p-values (Figure 3.6A). One can see

that there is considerable variability of the p-values for the same factor across

different cell types, which confirms the necessity of considering the combina-

tion of factors and cell types as the epigenomic features. Moreover, the rank

of factors varies from disease to disease, further reflecting the variable nature

of these factors.

Overall, we see that the top-ranked factors for the four diseases are two

repressive chromatin marks, H3K9me3 and H3K27me3, followed by open chro-

matin, and two active chromatin marks, H3K4me1 and H3K36me3. The top

factor is H3K9me3 for carotid artery disease and macular degeneration, and

H3K27me3 for ulcerative colitis and multiple sclerosis. Both factors are re-

pressive chromatin marks. JunD, Pol2, and p300 also frequently rank high.

On the other hand, active chromatin marks, e.g., H3K4me3 and H3K27ac, do

not always appear among the top factors. Moreover, it is interesting to see

that EZH2 and H3K27me3 both top rank in multiple sclerosis and ulcerative

colitis as EZH2 represses gene transcription by mediating H3K27me3 methyla-

tion [50].

Informative features across different diseases

As the informative feature set helps improve the predictive performance, we

further investigate the number of informative features selected within three
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feature groups: histone modification, TF binding, and open chromatin (Figure

3.6B). Overall, the total numbers of informative features selected vary from

disease to disease, ranging from 664 (body weight) to 34 (inflammation) if

read is used as the feature, while the overall numbers of informative features

decrease, ranging from 549 (type 2 diabetes) to 41 (obesity) if peak is used as

the feature (Figure 3.14)

We also observe that the histone modifications feature group contributes

more to informative features than the TF binding or open chromatin feature

group. Moreover, more TF-associated and fewer histone-associated features

show up in the informative feature set when read rather than peak is used as

the feature (Figure 3.6B and Figure 3.14).
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Figure 3.6: Exploration and interpretation of epigenomic features. (A) Vio-
lin plot for the distribution of -log10 p-values of the top 10 factors (TF bind-
ing/histone modification/open chromatin/RNA polymerase) associated with
more than 10 epigenomic features for four diseases: carotid artery disease, macu-
lar degeneration, ulcerative colitis, and multiple sclerosis. P-values are calculated
by t-test on the read counts in the neighborhoods of the risk variants and benign
variants. (B) Number of informative features for three feature categories (TF
binding/histone modification/open chromatin) for 45 diseases across 12 disease
classes using read as the feature value. (C) Bar chart of -log10 p-values for top-
ranked features for selected diseases: type 1/type 2 diabetes, bipolar disorder,
obesity, neuroblastoma, Alzheimer’s disease, and inflammatory bowel disease.
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Interpretation of top features

Although the main goal of DIVAN is to distinguish disease-specific risk variants

from the vast pool of benign ones, we demonstrate that the feature selection

step could also help identify top features that are biologically meaningful.

To illustrate, we present some of the top features identified from selected dis-

eases, and the observed enrichment/depletion patterns are readily interpretable

(Figure 3.6C). For example, we find that H3K9me3 in CD cells, known to be

on the cell lineage that leads to immune-related disease, is depleted around

the risk variants associated with type 1 diabetes. Interestingly, H3K9me3 in

CD cells is also depleted around risk variants associated with another immune-

related disease: inflammatory bowel disease. H3K27me3, another repressive

chromatin mark, in pancreatic islet cells is found to be depleted around risk

variants associated with type 2 diabetes, a disease caused by pancreatic islet

dysfunction. For bipolar disorder, we find open chromatin regions in H1 cells

measured by FAIRE-seq are enriched, while H3K9me3 in the brain germinal

matrix, iPS, and neurosphere cultured cells is depleted in the neighborhoods

of their risk variants. Risk variants associated with another mental disorder,

Alzheimer’s disease, are also depleted of H3K9me3 in fetal brain, iPS, and

brain anterior caudate cells, but enriched of open chromatin regions in H1 cells

measured by FAIRE-seq. Risk variants associated with obesity are depleted

of H3K9me3 in fetal intestine and fetal adrenal gland cells. H3K9me3 in neu-

rosphere cultured cells and H3K4ac in H1-derived mesenchymal stem cells are

depleted around risk variants associated with neoplasms. For the above dis-

eases investigated, we find that H3K9me3 consistently shows depletion, while

open chromatin consistently shows enrichment around risk variants.
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H3K9me3 is the most informative factor for risk variant identification

across diseases/phenotypes

In addition to identify informative epigenomic factors for differentiating risk

variants from benign variants in each individual disease, we also want to iden-

tify the “frequent fliers,” i.e., the epigenomic factors that contribute to a wide

spectrum of diseases. To find out, for each disease, we check which factors are

over-represented in the list of identified informative features using a binomial

test. Let ni represent the number of informative features in disease i; N the

total number of features in this study (1806); mij represent the number of

features associated with factor j in disease i; kij represent the number of infor-

mative features associated with factor j in disease i. The p-value for factor j

over-represented in disease i could be calculated as,

ppx ą kij|ni, pijq “
ni
ÿ

x“kij`1

ˆ

ni
x

˙

¨ p̂ij
x
p1´ p̂ijq

ni´x

p̂ij “
ni
N

Any factor with p-value less than the Bonferroni corrected threshold (0.05/45)

is said to be over-represented in the disease i. At the end, for each factor, we

tally the number of times it is over-represented across all 45 diseases (Figure

3.7A). We find that H3K9me3 and open chromatin are the top informative

factors; H3K9me3 is over-represented in 34 out of 45 diseases, while open chro-

matin is over-represented in 25 out of 45 diseases.

Consistent with previous finding that histone marks are the most frequent

features to be ranked at the top among the three types of epigenomic features

(Figure 3.6B), Figure 3.7A shows that histone marks are associated with more



76

diseases than TFs overall; however, to our surprise, among the histone marks

that are most significant, most of them are associated with repressive chro-

matin, such as H3K9me3 and H3K27me3, and H3K9me3 in particular. We

also confirm the well-documented fact that open chromatin marked by DNase-

seq and FAIRE-seq is enriched around risk variants [51].

To further illustrate the dominance of H3K9me3 compared to other histone

marks among top features, we plot the enrichment of different histone marks

sorted by p-values for type 1 diabetes (Figure 3.7B). H3K9me3 is the most

over-represented factor among the informative features, associated with 40% of

the top 100 features, followed by H3K27me3 (29%), and H3K4me1 (4%). Other

marks associated with active chromatin, H3K4me3, H3K27ac, and H3K9ac, are

not significantly enriched among the top features.

It has been shown that genomic regions marked by active chromatin, such

as H3K4me1, are enriched near GWAS-identified risk variants [4, 29], so we

are interested to see whether regions marked by repressive chromatin, such

as H3K9me3, are depleted by risk variants. To do this, we collect the called

peaks of H3K9me3 and H3K4me1 in the CD14 cell line, known to be from the

cell lineage that leads to immune-related diseases, and calculate the enrich-

ment of risk variants associated with each of the 45 diseases in those peaks

using traseR [52], an R package that is capable of searching and ranking dis-

eases/phenotypes for a given set of genomic regions based on the enrichment

level of trait-associated SNPs. We plot the p-values on the logarithm scale

of the enrichment test across 11 immune diseases (Figure 3.7C). We find that

none of the immune-related diseases are statistically significantly enriched in

H3K9me3, while all but asthma and inflammation are statistically significantly

enriched in H3K4me1.
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Figure 3.7: Association between factors and diseases. (A) Number of diseases
statistically significantly associated with different factors (TF binding/histone
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3.3.9 Additional tests on more settings of DIVAN

For a complex machine learning problem like what we are tackling, different

settings in training and testing might cause overestimate or underestimate of

the actual performance. Here we carry out additional tests under different

experimental settings to investigate the robustness of DIVAN ’s performance.

Different sources of benign variants in the training set

Currently, the set of benign variants are chosen from the 1000 Genomes (phase

I). Since the risk variants are mostly GWAS SNPs, to avoid picking up features

that might be a by-product of SNP design and selection, we instead choose

benign variants from GWAS SNPs as well, found on one of the latest GWAS

genotyping array-Affymetrix Genome-Wide Human SNP array 6.0. To be spe-

cific, we collect 900,611 non-coding GWAS SNPs out of 934,968 GWAS SNPs

from the SNP annotation file (http://www.affymetrix.com/Auth/analysis/

downloads/na35/genotyping/GenomeWideSNP_6.na35.annot.csv.zip) to con-

struct the set of benign variants for each disease. Using the new set of benign

variants, we retrain the disease-specific model for the 45 diseases in ARB, ob-

tain the CV-AUC values (Table 3.9) for the five-fold cross-validation and the

predicted AUC values for the 36 diseases in GRASP in the independent test

(Table 3.10 and 3.11).

For the 45 diseases found in ARB, the Pearson correlation coefficient be-

tween the two sets of AUC values is 0.979, (p-value ă 2.2e-16). The average

CV-AUC values for the 45 diseases changes from 0.745 (sd: 0.060) to 0.742 (sd:

0.061). For the 36 diseases found in GRASP, the Pearson correlation coefficient

between the two sets of AUC values is 0.950, (p-value ă 2.2e-16). The average

predicted AUC values for the 36 diseases changes from 0.661 (sd: 0.055) to

http://www.affymetrix.com/Auth/analysis/downloads/na35/genotyping/GenomeWideSNP_6.na35.annot.csv.zip
http://www.affymetrix.com/Auth/analysis/downloads/na35/genotyping/GenomeWideSNP_6.na35.annot.csv.zip
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0.658 (sd: 0.061). The results show that the AUC values are similar either

using SNPs from the GWAS genotyping array or using SNPs 1000 Genomes to

form the set of benign variants in the construction of disease-specific model.

Different criteria of choosing benign variants in the training set

By default, DIVAN uses distance to the nearest TSS as the criterion to choose

a set of benign variants such that distances to the nearest TSS matched (have a

similar empirical distribution) with those of the risk variants. The distance to

TSS-matched criterion keeps the two sets (risk and benign) on leveled grounds

in their chromatin profiles because non-coding disease-associated variants in

ARB tend to locate close to TSS (mostly within 200kb, Figure 3.15) and chro-

matin landscape is quite different between promoter regions and intergenic

regions. The same criterion has also been adopted by GWAVA.

We also adopt an alternative and perhaps more stringent criterion to choose

the set of benign variants in the training set in which we require that all benign

variants have to be located within 10kb of a risk variant. Here we use a slightly

wider region than the 1kb region used by GWAVA but narrower than the 100kb

region used by Eigen. This is because the histone mark profiles, which DIVAN

used predominantly, typically extend to a few kbs.

We conduct another test using the new region-matched benign set (denoted

as region) and compare the results with the results obtained earlier using the

distance to TSS matched benign set (denoted as TSS). We find average CV-

AUC values for the 45 diseases in ARB changes from 0.745 (sd: 0.060) to

0.680 (sd: 0.037); and the average AUC values for the 36 diseases in GRASP

changes from 0.661 (sd: 0.055) to 0.637 (sd: 0.043). The CV-AUC values are

shown in Table 3.12. The decrease of predictive performance using the region-
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matched benign set is consistent with what is observed in GWAVA. Despite the

slight drop in performance when using the region-matched criterion, DIVAN

still maintains its lead over all the competitors tested. In the independent

test, among the 36 diseases in GRASP, DIVAN is the best performer in 23

diseases, followed by GWAVA (7 diseases), GenoCanyon (4 diseases) and Eigen

(2 diseases). The predicted AUC values are shown in Table 3.13 and 3.14.

Impact of nearby variants on cross-validation

In the cross validating study described earlier, although there is no overlap of

variants between the training and the testing sets, it is possible that a risk

variant in the testing set is located near a risk variant in the training set

which may potentially inflate the CV performance. In order to eliminate such

influence, before preforming CV, we further remove risk variants that are too

close to each other and do the same thing for benign variants as well. To

be specific, we first sort all risk variants (or benign variants) based on their

genomic locations, and only keep one variant if multiple variants happen to be

less than 10kb away. That way, we make sure that neither training folds nor the

testing fold contains risk variants (or benign variants) at the same or nearby

location (10kb). The updated numbers of risk variants for the 45 diseases in

ARB are shown in Table 3.2. The numbers of risk variants of the 45 diseases

in ARB decrease around 16% on average.

To evaluate the impact of this change, we conduct an experiment using the

new rule and compare the results with those obtained before. We retrain all the

disease-specific models and calculate the CV-AUC values for the 45 diseases in

ARB (Table 3.15). We find that using the new rule, the average AUC values

for the 45 diseases changes from 0.745 (sd: 0.060) to 0.736 (sd: 0.056) and the
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Pearson correlation coefficient between the two sets of CV-AUC values is 0.917

(p-value ă 2.2e-16). In conclusion, we see little difference the new rule has on

the outcome of CV-AUC values. DIVAN still outperforms all the competitors

by a comfort margin.

Impact of nearby variants on independent test

For the independent test described earlier, although we have excluded all ARB

variants from the GRASP testing set, it is possible that some variants in the

GRASP testing set are located near ARB variants used in the training set,

which may affect the independent test performance. Therefore, to eliminate

such influence, for each disease, we further exclude risk variants in the GRASP

testing set that are close to risk variants found in the ARB training set. The

updated numbers of disease-associated SNPs for the 36 diseases in GRASP can

be found in Table 3.2. The numbers of risk variants of 36 diseases in GRASP

decrease around 7% on average.

To be specific, for each disease, hypertension for example, we exclude any

hypertension-associated variants in the GRASP testing set that fall within 10kb

of any hypertension-associated variants found in the ARB training set. We then

repeat the performance comparison experiment using the newly reduced testing

set. The results are summarized in Table 3.16. The predicted AUC values are

shown in Table 3.17. The average MCC values are shown in Table 3.18.

From Table 3.16, we see that despite slightly dampened performance, re-

moving variants in the testing set that are close to variants in the training set

does not change the fact that DIVAN significantly outperforms all the other

competing methods that have been tested.
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Different size of benign set

Because there are much more benign variants than risk variants, it is an inter-

esting question that how many benign variants should be included in training

set. In the CV described earlier, we choose the size of the benign variants to be

ten times that of the risk variants. Here we investigate whether increasing the

size of the benign set to 100 times of the risk set has any effect on the predictive

performance. We calculate Pearson correlation coefficient between the two sets

of CV-AUC values obtained from the two settings. We also summarize the

mean and standard deviation of the CV-AUC values for each setting in Table

3.19. The CV-AUC values are shown in Table 3.20. The predicted AUC values

are shown in Table 3.21 and 3.22. Our result suggests that overall, increasing

the size of the benign variant set when set up the training model does not

change much in terms of the predictive performance in CV.

For the independent test, we also experiment with increasing the number

of benign variants from 10 times that of the risk variants to 100 times for each

disease and check whether the different level of imbalance in the testing set has

any effect on the prediction performance. The new predicted AUC values are

shown in Table 3.23 and 3.24, where we could see that the AUC values remain

stable on the 36 diseases in GRASP. The Pearson correlation coefficient between

the two sets of 36 predicted AUC values is 0.999 (p-value ă 2.2e-16) when the

number of benign variants is 10 and 100 times of risk variants respectively.

Thus, we see that increasing the size of the benign variants has little effect

on the predictive performance for the independent test, which suggests that

the performance of DIVAN is not significantly affected with different level of

risk/benign imbalance.
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3.4 Discussion

In this work we describe DIVAN, a feature selection-based ensemble learning

framework for identifying disease-specific, non-coding risk variants. DIVAN

performs favorably when compared to existing state-of-the-art methods, both

supervised (CADD, GWAVA) and unsupervised (GenoCanyon, Eigen), for de-

tecting disease-specific non-coding risk variants. From a clinical perspective, it

is of great practical and conceptual value to evaluate the impact of a variant on

individual disease/phenotype. Because the number of disease-implicated vari-

ants is far fewer than the number of static genomic and epigenomic annotations

for most diseases, to avoid potential over-fitting in the high-dimensional set-

ting, we employ model selection to remove non-informative features. Besides

feature selection, the ensemble method is adopted to improve the predictive

performance due to the nature of the imbalance between risk variants and be-

nign ones. This combination of feature selection and ensemble method makes

DIVAN more powerful and robust.

Another major finding of the study is that the depletion of H3K9me3, a

histone mark associated with repressed chromatin, is the most prominent hall-

mark around risk variants. Overall, histone marks contribute more informative

features in risk variant identification than transcription factors and open chro-

matin in DIVAN. We believe the above findings have profound implications for

understanding the mechanism behind the way non-coding variants make their

impact on diseases/phenotypes via epigenetic modifications.

