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ABSTRACT 

 

Drought and All-Cause Mortality Rates among Adults 

In the United States: 1968-2014 

By Katie Lynch 

 

Introduction: Drought can cause widespread and complex regional impacts and 

numerous pathways have been hypothesized connecting drought to health effects. One 

area of drought research that is lacking is the effects of drought on all-cause mortality, 

especially in higher income countries such as the United States. This study aims to 

evaluate the associations between droughts and same-year all-cause mortality in adults in 

the United States from 1968-2014 in order to better understand the health impacts of 

drought. 

 

Methods: Drought exposure was classified using an annual drought severity score for 

each county derived from a dataset of 1-month, county-level Standardized Precipitation 

and Evapotranspiration Index (SPEI). An analogous score for abnormally wet years was 

also derived. All-cause mortality data came from a dataset from the United States Centers 

for Disease Control and Prevention’s (CDC) mortality counts, censored on counts 1-9 

across narrow demographic strata. We modeled county-stratum-year mortality using 

interval-censored [1,9] negative binomial regression with random intercepts by each 

combined age-race-sex stratum with and without further stratification by National 

Oceanographic and Atmospheric Association climate regions, and with and without 

inclusion of years classified as abnormally wet. False discovery-rate adjusted-p values 

were obtained to correct for multiple testing. Random effects meta-regressions were 

completed to test the associations between the predictors with the drought-mortality 

regression coefficient. Meta-analyses were then completed to obtain a pooled IRR and I2 

as a measure of between-study heterogeneity. 

 

Results: Most of the results were null for the association of drought severity and 

mortality, across categories of race, age, sex and region for all analyses. A small number 

of IRRs were significant after accounting for the multiple testing for certain subgroups, 

but without clear patterns by age, race, sex or region. The meta-analyses resulted in a 

pooled IRR of 0.999 (0.999, 1.000) from the analyses that stratified by NOAA region, 

with and without wet county-years included. The I2 of approximately 50% for both 

analyses suggests that about half of the total variation across stratified groups is due to 

heterogeneity. 

 

Discussion: These results suggest that, for the majority of demographic subgroups and 

across climate regions, there is no significant effect of drought intensity on mortality rates 

within the same year in the contiguous United States over 1968-2014. The handful of 

significant results that remained after accounting for multiple testing suggest a possible 

health effect for certain subgroups, but this heterogeneity was not consistent across broad 

patterns of age, race, sex or region. The findings could indicate contextual heterogeneity 

in the effects of drought on mortality, and either true null associations for most 

subgroups, or limitations in study design for observing the effects.   
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INTRODUCTION 

 

The Intergovernmental Panel on Climate Change reported in 2012 that medium 

confidence exists that droughts have increased in duration and intensity in some areas 

since the 1950s, particularly semi-arid and sub-humid regions (i.e. South Europe, West 

Africa), while decreasing in others (i.e. North America, Northwestern Australia), and that 

droughts will continue to intensify in certain regions of the world including southern and 

central Europe, the Mediterranean, North and Central America and southern Africa [1]. 

Within the United States, specific areas including California and the Midwest are 

projected to experience the strongest increase in drought intensity [2].  

Drought is generally considered a water deficit for a given area, but the actual 

classification of drought, and therefore definition, differs depending on the measures 

considered, such as precipitation or and evapotranspiration [3]. Droughts are commonly 

divided into four major types based on their environmental and human impacts. These 

include meteorological drought (i.e., abnormally low precipitation), hydrological drought 

(i.e., precipitation shortages that impact the surface and groundwater levels), agricultural 

drought (i.e., decreased soil moisture that impacts crops), and socioeconomic drought 

(i.e., weather-related decreased water supply that affects people and supply of goods) [4]. 

Further, droughts can be characterized by additional factors such as duration, intensity, 

spatial distribution, frequency, and rate of onset [3]. 

Droughts can cause widespread and complex regional impacts. Recent droughts in 

Kenya, the Mediterranean and California have led to crises in food insecurity, political 

instability, and economic damage, respectively [5]. Droughts can also coincide with, and 

increase the risk of heat waves, wildfires, and dust-storms [5]. With the extensive effects 
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and potential for future increased impact of droughts, it is important to understand the 

possible health consequences of this natural disaster. 

Numerous pathways have been hypothesized connecting drought to health effects. 

Theoretically, in extreme cases, some of these health effects could lead to increased 

mortality, especially among vulnerable populations. One mechanism could be through 

decreased freshwater availability and water quality, which can increase the risk of 

contamination with, and concentration of, pathogens, chemicals (i.e. organophosphates, 

sulfates and nitrates), and harmful algae blooms in surface and groundwater [6, 7]. 

Contact with or ingestion of microbially contaminated water could result in infection (i.e. 

ear, eye, wound or gastrointestinal) [5, 8]. If water restrictions lead to decreased hand 

hygiene, this could promote the spread of infections. Cyanobacteria toxin exposure can 

occur through dermal contact, ingestion, or inhalation, and can cause skin rash, injury or 

even death [9]. Although decreased water availability and other drought conditions could 

affect agricultural production, and contribute to food insecurity, this is less likely to be a 

problem in higher income countries such as the United States. High income countries 

generally have food sources from more geographically diverse areas and greater food 

security at baseline, although food prices could increase and disproportionately affect 

individuals of lower socioeconomic status [10, 11]. Heat waves that may coincide with 

drought could also impact health, resulting in increased heat-related mortality [12, 13]. 

