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Abstract

Developments of the projector configuration interaction method and the
multireference driven similarity renormalization group

By Tianyuan Zhang

In this dissertation, I have developed efficient methods for both static and dynamical
correlation. For static correlation, we propose the projector configuration interaction
(PCI) approach to solving the Schrödinger equation with a determinant coupling fil-
tering scheme. In contrast to selected configuration interaction (SCI) methods, in
which an important subset of determinants are selected and the Hamiltonian is di-
agonalized exactly, in PCI we filter the most important determinant couplings, and
truncate the determinant space accordingly. The PCI approach realizes a determin-
istic version of the full configuration interaction quantum Monte Carlo (FCIQMC)
method [Booth, G. H.; Thom, A. J. W.; Alavi, A. J. Chem. Phys. 2009, 131,
054106], where a trial vector is projected onto the ground state wave function with
an optimal polynomial projection scheme. Important determinant couplings are se-
lected by the path filtering algorithm integrated into the wave function projection.
We show that PCI is able to compute more accurate wave function than general SCI
methods with less theoretical computational cost, and chemical accuracy are usually
achieved using only a small fraction of the determinants in full CI space. The other
topic of this dissertation is the development of a low cost linear multireference driven
similarity renormalization group with singles and doubles [MR-LDSRG(2)] method
for dynamical correlation. The goal is achieved without compromising the accuracy
of the original MR-LDSRG(2) method by using a combination of 1) a sequential
unitary transformation, 2) density fitting (DF) of the two-electron integrals, and 3)
the non-interacting virtual orbital (NIVO) operator approximation. The scaling of
memory requirement is reduced, and the computation is also accelerated. We report
improved MR-LDSRG(2) study on the cyclobutadiene automerization reaction using
a quintuple-ζ basis set.
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(3)
0 (s) as in Eq. (4.19). The wiggly and horizontal

solid lines indicate the effective interaction of Ĉ(1)
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Chapter 1 Introduction and literature review

1.1 Introduction
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Figure 1.1 Left: The nitrogen (N2) dissociation curve computed by full configuration
interaction (FCI), Møller–Plesset second-order perturbation theory (MP2), configuration
interaction methods (CISD, CISDTQ), and coupled cluster methods [CCSD, CCSD(T)].
All computations use cc-pVDZ basis set1 and core 1s electrons are frozen doubly occupied.
Right: A schematic diagram of molecular orbitals and energies in both equilibrium and
stretched geometries.

Comparing the nitrogen dissociation curve computed by full configuration inter-

action (FCI) and other single-reference wave function methods, as in Figure 1.1, most

of the single-reference wave function methods describe the curve around the equilib-

rium geometry correctly. However, truncated configuration interaction (CI) meth-

ods diverge when N2 dissociates, while the Møller–Plesset second-order perturbation

theory (MP2) and coupled cluster methods [CCSD, CCSD(T)] show strange local

maximums. Further investigation shows that HOMO-LUMO gaps are dramatically

different between equilibrium and stretched geometries. In the stretched N2 where

HOMO and LUMO are nearly degenerate, the Hartree–Fock reference determinant

contribute only 9.8% to the FCI wave function in contrast to 87% in the equilibrium

geometry. Thus, the stretched N2 cannot be well approximated by a single Slater



2

determinant. Chemical systems like the stretched N2 are called strongly correlated

systems.

Electrons interact strongly in chemical systems where electronic configurations are

nearly degenerate, such as bond breaking, transition metals, biradical systems, and

excited states.2–7 The near-degenerate states violate the basic assumption of single-

reference quantum chemistry methods that the wave function can be approximated

by a single Slater determinant. For example, consider a zeroth-order wave function

Ψ0 consisting of two degenerate determinants, a reference Φ and the doubly excited

determinant Φaā
īi , say

|Ψ0〉 =
1√
2

(|Φ〉 − |Φaā
īi 〉), (1.1)

where i and a are occupied and virtual alpha spin orbitals, and ī and ā are corre-

sponding occupied and virtual beta spin orbitals. In configuration interaction singles

and doubles (CISD) method, important contributions from most singly and doubly

excited determinants from Φaā
īi are missing because those are triple and quadruple

excitations from the reference Φ. In Møller–Plesset second order perturbation the-

ory, Φaā
īi causes an infinite “perturbation” to the reference for the energy denominator

∆ = εi+ εī− εa− εā → 0. In the coupled cluster singles and doubles (CCSD) method,

even if we overpass the divergence problem, in principle the double excitation am-

plitude taāīi ≈ −1 by cluster analysis. Such a large amplitude will cause inaccurate

disconnected triples and quadruples, and consequently ruin all other cluster ampli-

tudes.

To accurately describe strongly correlated systems, the electron correlation effects

are usually divided into static (strong) and dynamical (weak) correlations to treat sep-

arately.8 Static correlation accounts for the strong mixing between near-degenerate

electronic configurations, while dynamical correlation accounts for the repulsion be-

tween electrons in movement. Clearly, this division is arbitrary. In practice, scientists

divide molecular orbitals into core (C), active (A) and virtual (V) spaces as shown
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Figure 1.2 General scheme for multireference theories of electron correlation and
partitioning of the orbital space into core, active, and virtual orbitals. (a) Static
correlation effects are treated with a reference wave function (Ψ0). (b) Dynamical
correlation effects are introduced via a wave operator (Ω̂) acting on the reference. (c)
Reference relaxation effects that couple static and dynamical correlations are introduced
by diagonalizing an effective Hamiltonian.1

in Figure 1.2. The active space usually contain several molecular orbitals around the

HOMO and LUMO and certain number of electrons (nact). In second quantization,

the determinants in the active space are

|Φµ〉 = â†uâ
†
v · · ·︸ ︷︷ ︸

nact

C∏
m

â†m |〉 , (1.2)

where |〉 is the true vacuum and â†p is a creation operator. The active space is usually

treated with variations of configuration interaction (CI) methods9 to describe the

nature of static correlation with a multi-determinantal reference wave function. When

all determinants in the active space are included in the CI computation, the result

wave function is indicated with CAS(ne,ko), where CAS stands for complete active

space, n is the number of electrons and k is the number of spatial orbitals in the active

space. Unfortunately, the combinatorial growth of the number of determinants in the

active space limits such references to around CAS(18e,18o), although CAS(22e,22o)

computations have been recently computed on massively parallel architectures with

more than 4,000 cores.10

On top of the reference wave function, in contrast to the methods for static cor-
1 Repinted from Evangelista, F. A. Perspective: Multireference coupled cluster theories of dynamical
electron correlation. J. Chem. Phys., 2018, 149, 030901, with the permission of AIP Publishing.
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relation where interactions between electron configurations are explicitly computed

in the Hamiltonian and wave function, dynamical correlation is usually treated as a

many-body expansion of interactions between molecular orbitals due to the enormous

weak interactions. Candidate methods include multireference perturbation theory

(MRPT),11–16 multireference configuration interaction (MRCI),17–21 multireference

coupled cluster (MRCC)22–37 methods and many other variants.38–43 Good reviews of

these methods can be found in Refs. 44, 45 and 46. Similar to the single-reference

case, MRCC approaches and related variants are the most accurate. However, de-

spite protracted efforts and progress, the applicability of MRCC has not reached

the same level of MRPT or MRCI, due to the high computational cost. Mean-

while, MRCC methods suffer from the intruder-state problem,46–52 and the multiple-

parentage problem,30,33,46,52–54 which will be discussed in detail in Sec. 1.6. Evan-

gelista and co-workers39–43,55 have recently proposed the multireference driven sim-

ilarity renormalization group (MR-DSRG) to address both these technical issues in

multireference theories. However, the applicability of the non-perturbative version

[MR-LDSRG(2)]41 is usually limited to 250 correlated molecular orbitals due to the

demand for computation resources.

In order for the static correlation to be coupled with the dynamical correlation

effects, we iterate the two types of treatement where a new set of coefficients cµ for

the CI expansion in the active space is computed with dynamical correlation dressed

Hamiltonian. This iteration process is called reference relaxation. The combination of

accurate static and dynamical correlation methods can provide computation results

agree well with experiments. The purpose of this dissertation is to propose efficient

methods for both static and dynamical correlation. Specifically, we developed the

projector configuration interaction (PCI) method for efficient static correlation treat-

ment and reduced the computational cost of the MR-LDSRG(2) method to compute

dynamical correlation in larger strongly correlated systems. In this introduction, I will
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first overview methods for static correlation, then focus on the formalism of selected

CI algorithms. What follows is an analysis of MRCC methods and an introduction

to DSRG methods.

1.2 Sparsity in the full configuration interaction Hamil-
tonian

In the Born–Oppenheimer approximation and second quantization, the electronic

Hamiltonian on a basis of one-particle spin orbitals {φp, p = 1, 2, . . . , 2k} is

Ĥ =
∑
pq

hqpâ
†
pâq +

1

4

∑
pqrs

vpqrs â
†
pâ
†
qâsâr, (1.3)

where p, q, r and s are indices of spin orbitals, â† and â are creation and anni-

hilation operators, hqp = 〈φp|ĥ|φq〉 and vpqrs = 〈φpφq||φrφs〉 are the one-electron and

anti-symmetrized two-electron integrals, respectively.

Configuration interaction methods represent wave function as linear combination

of determinants in a primary active space P ,

|Ψ0〉 =
∑

ΦI∈P

CI |ΦI〉 , (1.4)

where |ΦI〉 are Slater determinants in the active space and CI are the correspond-

ing coefficients. The coefficients are obtained by computing the eigenvector of the

Hamiltonian matrix H, where matrix elements are given by

HIJ = 〈ΦI |Ĥ|ΦJ〉 , ΦI ,ΦJ ∈ P. (1.5)

According to the definition of Ĥ and the Slater’s rules, HIJ = 0 if ΦI and ΦJ are

differed by more than two spin orbitals.

Common methods to compute a CAS reference wave function are complete active

space configuration interaction (CASCI) or complete active space self-consistent field

(CASSCF).56 Both methods are effectively full configuration interaction (FCI) in the
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active space with or without orbital optimization, where the number of determinants

in CAS(ne,ko) is
(
k
n/2

)2

(for a closed shell system). In principle, FCI exactly di-

agonalizes the Hilbert space and provides accurate wave function for any quantum

many-body system. However, as Hilbert space grows combinatorially with respect to

the number of electrons and molecular orbitals, it is prohibitively expensive even for

moderate size chemical systems.57

A general approach to reducing the cost of FCI is to exploit the sparsity of the

FCI Hamiltonian. The sparsity is reflected in many aspects:

1. A majority of Hamiltonian matrix elements are zero or small, due to Slater rule

or sometimes orbital locality;

2. Most CI wave function determinant coefficients are small due to large energy

difference or small coupling to the target state;

3. Tensor rank is not full if the Hamiltonian matrix or the coefficient vector is

appropriately factorized.

Three major categories of methods have been developed that take advantage of the

sparsity: factorization, importance selection, and stochastic sampling.

The density matrix renormalization group (DMRG) is a successful example of

methods factorizing the FCI wave function.58–64 The formalism factorizes the coeffi-

cient tensor to be a product of matrix product state (MPS) tensors and truncate the

connection between adjacent tensors to a finite number. However, because the MPS

factorization is one-dimensional, it is computationally advantageous only for quasi-1D

systems. At the same time, its convergence is sensitive to the ordering of molecular

orbitals.59,65,66

In this dissertation, we focus on more generally applicable methods. We will first

overview the selected CI methods in the next section, then discuss a Monte-Carlo

method that samples the Hamiltonian in Sec. 1.5.
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1.3 Selected configuration interaction methods

Selected CI methods seek to select an important subset of determinants (S) of

diagonalizable size out of the
(
k
n/2

)2

determinants. The naïve way of including sin-

gle and double excitations from the Hartree–Fock configuration is denoted as CISD.

However, missing important higher excitation determinants can result in a notice-

able error, especially in strongly correlated systems. In the early developments of

selected CI methods, Davidson and co-workers67 selected the most important 1000

configurations according to their second-order perturbation energies. In the MRD-CI

developed by Buenker and Peyerimhoff,68–70 configurations sorted by the expected

energy lowering are truncated by a threshold T , where the FCI energy is estimated

by extrapolating T → 0.

Instead of second-order perturbation energy, Malrieu and co-workers proposed

the CIPSI method in which important determinants are selected by the perturbative

estimation of their coefficients.71–75 More importantly, CIPSI established the general

iterative scheme of selected CI methods:

1. Choose an initial determinant space [S(1)]. It may contain only the SCF deter-

minant.

2. At the k-th iteration, diagonalize the Hamiltonian H restricted in determinant

space S(k) to obtain the corresponding wave function,

|Ψ(k)〉 =
∑

ΦJ∈S(k)

C
(k)
J |ΦJ〉 ; (1.6)

3. Estimate the importance of determinants ΦI /∈ S(k) that are connected to de-

terminants in S(k) by some criteria;

4. Select the most important connected determinants with a threshold, then gather

those with S(k) to form a new determinant space S(k+1);
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5. Iterate steps (2) to (4) until converge.

Obviously, the degrees of freedom in the selected CI framework are the criteria and

threshold, the combination of which determines the accuracy and efficiency of a se-

lected CI method. Criteria and thresholds of representative selected CI methods are

listed in Table 1.1. More recent developments include other variations which are

usually more sophisticated76–85 or adapted and applied in multireference CI meth-

ods,19,86–88 but the basic selected CI idea is similar.

Among the listed methods, the adaptive CI (ACI) by Schriber and Evangelista95,96

is distinguished by its accuracy. The energy lowering criteria in ACI is one of the most

accurate estimations for the importance of determinants. Meanwhile, the cumulative

selection criteria and thresholds guarantee the result energy error to FCI is on the

order of the user-specified threshold σ, which also result in small parallelism errors.

In contrast, Heat-bath CI (HCI) by Holmes and co-workers97–99 utilizes an easy to

compute selection criterion. Although it sacrifices the accuracy of targeting important

determinants, the computational efficiency is maximized.

1.4 Cost in exact diagonalization of Hamiltonian

In general selected CI algorithm, step 2 requires diagonalization of the Hamilto-

nian in the subset S(k). The standard approach to diagonalize a Hamiltonian is the

Davidson–Liu algorithm,100,101 as described in Algorithm 1.

In the algorithm, the most time consuming step is computing the sigma vectors

in Eqs. (1.8) and (1.10),

σ = Hb, (1.11)
2 Adapted from Sherrill, C. D.; Schaefer, H. F., The Configuration Interaction Method: Advances
in Highly Correlated Approaches. Adv. Quant. Chem., 1999, 34, 143–269, Copyright 1999, with
permission from Elsevier.
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Table 1.1 Selection criteria and thresholds of representative selected CI methods. Ψ(k) is
the wave function at the k-th iteration, E(k)

Ψ = 〈Ψ(k)|Ĥ|Ψ(k)〉. ΦJ and ΦI represent
determinants in and out of S(k) (ΦJ ∈ S(k), ΦI /∈ S(k)), where S(k) is the subset of the
primary determinant space P at the k-th iteration. EI = 〈ΦI |Ĥ|ΦI〉, HIJ = 〈ΦI |Ĥ|ΦJ〉,
and CJ is the coefficient of ΦJ at the k-th iteration. E0 = 〈Φ0|Ĥ|Φ0〉 is the energy of the
reference determinant energy. All other quantities in this table are the criterion and
threshold in each method.

Method Importance estimate Threshold

CIPSI71 C
(1)
I = 〈ΦI |Ĥ|Ψ(k)〉

E
(k)
Ψ −EI

|C(1)
I | ≥ η

CI+PT89 ε
(2)
I = |〈ΦI |Ĥ|Ψ(k)〉|2

E
(k)
Ψ −EI

|ε(2)
I | ≥ T

MCCI90–92 CI from diagonalizing H(k) a |CI | > cmin
a

ΛCI93 ∆E = EI − E0 ∆E ≤ λ

ASCI94 AI =
∑core
J 6=I HIJCJ

EI−E
(k)
Ψ

b fixed S(k) size b

ACI95,96 εI =
EI−E

(k)
Ψ

2
−
√

(EI−E
(k)
Ψ )2

4
+ | 〈ΦI |Ĥ|Ψ(k)〉 |2

∑
ΦI∈F (k)\Q(k) |εI | ≤ σ c

HCI97–99 fHCI(ΦI) = maxJ(|HIJCJ |) fHCI(ΦI) ≥ ε1

a In MCCI, the Hamiltonian H(k) is constructed in a Monte-Carlo sampled deter-
minant space. See Ref. 92 for detail.

b In ASCI, the determinant space is splitted into core and target, only core con-
tributions are summed up to compute AI . Core and target spaces contain fixed
number of determinants selected by AI value. See Ref. 94 for detail.

c In ACI, determinant space F (k) contains all ΦI /∈ S(k), and Q(k) is a subset of F (k)

containing candidate determinants to merge with S(k). Selecting determinants
with the largest |εI | values so that the accumulated energy lowering of discarded
determinants does not exceed the threshold σ. See Ref. 95 for detail.

or explicitly for all determinant ΦJ ∈ S(k),

σJ =
∑

ΦK∈S(k)

HJKbK , (1.12)

where each matrix element HJK is a determinant coupling ΦK to ΦJ . According to

Slater’s rules, the number of non-trivial coupling in H is of O(Ndeto
2v2), where Ndet is

the number of determinants in space S(k), o and v are the number of occupied and vir-

tual spin orbitals. This scaling is also the scaling of computational cost because each
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Algorithm 1 The Davidson–Liu iterative method for the lowest few eigenvectors
and eigenvalues of real symmetric matrices.2

1: Select a set of L orthonormal guess vectors, at least one for each root desired,
and place in the set {bi}.

2: Use a standard diagonalization method to solve the L× L eigenvalue problem

Gαk = λkαk, k = 1, 2, ...,M (1.7)

where
Gij = (bi,Hbj) = (bi, σj), 1 ≤ i, j ≤ L (1.8)

and M is the number of roots of interest.
3: Form the correction vectors {δk}, k = 1, 2, ...,M , defined as

δkI = (λk −HII)
−1rkI , I = 1, 2, ..., N (1.9)

where

rk =
L∑
i=1

αki (H− λk)bi (1.10)

and N is the number of determinants.
4: Normalize {δk}.
5: Schmidt orthonormalize δ1 against the set {bi} and append the result to {bi}.

Repeat this process for each of the otherM−1 correction vectors, neglecting those
whose Schmidt orthonormalized norm is less than some threshold T ≈ 10−3. This
results in the addition of m new b vectors, whith 1 ≤ m ≤M .

6: Increase L by m and return to step 2.

sigma build step loops over all the non-trivial couplings. Computing sigma vector

with intermediate residue lists requires O(Ndeto
2) memory for an efficient implemen-

tation102 for . These costs, currently limit the size of selected determinant space to

around 107 determinants.

1.5 Full configuration interaction quantumMonte Carlo

Monte-Carlo algorithm is a major branch of stochastic methods103 that usually

require only limited resources. In contrast to selected CI methods where all the cou-

plings need to be evaluated, the full configuration interaction quantum Monte Carlo
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(FCIQMC) method samples these couplings by a walker spawning dynamics.104–109

Many FCIQMC computations on strongly correlated system have been reported in

the last decade.110–115

This method applies the linearized imaginary-time projector to an initial guess of

the wave function,

|Ψ〉 = lim
β→∞

exp
(
−β(Ĥ − E0)

)
|Ω〉 ≈ lim

k→∞

(
1− τ(Ĥ − E0)

)k
|Ω〉 , (1.13)

where |Ψ〉 and |Ω〉 are the result and initial guess of the wave function, β is the

imaginary time scale, E0 is the ground state energy, and τ is an imaginary time step.

In the FCIQMC method, at each propagation step, the coefficient CJ of determinant

ΦJ is proportional to the number of walkers on it (NJ),

CJ ∝ NJ . (1.14)

According to the walker spawning algorithm described in Ref. 104, for each walker

α, the Hamiltonian can be written as:

H̃(k,α) = {H̃(k,α)
IJ } =


HIJ

pgen(I|J)
if α is on ΦJ and choose to spawn on ΦI ,

HJJ if α is on ΦJ and I = J,

0 otherwise,
(1.15)

where pgen(I|J) is the probability that determinant ΦI is randomly selected out of all

the determinants coupled with ΦJ , and only one spawning target is selected at each

step k. Obviously, there are only two non-zero matrix elements in H̃(k,α): one for

diagonal contribution, the other for sampling the determinant coupling. The overall

sampled Hamiltonian at k-th imaginary-time propagation step is

H̃(k) =

N
(k)
w∑
α

H̃(k,α), (1.16)

where N (k)
w is the total number of walkers at step k. In this way, the Hamiltonian Ĥ

is sampled to be H̃(k) by the walker spawning process, where only N (k)
w off-diagonal

matrix elements (determinant couplings) need to be evaluated. The computational
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cost is thus proportional to the N (k)
w , which can be much smaller than the cost of

exact diagonalization.

