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Abstract

Optimal Transportation: A Comprehensive Review and Novel Approaches

By Tianyang Hu

This thesis explores optimal transport (OT) with a focus on improving com-

putational efficiency and generalization through novel partitioning strategies in

no-collision transportation maps. The first part provides a comprehensive review

of the theoretical foundations and computational techniques in classical OT, in-

cluding the Monge and Kantorovich problems, Kantorovich duality, and various

transportation distances such as the Wasserstein metric and Linearized Optimal

Transport (LOT). It critically examines established computational methods like

the North-West Corner Method, Network Simplex Algorithm, and Auction Algo-

rithm, highlighting their strengths and limitations.

The second part introduces alternative partitioning strategies that challenge the

traditional vertical-horizontal partitioning methods in no-collision transportation

maps. It proposes and rigorously tests two new partitioning techniques—random

and PCA-based partitioning—analyzing their computational efficiency and gener-

alization capabilities. The results demonstrate the potential of these strategies to

improve both the scalability and robustness of OT solutions, offering new avenues

for their application in complex fields such as finance and economics.
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1

Introduction

In the pursuit of efficiency, the path of least resistance has long been a guiding

principle for both nature and human endeavor: In nature, ants forge pheromone

trails towards food source, gravitating along paths marked by the strongest scents

which indicates the shortest or most resource-efficient route [1]; in human-engineered

systems, airlines companies often calculate wind patterns and earth’s curvature to

plan routes along the shortest path between two locations to minimize distance

traveled and hence fuel consumption.

In mathematical terms, this pursuit translates into the optimal transport prob-

lem, where the objective is to determine the most efficient way to move resources

from one configuration to another while minimizing a given cost function. While

the framework appears straightforward, the complexity of real-world applica-

tions introduces a multitude of challenges. These challenges stem from the high-

dimensional nature of the data, the complexity of constraints that can be both

nonlinear and non-convex, and the sensitivity to the accuracy of input data. Even

simplified models often require advanced numerical methods and substantial com-

putational resources to find solutions that are close to optimal. Moreover, the in-



creasing application of optimal transport in machine learning—for tasks such as

domain adaptation and improving generative models—further motivates mathe-

maticians to address these complex problems.

The foundational work by Monge and later Kantorovich provides a formal

structure to approach these problems, setting the stage for a variety of mathe-

matical strategies aimed at finding solutions. However, as comprehensive as the

Monge-Kantorovich framework is, it often necessitates simplifications or approx-

imations when applied to complex or large-scale problems.

In response to these challenges, the field has begun to explore alternative

methodologies. Among these, no-collision transportation maps are a promising

direction providing an alternative notion of transportation maps that have some of

the advantageous properties of the optimal ones but are much cheaper to compute.

This thesis seeks to provide a thorough examination of the foundational the-

ories of optimal transportation, alongside a critical review of alternative method-

ologies that have emerged to address the computational complexities inherent in

these theories. It will first establish the mathematical underpinnings of optimal

transportation and then explore their computational applications. The primary

focus of this study is an in-depth analysis of no-collision transportation maps,

which present a promising alternative due to their computational tractability. Ad-

ditionally, this thesis will introduce a novel partitioning method, offering a new

perspective on the practical implementation and potential benefits of no-collision

maps.

To achieve the objectives outlined, the structure of this thesis is organized as



follows. Section 2 begins by introducing the essential mathematical frameworks,

including measure theory, the Monge problem, the Kantorovich problem, and their

dual formulations. This is followed by a review of computational techniques used

for these theories, assessing their strengths, weaknesses, and computational in-

tensiveness. This thesis then explores alternative transportation distances, espe-

cially Sliced Wassrestein Distances and Linearized Optimal Transportation Dis-

tance, and critically examines the limitations and challenges of existing partition-

ing methods. The concept of no-collision transportation maps is discussed next,

with a focus on partitioning data into equal-weight parts and their connections

with k-d trees. Moving on, this thesis aims to propose two new partition methods

on no-collision transportation. Section 4 details the methodology, including the

proposed partitioning methods and computational strategies, followed by a the-

oretical analysis and comparative evaluation of different approaches. The thesis

concludes with the presentation of computational results and a discussion of the

findings, along with suggestions for future research directions.



4

State of the Art

This section provides a comprehensive review of the existing literature and

foundational concepts in the field of optimal transportation. It serves to contextu-

alize the current research by summarizing key definitions, problems, dualities, and

computational techniques that have been developed and studied in past works. All

definitions and discussions presented herein are derived from established sources

and are not original contributions of this thesis.

0.1 Optimal Transportation Preliminaries

This section delves into some of the essential mathematical frameworks that

underpin optimal transportation (OT) theory, including basic measure theory, the

Monge problem formulation, and the Kantorovich relaxation. Furthermore, we

discuss the dual problem, which plays a critical role in providing insights into the

cost minimization strategies inherent in OT.



0.1.1 Measures

Measure theory serves as the formalism for the mathematically rigorous def-

inition of the transportation of goods. Here, we briefly discuss the fundamentals

of the measure theory; see [11, 2] for an in-depth exposition of the subject.

Informally speaking, measure is a systematic way to assign a size to various

mathematical objects. Hence, measure is a mathematical formalization and exten-

sion of real life concepts of length, area, and volume.

Definition 0.1.1 (�-algebra). Let X be a set, and A be a collection of subsets of

A. A is called a �-algebra on X if the following three properties hold:

1. ; 2 A.

2. For all A 2 A one has that A
c = X \ A 2 A.

3. For all A1, A2, A3, · · · 2 A, one has that
S1

i=1 Ai 2 A.

A �-algebra specifies the subsets of a set X that can consistently be assigned

a size by a measure. Not all subsets of X are guaranteed to behave well with a

measure, especially in more complex settings. The �-algebra ensures that oper-

ations like unions, intersections, and complements remain well-defined, making

it possible to assign sizes to subsets in a consistent and mathematically rigorous

way.

Example 0.1.1 (�-Algebra of Weekdays). Let X be the set of days in a week:

X = {Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday}.



The �-algebra A can be chosen as the collection of all subsets of X: A = 2X ,

which includes:

• The empty set: ;,

• Single-day subsets: e.g., {Monday},

• Multi-day subsets: e.g., {Saturday, Sunday},

• The entire set X .

This �-algebra satisfies all the properties:

• The empty set and the full set X are included.

• For any subset A 2 A, its complement A
c = X \ A is also in A.

• The union of any countable collection of subsets in A is also in A.

Definition 0.1.2 (Measures). Let X be a set and A a �-algebra on X . A measure

on (X,A) is a function µ : A! [0,1] that satisfies the following properties:

1. 8A 2 A, µ(A) � 0.

2. µ(;) = 0.

3. For all A1, A2, · · · 2 A such that Ai \ Aj = ; for i 6= j, one has that

µ(
S1

i=1 Ai) =
P1

i µ(Ai).



Example 0.1.2 (Measure of Rainfall Probability on Weekdays). Given the �-

algebra A from the previous example, define a measure µ that assigns probabili-

ties to subsets of X , representing the likelihood of rainfall on those days. Specifi-

cally:

µ(Monday) = µ(Tuesday) = µ(Wednesday) = µ(Thursday) = 0.1,

µ(Friday) = µ(Saturday) = µ(Sunday) = 0.2.

We can quickly check if it satisfies the measures’ properties:

1. Non-negativity: µ(A) � 0 for all subsets A 2 A.

2. Null Empty Set: µ(;) = 0 as the probability of rainfall on no-day is zero.

3. Countable Additivity: If subsets are disjoint, their measures add up (Under

the assumption that the events of rainfall on each day are independent).

The concept of a measure is foundational in various mathematical fields due

to its generality and flexibility. In optimal transport theory, measures allow for

the representation of distributions of mass or resources, whether they are spread

continuously across a space or concentrated at discrete points.

Digression (Banach-Tarski Paradox). Let X = Rd. Then d = 3 corresponds

to our usual 3-dimensional space. The larger A in Definition 0.1.2 the better –

indeed, one can quantify more subsets of X . In particular, the following natural

question arises:



Question. Can we assign volumes consistently to all subsets of R3?

Any measure that is invariant under congruence (translation, rotations, and re-

flections) and assigns a non-zero measure to the unit ball A can be a candidate for

a volume. The answer to this question is No and a consequence of the following

theorem.

Theorem 0.1.1 (Banack-Tarski Paradox). Let d � 3, and A be the unit ball in Rd
.

Furthermore, let B be the set consisting of two identical disjoint copies of A.

There exist disjoint sets C1, C2, · · · , Ck and D1, D2, · · · , Dk such that

• A = C1 [ C2 [ C3 [ · · · [ Ck, and B = D1 [D2 [D3 [ · · · [Dk,

• Ci and Di are congruent for 1  i  k.

If we were able to assign a volume to all subsets of R3; that is, if there were µ

defined on all subsets of R3 invariant under congruence then we would have

µ(A) =
kX

i=1

µ(Ci) =
kX

i=1

µ(Di) = µ(B) = 2µ(A),

which leads to a contradiction.

In summary, the paradox demonstrates that a set can be split into pieces, rear-

ranged, and reassembled to form two identical copies of the original set, violating

the usual principles of volume.

This paradox highlights the importance of properly defining a measure using

�-algebras. A natural collection of sets where we can consistently assign volumes



and other useful measures is the Borel �-algebra, which consists of sets that can

be generated from open sets through countable unions, intersections, and com-

plements. The Borel �-algebra provides a framework for defining well-behaved

measures, such as volume, that avoid the paradoxical inconsistencies encountered

in the Banach-Tarski construction.

Definition 0.1.3 (Borel �-algebra). The Borel �-algebra in Rd
is the smallest �-

algebra containing all open sets in Rd
. We denote the Borel �-algebra by B(Rd)

and say that a measure µ is a Borel measure if it is defined on B(Rd).

Borel�-algebra focuses specially on Rd, and a special measure here is Borel

Probability Measures, which allow us to model distributions of random phe-

nomena, assigning probabilities to subsets of Rd. For example, we can use them

to describe the likelihood of events in probability theory or to integrate functions

for expected values.

Definition 0.1.4 (Borel Probability Measures). A Borel measure µ on B(Rd) is

called a probability measure if µ(Rd) = 1. The set of all Borel probability mea-

sures on Rd
is denoted by P(Rd).

Question. So far we are only focusing on measures on sets, but can we extend

measures to act not just on subsets of Rd but also on functions?

Theorem 0.1.2 (Riesz Representation Theorem). For any bounded linear func-

tional L : Cb(Rd) ! R, there exists a unique Borel measure µ 2 P(Rd) such

that:

L(f) =

Z

Rd

f(x) dµ(x), 8f 2 Cb(Rd).