Heat and droughts are linked because increased temperature is a factor in drought 

development and severity through evapotranspiration, and because drought may create 

conditions that promote increased temperatures and heat waves [14]. Droughts could also 

affect air quality, thereby impacting heath.  This can occur through a variety of complex 
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processes related to natural emissions, chemistry, and deposition [15]. A recent study 

found a correlation between decreased air quality, including increased concentrations of 

PM2.5 and ozone and drought severity in the United States from 1990-2014 [15]. Drought 

can increase the risk of wildfires, which, in addition to immediate harms such as burn 

injuries or death, produce emissions that contain air pollutants including CO, PM2.5, and 

PM10 [15, 16]. Additionally, drought conditions may lead to processes other than 

wildfires that increase airborne particulate matter and distribution, including dust storms 

[5, 17].  Decreased precipitation, which helps wash out air pollutants, could further 

compromise air quality [18]. PM2.5 is associated with respiratory morbidity and mortality, 

including exacerbation of asthma and COPD and an increased risk of respiratory 

infections [19-21]. It has also been linked to and cardiovascular morbidity and mortality 

including ischemic heart disease and stroke [22, 23].  Wildfire emissions, specifically, 

have been linked to cardiovascular and respiratory morbidity, all-cause mortality, and 

low-birth weight [16, 22, 24, 25] Dust can also transport pathogens, which could result in 

spread of diseases such as coccidioidomycosis (Valley Fever) [26]. Studies have shown 

relationships between Valley Fever disease incidence and drought intensity or rain after 

periods of drought [27, 28]. Drought might also affect human health through changes in 

vector-borne disease transmission that could occur, especially among mosquito-borne 

diseases, due to stagnant water or changes in host-vector disease dynamics [18, 29, 30]. 

West Nile Virus and other mosquito-borne diseases have been found associated with 

drought or decreased precipitation [30-32]. Finally, drought can lead to economic 

hardship, population displacement, and other major psychological stressors with health 

relevance [33, 34].   
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A recent systematic review of evidence for the health effects of droughts showed 

that high-quality, quantitative studies on the association of drought and mortality are 

limited [10]. Cross sectional studies made up the majority of those identified [10]. While 

they may have shown high prevalence of mortality at the time of droughts, they could not 

prove causality [10]. Additionally, the studies mostly focused on lower income countries 

which often experienced famines during drought. In general, because higher income 

countries are probably less vulnerable to drought in terms of food and water scarcity, and 

may have increased capacity to adapt, the potential causal pathways from drought to 

mortality in the United States might differ. One of the few quantitative studies that exist 

on drought and mortality includes a meta-analysis of death rates among children under-

age-five in Ethiopia from aggregated mortality surveys. The authors did not find death 

rates above the Sub-Saharan Africa emergency and baseline threshold and concluded 

there was no likely association between drought and the under-age-five death rate , but 

did find the under-age-five death rate increased as prevalence of acute malnutrition 

increased [35]. For the reasons mentioned, this study is probably not generalizable to the 

United States. 

A few studies in Australia have looked at suicide as a specific cause of mortality 

during droughts[10]. One study found the relative risk of suicide between 1970 and 2007 

among rural males, age 30-49 in New South Wales, Australia increased 15% when 

drought index rose from the 1st to the 3rd quartile, after controlling for season, region and 

long-term trends [36]. They also found that the risk of suicide in rural females >30 years 

of age decreased as drought became more severe [36]. Another study from New South 

Wales found an increased risk of suicide with decreased precipitation, but did not 
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specifically classify periods of drought based on an index [37]. A third study did not find 

any increase in farming suicides during a prolonged drought in Australia [38]. 

  Only one other study that we are aware of has directly analyzed the association 

between droughts and all-cause mortality in the United States [29]. This retrospective 

study focused on individuals 65 years and older from counties in the western U.S. 

between 2000 and 2013 [29]. They compared drought to non-drought period days using 

the U.S. Drought Monitor to identify droughts based on full drought, non-drought and 

worsening drought periods, stratifying by severity [29]. They found a 1.55% (Posterior 

Interval: 0.17, 2.95) increased risk of all-cause mortality during high-severity worsening 

drought periods [29]. They also found increased mortality during worsening drought 

compared to non-drought periods in counties where drought occurred less frequently 

[29]. 

Because of the lack of studies on the  association between drought and mortality, 

the importance of understanding the health impacts of drought, and the potential 

specificity of drought health effects for specific subpopulations, we aimed in this study to 

evaluate the associations between droughts and same-year all-cause mortality in adults in 

United States from 1968-2014. 

 

METHODS 

Data 

Standardized Precipitation and Evapotranspiration Index 

We derived an annual drought severity score for each county from a dataset of 1-

month, county-level Standardized Precipitation and Evapotranspiration Index (SPEI) data 
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for years 1968-2014 for the contiguous United States and District of Columbia. The 

Standardized Precipitation and Evapotranspiration Index (SPEI) is a climatic drought 

index based on precipitation and temperature data [39]. Drought indices are quantitative 

measures derived from the integration of relevant drought indicators (i.e. precipitation) 

into a single numerical value for drought characterization [3]. Different indices use 

different variables as indicators, and therefore may reflect different characteristics of 

drought (i.e. meteorological vs. hydrological). The SPEI is similar to the Standardized 

Precipitation Index (SPI), but also accounts for the effects of temperature variability on 

drought assessments through potential evapotranspiration [39].  

The SPEI can be calculated for timescales ranging from 1 to 48 months [39]. The 

calculation of the SPEI includes the difference between precipitation and potential 

evapotranspiration (PET), known as the climatic water balance [39]. It uses 

meteorological data, and usually includes numerous parameters such surface temperature, 

air humidity, water vapor pressure [39]. SPEI calculation involves summation of deficits 

and surpluses across time [39] For an SPEI of a given timescale, k months, a time series 

is constructed by summing the PET values from the proceeding k-1 months then fitted to 

a probability density function of a log-logistic function to standardize the values (mean 0, 

SD 1) making it comparable across time, space, and time scales  [40].  