However, the result lacks an accurately represented wave function, and large num-

bers of walkers and iterations are required to overcome the “sign problem” and de-

crease the statistical errors in the result. Besides, the linearized imaginary-time pro-

jector in the FCIQMC converges slowly, in that a small imaginary-time step is required

to control the energy fluctuation.

Inspired by FCIQMC, we proposed the projector CI (PCI) method. It can be

interpreted as a deterministic alternative to the FCIQMC, with two major modifi-

cations: 1) The stochastic propagation is replaced by a deterministic path-filtering

projection scheme. 2) The imaginary-time propagation is replaced by much faster

projection schemes. PCI may also be understood as an improved selected CI method,

where the exact diagonalization of the subset Hamiltonian is replaced with diago-

nalizing a Hamiltonian with only the most important determinant couplings. The

PCI algorithm and performance will be discussed in these two different flavors in

Chapters 2 and 3.

1.6 Problems in multireference coupled cluster meth-
ods

Now we switch to introduce main dynamical correlation methods. In single-

reference coupled cluster (SRCC), the exact ground state wave function is written

as

|Ψ〉 = eT̂ |Φ0〉 , (1.17)

where Φ0 is a reference Slater determinant, and T̂ is the cluster operator containing

up to n-body operators,

T̂ =
n∑
k=1

T̂k, (1.18)
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where n is the number of electrons and T̂k contains operators that excite k electrons

from the occupied to virtual orbitals in Φ0,

T̂k =
1

(k!)2

occ∑
ij···

vir∑
ab···

tij···ab···â
ab...
ij... , (1.19)

where tab···ij··· are the cluster amplitudes, and for convenience we introduce the compact

notation âab...ij... = â†aâ
†
b · · · âj âi︸ ︷︷ ︸

k excitations

.

Plugging in this wave function ansatz into the Schrödinger equation gives:

ĤeT̂ |Φ0〉 = EeT̂ |Φ0〉 , (1.20)

where E is the ground state energy. We can left-multiply e−T̂ to cancel the cluster

operator on the right hand side,

e−T̂ ĤeT̂ |Φ0〉 = E |Φ0〉 , (1.21)

where we define e−T̂ ĤeT̂ to be the transformed Hamiltonian H̄. Employing the

Baker-Campbell-Hausdorff expansion we can write H̄ as:

H̄ = e−T̂ ĤeT̂ =Ĥ + [Ĥ, T̂ ]

+
1

2!

[
[Ĥ, T̂ ], T̂

]
+

1

3!

[[
[Ĥ, T̂ ], T̂

]
, T̂
]

+
1

4!

[[[
[Ĥ, T̂ ], T̂

]
, T̂
]
, T̂
]
.

(1.22)

This expansion terminates at the forth-order commutator because Ĥ is a two-body

operator and T̂ is a pure excitation operator.

Since determinants are orthonormalized, when we left project an arbitrary deter-

minant on to Eq. (1.21), we get

〈Φ| H̄ |Φ〉 = E (1.23)

or

〈Φab...
ij... | H̄ |Φ〉 = 0, (1.24)
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where Φab...
ij... represents a determinant generated from reference determinant by ex-

citing electrons from spin orbitals i, j, . . . to a, b, . . . . Obviously, for a truncated

cluster operator T̂ , we can always have an identical number of non-trivial equations

by Eq. (1.24) to solve the amplitudes, and compute the energy by Eq. (1.23). Note

that the amplitudes obtained in the truncated CC methods are different from those

in the full CC method because amplitudes for different excitation order are coupled

in Eq. (1.22) and therefore in Eq. (1.24).

The multireference coupled cluster formalism is not as straightforward as the

single-reference case. Two major branches of MRCC schemes are the internally con-

tracted MRCC (ic-MRCC)30,34,35,116–118 ansatz where

|Ψic〉 = eT̂ |Ψ0〉 = eT̂
∑
µ

|Φµ〉Cµ, (1.25)

and the Jeziorski–Monkhorst (JM) MRCC23,30,31,33,119–121 ansatz where

|ΨJM〉 =
∑
µ

eT̂
µ |Φµ〉Cµ. (1.26)

We have defined P space to contain determinants in the reference wave function.

Here we define Q space to contain determinants excited from P but not in P . The

conditions to solve cluster amplitudes can be derived according to the Schrödinger’s

equation, or explicitly QHeffP = 0. In SRCC, QHeffP = 0 yields the same conditions

as Eq. (1.24), for P = {Φ0}, Heff = H̄ and Q = {Φab...
ij... }, where the numbers of

unknowns and equations are identical. However, this good trait does not hold in either

JM-MRCC or ic-MRCC schemes, which is called themultiple-parentage problem. This

problem originates from the fact that multiple determinants in the P space may be

excited to the same determinant in the Q space, as shown in Figure 1.3. In the JM,

although the effective Hamiltonian is not obvious, we directly satisfy the Schrödinger

equation,

Ĥ
∑
µ

eT̂
µ |Φµ〉Cµ = E

∑
µ

eT̂
µ |Φµ〉Cµ. (1.27)
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Figure 1.3 In multireference coupled cluster theories, each reference (P space)
determinant are excited to multiple determinants in the Q space. However, for determinant
Φγ in the Q space, it can be from both the excitation of Φµ and Φν (parents) in P .

Due to the multiple-parentage problem, the number of determinants in
∑

µ e
T̂µ |Φµ〉Cµ

is less than the number of (tµ)ij···ab··· amplitudes. In other words, the number of determi-

nants in |ΨJM〉 as the result of Ĥ |ΨJM〉 = E |ΨJM〉 cannot provide sufficient conditions

to solve for the (tµ)ij···ab··· amplitudes.

In the internally contracted scheme,

Heff = e−T̂ ĤeT̂ . (1.28)

Due to the multiple-parentage problem, Heff operator generates linear-dependent ex-

citations of the reference wave function. Consequently, the number of conditions in

QHeffP = 0 are also not sufficient for the number of unknowns in T̂ .

Although the multiple-parentage problem can be solved in some formalisms,24,27,28

these methods also suffer from numerical instabilities related to the intruder-state

problem in MRPT.46–52 In perturbation theories, the denominator is computed by

the difference of orbital energies. The determinants in the Q space that are near-

degenerate to those in the P space contribute to small denominators, which causes

“spikes” on the potential energy surface as shown in Figure 1.4. In nonperturbative

cases, the effect is indirect, but intruder causes numerical instabilities in solving the

amplitudes from the nonlinear equations. In practice, the intruder-state problem is

due to the fact that

QHeffP = 0 (1.29)

has to be satisfied by all the hole to particle excitation, as shown in Figure 1.5 (a)
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Figure 1.4 Potential energy curves for the X1Σ+ state of HF computed using various
methods and the cc-pVDZ basis set. All multireference perturbation theories employed a
CASSCF(2e,2o) reference. The fluorine 1s orbital was excluded from the correlation
treatment. DSRG-MRPT2 employed a flow parameter of s = 0.5E−2

h , and the
MR-MBPT2 curve is identical to the curve of DSRG-MRPT2 (s→∞).3

and (b).

1.7 Driven similarity renormalization group methods

In order to address these technical issues in multireference theories, our group

recently developed the multireference driven similarity renormalization group (MR-

DSRG).39–43,55 The idea originated from renormalization techniques created in quan-

tum field theory to deal with infinite quantities. In the similarity renormalization

group (SRG) method by Wegner122 and Głazek and Wilson,123 a continuous unitary

similarity transformation is performed on the Hamiltonian,

Ĥ → Ĥ(s) = Û(s)ĤÛ †(s), s ∈ [0,∞), (1.30)

where s is a time-like flow parameter, Û(s) is an unitary operator such that the

transformation satisfies the boundary conditions Ĥ(s = 0) = Ĥ and the off-diagonal

couplings Ĥod(s = ∞) = 0. Off-diagonal couplings are elements of Ĥ that couple

hole and particle orbitals represented by excitation [H̄ ij...
ab...(s){âab...ij... }] and de-excitation

3 Adapted with permission from Li, C.; Evangelista, F. A., Multireference Driven Similarity Renor-
malization Group: A Second-Order Perturbative Analysis. J. Chem. Theory Comput., 2015, 11,
2097–2108. Copyright 2015 American Chemical Society.
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Figure 1.5 Matrix representation of the similarity-transformed Hamiltonian. (a) and (b)
illustrate the decoupling of the P and Q spaces in coupled cluster theory and its unitary
variant, respectively. (c) Decoupling of states with large energy difference achieved by the
similarity renormalization group approach.4

[H̄ab...
ij... (s){â

ij...
ab...}] operators, where ij · · · ∈ H and ab · · · ∈ P, operators {âab...ij... } are

normal-ordered with respect to the reference Fermi vacuum, where H and P are

spaces containing the hole and particle orbitals, respectively.

The goal of this transformation is to gradually bring the Hamiltonian to a block-

diagonal form, Ĥod = 0. If we order the indices of Hamiltonian by energy, in the

middle of the SRG transformation as shown in Figure 1.5 (c), most of the couplings

with large orbital energy differences between P and Q spaces are decoupled, but those

with small differences are left approximately unchanged. Since these couplings are

the cause of the intruder-state problem, the danger zone of intruder states is avoided.

We call this behavior of SRG the separation of energy scales.

Obviously, the form of Û(s) is a priori unknown. In driven similarity renormal-

ization group (DSRG), Û †(s) is rewritten in an exponential form,

Û †(s) = eÂ(s), (1.31)

where Â(s) is an s-dependent anti-Hermitian operator. Then the DSRG transformed

Hamiltonian H̄(s) is given by

H̄(s) = e−Â(s)ĤeÂ(s). (1.32)
4 Reprinted from Evangelista, F. A., A driven similarity renormalization group approach to quantum
many-body problems. J. Chem. Phys., 141, 054109, with the permission of AIP Publishing.
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This formula is similar to the unitary coupled cluster (uCC) ansatz.37,124–130 We can

write Â(s) as many-body expansion in terms of the s-dependent standard cluster

operator T̂ (s),

Â(s) =
n∑
k=1

Âk(s), (1.33)

Âk(s) = T̂k(s)− T̂ †k (s), (1.34)

and

T̂k =
1

(k!)2

occ∑
ij···

vir∑
ab···

tij···ab···(s){â
ab...
ij... }, (1.35)

where tij···ab···(s) are s-dependent cluster amplitudes.

Detailed explanation of how to determine the cluster amplitudes in DSRG can

be found in Chapter 4 and Refs. 39 and 41. In brief, to simulate the separation of

energy scales behavior in SRG, we require the off-diagonal part of the transformed

Hamiltonian H̄od(s) to equal a source operator R̂(s),

H̄od(s) = R̂(s). (1.36)

The role of the source operator in the DSRG flow equation is to drive the off-diagonal

elements of H̄(s) to zero. This goal can be achieved by an appropriate parameteriza-

tion of R̂(s).39 The source operator R̂(s) is many-body operator analogous to Â(s),

whose k-body component is defined as

R̂k(s) =
1

(k!)2

occ∑
ij···

vir∑
ab···

rij···ab···(s){â
ab···
ij··· }+ h.c. (1.37)

where “h.c.” stands for the Hermitian conjugate of the first term and the indices of

rij···ab···(s) exclude internal (de)excitations. By applying the many-body conditions in

Eq. (1.36), we have equal number of conditions and parameters. The intruder state

problem is also alleviated by selecting an appropriate value of s that recover most of

the electron correlation, but do not decouple the problematic excitations.
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However, contrary to Eq. (1.22) in the traditional single-reference coupled cluster

(CC) theory, the DSRG unitary formalism leads to a non-terminating expression for

the similarity transformed Hamiltonian and require truncating the Baker–Campbell–

Hausdorff (BCH) expansion.125,127,129 As such, approximations to the BCH formula

must be introduced to achieve computationally viable approach.

In the previous work in our group, we introduced the linearized MR-DSRG trun-

cated to two-body operators [MR-LDSRG(2)],41 where we adopt the recursive single

commutator (RSC) approximation proposed originally by Yanai and Chan in canon-

ical transformation theory,38

H̄0,1,2(s) ≈ Ĥ +
∞∑
k=1

1

k!
[· · · [[Ĥ, Â1(s) + Â2(s)]1,2, Â1(s) + Â2(s)]1,2, · · · ]0,1,2︸ ︷︷ ︸

k nested commutators

, (1.38)

where the subscripts 1, 2 indicate that the commutator is truncated to contain only

one- and two-body contributions. In the RSC scheme, every single commutator in the

BCH expansion is approximated with at most two-body operators, for which closed

form can be easily derived. The nested commutator can thus be evaluated using a

recurrence relation based on the truncated single commutator. A preliminary bench-

mark shows that the MR-LDSRG(2) method yields superior accuracy than CCSD

around equilibrium geometries and the accuracy persists across the entire potential

energy curves, especially for single-bond breaking processes.55

The time of computing one truncated single commutator scales as O(N2N2
VN

2
C)

where NC, NV, and N are the numbers of core, virtual, and total orbitals, respec-

tively. This asymptotic cost is similar to that of CC with singles and doubles (CCSD)

[O(N4
VN

2
C)]. However, the actual total time is much longer than CCSD, because un-

like in CCSD, the expansion in Eq. (1.38) does not terminate. Moreover, the O(N4)

memory requirement in MR-LDSRG(2) prevents application on systems with more

than 250 correlated molecular orbitals. We will detail how to reduce both the com-

putational time and memory cost of MR-LDSRG(2) in Chapter 4.
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1.8 Prospectus

In Chapter 2 we describe the projector configuration interaction (PCI) method

based on path filtering and polynomial projection. This method is a deterministic ver-

sion of full configuration interaction quantum Monte Carlo (FCIQMC). We modified

the stochastic walker spawning algorithm in FCIQMC to a deterministic path-filtering

scheme. Then the imaginary-time propagation is accelerated by a Chebyshev poly-

nomial projector. Chapter 3 reports improvements based on the original PCI method

in the previous chapter. The accuracy was improved by modifying the approximated

Hamiltonian to be Hermitian, and we implemented a more efficient projector based

on the Davidson–Liu algorithm. We also showed the connection between PCI and

the Heat-bath selected CI method, and why PCI is theoretically more efficient than

selected CI methods. We switch gear in Chapter 4 to describe an efficient alternative

to the MR-LDSRG(2) method. In this chapter, we introduce a sequential transfor-

mation ansatz to simplify the MR-LDSRG(2) formalism and apply density fitting

and the non-interacting virtual orbital (NIVO) approximations to reduce both the

memory requirement and total computational time.
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Chapter 2 A deterministic projector config-
uration interaction approach for the ground
state of quantum many-body systems

Chapter Abstract

In this work we propose a novel approach to solve the Schrödinger equation which

combines projection onto the ground state with a path-filtering truncation scheme.

The resulting projector configuration interaction (PCI) approach realizes a determin-

istic version of the full configuration interaction quantum Monte Carlo (FCIQMC)

method [Booth, G. H.; Thom, A. J. W.; Alavi, A. J. Chem. Phys. 2009, 131,

054106]. To improve upon the linearized imaginary-time propagator, we develop an

optimal projector scheme based on an exponential Chebyshev expansion in the limit

of an infinite imaginary time step. After writing the exact projector as a path inte-

gral in determinant space, we introduce a path filtering procedure that truncates the

size of the determinantal basis and approximates the Hamiltonian. The path filtering

procedure is controlled by one real threshold that determines the accuracy of the PCI

energy and is not biased towards any determinant. Therefore, the PCI approach can

equally well describe static and dynamic electron correlation. This point is illustrated

in benchmark computation on N2 at both equilibrium and stretched geometries. In

both cases, the PCI achieves chemical accuracy with wave functions that contain less

than 0.5% of the full CI space. We also report computations on the ground state of

C2 with up to quaduple-ζ basis sets and wave functions as large as 200 million deter-

minants, which allow a direct comparison of the PCI, FCIQMC, and density matrix

renormalization group (DMRG) methods. The size of the PCI wave function grows

Reproduced with permission from Zhang, T; and Evangelista, F. A, J. Chem. Theory Comput.,
2016, 12, 4326–4337. Copyright 2016 American Chemical Society.
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modestly with the number of unoccupied orbitals and its accuracy may be tuned to

match that of FCIQMC and DMRG.

2.1 Introduction

The full configuration interaction (FCI) approach provides the exact solution to

the electronic Schrödinger equation within a finite one-particle basis set.1 However,

since the number of FCI wave function parameters grows rapidly with system size, this

approach is only feasible for few electrons distributed in a small number of orbitals.2

Contrary to what is suggested by this observation, a large body of evidence has

been amassed that shows that the information content of molecular wave functions

is just a small fraction of the size of the FCI basis.3 For example, for wave functions

dominated by one Slater determinant, truncated coupled cluster theory can recover

a large fraction of the dynamical correlation energy at a cost that is polynomial in

the number of electrons.4 However, in the case of strongly correlated electrons, the

problem of finding general polynomial-scaling wave function methods is still open.5,6

Several strategies have been suggested to overcome the exponential cost of FCI and

FCI performed in a complete active space (CASCI), including selected CI approaches

that truncate FCI space,7–21 tensor factorization,22–39 alternative configuration inter-

action and coupled cluster methods,40–43 symmetry breaking and restoration,44–46 and

Monte-Carlo methods.47–64 Recently, Monte-Carlo methods that stochastically sam-

ple the wave function in the space of Slater determinants have received wide attention.

The Monte-Carlo CI method (MCCI) randomly samples interacting spin projected

Slater determinants.47–52 MCCI may be viewed as a stochastic version of selected

CI since at each iteration the energy is obtained by diagonalizing the Hamiltonian

is a subset of the FCI space.7–10 Another stochastic method is the auxiliary-field

QMC (AFQMC) approach.53–55,57 AFQMC uses a projector formalism to stochas-

tically sample the wave function in a basis of non-orthogonal Slater determinants.
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Deterministic analogs of the AFQMC approach have also been developed, including

the path-integral renormalization group method65,66 and the non-orthogonal multi-

component adaptive greedy iterative compression approach of McClean and Aspuru-

Guzik.67

An alternative to the MCCI and AFQMC methods is the FCI Quantum Monte-

Carlo (FCIQMC) method developed by Alavi and co-workers.58–64 FCIQMC is a

projector Monte-Carlo method that samples the imaginary-time propagator in a space

of orthogonal Slater determinants. By working in a basis of Slater determinants,

FCIQMC can more easily account for the annihilation of walkers of different sign.

This feature ameliorates the sign problem, but a large number of walkers are necessary

to accurately sample the FCI space of determinants. The initiator approximation59

reduces the number of walkers required in FCIQMC and increases the sign coherence

of the sampling. Furthermore, a semi-stochastic version of FCIQMC (SFCIQMC) was

later introduced,68–70 which shows that treating part of the imaginary-time projection

deterministically accelerates convergence and reduces statistical uncertainty.

The improvements to the performance of FCIQMC brought by treating part of

determinant space deterministically raises the interesting question of whether a fully

deterministic projector method might be even more advantageous. As pointed out

by Tubman and co-workers,71 the stochastic dynamics of FCIQMC reinterpreted in a

deterministic way corresponds to a truncation criterion for selected CI. In this work,

we demonstrate an alternative route to create a deterministic analog of FCIQMC. An

important feature of our new method is the use of a projection scheme that simulta-

neously selects an optimal CI space and approximately diagonalizes the Hamiltonian.