A key emphasis of DIVAN lies on disease specificity. We believe this can be

achieved by using variants that are specific to that disease in the training set as

opposed to including all variants that have shown associations with some dis-

eases. Despite a small training set, we show that advanced statistical learning
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techniques can help us overcome this challenge and achieve better performance

in identifying variants specific to that disease. Unlike existing approaches, DI-

VAN uses thousands of annotations from various public resources, including

DNase-seq, FAIRE-seq, and TF/Histone ChIP-seq, across different cell types.

The more annotations collected, the better the chance informative annotations

will be discovered, resulting in a better chance of discriminating risk variants

from benign ones. There is still room to improve DIVAN further. Other

types of genomic and epigenomic features, including eQTL, DNA methylation,

and pre-computed scores from GWAVA, CADD, and GenoCanyon, will also be

added into DIVAN. Another important regulatory mechanism through which

non-coding variants influence diseases is the disruption of splice junction and

splicing enhancer [53]. The mutations effect on splice sites is similar to non-

sense or missense mutations. A myriad of cases about splice site variants have

been reported in the literature [54–58]. Because of this, we have decided to

add a splicing-related feature, which is the distance to the splice sites (586,795

such sites can be found in Ensemble [59] release 70), into the next release of

DIVAN. The same feature has been used in GWAVA.

Currently, to represent epigenomic features, existing methods use binary

indicators showing whether a ChIP-seq peak overlaps with the variant. In

DIVAN, we apply an alternative method in which continuous ChIP-seq read

count in the vicinity of the variant are used to represent epigenomic features.

The advantage of using read count rather than peak presence as the feature

lies on the former’s better sensitivity and ability to distinguish risk variants

from benign ones with a limited number of epigenomic features and to detect

significant differences in both enrichment and depletion (Figure 3.16). More-

over, our analyses also show that using read count as the feature results in
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more informative features being included in the model, especially for features

associated with TF binding.

One of the key findings from this study is that histone marks associated with

repressive chromatin, in particular, H3K9me3, turns out to be an important

feature for risk variant identification. For most of the diseases, we find that

this particular repressive mark is often among the top-ranked features, showing

significant depletion around the risk variants compared to benign ones. Such

a finding is consistent with what has been reported in the literature. In a

recent study, Pickrell found that repressed chromatin is significantly depleted

around SNPs associated with multiple phenotypes [27]. Chen et al. found

that the binding regions of another repressive histone mark, H3K27me3, are

significantly less likely to overlap with risk SNP blocks of prostate cancer [60].

Despite these findings, repressive chromatin marks do not play an important

role in existing methods for risk variant annotation. For histone marks, almost

all attention has been focused on the enrichment of active chromatin marks.

For example, the three histone marks used in CADD and Eigen are H3K27ac,

H3K4me1, and H3K4me3. A primary reason why only active chromatin marks

are used is that it is easier to detect enrichment of a factor, but not depletion

when peak is used as the feature. In contrast, using read around the variants

as the feature, we are able to detect enrichment as well as depletion.

It is worth clarifying that the risk variants considered in this study are not

necessarily “causal” variants since in most cases, no evidence beyond significant

association p-values derived from GWAS studies separates them from the mil-

lions of variants found throughout the genome. It would be interesting to test

DIVAN using functionally validated variants as the training set. However, the

number of such variants is very limited and insufficient for study on individual
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diseases today.

A potential application of DIVAN is personal genome sequencing inter-

pretation. In the genome of an individual patient, it is expected that many

novel, rare, and non-coding variants will be detected. Due to the sample size

limitation, little information can be learned from GWASs for these rare vari-

ants. Alternatively, by looking at the surrounding regions of such variants and

comparing to the genomic and epigenomic profiles of GWAS-associated risk

variants represented by DIVAN, we can potentially gauge their impact on a

particular disease. We have pre-computed DIVAN scores for every base in the

human genome, which we believe will be a great resource for annotating rare

and non-coding variants that would be identified in personal genome sequencing

studies.

3.5 Appendix

3.5.1 Availability of data and material

The variants used in the training set are available at Association Results

Browser (https://www.ncbi.nlm.nih.gov/projects/gapplusprev/sgap_plus.

htm). The variants used in the GRASP testing set are available at https://s3.

amazonaws.com/NHLBI_Public/GRASP/GraspFullDataset2.zip. The noncod-

ing ClinVar variants, noncoding HGMD variants and variants in the Ensembl

variation database (release 70) are available at ftp://ftp.sanger.ac.uk/pub/

resources/software/gwava/v1.0/. Vcf files in 1000 Genomes Project (Phase

I) could be downloaded from ftp://share.sph.umich.edu/1000genomes/fullProject/

2012.03.14/. The variants are detected in the same way as traseR [52]. Vari-

ants in COSMIC (v78) could be downloaded from http://cancer.sanger.

https://www.ncbi.nlm.nih.gov/projects/gapplusprev/sgap_plus.htm
https://www.ncbi.nlm.nih.gov/projects/gapplusprev/sgap_plus.htm
https://s3.amazonaws.com/NHLBI_Public/GRASP/GraspFullDataset2.zip
https://s3.amazonaws.com/NHLBI_Public/GRASP/GraspFullDataset2.zip
ftp://ftp.sanger.ac.uk/pub/resources/software/gwava/v1.0/
ftp://ftp.sanger.ac.uk/pub/resources/software/gwava/v1.0/
ftp://share.sph.umich.edu/1000genomes/fullProject/2012.03.14/
ftp://share.sph.umich.edu/1000genomes/fullProject/2012.03.14/
http://cancer.sanger.ac.uk/cosmic/download
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ac.uk/cosmic/download.

For the pre-computed scores used in the study, scores for variants in CADD

(1000 Genomes Phase III) are available at http://krishna.gs.washington.

edu/download/CADD/v1.3/1000G_phase3.tsv.gz. Scores for variants in GWAVA

are available ftp://ftp.sanger.ac.uk/pub/resources/software/gwava/v1.

0/VEP_plugin/gwava_scores.bed.gz. Scores for variants in Eigen/EigenPC

could be downloaded from https://xioniti01.u.hpc.mssm.edu/v1.1/. Scores

for GenoCanyon (every base in the human genome (hg19) ) could be down-

loaded from http://genocanyon.med.yale.edu/GenoCanyon_Downloads.html.

For the annotations used in the study, GREP elements are downloaded

from http://mendel.stanford.edu/SidowLab/downloads/gerp/. The re-

peated elements are retrieved from UCSC genome browser (https://genome.

ucsc.edu/). The mapped read bam files (hg19) in ENCODE are downloaded

from http://genome.ucsc.edu/ENCODE/downloads.html for several collec-

tions including Broad Histone, SYDH Histone, UNC FAIRE, Duke DNaseI HS,

HAIB TFBS and SYDH TFBS. The mapped read bam files (hg19) in Roadmap

Epigenomes Project are downloaded from https://www.ncbi.nlm.nih.gov/

geo/roadmap/epigenomics/.

The pre-computed DIVAN scores and source codes of DIVAN toolkit are

freely available under the GNU Public License v3 at https://sites.google.

com/site/emoryDIVAN/. The source codes of DIVAN toolkit are additionally

deposited at GitHub (https://github.com/lichenbiostat86/DIVAN/releases)

and have been assigned an MIT open source license with the DOI 10.5281/zen-

odo.165849.

http://cancer.sanger.ac.uk/cosmic/download
http://cancer.sanger.ac.uk/cosmic/download
http://krishna.gs.washington.edu/download/CADD/v1.3/1000G_phase3.tsv.gz
http://krishna.gs.washington.edu/download/CADD/v1.3/1000G_phase3.tsv.gz
ftp://ftp.sanger.ac.uk/pub/resources/software/gwava/v1.0/VEP_plugin/gwava_scores.bed.gz
ftp://ftp.sanger.ac.uk/pub/resources/software/gwava/v1.0/VEP_plugin/gwava_scores.bed.gz
https://xioniti01.u.hpc.mssm.edu/v1.1/
http://genocanyon.med.yale.edu/GenoCanyon_Downloads.html
http://mendel.stanford.edu/SidowLab/downloads/gerp/
https://genome.ucsc.edu/
https://genome.ucsc.edu/
http://genome.ucsc.edu/
https://www.ncbi.nlm.nih.gov/geo/roadmap/epigenomics/
https://www.ncbi.nlm.nih.gov/geo/roadmap/epigenomics/
https://sites.google.com/site/emoryDIVAN/
https://sites.google.com/site/emoryDIVAN/
https://github.com/lichenbiostat86/DIVAN/releases
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3.5.2 Supplementary figures
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Figure 3.8: Precision-recall curves of five-fold cross-validation on four diseases:
carotid artery disease, macular degeneration, ulcerative colitis, and multiple scle-
rosis.



89

Figure 3.9: ROC curves of five-fold cross-validation for 41 diseases
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Figure 3.10: Cross-disease prediction shows the necessity for disease speci-
ficity of variant prioritization by using four diseases from four different disease
classes: carotid artery disease (cardiovascular disease), Alzheimer’s disease (men-
tal disease), multiple sclerosis (immune disease), and macular degeneration (eye
disease).
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(a) ROC curves showing that disease-specific predic-

tion outperforms cross-disease prediction
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Figure 3.11: Precision-recall curves showing the effectiveness of the feature
selection and ensemble method by comparing feature selection and ensemble
combined, feature selection only, ensemble only, and the baseline case: neither
feature selection nor ensemble.
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Figure 3.12: Contribution of three different feature groups, TF binding/histone
modification/open chromatin, on prediction in four diseases: carotid artery dis-
ease, macular degeneration, ulcerative colitis, and multiple sclerosis
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(a) ROC curves showing the predictive performance using each of

the three feature groups of epigenomic features in the predictive

model: TF binding, histone modification, and open chromatin, with

read as the continuous feature for the four diseases
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Immune Diseases
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Figure 3.13: ROC curves showing predictive performance of disease-class vari-
ant prioritization for immune diseases, including rheumatoid arthritis, asthma,
type 1 diabetes mellitus, systemic lupus erythematosus, and multiple sclerosis.
The ROC curves are generated by using a “leave-one-disease-out” approach; that
is, the predictive model is built using variants of all other diseases within the
disease class, tested on the variants of the disease being left out.



98

Number of informative features

nu
m

be
r 

of
 fe

at
ur

es

0

100

200

300

400

500

600

700

8:
Dia

be
te

s 
M

el
litu

s,
 T

yp
e 

2

6:
Dia

be
te

s 
M

el
litu

s,
 T

yp
e 

1
3:

Stro
ke

3:
Cor

on
ar

y 
Arte

ry
 D

ise
as

e

6:
M

ul
tip

le
 S

cle
ro

sis

6:
Arth

rit
is,

 R
he

um
at

oi
d

6:
Beh

ce
t S

yn
dr

om
e

5:
M

ac
ul

ar
 D

eg
en

er
at

io
n

3:
Hyp

er
tro

ph
y, 

Le
ft 

Ve
nt

ric
ul

ar

3:
Cor

on
ar

y 
Dise

as
e

6:
Lu

pu
s 

Ery
th

em
at

os
us

, S
ys

te
m

ic

7:
Alzh

ei
m

er
 D

ise
as

e

3:
M

yo
ca

rd
ia

l I
nf

ar
ct

io
n

6:
Cro

hn
 D

ise
as

e

10
:P

ar
kin

so
n 

Dise
as

e

1:
Bod

y 
W

ei
gh

t

6:
Pso

ria
sis

1:
Bod

y 
W

ei
gh

t C
ha

ng
es

7:
M

en
ta

l C
om

pe
te

nc
y

6:
In

fla
m

m
at

or
y 

Bow
el

 D
ise

as
es

6:
Ast

hm
a

2:
Pro

st
at

ic 
Neo

pl
as

m
s

2:
Neu

ro
bl

as
to

m
a

3:
Hea

rt 
Fa

ilu
re

12
:A

lb
um

in
ur

ia

6:
Col

itis
, U

lce
ra

tiv
e

7:
Sch

izo
ph

re
ni

a

7:
Bip

ol
ar

 D
iso

rd
er

3:
Hyp

er
te

ns
io

n

7:
Dep

re
ss

ive
 D

iso
rd

er
, M

aj
or

10
:A

m
yo

tro
ph

ic 
La

te
ra

l S
cle

ro
sis

8:
In

su
lin

 R
es

ist
an

ce

7:
Atte

nt
io

n 
Def

ici
t D

iso
rd

er
 w

ith
 H

yp
er

ac
tiv

ity

4:
Dia

be
tic

 N
ep

hr
op

at
hi

es

8:
M

et
ab

ol
ic 

Syn
dr

om
e 

X

7:
Alco

ho
lis

m

2:
Pa

nc
re

at
ic 

Neo
pl

as
m

s

3:
Car

di
ov

as
cu

la
r D

ise
as

es

6:
In

fla
m

m
at

io
n

9:
O

st
eo

po
ro

sis

2:
Bre

as
t N

eo
pl

as
m

s

3:
Car

ot
id

 A
rte

ry
 D

ise
as

es

3:
Dea

th
, S

ud
de

n,
 C

ar
di

ac
11

:S
le

ep
1:

O
be

sit
y

●

●

●

OpenChrom−Seq
TF−ChIPSeq
Histone−ChIPSeq

Figure 3.14: Bar chart showing the number of informative features for three
feature categories (TF binding/histone modification/open chromatin) for 45 dis-
eases when using peak as the feature
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Figure 3.15: Distribution of distances between non-coding SNPs associated
with the 45 diseases in ARB to their nearest TSS (ignoring stand)
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Figure 3.16: Distribution of enrichment proportions of H3K9me3 features and
open chromatin features when using peak and read as the feature. The enrich-
ment proportion is defined as the ratio between average read counts of each
H3K9me3/open chromatin feature on risk variants and benign variants respec-
tively.
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Figure 3.17: Distributions of test statistics and p-values calculated between risk
variants and benign variants for four diseases: carotid artery disease, macular
degeneration, ulcerative colitis, and multiple sclerosis
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(a) Distribution of t-test statistics using read as the

feature for the four diseases
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Figure 3.18: ROC curves and precision-recall curves of five-fold cross-validation
using three base learners, decision tree, SVM, and Lasso, for four diseases:
carotid artery disease, macular degeneration, ulcerative colitis, and multiple scle-
rosis
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(a) ROC curves of five-fold cross-validation for three

base learners: decision tree, SVM, and Lasso on the

four diseases
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3.5.3 Supplementary tables