The SPEI ranges from -3 to 3. Values above 0 indicate relatively wet conditions, and 

values below 0 indicate relatively dry conditions, with numbers further from zero in 

either direction representing more extreme conditions [39].  
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Drought Severity Score 

The drought severity score we derived represents a continuous measure of drought 

severity based on the duration and intensity of abnormal dryness across the 12-month 

period for each county. We defined drought as when contiguous months have each 

sustained at least a “moderately dry” SPEI= -1, with the drought accruing a cumulative 

SPEI < -5. The indicator for a month being part of a drought was multiplied by the SPEI 

of that month to calculate a monthly drought score for each county. The annual drought 

severity score was then calculated by summing the monthly drought scores within each 

year, for each county. The code for calculating this score is provided in Appendix I. 

We also created an analogous severity score for annual wetness. A wet period was 

defined as when contiguous months have sustained at least a “moderately wet” SPEI=1, 

with the wet period accruing cumulative SPEI > 5. We multiplied the wet period 

indicator by SPEI (positive during wet period) to obtain a wetness severity score. 

 

All-Cause Mortality  

The all-cause mortality data came from a United States Centers for Disease 

Control and Prevention’s (CDC) National Vital Statistics System dataset, managed 

through the University of Pittsburg Project Tycho. The dataset included mortality counts, 

by county-year, for counties and county-equivalents within the contiguous United States 

over 1968-2014, among narrow demographic strata (i.e., age group, race and sex joint 

categories). The dataset included 13 categories of age, 3 categories of race (black, white, 

other) and 2 categories of sex. Our analysis included data from adults ages 25 and older 

with age categories 25-34, 35-44, 45-54, 55-64, 65-74, 75-84, and 85 and older.  
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If the number of deaths was 0 or > 10 the exact number was reported, but if the 

number fell between 1 and 9, the number was censored and only reported as being in that 

interval. The dataset also included population count data by county-year for each 

demographic stratum. 

 

Climate Region 

The National Oceanic and Atmospheric Association (NOAA) Climate Regions 

(Table 1) for the United States were used to explore geographic heterogeneity in the 

association between droughts and mortality. The regions were determined by 

climatological analyses which considered distributions of precipitation and temperature 

in the contiguous United States [41]. The District of Columbia is geographically located 

between the Northeast and Southeast regions [42]. We chose to include it with the 

Northeast region for analysis. 

 

Study Sample 

This was a complete case analysis that included a total of 5,099,479 observations 

from 42 demographic strata in 3004 counties and county-equivalents with complete data 

on stratum-year mortality counts, stratum-year population, and county-year drought 

scores. 

In the CDC mortality dataset, county-year-stratum population size was recorded 

as 0 for 1,013,237 observations of the 6,137,544 (16.5%); we regarded these as indicating 

missing data for the actual population size in that county-demographic stratum-year, 

although it is possible that in some instances a demographic stratum was not represented 
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within a county within a year. These records were therefore excluded from the complete 

case analysis. 

Nine counties were missing SPEI data for all years (0.17%) and were thus 

excluded entirely from our study.  The remaining counties included in the analysis had no 

missing data on SPEI from 1968-2014. There were 16,380 observations without mortality 

count data (0.27%). This missingness usually occurred over a consecutive span of several 

years. For example, La Paz County, Arizona was missing 26 county-years (1092 

observations) from 1968-1993, but had complete data from the remaining years, 1994-

2014. La Paz County, Arizona did not form officially until 1983 after separating from 

Yuma County [43]. This highlights the fact that some of the missing data may be related 

to changing Federal Information Processing System (FIPS) Codes for the given spatial 

location, and counties that formed officially after 1968. FIPS codes are unique numerical 

identifiers for each county or county-equivalent, but the geographic boundaries of 

counties can change over time, and new counties can form or merge with other counties 

[43]. As a result, changes to the size and location of a given county in our dataset could 

occur across time. For example, Yuma County would have decreased in size with the 

formation of La Paz County. 

 

Statistical Analysis 

We modeled county-stratum-year mortality using an interval censored [1,9] 

negative binomial regression model with random intercepts. The interval censoring 

accounts for the censored deaths, while the random intercepts allow different county-

level baseline mortality rates and account for correlations due to repeated observations of 

the same county. 
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Our negative binomial regression model assumed a linear predictor for the mean 

number of deaths of the following form: 

  , 

where xij is the drought score for county i in year j, zt variables are confounders (e.g., 

year) and (b0i) the random intercept. The offset, fi, is the log(population) for each county-

stratum-year. When the number of deaths (yij) is 0 or >10 and not censored, the 

likelihood contribution for county i in year j, conditional on the random intercept, is 

given by   

  , 

where  is the negative binomial dispersion parameter. When the number of deaths is 

censored over the interval [1, 9], the conditional likelihood contribution becomes 

 , 

based on the negative binomial model. 

 

We implemented maximum likelihood (ML) estimation for this model using the 

general likelihood facility available in the SAS NLMIXED procedure using SAS 9.3 

software (SAS, Cary, NC), which permits user specification of the log-likelihood 

conditional on the random effects. We specified the contributions for censored 

observations by taking advantage of recursive properties of the gamma function. 

We ran models separately for each of the 42 age-race-sex joint strata. We also 

further stratified by the nine NOAA climate regions in a second analysis, for a total of 

k
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378 strata, to account for potential geographic heterogeneity in the association of drought 

score with mortality. We repeated the analysis after excluding abnormally wet county-

years from analysis (wetness severity score >0) to assess a counterfactual of “drought” 

vs. “normal” years, rather than “drought” vs. “non-drought” years. 