Several useful definitions here:

• µ: A measure on a space X .

• f(x): A continuous, bounded function on X (f 2 Cb(X)).

• L(f): A functional that applies µ to f(x).

Example 0.1.3 (Aggregating a Linear Function under a Uniform Measure). Let

X = [0, 1], f(x) = 2x, and µ be the uniform measure on [0, 1]. The functional:

L(f) =

Z 1

0

f(x) dµ(x) =

Z 1

0

2x dx =
⇥
x
2
⇤1
0
= 1.

Interpretation: L(f) aggregates the values of f(x) over [0, 1], weighted by µ.

Continuous and Discrete Measures: The behavior of the integral depends on

whether the measure µ is continuous or discrete.

• Absolutely Continuous Measures: If µ is absolutely continuous with re-

spect to the Lebesgue measure, there exists a density function ⇢(x) � 0

such that: Z

Rd

f(x) dµ(x) =

Z

Rd

f(x)⇢(x) dx.

Here, ⇢(x) represents the "weight" or density of the measure at each point.

• Discrete Measures: For discrete measures, µ assigns weights to specific



points xi 2 Rd:

Z

Rd

f(x) dµ(x) =
X

i

f(xi)µ({xi}),

where the measure acts only on these points.

Example 0.1.4 (Insurance Risk Assessment: Continuous and Discrete Measures).

Consider an insurance company assessing the risk of natural disasters across var-

ious geographical regions. Let X represent the entire geographical region under

consideration. The company models disaster risk using a probability measure µ

on X .

Probability of Disaster in Subareas of X: The company needs to evaluate the

likelihood of a natural disaster occurring in specific subareas of X . For any

subset A ✓ X , the probability measure µ assigns a value µ(A), where:

µ(X) = 1, µ(A) � 0 for all A ✓ X.

For instance, µ(Coastal Region) might represent the probability of a disaster oc-

curring in the coastal areas of the region.

Probability of Disaster at Specific Locations: To model disaster likelihood at a

specific location x 2 X , the company introduces the probability density function

(PDF) ⇢µ(x). This PDF describes the distribution of disaster risk across the re-

gion. The relationship between the probability measure µ and the PDF ⇢µ(x) is



given by:

dµ(x) = ⇢µ(x) dx.

This means that the infinitesimal probability assigned to a small area around x is

proportional to the density ⇢µ(x) at that point.

Discrete vs. Continuous Measures:

• If the measure µ is discrete, the disaster risk is concentrated at specific

points (e.g., urban centers or critical infrastructure). The probability mea-

sure is a sum of weights at these points:

µ =
X

i

µ({xi}), and

Z

X

f(x) dµ(x) =
X

i

f(xi)µ({xi}).

• If the measure µ is continuous, the disaster risk is distributed across the

region, with the density function ⇢µ(x) describing the likelihood at each

point:

µ(A) =

Z

A

⇢µ(x) dx, and

Z

X

f(x) dµ(x) =

Z

X

f(x)⇢µ(x) dx.

Expected Financial Impact of Disasters: The company is also concerned with

the financial consequences of disasters. Let c(x) represent the financial cost of a

disaster occurring at location x. The expected total cost is given by:

Z

X

c(x) dµ(x),



where c(x) is weighted by the probability of a disaster occurring at x. If the

measure µ is continuous, this becomes:

Z

X

c(x)⇢µ(x) dx.

Connection to the Riesz Representation Theorem: The functional L(f) =
R
X f(x) dµ(x)

aggregates information about the function f(x) (e.g., cost or risk) over the region

X , weighted by the probability measure µ. By the Riesz Representation Theo-

rem, this functional corresponds uniquely to the measure µ, demonstrating how

measures can operate on functions, not just subsets.

0.1.2 Monge Problem

Optimal transportation theory starts with Gaspard Monge [7]. A simplified

version of his problem is as follows.

Monge problem between discrete measures. Let ↵, � be discrete reference

(source) and target measures, respectively, defined as follows:

↵ =
nX

i=1

ai�xi , � =
mX

j=1

bj�yj

One can think of ↵ representing piles of construction rubble located at {xi} with

masses {ai}, and � representing holes at locations {yj} with capacities {bj},

where the rubble should be transported.

Thus, Monge problem searches a (transportation) map � : {1, . . . , n} !



{1, . . . ,m} that minimizes the total transportation cost. Mathematically, the prob-

lem reads as

min
�

nX

i=1

c(xi, y�(i))ai, (1)

where c(xi, yj) � 0 represents the cost of transporting a unit mass from source xi

to destination yj , which could be measured by various metrics such as Euclidean

distance or other relevant cost functions.

Example 0.1.5 (Transporting Rubble to Construction Sites). Suppose {x1, x2}

are locations with rubble piles of 10 kg and 15 kg, respectively. Let {y1, y2} be

construction sites with capacities 15 kg and 10 kg. The Monge problem seeks to

assign a transport map � that minimizes the total transportation cost:

min
�

nX

i=1

c(xi, y�(i))ai,

where c(xi, yj) could represent the distance between xi and yj . For instance,

if c(x1, y1) = 2, c(x1, y2) = 5, c(x2, y1) = 4, and c(x2, y2) = 1, the optimal

transport plan minimizes total cost:

Optimal plan: x1 ! y1, x2 ! y2 with cost 10 · 2 + 15 · 1 = 35.

Note that we require all mass being transported and no surplus left in the

reference or target measures; that is,

bj =
X

�(i)=j

ai, 81  j  m. (2)



In particular, we require that the total masses are equal; that is,

mX

j=1

bj =
mX

j=1

X

�(i)=j

ai =
nX

i=1

ai.

Equation (2) means that � pushes ↵ forward to �. Below, we define the push-

forward operation rigorously to consider more general measures.

The push-forward operator provides a way to transform measures consistently

using a measurable map T . Recall that a measure ↵ is defined on a �-algebra

A, which is a collection of subsets of a space X that satisfies certain properties.

Let ↵ be a measure on A, and let T : Rd ! Rd be a measurable map; that is,

T
�1(E) 2 A for every E 2 A. The push-forward operator transforms ↵ into

another measure � on the image space via the map T . Formally, it’s defined as:

Definition 0.1.5 (Push-forward). Let ↵ 2 P(Rd), and T : Rd ! Rd
be a measur-

able map; that is, T
�1(E) 2 B(Rd) for all E 2 B(Rd). The push-forward of ↵

through T is � = T#↵ 2 P(Rd) that satisfies the following identity:

Z

Rd

h(y) d�(y) =

Z

Rd

h(T (x)) d↵(x), 8h 2 C0(Rd). (3)

Equation (3) states that the integration against the target measure � is equiva-

lent to the integration against the transported source measure ↵. Furthermore, the

push-forward operator preserves positivity and total mass, ensuring that if ↵ is a

probability measure then � is also a probability measure. Finally, note that for



discrete ↵, � identity (3) reduces to

mX

j=1

bjh(yj) =
nX

i=1

aih(T (xi)), 8h 2 C0(Rd),

which is equivalent to (2), where T and � are related by

T (xi) = yj () �(i) = j.

Alternatively, the push-forward measure � = T#↵ can be equivalently defined

in terms of the preimage:

Definition 0.1.6 (Push-Forward via Preimage). Let ↵ 2 P(Rd) and T : Rd ! Rd

be a measurable map. For any measurable set E 2 B(Rd), the push-forward

measure � = T#↵ satisfies:

�(E) = ↵(T�1(E)),

where T
�1(E) = {x 2 Rd : T (x) 2 E} is the preimage of E under the map T .

This definition aligns with the functional definition in Definition 0.1.5 since for

any indicator function h(y) = �E(y), we have:

Z

Rd

�E(y) d�(y) =

Z

Rd

�E(T (x)) d↵(x).

This equivalence ensures that the measure of a subset in the target space E is

consistent with the measure of its preimage T
�1(E) in the source space.



Intuitive Analogy: Think of T as a function that maps cities (A) to regions (B)

based on population density. For a region in B (e.g., "high-density areas"), the

preimage in A represents all the cities contributing to that region.

The preimage condition ensures we can always trace back from B to A:

• If one wants to know the total population in "high-density areas" (B), one

must be able to calculate the population of the corresponding cities (A).

• If the cities forming "high-density areas" (T�1(E)) are not well-defined or

measurable, one cannot consistently compute the population.

This highlights the importance of the preimage condition, ensuring that measur-

able sets in the target space correspond to measurable sets in the source space,

preserving the consistency of operations like integration and measure calculations.

Monge problem between arbitrary measures. Let ↵, � 2 P(Rd) be arbitrary

probability measures. The Monge problem is then formulated as follows:

min
T :Rd!Rd

⇢Z

Rd

c(x, T (x))d↵(x) : T#↵ = �

�
(4)

Note that (4) is an extension of (1).

Push-forward and absolutely continuous measures. Assume that ↵, � are ab-

solutely continuous measures; that is,

d↵(x) = ⇢↵(x)dx, d�(y) = ⇢�(y)dy.



Then (3) becomes the well-known change of variables formula:

⇢↵(x) = |det(JT (x))| ⇢�(T (x)), (5)

where |det(JT (x))| is the Jacobian determinant of T .

Justification for Equation(5). Recall the pushforward measure T#↵ is defined

such that for any measurable set B ✓ Rn:

T#↵(B) = ↵(T�1(B)).

If the measure ↵ has a density ⇢↵(x) with respect to the Lebesgue measure, then

under the change of variables theorem, the total mass in B is preserved:

Z

B

⇢↵(x) dx =

Z

T (B)

⇢�(y) dy.

Switching to the original variable x, this becomes:

Z

T�1(B)

⇢↵(x) dx =

Z

B

⇢�(T (x)) |det(JT (x))| dx,

where |det(JT (x))| accounts for the local change in volume caused by T . Equat-

ing the integrands gives:

⇢↵(x) = |det(JT (x))| ⇢�(T (x)).

This shows that the Jacobian determinant adjusts the density ⇢� to account



for the local expansion or compression induced by the transformation T , ensuring

that the total mass is preserved.

Specifically, the geometric effect of the Jacobian determinant can be discussed

in the following two cases:

• If | det(JT (x))| > 1, T expands space at x, causing the density ⇢↵(x) to

decrease proportionally.

• If | det(JT (x))| < 1, T compresses space at x, increasing the density ⇢↵(x)

to maintain the total mass.