Table 3.2: Summary of the number of risk variants, the number of reduced risk
variants in ARB such that none is within 10kb of another; the number of risk
variants in the GRASP database but not in ARB, and the number of risk variants
in the GRASP database 10kb away from the corresponding disease-specific risk
variants in ARB

disease/trait disease class #SNP(ASB) #SNP(ASB,one in 10kb window) #SNP(GRASP,non-overlapping from ASB) #SNP(GRASP, 10kb away from ASB)
Body Weight body weight 857 744 X X
Body Weight Changes body weight 81 74 15 15
Obesity body weight 53 47 600 577
Breast Neoplasms cancer 155 135 381 339
Neuroblastoma cancer 268 231 53 43
Pancreatic Neoplasms cancer 190 150 66 37
Prostatic Neoplasms cancer 215 198 463 423
Carotid Artery Diseases cardiovascular 80 70 X X
Coronary Artery Disease cardiovascular 584 467 3185 3184
Coronary Disease cardiovascular 176 152 X X
Death, Sudden, Cardiac cardiovascular 46 46 X X
Heart Failure cardiovascular 530 491 22 22
Hypertension cardiovascular 201 165 491 480
Myocardial Infarction cardiovascular 584 529 396 392
Stroke cardiovascular 725 680 21 21
Cardiovascular Diseases cariovascular 63 63 33 31
Hypertrophy, Left Ventricular cariovascular 143 112 13 13
Diabetic Nephropathies endocrine 159 107 X X
Macular Degeneration eye disease 258 170 2989 2283
Arthritis, Rheumatoid immune 100 94 6638 6017
Asthma immune 252 232 654 578
Behcet Syndrome immune 229 101 212 144
Colitis, Ulcerative immune 67 58 385 350
Crohn Disease immune 59 53 1049 960
Diabetes Mellitus, Type 1 immune 147 100 764 585
Inflammation immune 70 55 76 76
Inflammatory Bowel Diseases immune 91 76 104 103
Lupus Erythematosus, Systemic immune 184 133 194 175
Multiple Sclerosis immune 212 141 444 433
Psoriasis immune 106 60 374 360
Alcoholism mental 261 206 128 128
Alzheimer Disease mental 202 188 888 852
Attention Deficit Disorder with Hyperactivity mental 197 190 294 289
Bipolar Disorder mental 268 230 1937 1873
Depressive Disorder, Major mental 85 77 954 929
Mental Competency mental 99 89 X X
Schizophrenia mental 233 187 1270 1239
Diabetes Mellitus, Type 2 metabolic disease 181 159 2224 2197
Insulin Resistance metabolic disease 170 146 95 95
Metabolic Syndrome X metabolic disease 40 30 20 20
Osteoporosis musculoskeletal 67 65 X X
Amyotrophic Lateral Sclerosis nervous system 197 160 364 354
Parkinson Disease nervous system 325 282 X X
Sleep psychological 79 78 99 99
Albuminuria urogenital 63 60 X X
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Table 3.3: Summary of CV-AUC values of five-fold cross-validation for the 45
diseases in ARB for all risk variants when benign variants are 10 times of the
risk variants in the training set

disease/trait class DIVAN GWAVA GenoCanyon CADD Eigen EigenPC
Body Weight body weight 0.686 0.597 0.544 0.525 0.57 0.547
Body Weight Changes body weight 0.738 0.612 0.519 0.584 0.597 0.516
Obesity body weight 0.839 0.639 0.592 0.482 0.594 0.629
Breast Neoplasms cancer 0.729 0.624 0.608 0.545 0.622 0.615
Neuroblastoma cancer 0.678 0.566 0.499 0.533 0.523 0.537
Pancreatic Neoplasms cancer 0.735 0.605 0.583 0.494 0.5 0.577
Prostatic Neoplasms cancer 0.698 0.618 0.567 0.546 0.545 0.55
Carotid Artery Diseases cardiovascular 0.759 0.606 0.57 0.568 0.633 0.576
Coronary Artery Disease cardiovascular 0.694 0.598 0.55 0.521 0.528 0.531
Coronary Disease cardiovascular 0.691 0.613 0.59 0.519 0.553 0.556
Death, Sudden, Cardiac cardiovascular 0.829 0.581 0.604 0.496 0.56 0.57
Heart Failure cardiovascular 0.664 0.606 0.539 0.52 0.516 0.538
Hypertension cardiovascular 0.718 0.604 0.583 0.486 0.523 0.536
Myocardial Infarction cardiovascular 0.676 0.608 0.553 0.525 0.537 0.55
Stroke cardiovascular 0.665 0.625 0.55 0.524 0.53 0.526
Cardiovascular Diseases cardiovascular 0.739 0.569 0.482 0.497 0.557 0.592
Hypertrophy, Left Ventricular cardiovascular 0.744 0.618 0.548 0.514 0.5 0.522
Diabetic Nephropathies endocrine 0.719 0.565 0.566 0.527 0.529 0.51
Macular Degeneration eye disease 0.781 0.593 0.486 0.511 0.572 0.567
Arthritis, Rheumatoid immune 0.762 0.66 0.601 0.521 0.557 0.59
Asthma immune 0.676 0.609 0.554 0.529 0.53 0.517
Behcet Syndrome immune 0.848 0.603 0.535 0.516 0.426 0.468
Colitis, Ulcerative immune 0.83 0.675 0.598 0.548 0.544 0.603
Crohn Disease immune 0.864 0.668 0.651 0.511 0.521 0.579
Diabetes Mellitus, Type 1 immune 0.856 0.676 0.55 0.506 0.499 0.53
Inflammation immune 0.804 0.585 0.521 0.465 0.446 0.514
Inflammatory Bowel Diseases immune 0.775 0.613 0.533 0.516 0.538 0.545
Lupus Erythematosus, Systemic immune 0.813 0.629 0.533 0.516 0.488 0.538
Multiple Sclerosis immune 0.817 0.655 0.536 0.5 0.465 0.531
Psoriasis immune 0.881 0.664 0.494 0.505 0.47 0.531
Alcoholism mental 0.681 0.573 0.547 0.527 0.501 0.519
Alzheimer Disease mental 0.718 0.64 0.604 0.517 0.528 0.588
Attention Deficit Disorder with Hyperactivity mental 0.687 0.596 0.601 0.502 0.546 0.57
Bipolar Disorder mental 0.706 0.609 0.566 0.518 0.566 0.567
Depressive Disorder, Major mental 0.746 0.601 0.528 0.543 0.556 0.57
Mental Competency mental 0.742 0.539 0.538 0.531 0.6 0.57
Schizophrenia mental 0.731 0.561 0.602 0.506 0.548 0.567
Diabetes Mellitus, Type 2 metabolic disease 0.709 0.608 0.65 0.525 0.55 0.551
Insulin Resistance metabolic disease 0.715 0.61 0.579 0.542 0.553 0.584
Metabolic Syndrome X metabolic disease 0.762 0.562 0.529 0.546 0.54 0.467
Osteoporosis musculoskeletal 0.756 0.58 0.515 0.527 0.566 0.521
Amyotrophic Lateral Sclerosis nervous system 0.722 0.582 0.563 0.507 0.527 0.532
Parkinson Disease nervous system 0.648 0.61 0.545 0.519 0.506 0.532
Sleep psychological 0.736 0.611 0.537 0.513 0.575 0.541
Albuminuria urogenital 0.777 0.603 0.536 0.56 0.617 0.63
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Table 3.4: Summary of MCC values of five-fold cross-validation for 45 diseases
in ARB for all risk variants when benign variants are 10 times of the risk variants
in the training set

disease/trait class DIVAN GWAVA GenoCanyon CADD Eigen EigenPC
Body Weight body weight 0.124 0.0164 0.0295 0.0101 0.0361 -0.0246
Body Weight Changes body weight 0.224 0.0293 -0.0221 0.0509 0.0705 -0.0295
Obesity body weight 0.297 -0.0171 0.0689 0.0347 0.04 0.0578
Breast Neoplasms cancer 0.167 0.066 0.114 0.0202 0.088 0.0649
Neuroblastoma cancer 0.119 -0.01 0.000205 0.00428 0.00921 0.03
Pancreatic Neoplasms cancer 0.199 0.00965 0.059 0.0152 0.0147 0.0171
Prostatic Neoplasms cancer 0.146 0.0284 0.0588 -0.00455 0.0267 0.0141
Carotid Artery Diseases cardiovascular 0.244 -0.0068 0.0821 -0.00432 0.0785 0.00379
Coronary Artery Disease cardiovascular 0.13 0.00183 0.0406 -0.00566 0.00567 -0.0057
Coronary Disease cardiovascular 0.144 0.0187 0.0651 0.00497 -0.00246 0.0126
Death, Sudden, Cardiac cardiovascular 0.347 0.00235 0.0427 0.016 -0.0513 0.0363
Heart Failure cardiovascular 0.0884 -0.00381 0.0254 -0.00689 -0.0156 0.00243
Hypertension cardiovascular 0.161 0.0302 0.0772 -0.05 -0.0304 -0.015
Myocardial Infarction cardiovascular 0.113 0.0125 0.0388 -0.00667 -0.0106 0.0256
Stroke cardiovascular 0.0672 0.0133 0.0321 0.00296 0.0113 0.000875
Cardiovascular Diseases cardiovascular 0.217 -0.035 -0.0274 0.0142 0.0382 -0.0232
Hypertrophy, Left Ventricular cardiovascular 0.205 0.00783 0.0534 -0.0262 -0.000493 0.023
Diabetic Nephropathies endocrine 0.168 -0.0512 0.0599 -0.00283 0.00409 -0.0365
Macular Degeneration eye disease 0.254 0.0236 -0.0275 0.00245 0.0791 0.0949
Arthritis, Rheumatoid immune 0.31 0.0193 0.0379 0.0427 0.0583 0.108
Asthma immune 0.122 0.0547 0.0452 0.0124 0.0415 0.00242
Behcet Syndrome immune 0.382 0.0196 -0.0121 -0.00781 -0.0309 -0.000477
Colitis, Ulcerative immune 0.339 0.145 0.0526 0.0251 0.0482 0.0561
Crohn Disease immune 0.455 0.00435 0.133 -0.043 0.0017 -0.00543
Diabetes Mellitus, Type 1 immune 0.403 0.0794 0.0245 -0.000191 0.00058 0.0117
Inflammation immune 0.317 0.0238 0.00999 -0.0683 -0.0517 -0.0318
Inflammatory Bowel Diseases immune 0.271 0.103 0.0342 -0.0221 0.0317 0.0615
Lupus Erythematosus, Systemic immune 0.352 0.0844 0.00953 -0.0265 0.0167 0.0475
Multiple Sclerosis immune 0.355 0.0682 0.0227 -0.0247 0.0269 -0.00478
Psoriasis immune 0.489 0.032 -0.0556 -0.02 -0.0434 0.00221
Alcoholism mental 0.134 0.0463 0.0404 0.00817 0.00271 0.0124
Alzheimer Disease mental 0.161 0.0321 0.0774 0.0131 0.0226 0.0416
Attention Deficit Disorder with Hyperactivity mental 0.134 0.0476 0.0895 -0.0241 0.0199 0.0371
Bipolar Disorder mental 0.17 0.00225 0.0328 0.0249 0.0251 0.046
Depressive Disorder, Major mental 0.21 0.0523 0.00309 0.0416 0.08 0.0321
Mental Competency mental 0.172 -0.0127 -0.0229 -0.00893 -0.0242 -0.0209
Schizophrenia mental 0.174 0.0182 0.0814 -0.00471 -0.0025 0.0137
Diabetes Mellitus, Type 2 metabolic disease 0.184 0.0438 0.134 0.0364 0.0497 0.0232
Insulin Resistance metabolic disease 0.17 0.00539 0.0498 0.017 0.0535 0.00281
Metabolic Syndrome X metabolic disease 0.227 0.0263 0.0423 0.0618 0.0884 -0.0564
Osteoporosis musculoskeletal 0.199 -0.0394 0.00672 -0.0607 -0.0389 -0.00955
Amyotrophic Lateral Sclerosis nervous system 0.186 -0.0167 0.0409 -0.0244 0.0223 0.000415
Parkinson Disease nervous system 0.0901 0.0112 0.0257 0.0141 0.0187 0.0234
Sleep psychological 0.202 0.0197 0.0101 0.0235 0.0448 -0.0362
Albuminuria urogenital 0.24 0.0466 0.0161 0.036 0.0731 0.0449
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Table 3.5: Summary of predicted AUC values for 36 diseases in GRASP using
the predictive models built from risk variants of corresponding diseases in ARB
when benign variants are 10 times of the risk variants in the testing set. For each
disease, the risk variants in GRASP are non-overlapping with the risk variants
in ARB

disease/trait class DIVAN GWAVA GenoCanyon CADD Eigen EigenPC topmethods
Body Weight Changes body weight 0.738 0.517 0.43 0.252 0.268 0.421 DIVAN
Obesity body weight 0.632 0.573 0.556 0.531 0.53 0.534 DIVAN
Breast Neoplasms cancer 0.672 0.617 0.634 0.534 0.563 0.577 DIVAN
Neuroblastoma cancer 0.642 0.495 0.572 0.504 0.5 0.464 DIVAN
Pancreatic Neoplasms cancer 0.697 0.616 0.65 0.562 0.526 0.548 DIVAN
Prostatic Neoplasms cancer 0.629 0.627 0.592 0.555 0.591 0.607 DIVAN
Cardiovascular Diseases cardiovascular 0.529 0.622 0.636 0.579 0.504 0.594 GenoCanyon
Coronary Artery Disease cardiovascular 0.647 0.627 0.614 0.535 0.537 0.558 DIVAN
Heart Failure cardiovascular 0.708 0.59 0.555 0.482 0.467 0.581 DIVAN
Hypertension cardiovascular 0.654 0.618 0.585 0.52 0.534 0.561 DIVAN
Hypertrophy, Left Ventricular cardiovascular 0.589 0.598 0.495 0.616 0.631 0.584 Eigen
Myocardial Infarction cardiovascular 0.657 0.633 0.641 0.529 0.557 0.602 DIVAN
Stroke cardiovascular 0.662 0.748 0.677 0.412 0.472 0.627 GWAVA
Macular Degeneration eye disease 0.68 0.626 0.601 0.525 0.542 0.567 DIVAN
Arthritis, Rheumatoid immune 0.766 0.759 0.64 0.53 0.469 0.547 DIVAN
Asthma immune 0.67 0.665 0.603 0.542 0.552 0.569 DIVAN
Behcet Syndrome immune 0.74 0.679 0.619 0.492 0.461 0.553 DIVAN
Colitis, Ulcerative immune 0.677 0.65 0.61 0.529 0.532 0.558 DIVAN
Crohn Disease immune 0.674 0.654 0.641 0.544 0.546 0.58 DIVAN
Diabetes Mellitus, Type 1 immune 0.802 0.725 0.648 0.552 0.516 0.577 DIVAN
Inflammation immune 0.59 0.596 0.556 0.567 0.525 0.542 GWAVA
Inflammatory Bowel Diseases immune 0.695 0.778 0.77 0.582 0.592 0.659 GWAVA
Lupus Erythematosus, Systemic immune 0.748 0.682 0.682 0.573 0.581 0.634 DIVAN
Multiple Sclerosis immune 0.616 0.606 0.556 0.509 0.518 0.552 DIVAN
Psoriasis immune 0.636 0.65 0.627 0.532 0.544 0.58 GWAVA
Alcoholism mental 0.637 0.553 0.769 0.492 0.415 0.488 GenoCanyon
Alzheimer Disease mental 0.626 0.591 0.568 0.513 0.524 0.54 DIVAN
Attention Deficit Disorder with Hyperactivity mental 0.65 0.601 0.56 0.533 0.535 0.541 DIVAN
Bipolar Disorder mental 0.612 0.589 0.544 0.503 0.52 0.523 DIVAN
Depressive Disorder, Major mental 0.599 0.579 0.544 0.522 0.54 0.533 DIVAN
Schizophrenia mental 0.647 0.607 0.579 0.526 0.541 0.564 DIVAN
Diabetes Mellitus, Type 2 metabolic disease 0.666 0.589 0.604 0.531 0.54 0.547 DIVAN
Insulin Resistance metabolic disease 0.622 0.524 0.5 0.456 0.637 0.478 Eigen
Metabolic Syndrome X metabolic disease 0.619 0.628 0.743 0.467 0.61 0.562 GenoCanyon
Amyotrophic Lateral Sclerosis nervous system 0.639 0.592 0.605 0.52 0.517 0.544 DIVAN
Sleep psychological 0.736 0.641 0.514 0.535 0.536 0.574 DIVAN
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Table 3.6: Summary of predicted MCC values for 36 diseases in GRASP using
the predictive models built from risk variants of corresponding diseases in ARB
when benign variants are 10 times of the risk variants in the testing set. For each
disease, the risk variants in GRASP are non-overlapping with the risk variants
in ARB

disease/trait class DIVAN GWAVA GenoCanyon CADD Eigen EigenPC topmethod
Body Weight Changes body weight 0.118 -0.0514 -0.0594 -0.0996 -0.0755 -0.0188 DIVAN
Obesity body weight 0.0685 0.0141 0.0457 0.00234 0.0104 -0.006 DIVAN
Breast Neoplasms cancer 0.103 0.0339 0.118 0.00852 0.073 0.0434 GenoCanyon
Neuroblastoma cancer 0.0577 0.0527 -0.0689 0.0642 0.00142 -0.0545 CADD
Pancreatic Neoplasms cancer 0.094 0.036 0.119 0.0217 0.0275 0.0478 GenoCanyon
Prostatic Neoplasms cancer 0.0395 0.0292 0.0624 0.00487 0.0283 0.0279 GenoCanyon
Cardiovascular Diseases cardiovascular 0.0189 0.0685 0.0918 0.0375 -0.0308 0.0671 GenoCanyon
Coronary Artery Disease cardiovascular 0.063 0.0496 0.0887 -0.00137 0.0118 0.0309 GenoCanyon
Heart Failure cardiovascular 0.12 0.00265 -0.0215 0.00102 -0.0567 0.0215 DIVAN
Hypertension cardiovascular 0.0765 0.028 0.0612 0.00436 0.00274 0.0173 DIVAN
Hypertrophy, Left Ventricular cardiovascular -0.014 0.208 -0.0315 -0.0168 0.129 0.0695 GWAVA
Myocardial Infarction cardiovascular 0.0815 0.0871 0.118 0.00237 0.0402 0.0715 GenoCanyon
Stroke cardiovascular 0.0571 0.171 0.0203 -0.0431 -0.014 0.0677 GWAVA
Macular Degeneration eye disease 0.146 0.0549 0.0726 -0.00997 0.0703 0.0778 DIVAN
Arthritis, Rheumatoid immune 0.228 0.166 0.0905 0.00771 -0.0011 0.0514 DIVAN
Asthma immune 0.112 0.0893 0.0681 0.0276 0.0398 0.0304 DIVAN
Behcet Syndrome immune 0.257 0.0489 0.0603 -0.00121 -0.0269 0.0103 DIVAN
Colitis, Ulcerative immune 0.111 0.0349 0.0991 0.0232 0.0304 0.0635 DIVAN
Crohn Disease immune 0.116 0.0785 0.119 0.00616 0.0129 0.0413 GenoCanyon
Diabetes Mellitus, Type 1 immune 0.365 0.164 0.112 -0.00672 0.00944 0.0567 DIVAN
Inflammation immune 0.0486 -0.00533 0.0856 -0.0345 0.0451 0.0293 GenoCanyon
Inflammatory Bowel Diseases immune 0.133 0.233 0.243 0.0939 0.118 0.155 GenoCanyon
Lupus Erythematosus, Systemic immune 0.161 0.0961 0.143 -0.0358 0.0159 0.108 DIVAN
Multiple Sclerosis immune 0.0426 0.0361 0.0382 -0.00714 0.0226 0.000787 DIVAN
Psoriasis immune 0.0744 0.0362 0.11 -0.00301 0.0183 0.0528 GenoCanyon
Alcoholism mental 0.0535 -0.0402 0.294 -0.0577 -0.0507 -0.0686 GenoCanyon
Alzheimer Disease mental 0.078 0.0288 0.0533 -0.0112 -0.00145 -0.00242 DIVAN
Attention Deficit Disorder with Hyperactivity mental 0.0599 0.0186 0.0411 -0.00419 0.0315 -0.0124 DIVAN
Bipolar Disorder mental 0.0461 0.0255 0.0306 -0.00556 0.00686 0.00115 DIVAN
Depressive Disorder, Major mental 0.0436 0.00457 0.0139 4.3e-05 0.0136 -0.00601 DIVAN
Schizophrenia mental 0.0839 0.037 0.0479 -0.000961 0.0207 0.0334 DIVAN
Diabetes Mellitus, Type 2 metabolic disease 0.0978 0.0218 0.0902 -0.00154 0.0192 0.0107 DIVAN
Insulin Resistance metabolic disease 0.0509 -0.0309 -0.0346 -0.0559 0.189 -0.0745 Eigen
Metabolic Syndrome X metabolic disease -0.0756 -0.0154 0.203 -0.0428 0.152 0.0237 GenoCanyon
Amyotrophic Lateral Sclerosis nervous system 0.0354 0.032 0.0785 -0.00426 0.00918 0.0275 GenoCanyon
Sleep psychological 0.171 0.0789 -0.0318 -0.014 0.0086 0.078 DIVAN