The resulting computational method is named projector configuration interaction

(PCI). The PCI approach automatically identifies the most important determinants

that contribute to the ground state wave function, therefore, it can treat both dynamic

and static electron correlation.
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The PCI methods presents two major differences with respect to FCIQMC. As in

other projector Monte-Carlo methods, FCIQMC relies on a linearized approximation

to the imaginary-time projector obtained by Taylor expansion. One of the major

drawbacks of this approximation is that a small time step is required to guarantee

convergence to the ground state, the length of which is bound by the inverse spectral

radius of the Hamiltonian. Following the work of Kosloff and Tal-Ezer,72 we overcome

this limitation by using a Chebyshev expansion of the exponential projector.73–77

In particular, we consider the wall -Chebyshev projector, which is derived from the

Chebyshev representation of the imaginary-time propagator in the limit of an infinite

time step. In this respect, our goal is analogous to that of the t expansion method,

in which the t → ∞ limit of the imaginary-time propagator is expressed using Padé

approximants.78 The wall-Chebyshev generator is shown to be equivalent to a power

method with alternating shifts, and it is more efficient than the corresponding Taylor

and Chebyshev expansions of the exponential projector. We also address the issue of

replacing Monte-Carlo sampling with a deterministic truncation of the determinant

space. Since projection onto the ground state may be viewed as a path-integral

scheme, we apply the idea of path filtering79–82 in order to truncate CI space and

control accuracy. In the PCI, path filtering is applied to screen excited determinants

generated by projection onto the ground state. Path filtering is controlled by one

threshold parameter, and as a consequence, the PCI forms a family of one-parameter

theories that are systematically improvable and equivalent to FCI when path filtering

is suppressed.

The paper is organized in the following way. In section 2, we introduce the formal-

ism of ground state projection, Chebyshev fitting of the imaginary-time propagator,

and path filtering. Section 3 details the PCI algorithm and our implementation and

analyzes the sources of error in the PCI approach. In section 4 we demonstrate the

ability of PCI to adapt to various regimes of electron correlation by applying it to
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the dissociation of N2. In the same section, we study the scaling of the PCI cost with

respect to basis set size and the size consistency error introduced by the path-filtering

approximation.

2.2 Theory

2.2.1 General formalism of ground state projection

Given the Hamiltonian operator Ĥ, we write its eigenvalues and eigenfunctions

as Ei and Ψi, respectively. Within a finite computational basis, the Hamiltonian

is assumed to have N eigenfunctions, and its spectral radius (R) is defined as the

difference between the largest (EN−1) and smallest (E0) eigenvalues divided by two:

R =
EN−1 − E0

2
(2.1)

The goal of projector CI (PCI) is to obtain the ground state wave function Ψ0 starting

from a trial wave function Ω via a projector operator P̂0:

|Ψ0〉 = NP P̂0 |Ω〉 (2.2)

The only assumption concerning the trial wave function is that its overlap with the

exact ground state is not zero, that is 〈Ω|Ψ0〉 6= 0. In Eq. (3.16), NP is a normalization

factor introduced to guarantee that 〈Ψ0|Ψ0〉 = 1 and the projector operator P̂0 is

assumed to be idempotent (P̂ 2
0 = P̂0).

We restrict our discussion to a class of projectors that can be written as the infinite

product:

P̂0 = lim
n→∞

gn(Ĥ) (2.3)

where g(·) is the generator of the projector P̂0 (also abbreviated as generator in the

following). The projector generator is assumed to be a real function g : R → R

extended to the domain of Hermitian operators. Given a generic state vector |Ω〉, it
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may be decomposed as a sum over the eigenfunctions of the Hamiltonian as:

|Ω〉 =
∑
i

ci |Ψi〉 (2.4)

so that the action of the projector generator g(Ĥ) onto |Ω〉 may be written out:

g(Ĥ) |Ω〉 =
∑
i

cig(Ĥ) |Ψi〉 =
∑
i

g(Ei)ci |Ψi〉 (2.5)

Thus, the application of a generator onto a trial state vector leads to a new state

vector in which the coefficient that multiplies each |Ψi〉 is scaled by a factor g(Ei),

where Ei is the eigenvalue corresponding to |Ψi〉.

For an appropriately chosen generator, the repeated application of g(Ĥ) may be

used to project out the contribution of excited states to a given trial wave function.

A necessary condition for the generator to project a state onto Ψ0 is to satisfy the

inequality:

|g(E0)| > |g(x)| ∀x ∈ (E0, EN−1] (2.6)

so that the relative weight of the excited states is reduced by a factor qi = g(Ei)/g(E0):

g(Ĥ) |Ω〉 = c0 |Ψ0〉+
N−1∑
i=1

qici |Ψi〉 |qi| < 1 (2.7)

where without loss of generality, we have assumed that g(x) is scaled so that g(E0) =

1. In practical applications, the range of Ĥ is unknown, but as discussed in section 2.3,

one may obtain upper bounds of E0 and EN−1 (here denoted Ẽ0 and ẼN−1). In this

case, it is convenient to work with generators that decrease monotonically in the

left-neighborhood of Ẽ0, that is for any two points x, y ∈ [E0, Ẽ0]:

|g(x)| > |g(y)| if x < y (2.8)

When the monotonicity condition expressed by Eq. (2.8) is satisfied, the projector is

guaranteed to converge to the ground state even if E0 and EN−1 are approximated

with their respective upper bound estimates. Therefore, in the following discussion

we do not distinguish Ẽ0 from E0.
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2.2.2 Rate of convergence of generators.

The repeated application of the generator onto a trial wave function Ω(0) generates

a sequence of vectors:

|Ω(n)〉 = N
(n)
P gn(Ĥ) |Ω(0)〉 (2.9)

where N (n)
P is a normalization factor for the wave function at step n. In the limit of

n that goes to infinity Ω(n) converges to the exact ground state:

|Ψ0〉 = lim
n→∞

|Ω(n)〉 (2.10)

The asymptotic rate of convergence of this sequence is defined as:

µ = lim
n→∞

‖Ω(n+1) −Ψ0‖
‖Ω(n) −Ψ0‖

= max
i
|qi| (2.11)

and is determined by the excited state Ψi for which the ratio qi = g(Ei)/g(E0) has

the largest absolute value [see Eq. (2.7)].

When the rate of convergence is controlled by the first excited state, that is µ =

|q1|, and the energy difference E1−E0 is small compared to the spectral radius, then

we can approximate µ as:

µ =

∣∣∣∣g(E1)

g(E0)

∣∣∣∣ ≈ |1 + g′(E0) · (E1 − E0)| (2.12)

where g′(E0) is the first derivative of g(x) at E0. Hence, we can define the convergence

factor γ for g(x) as

γ = −g′(E0) (2.13)

It is possible to show that the number of times one must apply g(Ĥ) to a trial wave

function in order to achieve a certain level of accuracy is inversely proportional to γ.

Therefore, the convergence factor provides a quantitative estimate of the numerical

efficiency of a generator. Generators with large convergence factors are in general

preferable as they are expected to reduce the computational cost of the PCI. The

parameters that enter the definition of all the generators discussed in this work and

their corresponding convergence factor are summarized in Table 2.1.
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Table 2.1 Comparison of different projector generators. The form of the projector
generator [g(x)] and convergence factor (γ) is given as a function of the time step (τ), the
spectral radius of the Hamiltonian (R), and the order of the polynomial expansion (m).

Generator Parameters g(x) Convergence factor (γ)

Exponential τ e−τ(x−E0) τ

Linear τ 1− τ(x− E0) τ < 1
R

*

Exp-Taylor τ ,m
m∑
k=0

1

k!
(−τ)k(x− E0)k τ < m+1

2R
**

Exp-Chebyshev τ ,R,m Cm(τR)

m∑
k=0

(2− δk0)Ik(τR)Tk

(
−
x− E0 −R

R

) ∑m
k=1 2Ik(τR)k2

R
∑m
k=0(2− δk0)Ik(τR)

<
m(m+ 1)

3R

Wall-Chebyshev R,m
1

2m+ 1

m∑
k=0

(2− δk0)Tk

(
−
x− E0 −R

R

)
m(m+ 1)

3R

* In order to converge onto the ground state wave function, the time step must satisfy the condition:
τ < 1

R .
** In order to converge onto the ground state wave function, the time step must satisfy the condition:
|
∑m

k=0
1
k! (−τ)k(2R)k| < 1. From this expression one may derive the upper bound: τ < m+1

2R .

2.2.3 Taylor and Chebyshev expansions of the imaginary-time
propagator

The projector generator corresponding to the imaginary-time propagator,

limβ→∞ e
−β(Ĥ−E0), is the exponential generator (gexp), defined as:

gexp(x) = e−τ(x−E0) (2.14)

This generator satisfies both conditions Eqs. (2.6) and (2.8). Nevertheless, it is not

expressed as a polynomial of the Hamiltonian and therefore, to make its evaluation

computationally viable it must be approximated with a polynomial expansion. To

evaluate the projector based on the exponential generator [Eq. (2.14)] it is necessary

to expand gexp(x) into a polynomial series.

Anm-th order Taylor expansion of gexp(x) centered around E0 yields the generator:

gexpTaylor(x) =
m∑
k=0

1

k!
(−τ)k(x− E0)k (2.15)

which has convergence factor γexpTaylor = τ independent of the truncation order m.

Consequently, there is not gain in efficiency when gexpTaylor(x) is expanded beyond
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m = 1. More importantly, the Taylor expansion is only accurate near E0, and since

the error grows as a power of τ(x − E0), a very small value of τ may be required to

satisfy the necessary condition for the convergence of the projector [see Eq. (2.6)].

Note, that the first-order Taylor expansion of the exponential:

glinear(x) = 1− τ(x− E0) = −τ(x− s) (2.16)

is equivalent to a power method with shift s = E0 + 1
τ
. In order to converge to

the ground state wave function, the shift must be chosen to satisfy s > R. The

corresponding convergence factor is bound by the inverse of the spectral range of the

Hamiltonian:

γlinear = τ <
1

R
(2.17)

An alternative approximation of the exponential with better error control is an

expansion in terms of Chebyshev polynomials (for example, see Refs. 72 and 77).

Following Kosloff and Tal-Ezer,72 we write the m-th order Chebyshev polynomial

fitting of the exponential generator as:

gexpCh(x) = Cm(τR)
m∑
k=0

(2− δk0)Ik(τR)Tk

(
−x− E0 −R

R

)
(2.18)

where Cm(τR) = 1/ (
∑m

k=0(2− δk0)Ik(τR)) is a scaling factor that guarantees

gexpCh(E0) = 1, δk0 is a Kronecker delta, Ik is the k-th modified Bessel function

of the first kind, and Tk is the k-th order Chebyshev polynomial.

Figure 2.1A shows first- and second-order Taylor and Chebyshev expansions of

the exponential evaluated for τ = 2 E−1
h in the range [−1, 1] Eh. This plot illustrates

the points made above: i) the Taylor expansion of the exponential is accurate only

near the expansion point (in this case E0 = −1 Eh) and ii) the Chebyshev expansion

is well behaved on the entire range. Figure 2.1B shows the Chebyshev expansion for

the same range but with τ = 10 E−1
h . In this case the fitting error is larger and the

convergence of the Chebyshev expansion with respect to the order m is slower than
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Figure 2.1 Polynomial approximations of the exponential generator [Eq. (2.14)] and the
τ →∞ limit of the exponential generator (wall generator) [Eq. (2.20)] plotted in the range
[−1, 1] Eh. (A) Taylor and Chebyshev approximation of the exponential generator for
τ = 2 E−1

h at order 1 and 2. (B) Chebyshev approximation of the exponential generator
for τ = 10 E−1

h at order 1, 2, and 4. (C) Chebyshev approximation of the wall generator at
order 1, 2, 4, and 8.
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the case τ = 2 E−1
h . Nevertheless, even though the Chebyshev expansion for τ = 10

E−1
h does not accurately match the exponential function, it is still a valid projector

generator since it satisfies Eqs. (2.6) and (2.8).

2.2.4 An improved generator: the wall generator and its
Chebyshev expansion.

In the previous subsection we discussed how to improve the accuracy of the Tay-

lor expansion of the exponential generator via Chebyshev fitting. Ideally, the best

projector generator is the the wall function, defined as:

gwall(x) =


0 for x > E0

1 for x = E0

∞ for x < E0

(2.19)

This generator may be viewed as the τ →∞ limit of the exponential generator:

gwall(x) = lim
τ→∞

e−τ(x−E0) (2.20)

Despite the fact that neither definitions of gwall(x) are computationally viable, we

can still approximate the wall generator using a Chebyshev expansion, by taking the

τ →∞ limit of the m-th order exponential Chebyshev generator:

gwallCh(x) = lim
τ→∞

gexpCh(x)

=
1

2m+ 1

m∑
k=0

(2− δk0)Tk

(
−x− E0 −R

R

) (2.21)

where we used the fact that limτ→∞ Ik+1(τR)/Ik(τR) = 1.83 Note that this polynomial

is a special case of the Chebyshev expansion of the delta distribution with the origin

translated to the lower bound of the fitting range.73–76

The wall-Chebyshev generators of order 1, 2, 4, and 8 are plotted in Figure 2.1C.

An important property of the wall-Chebyshev generator is that for values of x less

than E0 these functions are monotonic and diverge when x → −∞. Therefore they

satisfy Eq. (2.8) and are able to converge onto the ground state even when the range

of Ĥ is not known precisely.



41

The Chebyshev expansion of the wall generator may shown to converge with factor

γwallCh =
m(m+ 1)

3R
(2.22)

which is the largest one among all the polynomial generators discussed in this work. It

is important to note that although we can design generators with even larger conver-

gence factors, an efficient generator must also efficiently suppress high energy excited

states. For example, the Chebyshev generator, defined as gCh(x) = Tk
(
−x−E0−R

R

)
gives γCh = m2

R
, which is larger than the convergence factor of the generators dis-

cussed previously. However, the convergence of the projector generated by gCh(x) is

slow because the coefficients of high energy excited states are not efficiently reduced.

In each projection generation step, an m-th order wall-Chebyshev generator in-

volves the application of the Hamiltonian m times, therefore, it has a cost that is

m times that of the linear generator (power method). Consequently, the theoretical

relative acceleration with respect to the most efficient linear generator (τlinear = 1/R)

is:
γwallCh

mγlinear

=
m+ 1

3
(2.23)

For instance, an 8th-order wall-Chebyshev generator has a computational cost that is

a third of the linear generator with the largest allowed value of τ (1/R).

An important property of the m-th order gwallCh(x) generator is that it has m

distinct real roots in the range (E0, EN−1). Therefore, it can be decomposed as a

product of m linear generators with real shifts:

gwallCh(x) =
m∏
i=1

x− si
E0 − si

(2.24)

where the shifts si are the zeros of gwallCh(x). It is easy to show that the zeros of

gwallCh(x) can be expressed in closed form as:

si = E0 +R

(
1− cos

i

m+ 1
2

π

)
(2.25)
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Eq. (2.24) allows us to implement the wall generator as a product of linear generators

applied successively onto a state vector. Hence, the projector associated with the wall

generator may be interpreted as an optimized power method that uses a sequence of

energy shifts. Besides its high efficiency, there are two other advantages of the wall-

Chebyshev generator: i) Only two vectors (previous and current) need to be stored

during the calculation, in contrast to three vectors necessary for the exp-Chebyshev

generator (previous, current and accumulator) and ii) the wall-Chebyshev generator

is numerically more stable than the exp-Chebyshev generator since for τ → ∞ the

numerical evaluation of Bessel functions introduces numerical errors.

2.2.5 Determinant selection via path filtering.

The projector CI discussed in Section 2.2.1 provides an alternative approach to

finding the exact ground state. In this section we show how to combine this methods

with path filtering to generate an approach that diagonalizes the Hamiltonian in an

optimal subset of FCI space. We discuss path filtering only for the case of the linear

generator and report details for higher-order polynomial generators in appendix 2.A.

Consider a normalized trial state Ω(n) that approximates the exact ground state

in the subset S(n) of FCI space:

|Ω(n)〉 =
∑

ΦJ∈S(n)

C
(n)
J |ΦJ〉 (2.26)

where C(n)
J is the coefficient of determinant |ΦJ〉 at the n-th step. The action of the

linear generator onto Ω(n) leads to a new state Ω̃(n+1):

glinear(Ĥ) |Ω(n)〉 = |Ω̃(n+1)〉 =
∑
I

C̃
(n+1)
I |ΦI〉 (2.27)

where, in general, the vector of coefficients C̃(n+1)
I is not normalized. The coefficients

of C̃(n+1)
I may be expressed as a sum over spawning amplitudes, A(n+1)

IJ :

C̃
(n+1)
I = 〈ΦI | 1− τ(Ĥ − E0) |Ω(n)〉

= τ
∑

ΦJ∈S(n)

A
(n+1)
IJ

(2.28)
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where A(n+1)
IJ is defined as:

A
(n+1)
IJ =

1

τ
〈ΦI | 1− τ(Ĥ − E0) |ΦJ〉C(n)

J (2.29)

The spawning amplitude has the units of a rate and represents the contribution of

the ΦJ component of Ω(n) that “flows” to the coefficient of ΦI for state Ω̃(n+1).

The repeated application of the generator onto a trial function generates paths

in FCI space that may be filtered (approximated) by applying a threshold to the

spawning amplitude. To this end we introduce a spawning threshold η and truncate

the off-diagonal spawning amplitude as:

A
(n)
IJ (η) =

{
A

(n)
II if I = J

A
(n)
IJ Θ(|A(n)

IJ | − η) if I 6= J
(2.30)

where Θ(x) is the Heaviside step function. Consequently, the PCI update equations

for the wave function coefficients are:

C̃
(n+1)
I = τ

∑
ΦJ∈S(n)

A
(n+1)
IJ (η) (2.31)

and the determinant set at step n+ 1 includes only those elements of the FCI space

that may be reached from S(n) via non-zero amplitudes:

S(n+1) = {ΦI : ∃ΦJ ∈ S(n), A
(n+1)
IJ (η) 6= 0} (2.32)

In other words, a determinant is included in S(n+1) when there is at least one spawning

amplitude that is larger than the spawning threshold. Note that this selection crite-

rion is analogous to the one used in heat-bath CI (HCI).84,85 In the HCI method, a

determinant ΦI is selected if there is at least one significant spawning amplitude that

connects it to a determinant contained in the trial wave function, that is, if it meets

the condition maxJ | 〈ΨI | Ĥ |ΦJ〉CJ | = maxJ |A(n+1)
IJ | > ε1, where ε1 is a parameter

equivalent to η. Since path filtering allows spawning to new determinants ΦI if there

are one or more paths for which |A(n+1)
IJ | > η, this condition is equivalent to the one

used in HCI. In contrast, most selected CI approaches estimate the importance of a
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determinant either using a second-order correction to the energy or the first-order am-

plitude corresponding to ΦI . The major difference between the first-order amplitude

and path filtering criteria is that the former also includes a denominator given by the

difference between the energy of the sampled determinant and the current wave func-

tion. However, as shown in Ref. 85, while the numerator of the first-order amplitude

varies over several orders of magnitude, the denominator spans a much smaller range

and therefore it plays a minor role in the selection. Therefore, we expect that for

appropriately chosen thresholds, path filtering will yield truncated FCI spaces that

are close to those obtained from conventional selected CI approaches and HCI.

In order to further reduce the computation cost, the so-called initiator approxima-

tion59 is introduced in FCIQMC, which imposes a screening of the determinants that

may be spawned. Translated in the language of the PCI approach, the initiator ap-

proximation is equivalent to a path-filtering procedure in which the screening is done

according to the absolute value of a determinant coefficient [C(n)
I ]. Thus, the initia-

tor approximation considers only the importance of the parent determinant, while as

already mentioned selection performed by the PCI considers both the importance of

parent determinants and the coupling between parent and spawned determinants.

2.2.6 Sources of errors in the PCI method

When compared to FCI, the PCI method introduces two types of error. The first,

the truncation error, is connected to the use of a subset of the full Hilbert space of

determinants, and also affects selected CI methods. Note that the truncation error

does not affect methods like FCIQMC, which in principle can sample the entire Hilbert

space. The second type of error, the path filtering error, arises from approximating

the action of the generator onto a state vector via Eqs. (2.30) and (3.25). The path

filtering error may be viewed as arising from the diagonalization of an approximate
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Hamiltonian (H̃), which results from the path filtering procedure:

H̃
(n)
IJ =

{
HIJ if A(n)

IJ (η) 6= 0

0 if A(n)
IJ (η) = 0

(2.33)

Obviously, H̃(n) depends on the current wave function, and it is not guaranteed to

be symmetric since in general A(n)
IJ (η) 6= A

(n)
JI (η). In the PCI, the path filtering error

arises from the fact that the wave function coefficient vector is the right eigenvector

of H̃(n), which differs from the eigenvector of the full Hamiltonian in the subset S(n).

Note, that the initiator approximation used in the FCIQMC approach is a form of

path filtering, and consequently, it introduces a source of error analogous to the path-

filtering error.