We accounted for multiple testing using the SAS PROC MULTTEST procedure 

using SAS 9.3 (SAS, Cary, NC) using the FDR option, which estimates false discovery 

rate (FDR) -adjusted p values. We adjusted p values separately for each of the four sets of 

analyses: with and without stratification by NOAA regions, and with and without 

inclusion of abnormally wet years. We used the estimates from the models that 

successfully converged. Because we had four sets of analyses, we used a Bonferroni-

corrected threshold of adjusted p < 0.0125 (alpha=0.05/4) for a stratum-specific 

association (e.g., association of drought with mortality among white men aged 25-34 in 

the South) to be considered statistically significant. Only models that converged were 

included in the multiple testing correction. 

We completed random effects meta-regressions using metareg in Stata/SE 14.2 to 

assess whether a linear relationship exists between the regression coefficients from the 

main analysis (i.e., differences in log-rates of mortality given drought, within each 

stratum, adjusted for year and conditional on random effects), and potential modifiers of 

the drought-to-mortality association: age, race, sex, and region[44]. Significance of the 

association of each predictor, adjusted for the others, with the drought-mortality 

regression coefficient was assessed by Wald test. 

After finding that there was no evident heterogeneity in the association of drought 

severity with same-year mortality by these predictors, we pooled the estimates in a meta-
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analysis using the Stata/SE 14.2 metan procedure. We report the pooled effect estimate 

along with the I2 as a measure of the percentage of residual variation attributable to the 

between-study heterogeneity[45]. 

 

RESULTS  

Most models in the analyses successfully converged, but there were some 

estimation problems, where models failed to converge without errors. This issue occurred 

among “other race” female subgroup for age categories (years) “24-34”, “35-44” and 

“45-55” in age, race and sex (but not region) stratified analyses. When stratified by a 

fourth variable, NOAA climate region, 36 of the 378 models failed to converge without 

error in the analysis including abnormally wet county-years. We excluded two additional 

models which converged, but had unstable or unrealistic estimates, for example an IRR, 

95% CI of 0.119 (5.001E-8, 283832.31). Additionally, for the analysis stratified by 

NOAA region which excluded abnormally wet county-years, 31 of 378 models failed to 

converge without error. We excluded one additional model that resulted in unrealistic 

IRR, 95% CI of 0.119 (4.797E-8, 297567.77). The majority of the models that failed to 

converge were in the “other race” strata.  

Overall, most results were null across categories of race, region, age and sex, with 

IRRs for all-cause mortality close to 1. When further stratified by NOAA region, the 

majority of results stayed null. Exclusion of wet county-years resulted in little to no 

change in the effect estimates. 

A small number of IRRs were significant after accounting for the multiple testing 

(adjusted p values <0.0125). For IRRs by demographic age, race and sex subgroups, 
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ignoring region, with and without wet county-years, there were 4 significant results after 

adjustment. These were for white males, 25 to 34, 35 to 44, 75 to 84 and 85 plus years of 

age. All suggested a slight protective effect of increasing drought severity on all-cause 

mortality with IRRs less than 1. When further stratified by NOAA region, there were 10 

significant IRRs with inclusion of abnormally wet county-years in the analysis, and 11 

with exclusion of abnormally wet county-years in the analysis. Most of these significant 

estimates were seen in the white, male subgroups, across a range of ages and NOAA 

regions, most frequently the South region. Most of the significant IRRs for white males 

were from the South region. For this subgroup, the estimates suggested a slightly 

protective effect of drought severity on mortality, with IRRs below 1. One significant 

IRR was greater than 1, with an IRR, 95% Cl of 1.015 (1.008, 1.022), in both the 

analyses with and without abnormally wet county-years. This was among the 75 to 84-

year-old black males in the Northeast region, suggesting a possible increase in all-cause 

mortality with increasing drought severity for this subgroup. When wet county-years 

were excluded, the IRR for 65 to 75-year-old “other race” males in the West-North-

Central region was also significant with an IRR, 95% CI of 1.066 (1.033, 1.099). This 

model did not converge in the analysis that included the wet county-years. In general, the 

results for the black and “other race” subgroups usually had wider confidence intervals 

than the white subgroup due to smaller sample sizes in some climate regions. 

All of the tests for the significance of associations of each predictor, age, race, sex 

and region, with the drought-mortality regression coefficient from the meta-regression 

were null. This suggests that no linear relationship exists between the regression 

coefficients from the main analysis and any of these mutually-adjusted demographic and 
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geographic predictors. In other words, there are no consistent differences in the 

relationship of drought intensity with mortality across these broad population 

characteristics. 

The meta-analyses resulted in a pooled IRR of 0.999 (0.999, 1.000) from the 

analyses that stratified by NOAA region, with and without wet county-years included. 

The I2 of 49.9% for the analysis that included the wet county-years, and 49.5% for the 

analysis that excluded them, suggests that about half of the total variation across stratified 

groups is due to heterogeneity. 

 

DISCUSSION 

Overall, these results suggest that, for the majority of demographic subgroups and 

across climate regions, there is no significant effect of drought intensity on mortality rates 

within the same year in the contiguous United States over 1968-2014. Nonetheless, after 

accounting for multiple hypothesis testing, we found significant associations for some of 

the stratified analyses, suggesting a possible health effect for certain subgroups, but this 

heterogeneity was not consistent across broad patterns of age, race, sex or region. This 

finding might suggest the effects of drought are contextual, based on specific 

characteristics of the drought and the vulnerability of the populations they impact. 

Differences in exposure and vulnerability to climate-related events, the key 

determinants of disaster risk and impacts, exist that often leave marginalized groups 

disproportionately impacted [11]. This can often be attributed to intersecting social 

processes such as discrimination based on class, gender, or ethnicity, and not a single 

cause[11]. Stratifying the analysis by age, race, sex and region may be an 
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oversimplification of this intersectionality. Differences in risk may be better considered at 

a local level to account for population and drought heterogeneity on a smaller spatial 

scale. Additionally, other variables not considered in the analysis, such as socioeconomic 

status or rural vs. urban residence, may be important modifiers. 