Table 3.7: Summary of predicted AUCs for immune-related HGMD regulatory
variants. Summary of predicted AUCs of different methods for 34 variants re-
lated to diseases in immune disease class including Asthma, Behcet syndrome,
Ulcerative Colitis, Crohn’s disease, Inflammatory bowel diseases and Systemic
lupus erythematosus. DIVAN uses the immune disease class specific model by
pooling all variants of the aforementioned six diseases from ARB together.

Method AUC
GenoCanyon 0.79
DIVAN 0.788
EigenPC 0.736
Eigen 0.629
CADD 0.583
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Table 3.8: Summary of predicted AUCs for synonymous mutations. Summary
of predicted AUCs of different methods for synonymous mutations in seven dis-
eases including Macular degeneration, Alzheimer disease, Asthma, Metabolic
syndrome X, obesity, Parkinson’s disease and Rheumatoid arthritis.

Disease #SM DIVAN GWAVA GenoCanyon CADD Eigen EigenPC
Macular Degeneration 63 0.747 0.775 0.496 0.705 0.757 0.755
Alzheimer Disease 44 0.537 0.579 0.433 0.512 0.553 0.527
Asthma 22 0.525 0.753 0.602 0.577 0.623 0.631
Metabolic Syndrome X 91 0.564 0.586 0.519 0.544 0.597 0.656
Obesity 52 0.534 0.667 0.583 0.596 0.586 0.612
Parkinson Disease 43 0.449 0.505 0.707 0.444 0.577 0.542
Arthritis, Rheumatoid 121 0.713 0.802 0.641 0.686 0.632 0.63
* #SM denotes somatic mutation
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Table 3.9: Summary of CV-AUC values of five-fold cross-validation for 45
diseases in ARB when the benign variants are selected from Affymetrix Genome-
Wide Human SNP Array 6.0

disease/trait class DIVAN GWAVA GenoCanyon CADD Eigen EigenPC
Body Weight body weight 0.683 0.519 0.495 0.513 0.521 0.505
Body Weight Changes body weight 0.742 0.528 0.481 0.493 0.516 0.45
Obesity body weight 0.822 0.529 0.515 0.562 0.622 0.61
Breast Neoplasms cancer 0.723 0.574 0.546 0.491 0.573 0.526
Neuroblastoma cancer 0.686 0.535 0.484 0.497 0.553 0.554
Pancreatic Neoplasms cancer 0.733 0.52 0.522 0.465 0.508 0.515
Prostatic Neoplasms cancer 0.686 0.564 0.528 0.512 0.544 0.537
Carotid Artery Diseases cardiovascular 0.751 0.518 0.541 0.467 0.512 0.507
Coronary Artery Disease cardiovascular 0.689 0.521 0.508 0.503 0.515 0.516
Coronary Disease cardiovascular 0.712 0.546 0.525 0.497 0.545 0.542
Death, Sudden, Cardiac cardiovascular 0.831 0.538 0.567 0.445 0.533 0.529
Heart Failure cardiovascular 0.654 0.531 0.504 0.497 0.525 0.538
Hypertension cardiovascular 0.684 0.586 0.562 0.504 0.547 0.544
Myocardial Infarction cardiovascular 0.667 0.537 0.506 0.501 0.529 0.537
Stroke cardiovascular 0.669 0.54 0.507 0.519 0.507 0.509
Cardiovascular Diseases cardiovascular 0.759 0.484 0.452 0.472 0.56 0.552
Hypertrophy, Left Ventricular cardiovascular 0.743 0.564 0.518 0.528 0.527 0.512
Diabetic Nephropathies endocrine 0.708 0.55 0.554 0.494 0.532 0.515
Macular Degeneration eye disease 0.795 0.511 0.434 0.516 0.476 0.508
Arthritis, Rheumatoid immune 0.748 0.615 0.568 0.552 0.547 0.574
Asthma immune 0.687 0.529 0.516 0.485 0.511 0.501
Behcet Syndrome immune 0.845 0.574 0.479 0.515 0.467 0.479
Colitis, Ulcerative immune 0.829 0.607 0.593 0.605 0.533 0.557
Crohn Disease immune 0.863 0.576 0.611 0.483 0.479 0.507
Diabetes Mellitus, Type 1 immune 0.846 0.628 0.523 0.514 0.466 0.479
Inflammation immune 0.774 0.516 0.449 0.532 0.533 0.5
Inflammatory Bowel Diseases immune 0.783 0.559 0.47 0.479 0.547 0.544
Lupus Erythematosus, Systemic immune 0.816 0.6 0.474 0.527 0.432 0.469
Multiple Sclerosis immune 0.808 0.605 0.506 0.522 0.466 0.482
Psoriasis immune 0.888 0.615 0.44 0.425 0.402 0.444
Alcoholism mental 0.677 0.538 0.519 0.491 0.509 0.522
Alzheimer Disease mental 0.695 0.563 0.582 0.505 0.512 0.547
Attention Deficit Disorder with Hyperactivity mental 0.682 0.551 0.565 0.524 0.559 0.562
Bipolar Disorder mental 0.704 0.56 0.54 0.537 0.527 0.52
Depressive Disorder, Major mental 0.75 0.509 0.479 0.477 0.52 0.548
Mental Competency mental 0.732 0.506 0.5 0.539 0.538 0.552
Schizophrenia mental 0.709 0.557 0.564 0.524 0.581 0.581
Diabetes Mellitus, Type 2 metabolic disease 0.694 0.55 0.618 0.491 0.608 0.567
Insulin Resistance metabolic disease 0.72 0.511 0.523 0.514 0.514 0.536
Metabolic Syndrome X metabolic disease 0.784 0.545 0.581 0.521 0.499 0.468
Osteoporosis musculoskeletal 0.742 0.536 0.47 0.562 0.511 0.496
Amyotrophic Lateral Sclerosis nervous system 0.705 0.504 0.49 0.494 0.511 0.493
Parkinson Disease nervous system 0.657 0.533 0.505 0.531 0.517 0.517
Sleep psychological 0.741 0.513 0.483 0.537 0.571 0.514
Albuminuria urogenital 0.769 0.545 0.512 0.498 0.516 0.537
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Table 3.10: Summary of predicted AUC values for 36 diseases in GRASP when
the benign variants are selected from Affymetrix Genome-Wide Human SNP
Array 6.0. For each disease, the risk variants in GRASP are non-overlapping
with the risk variants in ARB

disease/trait class DIVAN GWAVA GenoCanyon CADD Eigen EigenPC topmethods
Body Weight Changes body weight 0.73 0.56 0.364 0.396 0.437 0.453 DIVAN
Obesity body weight 0.612 0.536 0.515 0.542 0.538 0.539 DIVAN
Breast Neoplasms cancer 0.654 0.572 0.579 0.516 0.561 0.564 DIVAN
Neuroblastoma cancer 0.649 0.539 0.514 0.635 0.492 0.468 DIVAN
Pancreatic Neoplasms cancer 0.678 0.459 0.57 0.454 0.421 0.423 DIVAN
Prostatic Neoplasms cancer 0.639 0.548 0.55 0.481 0.518 0.543 DIVAN
Cardiovascular Diseases cardiovascular 0.547 0.636 0.615 0.551 0.558 0.588 GWAVA
Coronary Artery Disease cardiovascular 0.664 0.582 0.569 0.513 0.521 0.53 DIVAN
Heart Failure cardiovascular 0.739 0.517 0.442 0.508 0.388 0.395 DIVAN
Hypertension cardiovascular 0.649 0.555 0.549 0.511 0.509 0.525 DIVAN
Hypertrophy, Left Ventricular cardiovascular 0.593 0.498 0.421 0.509 0.526 0.536 DIVAN
Myocardial Infarction cardiovascular 0.653 0.587 0.603 0.488 0.523 0.552 DIVAN
Stroke cardiovascular 0.636 0.637 0.578 0.435 0.33 0.519 GWAVA
Macular Degeneration eye disease 0.68 0.607 0.559 0.498 0.527 0.549 DIVAN
Arthritis, Rheumatoid immune 0.81 0.738 0.592 0.508 0.457 0.518 DIVAN
Asthma immune 0.667 0.634 0.57 0.508 0.536 0.551 DIVAN
Behcet Syndrome immune 0.752 0.671 0.565 0.549 0.478 0.507 DIVAN
Colitis, Ulcerative immune 0.687 0.601 0.567 0.538 0.528 0.55 DIVAN
Crohn Disease immune 0.661 0.624 0.602 0.52 0.526 0.549 DIVAN
Diabetes Mellitus, Type 1 immune 0.794 0.703 0.607 0.514 0.505 0.538 DIVAN
Inflammation immune 0.599 0.533 0.526 0.53 0.471 0.537 DIVAN
Inflammatory Bowel Diseases immune 0.673 0.728 0.745 0.538 0.637 0.683 GenoCanyon
Lupus Erythematosus, Systemic immune 0.767 0.635 0.638 0.505 0.53 0.564 DIVAN
Multiple Sclerosis immune 0.604 0.548 0.528 0.501 0.512 0.54 DIVAN
Psoriasis immune 0.644 0.582 0.563 0.496 0.516 0.53 DIVAN
Alcoholism mental 0.623 0.631 0.769 0.386 0.537 0.605 GenoCanyon
Alzheimer Disease mental 0.621 0.532 0.527 0.49 0.509 0.517 DIVAN
Attention Deficit Disorder with Hyperactivity mental 0.649 0.577 0.529 0.467 0.534 0.517 DIVAN
Bipolar Disorder mental 0.618 0.538 0.502 0.484 0.508 0.509 DIVAN
Depressive Disorder, Major mental 0.587 0.525 0.495 0.527 0.56 0.536 DIVAN
Schizophrenia mental 0.633 0.555 0.536 0.51 0.507 0.528 DIVAN
Diabetes Mellitus, Type 2 metabolic disease 0.666 0.553 0.562 0.524 0.553 0.535 DIVAN
Insulin Resistance metabolic disease 0.553 0.521 0.488 0.49 0.609 0.451 Eigen
Metabolic Syndrome X metabolic disease 0.615 0.647 0.74 0.636 0.627 0.639 GenoCanyon
Amyotrophic Lateral Sclerosis nervous system 0.619 0.541 0.55 0.528 0.506 0.515 DIVAN
Sleep psychological 0.712 0.57 0.505 0.533 0.476 0.563 DIVAN
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Table 3.11: Summary of predicted AUC values for 36 diseases in GRASP
when the benign variants are selected from Affymetrix Genome-Wide Human
SNP Array 6.0. For each disease, the risk variants in GRASP are 10kb away
from the risk variants in ARB.

disease/trait class DIVAN GWAVA GenoCanyon CADD Eigen EigenPC topmethods
Body Weight Changes body weight 0.688 0.498 0.332 0.47 0.486 0.503 DIVAN
Obesity body weight 0.602 0.51 0.488 0.536 0.54 0.544 DIVAN
Breast Neoplasms cancer 0.607 0.555 0.57 0.51 0.55 0.545 DIVAN
Neuroblastoma cancer 0.577 0.489 0.54 0.55 0.254 0.304 DIVAN
Pancreatic Neoplasms cancer 0.602 0.591 0.546 0.559 0.532 0.521 DIVAN
Prostatic Neoplasms cancer 0.607 0.527 0.546 0.492 0.511 0.519 DIVAN
Cardiovascular Diseases cardiovascular 0.526 0.679 0.645 0.454 0.518 0.541 GWAVA
Coronary Artery Disease cardiovascular 0.648 0.571 0.569 0.523 0.508 0.518 DIVAN
Heart Failure cardiovascular 0.725 0.472 0.457 0.458 0.425 0.441 DIVAN
Hypertension cardiovascular 0.619 0.527 0.532 0.493 0.491 0.511 DIVAN
Hypertrophy, Left Ventricular cardiovascular 0.594 0.544 0.407 0.511 0.587 0.561 DIVAN
Myocardial Infarction cardiovascular 0.642 0.604 0.61 0.501 0.542 0.565 DIVAN
Stroke cardiovascular 0.596 0.574 0.552 0.456 0.343 0.49 DIVAN
Macular Degeneration eye disease 0.617 0.581 0.558 0.498 0.506 0.528 DIVAN
Arthritis, Rheumatoid immune 0.696 0.687 0.578 0.508 0.437 0.489 DIVAN
Asthma immune 0.612 0.593 0.558 0.517 0.527 0.534 DIVAN
Behcet Syndrome immune 0.644 0.587 0.524 0.548 0.453 0.474 DIVAN
Colitis, Ulcerative immune 0.63 0.567 0.543 0.531 0.515 0.522 DIVAN
Crohn Disease immune 0.641 0.607 0.598 0.485 0.501 0.532 DIVAN
Diabetes Mellitus, Type 1 immune 0.703 0.629 0.597 0.512 0.487 0.531 DIVAN
Inflammation immune 0.566 0.487 0.514 0.438 0.384 0.43 DIVAN
Inflammatory Bowel Diseases immune 0.634 0.702 0.727 0.509 0.547 0.624 GenoCanyon
Lupus Erythematosus, Systemic immune 0.672 0.628 0.613 0.478 0.532 0.548 DIVAN
Multiple Sclerosis immune 0.595 0.557 0.53 0.52 0.505 0.541 DIVAN
Psoriasis immune 0.634 0.578 0.574 0.508 0.51 0.54 DIVAN
Alcoholism mental 0.503 0.754 0.824 0.529 0.6 0.645 GenoCanyon
Alzheimer Disease mental 0.606 0.528 0.513 0.505 0.502 0.508 DIVAN
Attention Deficit Disorder with Hyperactivity mental 0.621 0.55 0.516 0.49 0.517 0.533 DIVAN
Bipolar Disorder mental 0.616 0.529 0.496 0.489 0.489 0.494 DIVAN
Depressive Disorder, Major mental 0.598 0.535 0.489 0.52 0.531 0.515 DIVAN
Schizophrenia mental 0.622 0.546 0.521 0.513 0.503 0.518 DIVAN
Diabetes Mellitus, Type 2 metabolic disease 0.668 0.542 0.556 0.532 0.544 0.526 DIVAN
Insulin Resistance metabolic disease 0.613 0.514 0.438 0.496 0.613 0.478 Eigen
Metabolic Syndrome X metabolic disease 0.59 0.659 0.728 0.563 0.583 0.615 GenoCanyon
Amyotrophic Lateral Sclerosis nervous system 0.607 0.555 0.554 0.514 0.507 0.525 DIVAN
Sleep psychological 0.644 0.577 0.498 0.53 0.402 0.578 DIVAN
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Table 3.12: Summary of CV-AUC values of five-fold cross-validation for 45
diseases in ARB when benign variants are selected within 10kb of risk variants
in the training set for each disease