2.3 Implementation

2.3.1 The PCI algorithm

The determinant selection procedure implemented via path filtering may be com-

bined with the repeated application of the generator to obtain an approximate rep-

resentation of the ground state wave function. In the case of the linear generator the

resulting PCI algorithm consists of the following steps:

1. Trial wave function generation. The PCI procedure starts by selecting a trial

wave function Ω(0) to which corresponds the determinant space S(0). Although

a convenient choice for the initial trial wave function Ω(0) is the Hartree–Fock

determinant ΦHF, a CI with selected single and doubles out of ΦHF yields faster

convergence to the ground state.

2. Range estimation. The expectation value of the Hamiltonian with respect to the

initial guess, 〈Ω(0)| Ĥ |Ω(0)〉 is used to estimate an upper bound to the ground

state energy E0. To estimate an upper bound to the energy of the highest

excited state EN−1, we employ Gershgorin’s circle theorem. Accordingly, we
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approximate the upper bound to the eigenvalues of Ĥ as the sum of the diag-

onal element with the highest energy (〈ΦN−1| Ĥ |ΦN−1〉) plus the sum of the

absolute values of the off-diagonal matrix elements that couple |ΦN−1〉 to other

determinants:

ẼN−1 = 〈ΦN−1| Ĥ |ΦN−1〉+
N−2∑
I

| 〈ΦN−1| Ĥ |ΦI〉 | (2.34)

This estimate is not guaranteed to be a strict upper bound to EN−1 since it is

possible that other Gershgorin circles might enclose energy ranges higher than

the value of Eq. (2.34).

3. Propagation step. At step n, for each determinant ΦJ ∈ S(n) loop over all the

singly and doubly excited determinants ΦI :

ΦI ∈ {âaâiΦJ , â
aâbâj âiΦJ} (2.35)

where the indices i, j (a, b) label occupied (virtual) orbitals of ΦJ . For each

determinant ΦI , compute the thresholded spawning amplitude [A(n+1)
IJ (η)] ac-

cording to Eq. (2.30) and add it to the wave function coefficient C̃(n)
I :

C̃
(n+1)
I ← C̃

(n+1)
I + A

(n+1)
IJ (η) (2.36)

Since the propagation step can be performed independently for each of the

determinant in S(n), this section of the PCI algorithm may be easily parallelized

by distributing the evaluation of C̃(n+1)
I over multiple threads/instances.

4. Normalization. The wave function at step n+ 1 is normalized according to

C
(n+1)
I =

C̃
(n+1)
I

‖C̃(n+1)‖2

∀ΦI ∈ S(n+1) (2.37)

where ‖C̃(n+1)‖2 is the 2-norm of the vector C̃(n+1).
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5. Energy evaluation. The updated wave function coefficients are used to estimate

the energy using two approaches. The first is the variational estimator [E(n)
var ],

which is given by the expectation value of the PCI wave function:

E(n)
var = 〈Ω(n)| Ĥ |Ω(n)〉 =

∑
IJ

C
(n)
I HIJC

(n)
J (2.38)

The evaluation of Evar scales as O2V 2Ndet, where Ndet is the number of deter-

minants in S(n), therefore it has a computational cost comparable to that of

applying Ĥ without path filtering. Nevertheless, Evar is an upper bound to the

exact ground state energy and the error is quadratic in the error of the wave

function. To speed up the evaluation of Evar during the iterative procedure we

apply numerical screening to the vector C(n)
I .

We also compute the energy via the projective estimator [E(n)
proj], defined as:

E
(n)
proj(J) = HJJ +

∑
I( 6=J)

HIJ
C

(n)
I

C
(n)
J

(2.39)

where HIJ = 〈ΦJ | Ĥ |ΦI〉 and ΦJ is chosen to be the determinant with the

largest contribution to the wave function, that is, J = arg maxI |C(n)
I |. Eproj

may be evaluate with a cost proportional to O2V 2, where O and V are the

number of occupied and virtual orbitals, respectively. However, the projective

estimator is not variational and its error is linear in the wave function error.

Consequently, the projective estimator is only used to monitor the convergence

of the PCI algorithm.

6. Convergence check. Evaluate the approximate energy gradient:

δE(n+1) =
1

γ
(E(n+1) − E(n)), (2.40)

where γ is the convergence factor of the projector generator. If |δE(n+1)| is

larger then the convergence threshold increase n by one and go to Step 2.

Otherwise, the computation is converged and the final variational energy is

evaluated including all contributions from the truncated CI space S(n+1).
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Figure 2.2 Ground state of N2 at the equilibrium geometry (r = 2.118 bohr) computed
with the PCI using a spawning threshold η = 1× 10−5 and various projector generators.
Difference between the variational energy at a given iteration and the converged energy as
a function of the number of times the Hamiltonian is applied. All computations used
canonical Hartree–Fock orbitals and the cc-pVDZ basis set. The 1s-like orbitals of nitrogen
were excluded from computations of the correlation energy.

The PCI algorithm is implemented in Forte, a suite of multireference electronic

structure methods86 written as a plugin to the open-source quantum chemistry pack-

age Psi4.87

2.4 Results

Unless otherwise noted, all the PCI calculations are performed with the 5th-order

wall-Chebyshev generator. PCI results obtained with a spawning threshold equal

to η are labeled as PCI(η). Preliminary computations showed that the variational

estimator [Eq. (2.38)] yields energy errors that are consistently one order of magnitude

smaller than those from than the projective estimator [Eq. (2.39)]. Consequently, all

results presented in this work are based on the variational energy estimator.

2.4.1 N2

To investigate the properties of the PCI approach we report computations of

the ground state energy of the nitrogen molecule using the cc-pVDZ basis set88 and

freezing the 1s core orbitals. We discuss both the equilibrium (r = 2.118 bohr) and
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Table 2.2 Comparison of the ground state energy of N2 computed with the PCI and
several wave function approaches using the cc-pVDZ basis at equilibrium and stretched
bond lengths (r=2.118 and 4.2 bohr). ∆E is the energy error with respect to FCI
computed with the variational estimate. Npar is the number of variational parameters,
with values in parentheses indicating the number of perturbative parameters. NPE is the
non-parallelism error defined by the difference of energy errors between stretched and
equilibrium geometries. All PCI computations use canonical restricted Hartree–Fock
orbitals. The nitrogen 1s-like orbitals were frozen in all computations of the correlation
energies.

Method
r = 2.118 bohr r = 4.2 bohr

NPE/mEh
Npar ∆E/Eh Npar ∆E/Eh

MP2 (2,090) 1.56×10−2 (2,090) −3.07×10−1 −322.275
CISD 2,090 3.65×10−2 2,090 2.64×10−1 227.215
CISDT 60,842 2.59×10−2 60,842 2.41×10−1 215.173
CISDTQ 969,718 2.31×10−3 969,718 5.72×10−2 54.855
CCSD 2,090 1.45×10−2 2,090 4.07×10−2 26.234
CCSD(T) (58,752) 1.87×10−3 (58,752) −1.65×10−1 −166.876

MRCISDa · · · 6.64×10−3 · · · 6.91×10−3 0.259
MRCCSDa · · · 1.52×10−3 · · · 2.25×10−3 0.732

PCI(1×10−3) 12,393 2.45×10−2 30,379 2.63×10−2 1.816
PCI(1×10−4) 292,858 4.87×10−3 573,665 1.06×10−2 5.709
PCI(5×10−5) 532,728 3.08×10−3 1,108,882 6.03×10−3 2.952
PCI(2×10−5) 1,264,528 1.57×10−3 2,628,056 2.25×10−3 0.682
PCI(1×10−5) 2,703,218 8.76×10−4 4,630,411 9.69×10−4 0.093
PCI(1×10−6) 22,855,011 7.30×10−5 32,900,610 8.82×10−5 0.015

PCI(1×10−3)+diagb 12,393 1.32×10−2 30,379 1.55×10−2 2.276
PCI(1×10−4)+diagb 292,858 1.51×10−3 573,665 2.68×10−3 1.171
PCI(1×10−5)+diagb 2,703,218 1.68×10−4 4,630,411 1.82×10−4 0.014
PCI(1×10−6)+diagb 22,855,011 8.39×10−6 32,900,610 9.12×10−6 0.001

FCI 540,924,024 540,924,024
a MRCISD and MRCCSD data based on a CASSCF(6e,6o) reference wave function were taken
from Ref. 25.

b The PCI+diag energies are computed by diagonalizing the Hamiltonian in the space of determi-
nants obtained from a converged PCI computation.

stretched (r = 4.2 bohr) geometries of N2.

Figure 3.3 illustrates the difference in efficiency between various generator at the

equilibrium geometry. To facilitate the comparison among the various generators, we

plot the energy error with respect to the number of times Ĥ is applied to a state
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vector using a spawning threshold equal to 10−5. For the linear generator we select

τ = 1/R = 0.038 E−1
h , the largest value of τ compatible with the spectral range of

Ĥ [see Eq. (2.17)]. As illustrated in Figure 3.3, the linear generator shows very slow

convergence. After 250 steps, the total error is still larger than 10−4 Eh. Projectors

based on the exp-Chebyshev generators allow to use larger values of τ and converge

more readily. For example, with τ = 0.5 E−1
h , the fifth-order exp-Chebyshev projector

requires 150 applications of Ĥ to achieve an error less than 10−6 Eh. The fifth-order

wall-Chebyshev generator (which correspond to the limit τ → ∞) is more efficient

than the exp-Chebyshev generators as it can achieve the same level of accuracy with

less than 100 applications of Ĥ.

Next, we study the accuracy of the PCI as a function of the spawning thresh-

old (η) and compare it to a selection of single-reference and multireference methods.

Table 2.2 reports a comparison of the total error with respect to FCI for the varia-

tional energy estimator [Eq. (2.38)]. Additionally, Table 2.2 reports energies for N2

computed using second-order Møller–Plessett (MP2) perturbation theory, truncated

CI with up to quadruple excitations (CISD–CISDTQ), coupled cluster with singles

and doubles (CCSD), CCSD with perturbative triples corrections [CCSD(T)], un-

contracted multireference CISD (MRCISD), and multireference CCSD (MRCCSD)

based on a CASSCF(6e,6o) reference.25

From Table 2.2 it can be seen that since the PCI wave function is not biased

towards a reference determinant, it can efficiently capture both static and dynamic

electron correlation and provide an accurate description of N2 at both equilibrium

and stretched geometries. For example, even with a large spawning threshold (η =

1×10−3) the PCI yields a non-parallelism error (NPE, defined as the difference in

energy error between the equilibrium and stretched geometries) that is of the order

of a few mEh. In contrast, single-reference approaches give NPEs that range from

−322 to +227 mEh.
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The accuracy of the PCI is effectively tuned by the spawning threshold and can

be chosen to match or go beyond that of MRCI and MRCC. For example, for η =

2×10−5, the NPE is equal to 0.37 kcal mol−1, which is within chemical accuracy

(defined as an error less than 1 kcal mol−1). At the equilibrium geometry the PCI

wave function has 1,264,528 determinants, with the Hartree–Fock determinant hav-

ing a coefficient equal to 0.94. At the stretched geometry, when the coefficient of the

Hartree–Fock determinant is only 0.46, this number increases to 2,628,056 determi-

nants to accommodate the multideterminantal character of the wave function. Note

that at both geometries the PCI(2×10−5) wave function uses less than 0.5% of the

FCI space determinants.

In order to illustrate the importance of the truncation and path-filtering errors,

in Table 2.2 we report energies obtained by diagonalizing the Hamiltonian in the PCI

determinant space (indicates as PCI+diag). These energies are more accurate than

the corresponding PCI values. For example, with η = 1×10−4, the NPE for the PCI

and PCI+diag are 5.7 and 1.2 mEh, respectively. The difference between the energy

from FCI and PCI+diag represents the truncation error, while the gap between the

PCI and PCI+diag energies is the path-filtering error. For large spawning thresholds

(e.g. η = 1×10−3) the truncation and path-filtering errors contribute equally to the

total error. However, as the spawning threshold decreases, path-filtering becomes

the dominant source of error. For example, when the spawning threshold is equal to

1×10−6, the path-filtering error contributes to 90% of the total error. In this case,

the diagonalization of the PCI space yields energies within 10 µEh from FCI values,

while the nonparallelism error is about 1 µEh.

To give an idea of the computational cost of the PCI, we note that the N2 com-

putations at equilibrium geometry with η = 10−6 ran in 3 hours on 16 threads on

a single node (on two Intel Xeon E5-2650 v2 processors) and took 16 iterations to

finish. The corresponding computation at the stretched geometry ran in 44 hours
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and took 127 iterations. In this example the the wave function contains 33 million

determinants and convergence is slowed by the small energy gap between the ground

and first excited state.

2.4.2 C2

To study the performance of PCI on larger basis sets we computed the ground

state energy of C2 at the equilibrium geometry using basis sets that range from

double- to quadruple-ζ quality. Table 2.3 collects PCI results obtained using MP2

natural orbitals, together with truncated configuration interaction, coupled cluster,

DMRG, and i-FCIQMC results. When possible, computations were reported for the

first three basis sets of the cc-pVXZ series (X=D,T,Q, also abbreviated as XZ in the

following discussion).88,92 For the TZ and QZ basis sets the FCI energy cannot be

computed, and we take DMRG results from Ref. 31 as a reference. PCI(η) energies are

extrapolated to zero spawning threshold by fitting results with η = 1×10−5, 5×10−6,

and 1×10−6 to a quadratic function.

Table 2.3 illustrates how the PCI energy may be systematically converged to

the reference FCI/DMRG energy with control over the absolute energy error. For

example, with a spawning threshold equal to 10−5, for all basis sets the PCI energy

is within 1.3 mEh from the DMRG energy. While with a spawning threshold equal

to 10−6, the error is further reduced to less than 0.2 mEh in all cases.

When compared to other methods, the cheapest PCI calculations (η = 10−4)

shown in Tab. 2.3 are found to be already more accurate than truncated CI methods

up to quadruple excitation and CCSD. Moreover, the PCI selects the most important

determinants efficiently and therefore shows a more favorable accuracy/(number of

parameters) ratio. For example, the cc-pVQZ PCI(η = 10−4) wave function has

about one million determinants, but yields an energy that is more accurate than that

of CISDT (3 million determinants) and CISDTQ (200 million determinants). We
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Table 2.3 Comparison of the ground state energy of C2 calculated with the PCI and
several wave function approaches using the cc-pVXZ basis set (X = D,T,Q). All PCI
computations use MP2 natural orbitals. The carbon 1s-like orbitals were frozen in all
calculations. Npar indicates the number of variational parameters, with values in
parentheses indicating perturbative parameters. All results are shifted by +75 Eh.

Method
cc-pVDZ (8e, 26o) cc-pVTZ (8e, 58o) cc-pVQZ (8e, 108o)

(E + 75)/Eh Npar (E + 75)/Eh Npar (E + 75)/Eh Npar

MP2 −0.697 678 (1.43×103) −0.756 562 (8.35×103) −0.777 234 (3.05×104)
CISD −0.663 765 1.43×103 −0.711 300 8.35×103 −0.726 551 3.05×104

CISDT −0.682 929 3.34×104 −0.733 939 4.96×105 −0.749 947 3.55×106

CISDTQ −0.721 845 4.11×105 −0.777 182 1.51×107 −0.794 504 2.09×108

CCSD −0.699 132 1.43×103 −0.749 551 8.35×103 −0.765 696 3.05×104

CCSD(T) −0.726 697 (3.20×104) −0.783 070 (4.88×105) −0.800 807 (3.52×106)

PCI(1×10−4) −0.725 914 1.58×105 −0.779 959 5.67×105 −0.796 216 1.00×106

PCI(5×10−5) −0.727 131 3.09×105 −0.781 984 1.27×106 −0.798 720 2.40×106

PCI(1×10−5) −0.728 292 1.22×106 −0.784 133 7.45×106 −0.801 450 1.67×107

PCI(5×10−6) −0.728 439 2.03×106 −0.784 561 1.50×107 −0.801 973 3.65×107

PCI(1×10−6) −0.728 541 5.56×106 −0.784 961 6.79×107 −0.802 513 1.99×108

PCI(extrapol.)a −0.728 565 −0.785 069 −0.802 665

DMRGb,c −0.728 556 5.2×105 −0.785 054 1.2×107 −0.802 671 7.0×107

DMRGd · · · · · · · · · · · · −0.802 69 · · ·
i-FCIQMCe,f −0.728 7(8) 4.2×106 −0.784 9(3) 6.3×106 −0.802 5(1) 3.0×107

i-SFCIQMCg,f · · · · · · · · · · · · −0.802 575 1.6×107

FCIh −0.728 556 2.79×107 · · · 2.25×1010 · · · 3.59×1012

a Extrapolated PCI values obtained from a quadratic fitting of the results with η = 10−5, 5×10−6,
and 10−6.

b DMRG data taken from Ref. 31. Based on the genetic algorithm ordering and accurate to better
than 0.01 mEh.

c DMRG number of variational parameters were kindly provided by Guo and Chan89 for com-
putations with 946, 3234, and 6738 renormalized states using the DZ, TZ, and QZ basis sets,
respectively.

d DMRG data taken from Ref. 90. Based on the genetic algorithm ordering and accurate to better
than 0.01 mEh.

e Initiator FCIQMC (i-FCIQMC) data taken from Ref. 60.
f For i-FCIQMC and i-SFCIQMC the column labeled Npar reports the total number of walkers.
g Initiator semi-stochastic FCIQMC (i-SFCIQMC) data taken from Ref. 91.
h The number of FCI determinants for the triple- and quadruple-ζ basis sets was estimated as(

Norb

Nel/2

)2
/Nirrep, where Norb, Nel, and Nirrep are the number of orbitals, electrons, and irreps,

respectively.

note that PCI results surpass the accuracy of the CCSD(T) method with a spawning

threshold of 1×10−5.

The PCI shows a favorable scaling with respect to the size of basis set. When
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the basis set is enlarged from DZ to QZ, the number of orbitals involved in calcula-

tion grow from 26 to 108 and the corresponding FCI space increased ca. 105 folds.

The corresponding growth of PCI determinants with respect to the number of vir-

tual orbitals (nvirt) is found to be linear, with increase of only 14 and 36 times when

η =1×10−5 and 1× 10−6, respectively. In comparison, truncated CI and CC schemes

scale as n2
virt, n3

virt, and n4
virt for the SD, SDT, and SDTQ truncation schemes, respec-

tively. Consequently, the cost of these computations grows by a factor 21, 106, and

509 when going from the DZ to the QZ basis set. FCIQMC also shows very good

scaling with respect to virtual orbitals, with an increase of only about 7 times the

number of walkers. In the case of DMRG, assuming that the number of renormalized

states (M) required to obtain a given level of accuracy scales as noccnvir,31 then the

number of variational parameters scales as norbM
2 ≈ n3

vir.

We would like to point out that the QZ PCI calculation with spawning threshold

1×10−6 (200 million determinants) ran on a single node. This computation is two

orders of magnitude larger than the largest selected CI calculations reported in the

literature (4 million determinants),93 which was performed with a parallel algorithm

on a distributed memory architecture with 32–256 nodes. As a comparison, typical

FCIQMC computations may employ up to 2–7 billion walkers.58

2.4.3 Size consistency and molecular orbital comparison

Lastly, we investigate the degree to which the PCI wave function lacks size con-

sistency, and how different type of molecular orbitals affect its performance. In our

tests we have considered a monomer consisting of Be and He separated by 2.5 Å.

In one set of computations two monomers are arranged in a D∞h geometry, so that

the orbitals are delocalized over the two fragments. Starting from the D∞h geome-

try, we obtained a C∞v structure in which the Be–He distances of the monomers are

shortened and lengthened by ±10−5 Å, respectively. This geometric change leads to
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Table 2.4 Analysis of the size consistency error (∆E) of truncated CI methods and the
PCI for the (Be–He)2 system. All results used the cc-pVDZ and STO-3G basis sets for Be
and He, respectively. The Be–He bond distance in the monomer is equal to 2.5 Å. The
column labeled Ndet reports the size of each CI space.