Remark 0.1.1. While mass is preserved during the transformation, the densities

⇢↵ and ⇢� are not directly inherited. Specifically, even if measures (↵, �) are asso-

ciated with densities (⇢↵, ⇢�) with respect to a fixed base measure, the transformed

measure T#↵ does not simply inherit ⇢↵ as ⇢� = ⇢↵ � T�1
. Instead, the Jacobian

determinant |det(JT (x))| adjusts the density, reflecting the local compression or

expansion caused by T .

In applications like the Monge problem, this adjustment is crucial. For ex-

ample, in image registration tasks, preserving the original density and texture of

the image may be essential. The transformation T can significantly affect pixel

intensities and spatial continuity, potentially leading to distortions or unnatural

results if the Jacobian determinant is not properly considered. See [10] for further

examples and discussion.

Example 0.1.6 (Mapping Uniform Measure via Push-Forward). Consider X =

[0, 1] with the uniform measure ↵, and let T (x) = x
2
. The target space is also



Y = [0, 1], and the push-forward measure � = T#↵ redistributes the mass from

↵ as follows:

• Subset E = [0, 0.25]:

T
�1(E) = {x 2 [0, 1] : x2 2 [0, 0.25]} = [0, 0.5].

Since ↵ is uniform:

�([0, 0.25]) = ↵([0, 0.5]) = 0.5.

• Subset E = [0.25, 1]:

T
�1(E) = {x 2 [0, 1] : x2 2 [0.25, 1]} = [0.5, 1].

Again, since ↵ is uniform:

�([0.25, 1]) = ↵([0.5, 1]) = 0.5.

• Total Mass: The total measure is preserved since:

�([0, 1]) = ↵([0, 1]) = 1.



0.1.3 Kantorovich problem

Let ↵, � 2 P(Rd). The existence of at least one map T such that (3) holds is

a necessary condition for a meaningful Monge problem. Unfortunately, discrete

reference measures do not always admit such maps.

Indeed, let us examine discrete one-dimensional probability distributions, ↵, �

given by

↵ = 0.2�x1 + 0.5�x2 + 0.3�x3 , � = 0.3�y1 + 0.4�y2 + 0.3�y3 ,

for distinct points {xi}, {yj}. In this setup, the Monge problem does not admit

a feasible push-forward function because there is no direct way to map the entire

mass from x2 to a single target in {y1, y2, y3}.

Nonetheless, both distributions sum to a total mass of 1, suggesting that � can

indeed accommodate all mass from ↵ if we relax the notion of transportation and

allow mass from the source to split.

Thus, despite its foundational role in the optimal transportation theory, the

Monge formulation has notable limitations due to its restrictive mapping require-

ments. This leads us to the Kantorovich formulation, which accommodates the

mass splitting at source locations {xi} for transportation to multiple destinations.

In the following discussions, we will explore several advantages of the Kan-

torovich formulation over the Monge one.

Kantorovich problem between discrete measures. We start with a discussion



of the Kantorovich formulation of the optimal transportation problem between

discrete measures. A foundational element in this framework is the transporta-

tion plan, a mathematical construct that describes the possible ways in which the

supports of two discrete probability distributions can be paired. For distributions

↵ =
nX

i=1

ai�xi , � =
mX

j=1

bj�yj ,

it is important to note that probability distributions are not sets and do not have

elements. Instead, their supports are sets, which are the collections of points where

the distributions assign positive mass.

a transportation plan is a matrix P = (pij)
n,m
i=1,j=1 2 Rn⇥m

+ such that:

• pij is the mass being transported from xi to yj ,

• the sum of the masses in any row i of matrix P is equal to ai, and the sum

of the masses in any column j of matrix P is equal to bj; that is,

ai =
mX

j=1

pij, bj =
nX

i=1

pij, 8i, j.

Building on the concept of a transportation plan, admissible plans are defined

as the set of all such matrices that comply with the mass distribution requirements

of both source and target distributions:

U(↵, �)
def
= {P 2 Rn⇥m

+ : P1m = a and P
T1n = b} (6)



where 1m 2 Rm and 1n 2 Rn are vectors with all-1 entries. This set of matrices, or

couplings, forms the feasible space within which the Kantorovich problem seeks

an optimal solution minimizing a given transportation cost.

Let us look back to the example discussed earlier, where we have

↵ = 0.2�x1 + 0.5�x2 + 0.3�x3 , � = 0.3�y1 + 0.4�y2 + 0.3�y3 ,

An example of a transportation plan P for this case is

P =

0

BBBB@

0.2 0 0

0.1 0.4 0

0 0 0.3

1

CCCCA

Indeed, this matrix satisfies the admissible coupling conditions where the row

sums match ↵ and the column sums match �:

• Row sums: (0.2, 0.5, 0.3) corresponding to the weights of ↵

• Column sums: (0.3, 0.4, 0.3) corresponding to the weights of �

The second row of P illustrates how the mass, 0.5, from x2 in the support of

↵ is split and transported to two different locations in the support of �:

• the entry p21 = 0.1 signifies that 0.1 units of mass are transported from x2

to y1,

• the entry p22 = 0.4 indicates that 0.4 units of mass are transported from the

same x2 to y2.



This example shows how transporatation plans generalize transportation maps

by allowing mass to be split across multiple destinations, thus overcoming a basic

limitation inherent to the Monge formulation. Thus, Kantorovich formulation of

the discrete optimal transportation problem reads as

min
P2U(↵,�)

nX

i=1

mX

j=1

c(xi, yj)pij. (7)

Permutation matrices as transportation plans. A key aspect of the Kantorovich’s

formulation is that it incorporates the Monge problem. Indeed, for the sake of sim-

plicity, assume that m = n, and ai = bj =
1
n for all i, j; that is, we have n source

and target points with equal weights.

In the context of the Kantorovich problem, permutation matrices provide spe-

cific examples of transportation plans. In the Monge problem, transportation maps

are provided by transportation plans; indeed,

T (xi) = yj () �(i) = j,

where � : {1, 2, · · · , n}! {1, 2, · · · , n} is a permutation (bijection).

Let us now build a corresponding permutation matrix P� as follows:

8(i, j) 2 [n]2, (P�)i,j =

8
>><

>>:

1
n if j = �(i),

0 elsewhere.

Since � is a permutation, each 1  i  n is mapped to only one 1  j  n;



that is, each row of P� has only one non-zero element. Thus, mass transported

according to P� is not split, and the Kantorovich cost reduces to a Monge cost:

nX

i=1

nX

j=1

c(xi, yj)p�,ij =
1

n

nX

i=1

c(xi, y�(i)).

This means that the optimal Kantorovich cost can be as small as the optimal

Monge cost; that is,

min
P2U(↵,�)

nX

i=1

nX

j=1

c(xi, yj)pij  min
�

nX

i=1

nX

j=1

c(xi, yj)p�,ij = min
�

1

n

nX

i=1

c(xi, y�(i)).

A remarkable fact about the optimal transportation theory is that the optimal

values for both costs are equal. This property follows from the combination of

Choquet’s and Birkhoff’s theorems [12]. More specifically, Kantorovich’s formu-

lation (7) of the optimal transportation problem is an instance of a linear program,

which admits minimizers at the extremal points of U(↵, �) (Choquet), which are

precisely permutation matrices (Birkhoff):

min
�

1

n

nX

i=1

c(xi, y�(i)) = min
�

nX

i=1

nX

j=1

c(xi, yj)p�,ij  min
P2U(↵,�)

nX

i=1

nX

j=1

c(xi, yj)pij.

This observation underscores the reason why the Kantorovich formulation, by

not limiting to permutations, can potentially yield more efficient transportation

plans, providing a lower minimal cost than the assignment problem restricted to

permutation matrices.



Linear vs. nonlinear problem. Another significant improvement of the Kan-

torovich problem over the Monge problem is its transformation from a nonlinear

optimization problem to a linear one. Unlike nonlinear problems, linear prob-

lems are very well understood from both theoretical and computational perspec-

tives. For instance, linear optimization problems admit polynomial-time algo-

rithms [5, 4].

Recall the objective function for the Monge problem is

min
�

nX

i=1

c(xi, y�(i))ai,

which yields a nonlinear cost and constraints with respect to the optimization

variable �. In contrast, the Kantorovich problem (7) has a linear cost and linear

equality and inequality constraints.

Kantorovich problem between arbitrary measures. Kantorovich’s formulation

of the optimal transportation problem admits a seamless extension to arbitrary

measures. Let ↵, � 2 P(Rd) be arbitrary. Then we define

U(↵, �) = {⇡ 2 P(R2d) : x#⇡ = ↵, y#⇡ = �},

where

(x, y) 7! x, (x, y) 7! y,



are the projections maps. The Kantorovich problem is then formulated as

min
⇡2U(↵,�)

Z

R2d

c(x, y)d⇡(x, y). (8)

0.1.4 Kantorovich duality

Linear optimization problems are often called linear programs, which we will

use in the sequel. Kantorovich introduced an incredibly fruitful and deep idea of

duality for studying linear programs in general and optimal transportation prob-

lems in particular. Before diving into the applications of duality in optimal trans-

portation problems, let us first consider a generic linear program.

General linear program. A linear program in the standard form is an optimiza-

tion problem of the following form:

min
x2Rn

c
>
x subject to Ax  b, x � 0, (9)

where c 2 Rn, A 2 Rm⇥n, b 2 Rm, and the inequality x � 0 is element-wise.

A formal derivation of the dual linear program proceeds as follows.

• Step 1. Introduce the Lagrangian L(x,�) with dual variables � for the in-

equality constraints:

L(x,�) = c
>
x+ �

>(Ax� b),



and consider the following equivalent formulation of (9)

min
x�0

max
��0

�
c
>
x+ �

>(Ax� b)
 
.

• Step 2. Formally interchange the order of min and max:

max
��0

min
x�0

�
(c> + �

>
A)x� �

>
b
 
.

• Step 3. Eliminate x by solving the inner problem:

min
x�0

�
(c> + �

>
A)x� �

>
b
 
=

8
>><

>>:

��>
b, c

> + �
>
A � 0,

�1, otherwise,

and obtain

max
�2Rm

��>
b subject to A

>
� � �c, � � 0.

We say that there is no duality gap if the (optimal) values of primal and dual

problems agree. For rigorous derivations and theorems we refer, for instance,

to [3, Appendix A].



Kantorovich problem. Relying on Definition 0.1.5, for ⇡ � 0 we have that

max
f,g2C0(Rd)

⇢Z

Rd

f(x)d↵(x) +

Z

Rd

g(y)d�(y)�
Z

R2d

(f(x) + g(y))d⇡(x, y)

�

=

8
>><

>>:

0, ⇡ 2 U(↵, �),

+1, otherwise.