disease/trait class DIVAN.region10kb GWAVA.region10kb GenoCanyon.region10kb CADD.region10kb Eigen.region10kb EigenPC.region10kb
Body Weight body weight 0.643 0.518 0.498 0.532 0.529 0.518
Body Weight Changes body weight 0.687 0.532 0.495 0.547 0.547 0.515
Obesity body weight 0.795 0.522 0.496 0.508 0.539 0.536
Breast Neoplasms cancer 0.68 0.511 0.496 0.512 0.512 0.478
Neuroblastoma cancer 0.641 0.543 0.51 0.514 0.524 0.512
Pancreatic Neoplasms cancer 0.709 0.526 0.536 0.546 0.552 0.54
Prostatic Neoplasms cancer 0.643 0.548 0.481 0.513 0.518 0.49
Carotid Artery Diseases cardiovascular 0.707 0.544 0.517 0.507 0.501 0.501
Coronary Artery Disease cardiovascular 0.649 0.515 0.497 0.506 0.513 0.51
Coronary Disease cardiovascular 0.665 0.532 0.529 0.545 0.541 0.561
Death, Sudden, Cardiac cardiovascular 0.76 0.497 0.503 0.525 0.487 0.494
Heart Failure cardiovascular 0.63 0.519 0.519 0.491 0.515 0.512
Hypertension cardiovascular 0.656 0.531 0.516 0.514 0.52 0.508
Myocardial Infarction cardiovascular 0.644 0.525 0.49 0.535 0.537 0.508
Stroke cardiovascular 0.627 0.527 0.513 0.509 0.51 0.516
Cardiovascular Diseases cardiovascular 0.7 0.546 0.526 0.537 0.534 0.532
Hypertrophy, Left Ventricular cardiovascular 0.666 0.507 0.505 0.489 0.499 0.485
Diabetic Nephropathies endocrine 0.681 0.566 0.515 0.509 0.528 0.502
Macular Degeneration eye disease 0.662 0.549 0.502 0.522 0.524 0.521
Arthritis, Rheumatoid immune 0.713 0.528 0.505 0.509 0.502 0.48
Asthma immune 0.634 0.529 0.508 0.53 0.518 0.515
Behcet Syndrome immune 0.667 0.545 0.552 0.501 0.521 0.52
Colitis, Ulcerative immune 0.735 0.546 0.514 0.49 0.526 0.541
Crohn Disease immune 0.693 0.557 0.479 0.459 0.492 0.493
Diabetes Mellitus, Type 1 immune 0.689 0.518 0.501 0.528 0.554 0.522
Inflammation immune 0.719 0.533 0.427 0.488 0.454 0.453
Inflammatory Bowel Diseases immune 0.676 0.534 0.517 0.475 0.517 0.513
Lupus Erythematosus, Systemic immune 0.675 0.538 0.476 0.495 0.51 0.482
Multiple Sclerosis immune 0.691 0.52 0.493 0.438 0.501 0.497
Psoriasis immune 0.714 0.5 0.49 0.495 0.514 0.546
Alcoholism mental 0.648 0.518 0.514 0.52 0.533 0.534
Alzheimer Disease mental 0.665 0.505 0.482 0.531 0.496 0.495
Attention Deficit Disorder with Hyperactivity mental 0.638 0.54 0.519 0.523 0.518 0.524
Bipolar Disorder mental 0.634 0.498 0.513 0.523 0.513 0.513
Depressive Disorder, Major mental 0.678 0.557 0.516 0.545 0.539 0.516
Mental Competency mental 0.674 0.507 0.499 0.482 0.473 0.473
Schizophrenia mental 0.658 0.511 0.484 0.512 0.491 0.481
Diabetes Mellitus, Type 2 metabolic disease 0.662 0.536 0.523 0.521 0.501 0.526
Insulin Resistance metabolic disease 0.712 0.486 0.486 0.509 0.5 0.486
Metabolic Syndrome X metabolic disease 0.675 0.531 0.543 0.556 0.549 0.544
Osteoporosis musculoskeletal 0.723 0.515 0.497 0.501 0.538 0.544
Amyotrophic Lateral Sclerosis nervous system 0.679 0.526 0.511 0.51 0.53 0.519
Parkinson Disease nervous system 0.642 0.516 0.502 0.521 0.519 0.51
Sleep psychological 0.682 0.583 0.53 0.464 0.536 0.529
Albuminuria urogenital 0.758 0.55 0.529 0.55 0.563 0.571
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Table 3.13: Summary of predicted AUC values for 36 diseases in GRASP when
benign variants are selected within 10kb of risk variants in the training set for
each disease. For each disease, the risk variants in GRASP are non-overlapping
with the risk variants in ARB

disease/trait class DIVAN GWAVA GenoCanyon CADD Eigen EigenPC topmethods
Body Weight Changes body weight 0.653 0.517 0.43 0.252 0.268 0.421 DIVAN
Obesity body weight 0.616 0.573 0.556 0.531 0.53 0.534 DIVAN
Breast Neoplasms cancer 0.652 0.617 0.634 0.534 0.563 0.577 DIVAN
Neuroblastoma cancer 0.674 0.495 0.572 0.504 0.5 0.464 DIVAN
Pancreatic Neoplasms cancer 0.677 0.616 0.65 0.562 0.526 0.548 DIVAN
Prostatic Neoplasms cancer 0.6 0.627 0.592 0.555 0.591 0.607 GWAVA
Cardiovascular Diseases cardiovascular 0.585 0.622 0.636 0.579 0.504 0.594 GenoCanyon
Coronary Artery Disease cardiovascular 0.653 0.627 0.614 0.535 0.537 0.558 DIVAN
Heart Failure cardiovascular 0.623 0.59 0.555 0.482 0.467 0.581 DIVAN
Hypertension cardiovascular 0.656 0.618 0.585 0.52 0.534 0.561 DIVAN
Hypertrophy, Left Ventricular cardiovascular 0.573 0.598 0.495 0.616 0.631 0.584 Eigen
Myocardial Infarction cardiovascular 0.627 0.633 0.641 0.529 0.557 0.602 GenoCanyon
Stroke cardiovascular 0.622 0.748 0.677 0.412 0.472 0.627 GWAVA
Macular Degeneration eye disease 0.675 0.626 0.601 0.525 0.542 0.567 DIVAN
Arthritis, Rheumatoid immune 0.652 0.759 0.64 0.53 0.469 0.547 GWAVA
Asthma immune 0.667 0.665 0.603 0.542 0.552 0.569 DIVAN
Behcet Syndrome immune 0.676 0.679 0.619 0.492 0.461 0.553 GWAVA
Colitis, Ulcerative immune 0.667 0.65 0.61 0.529 0.532 0.558 DIVAN
Crohn Disease immune 0.627 0.654 0.641 0.544 0.546 0.58 GWAVA
Diabetes Mellitus, Type 1 immune 0.739 0.725 0.648 0.552 0.516 0.577 DIVAN
Inflammation immune 0.623 0.596 0.556 0.567 0.525 0.542 DIVAN
Inflammatory Bowel Diseases immune 0.668 0.778 0.77 0.582 0.592 0.659 GWAVA
Lupus Erythematosus, Systemic immune 0.704 0.682 0.682 0.573 0.581 0.634 DIVAN
Multiple Sclerosis immune 0.601 0.606 0.556 0.509 0.518 0.552 GWAVA
Psoriasis immune 0.662 0.65 0.627 0.532 0.544 0.58 DIVAN
Alcoholism mental 0.597 0.553 0.769 0.492 0.415 0.488 GenoCanyon
Alzheimer Disease mental 0.623 0.591 0.568 0.513 0.524 0.54 DIVAN
Attention Deficit Disorder with Hyperactivity mental 0.623 0.601 0.56 0.533 0.535 0.541 DIVAN
Bipolar Disorder mental 0.626 0.589 0.544 0.503 0.52 0.523 DIVAN
Depressive Disorder, Major mental 0.598 0.579 0.544 0.522 0.54 0.533 DIVAN
Schizophrenia mental 0.636 0.607 0.579 0.526 0.541 0.564 DIVAN
Diabetes Mellitus, Type 2 metabolic disease 0.658 0.589 0.604 0.531 0.54 0.547 DIVAN
Insulin Resistance metabolic disease 0.602 0.524 0.5 0.456 0.637 0.478 Eigen
Metabolic Syndrome X metabolic disease 0.493 0.628 0.743 0.467 0.61 0.562 GenoCanyon
Amyotrophic Lateral Sclerosis nervous system 0.625 0.592 0.605 0.52 0.517 0.544 DIVAN
Sleep psychological 0.675 0.641 0.514 0.535 0.536 0.574 DIVAN
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Table 3.14: Summary of predicted AUC values for 36 diseases in GRASP when
benign variants are selected within 10kb of risk variants in the training set for
each disease. For each disease, the risk variants in GRASP are 10kb away from
the risk variants in ARB

disease/trait class DIVAN GWAVA GenoCanyon CADD Eigen EigenPC topmethods
Body Weight Changes body weight 0.641 0.446 0.37 0.255 0.278 0.372 DIVAN
Obesity body weight 0.607 0.542 0.533 0.522 0.506 0.511 DIVAN
Breast Neoplasms cancer 0.61 0.606 0.643 0.528 0.555 0.604 GenoCanyon
Neuroblastoma cancer 0.562 0.458 0.602 0.549 0.532 0.494 GenoCanyon
Pancreatic Neoplasms cancer 0.64 0.567 0.655 0.552 0.527 0.534 GenoCanyon
Prostatic Neoplasms cancer 0.57 0.609 0.583 0.527 0.564 0.563 GWAVA
Cardiovascular Diseases cardiovascular 0.574 0.699 0.674 0.6 0.59 0.612 GWAVA
Coronary Artery Disease cardiovascular 0.64 0.614 0.604 0.52 0.519 0.541 DIVAN
Heart Failure cardiovascular 0.616 0.628 0.576 0.49 0.407 0.58 GWAVA
Hypertension cardiovascular 0.645 0.592 0.562 0.511 0.507 0.519 DIVAN
Hypertrophy, Left Ventricular cardiovascular 0.623 0.542 0.512 0.418 0.355 0.374 DIVAN
Myocardial Infarction cardiovascular 0.629 0.63 0.64 0.517 0.538 0.581 GenoCanyon
Stroke cardiovascular 0.571 0.681 0.695 0.485 0.494 0.545 GenoCanyon
Macular Degeneration eye disease 0.623 0.628 0.606 0.527 0.509 0.538 GWAVA
Arthritis, Rheumatoid immune 0.598 0.739 0.629 0.545 0.458 0.519 GWAVA
Asthma immune 0.64 0.639 0.599 0.545 0.547 0.54 DIVAN
Behcet Syndrome immune 0.66 0.613 0.599 0.535 0.499 0.571 DIVAN
Colitis, Ulcerative immune 0.635 0.621 0.582 0.525 0.517 0.534 DIVAN
Crohn Disease immune 0.605 0.639 0.63 0.545 0.527 0.549 GWAVA
Diabetes Mellitus, Type 1 immune 0.671 0.673 0.648 0.573 0.515 0.57 GWAVA
Inflammation immune 0.642 0.602 0.556 0.563 0.527 0.565 DIVAN
Inflammatory Bowel Diseases immune 0.646 0.737 0.747 0.568 0.551 0.636 GenoCanyon
Lupus Erythematosus, Systemic immune 0.63 0.657 0.672 0.593 0.594 0.619 GenoCanyon
Multiple Sclerosis immune 0.585 0.595 0.554 0.505 0.52 0.547 GWAVA
Psoriasis immune 0.654 0.622 0.621 0.52 0.527 0.551 DIVAN
Alcoholism mental 0.589 0.665 0.812 0.477 0.436 0.495 GenoCanyon
Alzheimer Disease mental 0.601 0.585 0.558 0.535 0.532 0.534 DIVAN
Attention Deficit Disorder with Hyperactivity mental 0.619 0.607 0.557 0.521 0.551 0.555 DIVAN
Bipolar Disorder mental 0.614 0.581 0.536 0.491 0.509 0.513 DIVAN
Depressive Disorder, Major mental 0.604 0.591 0.548 0.509 0.523 0.511 DIVAN
Schizophrenia mental 0.625 0.597 0.571 0.526 0.529 0.55 DIVAN
Diabetes Mellitus, Type 2 metabolic disease 0.664 0.573 0.592 0.53 0.534 0.532 DIVAN
Insulin Resistance metabolic disease 0.664 0.581 0.501 0.429 0.605 0.451 DIVAN
Metabolic Syndrome X metabolic disease 0.539 0.618 0.755 0.519 0.562 0.643 GenoCanyon
Amyotrophic Lateral Sclerosis nervous system 0.603 0.593 0.595 0.54 0.531 0.546 DIVAN
Sleep psychological 0.654 0.638 0.519 0.444 0.496 0.528 DIVAN
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Table 3.15: Summary of CV-AUC values of five-fold cross-validation for the 45
diseases in ARB for the reduced set of variants such that none is within 10kb of
another

disease/trait class DIVAN.10kb GWAVA.10kb GenoCanyon.10kb CADD.10kb Eigen.10kb EigenPC.10kb
Body Weight body weight 0.691 0.579 0.542 0.536 0.589 0.551
Body Weight Changes body weight 0.735 0.588 0.504 0.543 0.604 0.51
Obesity body weight 0.871 0.616 0.548 0.553 0.637 0.631
Breast Neoplasms cancer 0.733 0.6 0.558 0.539 0.626 0.596
Neuroblastoma cancer 0.669 0.537 0.486 0.559 0.578 0.571
Pancreatic Neoplasms cancer 0.742 0.578 0.554 0.486 0.531 0.576
Prostatic Neoplasms cancer 0.693 0.591 0.578 0.523 0.584 0.565
Carotid Artery Diseases cardiovascular 0.766 0.581 0.587 0.51 0.546 0.531
Coronary Artery Disease cardiovascular 0.686 0.586 0.527 0.529 0.579 0.56
Coronary Disease cardiovascular 0.721 0.576 0.585 0.505 0.567 0.57
Death, Sudden, Cardiac cardiovascular 0.829 0.566 0.598 0.511 0.551 0.567
Heart Failure cardiovascular 0.662 0.58 0.532 0.523 0.572 0.56
Hypertension cardiovascular 0.703 0.604 0.592 0.5 0.55 0.584
Myocardial Infarction cardiovascular 0.674 0.582 0.543 0.518 0.56 0.556
Stroke cardiovascular 0.659 0.603 0.542 0.515 0.573 0.548
Cardiovascular Diseases cardiovascular 0.739 0.587 0.481 0.575 0.647 0.63
Hypertrophy, Left Ventricular cardiovascular 0.737 0.579 0.545 0.539 0.602 0.567
Diabetic Nephropathies endocrine 0.694 0.522 0.499 0.487 0.519 0.471
Macular Degeneration eye disease 0.738 0.585 0.499 0.494 0.575 0.577
Arthritis, Rheumatoid immune 0.744 0.625 0.604 0.523 0.575 0.613
Asthma immune 0.679 0.59 0.548 0.514 0.57 0.545
Behcet Syndrome immune 0.778 0.606 0.544 0.559 0.535 0.556
Colitis, Ulcerative immune 0.809 0.659 0.598 0.586 0.599 0.645
Crohn Disease immune 0.83 0.649 0.634 0.486 0.537 0.616
Diabetes Mellitus, Type 1 immune 0.816 0.66 0.551 0.519 0.548 0.55
Inflammation immune 0.834 0.567 0.517 0.503 0.556 0.533
Inflammatory Bowel Diseases immune 0.762 0.624 0.543 0.518 0.591 0.597
Lupus Erythematosus, Systemic immune 0.758 0.608 0.569 0.526 0.532 0.581
Multiple Sclerosis immune 0.775 0.633 0.594 0.549 0.58 0.597
Psoriasis immune 0.846 0.63 0.55 0.513 0.541 0.576
Alcoholism mental 0.674 0.554 0.533 0.51 0.545 0.547
Alzheimer Disease mental 0.691 0.632 0.597 0.528 0.565 0.6
Attention Deficit Disorder with Hyperactivity mental 0.685 0.596 0.595 0.556 0.601 0.61
Bipolar Disorder mental 0.683 0.577 0.558 0.499 0.558 0.568
Depressive Disorder, Major mental 0.689 0.579 0.517 0.518 0.57 0.574
Mental Competency mental 0.76 0.544 0.543 0.547 0.607 0.563
Schizophrenia mental 0.685 0.545 0.591 0.486 0.556 0.57
Diabetes Mellitus, Type 2 metabolic disease 0.71 0.578 0.601 0.569 0.6 0.589
Insulin Resistance metabolic disease 0.723 0.589 0.566 0.53 0.577 0.611
Metabolic Syndrome X metabolic disease 0.792 0.55 0.505 0.602 0.688 0.607
Osteoporosis musculoskeletal 0.742 0.582 0.502 0.512 0.613 0.574
Amyotrophic Lateral Sclerosis nervous system 0.701 0.563 0.553 0.525 0.55 0.571
Parkinson Disease nervous system 0.658 0.6 0.544 0.524 0.555 0.556
Sleep psychological 0.75 0.546 0.504 0.543 0.644 0.591
Albuminuria urogenital 0.787 0.559 0.498 0.555 0.605 0.609

Table 3.16: Number of diseases for which the method has the best predictive
performance. The two settings are: SNPs in training and testing sets are non-
overlapping; for each disease, any SNP in the training set (from ARB) is at least
10kb away from all SNPs in the testing set (from GRASP).