Be–He (6e,15o) He–Be · · · Be–He (12e,30o)
Method Energy/Eh Ndet Energy/Eh Ndet ∆E/mEh

RHF −17.374 136 1 −34.748 272 1 0.000
FCI −17.420 556 51,853 −34.841 113 4.41×1010 0.000
CISD −17.420 420 523 −34.833 525 4,405 7.316
CISDT −17.420 484 4,257 −34.833 664 170,685 7.305
CISDTQ −17.420 556 17,973 −34.841 084 3,833,121 0.029

Delocalized canonical Hartree–Fock orbitals
PCI(1×10−4) −17.420 537 1,424 −34.840 544 34,164 0.529
PCI(1×10−5) −17.420 556 5,311 −34.841 066 255,342 0.045
PCI(1×10−6) −17.420 556 15,465 −34.841 108 1,558,745 0.005

Delocalized MP2 natural orbitals
PCI(1×10−4) −17.420 547 1,138 −34.840 924 23,979 0.169
PCI(1×10−5) −17.420 556 5,077 −34.841 088 163,469 0.024
PCI(1×10−6) −17.420 556 14,801 −34.841 110 1,185,988 0.002

Localized canonical Hartree–Fock orbitals
PCI(1×10−4) −17.420 537 1,424 −34.840 981 9,746 0.092
PCI(1×10−5) −17.420 556 5,311 −34.841 104 60,740 0.007
PCI(1×10−6) −17.420 556 15,465 −34.841 112 337,662 0.001

Localized MP2 natural orbitals
PCI(1×10−4) −17.420 547 1,138 −34.841 064 5,910 0.029
PCI(1×10−5) −17.420 556 5,077 −34.841 109 41,580 0.003
PCI(1×10−6) −17.420 556 14,801 −34.841 113 247,364 0.000

localization of the molecular orbitals on one of the two monomers. For both localized

and delocalized molecular orbitals we considered canonical Hartree–Fock orbitals and

MP2 natural orbitals.

Table 2.4 reports the size consistency error (∆E) for a pair of noninteracting Be–

He units as a function of the spawning threshold, where ∆E is defined as the energy

difference between a non-interacting dimer (Be–He· · ·Be–He) and twice the energy of
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the monomer (Be–He):

∆E = E(Be–He · · ·Be–He)− 2E(Be–He). (2.41)

As expected, the PCI energy is not size consistent, but a comparison with trun-

cated CI methods shows that the corresponding error is significantly smaller in the

case of PCI and can be effectively controlled via the spawning threshold. In compar-

ison to CISDTQ, which requires 3,833,121 determinants for the dimer computation,

the PCI(10−6) with canonical orbitals requires only 1,558,745 determinants and leads

to a size consistency error that is six times smaller. When delocalized orbitals are

used, going from canonical Hartree–Fock orbitals to MP2 natural orbitals leads to

a reduction of the size consistency error of the PCI by a factor of ca. two. At

the same time, the use of MP2 natural orbitals also slightly reduces the number of

determinants.

Upon localization of the orbitals we observe a significant reduction of the size

consistency error and wave function size. For example, localization of the canonical

Hartree–Fock orbitals reduces the PCI(10−6) size consistency error and number of

determinants by a factor of five. The best performance is obtained by combining

localization with MP2 natural orbitals. In this case the overall size of the PCI wave

function is reduced by a factor of 6 and the size consistency error is less than 0.001

mEh. This comparison shows that the use of optimized orbitals can significantly

reduce the computational cost of the PCI and the magnitude of the size consistency

error.

2.5 Summary and conclusions

In this paper, we introduced a general projector diagonalization approach and

combined it with path filtering to create a novel projector configuration interaction

(PCI) method. Given an operator (matrix) Ĥ, the projector diagonalization method
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seeks to obtain one of the eigenvectors of Ĥ via repeated application of the projector

generator g(Ĥ) onto a trial vector. The projector generator is a matrix function

designed to amplify the coefficient of one of the eigenvectors. The focus of this work

is on polynomial projector generators derived from the imaginary-time propagator,

which project the trial wave function onto the ground electronic state. To improve

the performance of a Taylor expansion of the imaginary-time propagator, we discuss

its approximation in terms of Chebyshev polynomials, and propose a new generator

(wall-Chebyshev) with superior convergence properties.

The PCI optimization process is formulated in terms of a dynamics in which

each application of the projector generator is equivalent to a spawning process. In

this process, each determinant spawns singly and doubly excited determinants with a

given spawning amplitude. In order to truncate the determinant space explored by the

PCI algorithm, we consider a path filtering approach in which spawning amplitudes

are truncated according to a user-provided spawning threshold (η). Path filtering

applied at each step of the projector diagonalization controls the size of the PCI wave

function and the accuracy of the energy by selecting important determinants that

contribute the most to a given eigenstate. In this respect, the PCI method is similar

to selected CI, with the important difference that the former also approximates the

diagonalization process to increase computational efficiency.

Since the PCI is not biased towards any reference determinants, it can describe

dynamic and static electron correlation equally well. This point is illustrated with

computations of the energy of N2 at equilibrium and stretched geometries. As shown

in Table 2.2, the PCI(η = 2× 10−5) can predict the energy difference between these

two geometries with a non-parallelism error equal to 0.682 mEh (0.43 kcal mol−1)

using only a small fraction of the Hilbert space of determinants (less than 0.5%).

Additionally, we compare PCI with DMRG and FCIQMC using the carbon dimer

as a challenging benchmark. With a spawning threshold equal to 10−6, the PCI can
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match the accuracy of FCIQMC results, while PCI extrapolated to the limit η → 0

yields total energies that are within 0.01 mEh of DMRG reference data. We have

also analyzed the extent of size consistency errors in PCI computations. This error is

effectively controlled by the spawning threshold and may be further reduced by using

a localized basis.

One of the interesting features of the PCI algorithm is that it can be expressed

as a series of update steps in which spawning amplitudes for different determinants

can be computed independently with no communication. Moreover, the linear and

wall-Chebyshev generators only require storage of two vectors of the size of the CI

space. These two features make the PCI amenable to computations with large CI

spaces containing 107–108 determinants. A parallel implementation of the PCI for

distributed-memory machines would allow to further increase the size of the CI space.

Both the PCI and FCIQMC use a sparse representation of the FCI wave function and

present similar challenges when implemented on distributed memory architectures.

Therefore, the recent successful implementation of a parallel FCIQMC code64 suggests

that it should be possible to also produce an efficient parallel implementation of the

PCI.

Currently, the PCI algorithm has been formulated to optimize the ground state.

However, several strategies may be explored to extend the PCI to electronic excited

states. One possibility is a state-specific approach in which excited states are op-

timized individually, while maintaining orthogonality with lower energy states. An

alternative is a multistate version of the PCI in which several states are optimized

simultaneously.94 Since the convergence of the PCI depends on ratio of the first exci-

tation energy and the spectral radius, (E1 − E0)/R, a multistate version of the PCI

would also be helpful to speed up convergence to the ground state in cases when

this ratio is small. Another interesting venue to explore is to use the PCI approach

to target the density matrix at finite temperatures95,96 or to compute approximate
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spectral densities of systems with a dense manifold of low-energy electronic states.97

Appendices

2.A Path filtering for polynomial generators

In this appendix we report a generalization of the path filtering approach for

polynomial generators g(x) of order m that have m real roots (si, i = 1, . . . ,m). In

this case, g(x) can be written as:

g(x) =
m∏
i=1

x− si
E0 − si

(2.A.1)

and g(Ĥ) |Ω(n)〉 may be computed by repeated application of a linear generator with

modified shift to which path filtering is applied in all intermediate steps. It it impor-

tant to point out that the path-filtering algorithm presented here gives results that

are consistent with those of the algorithm outlined in the paper, which applies only

to linear generators.

For convenience, we start by defining a series of normalized trial wave functions

|Ω(n+1,i)〉 =
∑

I∈S(n,i)

C
(n+1,i)
I |ΦI〉 (2.A.2)

expanded over the space S(n,i). The coefficient vector for i = 0 is given by:

C
(n+1,0)
I = C

(n)
I (2.A.3)

and spans the space S(n+1,0) = S(n).

The coefficients C(n+1,i)
I for i > 0 are obtained from the unnormalized wave func-

tion coefficients [C̃(n+1,i)
I ]:

C
(n+1,i)
I =

C̃
(n+1,i)
I

‖C̃(n+1,i)‖2

(2.A.4)

which are obtained as the sum:

C̃
(n+1,i)
I =

∑
ΦJ∈S(n+1,i)

A
(n+1,i)
IJ (η) (2.A.5)
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The path-filtered spawning amplitudes [A(n,i)
IJ (η)] that enter into Eq. (2.A.5) are

obtained from the untruncated amplitudes [A(n,i)
IJ ]:

A
(n,i)
IJ = 〈ΦI | Ĥ − si |ΦJ〉C(n,i−1)

J (2.A.6)

and truncated according to:

A
(n,i)
IJ (η) =

{
A

(n,i)
II if I = J

A
(n,i)
IJ Θ(|A(n,i)

IJ | − η) if I 6= J
(2.A.7)

The normalized coefficients are evaluated recursively for i = 1, 2, . . . ,m following

Eqs. (2.A.4)–(2.A.7). Finally, the coefficients for the updated wave function are given

by:

C
(n+1)
I = C

(n+1,m)
I . (2.A.8)

Note that to evaluate the application of factorizable generators with real zeros onto a

trial vector requires storage of two vectors. Thus, require the same amount of memory

as the linear projector.
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Chapter 3 Hermitian projected configura-
tion interaction method: Filtering the most
important determinant couplings

Chapter Abstract

The projector configuration interaction (PCI) method has been recently proposed

as a robust and deterministic alternative to stochastic full configuration interaction

(FCI) methods for application to strongly correlated electrons [T. Zhang and F. A.

Evangelista, J. Chem. Theory Comput. 12, 4326 (2016)]. However, the current poly-

nomial projection scheme is not optimal. In order to obtain more accurate results,

we propose an Hermitian version of the PCI. Meanwhile, the convergence is accel-

erated by combining the PCI path filtering with the Davidson–Liu method. With

these improvements, the PCI non-parallelism error is halved and three times faster

convergence to the ground state is observed for the N2 dissociation potential energy

curve. We also discuss the connection between heat-bath CI and PCI methods, and

demonstrate that PCI is able to compute more accurate wave function with signifi-

cantly lower computational cost. In computing the ground state energy of Cr2, we

achieved a result within 2 kcal mol−1 error from the reference density matrix renor-

malization group (DMRG) energy by extrapolating the spawning threshold to zero.

These recent developments improve the accuracy and efficiency of the PCI and extend

the applicability to more complicated systems.

3.1 Introduction

In principle, the full configuration interaction (FCI) method can provide accurate

energies and wave functions by an exact diagonalization of the Hamiltonian including
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all the determinants in the Hilbert space.1 However, this method is prohibitively

expensive even for moderate size chemical systems as the total number of determinants

grows combinatorially with respect to the number of electrons and basis functions.2

One straightforward approach to reducing the cost of FCI is to exploit the sparsity

of the FCI Hamiltonian or wave function.

Selected configuration interaction (SCI) methods3–36 seek to find important sub-

sets of determinants that can represent the wave functions within acceptable error.

Such important determinant subspaces are usually generated iteratively by growing

the space of determinants according to an importance criterion. A variety of criteria

have been reported, such as perturbative analysis,12 energy lowering to the current

subspace21,22 and expected coefficient magnitude.7,13 However, because all the cou-

plings between determinants (Hamiltonian matrix elements) in the selected subset

need to be evaluated, the diagonalization step becomes the bottleneck for spaces

containing more than 107 determinants.37

In contrast to selected CI methods where all the couplings need to be evaluated,

the FCIQMC method samples the determinant Hilbert space by walkers and the

determinant couplings using the walker spawning process.38–45 This method applies

the linearized imaginary-time projector to an initial guess of the wave function,

|Ψ〉 = lim
β→∞

exp
(
−β(Ĥ − E0)

)
|Ω〉 ≈ lim

k→∞

(
1− τ(Ĥ − E0)

)k
|Ω〉 , (3.1)

where |Ψ〉 and |Ω〉 are the result and initial guess of wave function, β is the imaginary

time scale, Ĥ is the hamiltonian, E0 is the ground state energy and τ is a imaginary

time step. In the FCIQMC method, only one determinant coupling need to be evalu-

ated for each walker at each step, which significantly reduced the computational cost

to diagonalize the Hilbert space. However, to accurately represent the wave function,

a large numbers of walkers and iterations are required to overcome the “sign problem”

and decrease statistical errors. Besides, the linearized imaginary-time projector in the

FCIQMC converges slowly, in that a small imaginary time step is required to control
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the energy fluctuation.

The success in the application of path filtering to evaluate path integral suggest

that high accuracy can be achieved with path integral through only the most impor-

tant paths.46–49 The FCIQMC method can be also interpreted as a path-integral over

imaginary-time, where the paths (determinant couplings) are sampled rather than

selected deterministically.

Inspired by FCIQMC and path filtering, in a recently published paper, we intro-

duced a projector CI (PCI) method.50 The PCI can be interpreted as a deterministic

alternative to the FCIQMC, with two major modifications: 1) stochastic propagation

is replaced by a deterministic path-filtering projection scheme, and 2) imaginary-time

propagation is replaced by a much faster polynomial projection scheme.

In PCI, path filtering significantly reduces the cost of deterministic projection by

considering only the most important subset of determinant couplings in the imaginary

time propagator. In order to evaluate the importance of a determinant coupling, the

probability formula for walker spawning in FCIQMC is adapted to a deterministic

criterion, which also coincides the criteria for important determinants in the Heat-

Bath CI method.17 However, as we will show, this criterion spoils the Hermitian

character of the approximated Hamiltonian in both the original PCI and initiator

FCIQMC methods, which potentially decreases the accuracy of the resulting wave

functions and energies.

This non-Hermitian property also prevented us from applying the standard Hermi-

tian matrix diagonalization algorithm, Davidson–Liu method51,52 to the PCI method.

To overcome the slow convergence of the linearized imaginary-time projection scheme

in FCIQMC, we created the wall-Chebyshev polynomial projection approach.50 Al-

though this type of projector is proven to converge significantly faster than a linear

propagation, PCI is still a linear convergent method. The convergence is even slower

when the first excitation energy of the system is small.
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This chapter is organized in this way: In the theory section, we first introduce

the concept of determinant coupling space. The PCI algorithm is then reviewed.

Next, we analyze the error in the PCI energy and propose a Hermitian version of PCI

algorithm. What follows is an implementation section on the details of Davidson–Liu

algorithm in PCI. In the result and discussion section, we begin with showing the

improved accuracy of Hermitian PCI by computing the N2 dissociation curve. It is

followed by a convergence comparison between the Davidson–Liu and the polynomial

projection methods. We then demonstrate that PCI is more efficient than the selected

CI methods. Finally, we benchmark the PCI on the Cr2 ground state energy with

threshold extrapolation.

3.2 Theory

3.2.1 Introducing determinant coupling space

Configuration interaction methods are based on representing the wave function as

a linear combination of a set of determinants,

|Ω〉 =
∑

ΦJ∈S

CJ |ΦJ〉 , (3.2)

where |Ω〉 is an arbitrary normalized wave function, S is a space containing a set

of determinants, and |ΦJ〉 and CJ are a Slater determinant and its corresponding

coefficient.

In order to solve for the coefficients {CJ}, a Hamiltonian matrix H can be con-

structed with element HIJ = 〈ΦI | Ĥ |ΦJ〉, where ΦI and ΦJ are determinants in S.

The corresponding eigenvector of the lowest eigenvalue is the best approximation to

the ground state wave function within CI space S.

In order to minimize the number of determinants in S without introducing large

error to the results, selected CI methods seeks to include only the most important
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determinants in the CI space. Here, we can define the determinant efficiency as:

EffS =
Ecorr,S

Ecorr,FCI

/
|S|
|SFCI|

, (3.3)

where Ecorr,S and Ecorr,FCI are the correlation energy recovered by CI space S and

the full CI, and |S| and |SFCI| are the number of determinants in S and full CI space

SFCI. A selected CI method is more determinantally efficient if it can recover more

correlation energy with the same number of determinants.

However, in order to compute the eigen wave function, the most computation cost

goes to compute the σ vectors from a trial wave function:

σ = ĤSC, (3.4)

or for each ΦI ∈ S,

σI =
∑

ΦJ∈S

〈ΦI | Ĥ |ΦJ〉CJ , (3.5)

where all the non-zero couplings (〈ΦI | Ĥ |ΦJ〉) between distinct determinants in S

need to be computed. Since the contribution ΦI ← ΦJ and ΦJ ← ΦI are generally

computed separetely, we can define a determinant coupling space X containing all

the directed couplings ΦI ← ΦJ (ΦI 6= ΦJ) that must be evaluated. In a directed

coupling ΦI ← ΦJ , we call the left-hand side ΦI is the determinant “coupled to” and

right-hand side ΦJ is the one “coupled from”. For any coupling space X, there exist

a corresponding Hamiltonian ĤX with elements

ĤX = {HX,IJ} =

{
HIJ I = J or ΦI ← ΦJ ∈ X
0 ΦI ← ΦJ /∈ X,

(3.6)

so that the computational time of one Hamiltonian application tĤX is proportional

to the size of the coupling space,

tĤX ∝ |X|, (3.7)

where |X| is the number of determinant couplings in X. Note here that the time for

diagonal contributions ΦJ ← ΦJ is ignored in Eq. (3.7) since |X| � |S|.
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The Hamiltonian ĤX generated by a coupling space X may not be symmetric

if the directed couplings ΦI ← ΦJ and ΦJ ← ΦI do not exist in X simultaneously.

Thus, we say that a directed coupling ΦI ← ΦJ is paired in coupling space X if

ΦJ ← ΦI ∈ X and ΦI ← ΦJ ∈ X. And a coupling space is symmetric if all the

couplings in the space are paired.

In selected CI methods,7 a CI space S determines a symmetric coupling space X,

XS = {ΦI ← ΦJ : ΦI ,ΦJ ∈ S}, (3.8)

where all the non-trivial couplings between determinants in S are included. By non-

trivial we mean that the coupling is not apparently zero because of the determinants

are differed by more than two spin orbitals or are in different symmetry. Note here

that conditions ΦI 6= ΦJ is natural to the definition of coupling space, so to be brief

will not appear in the description of coupling space in this paper.

Conversely, we can define two determinant spaces out of a coupling space X. We

define the function LDETS (short for left determinant space),

LDETS(X) = {ΦI : ∃ΦI ← ΦJ ∈ X}, (3.9)

to generate a determinant space containing all the determinants that is “coupled

to” appear in X. Meanwhile, we also define the function RDETS (short for right

determinant space),

RDETS(X) = {ΦJ : ∃ΦI ← ΦJ ∈ X}, (3.10)

which generates a determinant space containing all elements “coupled from” X. Obvi-

ously, LDETS(X) = RDETS(X) if X is symmetric. We refer to SX = LDETS(X) as

the corresponding determinant space of X, which is the determinant space generated

by applying ĤX to any trial wave function.

However, the X does not necessarily contain all the couplings between determi-

nants in SX . This gives rise to a property that, in general, the lowest eigenvalue of

the Hamiltonian ĤX generated according to coupling space X is not variational.
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Since the lowest eigenstate |ΨX,0〉 of ĤX is still a linear combination of determi-

nants in SX ,

|ΨX,0〉 =
∑

ΦJ∈SX

CX,J |ΦJ〉 , (3.11)

we can define the eigen energy Eeig,X of determinant space X,

Eeig,X = eig(ĤX) = 〈ΨX,0| ĤX |ΨX,0〉 (3.12)

We can also define the variational energy of X as

Evar,X = 〈ΨX,0| Ĥ |ΨX,0〉 . (3.13)

Note here that Ĥ is the bare Hamiltonian without any truncation or approximation.

Further more, we can define determinant space energy of X as

Edet,X = eig(ĤSX ) = 〈ΨSX ,0| Ĥ |ΨSX ,0〉 , (3.14)

where ĤSX spans the determinant space generated from coupling spaceX, and |ΨSX ,0〉

is the lowest eigenstate of ĤSX .

Now we are ready to define coupling efficiency as:

EffX =
Evar,corr,X

Ecorr,FCI

/
|X|
|XFCI|

, (3.15)

where |X| and |XFCI| are the number of determinant couplings in X and full CI cou-

pling space XFCI, and Evar,corr,X is the correlation energy computed with variational

energy, because variational energy is an indicator of wave function accuracy due to

variational principle.

This implies that the most determinant efficient algorithm may not be the most

coupling efficient one, in other words, not the algorithm with the lowest computational

cost. It is possible to recover more electron correlation with a different coupling space

that has the same size as the one determined by selected CI space.
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3.2.2 Review of PCI

The PCI method is described in detail in ref 50. Here we revisit the PCI theory

with the concept of coupling space we just defined.

The PCI method can be interpreted as a deterministic version of the FCIQMC

method, where the sampled propagation of walkers on determinants is replaced by a

path-integral formalism, and the imaginary propagation is accelerated by a polyno-

mial projection approach.