Although we did not detect an association of drought intensity with same-year 

mortality for most subgroups, it is possible that drought conditions could increase some 

cause-specific mortality rates, while decreasing others cause-specific mortality rates, 

resulting in an overall null result. This analysis only considered all-cause mortality, and 

specific types of mortality, such as respiratory or cardiovascular mortality could still have 

increased rates due to drought. If there are cause-specific mortalities that increase due to 

drought, it is important to understand the causes for targeted interventions. 

There were numerous strengths in this study, including the creation of the novel 

drought severity score. This was designed to capture drought intensity and duration over 

the year with a continuous scale from the available one-month SPEI data. This scale 

allowed us to look for effects related to drought severity, and not simply classify 

exposure as drought vs. non-drought in the analysis. Since drought severity is a factor in 

human and societal impacts such degree of water shortages or fire risk, we would expect 

it to cause differences in the effect on mortality [1]. Additionally, the analysis stratified 

by joint categories of age, race, sex and NOAA climate region to account for possible 

interactions of these variables with drought severity on mortality, allowing for potentially 

higher-order interactions between these dimensions of vulnerability. We found evidence 

for higher-order interactions, in that the pairwise interactions (i.e., meta-regression 
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coefficients) were not significant, while the effects of drought were distinct by joint strata 

of these variables.  

This study also has some limitations, including the censoring of the number of  

deaths on the interval [1,9] in the dataset. We used interval censored negative binomial 

regression to handle the missing data, but this reduced our estimation precision compared 

to what it would have been if these counts had not been censored. Additionally, there was 

missing data on population, mortality, and SPEI, which decreased the sample size, and 

could lead to bias if the missing observations differed in terms of drought exposure or 

mortality from those included. Small strata resulted in non-convergence and wide 

confidence intervals for some models. This especially affected the “other race” category, 

which had the greatest number of non-converging models. If the more frequently 

excluded demographic groups due to smaller N are more vulnerable than the included 

groups, and if they also differ in terms of inclusion based on drought exposure status, 

selection bias could result for the overall effect estimate, and we may be oblivious to 

identifying particularly vulnerable groups.  

Also, despite the strengths of the SPEI, we only used one index for creating the 

annual drought severity score, whereas another index might have resulted in different 

classification of drought periods and severity [3].  On a related note, our analysis did not 

specifically account for differences in the types of droughts, such as agricultural vs. 

meteorological, which could theoretically affect health outcomes differently since they 

focus on different issues (i.e. effects on crops for agricultural drought)  [4]. Additionally, 

we did not account for the effect of previous years of drought, except when classifying 

drought vs. non-drought months for the derivation of the drought severity score. Duration 
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and frequency of drought might impact a community’s adaptive capacity, and also result 

in different exposure durations to potentially harmful or preventative drought-related 

conditions [11]. We also did not account for potential interactions between abnormally 

wet periods following drought, or drought following abnormally wet periods. 

Hypothetically, differences could exist from increased rainfall after a drought due to 

mudslides, flooding, or indirect factors such as changes in disease transmission and water 

quality, as noted with the increased incidence of Valley Fever after a period of rain 

following drought [10, 28]. Increased plant growth from a wet period followed by 

drought might lead to further fuel for wildfires in the form of vegetation, which is related 

to fire risk and spread [46]. These may be useful avenues for further investigation. 

While we also did not include a variable for temperature in the analysis, SPEI accounts 

for temperature when calculating evapotranspiration [39]. Temperature has a complex 

relationship with drought. Since heat can cause heat-related all-cause mortality and 

influence drought severity through evapotranspiration, it could be considered a 

confounder [2, 12, 14, 40]. Multiple variables are considered in the calculation of 

evapotranspiration, and two droughts of the same SPEI could have different extreme or 

average high temperatures, and therefore differences in heat-related deaths [39]. Still, 

because heat is a factor of drought it may be impractical to separate the two [12, 39]. 

Heat could also be a mediator on the causal pathway between drought and mortality, 

since drought conditions can increase temperature, which can in turn increase heat related 

mortality [14]. Interactions could also possibly occur between the effects of heat and 

drought on all-cause mortality. 
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CONCLUSION: 

In conclusion, the lack of significant associations between drought severity and 

all-cause mortality overall, and for many, but not all, subgroups after adjusting for 

multiple testing, could suggest  a true null association except for a few subgroups, 

contextual heterogeneity in the effects of drought, an observed null effect of subgroups 

due to cancellation of the protective and harmful effects, limitations in the methods of our 

analysis, or some combination of these factors. 

The next phase of analysis should try to address possible limitations and explore 

additional factors. For example, the analysis could include variables for lagged drought 

and abnormally wet years, and the interactions between combinations of these variables 

(i.e. lagged drought and current abnormally wet years, current drought, and lagged 

drought, etc.). It could also account for socioeconomic status and rural and urban 

residence to further develop the understanding of how drought impacts might play out 

across different segments of the United States population. In addition, the analysis could 

be repeated using a drought severity score derived from a drought index other than SPEI 

which might result in a different classification of droughts, or by focusing on droughts 

that meet the criteria for specific categories (i.e. hydrological vs. agricultural).  