Top method Non-overlapping 10kb away
DIVAN 27 20
GWAVA 4 8
GenoCanyon 3 8
CADD 0 0
Eigen 2 0
EigenPC 0 0
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Table 3.17: Summary of predicted AUC values for 36 diseases in GRASP using
the predictive models built from risk variants of corresponding diseases in ARB.
For each disease, the risk variants in GRASP are 10kb away with the risk variants
in ARB. The benign variants are 10 times of the risk variants in the testing set

disease/trait class DIVAN GWAVA GenoCanyon CADD Eigen EigenPC topmethods
Body Weight Changes body weight 0.755 0.446 0.37 0.255 0.278 0.372 DIVAN
Obesity body weight 0.643 0.542 0.533 0.522 0.506 0.511 DIVAN
Breast Neoplasms cancer 0.618 0.606 0.643 0.528 0.555 0.604 GenoCanyon
Neuroblastoma cancer 0.598 0.458 0.602 0.549 0.532 0.494 GenoCanyon
Pancreatic Neoplasms cancer 0.553 0.567 0.655 0.552 0.527 0.534 GenoCanyon
Prostatic Neoplasms cancer 0.592 0.609 0.583 0.527 0.564 0.563 GWAVA
Cardiovascular Diseases cardiovascular 0.535 0.699 0.674 0.6 0.59 0.612 GWAVA
Coronary Artery Disease cardiovascular 0.634 0.614 0.604 0.52 0.519 0.541 DIVAN
Heart Failure cardiovascular 0.579 0.628 0.576 0.49 0.407 0.58 GWAVA
Hypertension cardiovascular 0.616 0.592 0.562 0.511 0.507 0.519 DIVAN
Hypertrophy, Left Ventricular cardiovascular 0.573 0.542 0.512 0.418 0.355 0.374 DIVAN
Myocardial Infarction cardiovascular 0.642 0.63 0.64 0.517 0.538 0.581 DIVAN
Stroke cardiovascular 0.647 0.681 0.695 0.485 0.494 0.545 GenoCanyon
Macular Degeneration eye disease 0.602 0.628 0.606 0.527 0.509 0.538 GWAVA
Arthritis, Rheumatoid immune 0.682 0.739 0.629 0.545 0.458 0.519 GWAVA
Asthma immune 0.608 0.639 0.599 0.545 0.547 0.54 GWAVA
Behcet Syndrome immune 0.649 0.613 0.599 0.535 0.499 0.571 DIVAN
Colitis, Ulcerative immune 0.635 0.621 0.582 0.525 0.517 0.534 DIVAN
Crohn Disease immune 0.646 0.639 0.63 0.545 0.527 0.549 DIVAN
Diabetes Mellitus, Type 1 immune 0.701 0.673 0.648 0.573 0.515 0.57 DIVAN
Inflammation immune 0.593 0.602 0.556 0.563 0.527 0.565 GWAVA
Inflammatory Bowel Diseases immune 0.672 0.737 0.747 0.568 0.551 0.636 GenoCanyon
Lupus Erythematosus, Systemic immune 0.655 0.657 0.672 0.593 0.594 0.619 GenoCanyon
Multiple Sclerosis immune 0.589 0.595 0.554 0.505 0.52 0.547 GWAVA
Psoriasis immune 0.627 0.622 0.621 0.52 0.527 0.551 DIVAN
Alcoholism mental 0.506 0.665 0.812 0.477 0.436 0.495 GenoCanyon
Alzheimer Disease mental 0.61 0.585 0.558 0.535 0.532 0.534 DIVAN
Attention Deficit Disorder with Hyperactivity mental 0.628 0.607 0.557 0.521 0.551 0.555 DIVAN
Bipolar Disorder mental 0.614 0.581 0.536 0.491 0.509 0.513 DIVAN
Depressive Disorder, Major mental 0.605 0.591 0.548 0.509 0.523 0.511 DIVAN
Schizophrenia mental 0.64 0.597 0.571 0.526 0.529 0.55 DIVAN
Diabetes Mellitus, Type 2 metabolic disease 0.669 0.573 0.592 0.53 0.534 0.532 DIVAN
Insulin Resistance metabolic disease 0.659 0.581 0.501 0.429 0.605 0.451 DIVAN
Metabolic Syndrome X metabolic disease 0.633 0.618 0.755 0.519 0.562 0.643 GenoCanyon
Amyotrophic Lateral Sclerosis nervous system 0.618 0.593 0.595 0.54 0.531 0.546 DIVAN
Sleep psychological 0.703 0.638 0.519 0.444 0.496 0.528 DIVAN
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Table 3.18: Summary of predicted MCC values for 36 diseases in GRASP
using the predictive models built from risk variants of corresponding diseases in
ARB. For each disease, the risk variants in GRASP are 10kb away with the risk
variants in ARB. The benign variants are 10 times of the risk variants in the
testing set

disease/trait class DIVAN GWAVA GenoCanyon CADD Eigen EigenPC topmethod
Body Weight Changes body weight 0.118 -0.0514 -0.101 -0.0996 -0.0755 -0.0188 DIVAN
Obesity body weight 0.0615 0.00519 0.0445 0.00598 -0.00314 -0.0223 DIVAN
Breast Neoplasms cancer 0.0427 0.062 0.123 -0.00969 0.0449 0.0387 GenoCanyon
Neuroblastoma cancer 0.111 -0.0225 0.0337 -0.0411 -0.0727 -0.0858 DIVAN
Pancreatic Neoplasms cancer -0.0303 -0.0217 0.156 -0.00567 0.0322 0.0355 GenoCanyon
Prostatic Neoplasms cancer 0.0116 0.0254 0.0492 -0.00843 0.0106 0.0202 GenoCanyon
Cardiovascular Diseases cardiovascular -0.076 0.132 0.187 -0.0191 0.0885 0.178 GenoCanyon
Coronary Artery Disease cardiovascular 0.0537 0.0696 0.0767 -3.69e-05 0.00672 0.0193 GenoCanyon
Heart Failure cardiovascular 0.0071 -0.0523 0.00576 0.00102 -0.0567 -0.0281 DIVAN
Hypertension cardiovascular 0.0387 0.0374 0.0379 -0.0306 -0.0285 0.00202 DIVAN
Hypertrophy, Left Ventricular cardiovascular 0.0617 -0.061 -0.0315 -0.0968 -0.0722 -0.0924 DIVAN
Myocardial Infarction cardiovascular 0.056 0.0723 0.117 -0.00736 0.0444 0.0575 GenoCanyon
Stroke cardiovascular 0.0571 -0.052 0.13 -0.0944 -0.0755 -0.0879 GenoCanyon
Macular Degeneration eye disease 0.0641 0.101 0.067 0.0151 0.0345 0.0489 GWAVA
Arthritis, Rheumatoid immune 0.143 0.186 0.0824 0.0139 0.00658 0.0363 GWAVA
Asthma immune 0.0632 0.0794 0.0648 0.032 0.0432 0.0232 GWAVA
Behcet Syndrome immune 0.177 0.0712 0.0675 0.0109 -0.00752 0.0294 DIVAN
Colitis, Ulcerative immune 0.0661 0.0355 0.0606 -0.0155 0.016 0.032 DIVAN
Crohn Disease immune 0.0554 0.0778 0.114 0.0111 0.0271 0.0259 GenoCanyon
Diabetes Mellitus, Type 1 immune 0.157 0.128 0.108 0.0289 0.0315 0.0573 DIVAN
Inflammation immune 0.00224 -0.00533 0.0933 -0.00692 0.0131 0.00144 GenoCanyon
Inflammatory Bowel Diseases immune 0.118 0.14 0.218 0.0566 0.0648 0.0544 GenoCanyon
Lupus Erythematosus, Systemic immune 0.0966 0.04 0.134 -0.0117 -0.00309 0.0883 GenoCanyon
Multiple Sclerosis immune 0.0125 0.00432 0.0387 -0.000781 0.0221 0.00559 GenoCanyon
Psoriasis immune 0.0602 0.0563 0.112 0.0161 0.0285 0.0257 GenoCanyon
Alcoholism mental 0.0995 -0.0542 0.338 -0.0662 -0.0403 -0.0686 GenoCanyon
Alzheimer Disease mental 0.0592 0.0168 0.0438 -0.000725 0.00274 -0.00175 DIVAN
Attention Deficit Disorder with Hyperactivity mental 0.0456 0.02 0.0424 -0.00954 0.0384 0.00809 DIVAN
Bipolar Disorder mental 0.058 0.0061 0.0166 -0.0111 -0.00656 -0.00835 DIVAN
Depressive Disorder, Major mental 0.0442 0.00775 0.0194 0.00909 0.00919 -0.0157 DIVAN
Schizophrenia mental 0.0846 0.0602 0.0443 0.0192 0.0187 0.0251 DIVAN
Diabetes Mellitus, Type 2 metabolic disease 0.12 0.0314 0.0871 0.0107 0.0249 0.000926 DIVAN
Insulin Resistance metabolic disease 0.0854 -0.0469 -0.0666 -0.0331 0.2 -0.0745 Eigen
Metabolic Syndrome X metabolic disease -0.00949 0.0776 0.246 0.00784 0.0572 0.0237 GenoCanyon
Amyotrophic Lateral Sclerosis nervous system 0.0558 0.038 0.0765 0.0152 0.0321 0.00324 GenoCanyon
Sleep psychological 0.121 0.0935 -0.0196 -0.0246 -0.0211 0.081 DIVAN

Table 3.19: Summary statistics of CV-AUC values for the 45 diseases in ARB
and predicted AUC values of 36 diseases in GRASP when number of benign
variants varies from 10 times to 100 times of the risk variants in the training set
for DIVAN

CV (ARB) Non-overlapping (GRASP) 10kb away (GRASP)
10 times 0.745 0.661 0.626
AUC (mean/sd) (sd: 0.060) (sd: 0.055) (sd: 0.047)
100 times 0.74 0.666 0.633
AUC (mean/sd) (sd: 0.057) (sd: 0.056) (sd: 0.046)
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Table 3.20: Summary of CV-AUC values of five-fold cross-validation for 45
diseases in ARB when benign variants are 100 times of risk variants in the
training set for each disease

disease/trait class DIVAN GWAVA GenoCanyon CADD Eigen EigenPC
Body Weight body weight 0.691 0.575 0.538 0.53 0.582 0.546
Body Weight Changes body weight 0.734 0.603 0.52 0.549 0.612 0.523
Obesity body weight 0.822 0.626 0.593 0.558 0.626 0.637
Breast Neoplasms cancer 0.718 0.591 0.592 0.526 0.627 0.601
Neuroblastoma cancer 0.671 0.545 0.494 0.538 0.561 0.571
Pancreatic Neoplasms cancer 0.745 0.596 0.592 0.51 0.555 0.593
Prostatic Neoplasms cancer 0.688 0.589 0.575 0.519 0.571 0.557
Carotid Artery Diseases cardiovascular 0.748 0.596 0.594 0.503 0.553 0.534
Coronary Artery Disease cardiovascular 0.692 0.586 0.537 0.532 0.584 0.563
Coronary Disease cardiovascular 0.703 0.588 0.589 0.497 0.555 0.563
Death, Sudden, Cardiac cardiovascular 0.811 0.553 0.576 0.531 0.57 0.586
Heart Failure cardiovascular 0.67 0.578 0.533 0.534 0.577 0.564
Hypertension cardiovascular 0.696 0.613 0.589 0.525 0.583 0.585
Myocardial Infarction cardiovascular 0.676 0.586 0.552 0.513 0.566 0.559
Stroke cardiovascular 0.669 0.609 0.545 0.508 0.569 0.546
Cardiovascular Diseases cardiovascular 0.725 0.593 0.495 0.591 0.655 0.629
Hypertrophy, Left Ventricular cardiovascular 0.755 0.591 0.564 0.523 0.592 0.573
Diabetic Nephropathies endocrine 0.718 0.535 0.571 0.501 0.536 0.506
Macular Degeneration eye disease 0.781 0.575 0.485 0.503 0.572 0.583
Arthritis, Rheumatoid immune 0.775 0.63 0.603 0.498 0.584 0.62
Asthma immune 0.681 0.587 0.552 0.508 0.571 0.535
Behcet Syndrome immune 0.847 0.59 0.521 0.532 0.504 0.511
Colitis, Ulcerative immune 0.814 0.637 0.608 0.584 0.614 0.642
Crohn Disease immune 0.839 0.653 0.671 0.49 0.553 0.608
Diabetes Mellitus, Type 1 immune 0.849 0.657 0.539 0.515 0.546 0.558
Inflammation immune 0.791 0.56 0.493 0.481 0.535 0.534
Inflammatory Bowel Diseases immune 0.763 0.615 0.53 0.511 0.587 0.585
Lupus Erythematosus, Systemic immune 0.813 0.614 0.522 0.524 0.526 0.564
Multiple Sclerosis immune 0.811 0.625 0.516 0.526 0.536 0.552
Psoriasis immune 0.879 0.661 0.511 0.52 0.521 0.544
Alcoholism mental 0.675 0.547 0.537 0.512 0.54 0.541
Alzheimer Disease mental 0.712 0.62 0.602 0.521 0.551 0.585
Attention Deficit Disorder with Hyperactivity mental 0.675 0.595 0.603 0.544 0.594 0.597
Bipolar Disorder mental 0.697 0.58 0.586 0.501 0.559 0.563
Depressive Disorder, Major mental 0.703 0.577 0.529 0.493 0.552 0.573
Mental Competency mental 0.736 0.543 0.522 0.559 0.618 0.553
Schizophrenia mental 0.724 0.569 0.609 0.501 0.565 0.574
Diabetes Mellitus, Type 2 metabolic disease 0.719 0.6 0.642 0.563 0.615 0.595
Insulin Resistance metabolic disease 0.729 0.592 0.583 0.527 0.592 0.614
Metabolic Syndrome X metabolic disease 0.759 0.548 0.559 0.56 0.62 0.553
Osteoporosis musculoskeletal 0.728 0.577 0.508 0.501 0.61 0.591
Amyotrophic Lateral Sclerosis nervous system 0.708 0.571 0.548 0.521 0.549 0.557
Parkinson Disease nervous system 0.666 0.592 0.54 0.52 0.555 0.553
Sleep psychological 0.723 0.532 0.511 0.535 0.635 0.578
Albuminuria urogenital 0.769 0.567 0.538 0.523 0.595 0.583
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Table 3.21: Summary of predicted AUC values for 36 diseases in GRASP when
benign variants are 100 times of risk variants in the training set for each disease.
For each disease, the risk variants in GRASP are non-overlapping with the risk
variants in ARB