In the PCI, the projector P̂0 is defined as an operator projecting a trial wave

function |Ω〉 onto the ground state |Ψ0〉,

|Ψ0〉 = NP P̂0 |Ω〉 , (3.16)

where NP is a normalization factor, and |Ω〉 is not orthogonal to |Ψ0〉. Although such

a projector P̂0 cannot be directly formulated unless the ground state wave function is

explicitly known, it can be achieved as an infinite power of a function of Hamiltonian

g(Ĥ)

P̂0 = lim
k→∞

gk(Ĥ), (3.17)

where the corresponding scalar function g(λ) satisfies

|g(E0)| = sup(|g(λ)|) (3.18)

in the domain of [E0, Emax], where E0 and Emax are the lowest and highest eigenvalue

of Ĥ. The function g(Ĥ) is called a projector generator. In order to generate the effect

of a projector, when g(Ĥ) is successively applied to the trial wave function, g(Ĥ) is

designed to amplify the component of ground state eigenvector and eliminate all the

excited ones. For example, the imaginary-time propagator, or the linear generator

glinear(Ĥ) = 1− τ(Ĥ − S) (3.19)

is the simplest and the most widely used generator, where S is a shift and τ is the

imaginary-time interval.



75

In principle, the exact propagation results in a prohibitive computational cost

similar to full CI if the exact Hamiltonian is applied in the projector generator.

To reduce the computational cost, a path-filtering scheme is introduced in PCI to

significantly reduce the cost.

Use linear imaginary-time projector generator as an example. Consider at the n-

th iteration of PCI, where the intermediate wave function in the corresponding PCI

subspace S(n) can be represented by a linear combination of Slater determinants,

|Ω(n)〉 =
∑

ΦJ∈S(n)

C
(n)
J |ΦJ〉 , (3.20)

where C(n)
J is the normalized coefficient of determinant |ΦJ〉.

When we apply 1− τ(Ĥ −E0) onto the current intermediate wave function |Ω(n)〉

with path filtering, only significant couplings ΦI ← ΦJ with contribution |HIJC
(n)
J |

greater than a threshold η is included in the computation. The path-filtering scheme

actually defines an important asymmetric determinant coupling space,

X(n)(η) = {ΦI ← ΦJ : ΦJ ∈ S(n), |HIJC
(n)
J | ≥ η}, (3.21)

and correspondingly according to Eq. (3.6), an approximated Hamiltonian H̃(n)(η)

with

H̃
(n)
IJ (η) =

{
HIJ if I = J or |HIJC

(n)
J | ≥ η

0 otherwise,
(3.22)

where η is called the spawning threshold specified by the user controlling the accuracy

of PCI calculations. The approximated Hamiltonian is used to generate the next

intermediate wave function by

|Ω̃(n+1)〉 =
[
1− τ

(
H̃(n)(η)− E0

)]
|Ω(n)〉 , (3.23)

where |Ω̃(n+1)〉 is the next unnormalized intermediate wave function, or explicitly

C̃
(n+1)
I =

∑
ΦJ∈S(n)

[
δIJ − τ

(
H̃

(n)
IJ (η)− E0δIJ

)]
C

(n)
J , (3.24)
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or

C̃
(n+1)
I = [1− τ (HII − E0)]C

(n)
I − τ

∑
ΦI←ΦJ∈X(n)(η)

HIJC
(n)
J , (3.25)

where C̃(n+1)
I is the unnormalized coefficient of determinant |ΦI〉 in the (n + 1)-th

intermediate wave function and δIJ is the Kronecker delta function. In this way,

without a major compromise to the accuracy of results, the computational cost is

reduced dramatically by computing only important couplings in the coupling space

defined at each step by the spawning threshold η.

In general, begin with an initial guess of wave function, usually just a single

Hartree–Fock determinant |Ω(0)〉 = |ΦHF〉 or the result of a small (selected) CISD wave

function, the PCI wave function is obtained iteratively until converge. Conceptually

at n-th step with current wave function |Ω(n)〉, the algorithm of PCI is equivalently

in terms of determinant coupling space:

1. Generate a determinant coupling space X(n) according to Eq. (3.21).

2. Generate an approximate Hamiltonian H(n)
X from X(n) according to Eq. (3.6).

3. Apply the generator g(H
(n)
X ) to wave function |Ω(n)〉 to give |Ω̃(n+1)〉 =

g(H
(n)
X ) |Ω(n)〉.

4. Normalize |Ω̃(n+1)〉 to give |Ω(n+1)〉

5. Check convergence.

3.2.3 Improving the Approximate Hamiltonian

As explained in Ref. 50, there are two sources of error in the PCI: truncation error

and path-filtering error,

εtotal = εtr + εpf , (3.26)

where εtotal is the total energy error, εtr is the truncation error and εpf is the path-

filtering error.
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It has been justified that the PCI method is equivalent to a power method di-

agonalizing an approximated Hamiltonian as shown in Eq. (3.22). Thus, the result

accuracy of the PCI method is connected with the accuracy of the approximated

Hamiltonian. In order to analyze the error, we can write the exact Hamiltonian as

H =

(
HPP HPQ

HQP HQQ

)
=

(
H̃PP 0

0 DQQ

)
︸ ︷︷ ︸

H(0)

+

(
δHPP HPQ

HQP NQQ

)
︸ ︷︷ ︸

H(1)

, (3.27)

where P denotes determinants in the current PCI subspace, Q denotes unincluded

determinants, DQQ and NQQ are the diagonal and non-diagonal parts of HQQ, respec-

tively, and

δHPP = HPP − H̃PP . (3.28)

In the PCI we solve

H̃PP c̃P = ẼP c̃P , (3.29)

and are interested in estimating the contribution from the part of the Hamiltonian

neglected [H(1)]. If we expand the exact eigenvalue and eigenvector of H as the power

series:

E =E(0) + λE(1) + λ2E(2) + . . . (3.30)

c =c(0) + λc(1) + λ2c(2) + . . . (3.31)

we can identify the zeroth-order quantities in the following way

E(0) =Ẽ (3.32)

c(0) =

(
c̃P
0

)
. (3.33)

Applying Löwdin’s perturbation theory to the PCI Hamiltonian we can estimate

the truncation and path filtering error. To first order in λ, the only correction to the

energy comes from path filtering and can be expressed as the expectation value of

δHPP with respect to the PCI wave function:

E(1) = c̃†P δHPP c̃P := ε
(1)
pf . (3.34)
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Note that the variational energy of the PCI wave function is correct up to first order:

c̃†PHc̃P = c̃†P H̃c̃P + c̃†P δHPP c̃P = E(0) + E(1). (3.35)

To second order in λ, there are two contributions to the energy correction. The

first one is due to path filtering

ε
(2)
pf = c̃†P δHPPP

′(Ẽ − H̃PP )−1P ′δHPP c̃P , (3.36)

where P ′ = 1 − c̃P c̃†P is the projector onto the eigenvectors of H̃PP complementary

to c̃P . Resolving P ′ in the spectral basis of H̃PP we can write the second-order error

from path filtering as:

ε
(2)
pf =

∑
i=1

|c̃†0δHPP c̃i|2

Ẽ0 − Ẽi
, (3.37)

from which we can derive an upper bound to |ε(2)
pf |:

|ε(2)
pf | ≤

1

Ẽ0 − Ẽ1

[
c̃†0δHPP (1− c̃0c̃

†
0)δHPP c̃0

]
. (3.38)

The second-order error due to truncation of FCI space is given by

ε
(2)
tr = c̃PHPQc

(1)
Q =

∑
q

|
∑

p c̃
†
pHpq|2

Ẽ − Eq
. (3.39)

Interestingly, up to second order in λ the two sources of error are not coupled.

According to the above analysis, we cannot reduce the truncation error unless

more determinants are introduced into the PCI subspace. However, the path-filtering

error can be reduced if we make δHPP smaller, i.e. H̃PP more accurate.

Consider a pair of determinant coupling (I 6= J),{
ΦI ← ΦJ significant if |HIJC

(n)
J | ≥ η

ΦJ ← ΦI significant if |HIJC
(n)
I | ≥ η.

(3.40)

They may not be both significant since in general C(n)
I 6= C

(n)
J , which equivalently

means the approximate Hamiltonian, H̃(n)(η), corresponding to C(n) is not symmetric

(H̃(n)
IJ (η) 6= H̃

(n)
JI (η)).
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In this situation, although one of the couplings is not considered important in

the original PCI, due to the Hermiticity of full Hamiltonian, both matrix elements

HIJ = H†IJ are known when one of them is computed. It is straightforward to take

both couplings in to account without increasing the computational cost.

Thus, we can modify the definition of coupling space and approximated Hamilto-

nian in Eqs. (3.21) and (3.22) to

X(n)
symm(η) = {ΦI ← ΦJ : ΦJ ∈ S(n), max(|HIJC

(n)
J |, |HJIC

(n)
I |) ≥ η}, (3.41)

and

H̃
(n)
IJ,symm(η) =

{
HIJ if I = J or max(|HIJC

(n)
J |, |HJIC

(n)
I |) ≥ η

0 otherwise,
(3.42)

which means that both couplings in eq. (3.40) are considered important if one of them

is.

Since more determinant couplings are taken into account, δHPP is smaller and

path-filtering error is reduced in this way. Meanwhile, H̃(n)
symm(η) is a Hermitian matrix

that agrees better with the physical property of Hamiltonian. This improvement also

enabled the application of standard Hermitian matrix diagonalization algorithms in

PCI. Unless otherwise noted, in this paper, PCI refers to the Hermitian PCI method.

3.3 Implementation

The new PCI algorithm is implemented based on the original version in Forte,53

a suite of multireference electronic structure methods written as a plugin to the open-

source quantum chemistry package Psi4.54

3.3.1 Davidson–Liu diagonalization schemes

In PCI, we had accelerated the projection by utilizing the wall-Chebyshev gener-

ator, which can be seen as an accelerated power method for the eigenvalue problem.

Nevertheless, there are many other, faster-converging eigenvalue solving methods such
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as Lanczos and Davidson–Liu (DL) methods.1,51,52 If we change from projector gen-

erator to a diagonalization scheme, a faster convergence to the final energy and wave

function is expected.

An Davidson–Liu solver already exist in Forte for the adaptive configuration

interaction (ACI) method.21,22 All we need to do is create a PCI version of σ vector

generator for computing

σ = H̃(n)
symm(η)b, (3.43)

where σ and b are vectors in the DL algorithm.

The differences between computing Eq. (3.43) in the DL algorithm and

H̃
(n)
symm(η)C(n) in the imaginary-time propagator are 1) C(n) is always normalized,

but b may not be, and 2) the latter need to be computed only once in each iteration,

but the H̃(n)
symm(η) for DL are reused multiple times with different b vector.

Thus, we need to keep the coefficient vector C(n) at each iteration as a reference

for H̃(n)
symm(η) defined in Eq. (3.42). We require the determinants are sorted by de-

cending absolute coefficient value so that |C(n)
I | ≥ |C

(n)
J | if I < J . We also prepare

in the beginning of PCI computation a sorted list (L) of tuples (p, q, r, s, 〈pq||rs〉) by

| 〈pq||rs〉 | in decending order, where we only keep unrepeating entries by requiring

that p < q, r < s and (p, q) < (r, s). Assuming H̃
(n)
symm(η) real symmetric, when

computing the σ vector,

σI =
∑

ΦI←ΦJ∈X
(n)
symm

HIJbJ , (3.44)

we loop over J and follow the procedure as in Algorithm 2.

The double excitation part of the algorithm is adapted from the efficient double

excitation algorithm in Ref. 17, where only important determinant couplings are com-

puted. Meanwhile, in our algorithm, since the determinants are sorted by coefficients,

couplings ΦI ← ΦJ and ΦJ ← ΦI are always computed at the same time so that the

Hamiltonian matrix element HIJ is computed only once, and we do not need to check
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Algorithm 2 Computing sigma vector according to Eq. (3.44).

1: for all ΦJ ∈ S(n) do
2: Diagonal contribution is computed σJ ← HJJbJ ;
3: for all singly excited determinants ΦI do
4: if ΦI /∈ S(n) or I > J then
5: Compute HIJ ;
6: if |HIJC

(n)
J | ≥ η then

7: σI ← HIJbJ ;
8: σJ ← HIJbI ;
9: end if
10: end if
11: end for
12: for (p, q, r, s, 〈pq||rs〉) in L until | 〈pq||rs〉C(n)

J | < η do
13: if p,q are occupied and r,s are unoccupied in ΦJ or vice versa then
14: Determine the doubly excited determinant ΦI according to p,q and r,s;
15: if ΦI /∈ S(n) or I > J then
16: Determine sign sIJ ;
17: σI ← sIJ 〈pq||rs〉 bJ ;
18: σJ ← sIJ 〈pq||rs〉 bI ;
19: end if
20: end if
21: end for
22: end for
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the value of |HIJC
(n)
J | for max(|HIJC

(n)
J |, |HIJC

(n)
I |) ≥ η because |C(n)

I | ≥ |C
(n)
J | al-

ways holds.

3.4 Results and Discussion

3.4.1 Accuracy improvements in Hermitian PCI
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Figure 3.1 The dissociation potential energy curve computed with full CI, PCI(1× 10−4),
CISD, CISDTQ, CCSD and CCSD(T). All computations used canonical Hartree–Fock
orbitals and the cc-pVDZ basis set. The 1s-like orbitals of nitrogen were excluded from
computations of the correlation energy.

Due to the triple bond in N2, the dissociation potential energy curve is a chal-

lenging benchmark for quantum chemistry methods. The FCI reference energy, PCI

variational energy along with energies from many other standard quantum chemistry

methods are plotted in Fig. 3.1.

Stretched N2 molecule is a typical strongly correlated system, where perturbation

theory and coupled-cluster methods give qualitatively incorrect results and the latter

could not converge at bond length r > 4.2 bohr. Truncated single reference config-

uration interaction methods also fail to recover the correlation energy at stretched

geometries. In contrast, PCI with a moderate spawning threshold can provide en-
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ergy almost indistinguishable from the FCI reference energy. In this benchmark, PCI

shows its capability of computing strongly correlated systems accurately.
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Figure 3.2 Error to full CI reference energy computed with non-symmetric PCI(1× 10−4)
and real symmetric PCI(1× 10−4), PCI(1× 10−5). The non-symmetric PCI used 5th order
wall-Chebyshev generator scheme and real symmetric cases used Davidson–Liu method.
All computations used canonical Hartree–Fock orbitals and the cc-pVDZ basis set. The
1s-like orbitals of nitrogen were excluded from computations of the correlation energy.

We also plot the error to FCI reference energy in Fig. 3.2 computed with different

PCI schemes and thresholds. It is shown that the real symmetric approximate Hamil-

tonian results in a smaller energy error compared to the non-symmetric one. The real

symmetric approximate Hamiltonian also shows significantly smaller non-parallelism

error and a much smoother energy curve. The energy error and the curve smooth-

ness can be further improved by applying a smaller spawning threshold. When the

spawning threshold is decreased 10 times from 1×10−4 to 1×10−5, the energy error

also decreases 10 times from around 5 mEh to 0.5 mEh.

3.4.2 Comparison of the convergence rate

We use the equilibrium geometry of N2 as an example to show the convergence

speed of different algorithms including the conventional 5th order wall-Chebyshev

generator, the higher 10th order wall-Chebyshev generator, the Lanczos method and
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Figure 3.3 Ground state of N2 at the equilibrium geometry (r = 2.118 bohr) computed
with the PCI using a spawning threshold η = 1× 10−5. Various algorithms are compared.
This plot shows the difference between the energy at each iteration and the converged
energy as a function of the number of times the Hamiltonian is applied. All computations
used canonical Hartree–Fock orbitals and the cc-pVDZ basis set. The 1s-like orbitals of
nitrogen were excluded from computations of the correlation energy.

the Davidson–Liu method. The convergence of the energy for each method is plotted

in Fig. 3.3.

As shown in Fig. 3.3, both increasing the order of wall-Chebyshev polynomial

and changing the diagonalization scheme accelerated the convergence of PCI. The

Davidson–Liu method converged the fastest as expected. Benefitting from an efficient

preconditioner, Davidson–Liu applies H̃ only around 30 times to converge the energy

to an error less than 1 µEh, which is a three-fold speed-up compared to the 5th order

wall-Chebyshev generator scheme.

The Lanczos method accelerated the convergence especially at the beginning of

computation. It slows down later on because when the wave function gradually con-

verges, the growth of the Krylov subspace (K = {C, H̃C, H̃2C, . . . , }) immediately

becomes numerically linearly dependent. When this linear dependency issue arises

after several iterations, the Lanczos method is limited to a Krylov subspace of only

two to three vectors and cannot efficiently optimize the wave function. Consequently,
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there is not a dramatic speed up upon the 5th order wall-Chebyshev generator scheme.

The algorithm in Sec. 3.3.1 also enabled the stable application of high order wall-

Chebyshev generator. As shown in Fig. 3.3, the 10th order wall-Chebyshev generator

takes around half of the number of H̃ application to converge to µEh level of accuracy.

However, at the beginning of iteration it converges slowly because the reference wave

function is updated after every 10 HC product, which introduced the limitation that

the PCI determinant subspace can grow only once every 10 micro iterations. It means

that beginning with the Hartree–Fock determinant, the result PCI space of after first

10 iterations is a subspace of CISD, the end of 20 iterations is a subspace of CISDTQ,

etc. Thus, high order wall-Chebyshev generator wasted many applications of H̃ at

the beginning of the computation.

In practice, the Davidson–Liu algorithm seems to give the best performance. To

this point, the only weakness of the Davidson–Liu algorithm is that all the vectors

of the same length of PCI determinant space in Krylov subspace need to be stored,

which costs more memory than the wall-Chebyshev generator scheme. Since the high

order wall-Chebyshev generator also provides fast convergence, it can be a useful

alternative if memory is limited. Importantly, the resulting energy is invariant to the

applied algorithm, because the same spawning threshold results in wave functions

that are all the converged eigenvectors of the same determinant coupling space and

approximate Hamiltonian (with neglectable error). Thus, a PCI computation with

a spawning threshold η is labelled as PCI(η), because the spawning threshold is the

only parameter determining the accuracy of the result. Unless otherwise noted, the

results in the following sections are computed with Davidson–Liu algorithm.

3.4.3 Connection to the Heat-bath CI method

PCI uses a determinant coupling filtering criterion similar to the one in Heat-bath

CI (HCI) method. In order to investigate the relationship between HCI and PCI, we
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performed PCI computation on diatomic systems using the same threshold value as

reported by Sharma and co-workers.18

As shown in Table 3.1, the determinant space energy Edet as defined in Sec. 3.2.1

are almost identical to the HCI variational energy. Their number of determinants

included in the computation are also similar to each other. It shows that due to the

same criteria, although the determinant space is not diagonalized exactly, the PCI is

still able to choose similar determinant space as the HCI method.

The number of determinant couplings in the HCI method can be estimated by the

size of the coupling space generated by the determinants in PCI. As a comparison,

the number of determinant couplings needs to span the similar determinant space as

HCI is only 1/40 of the full coupling space in cc-pVDZ basis and 1/100 in cc-pVTZ

basis. Thus, if we want to select the important determinants as in HCI, the task can

be done 40 to 100 times more efficient by the PCI algorithm. Please note that we are

not proposing PCI as an alternative way to select important determinants. Although

the PCI variational energy is less accurate than HCI with the same threshold, we will

show that accurate wave function is available with a number of couplings less than

selected CI methods.

On average, only 3 to 4 determinants are importantly connected with a determi-

nant. Thus, in PCI, we exploit more the sparsity of the Hamiltonian than in selected

CI methods.