As a result of the possible contextual differences noted by the differences in 

subgroups, but not broad categories of region, age, race or sex, future investigations may 

be better tailored to local settings with smaller spatial scales than our analyses. Future 

research could also consider the association between droughts and cause specific 

mortality, such as respiratory or cardiovascular mortality, because of the proposed 

mechanisms for harm. Understanding the effects of drought on human health, and who is 
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most at risk, is necessary for prevention and adaptation strategies, and is especially 

critical due to the projected increase in intensity and frequency of droughts for certain 

areas of the world.  
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TABLES  

Table 1. National Oceanic and Atmospheric Administration climate 

regions and states for the United States 

Region States 

Central IL, IN, KY, MO, OH, TN, WV 

East-North-Central IA, MI, MN, WI 

North-East CT, DE, ME, MD, MA, NH, NJ, NY, PA, RI, VT, DC 

North-West ID, OR, WA 

South AR, KS, LA, MS, OK, TX 

South-East AL, FL, GA, NC, SC, VA 

South-West AZ, CO, NM, UT 

West CA, NV 

West-North-Central MT, NE, ND, SD, WY 
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Table 2. Incidence Rate Ratio (IRR) of all-cause mortality per increasing drought intensity 

by demographic subgroup, with 95% confidence intervals (LCL, UCL), raw p-values and 

false discovery rate adjusted p values for IRRs with adjusted p values <0.0125. 

Abnormally wet years included in analysis. 

Age  Race Sex IRR LCL UCL Raw P Adjusted P 

25-34 White Male 0.991 0.987 0.995 <.0001 <.0001 

35-44 White Male 0.994 0.991 0.997 <.0001 0.0008 

75-84 White Male 0.998 0.997 0.999 0.0001 0.0017 

85 + White Male 0.998 0.997 0.999 0.0004 0.0043 
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Table 3. Incidence Rate Ratio (IRR) of all-cause mortality per increasing drought intensity by 

demographic and climate region subgroup, with 95% confidence intervals (LCL, UCL), raw p-

values and false discovery rate adjusted p values for IRRs with adjusted p values <0.0125. 

Abnormally wet years included in analysis. 

Age Race Sex Region IRR LCL UCL Raw P Adjusted P   

25-34 White Male South 0.987 0.980 0.993 <.0001 0.0045 

35-44 White Male South 0.990 0.985 0.995 0.0001 0.0055 

55-64 White Male Northeast 0.991 0.987 0.996 0.0002 0.0057 

55-64 White Male Southeast 0.992 0.988 0.996 0.0002 0.0057 

65-74 White Male South 0.996 0.994 0.998 0.0001 0.0055 

65-74 White Female West 0.991 0.988 0.995 <.0001 0.0022 

75-84 White Male South 0.996 0.994 0.998 <.0001 0.0042 

75-84 White Female West 0.995 0.992 0.997 <.0001 0.0053 

75-84 Black Male Northeast 1.015 1.008 1.022 <.0001 0.0045 

85+ White Male South 0.995 0.993 0.997 <.0001 0.0021 
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Table 4. Incidence Rate Ratio (IRR) of all-cause mortality per increasing drought 

intensity by demographic subgroup, with 95% confidence intervals (LCL, UCL), 

raw p-values and false discovery rate adjusted p values for IRRs with adjusted p 

values <0.0125. Abnormally wet years excluded from analysis. 

Age Race Sex IRR LCL UCL Raw P  Adjusted P 

25-34 White Male 0.991 0.987 0.995 <.0001 <.0001 

35-44 White Male 0.994 0.991 0.997 <.0001 0.0007 

75-84 White Male 0.998 0.997 0.999 0.0002 0.0020 

85 + White Male 0.998 0.997 0.999 0.0004 0.0043 



 28 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5. Incidence Rate Ratio (IRR) of all-cause mortality per increasing drought intensity by 

demographic and climate region subgroup, with 95% confidence intervals (LCL, UCL), raw p-values 

and false discovery rate adjusted for IRRs with adjusted p values <0.0125. Abnormally wet years 

excluded from analysis. 

Age Race Sex Region IRR LCL UCL Raw P Adjusted P   

25-34 White Male South 0.987 0.981 0.993 <.0001 0.0050 

35-44 White Male South 0.990 0.985 0.995 0.0002 0.0061 

55-64 White Male Northeast 0.991 0.987 0.996 0.0002 0.0068 

55-64 White Male Southeast 0.992 0.988 0.996 0.0002 0.0069 

65-74 White Male South 0.996 0.994 0.998 0.0001 0.0054 

65-74 White Female West 0.991 0.988 0.995 <.0001 0.0025 

65-74 Other Male West North Central 1.066 1.033 1.099 <.0001 0.0050 

75-84 White Male South 0.996 0.995 0.998 <.0001 0.0050 

75-84 White Female West 0.995 0.992 0.997 0.0001 0.0054 

75-84 Black Male Northeast 1.015 1.008 1.022 <.0001 0.005 
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Table 6. Metaregression p 

values by covariate,  

with and without 

abnormally wet years 

included in analysis. 

Covariate P value 

Wet Years Included 

Race 0.996 

Sex 1.000 

Age 1.000 

Region 1.000 

Wet Years Excluded 

Race 0.996 

Sex 0.995 

Age 1.000 

Region 1.000 
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Table 7. Pooled IRRs of mortality per increasing drought intensity, 

with 95% confidence intervals (LCL, UCL), I2 statistic from tests for 

heterogeneity.  These were calculated from meta-analyses across 

demographic and climate region subgroups, with and without 

abnormally wet years included in analysis.  