disease/trait class DIVAN GWAVA GenoCanyon CADD Eigen EigenPC topmethods
Body Weight Changes body weight 0.715 0.517 0.43 0.252 0.268 0.421 DIVAN
Obesity body weight 0.621 0.573 0.556 0.531 0.53 0.534 DIVAN
Breast Neoplasms cancer 0.664 0.617 0.634 0.534 0.563 0.577 DIVAN
Neuroblastoma cancer 0.67 0.495 0.572 0.504 0.5 0.464 DIVAN
Pancreatic Neoplasms cancer 0.689 0.616 0.65 0.562 0.526 0.548 DIVAN
Prostatic Neoplasms cancer 0.65 0.627 0.592 0.555 0.591 0.607 DIVAN
Cardiovascular Diseases cardiovascular 0.583 0.622 0.636 0.579 0.504 0.594 GenoCanyon
Coronary Artery Disease cardiovascular 0.66 0.627 0.614 0.535 0.537 0.558 DIVAN
Heart Failure cardiovascular 0.729 0.59 0.555 0.482 0.467 0.581 DIVAN
Hypertension cardiovascular 0.669 0.618 0.585 0.52 0.534 0.561 DIVAN
Hypertrophy, Left Ventricular cardiovascular 0.6 0.598 0.495 0.616 0.631 0.584 Eigen
Myocardial Infarction cardiovascular 0.654 0.633 0.641 0.529 0.557 0.602 DIVAN
Stroke cardiovascular 0.656 0.748 0.677 0.412 0.472 0.627 GWAVA
Macular Degeneration eye disease 0.677 0.626 0.601 0.525 0.542 0.567 DIVAN
Arthritis, Rheumatoid immune 0.802 0.759 0.64 0.53 0.469 0.547 DIVAN
Asthma immune 0.688 0.665 0.603 0.542 0.552 0.569 DIVAN
Behcet Syndrome immune 0.758 0.679 0.619 0.492 0.461 0.553 DIVAN
Colitis, Ulcerative immune 0.692 0.65 0.61 0.529 0.532 0.558 DIVAN
Crohn Disease immune 0.675 0.654 0.641 0.544 0.546 0.58 DIVAN
Diabetes Mellitus, Type 1 immune 0.798 0.725 0.648 0.552 0.516 0.577 DIVAN
Inflammation immune 0.621 0.596 0.556 0.567 0.525 0.542 DIVAN
Inflammatory Bowel Diseases immune 0.684 0.778 0.77 0.582 0.592 0.659 GWAVA
Lupus Erythematosus, Systemic immune 0.758 0.682 0.682 0.573 0.581 0.634 DIVAN
Multiple Sclerosis immune 0.619 0.606 0.556 0.509 0.518 0.552 DIVAN
Psoriasis immune 0.651 0.65 0.627 0.532 0.544 0.58 DIVAN
Alcoholism mental 0.598 0.553 0.769 0.492 0.415 0.488 GenoCanyon
Alzheimer Disease mental 0.63 0.591 0.568 0.513 0.524 0.54 DIVAN
Attention Deficit Disorder with Hyperactivity mental 0.661 0.601 0.56 0.533 0.535 0.541 DIVAN
Bipolar Disorder mental 0.628 0.589 0.544 0.503 0.52 0.523 DIVAN
Depressive Disorder, Major mental 0.606 0.579 0.544 0.522 0.54 0.533 DIVAN
Schizophrenia mental 0.65 0.607 0.579 0.526 0.541 0.564 DIVAN
Diabetes Mellitus, Type 2 metabolic disease 0.674 0.589 0.604 0.531 0.54 0.547 DIVAN
Insulin Resistance metabolic disease 0.593 0.524 0.5 0.456 0.637 0.478 Eigen
Metabolic Syndrome X metabolic disease 0.586 0.628 0.743 0.467 0.61 0.562 GenoCanyon
Amyotrophic Lateral Sclerosis nervous system 0.637 0.592 0.605 0.52 0.517 0.544 DIVAN
Sleep psychological 0.737 0.641 0.514 0.535 0.536 0.574 DIVAN
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Table 3.22: Summary of predicted AUC values for 36 diseases in GRASP when
benign variants are 100 times of risk variants in the training set for each disease.
For each disease, the risk variants in GRASP are 10kb away from the risk variants
in ARB

disease/trait class DIVAN GWAVA GenoCanyon CADD Eigen EigenPC topmethods
Body Weight Changes body weight 0.729 0.446 0.37 0.255 0.278 0.372 DIVAN
Obesity body weight 0.623 0.542 0.533 0.522 0.506 0.511 DIVAN
Breast Neoplasms cancer 0.611 0.606 0.643 0.528 0.555 0.604 GenoCanyon
Neuroblastoma cancer 0.623 0.458 0.602 0.549 0.532 0.494 DIVAN
Pancreatic Neoplasms cancer 0.643 0.567 0.655 0.552 0.527 0.534 GenoCanyon
Prostatic Neoplasms cancer 0.609 0.609 0.583 0.527 0.564 0.563 GWAVA
Cardiovascular Diseases cardiovascular 0.514 0.699 0.674 0.6 0.59 0.612 GWAVA
Coronary Artery Disease cardiovascular 0.638 0.614 0.604 0.52 0.519 0.541 DIVAN
Heart Failure cardiovascular 0.677 0.628 0.576 0.49 0.407 0.58 DIVAN
Hypertension cardiovascular 0.642 0.592 0.562 0.511 0.507 0.519 DIVAN
Hypertrophy, Left Ventricular cardiovascular 0.607 0.542 0.512 0.418 0.355 0.374 DIVAN
Myocardial Infarction cardiovascular 0.639 0.63 0.64 0.517 0.538 0.581 GenoCanyon
Stroke cardiovascular 0.678 0.681 0.695 0.485 0.494 0.545 GenoCanyon
Macular Degeneration eye disease 0.615 0.628 0.606 0.527 0.509 0.538 GWAVA
Arthritis, Rheumatoid immune 0.68 0.739 0.629 0.545 0.458 0.519 GWAVA
Asthma immune 0.623 0.639 0.599 0.545 0.547 0.54 GWAVA
Behcet Syndrome immune 0.651 0.613 0.599 0.535 0.499 0.571 DIVAN
Colitis, Ulcerative immune 0.637 0.621 0.582 0.525 0.517 0.534 DIVAN
Crohn Disease immune 0.653 0.639 0.63 0.545 0.527 0.549 DIVAN
Diabetes Mellitus, Type 1 immune 0.706 0.673 0.648 0.573 0.515 0.57 DIVAN
Inflammation immune 0.587 0.602 0.556 0.563 0.527 0.565 GWAVA
Inflammatory Bowel Diseases immune 0.653 0.737 0.747 0.568 0.551 0.636 GenoCanyon
Lupus Erythematosus, Systemic immune 0.656 0.657 0.672 0.593 0.594 0.619 GenoCanyon
Multiple Sclerosis immune 0.604 0.595 0.554 0.505 0.52 0.547 DIVAN
Psoriasis immune 0.648 0.622 0.621 0.52 0.527 0.551 DIVAN
Alcoholism mental 0.487 0.665 0.812 0.477 0.436 0.495 GenoCanyon
Alzheimer Disease mental 0.615 0.585 0.558 0.535 0.532 0.534 DIVAN
Attention Deficit Disorder with Hyperactivity mental 0.628 0.607 0.557 0.521 0.551 0.555 DIVAN
Bipolar Disorder mental 0.622 0.581 0.536 0.491 0.509 0.513 DIVAN
Depressive Disorder, Major mental 0.604 0.591 0.548 0.509 0.523 0.511 DIVAN
Schizophrenia mental 0.639 0.597 0.571 0.526 0.529 0.55 DIVAN
Diabetes Mellitus, Type 2 metabolic disease 0.675 0.573 0.592 0.53 0.534 0.532 DIVAN
Insulin Resistance metabolic disease 0.651 0.581 0.501 0.429 0.605 0.451 DIVAN
Metabolic Syndrome X metabolic disease 0.598 0.618 0.755 0.519 0.562 0.643 GenoCanyon
Amyotrophic Lateral Sclerosis nervous system 0.613 0.593 0.595 0.54 0.531 0.546 DIVAN
Sleep psychological 0.694 0.638 0.519 0.444 0.496 0.528 DIVAN
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Table 3.23: Summary of predicted AUC values for 36 diseases in GRASP using
the predictive models built from risk variants of corresponding diseases in ARB.
The benign variants are 100 times of the risk variants in the testing set

disease/trait class DIVAN GWAVA GenoCanyon CADD Eigen EigenPC topmethods
Body Weight Changes body weight 0.729 0.525 0.434 0.256 0.272 0.422 DIVAN
Obesity body weight 0.633 0.572 0.556 0.529 0.528 0.533 DIVAN
Breast Neoplasms cancer 0.672 0.616 0.633 0.531 0.562 0.577 DIVAN
Neuroblastoma cancer 0.647 0.498 0.574 0.504 0.502 0.465 DIVAN
Pancreatic Neoplasms cancer 0.695 0.617 0.651 0.558 0.524 0.546 DIVAN
Prostatic Neoplasms cancer 0.626 0.625 0.591 0.552 0.589 0.607 DIVAN
Cardiovascular Diseases cardiovascular 0.529 0.63 0.64 0.577 0.507 0.596 GenoCanyon
Coronary Artery Disease cardiovascular 0.647 0.627 0.614 0.534 0.537 0.557 DIVAN
Heart Failure cardiovascular 0.717 0.595 0.561 0.484 0.474 0.584 DIVAN
Hypertension cardiovascular 0.653 0.616 0.585 0.516 0.532 0.56 DIVAN
Hypertrophy, Left Ventricular cardiovascular 0.59 0.596 0.505 0.625 0.644 0.585 Eigen
Myocardial Infarction cardiovascular 0.656 0.633 0.64 0.526 0.555 0.602 DIVAN
Stroke cardiovascular 0.668 0.753 0.68 0.414 0.478 0.626 GWAVA
Macular Degeneration eye disease 0.68 0.626 0.601 0.525 0.542 0.566 DIVAN
Arthritis, Rheumatoid immune 0.766 0.758 0.64 0.53 0.469 0.546 DIVAN
Asthma immune 0.67 0.665 0.603 0.539 0.55 0.568 DIVAN
Behcet Syndrome immune 0.74 0.678 0.619 0.488 0.459 0.553 DIVAN
Colitis, Ulcerative immune 0.677 0.649 0.609 0.526 0.53 0.557 DIVAN
Crohn Disease immune 0.672 0.653 0.64 0.542 0.544 0.578 DIVAN
Diabetes Mellitus, Type 1 immune 0.801 0.724 0.648 0.55 0.514 0.576 DIVAN
Inflammation immune 0.59 0.598 0.556 0.565 0.523 0.543 GWAVA
Inflammatory Bowel Diseases immune 0.693 0.78 0.77 0.58 0.591 0.661 GWAVA
Lupus Erythematosus, Systemic immune 0.752 0.683 0.683 0.57 0.58 0.636 DIVAN
Multiple Sclerosis immune 0.616 0.605 0.556 0.506 0.516 0.552 DIVAN
Psoriasis immune 0.635 0.65 0.627 0.528 0.542 0.58 GWAVA
Alcoholism mental 0.635 0.556 0.77 0.489 0.414 0.49 GenoCanyon
Alzheimer Disease mental 0.624 0.59 0.567 0.511 0.522 0.539 DIVAN
Attention Deficit Disorder with Hyperactivity mental 0.647 0.598 0.559 0.529 0.533 0.54 DIVAN
Bipolar Disorder mental 0.611 0.589 0.543 0.503 0.519 0.522 DIVAN
Depressive Disorder, Major mental 0.599 0.578 0.543 0.52 0.538 0.532 DIVAN
Schizophrenia mental 0.645 0.606 0.578 0.526 0.54 0.563 DIVAN
Diabetes Mellitus, Type 2 metabolic disease 0.665 0.588 0.603 0.53 0.539 0.546 DIVAN
Insulin Resistance metabolic disease 0.622 0.525 0.498 0.454 0.636 0.48 Eigen
Metabolic Syndrome X metabolic disease 0.614 0.629 0.745 0.472 0.617 0.561 GenoCanyon
Amyotrophic Lateral Sclerosis nervous system 0.639 0.59 0.604 0.516 0.515 0.544 DIVAN
Sleep psychological 0.737 0.644 0.514 0.534 0.535 0.576 DIVAN
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Table 3.24: Summary of predicted AUC values for 36 diseases in GRASP using
the predictive models built from risk variants of corresponding diseases in ARB.
For each disease, the risk variants in GRASP are 10kb away with the risk variants
in ARB. The benign variants are 100 times of the risk variants in the testing set

disease/trait class DIVAN GWAVA GenoCanyon CADD Eigen EigenPC topmethods
Body Weight Changes body weight 0.747 0.455 0.372 0.26 0.285 0.374 DIVAN
Obesity body weight 0.645 0.541 0.533 0.519 0.504 0.51 DIVAN
Breast Neoplasms cancer 0.616 0.604 0.642 0.524 0.552 0.603 GenoCanyon
Neuroblastoma cancer 0.605 0.459 0.608 0.548 0.535 0.493 GenoCanyon
Pancreatic Neoplasms cancer 0.56 0.568 0.657 0.554 0.53 0.534 GenoCanyon
Prostatic Neoplasms cancer 0.591 0.607 0.583 0.524 0.562 0.563 GWAVA
Cardiovascular Diseases cardiovascular 0.532 0.706 0.678 0.597 0.592 0.612 GWAVA
Coronary Artery Disease cardiovascular 0.634 0.614 0.604 0.519 0.519 0.54 DIVAN
Heart Failure cardiovascular 0.59 0.636 0.58 0.493 0.412 0.582 GWAVA
Hypertension cardiovascular 0.615 0.592 0.562 0.507 0.505 0.518 DIVAN
Hypertrophy, Left Ventricular cardiovascular 0.576 0.545 0.522 0.426 0.366 0.372 DIVAN
Myocardial Infarction cardiovascular 0.641 0.63 0.639 0.514 0.537 0.581 DIVAN
Stroke cardiovascular 0.651 0.688 0.697 0.485 0.5 0.545 GenoCanyon
Macular Degeneration eye disease 0.602 0.627 0.606 0.526 0.509 0.537 GWAVA
Arthritis, Rheumatoid immune 0.682 0.739 0.629 0.545 0.458 0.519 GWAVA
Asthma immune 0.609 0.639 0.599 0.542 0.545 0.539 GWAVA
Behcet Syndrome immune 0.65 0.614 0.6 0.533 0.498 0.573 DIVAN
Colitis, Ulcerative immune 0.634 0.62 0.581 0.522 0.514 0.534 DIVAN
Crohn Disease immune 0.644 0.638 0.629 0.543 0.526 0.548 DIVAN
Diabetes Mellitus, Type 1 immune 0.701 0.673 0.648 0.571 0.513 0.569 DIVAN
Inflammation immune 0.592 0.604 0.556 0.561 0.525 0.566 GWAVA
Inflammatory Bowel Diseases immune 0.67 0.739 0.748 0.565 0.55 0.637 GenoCanyon
Lupus Erythematosus, Systemic immune 0.658 0.658 0.672 0.59 0.593 0.62 GenoCanyon
Multiple Sclerosis immune 0.59 0.593 0.555 0.502 0.518 0.547 GWAVA
Psoriasis immune 0.626 0.621 0.62 0.517 0.525 0.55 DIVAN
Alcoholism mental 0.505 0.668 0.813 0.473 0.434 0.497 GenoCanyon
Alzheimer Disease mental 0.608 0.584 0.557 0.534 0.531 0.533 DIVAN
Attention Deficit Disorder with Hyperactivity mental 0.626 0.604 0.555 0.517 0.548 0.554 DIVAN
Bipolar Disorder mental 0.613 0.581 0.535 0.49 0.508 0.513 DIVAN
Depressive Disorder, Major mental 0.605 0.59 0.547 0.507 0.521 0.51 DIVAN
Schizophrenia mental 0.638 0.596 0.57 0.526 0.529 0.549 DIVAN
Diabetes Mellitus, Type 2 metabolic disease 0.669 0.572 0.591 0.529 0.534 0.531 DIVAN
Insulin Resistance metabolic disease 0.659 0.583 0.5 0.426 0.604 0.453 DIVAN
Metabolic Syndrome X metabolic disease 0.629 0.621 0.758 0.523 0.571 0.642 GenoCanyon
Amyotrophic Lateral Sclerosis nervous system 0.618 0.593 0.594 0.537 0.529 0.546 DIVAN
Sleep psychological 0.704 0.64 0.519 0.443 0.496 0.53 DIVAN
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Chapter 4

traseR: an R package for

performing trait-associated SNP

enrichment analysis in genomic

intervals

4.1 Introduction

Genome-wide association studies (GWAS) have been conducted en masse in

the past decade and have been tremendously successful in identifying sequence

variants that are significantly associated with common diseases and traits [61].

To this day, thousands of GWAS have been conducted and reported, across

diverse spectrums of diseases as well as qualitative and quantitative pheno-

types. Resources, such as association result browser (http://www.ncbi.nlm.

nih.gov/projects/gapplusprev/sgap_plus.htm) and NHGRI GWAS cat-

alog [62] have been established to catalog all the trait-associated variants.

http://www.ncbi.nlm.nih.gov/projects/gapplusprev/sgap_plus.htm
http://www.ncbi.nlm.nih.gov/projects/gapplusprev/sgap_plus.htm
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Currently, the association result browser contains 44,124 association results

(checked on October 10, 2015), which corresponds to 30,553 (autosomes plus

chromosome X) unique trait-associated single nucleotide polymorphisms (taS-

NPs), linking to 573 diseases or phenotypes. We believe such a catalog of

taSNPs offers scientists a unique perspective to explore and annotate the func-

tional potential of any given genomic intervals.

Maurano et al. showed that regulatory DNA marked by deoxyribonuclease

I (DNase I) hypersensitive sites (DHSs) was enriched with noncoding GWAS

SNPs [29]. Recent studies from ENCODE and Roadmap Epigenome consortia

systematically examined enrichment of taSNPs in ChIP-seq peaks of transcrip-

tion factors and histone marks, and unveiled biologically interesting connec-

tions [63].