3.4.4 Efficiency in computing the wave function

In order to show that more accurate wave function can be obtained with lower

computational cost by filtering the most important determinant couplings. We plot

the number of determinant couplings in X required for Evar,X to reach a certain

accuracy in Fig. 3.4. Meanwhile, we also plot the corresponding total number of

determinant couplings between all determinants in PCI determinant space SX with
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Table 3.1 PCI variational energy and energy obtained from diagonalizing the PCI
determinant space. PCI results are computed with the same spawning threshold η value as
the threshold ε1 in Heat-bath CI(HCI). The 1s-like orbitals were excluded from
computations of the correlation energy. HCI values are copied from Ref. 18.

molecule basis sym η / ε1 (Eh)
PCI HCI

Ndet |X| Evar/Eh |XS | Edet/Eh Ndet Evar/Eh

C2 cc-pVDZ 1A1g 5× 10−4 29,131 118,682 −75.7139 4,873,796 −75.7217 28,566 −75.7217
C2 cc-pVTZ 1A1g 3× 10−4 146,601 489,400 −75.7633 54,046,748 −75.7740 142,467 −75.7738

N2 cc-pVDZ 1A1g 5× 10−4 39,860 150,818 −109.2622 5,959,810 −109.2695 37,593 −109.2692
N2 cc-pVTZ 1A1g 3× 10−4 201,403 628,144 −109.3511 62,497,422 −109.3612 189,080 −109.3608

O2 cc-pVDZ 1B1g 5× 10−4 56,502 223,306 −149.9724 8,417,008 −149.9796 52,907 −149.9793
O2 cc-pVTZ 1B1g 3× 10−4 317,704 986,068 −150.1030 99,243,014 −150.1136 290,980 −150.1130

F2 cc-pVDZ 1A1g 5× 10−4 72,333 266,722 −199.0869 9,570,478 −199.0915 68,994 −199.0913
F2 cc-pVTZ 1A1g 3× 10−4 427,697 1,276,462 −199.2697 115,893,094 −199.2788 395,744 −199.2782

respect to the error of Edet,X .

Although the error of Edet,X is always smaller than the error of Evar,X for the same

X, to reach the same accuracy, the number of determinant couplings required for PCI

is still an order of magnitude smaller than a selected CI method. Consequently, al-

though with a smaller spawning threshold, PCI can compute more accurate reference

wave functions with lower computational cost than selected CI methods.

3.4.5 Ground state energy of Cr2

Another challenging strongly correlated system is Cr2 because of many near-

degenerate 3d electrons and a formal hextuple bond. In order to get an accurate

result, both the static (strong) and the dynamic (weak) correlation have to be treated

equally well.17,55

In this case, we performed three PCI computations with spawning thresholds η =

4×10−5, 2×10−5 and 1×10−5 which we use to quadratically extrapolate to η = 0. The

extrapolated energy −2086.418 Eh is within 3 mEh from the reference extrapolated

DMRG energy. In this series of computations, the PCI(2×10−5) gives similar energy

as CCSD(T), and PCI(1×10−5) outperforms CCSDTQ.

The converged PCI(1×10−5) result shows that the Hartree–Fock reference deter-
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Figure 3.4 The number of determinant couplings in the PCI computation of C2 with
respect to the result absolute energy error to FCI. The approximated Hamiltonian is the
Hamiltonian applied to propagate PCI wave function, and the full Hamiltonian is used to
compute the variational energy. |X| is the number of determinant couplings in the
Hamiltonian matrix. All results are computed using the cc-pVDZ basis with the 1s-like
orbitals of carbon excluded from computations of the correlation energy.
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Figure 3.5 Cr2 single point ground state energy computations at bond length r = 1.5 Å.
All PCI computations used canonical Hartree–Fock orbitals and the Ahlrichs VDZ basis set
in a (24e, 30o) active space. Extrapolation is done by a quadratic fitting of PCI energies
with spawning thresholds η = 4×10−5, 2×10−5 and 1×10−5. CCSD(T), CCSDTQ and
extrapolated DMRG energy in the same basis set and active space are taken from Ref. 55.
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minant only contributes 58% of the wave function. Meanwhile, no other determinant

contributes more than 3% of the wave function. This shows that Cr2 is a system in

which both static (strong) and dynamic (weak) correlations are important, and PCI

can treat them equally well.

3.5 Conclusion and Future work

In this report, we introduce recent developments in the PCI method. We first

modified the filtering algorithm so that the path-filtering error is reduced and the

approximated Hamiltonian is Hermitian. The benchmark on N2 dissociation shows

that the Hermitian version of PCI provides much smoother PES with half the non-

parallelism error.

The Hermiticity in new PCI scheme enables integration of Davidson–Liu algorithm

into PCI to converge the wave function onto the ground state wave function with

fewer applications of the Hamiltonian. Convergence analysis shows that for N2 at

equilibrium geometry, the Davidson–Liu method converges three times faster than

the conventional 5th order wall-Chebyshev generator scheme. We also point out that

when memory is not sufficient, a high order wall-Chebyshev generator scheme can be

an alternative to the Davidson–Liu method since the former requires less memory.

We then show that PCI is able to efficiently select a similar determinant space

as in HCI with the same threshold. If we exactly diagonalize the PCI determinant

space, we get determinant space energy identical to the HCI variational energy. Our

analysis also shows that to get a wave function of the same quality, the number of

determinant couplings need to be evaluated is around one magnitude order less than

a selected CI method.

Finally, we tried to compute Cr2 ground state energy by spawning threshold ex-

trapolation. Since the accuracy of PCI is controlled by a single parameter, we show

that the optimal result is obtained by computing a series of energies with different
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spawning threshold and extrapolating to η → 0. The extrapolated energy is within 3

mEh to the DMRG reference value.

Despite the demonstrated success of solving strongly correlated systems, we found

that the bottleneck of PCI is that computing the variational energy requires a full

determinant coupling space. Unfortunately, we have not found a more efficient way

to compute the variational energy. Thus we seek to find applications where requires

high-quality wave function but do not require the variational energy.
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Chapter 4 Improving the efficiency of the
multireference driven similarity renormaliza-
tion group via sequential transformation,
density fitting, and the non-interacting vir-
tual orbital approximation

Chapter Abstract

This study examines several techniques to improve the efficiency of the linearized

multireference driven similarity renormalization group truncated to one- and two-

body operators [MR-LDSRG(2)]. We propose a sequential MR-LDSRG(2) [sq-MR-

LDSRG(2)] approach, in which one-body rotations are folded exactly into the Hamil-

tonian. This new approach is combined with density fitting (DF) to reduce the

storage cost of two-electron integrals. To further avoid the storage of large four-index

intermediates, we propose a non-interacting virtual orbit (NIVO) approximation in

which tensor blocks labeled by three and four virtual indices are neglected. The

NIVO approximation reduces the computational cost prefactor of the MR-LDSRG(2)

bringing it closer to that of coupled cluster with singles and doubles (CCSD). We

test the effect of the DF and NIVO approximations on the MR-LDSRG(2) and sq-

MR-LDSRG(2) methods by computing properties of eight diatomic molecules. The

diatomic constants obtained by DF-sq-MR-LDSRG(2)+NIVO are found to be as ac-

curate as those from the original MR-LDSRG(2) and coupled cluster theory with

singles, doubles, and perturbative triples. Finally, we demonstrate that the DF-sq-

MR-LDSRG(2)+NIVO scheme can be applied to chemical systems with more than

550 basis functions by computing the automerization energy of cyclobutadiene with

a quintuple-ζ basis set. The predicted automerization energy is found similar to the
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values computed with Mukherjee’s state-specific multireference coupled cluster theory

with singles and doubles.

4.1 Introduction

The failure of conventional many-body methods to describe near-degenerate elec-

tronic states has motivated the development of many efficient and practical multiref-

erence approaches, including perturbation theories (MRPTs)1–6 and multireference

configuration interaction (MRCI) schemes.7–11 Considerable efforts have been ded-

icate to the development of multireference coupled cluster (MRCC) methods,12–27

with the goal of creating nonperturbative theories that are both size extensive and

systematically improvable. Analogous many-body methods based on unitary trans-

formations have received considerably less attention.27–34 Unitary theories have, in

principle, two advantages over traditional coupled cluster approaches: 1) the energy

satisfies the variational principle, and 2) the transformed Hamiltonian is Hermitian.

The latter property is an important advantage in new applications of unitary methods

to quantum computing, both in quantum algorithms35–46 and downfolding approaches

aimed at reducing the number of orbitals in quantum computations.47

One of the main obstacles in the formulation of both single- and multi-reference

unitary coupled cluster theories is that they lead to nonterminating equations. The

central quantity evaluated in these approaches is the similarity transformed Hamilto-

nian (H̄) defined as

Ĥ → H̄ = Û †ĤÛ = e−ÂĤeÂ (4.1)

where (Ĥ) is the bare Hamiltonian and Û is a unitary operator. In writing this trans-

formation, we have expressed Û as the exponential of the anti-Hermitian operator Â

(Â† = −Â), which is commonly written in terms of the coupled cluster excitation op-

erator T̂ as Â = T̂ − T̂ †. Using the Baker–Campbell–Hausdorff (BCH) identity,29,31,33
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the transformed Hamiltonian may be computed as the following commutator series

H̄ = Ĥ + [Ĥ, Â] +
1

2!
[[Ĥ, Â], Â] +

1

3!
[[[Ĥ, Â], Â], Â] . . . . (4.2)

Since the operator Â contains both excitations and de-excitations, contractions are

possible among components of Â, and as a consequence, the BCH series given in

Eq. (4.2) is nonterminating.

Various approximations have been proposed to evaluate the unitarily transformed

Hamiltonian. Perhaps the simplest way to approximate the nonterminating unitary

series is to truncate the BCH expansion after a certain number of commutators.48,49

Proof-of-principle studies on unitary coupled cluster (CC) theory48 suggest that for

a a series containing up to n-nested commutators, the error decays as 10−n, and

about four commutators are necessary to achieve sub-milliHartree accuracy. Taube

and Bartlett33 have suggested tractable approximations to unitary CC theory based

on the Zassenhaus expansion that are exact for a given number of electrons. A com-

mon way to truncate the unitary BCH series is to use a recursive approximation of

the commutator [ · , Â], as suggested by Yanai and Chan.50 In their linear truncation

scheme, these authors proposed to approximate each single commutator [ · , Â] with

its scalar and one- and two-body components, which we indicate as [ · , Â]0,1,2. Since

in this truncation scheme the commutator [ · , Â]0,1,2 preserves the many-body rank

(number of creation and annihilation operators) of the Hamiltonian, the full BCH

series can then be evaluated via a recursive relation. An advantage of this approach

is that closed-form expressions for terms like [Ô, Â]0,1,2, where Ô is an operator con-

taining up to two-body terms can be easily derived. This truncation scheme has been

employed in canonical transformation (CT) theory50 and has been used to truncate

normal-ordered equations in the flow renormalization group of Wegner.51,52

We have recently developed a multireference driven similarity renormaliza-

tion group (MR-DSRG)53–57 approach that avoids the multiple-parentage prob-

lem20,23,58–61 and numerical instabilities60–66 encountered in other nonperturbative
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multireference methods. In the MR-DSRG, we perform a unitary transformation

of the Hamiltonian controlled by a flow parameter, which determines to which ex-

tend the resulting effective Hamiltonian is band diagonal.54,57 The simplest non-

perturbative approximation, the linearized MR-DSRG truncated to two-body op-

erators [MR-LDSRG(2)],55 assumes that Â contains up to two-body operators (sin-

gles and doubles) and employs the linear commutator approximation of Yanai and

Chan. Preliminary benchmarks indicate that the MR-LDSRG(2) method is more

accurate than CCSD around equilibrium geometries, and that this accuracy is

preserved along potential energy curves, especially for single-bond breaking pro-

cesses.67 The cost to evaluate a single commutator in the MR-LDSRG(2) scales as

O(N2
CN

2
VN

2) = O(N2
CN

4
V +N3

CN
3
V + . . .) where NC, NV, and N are the numbers of

core, virtual, and total orbitals, respectively. This scaling is identical to that of CC

with singles and doubles (CCSD) [O(N2
CN

4
V)]. However, while in CCSD the most

expensive term is evaluated only once, in the MR-LDSRG(2) the same term must be

evaluated for each nested commutator. Consequently, if the BCH series is truncated

after n + 1 terms, the computational cost of the MR-LDSRG(2) is roughly n times

that of CCSD, where approximately ten or more terms are usually required to con-

vergence the energy error in the BCH series to 10−12 Eh.55 A second reason is that

computing the BCH series requires storing large intermediate tensors with memory

costs that scale as O(N4). When these intermediates are stored in memory, practical

computations are limited to 200–300 basis functions on a single computer node.

In this work, we combine a series of improvements and approximations to re-

duce the computational and memory requirements of the MR-LDSRG(2) down to

a small multiple of the cost of CCSD. To begin, we consider an alternative ansatz

for the MR-DSRG based on a sequential similarity transformation.68 This sequen-

tial ansatz reduces the complexity of the MR-DSRG equations and, when combined

with integral factorization techniques, reduces significantly the cost to evaluate sin-
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gles contributions. Second, we apply density fitting (DF)69–71 to reduce the memory

requirements and the I/O cost by avoiding the storage of of two-electron repulsion

integrals. Together with Cholesky decomposition (CD)72–76 and other tensor decom-

position schemes,77 these techniques have been crucial in enabling computations with

1000 or more basis functions and found application in numerous electronic structure

methods,78–89 including coupled cluster methods.90–94 Third, we reduce the cost of

MR-LDSRG(2) computations by neglecting operators that involve three or more vir-

tual electrons. We term this truncation scheme the non-interacting virtual orbital

(NIVO) approximation. A perturbative analysis of the NIVO approximation shows

that the errors introduced appear at third order. To the best of our knowledge, such

approximation has not been introduced in multireference theories, but it is analo-

gous to other truncation schemes used in CCSD in which certain diagrams are have

modified coefficients95–98 or are completely removed.99,100

This paper is organized in the following way. In Sec. 4.2 we present an overview of

the MR-DSRG theory, discuss the sequential MR-DSRG, and introduced the NIVO

approximation. Details of the implementation together with a discussion of timings

are given in Sec. 4.3. In Sec. 4.4 we assess the accuracy of several MR-LDSRG(2)

schemes on a benchmark set of several diatomic molecules and determine the au-

tomerization barrier of cyclobutadiene. Finally, in Sec. 4.5 we conclude this work

with a discussion of the main results.

4.2 Theory

We first define the orbital labeling convention employed in this work. The set of

molecular spin orbitals G ≡ {φp, p = 1, 2, . . . , N} is partitioned into core (C), active

(A), and virtual (V) components of sizes NC, NA, and NV, respectively. We use

indices m,n to label core orbitals, u, v, x, y to label active orbitals, and e, f, g, h to

label virtual orbitals. For convenience, we also define the set of hole (H = C∪A) and
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particle (P = A∪V) orbitals with dimensions NH = NC +NA and NP = NA +NV,

respectively. Hole orbitals are denoted by indices i, j, k, l and those of particle by

indices a, b, c, d. General orbitals are labeled by indices p, q, r, s.

The MR-DSRG assumes a multideterminantal reference wave function (Φ):

|Φ〉 =
d∑

µ=1

cµ |Φµ〉 . (4.3)

In this work, the set of determinants {Φµ;µ = 1, 2, . . . , d} in Eq. (4.3) is assumed

to form a complete active space (CAS) and the corresponding coefficients {cµ;µ =

1, 2, . . . , d} are obtained from a CAS self-consistent field (CASSCF) computation.101

All operators are then normal ordered with respect to Φ according to the scheme of

Mukherjee and Kutzelnigg.102,103 For example, the bare Hamiltonian is expressed as

Ĥ = E0 +
∑
pq

f qp{âpq}+
1

4

∑
pqrs

vrspq{âpqrs}, (4.4)

where E0 = 〈Φ|Ĥ|Φ〉 is the reference energy and {âpq...rs...} = {âpâq . . . âsâr} is a product

of creation (âp ≡ â†p) and annihilation (âp) operators in its normal-ordered form,

as indicated by the curly braces. The generalized Fock matrix (f qp ) introduced in

Eq. (4.4) is defined as

f qp = hqp +
∑
rs

vqsprγ
r
s , (4.5)

where hqp = 〈φp|ĥ|φq〉 and vrspq = 〈φpφq||φrφs〉 are the one-electron and anti-

symmetrized two-electron integrals, respectively. Here, we have also used the one-

particle reduced density matrix (1-RDM) defined as γpq = 〈Φ|âpq|Φ〉.

4.2.1 Review of the MR-DSRG method

The MR-DSRG performs a parametric unitary transformation of the bare Hamil-

tonian analogous to Eq. (4.1), whereby the anti-Hermitian operator Â(s) depends on

the so-called flow parameter, a real number s defined in the range of [0,∞). The

resulting transformed Hamiltonian [H̄(s)] is a function of s defined as

H̄(s) = e−Â(s)ĤeÂ(s). (4.6)
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The operator Â(s) is a sum of many-body operators with rank ranging from one up

to the total number of electrons (n),

Â(s) =
n∑
k=1

Âk(s), (4.7)

where Âk(s) is the k-body component of Â(s). In the DSRG the operators Âk(s)

are written as Âk(s) = T̂k(s)− T̂ †k (s), where T̂k(s) is an s-dependent cluster operator

defined as

T̂k(s) =
1

(k!)2

H∑
ij···

P∑
ab···

tij···ab···(s){â
ab···
ij··· }. (4.8)

Note that the cluster amplitudes tij···ab···(s) exclude internal excitations, which are la-

beled only with active orbital indices. The DSRG transformed Hamiltonian has a

many-body expansion similar to Eq. (4.4),

H̄(s) = Ē0(s) +
∑
pq

H̄p
q (s){âqp}+

1

4

∑
pqrs

H̄pq
rs (s){ârspq}+ · · · , (4.9)

where,

Ē0(s) = 〈Φ|H̄(s)|Φ〉 , (4.10)

is the DSRG energy and the tensors H̄pq...
rs... (s) are analogous to one- and two-electron

integrals but dressed with dynamical correlation effects.

The goal of the DSRG transformation is to decouple the interactions between

the reference wave function (Φ) and its excited configurations. Such interactions are

the couplings between hole and particle orbitals represented by generalized excitation

[H̄ ij...
ab...(s){âab...ij... }] and de-excitation [H̄ab...

ij... (s){â
ij...
ab...}] operators, where ij · · · ∈ H and

ab · · · ∈ P, excluding cases where all the indices are active orbitals. These terms

of H̄(s) that the DSRG transformation aims to suppress are called the off-diagonal

components and will be denoted as H̄od(s). Instead of achieving a full decoupling of

the off-diagonal components [i.e., H̄od(s) = 0], we demand that the DSRG transfor-

mation achieves a partial decoupling, avoiding the components of H̄od(s) with small
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or vanishing Møller–Plesset energy denominators. This condition is imposed via the

DSRG flow equation, a nonlinear implicit equation of the form

H̄od(s) = R̂(s), (4.11)

where the source operator R̂(s) is Hermitian and continuous in s. The role of the

source operator in the DSRG flow equation is to drive the off-diagonal elements of

H̄(s) to zero, a goal achieved by an appropriate parameterization of R̂(s).53

In the linearized MR-DSRG approximation [MR-LDSRG(2)], the BCH series

[Eq. (4.2)] is evaluated by keeping up to two-body normal-ordered operators of each

commutator. The transformed Hamiltonian can then be evaluated by the following

recursive equations  Ĉ(k+1)(s) =
1

k + 1
[Ĉ

(k)
1,2 (s), Â(s)]0,1,2,

H̄(k+1)(s) = H̄(k)(s) + Ĉ(k+1)(s),

(4.12)

starting from Ĉ(0)(s) = H̄(0) = Ĥ and iterating until the norm of Ĉ(k+1)
1,2 (s) is less

than a given convergence threshold.

The solution of Eq. (4.11) yields a set of amplitudes tij...ab...(s) that define the operator

Â(s) and the DSRG transformed Hamiltonian H̄(s). From this latter quantity, the

MR-DSRG electronic energy is computed as the expectation value with respect to

the reference

Ē0(s) = 〈Φ|H̄(s)|Φ〉 . (4.13)

We refer the energy computed using Eq. (4.13) as the unrelaxed energy since the

reference coefficients are not optimized. To include reference relaxation effects, we

require that Φ is an eigenstate of H̄(s) within the space of reference determinants, a

condition that is equivalent to solving the eigenvalue problem

d∑
µ=1

〈Φν |H̄(s)|Φµ〉 c′µ = E(s)c′ν . (4.14)
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Equation (4.14) defines a new reference Φ′ with expansion coefficients c′µ. This new

reference may be used as a starting point for a subsequent MR-DSRG transformation

and this procedure can be repeated until convergence and such converged energy is

referred as fully relaxed energy. For the nonperturbative MR-DSRG schemes discussed

in this work, we use the fully relaxed energy by default, unless otherwise noted.