Hence, introducing

L(⇡, f, g) =
Z

R2d

c(x, y) d⇡(x, y) +

Z

Rd

f(x)d↵(x) +

Z

Rd

g(y)d�(y)

�
Z

R2d

(f(x) + g(y))d⇡(x, y),

we obtain an equivalent formulation of (8):

min
⇡�0

max
f,g2C0(Rd)

L(⇡, f, g)

As before, by formally interchanging the order of min and max we obtain

max
f,g2C0(Rd)

min
⇡�0

L(⇡, f, g)

Reorganizing the terms in L, we find that

min
⇡�0

L(⇡, f, g) =

8
>><

>>:

R
Rd f(x)d↵(x) +

R
Rd g(y)d�(y), f(x) + g(y)  c(x, y), 8x, y,

�1, otherwise.



Hence, the dual formulation of the Kantorovich formulation is

max
(f,g)2R(c)

Z

Rd

f(x)d↵(x) +

Z

Rd

g(y)d�(y), (10)

where

R(c) = {(f, g) 2 C0(Rd)⇥ C0(Rd) : f(x) + g(y)  c(x, y), 8x, y 2 Rd}.

See [12, Chapter 1] for more details and rigorous results.

Complementary Slackness. Now we have the definition of primary problem 8

and of dual problem 10. Given an optimal coupling ⇡ 2 P(Rd) and optimal

f, g 2 C0(Rd), the complementary slackness conditions are:

• If (x, y) 2 supp ⇡ (i.e., mass is transported between x and y), then the

corresponding dual constraint must be tight:

f(x) + g(y) = c(x, y)

This means that when mass is transported between points x and y, the sum

of the dual variables at these points must exactly match the transportation

cost c(x, y).

• If (x, y) /2 supp ⇡ (i.e., no mass is transported between x and y), then the



dual constraint can be loose:

f(x) + g(y)  c(x, y)

This means that if no transport occurs between x and y, the sum of the dual

variables f(x) and g(y) can be strictly less than c(x, y), and this is still valid.

Remark 0.1.2. In the discrete case, (xi, yj) 2 supp ⇡ is equivalent to ⇡ij > 0.

Theorem 0.1.3. [10] If ⇡ is a feasible solution to the primal, and (f, g) is a

feasible solution to the dual, and they are complementary, then ⇡ and (f, g) must

also be optimal solutions to their respective problems.

Proof. Recall the primal and dual objectives:

Primal:
Z

R2d

c(x, y) d⇡(x, y),

Dual:
Z

Rd

f(x) d↵(x) +

Z

Rd

g(y) d�(y).

The duality gap is defined as:

Gap =

Z

R2d

c(x, y) d⇡(x, y)�
✓Z

Rd

f(x) d↵(x) +

Z

Rd

g(y) d�(y)

◆
.

By complementary slackness, we have

f(x) + g(y) = c(x, y).



Hence, the primal objective simplifies to:

Z

R2d

c(x, y) d⇡(x, y) =

Z

Rd

f(x) d↵(x) +

Z

Rd

g(y) d�(y).

The duality gap is therefore:

Gap =

Z

R2d

c(x, y) d⇡(x, y)�
✓Z

Rd

f(x) d↵(x) +

Z

Rd

g(y) d�(y)

◆
= 0.

This proves that the duality gap is zero.

0.2 Review of Computational Techniques for Opti-

mal Transportation

0.2.1 North-West Corner Method

In the context of solving transportation problems, the North-West Corner Method

(NWCM) is a widely used greedy algorithm that provides an initial feasible solution.[10]

As a heuristic approach, it aims to find a solution quickly but does not guarantee

optimality. The method begins by allocating as much of the supply as possible to

the first destination in the transportation tableau, then proceeds by moving either

rightward or downward, ensuring that the supply and demand constraints are met

at each step.

Example 0.2.1. Consider source a = (0.2, 0.5, 0.3) and target b = (0.5, 0.1, 0.4).



The algorithm explores as following:

0

BBBB@

0 0 0

0 0 0

0 0 0

1

CCCCA
!

0

BBBB@

0.2 0 0

0 0 0

0 0 0

1

CCCCA
!

0

BBBB@

0.2 0 0

0.3 0.1 0

0 0 0

1

CCCCA

!

0

BBBB@

0.2 0 0

0.3 0.1 0

0 0 0

1

CCCCA
!

0

BBBB@

0.2 0 0

0.3 0.1 0.1

0 0 0

1

CCCCA
!

0

BBBB@

0.2 0 0

0.3 0.1 0.1

0 0 0.3

1

CCCCA

Here is a detailed look at the algorithm:

Algorithm 1 North-West Corner Method (NWCM)
1: Initialize i 1, j  1, r  a1, c b1

2: while i  n and j  m do
3: Set t min(r, c, Pij)
4: Update r  ai if i  n

5: if c = 0 then
6: Increment j
7: Update c bj

8: end if
9: Update r  r � t

10: Update c s� t

11: end while

Total number of floating-point operations per second (FLOPs) for NWCM

is O(n · m), where n and m represent the number of rows and columns in the

transportation problem, respectively. In particular, n represents the number of

supply points, and m represents the number of target points. Hence, this algorithm

is relatively computationally efficient, as it indicates a linear growth rate with



respect to the product of the number of rows and columns. However, it is also

apparent that the algorithm does not guarantee an optimal solution but instead

explores all feasible solutions.

0.2.2 Network Simplex Algorithm

Building upon the greedy search is the Network Simplex Algorithm, which

uses NWCM to find a solution first and next verifies its optimality. The discussion

starts with definitions of foundational concepts.

What are networks in the context of optimal transport problems? In optimal

transport problems, a network is represented by a directed graph G = (V,E),

where V consists of supply nodes (sources) and demand nodes (sinks), and E

represents the possible paths (edges) for transporting mass between them. Each

edge (i, j) 2 E is associated with:

• Transportation cost Ci,j: The expense of transporting one unit of mass

from node i to node j.

• Capacity ui,j: The maximum amount of mass that can be transported along

edge (i, j). Capacity is often used in practical applications to model con-

straints like limited resources or physical restrictions, but in pure optimal

transport, it is typically assumed to be unconstrained (infinite).

A feasible flow P = {Pi,j} assigns a non-negative amount Pi,j of mass to each

edge (i, j) while satisfying the following constraints:



1. **Capacity constraint** (if defined): Pi,j  ui,j , ensuring that the flow on

each edge does not exceed its capacity.

2. **Flow conservation constraint:** The total outgoing flow from each source

equals its supply, and the total incoming flow to each sink equals its demand:

X

j

Pi,j = ai,

X

i

Pi,j = bj, Pi,j � 0,

where ai is the supply at source i and bj is the demand at sink j.

Convex Combination: A convex combination of two points P1 and P2 is defined

as a linear combination of these two points where the coefficients are non-negative

and sum to one. Mathematically, it is expressed as:

P = �P1 + (1� �)P2, 0  �  1.

Extremal Point: An extremal point (or extremal solution) of a feasible region is

a point that cannot be expressed as a convex combination of two distinct feasible

points within the region.

Theorem 0.2.1. [10] Let P be an extremal point of the polytope U(a, b) and

suppose that its corresponding set S(P ) of edges, denoted F , forms a graph

G(P ) = (V [ V
0
, S(P )). Then the graph G(P ) has no cycles. In particular,

P cannot have more than n+m� 1 nonzero entries.

Proof. (See Computational Optimal Transport, by Gabriel Peyré and Marco Cu-

turi [10], for more complete proof.) If the graph contains a cycle, it implies that



one can remove one edge and still have a valid solution, meaning the solution P is

not unique. In particular, P can be ’reached’ by combining two distinct solutions

or be written as a convex combination of two distinct solutions corresponding to

the two trees formed by removing edges from the cycle. That contradicts that P

is extremal.

This theorem provides essential insight into the structure of extremal points in

network flow problems, which is essential in the process of deleting not optimal

solutions.

Network Simplex Algorithm begins with an extremal solution P , which can

be obtained through a simple rule such as the North-West Corner Rule. Then,

relying on Theorem 0.1.3, to prove coupling P is feasible, it’s sufficient to obtain

a solution (f, g) to the dual problem that is feasible and complimentary to P . This

outlines two primary steps of Network Simplex Algorithm: first, find a pair of

complementary dual variables to a extremal solution P ; second, prove the pair is

feasible.

After obtaining extremal solution P , the next step is to assign dual variables f

and g, which satisfies the dual constraints in the network:

1. Arbitrary Selection of Root Node: Begin by selecting one node arbitrarily

and setting its corresponding dual variable to 0. This node will serve as the

"root" of the tree. Let the dual variable for the root node be froot = 0.

2. Traversal Using Search Algorithm and Assigning Dual Variables: Us-

ing a breadth-first search (BFS) or depth-first search (DFS), traverse the



graph starting from the root node. When traverse the tree, assign values to

the dual variables fik (for source nodes) and gjk (for target nodes) for each

edge (ik, jk) in the tree. The values are determined by the following systems

of equations:

fi1 + gj1 = Ci1,j1 , fi2 + gj1 = Ci2,j1 , . . . , fis + gjs = Cis,js

that’s derived based on the complementary slackness Theorem 0.1.3.

3. Special Case s < n + m � 1: Since P is the extremal solution, we have

s  n+m�1. However, if the number of dual variables s is strictly smaller

than n+m�1, the system is underdetermined. It means that there are more

dual variables than independent constraints, resulting in multiple possible

solutions for the dual variables. This can be resolved by arbitrarily fixing

one dual variable, similar to the assignment to the root, and propagating the

others along the tree structure.

After finding the complementary pair, the next step is to check if the dual solu-

tion is feasible and update the structure kick-out non-feasible solutions. If this

condition, fi + gj  Ci,j for all edges (i, j), is violated for any edge, the violat-

ing edge (i, j) is added to the current graph and this addition may result in two

possible scenarios:

1. The Graph Remains a Tree: If adding the violating edge (i, j) does not

form a cycle, the graph remains a valid spanning tree. In this case, we can



proceed with the optimization process as usual, and no further adjustments

are necessary to the primal solution P .

2. A Cycle is Formed: If adding the edge (i, j) creates a cycle, to maintain the

acyclicity of the graph which is the requirement for extremal solution, we

need to remove one edge from the cycle. The edge to remove is typically

chosen based on criteria that ensure primal feasibility.After removing an

edge from the cycle, we update the primal solution P as follows:

P
ik,jk
new := P

ik,jk + ✓, P
ik+1,jk
new := P

ik+1,jk � ✓ 8k  l

Here, ✓ represents the maximum possible increase to the flow along the

positive edges in the cycle, while maintaining primal feasibility.