Wet Years IRR LCL UCL I2 

Included 0.999 0.999 1.000 49.9% 

Excluded 0.999 0.999 1.000 49.5% 
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APPENDIX I.  Drought Severity Score Stata Code 

 
*Create month lag for SPEI, by county  
 
by fips: gen spei_lag1 = spei[_n-1] 
by fips: gen spei_lag2 = spei[_n-2] 
by fips: gen spei_lag3 = spei[_n-3] 
by fips: gen spei_lag4 = spei[_n-4] 
by fips: gen spei_lead1 = spei[_n+1] 
by fips: gen spei_lead2 = spei[_n+2] 
by fips: gen spei_lead3 = spei[_n+3] 
by fips: gen spei_lead4 = spei[_n+4] 
 
*The default condition for drought severity is 'not a drought'. 
 
gen is_drought = 0 
 
*Drop the missing SPEI values from the five counties 
 
drop if spei<-90 
 
*Berman et al, 2017 [29] defined "is a drought" if 5 continuous months of moderate drought. 
 
replace is_drought = 1 if ((spei_lag4 <= -1 & spei_lag4 !=.) & (spei_lag3 <= -1 & spei_lag3 !=.) & 
(spei_lag2 <= -1 & spei_lag2 !=.) & (spei_lag1 <= -1 & spei_lag1 !=.) & (spei <= -1 & spei!=.)) 
replace is_drought = 1 if ((spei_lag3 <= -1 & spei_lag3 !=.) & (spei_lag2 <= -1 & spei_lag2 !=.) & 
(spei_lag1 <= -1 & spei_lag1 !=.) & (spei <= -1 & spei!=.) & (spei_lead1 <= -1 & spei_lead1 !=.)) 
replace is_drought = 1 if ((spei_lag2 <= -1 & spei_lag2 !=.) & (spei_lag1 <= -1 & spei_lag1 !=.) & 
(spei <= -1 & spei !=.) & (spei_lead1 <= -1 & spei_lead1 !=.) & (spei_lead2 <= -1 & spei_lead2 
!=.)) 
replace is_drought = 1 if ((spei_lag1 <= -1 & spei_lag1 !=.) & (spei <= -1 & spei !=.) & 
(spei_lead1 <= -1 & spei_lead1 !=.) & (spei_lead2 <= -1 & spei_lead2 !=.) & (spei_lead3 <= -1 & 
spei_lead3 !=.)) 
replace is_drought = 1 if ((spei <= -1 & spei !=.) & (spei_lead1 <= -1 & spei_lead1 !=.) & 
(spei_lead2 <= -1 & spei_lead2 !=.) & (spei_lead3 <= -1 & spei_lead3 !=.) & (spei_lead4 <= -1 & 
spei_lead4 !=.)) 
 
 
*At least one of 4 months has an SPEI <=-2 
 
replace is_drought = 1 if ((spei_lag3 <= -2 & spei_lag3 !=.) & (spei_lag2 <= -1 & spei_lag2 !=.) & 
(spei_lag1 <= -1 & spei_lag1 !=.) & (spei <= -1 & spei!=.)) 
replace is_drought = 1 if ((spei_lag3 <= -1 & spei_lag3 !=.) & (spei_lag2 <= -2 & spei_lag2 !=.) & 
(spei_lag1 <= -1 & spei_lag1 !=.) & (spei <= -1 & spei!=.)) 
replace is_drought = 1 if ((spei_lag3 <= -1 & spei_lag3 !=.) & (spei_lag2 <= -1 & spei_lag2 !=.) & 
(spei_lag1 <= -2 & spei_lag1 !=.) & (spei <= -1 & spei!=.)) 
replace is_drought = 1 if ((spei_lag3 <= -1 & spei_lag3 !=.) & (spei_lag2 <= -1 & spei_lag2 !=.) & 
(spei_lag1 <= -1 & spei_lag1 !=.) & (spei <= -2 & spei!=.)) 
 
replace is_drought = 1 if ((spei_lag2 <= -2 & spei_lag2 !=.) & (spei_lag1 <= -1 & spei_lag1 !=.) & 
(spei <= -1 & spei!=.) & (spei_lead1 <= -1 & spei_lead1 !=.)) 
replace is_drought = 1 if ((spei_lag2 <= -1 & spei_lag2 !=.) & (spei_lag1 <= -2 & spei_lag1 !=.) & 
(spei <= -1 & spei!=.) & (spei_lead1 <= -1 & spei_lead1 !=.)) 
replace is_drought = 1 if ((spei_lag2 <= -1 & spei_lag2 !=.) & (spei_lag1 <= -1 & spei_lag1 !=.) & 
(spei <= -2 & spei!=.) & (spei_lead1 <= -1 & spei_lead1 !=.)) 
replace is_drought = 1 if ((spei_lag2 <= -1 & spei_lag2 !=.) & (spei_lag1 <= -1 & spei_lag1 !=.) & 
(spei <= -1 & spei!=.) & (spei_lead1 <= -2 & spei_lead1 !=.)) 
 
replace is_drought = 1 if ((spei_lag1 <= -2 & spei_lag1 !=.) & (spei <= -1 & spei !=.) & 
(spei_lead1 <= -1 & spei_lead1 !=.) & (spei_lead2 <= -1 & spei_lead2 !=.)) 
replace is_drought = 1 if ((spei_lag1 <= -1 & spei_lag1 !=.) & (spei <= -2 & spei !=.) & 
(spei_lead1 <= -1 & spei_lead1 !=.) & (spei_lead2 <= -1 & spei_lead2 !=.)) 
replace is_drought = 1 if ((spei_lag1 <= -1 & spei_lag1 !=.) & (spei <= -1 & spei !=.) & 
(spei_lead1 <= -2 & spei_lead1 !=.) & (spei_lead2 <= -1 & spei_lead2 !=.)) 
replace is_drought = 1 if ((spei_lag1 <= -1 & spei_lag1 !=.) & (spei <= -1 & spei !=.) & 
(spei_lead1 <= -1 & spei_lead1 !=.) & (spei_lead2 <= -2 & spei_lead2 !=.)) 