These results indicate the utilities of conducting taSNP enrichment analyses

in genomic intervals of interest. We believe that it will be a powerful tool for

researchers to be able to query any given set of genomic intervals to see whether

taSNPs are enriched in these particular neighborhoods of the genome and more

importantly, which specific traits show significant enrichment. Typical genomic

intervals include ChIP-seq peaks, differentially methylated regions and putative

enhancers. In this way, we can build hypotheses linking these intervals to

phenotypes. This is similar to the Gene Ontology (GO) [64] term enrichment

analysis or the Gene Set Enrichment Analysis (GSEA) [65] except that GO

terms or functional categories are replaced by traits, and a set of genes is

replaced by a set of genomic intervals. We believe taSNPs can bring important

functional insights to genomic regions, especially intergenic regions. Despite the

great utilities, currently there is no off-the-shelf computational tool available

to carry out this non-trivial test. To cater for this demand, we developed an



125

R Bioconductor package named traseR, TRait-Associated SNP EnRichment

analysis, which offers a turnkey solution for enrichment analysis of taSNPs.

4.2 Method

traseR provides multiple options, including testing method, type of background

and inclusion of SNPs in linkage disequilibrium (LD), to conduct statistical

tests of taSNP enrichment for a given set of query genomic intervals. We here

provide a brief description.

4.2.1 Background SNPs

All SNPs from the CEU panel of the phase I 1000 Genomes with minor allele

frequency (MAF) greater than 0.05 are used as background SNPs (6,571,512

SNPs genome-wide excluding those from the Y chromosome). These SNPs

have a comparable MAF distribution to the taSNP collection.

Obtain taSNPs

Association Results Browser (http://www.ncbi.nlm.nih.gov/projects/gapplusprev/

sgap_plus.htm) combines identified trait-associated single nucleotide poly-

morphisms (taSNPs) from dbGaP and NHGRI genome-wide association study

(GWAS) catalog [66], which together provide 44,124 SNP-trait associations.

This list contains 30,553 unique taSNPs associated with 573 different traits.

We build this resource into a GRanges object named taSNP in traseR, which

could be loaded into R console by typing data(taSNP).

http://www.ncbi.nlm.nih.gov/projects/gapplusprev/sgap_plus.htm
http://www.ncbi.nlm.nih.gov/projects/gapplusprev/sgap_plus.htm
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Obtain linkage disequilibrium taSNPs from 1000 Genomes

We first download all vcf files from the 1000 Genomes consortium (ftp://

share.sph.umich.edu/1000genomes/fullProject/2012.03.14/). Next, we

use PLINK [67] to find nearby SNPs (within 100kb) that are in tight linkage dis-

equilibrium (LD) (ą 0.8) with at least one taSNP. At the end, we collect 78,247

unique SNPs that every SNP is either a taSNP itself or is in LD with a taSNP.

We build these LD taSNPs into another GRanges object named taSNPLD in

traseR, which could be loaded into R console by typing data(taSNPLD).

Obtain background SNPs from 1000 Genomes

All SNPs from the CEU panel of the phase I 1000 Genomes with minor allele

frequency (MAF) greater than 0.05 are used as background SNPs (6,571,512

SNPs genome-wide excluding those from the Y chromosome). We build these

SNPs in another GRanges object named CEU in traseR, which could be loaded

into R console by typing data(CEU).

4.2.2 Enrichment tests

All SNPs can be categorized in a contingency table (Table 4.1) as the following,

Table 4.1: The contingency table for enrichment test

#taSNP #non-taSNP
Inside n11 n12 n1.

Outside n21 n22 n2.

n.1 n.2 n

The null hypothesis is,

H0 : p1 “ p2

ftp://share.sph.umich.edu/1000genomes/fullProject/2012.03.14/
ftp://share.sph.umich.edu/1000genomes/fullProject/2012.03.14/
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If the enrichment is of interest, the alternative hypothesis is,

H0 : p1 ą p2

p1is the probability of observing a SNP being a taSNP inside the query genomic

intervals, p2 is the probability of observing a SNP being a taSNP outside the

query genomic intervals.

Contingency table-based tests

The null hypothesis assumes that the proportion of taSNPs among all SNPs is

the same both within and outside of the query genomic intervals. We classify

all SNPs into either within/outside (query genomic intervals), or taSNPs/non-

taSNPs, then construct a two-by-two contingency table and run a test or

Fisher’s exact test to assess the enrichment level of the taSNPs. Alternatively,

we classify every single base in the genome (except for chromosome Y) into

either within/outside (query genomic intervals), or taSNPs/non-taSNPs, and

conduct the test accordingly.

Chi-squared Test

Agoodness of fittest establishes whether the observed taSNPsfrequency distri-

butioninside the query genomic intervals differs from the taSNPs frequency

distribution outside the genomic intervals.

p̂i. “
ni.
n
, i “ 1, 2

p̂.j “
n.j
n
, j “ 1, 2
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Eij “ p̂i.p̂.j

χ2
“

2
ÿ

i“1

2
ÿ

j“1

pnij ´ Eijq
2

Eij

Fisher’s exact Test

The number of taSNPs inside the query genomic intervals is assumed to follow

a hypergeometric distribution, and the probability of observing n11 taSNPs is,

ppX “ n11q

`

n.1

n11

˘`

n.2

n12

˘

`

n
n1.

˘

The p-value calculated using the formula below indicates whether the en-

richment of taSNPs inside the genomic intervals is statistical significant.

ppX ě n11q “

n.1
ÿ

ni“n11

ppX “ niq

Binomial test

The null hypothesis states that the chance of observing a SNP being a taSNP is

the same in query genomic intervals as in the whole genome (excluding chromo-

some Y). Therefore, under the null hypothesis, the number of observed taSNPs

out of all SNPs in the query genomic intervals follows a binomial distribution

with probability equal to the genome-wide proportion of all taSNPs among all

SNPs. Alternatively, we can use all bases in the genome as the background

and conduct the test accordingly.

The proportion of taSNPs across the whole genome is used to estimate the

probability of observing a taSNP inside the genomic intervals. Under the null

hypothesis p1 “ p, where is the probability of observing a SNP being a taSNP

across the whole genome, we have,
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p̂1 “ p̂ “
n.1
n

The p-values calculated using the formula below indicates whether the en-

richment of taSNPs inside the query genomic intervals is statistical significant.

ppX ě n11q “

n1.
ÿ

ni“n11

p̂X1 p1´ p̂1q
n1.´X

Nonparametric statistical testing procedure

Because typical query genomic intervals only span a small fraction of the whole

genome, and the genome-wide distribution of SNPs is not uniform, it is de-

sirable to conduct a nonparametric test in which a set of randomly selected

control intervals is compared to the query genomic intervals for taSNP enrich-

ment, rather than imposing distribution assumptions. For each permutation,

traseR generates a matching control interval of the same size and on the same

chromosome as each query genomic interval. The process is repeated 10,000

times (or a number specified by the user) to obtain an empirical p-value.

In this test, for each query genomic interval, traseR generates a matching

control interval on the same chromosome, with the same size. Then, how many

times the number of taSNPs inside the query genomic intervals is larger/smaller

than the number of taSNPs inside the set of control genomic intervals are

counted. This procedure is repeated a large number of times (e.g. 10,000)

to obtain the corresponding empirical p-value. Suppose sets of matching con-

trol intervals are generated. For each set i, ni taSNPs are observed inside

the matching control intervals, then the empirical p-value calculated using the

formula below indicates whether the enrichment of taSNPs inside the query

genomic intervals is statistical significant.
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řN
i“1 Ipni ě n11q

N

4.2.3 Linkage disequilibrium

As an option, traseR allows users to expand the taSNP set to include all the

SNPs that are in tight linkage disequilibrium (LD) (ą0.8) with any of the

taSNPs. The extended taSNP set contains 78,247 unique SNPs. Inclusion

of SNPs in LD with the taSNPs is preferable if there is a limited number of

taSNPs associated with the traits of interest.

4.3 Results

4.3.1 SNP collection

We collect a compendium of up-to-date taSNPs from dbGaP and NHGRI.

There are 30,553 unique taSNPs spanning 573 phenotypes, all of which have

been preloaded into the traseR package. traseR takes in a bed format input

file that contains the query genomic intervals, then performs a user-specified

enrichment test on all taSNPs combined, as well as taSNPs associated with

each of the 573 traits. In the output, traseR reports the overall enrichment

level of all taSNPs in the query genomic intervals, followed by a ranked list

of traits that show statistically significant enrichment. Accordingly, p-values,

FDR q-values and odds ratios are also reported for each trait.
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Table 4.2: Top-ranked traits for T cell H3K4me1 peaks

Trait p-value OR #taSNP hits #taSNP
All 2.70E-48 1.5 1,846 30,553
Behcet Syndrome 4.40E-23 6.3 59 274
Diabetes Mellitus, Type 1 1.70E-11 5 33 185
Lupus Erythematosus 6.20E-09 3.9 32 223
Arthritis, Rheumatoid 1.40E-07 5.1 20 112
Multiple Sclerosis 1.60E-05 2.9 26 236
Autoimmune Diseases 5.20E-05 15.9 6 15

4.3.2 Real data analyses

H3K4me1 peaks in T cell

We demonstrate traseR’s utilities by displaying a sample result (H3K4me1

peak regions in peripheral T cell) [4]. The 198,162 H3K4me1 ChIP-seq peaks

in human peripheral blood T cell are downloaded from Roadmap Epigenome

website. The peak regions span 128 MB and account for around 4% of the

human genome. We run traseR using binomial test, with 30,553 taSNPs, using

whole genome as the background. The top-ranked traits are all immune-related

(Table 4.2). Moreover, peaks are significantly enriched with overall taSNPs.

Here we use the whole genome as background and binomial test as the testing

method.

H3K4me1 peaks in liver cell

The 233,386 H3K4me1 ChIP-seq peaks in human liver cell are downloaded from

Roadmap Epigenome website. The peak regions span 144 MB and account for

around 4.8% of the human genome. We ran traseR using binomial test, with

30,553 taSNPs, using whole genome as the background. The results in Table

4.3 show that six traits are significantly enriched with taSNPs in these peak

regions after Bonferroni correction.
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Table 4.3: Top-ranked traits for liver cell H3K4me1 peaks

Trait p-value OR #taSNP #taSNP
All 1.20E-132 1.8 2480 30,553
Macular Degeneration 1.10E-08 3.1 43 331
gamma-Glutamyltransferase 3.50E-08 11.7 13 36
Lipoproteins, HDL 5.50E-07 4.3 22 129
Cholesterol 1.10E-06 2.1 61 649
Coronary Artery Disease 2.00E-05 2 56 639
Lipoproteins, LDL 4.70E-05 3.7 17 113

Ultra Conserved Elements

The 481 Ultra Conversed Elements (UCEs) are downloaded from Ultra Con-

served Elements website http://ultraconserved.org/. The regions span

0.13MB and account for around 0.004% of the human genome. We ran traseR

using binomial test, with the 78,247 taSNP set (including SNPs in LD), using

whole genome as the background. The results in Table 4.4 show that UCEs

lack taSNPs, which confirms the functional importance of the UCEs.

Table 4.4: Top-ranked traits for Ultra Conserved Elements

Trait p-value OR #taSNP #taSNP
All 0.83 0.93 2 78,247

Differential Methylated Regions

These Differentially Methylated Regions (DMRs) are formed by extending

3,601 differentially methylated CpG sites [68] upstream and downstream 1kb in

the analysis of subcutaneous adipose before and after weight loss. The regions

span 7.2 MB and account for around 0.24% of whole human genome. We run

traseR using binomial test, with 30,553 taSNPs, using whole genome as the

background. The results in Table refc4:table5 show that only one trait, Type 1

http://ultraconserved.org/
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Diabetes, survives Bonferroni correction. The results are interesting since adi-

pose dysfunction has been linked to insulin resistance and Type 2 Diabetes [69],

and there are also studies supporting a connection between obesity and Type

1 Diabetes [70].

Table 4.5: Top-ranked traits for adipose DMRs

All 5.7e-07 1.6 118 30,553
Type1 Diabetes 6.8e-06 16.4 6 185

4.3.3 Computational time

traseR runs very fast even on a personal PC or laptop. Taking the H3K4me1

peaks in T cell as an example, traseR only takes about 1.5 seconds on a Mac-

Book laptop with a 1.7 GHz processor and 8 GB memory for all testing meth-

ods except for the nonparametric testing option. For the nonparametric testing

option, traseR costs around 5 minutes for 100 permutations due to the large

number of H3K4me1 peaks.
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Chapter 5

Conclusion and future work

This dissertation presents the utilization of statistical and informatics methods

for the analysis of high-throughput genomic data especially next generation

sequencing data and GWAS data. In the era of “Big Data”, the accumulation

of massive datasets provides an opportunity to integrate the datasets from

different sources for novel discovery in biological systems. However, different

modeling approaches should be used in different scenarios. In this dissertation,

we present a combination of statistical modeling and informatics approaches

for different types of datasets.

Chapter 2 describes a hierarchical linear model ChIPComp to quantita-

tively compare ChIP-seq datasets in multiple conditions. The novelty of the

method is that it considers the unique characteristic of ChIP-seq data by mod-

eling the control data in a rigorous. In contrast, other competing methods do

not consider control data or fail to model the control data in a correct way.

The true biological signals (TF binding/Histone modification) are derived from

both IP and control data, and the hypothesis testing is performed on the true

biological signals. Moreover, since there is only a small number of biological
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replicates in each condition, an empirical bayesian shrunken variance estimate

is utilized in the variance estimation for the test statistics. ChIPComp could

be easily modified and extended to other type of sequencing data with matched

control data that measures the background noise. For example, the ribosome

profiling technique (Ribo-seq) data targets only mRNA sequences protected

by the ribosome during in protein translation. The protected mRNA regions

in decoding are usually open reading frames (ORFs), and therefore, Ribo-seq

could identify ORFs differentially translated between experimental conditions.

The non-active ORFs in normal condition could be considered as the control

data since the non-active ORFs measure the RNA structure and RNA sequence.

Therefore, it is feasible to modify ChIPComp for multiple Ribo-seq comparison

in multiple conditions.

Chapter 3 describes a machine learning method DIVAN to identify and pri-

oritize disease-specific non-coding variants by building a predictive model that

integrates GWAS SNPs and thousands of epigenomic profiles as the training

set. The motivation for the development of DIVAN is that the biological sig-

nificances of GWAS SNPs are not only captured by p-value in the case-control

study. Especially for SNPs in highly LD, the SNPs with most stringent p-values

might not be the causal ones. Thus, additional information should be combined

along with the GWAS summary statistics to re-prioritize the SNPs, and the top

ranked SNPs have better chance to be causal. Besides re-prioritizing variants,

DIVAN is also useful in the identification of novel disease-associated variants,

especially rare variants with the assumption that the epigenomic and genomic

profiles among causal variants are similar. And the epigenomic and genomic

profiles for either novel variants or known variants could be simply obtained

from the pre-built genome-wide annotation matrix. We could pre-computed
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the DIVAN score for each base in entire human genome for 45 diseases/traits

studied, and the DIVAN could be considered as the probability of a variant

being disease-associated. Therefore, bases with high D-score could be potential

the novel variants that are disease-associated.

Particularly, DIVAN could be potentially widely used in cancer research.

The variants reported in GWAS are germline variants in majority. However,

somatic mutations are of a particular interest in cancer research since they

may be the drivers and could be potential drug biomarkers. DIVAN could be

applied to re-prioritize somatic mutations and identify novel somatic mutations

by using recurrent somatic mutations as the training set.

At the moment, only GWAS SNPs with p-values meet stringent signifi-

cant level (e.g. 10´4) are considered as casual in the training set. However,

the quantitative difference of SNPs, which meet the significant level, are ig-

nored. To incorporate the p-value information, we plan to extend DIVAN in a

supervised-unsupervised machine learning framework to improve the accuracy

of risk variant identification and prioritization. We directly use disease-specific

D-scores assigned by DIVAN in the supervised learning step. Bayesian method

will be used as the unsupervised method to calculate the posterior probabil-

ity of each single nucleotide being disease-associated conditioned on GWAS

summary statistics (p-values). Besides D-scores, other pre-computed scores of

regulatory variants from multiple existing variant annotation methods such as

CADD, Eigen, and GWAVA could be used as the prior as well. The rationale is

that the variant with high probability of being regulatory or disease-associated

in GWAS is more likely to be disease casual in reality. This strategy could also

be extended to tissue-specific functional element prioritization such as eQTLs.

In this extension, eQTLs with cell-type specific epigenomic annotations could
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be used in the supervised model, while the scores of regulatory variants could

be served as the prior in the unsupervised model.
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