Following is the complete algorithm for the network simplex method :



Algorithm 2 Network Simplex Algorithm
1: Input: Network flow problem with capacities Ci,j , initial flow P , and initial

dual variables f, g
2: Output: Optimal flow P

⇤ and dual variables f ⇤
, g

⇤

3: Initialize the primal solution P and dual solution f, g

4: while dual feasibility is violated for some edge (i, j) do
5: Add the violating edge (i, j) to the graph
6: if adding the edge creates a cycle then
7: Remove one edge from the cycle to break the cycle
8: Update the primal flow by adjusting the flow along the cycle
9: Compute ✓ as the maximum feasible flow change along the cycle

10: Update the primal flow P

11: else
12: Lift the indeterminacy by choosing values for undetermined dual vari-

ables
13: end if
14: Update the dual solution f, g based on the new primal solution
15: end while
16: Return the optimal primal solution P

⇤ and dual solution f
⇤
, g

⇤

The number of FLOPs for this algorithm is O((n ·m)2). Notably, this provides

the upper-bound of the time complexity for this algorithm, and the number of

pivots required often is much smaller than this worst-case bound. However, when

dealing with very large-scale networks, this algorithm can still be very complex

and time-consuming.

0.2.3 Auction Algorithm

The Auction Algorithm offers an efficient approach to solving the assignment

problem in optimal transport by iteratively refining a solution that approximates

the primal and dual problems’ optimal solutions. This method is particularly ef-



fective due to its convergence properties and computational efficiency under cer-

tain conditions. We begin with necessary definitions and then outline the process

of the algorithm.

Complementary Slackness: Recall the complementary slackness condition for

the optimal transport problem is 0.1.3:

f
⇤
i + g

⇤
j = Ci,j, if ⇡i,j > 0,

where:

• ⇡i,j is the optimal transport plan, indicating the amount of mass transported

between source i and target j,

• Ci,j is the cost of transporting mass between i and j,

• f
⇤
i and g

⇤
j are optimal dual variables corresponding to the source and target,

respectively.

✏-Complementary Slackness: To allow for approximate solutions, the comple-

mentary slackness condition can be relaxed. The ✏-complementary slackness con-

dition is defined as:

Ci,j � gj  min
j0

(Ci,j0 � gj0) + ✏, if ⇡i,j > 0,

where:

• ⇡i,j is the transport plan, specifying the mass transported between source i



and target j,

• Ci,j is the transportation cost between source i and target j,

• gj and gj0 are dual variables corresponding to the target indices j and j
0,

• ✏ > 0 is the allowed margin of error in the dual feasibility condition.

This condition ensures that the reduced cost for a transported pair (i, j), where

⇡i,j > 0, is within an ✏-margin of the minimum reduced cost across all potential

targets for i.

Algorithm Process: The auction algorithm adjusts the assignments and dual

variables by following these key steps to maintain ✏-complementary slackness

throughout iterations:

1. Initialize with an empty set S and vectors g = 0 and ⇠ as empty.

2. Update gi by setting it to the difference between the lowest and second-

lowest adjusted costs:

gi  gi � (min
j 6=i

(Ci,j � gj)� (Ci,⇠i � gi))� ✏.

3. Update S and ⇠ by removing or adding indices based on the fulfillment of

✏-complementary slackness.

4. Repeat the process until all elements satisfy the ✏-complementary slackness

condition.



The algorithm’s efficiency is highlighted by the proof that it converges in at most

N = nkCk1
✏ iterations, where n is the number of elements and kCk1 is the maxi-

mum cost.

Proof. The dual variable gi starts at 0 and decreases at most by �kCk1, the

maximum range of the cost matrix C. Therefore, the total adjustment across all

gi is bounded by n · kCk1. as there are n elements. Meanwhile, each iteration

decreases the dual variable gi by at least ✏.

Since the total adjustment required is bounded by n ·kCk1, and each iteration

makes progress of at least ✏, the total number of iterations required is bounded by
n·kCk1

✏ (see [10, Chapter 3] for more details and rigorous proof.)

The complete algorithm for this method is as follows:

Algorithm 3 Auction Algorithm
1: Input: Cost matrix C 2 Rn⇥n, slack parameter ✏ > 0
2: Output: Assignment ⇠ and dual variables g satisfying ✏-complementary

slackness
3: Initialize S  ;, ⇠  ;, and gi  0, 8i 2 {1, . . . , n}
4: while S 6= {1, . . . , n} do
5: for each i /2 S do
6: Compute: j1  argminj(Ci,j � gj), j2  argminj 6=j1(Ci,j � gj)
7: Update dual variable gi as: gi  gi� ((Ci,j2�gj2)� (Ci,j1�gj1))� ✏

8: Assign: ⇠i  j1

9: Update the set S  S [ {i}
10: end for
11: end while
12: Return ⇠ and g



0.3 Limitations of Current Works

While the Network Simplex Algorithm and Auction Algorithm are widely

used and effective for solving network flow and assignment problems, they ex-

hibit several limitations when applied to large-scale or complex networks.

Network Simplex Algorithm The Network Simplex Algorithm is a specialized

approach for solving network flow problems, which share foundational similari-

ties with optimal transportation problems. In both cases, the objective is to min-

imize a cost function while satisfying flow conservation constraints: in network

flow problems, these constraints represent the balance of flow across nodes; in

optimal transportation, they correspond to satisfying supply at source nodes and

demand at target nodes. The network in the context of the optimal transportation

problem represents a graph where the nodes correspond to supply points (sources)

and demand points (sinks), and the edges correspond to potential paths for trans-

porting mass, with associated costs.

While the Network Simplex Algorithm is effective for many network flow

problems, it has certain limitations when applied to large-scale or complex in-

stances of optimal transportation. Its worst-case time complexity of O((nm)2),

where n is the number of nodes and m is the number of edges, can become com-

putationally expensive for large transportation networks with many sources and

sinks. Although the number of pivot steps is typically much smaller in practice,

the algorithm’s performance still depends heavily on the structure of the network

and the initial solution provided. Poor choices of pivoting rules can lead to a



large number of iterations, reducing overall efficiency. These limitations high-

light the challenges of directly applying network flow techniques like the Net-

work Simplex Algorithm to very large or high-dimensional optimal transportation

problems, where computational resources may be constrained.

Auction Algorithm The Auction Algorithm also has notable limitations:

• Approximation by ✏: The algorithm produces an ✏-optimal solution, mean-

ing the result is not guaranteed to be exact. While ✏ can be reduced to in-

crease precision, this comes at the cost of increased computational time due

to more iterations being required.

• Scalability for Large Problems: The time complexity of O(n2 · kCk1
✏ )

makes the auction algorithm computationally expensive for large-scale prob-

lems, particularly when the cost matrix C is dense or has high variance.

• Dependency on Cost Matrix Structure: Unlike the network simplex algo-

rithm, the auction algorithm does not leverage sparsity or specific structures

of the cost matrix, which can lead to inefficiencies in cases where such

structures could otherwise be exploited.

• Iterative Nature: The iterative dual updates can make the convergence

slower in cases where the cost matrix C has widely varying or high-cost

entries, resulting in a higher number of iterations to reduce the slack to ✏.



Comparison of Limitations While both algorithms share the goal of solving

assignment and network flow problems, they exhibit contrasting limitations:

• The Network Simplex Algorithm achieves exact solutions but suffers from

high worst-case complexity and sensitivity to the pivoting rule.

• The Auction Algorithm, by contrast, offers a more flexible trade-off be-

tween computational effort and solution precision via the ✏-parameter but

can be inefficient for dense or large-scale networks due to its dependency

on the cost matrix and iterative dual updates.

Broader Challenges in Current Works Beyond the specific limitations of these

algorithms, broader challenges exist in the field:

• Scalability to Very Large Networks: Neither algorithm scales efficiently

to massive networks with millions of nodes and edges, which are common

in modern applications like logistics, social networks, and supply chains.

• Numerical Stability: Both algorithms can face numerical issues in cases of

highly skewed cost matrices or degenerate solutions, leading to challenges

in maintaining accuracy and convergence.

• Dynamic and Stochastic Settings: Most traditional algorithms, includ-

ing the Network Simplex and Auction Algorithms, assume static input data

and cannot efficiently handle dynamic or stochastic changes in the network,

which are increasingly relevant in real-world applications.



These limitations highlight the need for more scalable, robust, and adaptive

approaches to solving network flow and assignment problems in the context of

modern large-scale and dynamic systems.
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Alternative Transportation

Distances

In exploring the computational challenges and applications of optimal trans-

port (OT), it becomes evident that alternative approaches are necessary to address

the inherent complexity and scalability issues, particularly in high-dimensional

settings. This section examines alternative transportation distances and method-

ologies that aim to approximate or simplify OT computations while retaining key

properties of the original framework. Techniques such as Sliced Wasserstein Dis-

tances, Linearized Optimal Transportation Distances, and no-collision maps have

emerged as promising tools to reduce computational cost and adapt OT principles

to specific problem contexts. These alternatives pave the way for more efficient

solutions, bridging the gap between theoretical elegance and practical feasibility,

and serve as a precursor to the no-collision methods discussed in the subsequent

section.

For Wassertein and Sliced Wasserstein distances we follow closely the exposi-

tion in [10, 6]; for Linearized Optimal Transportation we follow [6] and references



therein; for No-collision Transportation distances we follow [9, 8].

0.4 Wasserstein Metric

0.4.1 Intuition Behind Wasserstein Metric

The pseudo-inverses map cumulative probabilities z to the corresponding quan-

tiles of the distributions. The p-norm of the differences between these quan-

tiles captures the transportation cost between distributions. This makes the one-

dimensional p-Wasserstein metric computationally practical and conceptually clear,

as it avoids the geometric complexities of higher dimensions.

0.4.2 Concept Definitions

Definition 0.4.1. The p-Wasserstein metric Wp is defined as:

Wp(I0, I1) =

✓
inf
⇡2M

Z

⌦⇥⌦

|x� y|p d⇡(x, y)
◆1/p

.

where:

• ⇡ is a transport plan that matches I0 (source distribution) to I1 (target dis-

tribution).

• |x� y|p is the cost of moving mass from x to y.

The Wasserstein metric measures the “minimum effort” required to transform

one probability distribution into another. The cost function |x � y|p quantifies



the "distance" of transport between locations x and y, while the transport plan ⇡

determines how the probability mass is reallocated. The infimum ensures that the

total transport cost is minimized, resulting in an optimal transport plan.