 32 

 

 

 

 
replace is_drought = 1 if ((spei <= -2 & spei !=.) & (spei_lead1 <= -1 & spei_lead1 !=.) & 
(spei_lead2 <= -1 & spei_lead2 !=.) & (spei_lead3 <= -1 & spei_lead3 !=.)) 
replace is_drought = 1 if ((spei <= -1 & spei !=.) & (spei_lead1 <= -2 & spei_lead1 !=.) & 
(spei_lead2 <= -1 & spei_lead2 !=.) & (spei_lead3 <= -1 & spei_lead3 !=.)) 
replace is_drought = 1 if ((spei <= -1 & spei !=.) & (spei_lead1 <= -1 & spei_lead1 !=.) & 
(spei_lead2 <= -2 & spei_lead2 !=.) & (spei_lead3 <= -1 & spei_lead3 !=.)) 
replace is_drought = 1 if ((spei <= -1 & spei !=.) & (spei_lead1 <= -1 & spei_lead1 !=.) & 
(spei_lead2 <= -1 & spei_lead2 !=.) & (spei_lead3 <= -2 & spei_lead3 !=.)) 
 
*At least one of 3 months has an SPEI of <=-3 
 
replace is_drought = 1 if ((spei_lag2 <= -3 & spei_lag2 !=.) & (spei_lag1 <= -1 & spei_lag1 !=.) & 
(spei <= -1 & spei!=.)) 
replace is_drought = 1 if ((spei_lag2 <= -1 & spei_lag2 !=.) & (spei_lag1 <= -3 & spei_lag1 !=.) & 
(spei <= -1 & spei!=.)) 
replace is_drought = 1 if ((spei_lag2 <= -1 & spei_lag2 !=.) & (spei_lag1 <= -1 & spei_lag1 !=.) & 
(spei <= -3 & spei!=.)) 
 
replace is_drought = 1 if ((spei_lag1 <= -3 & spei_lag1 !=.) & (spei <= -1 & spei!=.) & 
(spei_lead1 <= -1 & spei_lead1 !=.)) 
replace is_drought = 1 if ((spei_lag1 <= -1 & spei_lag1 !=.) & (spei <= -3 & spei!=.) & 
(spei_lead1 <= -1 & spei_lead1 !=.)) 
replace is_drought = 1 if ((spei_lag1 <= -1 & spei_lag1 !=.) & (spei <= -1 & spei!=.) & 
(spei_lead1 <= -3 & spei_lead1 !=.)) 
 
replace is_drought = 1 if ((spei <= -3 & spei !=.) & (spei_lead1 <= -1 & spei_lead1 !=.) & 
(spei_lead2 <= -1 & spei_lead2 !=.)) 
replace is_drought = 1 if ((spei <= -1 & spei !=.) & (spei_lead1 <= -3 & spei_lead1 !=.) & 
(spei_lead2 <= -1 & spei_lead2 !=.)) 
replace is_drought = 1 if ((spei <= -1 & spei !=.) & (spei_lead1 <= -1 & spei_lead1 !=.) & 
(spei_lead2 <= -3 & spei_lead2 !=.)) 
 
* Two adjacent months have SPEIs <=-2 and <=-3  
replace is_drought = 1 if ((spei_lag1 <= -3 & spei_lag1 !=.) & (spei <= -2 & spei!=.)) 
replace is_drought = 1 if ((spei_lag1 <= -2 & spei_lag1 !=.) & (spei <= -3 & spei!=.)) 
 
replace is_drought = 1 if ((spei <= -3 & spei!=.) & (spei_lead1 <= -2 & spei_lead1 !=.)) 
replace is_drought = 1 if ((spei <= -2 & spei!=.) & (spei_lead1 <= -3 & spei_lead1 !=.)) 
 
* Generate monthly score and sum for each county-year to calculate drought score 
gen month_score = is_drought*spei 
bysort fips year: egen drought_score = total(month_score) 
replace drought_score=. if spei<-90 
gen drought_index = drought_score * -1 
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APPENDIX II. Missing Data Tables 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Table A1. FIPS code and frequency of 

observations missing  

drought score data, among subgroups 

25 and older  

before removal of observations where 

population equals 0. 

FIPS Freq. Percent 

12009 1,974 19.26 

13999 168 1.64 

30113 882 8.61 

51515 1,344 13.11 

51560 924 9.02 

51595 1,512 14.75 

51610 1,512 14.75 

51620 1,512 14.75 

51780 420 4.1 

Total 10,248 100 
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Table A2. FIPS code and frequency 

of observations missing drought 

score data among subgroups of ages 

25 and older, after removal of 

observations where population 

equals 0. 

FIPS Freq. Percent 

12009 1,974 23.37 

30113 230 2.72 

51515 1,130 13.38 

51560 702 8.31 

51595 1,307 15.47 

51610 1,445 17.1 

51620 1,294 15.32 

51780 366 4.33 

Total 8,448 100 
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Table A3. FIPS code and frequency of county-years and 

observations missing mortality data among subgroups of 

ages 25 and older. 

FIPS 

County-

Years 

Missing 

Number 

Observations 

Missing 

Percent Missing 

4012 26 1092 6.67 

8014 35 1470 8.97 

35006 21 882 5.38 

51520 11 462 2.82 

51530 11 462 2.82 

51540 11 462 2.82 

51570 11 462 2.82 

51580 11 462 2.82 

51590 11 462 2.82 

51600 11 462 2.82 

51630 11 462 2.82 

51640 11 462 2.82 

51660 11 462 2.82 

51670 11 462 2.82 

51678 11 462 2.82 

51680 11 462 2.82 

51683 11 462 2.82 

51685 11 462 2.82 

51690 11 462 2.82 

51720 11 462 2.82 

51730 11 462 2.82 

51735 11 462 2.82 

51740 11 462 2.82 

51750 11 462 2.82 

51760 11 462 2.82 

51770 11 462 2.82 

51775 11 462 2.82 

51790 11 462 2.82 

51820 11 462 2.82 

51830 11 462 2.82 

51840 11 462 2.82 

Total 390 16,380 100 
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APPENDIX III. Forest Plots 
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