Definition 0.4.2. The CDF Fi(x) of a probability distribution Ii(x) is defined as:

Fi(x) =

Z x

�1
Ii(t)dt, i = 0, 1.

Here, Fi(x) measures the total probability up to point x, and it is a non-

decreasing function that goes from 0 to 1 as x ! 1. The CDF encodes the

cumulative distribution of mass, providing a complete description of the probabil-

ity distribution in one dimension.

Definition 0.4.3. The pseudo-inverse F
�1
i (z) of the CDF is defined as:

F
�1
i (z) = inf{x 2 ⌦ : Fi(x) � z}, z 2 [0, 1].

where z represents a cumulative probability, and z 2 [0, 1].

The pseudo-inverse F
�1
i (z) maps a cumulative probability z (ranging from 0

to 1) to the corresponding quantile in the distribution. It provides a direct way to

work with the "quantile" of a probability distribution and is particularly useful for

defining the Wasserstein metric in one dimension.

One-Dimensional Case: In one dimension, the ordering of points along the

real line is natural and unique. The z-quantile of one distribution can be directly



matched to the z-quantile of another without ambiguity. This property ensures

that the p-Wasserstein metric has the following closed-form solution:

Wp(I0, I1) =

✓Z 1

0

|F�1
0 (z)� F

�1
1 (z)|pdz

◆1/p

.

The closed-form solution avoids the need to explicitly solve the optimiza-

tion problem, making the computation more efficient. By leveraging the pseudo-

inverses of the cumulative distribution functions (CDFs) F�1
0 (z) and F

�1
1 (z), we

compute the difference between quantiles and integrate over z 2 [0, 1].

0.4.3 Advantages of Wasserstein Metric

• The solution reduces the problem from solving an optimization over all pos-

sible transport plans to evaluating a single integral in one dimension.

• The monotonic structure of one-dimensional distributions ensures that align-

ing quantiles directly minimizes the transport cost.

0.5 Sliced Wasserstein Matrix

The Sliced-Wasserstein Metric (SW) is an approach to approximate the Wasser-

stein distance efficiently, especially in high-dimensional spaces. In particular,

Any high-dimensional probability distribution I(x) in Rd can be "sliced" into

one-dimensional distributions by projecting along a direction ✓ on the unit sphere

S
d�1. The projection is performed using the Radon Transform.



Definition 0.5.1. The Radon Transform is defined as:

RI(t, ✓) =

Z

Rd

I(x)�(t� x · ✓)dx,

where t represents the position along the 1D projected space and � is the Dirac

delta function.

The Sliced-Wasserstein Metric works as follows:

1. Projection: Project the high-dimensional distributions I0 and I1 onto a se-

ries of one-dimensional subspaces parameterized by ✓ 2 S
d�1 using the

Radon Transform.

2. 1D Wasserstein Distance: Compute the Wasserstein metric Wp for each

1D projection:

Wp(RI0(·, ✓),RI1(·, ✓)).

3. Aggregate: Integrate the p-th powers of these distances across all directions

✓:

SWp(I0, I1) =

✓Z

Sd�1

W
p
p (RI0(·, ✓),RI1(·, ✓))d✓

◆1/p

.

In practice, this integral is approximated by sampling a finite number of

directions ✓ from S
d�1.



0.6 Linearized Optimal Transportation (LOT)

Linearized Optimal Transportation (LOT) is a method designed to approxi-

mate the Wasserstein metric by embedding probability distributions into a linear

space, allowing for computationally efficient operations such as addition, subtrac-

tion, and projection. This method is particularly useful when working with high-

dimensional distributions, where direct computation of the Wasserstein distance

becomes computationally expensive.

0.6.1 Intuition Behind LOT

Linearized Optimal Transportation approximates the Wasserstein geometry by

working in the tangent space of a reference distribution I0:

• The tangent space TI0 is a linear space that locally approximates the curved

Wasserstein space at I0.

• Instead of solving the full optimal transport problem in the nonlinear Wasser-

stein space, the distributions are mapped to this linear tangent space, where

computations such as distances or projections are simpler.

0.6.2 Concepts Definitions

Definition 0.6.1. Given a base distribution I0, the Linearized Optimal Trans-

portation framework defines a linear embedding of a probability distribution I



into a tangent space at I0, denoted as TI0 . This embedding is expressed as:

�I0(I) = r�,

where � is the optimal transport potential that satisfies:

I = r�#I0.

LOT Distance: The LOT distance between two distributions I1 and I2 with re-

spect to a reference distribution I0 is computed as:

LOT(I1, I2; I0) = k�I0(I1)� �I0(I2)kL2(I0),

where:

• �I0(I) represents the embedding of the distribution I into the tangent space

TI0 .

• The norm k · kL2(I0) is computed with respect to the reference measure I0.

0.6.3 Procedures of Linearized Optimal Transportation

The LOT framework involves the following steps:

1. Reference Distribution: Select a reference distribution I0 around which

the tangent space is constructed.



2. Optimal Transport Map: Compute the optimal transport map between I0

and the target distributions I1 and I2.

3. Embedding: Map the distributions I1 and I2 into the tangent space TI0

using the transport map’s gradient.

4. LOT Distance: Compute the distance between the embedded distributions

using the L
2 norm with respect to I0.

0.6.4 Analysis of LOT

Advantages of LOT:

• Linearization: LOT maps nonlinear Wasserstein geometry into a linear

tangent space, enabling fast and efficient computations.

• Scalability: By avoiding the need to solve multiple nonlinear optimization

problems, LOT is computationally efficient for high-dimensional or large-

scale datasets.

• Applications: LOT is particularly useful in applications such as shape anal-

ysis, generative modeling, and time-series analysis, where one needs to ef-

ficiently compare distributions.

Limitations of LOT: While LOT is computationally efficient, it is an approxi-

mation of the true Wasserstein metric and has the following limitations:



• The quality of the approximation depends on the choice of the reference

distribution I0. If I0 is far from the distributions being compared, the results

may lose accuracy.

• LOT assumes that the distributions lie close to the tangent space of I0. For

highly nonlinear Wasserstein spaces, this assumption may not hold.

In summary, Linearized Optimal Transportation is a powerful tool for approx-

imating the Wasserstein metric, offering computational efficiency while maintain-

ing the core geometric properties of optimal transport. It is particularly effective

in scenarios where high-dimensional data needs to be compared quickly and ac-

curately.

0.7 No-Collision Transportation Maps

Here, we discuss so-called no-collision transportation maps and follow closely

the exposition of the subject in [9, 8].

0.7.1 Intuition Behind No-Collision

The no-collision property is of paramount importance because it guarantees

that the transportation map preserves the structure of the original measure without

overlap. Optimal transportation maps inherently satisfy the no-collision property,

as they aim to map one distribution onto another while minimizing transportation

cost.



However, computing optimal transport maps is often computationally inten-

sive. Thus, focusing on the no-collision property allows us to relax the strict op-

timality condition in favor of simpler, computationally feasible maps, while still

ensuring the preservation of separation between points in the transformed space.

0.7.2 Concepts Definition

A map T : ⌦ ⇢ Rd ! Rd is called a no-collision map if it satisfies the condi-

tion that for any pair of distinct points x1, x2 2 ⌦, the images T (x1) and T (x2) do

not collide, i.e., they are distinct in the transformed space. More formally, there

exists a separation between T (x1) and T (x2), ensuring that they do not overlap

after the transformation.

In the context of transportation, a no-collision transportation map is a map

T that pushes one measure µ onto another measure ⌫, while preserving the no-

collision property. In other words, for any pair of distinct points x1 and x2 in

the support of µ, their images T (x1) and T (x2) under the map T should remain

distinct in the support of ⌫, thus ensuring no collision between transported points.

This is crucial for ensuring that the transformation preserves the structure of the

original measure without any overlap.

A map T : ⌦ ⇢ Rd ! Rd is half-space-preserving if, for any x1 6= x2 2 ⌦,

there exists a unit vector v 2 S
d�1 such that:

x2 · v � x1 · v � 0, T (x2) · v � T (x1) · v � 0,



and at least one of these inequalities holds strictly.

Theorem 0.7.1. A map T : ⌦ ⇢ Rd ! Rd
is half-space-preserving if and only if

it satisfies the no-collision property.

Intuitively, a half-space-preserving map ensures that for any two distinct points

x1 and x2, there exists a pair of parallel hyperplanes separating x1 and x2 as well

as their images T (x1) and T (x2). Furthermore, the separation respects the original

ordering: xi and T (xi) lie on the same side of their respective hyperplanes.

Theorem 0.7.1 provides an essential result: it gives us a useful framework

for constructing transportation maps that are simpler but still preserve the crucial

separation properties, as this theorem guarantees that maps satisfying this simpler

criterion will still preserve the no-collision property.

0.7.3 Construction of No-Collision Maps

To construct no-collision maps, we begin by selecting hyperplanes that divide

the points in the original space. These hyperplanes ensure that the transformed

points do not overlap. The goal is to choose partitioning directions that create the

necessary separation between points while maintaining the structure of the space.

The construction procedure involves partitioning the space based on these se-

lected directions, ensuring that the images T (x1) and T (x2) of any distinct points

x1 and x2 remain distinct after the transformation. By applying this partitioning

strategy, we can ensure the no-collision property while keeping the map compu-

tationally tractable.



Previous Work on No-Collision Maps. Previous approaches to no-collision

transportation maps often rely on simplifying the problem by partitioning the

probability measure into distinct subregions. Specifically, these methods perform

either strictly vertical or strictly horizontal splits of the domain ⌦, dividing it into

disjoint sections. Each subregion is then mapped to a corresponding portion of

the target measure, ensuring that the map T avoids any overlap or intersection of

the transported mass.

In this framework:

• A vertical split divides ⌦ along hyperplanes parallel to the y-axis, resulting

in a partition of the domain into vertical strips.

• A horizontal split partitions ⌦ along hyperplanes parallel to the x-axis, di-

viding the domain into horizontal layers.

These partitioning strategies provide a simple yet effective way to ensure the no-

collision property in the transformation.

Once partitioned, the subregions are paired using a prescribed matching strat-

egy, typically aligning mass in one region to its corresponding counterpart in a

manner that respects the no-collision property. Figure 1 is an illustration from [8]

showing how the partition and transporting work for probability measures given

by grid functions of their probability distributions:



Figure 1: Illustration of No-Collision Transport Map

While effective for certain settings, these strictly axis-aligned splits are limited

in flexibility and may not minimize transportation cost or fully leverage the ge-

ometry of the distributions. The limitations of axis-aligned methods motivate the

exploration of more general partitioning strategies, as discussed in the next sec-

tion. This approach seeks to improve the flexibility and efficiency of no-collision

maps while maintaining their core property of avoiding transported mass overlap.
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Theoretical Framework

This section establishes the theoretical underpinnings of two novel partitioning

techniques—Random Split and PCA-based Split—that extend traditional horizon-

tal and vertical partitioning methods. These advanced techniques are designed to

enhance the flexibility and robustness of the partitioning process while maintain-

ing the no-collision property. The discussion focuses on the conceptual and math-

ematical principles of each method, comparing their theoretical robustness against

the conventional splits. Computational implementation details are deferred to the

subsequent section.

0.8 Traditional Horizontal and Vertical Splits

0.8.1 Rationale

Traditional partitioning techniques involve splitting the dataset along fixed

axes—either horizontally (along the x-axis) or vertically (along the y-axis). These

methods are straightforward and computationally efficient, making them suitable

for balanced and uniformly distributed data.



0.8.2 Theoretical Robustness

While horizontal and vertical splits are simple to implement, their rigidity can

lead to suboptimal partitioning in datasets with complex or anisotropic distribu-

tions. These methods are susceptible to biases introduced by the alignment of

data patterns with the fixed splitting axes, potentially resulting in unbalanced par-

titions and reduced generalizability across diverse datasets. The lack of adaptabil-

ity limits their robustness in handling varied data structures, especially in high-

dimensional or irregularly distributed datasets.

0.9 Random Split

0.9.1 Rationale

The Random Split method enhances traditional horizontal and vertical splits

by introducing a stochastic rotation matrix to determine the splitting direction.

Specifically, each time before performing a horizontal or vertical split, the dataset

is rotated by a randomly generated rotation matrix. This approach maintains the

no-collision property by applying the same rotation matrix to both source and

target datasets at each recursive step. The incorporation of randomness ensures

that the partitioning process does not favor any fixed direction, thereby avoiding

biases introduced by inherent data patterns or anomalies.



0.9.2 Visualization

The normal split method shown in the plot below involves first applying a ro-

tation along a randomly chosen direction. This transformation ensures that the

structure of the source and target points is adjusted by the same direction and

hence the no-collision feature. In the second (right) plot, both source and tar-

get points are projected onto the chosen direction, with their respective medians

(blue and red dashed lines) marked to indicate potential partition boundaries. This

approach introduces randomness to explore different splitting scenarios. By com-

paring the source and target medians in the rotated space, this method enables

an effective division of data while preserving the geometric relationships in the

original points.

Figure 2: Normal Distribution before/after random rotation



0.9.3 Theoretical Robustness

The theoretical robustness of the Random Split method stems from its ability

to uniformly explore a wide range of splitting directions through random rotations.

By avoiding reliance on predefined axes, the method mitigates the risk of biased

partitions that can occur when data align with specific directions. This stochas-

tic approach ensures that the partitioning process remains flexible and adaptable

to diverse and complex data distributions. Additionally, the uniform sampling

of splitting directions enhances the method’s generalizability, making it resilient

against structural anomalies and heterogeneous data patterns. The preservation of

the no-collision property across varied rotation scenarios further solidifies its the-

oretical soundness, ensuring consistent performance regardless of the underlying

data structure.

0.10 PCA-based Split

0.10.1 Rationale

The PCA-based Split method advances beyond both traditional and Random

Split techniques by aligning the partitioning direction with the principal compo-

nent of the combined source and target datasets. This is achieved by recentering

and combining the datasets before computing the principal eigenvector of the co-

variance matrix, which serves as the splitting axis. Unlike the Random Split,

which uses stochastic rotations, the PCA-based approach dynamically adapts the



splitting direction based on the data’s intrinsic variance structure. Regularization

is incorporated into the covariance matrix to ensure numerical stability, particu-

larly in cases of low variance or near-singular configurations.

0.10.2 Visualization

Below are an simple illustration of how PCA-based split work, in the first step.

Here, normally distributed data is applied.

The PCA-based partitioning involves identifying the principal component of

the combined source and target datasets, as illustrated by the dashed line in the

first plot. This principal component represents the direction of maximum variance

across the points. By rotating both source and target points by this vector, the

dimensionality is reduced and the data is aligned along a single axis, as shown in

the second plot.

After rotation, the median of the new combine data set is found, illustrated as

the blue dotted line in the second plot, which is then used to split the data into

lower and upper halves.

0.10.3 Theoretical Robustness

The PCA-based Split method achieves enhanced theoretical robustness through

its data-driven approach to determining splitting directions. By aligning parti-

tions with the principal components, the method ensures that splits capture the

most significant variance in the data, leading to more meaningful and balanced



Figure 3: Normal Distribution before/after PCA rotation

partitions. This adaptability allows the method to respond dynamically to evolv-

ing data subsets, preventing the exhaustion of informative splitting directions and

maintaining relevance throughout the recursive partitioning process. The combi-

nation of source and target datasets before PCA ensures that the splitting direction

respects the relational structure between them, thereby preserving the no-collision

property. Furthermore, the introduction of a regularization term in the covariance

matrix enhances numerical stability, making the method resilient to irregularities

and ensuring consistent performance across various data conditions. Compared to

traditional and Random Splits, the PCA-based method offers superior adaptability

and resilience, particularly in handling anisotropic and high-dimensional datasets.

0.11 Comparative Analysis of Robustness

When comparing the robustness of the Random Split and PCA-based Split

methods to previously developed horizontal and vertical splits, several key dis-

tinctions emerge:



• Adaptability to Data Structure: Traditional splits are limited by their

fixed axes, making them less adaptable to complex data distributions. In

contrast, both Random Split and PCA-based Split dynamically adjust their

splitting directions—Random Split through stochastic rotations and PCA-

based Split through data-driven principal components—thereby accommo-

dating a wider variety of data structures.

• Bias Mitigation: Traditional splits can inadvertently introduce biases if

data patterns align with the splitting axes. Random Split mitigates this by

uniformly sampling splitting directions, while PCA-based Split reduces bias

by aligning splits with the direction of maximum variance, ensuring that

partitions are informed by the data’s inherent structure.

• Generalizability: The flexibility inherent in Random Split and PCA-based

Split enhances their generalizability across different datasets. Traditional

splits may perform well on uniformly distributed data but struggle with het-

erogeneous or anisotropic datasets. The Random and PCA-based methods

maintain robust performance across diverse scenarios, making them more

versatile in practical applications.

• Preservation of No-Collision Property: All three methods uphold the no-

collision property, ensuring consistent and collision-free mappings. How-

ever, the Random and PCA-based methods achieve this while also enhanc-

ing partitioning robustness, whereas traditional splits may require additional

considerations to maintain this property under complex data distributions.
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Computational Results

This section presents the computational validation of the proposed Random

Split and PCA-based Split methods, compared against traditional horizontal and

vertical splits and an optimal transport solution obtained through linear program-

ming. The experiments evaluate the methods across varying point distributions,

assessing partition quality, computational efficiency, and relative performance in

pairing costs.

We build on the methods developed in [9], including and the code developed

by A. Iannantuono available at the github repository https://github.com/armeehn/no-

collision-transportation-maps.

0.12 Experimental Settings

Dataset Characteristics Synthetic datasets of 26 = 64 points were generated,

with coordinates drawn from two different distributions:

• Normal Distribution: Points sampled independently from a standard nor-

mal distribution.



• Exponential Distribution: Points sampled independently from an expo-

nential distribution with a scale parameter of 1.

Each dataset contains equal numbers of source and target points.

Evaluation Metrics To compare the methods, the following metrics were com-

puted:

• Total Cost: The sum of pairing costs (e.g., squared Euclidean distances)

for all paired points. This is the primary metric reported in computational

results.

• Relative Error (%): The percentage difference in total cost between each

method and the optimal transport linear programming (OTLP) solution. It

highlights how much worse each method performs relative to OTLP.

• Cost Ratio: The ratio of each method’s total cost to the OTLP cost, serving

as a normalized measure of performance.

Optimal Transport Plan An optimal transport plan was computed using the

Earth Mover’s Distance (EMD) via linear programming, ensuring a global opti-

mal pairing cost. This served as the benchmark for relative error and cost ratio

calculations.



0.13 Methodology Implementation

The implementation of all methods—Random Split, PCA-based Split, and tra-

ditional horizontal and vertical splits—follows a unified framework that combines

recursive splitting and pairing. This general structure ensures a consistent ap-

proach while leveraging each method’s unique splitting strategy, as detailed in the

theoretical section.

Splitting Process At the core of the implementation is the recursive splitting

process, which partitions the source and target datasets into lower and upper sub-

sets at each step. To ensure consistency and preserve the no-collision property:

• Partitioning Direction: The direction of the split (e.g., random rotation,

principal component, or fixed axis) determines how points are projected for

partitioning.

• Median-Based Splits: The projection values of combined source and tar-

get points are computed along the chosen direction, and a median-based

threshold is used to split the points into lower and upper subsets.

• Handling Edge Cases: When multiple points share the median value or

subsets are empty, alternative thresholds (e.g., mean) are used to ensure

balanced partitions.

Recursive Pairing The pairing process relies on a registry system to encode the

hierarchical paths of points in the partitioning tree. The steps are as follows:



• Registry Updates: During each split, points in the lower subset are as-

signed a binary value of 0, and those in the upper subset are assigned 1.

These values are recursively appended to the registry, creating a unique bi-

nary identifier for each point.

• Path Matching: The final registry values represent the paths taken by

points during recursive splitting. Points in the source and target datasets

are matched by aligning their binary paths, ensuring a consistent pairing

that preserves the no-collision property.

• Registry Sorting: After all splits, the registries are sorted based on their

binary paths to facilitate efficient pairing of source and target points.

Example 0.13.1. PCA-based Split For illustration, the PCA-based Split imple-

mentation uses the following steps:

1. Combine source and target points to compute the covariance matrix and

determine the principal eigenvector, which serves as the splitting axis.

2. Project points onto this axis, compute the median projection value, and par-

tition the points into lower and upper subsets.

3. Recursively repeat the process for each subset, updating the registries at

each step.

4. After all splits, sort the registries and generate pairings based on aligned

paths.



0.13.1 Pseudo-code

Below is the pseudo-code for this method.

Algorithm 4 Rotation and Split for No-Collision Partitioning
Require: Source points S , Target points T , Rotation matrix R, Median splitting

direction d

Ensure: Partitioned sets (S1,S2) and (T1, T2)
1: Apply rotation R to both S and T :
2: S 0  R · S
3: T 0  R · T
4: Compute median along direction d for S 0:
5: mS  Median(S 0

d)
6: Compute median along direction d for T 0:
7: mT  Median(T 0

d )
8: Partition S 0 based on mS:
9: S1  {s 2 S 0 : sd  mS}

10: S2  {s 2 S 0 : sd > mS}
11: Partition T 0 based on mT :
12: T1  {t 2 T 0 : td  mT}
13: T2  {t 2 T 0 : td > mT}
14: Return partitioned sets (S1,S2) and (T1, T2)

0.14 Results

0.14.1 Exponential Distribution

The experiments with datasets generated from an exponential distribution (scale

parameter = 1) reveal significant differences in pairing costs among the evaluated

methods, illustrate in Table 0.14.1. As expected, the optimal transport linear pro-

gramming (OTLP) solution achieves the lowest total cost, serving as the bench-



mark with a minimal cost of 0.3624. The traditional horizontal and vertical (HV)

split method incurs a total cost of 0.7936, resulting in a relative error of 118.99%

and a cost ratio of 2.19, providing the best performance among the heuristic ap-

proaches. In contrast, the Random Split method shows a much higher total cost of

3.1275, with a relative error of 762.97% and a cost ratio of 8.63. The PCA-based

Split method, while better than the Random Split, achieves a total cost of 1.3785,

with a relative error of 280.37% and a cost ratio of 3.80, reflecting a moderate

increase in cost compared to the OTLP solution.

Method Total Cost Rel. Error (%) Cost Ratio
OTLP 0.3624 0.00 1.00
HV 0.7936 118.99 2.19
Random 3.1275 762.97 8.63
PCA 1.3785 280.37 3.80

Table 1: Pairing Costs and Performance Metrics for Exponential Distribution

Visualization of Pairings To further illustrate the differences in pairing strate-

gies, the pairings generated by each method for this exponential distribution are

visualized in Figure 4. This visualization highlights how each method approaches

the problem of matching points within the distribution, with the OTLP method

showing the most efficient pairings, leading to the lowest total cost. In contrast,

the HV method exhibit more dispersed pairings but still successfully maintain

most pairings. The PCA-based Split method, while an improvement over the

Random Split, still shows some inefficiencies in comparison to OTLP, as seen in

the distribution of pairings.



Figure 4: Pairings Generated by PCA-based, Random, HV, and OTLP Methods
for Exponential Distribution

Discussion of Exponential Distribution Results The OTLP method consis-

tently outperforms all heuristic approaches, establishing a clear benchmark for

optimal pairing costs with a total cost of 0.3624. The HV Pairing method, while

simpler, performs significantly better than both the PCA-based and Random Split

methods, achieving a total cost of 0.7936 and a relative error of 118.99%, as shown

in Table 0.14.1. In particular, the Random Pairing method fares the worst, with a

total cost of 3.1275 and a relative error of 762.97%, underscoring the challenges

of stochastic splitting in highly variable distributions.

The PCA Pairing method performs better than the Random Split, with a total

cost of 1.3785 and a relative error of 280.37%. However, it still falls short of the

HV Split, which maintains a lower total cost and relative error. From the visual-

ization plot, it can be seen that this performance gap is particularly pronounced



in densely distributed regions of the dataset, where PCA generates much messier

pairings. The PCA-based Split captures the direction of maximum variance across

the entire dataset, which may not effectively reflect the local variability within

densely populated clusters. In areas where data points are densely packed, the

local variance is relatively low, causing PCA to be less effective in distinguishing

meaningful partition directions. Consequently, while PCA offers improved adapt-

ability over the Random Split by aligning with the data’s global variance structure,

it struggles to accommodate the nuanced variability present in densely distributed

regions, leading to higher pairing costs compared to the HV Split method.

0.14.2 Normal Distribution

In contrast, datasets generated from a normal distribution (mean 0, standard

deviation 1) exhibit different pairing cost dynamics. The OTLP method remains

the most cost-effective approach, with a total cost of 0.2477, setting the bench-

mark. The HV Pairing method shows improved performance compared to the

exponential distribution, achieving a total cost of 0.4529, with a relative error of

82.85% and a cost ratio of 1.83. The Random Split method incurs a total cost

of 2.7777, with a relative error of 1021.50% and a cost ratio of 11.22. Similarly,

the PCA-based Split method results in a total cost of 2.5446, a relative error of

927.40%, and a cost ratio of 10.27, indicating a significant increase in cost rela-

tive to the OTLP benchmark.



Method Total Cost Rel. Error (%) Cost Ratio
OTLP Pairing 0.2477 0.00 1.00
HV Pairing 0.4529 82.85 1.83
Random Pairing 2.7777 1021.50 11.22
PCA Pairing 2.5446 927.40 10.27

Table 2: Pairing Costs and Performance Metrics for Normal Distribution

Visualization of Pairings To further illustrate the differences in pairing strate-

gies, the pairings generated by each method for the normal distribution are visu-

alized in Figure 5, similar to that of exponential distribution.

Figure 5: Pairings Generated by PCA-based, Random, HV, and OTLP Methods
for Normal Distribution

Discussion of Normal Distribution Results The OTLP method consistently

outperforms all heuristic approaches, establishing a clear benchmark for optimal



pairing costs with a total cost of 0.2477. The HV Pairing method, while simpler,

incurs a significantly higher total cost of 0.4529, but still performs better than the

Random Split and PCA-based Split methods.

Interestingly, the PCA Pairing method shows minimal improvement over the

Random Split, achieving a total cost of 2.5446 and a relative error of 927.40%.

The Random Split method records a total cost of 2.7777 with a relative error of

1021.50%. In repeated experiments, the Random Split sometimes performs com-

parably to or even better than the PCA-based Split. Several factors may contribute

to this outcome:

• Global vs. Local Variance Capture: PCA-based Splits rely on captur-

ing the direction of maximum global variance in the dataset. In a normal

distribution, especially one that is isotropic (having similar variance in all

directions), the principal component may not provide a significant advan-

tage, as the variance is uniformly distributed. Consequently, the splitting

direction chosen by PCA may not align optimally with the underlying data

structure for pairing purposes.

• Overfitting to Global Structure: PCA aims to maximize variance along

a single direction, which may lead to overemphasis on certain data charac-

teristics while neglecting others even if re-centering is applied. In densely

populated regions with low local variance, PCA may fail to capture sub-

tle but important variations, resulting in less effective splits. The Random

Split, by exploring diverse directions, can sometimes better accommodate



these local variations, enhancing pairing performance in specific instances.

• Flexibility and Diversity in Splitting Directions: The inherent random-

ness in the Random Split method allows it to explore a broader range of

splitting directions across different recursive steps. This flexibility can lead

to more adaptable partitions that better handle the uniform spread of nor-

mally distributed data. In contrast, the PCA-based Split is constrained to

principal directions, limiting its ability to adapt to varying local data distri-

butions.

These factors collectively suggest that while the PCA-based Split generally

offers improved adaptability over the Random Split by leveraging global variance

structure, the Random Split’s inherent flexibility can occasionally result in more

effective pairings, especially in datasets where local variance plays a crucial role.

This underscores the complex interplay between global and local data characteris-

tics in determining the efficacy of partitioning methods. Further refinement of the

PCA-based approach, potentially incorporating mechanisms to account for local

variance, could bridge the performance gap observed in these experiments.
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Conclusion and Future Work

0.15 Conclusion

This study evaluated the efficiency of PCA-based and Random Split partition-

ing methods in minimizing transportation costs compared to previously developed

horizontal and vertical (HV) cuts and the Optimal Transport Linear Programming

(OTLP) approach. The results consistently demonstrated that both PCA-based and

Random Split methods incur significantly higher costs than the OTLP benchmark,

with the Random Split method generally showing the least efficiency. Specifically,

while the HV Pairing method, though less adaptable, outperformed both PCA and

Random Splits in most scenarios, PCA-based methods occasionally approached

the performance of Random Splits in certain experiments.

The comparative analysis revealed several key insights:

• Optimal Transport Linear Programming (OTLP): As expected, OTLP

consistently achieved the lowest pairing costs, establishing a clear bench-

mark for optimal performance in transportation models.

• Horizontal and Vertical (HV) Splits: The HV Pairing method, despite its



simplicity and rigidity, performed better than both PCA and Random Splits.

This indicates that fixed partitioning directions, while less adaptable, can

still offer reasonable efficiency in certain data distributions.

• PCA-based Split: The PCA-based Split method generally outperformed

the Random Split by leveraging global variance structures within the data.

However, its performance was hindered in densely distributed regions where

local variance is low, limiting its effectiveness in capturing nuanced data

structures.

• Random Split: Although Random Split exhibited the highest relative errors

and cost ratios overall, it occasionally outperformed PCA-based Splits in re-

peated experiments. This suggests that the inherent flexibility and diversity

in splitting directions of the Random Split method can sometimes better

accommodate local data variations that PCA-based methods may overlook.

These findings highlight the complex interplay between global and local data

characteristics in determining the efficacy of partitioning methods. While PCA-

based Splits offer improved adaptability over Random Splits by aligning with the

data’s global variance structure, the Random Split’s stochastic nature provides a

level of flexibility that can occasionally lead to more effective pairings, especially

in datasets with significant local variability. Nonetheless, both heuristic methods

fall short of the OTLP benchmark, underscoring the challenges inherent in devel-

oping partitioning strategies that can consistently approach optimal transport costs

across diverse data distributions.



0.16 Implications for Future Research

The findings from this study suggest several avenues for future research to

enhance the efficiency of partitioning methods in transportation models:

• Different Evaluation Metrics: Future experiments could incorporate a

broader range of evaluation metrics beyond transportation cost alone, such

as computational complexity, scalability, or adaptability to different data

distributions.

• Enhanced Split Considerations: Incorporating additional considerations

into the split decision, such as direct measurements of Euclidean distance

or other relevant features from optimal transport theory, could potentially

yield more cost-effective solutions.

• Hybrid Methods: As PCA-based splitting loses significance during itera-

tive partitioning due to diminishing data variance, combining PCA’s struc-

tured approach with randomized methods could enhance performance. For

instance, after several iterations of PCA, transitions to hybrid splitting strate-

gies, such as horizontal/vertical (HV) cuts or randomized cuts, may main-

tain efficiency while preserving flexibility. This hybrid approach balances

initial structure with adaptability as the data becomes less variant.

In conclusion, while the tested methods did not outperform traditional or optimal

approaches under the conditions set forth in this study, they offer a foundation

upon which more refined and situationally adaptive methods can be developed.



The insights gained underscore the complexity of partitioning tasks and the ne-

cessity of aligning methodological choices with specific operational objectives

and data characteristics.
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