4.2.2 Simplifying the MR-DSRG equations: Sequential trans-
formation

Our first modification to the MR-DSRG approach is an alternative way to trans-

form the bare Hamiltonian via a sequence of unitary operators with increasing particle

rank

H̄(s) = e−Ân(s) · · · e−Â2(s)e−Â1(s)ĤeÂ1(s)eÂ2(s) · · · eÂn(s). (4.15)

We term the MR-DSRG approach based on Eq. (4.15) the sequential MR-DSRG

(sq-MR-DSRG), while we refer to the original formalism based on Eq. (4.6) as the

traditional MR-DSRG. Note that in the limit of s → ∞ and no truncation of Â(s),

both the traditional and sequential MR-DSRG can approach the full configuration

interaction limit.68 However, these schemes are not equivalent for truncated Â(s) [for

example, n = 2 in Eqs. (4.7) and (4.15)] due to the fact that operators of different

particle rank do not commute, that is, [Âi(s), Âj(s)] 6= 0 for i 6= j.

An advantage of the sq-MR-DSRG approach is that Â1(s) can be exactly folded

into the Hamiltonian via a unitary transformation. The resulting Â1(s)-dressed

Hamiltonian [H̃(s)],

H̃(s) = e−Â1(s)ĤeÂ1(s), (4.16)

preserves the particle rank of the bare Hamiltonian [Eq. (4.4)]. The corresponding

scalar and tensor components of H̃(s) can be obtained by a simple unitary transfor-

mation of the one- and two-electron integrals (f qp and vrspq) and update of the scalar

energy. As will be discussed in Sec. 4.3.1, the Â1(s)-dressed Hamiltonian can be com-
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puted very efficiently when the two-electron integrals are approximated with DF or

CD.

The transformed Hamiltonian for the sq-MR-DSRG truncated to one- and two-

body operators is given by

H̄(s) = e−Â2(s)H̃(s)eÂ2(s). (4.17)

In the linear approximation, the evaluation of Eq. (4.17) is simpler than in the tradi-

tional MR-LDSRG(2) since the total number of tensor contractions is reduced from 39

to 30.55 Another advantage of the sequential approach is that Â1(s) is treated exactly,

while in the traditional scheme some contractions involving singles are neglected. To

appreciate this point, consider all the contributions to the double-commutator term

in the MR-LDSRG(2) that depend on Â1(s)

[[Ĥ, Â(s)]1,2, Â(s)]0,1,2 ← [[Ĥ, Â1(s)]1,2, Â1(s)]0,1,2

+[[Ĥ, Â1(s)]1,2, Â2(s)]0,1,2

+[[Ĥ, Â2(s)]1,2, Â1(s)]0,1,2.

(4.18)

The first term on the r.h.s. of Eq. (4.18) is treated exactly in the MR-LDSRG(2).

However, since contractions involving Â2(s) generate three-body terms (truncated in

the linearized approximation), the contribution of Â1(s) in the second and third terms

are not included exactly in the MR-LDSRG(2) transformed Hamiltonian. In the se-

quential approach, all contributions from Â1(s) are treated by forming the operator

H̃(s), and since the BCH expansion for such transformation does not generate inter-

mediates with rank greater than two, all terms involving Â1(s) are treated exactly in

the linearized approximation.

4.2.3 Alleviating the memory bottleneck: The non-interacting
virtual orbital (NIVO) approximation

In both the traditional and sequential MR-DSRG approaches, the DF approxi-

mation reduces the cost to store both the bare and Â1(s)-dressed Hamiltonian from
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O(N4) to O(N2M). However, in the evaluation of the recursive commutator ap-

proximation of H̄(s), two-body operators are generated during the evaluation of each

intermediate commutator [Ĉ(k)(s)] and H̄(s). These quantities have O(N4) storage

cost and, thus, reintroduce the bottleneck avoided with DF.

In order to reduce the cost to store H̄2(s) and Ĉ
(k)
2 (s), we shall neglect certain

tensor blocks of these operators. By partitioning of orbitals into core (C), active

(A) and virtual (V) spaces, each general 4-index tensor may be subdivided into 81

blocks according to the combination of orbital indices, for example CCCC, AAVV,

CAVA, etc. We propose a non-interacting virtual orbital (NIVO) approximation,

which neglects the operator components of Ĉ(k+1)
2 (s) = [Ĉ

(k)
1,2 (s), Â(s)]2, k ≥ 0, with

three or more virtual orbital indices (VVVV, VCVV, VVVA, etc.) in the recursive

definition of the linearized BCH series. Neglecting these blocks, the number of ele-

ments in each NIVO-approximated tensor is reduced from O(N4) to O(N2N2
H), a size

comparable to that of the Â2(s) tensor. For instance, in the cyclobutadiene compu-

tation using a quintuple-ζ basis set reported in Sec. 4.4.2, the memory requirements

of H̄2(s) or Ĉ(k)
2 (s) are reduced from 2.7 TB to 6.8 GB by the NIVO approximation.

To justify the NIVO approximation we analyze its effect on the energy. The first

term in the BCH series that is approximated in the sq-MR-LDSRG(2)+NIVO scheme

is the commutator Ĉ(1)
2 (s) = [H̃(s), Â2(s)]2. Indicating the terms neglected in NIVO

as δĈ(1)
2 (s), we see that the first energy contribution affected by the NIVO approxi-

mation comes from the expectation value of the triple commutator term [δĈ(3)
0 (s)]

δĈ
(3)
0 (s) =

1

6
[[δĈ

(1)
2 (s), Â2(s)]1,2, Â2(s)]0, (4.19)

whose contributions are shown as diagrams in Fig. 4.1. From a perturbation theory

perspective, these diagrams are of order four or higher [assuming Â2(s) to be of order

one] and, therefore, are negligible compared to the leading error (third order) of the

linearized commutator approximation.

Hereafter, we shall append “+NIVO” at the end of the method name to indicate
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the use of NIVO approximation. For example, the density fitted MR-LDSRG(2)

method in the sequential transformation ansatz with NIVO approximation is termed

“DF-sq-MR-LDSRG(2)+NIVO”.

4.3 Implementation

The sq-MR-LDSRG(2) method combined with DF and the NIVO approximation

was implemented in Forte,104 an open-source suite of multireference theories for

molecular computations. This implementation reuses several components of our pre-

vious MR-LDSRG(2) code based on conventional four-index two-electron integrals.55

The DSRG equations were implemented as tensor contractions using the Ambit

tensor library,105 while integrals were generated using the Psi4 package.106 In the

following, we provide the details of our implementation of the sequential ansatz in

combination with DF.107

4.3.1 Sequential transformation

The Â1(s)-dressed Hamiltonian [H̃(s), Eq. (4.16)] can be obtained by a unitary

transformation of Ĥ via the operator Û(s) = exp[Â1(s)]. For clarity, we shall drop

the label “(s)” for all s-dependent quantities [H̃(s), Â1(s), and Û(s)] in this section.
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The one- and two-body components of H̃ (h̃q
′

p′ and ṽ
r′s′

p′q′) are given by

h̃q
′

p′ =
∑
pq

U q
q′ h

q
p U

p′

p , (4.20)

ṽr
′s′

p′q′ =
∑
pqrs

U r′

r U
s′

s v
rs
pq U

p
p′ U

q
q′ . (4.21)

Here, the unitary matrix Up′
p = (U)p′p and its inverse Up

p′ = (U)∗p′p are given by

U = eA, where the matrix A is composed of elements of the Â1 tensor, (A)ia = tia and

(A)ai = −tia. Note that we use primed indices only as a way to distinguish labels, yet

these indices by no means imply a new set of orbitals.

The Â1-dressed Hamiltonian written in normal ordered form with respect to Φ is

given by

H̃ = Ẽ0 +
∑
pq

f̃ qp{âpq}+
1

4

∑
pqrs

ṽrspq{âpqrs}, (4.22)

where the transformed energy (Ẽ0) is given by

Ẽ0 =
H∑
i′j′

h̃j
′

i′ γ
i′

j′ +
1

4

H∑
i′j′k′l′

ṽk
′l′

i′j′ γ
i′j′

k′l′ , (4.23)

and the Fock matrix elements (f̃ q
′

p′ ) are defined as

f̃ q
′

p′ = h̃q
′

p′ +
H∑
i′j′

ṽq
′j′

p′i′ γ
i′

j′ . (4.24)

Note that the quantities γi′j′ and γ
i′j′

k′l′ in Eqs. (4.23) and (4.24) are the untransformed

1- and 2-RDMs of the reference |Φ〉 defined as γpq = 〈Φ|âpq|Φ〉 and γpqrs = 〈Φ|âpqrs|Φ〉,

respectively.

The two-electron integral transformation [Eq. (4.21)] has a noticeable cost [O(N5)]

and must be repeated each time the Â1 operator is updated. However, in the imple-

mentation based on DF integrals, this transformation may be performed in a signifi-

cantly more efficient way. In DF, the four-index electron repulsion integral tensor as

a contraction of a three-index auxiliary tensor (BQ
pq),

〈pq|rs〉 ≈
M∑
Q

BQ
prB

Q
qs, (4.25)
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where M is the dimension of the fitting basis in DF. Using this decomposition, the

unitary transformation may be directly applied to each auxiliary tensor,

B̃Q
p′q′ =

∑
pq

BQ
pq U

p
p′ U

q
q′ , (4.26)

reducing the cost to evaluate H̃ down to O(N3M).

Equations (4.22)–(4.23) specify the procedures to obtain H̃ as a unitary transfor-

mation of Ĥ. Since H̃ retains the structure of Ĥ, we can reuse most of our previous

MR-LDSRG(2) code55 to implement sq-MR-LDSRG(2) by employing H̃ (instead of

Ĥ) and removing terms involving Â1.

As described in Ref. 55, we evaluate the commutator Ĉ(k+1) = 1
k+1

[Ĉ
(k)
1,2 , Â]0,1,2 in

Eq. (4.12) using the following recursive system of equations

since [Ĉ
(k)
1,2 , T̂

†] = −[Ĉ
(k)
1,2 , T̂ ]†, computing the Ô(k+1) =

1

k + 1
[Ĉ

(k)
1,2 , T̂ ]0,1,2,

Ĉ(k+1) = Ô(k+1) + [Ô(k+1)]†,

(4.27)

where Ô(k+1) is an intermediate containing up to two-body components. The iteration

starts from either Ĉ(0) = Ĥ, in traditional MR-LDSRG(2), or Ĉ(0) = H̃ in the

sequential version, optionally applying the NIVO approximation to the two-body

intermediate tensors Ô(k)
2 , Ĉ(k)

2 and H̄(k)
2 for k ≥ 1.

4.3.2 Batched tensor contraction for the DF algorithm

Despite the storage cost reduction of the DF and NIVO approximations, another

potential memory bottleneck is the size of the intermediate tensors generated during

the evaluation of commutators. For example, consider the following contraction,

Oij
rs ←

P∑
ab

〈rs||ab〉 tijab ∀i, j ∈ H,∀r, s ∈ G, (4.28)
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Algorithm 3 The batched algorithm to compute Cij
rs ←

∑P
ab

∑M
Q BQ

arB
Q
bst

ij
ab.

1: Permute memory layout of Cij
rs and BQ

ar so that their r-subblocks Cij
[r]s and B

Q
a[r]

are contiguous in memory.
2: for each r = 1, 2, . . . , NG do
3: Iabs :=

∑M
Q BQ

a[r]B
Q
bs

4: Cij
[r]s ←

∑P
ab Iabst

ij
ab i, j ∈ H, r ∈ G

5: end for
6: Permute Cij

rs back to the original memory layout.

which is also found in the CCSD equations. In the DF case, Eq. (4.28) is written as

two contractions involving auxiliary tensors,

Oij
rs ←

P∑
ab

M∑
Q

BQ
arB

Q
bst

ij
ab −

P∑
ab

M∑
Q

BQ
asB

Q
brt

ij
ab. (4.29)

The most efficient way to evaluate the first term of Eq. (4.29) is to introduce the

intermediate tensor Iarbs =
∑M

Q BQ
arB

Q
bs of size O(N2N2

P). To avoid storage of these

large intermediates, it is common to evaluate Eq. (4.29) using a batched algorithm,

whereby a slice of the tensor Iarbs is computed and contracted on the fly with the

amplitudes tijab. To automate this optimization of the tensor contraction we have

coded a generic batching algorithm in the tensor library Ambit.105 Whereas the

Ambit code for the first term in Eq. (4.29) is written as

1 O["ijrs"] += B["Qar"] * B["Qbs"] * t["ijab"];

our new implementation allows batching over the index r by simply surrounding the

contraction with the batched() function decorator

1 O["ijrs"] += batched("r", B["Qar"] * B["Qbs"] * t["ijab"]);

4.3.3 Computational cost reduction

Here we discuss timings for all the MR-LDSRG(2) variants introduced in this

work. In MR-LDSRG(2) theory, the computational bottleneck is forming the DSRG

transformed Hamiltonian H̄. Timings for computing H̄ in the case of cyclobutadiene
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(see Sec. 4.4.2 for details) are summarized in Fig. 4.2. Detailed timings for the

evaluation of H̄ using all the combinations of the approximations considered here are

reported in the Supplementary Material.

The total timing (ttot) for computing the transformed Hamiltonian in n iterations

is partitioned according to

ttot = t1 + t2 + tmisc, (4.30)

where t1 and t2 are the timings to evaluate the commutators involving T̂1 and T̂2,

respectively. In the sequential transformation approach, t1 is instead defined as the

time for forming the Â1-transformed Hamiltonian. The term tmisc accounts for the

cost to sort and accumulate the results of contractions with T̂1 and T̂2, as shown in

the second line of Eq. (4.27). Figure 4.2 shows that the timing for the conventional

MR-LDSRG(2) is dominated by contractions involving T̂1 and T̂2. The cost of the

singles contractions can be reduced significantly (3–5 times) by employing the sequen-

tially transformed approach, even though at each iteration of the sq-MR-LDSRG(2)

equations it is necessary to build the operator H̃.

Applying the NIVO approximation to the original MR-LDSRG(2) leads to a dras-

tic reduction of the total computational time (×18 speedup). This reduction in

timings is due to several contributing factors. First, the evaluation of the T̂1 con-

tractions in NIVO is sped up by a factor of O(nN/NH), where n is the number of

commutators included in the BCH series. Second, the contributions due to dou-

bles, Ô(k+1) ← [Ĉ(k), T̂2], have identical scaling for the first commutator, but for

k ≥ 1 they can be evaluated with a speedup of a factor of O(N2/N2
H). Third, the

NIVO approximation also reduces tmisc significantly because the tensors transpose

and accumulation operations costs are reduced from O(N4) to O(N2N2
H). For large

N/NH ratios, the cost to evaluate H̄ in the NIVO approximation is dominated by

the commutator [Ĥ, T̂2], with scaling identical to that of CCSD. For comparison, the

similarity-transformed Hamiltonian can be evaluated in 24 s with Psi4’s CCSD, in 121
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s with our NIVO-MR-LDSRG(2) code, and 2208 s with the original MR-LDSRG(2)

code (in both cases employing an unrestricted implementation and C1 symmetry).

In general, we observe an increase in t2 due to the extra cost to build two-body

intermediates from the auxiliary tensors for methods combined with DF. The tradi-

tional and sequential approaches using the DF/NIVO approximations have similar

costs, with the latter being slightly faster due to the efficient transformation of the

auxiliary tensors [B̃, Eq. (4.26)] afforded by the DF approximation. For this exam-

ple, the DF-sq-MR-LDSRG(2)+NIVO computation ran 12 times faster than the one

using the original approach. As we will demonstrate in the next section, this method

is as accurate as the MR-LDSRG(2) and, therefore, the method we recommend for

large-scale computations.
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Figure 4.2 The time to evaluate the DSRG transformed Hamiltonian [H̄] of the
ground-state cyclobutadiene when different techniques are introduced to the
MR-LDSRG(2) method. These techniques include: density fitting (DF), sequential
transformation (ST), and the non-interacting virtual orbital (NIVO) approximation. The
total time of computing [Ĉ(k), T̂1] in MR-LDSRG(2) or H̃ = e−Â1ĤeÂ1 in
sq-MR-LDSRG(2) is labeled as t1 in this plot. All computations employed the cc-pVTZ
basis set and they were carried out on an Intel Xeon E5-2650 v2 processor using 8 threads.
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4.4 Results and Discussion

4.4.1 First row diatomic molecules

We first benchmark the effect of DF and the NIVO approximation on the tradi-

tional and sequential versions of the MR-LDSRG(2). Our test set consists of eight di-

atomic molecules: BH, HF, LiF, BeO, CO, C2, N2, and F2. Specifically, we computed

equilibrium bond lengths (re), harmonic vibrational frequencies (ωe), anharmonicity

constants (ωexe), and dissociation energies (D0) and compare those to experimental

data taken from Ref. 108. The dissociation energy D0 includes zero-point vibra-

tional energy corrections that account for anharmonicity effects and is computed as

D0 = De−ωe/2+ωexe/4 (in a.u.), where De is the dissociation energy with respect to

the bottom of the potential.109 Since our current implementation of the MR-DSRG

cannot handle half-integer spin states, the energies of the atoms Li, B, C, N, O, and F

were computed as half of the energy of the stretched homonuclear diatomic molecule

at a distance of 15 Å. All spectroscopic constants were obtained via a polynomial fit

of the energy using nine equally spaced points centered around the equilibrium bond

length and separated by 0.2 Å. For all eight molecules, we adopted a full-valence

active space where the 1s orbital of hydrogen, and the 2s and 2p orbitals of first-row

elements are considered as active orbitals. No orbitals were frozen in the CASSCF

optimization procedure. The flow parameter for all DSRG computations was set to

s = 0.5 E−2
h , as suggested by our previous work.54 All computations utilized the cc-

pVQZ basis set110,111 and 1s-like orbitals of the first-row elements were frozen in the

CC and MR-DSRG treatments of electron correlation. In DF computations, we em-

ployed a mixed flavor of the auxiliary basis sets. For CASSCF, the cc-pVQZ-JKFIT

auxiliary basis set81 was used for H, B, C, N, O and F atoms, and the def2-QZVPP-

JKFIT basis set112 was used for Li and Be atoms. The cc-pVQZ-RI basis set113 was

applied to all atoms in DSRG computations.
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Figure 4.3 Comparison of second- and third-order MR-DSRG perturbation theory
(DSRG-MRPT2, DSRG-MRPT3), MR-LDSRG(2), DF-sq-MR-LDSRG(2)+NIVO, and
single reference coupled cluster methods on a test set composed of 8 diatomic molecules.
Deviations of equilibrium bond lengths (re), harmonic vibrational frequencies (ωe),
anharmonicity constants (ωexe), and dissociation energies (D0) with respect to
experimental values.108 All results were computed with cc-pVQZ basis, and core orbitals
are frozen in MR-DSRG and coupled cluster computations.

Figure 4.3 and Table 4.1 report a comparison of second- and third-order DSRG

multireference perturbation theory (DSRG-MRPT2/3), the original MR-LDSRG(2),

DF-sq-LDSRG(2)+NIVO, CCSD, and CCSD(T). The mean absolute error (MAE)

and standard deviation (SD) reported in Table 4.1 show that MR-LDSRG(2) method

is as accurate as CCSD(T) in predicting re, ωexe and D0, while it predicts ωe that

are of accuracy between that of CCSD and CCSD(T).

The fact that the MR-LDSRG(2) results are more accurate than those from CCSD

suggests that the full-valence treatment of static correlation leads to a more accurate

treatment of correlation. It is also rewarding to see that in many instances the MR-
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Table 4.1 Error statistics for the equilibrium bond lengths (re, in pm), harmonic
vibrational frequencies (ωe, in cm−1), anharmonicity constants (ωexe, in cm−1), and
dissociation energies (D0, in kcal mol−1) of the eight diatomic molecules computed using
various MR-DSRG schemes. All results were obtained using the cc-pVQZ basis and core
orbitals were frozen in the MR-DSRG and CC computations. The statistical indices are:
mean signed error (Mean), mean absolute error (MAE), standard deviation (SD), and
maximum absolute error (Max).

DSRG-MRPT MR-LDSRG(2) sq-MR-LDSRG(2) DF-sq-MR-LDSRG(2)+NIVO CCSD CCSD(T)PT2 PT3 Conv.a DF DF+NIVO Conv.a DF DF+NIVO comm(2) comm(3) comm(4)
re Mean 0.63 0.41 0.30 0.30 0.30 0.28 0.28 0.28 0.28 0.28 0.28 −0.41 0.38

MAE 0.63 0.48 0.39 0.39 0.38 0.39 0.39 0.39 0.40 0.38 0.39 0.65 0.40
SD 0.85 0.74 0.49 0.50 0.49 0.48 0.48 0.48 0.49 0.48 0.48 0.92 0.57
Max 2.07 1.96 1.15 1.15 1.15 1.10 1.10 1.10 1.11 1.10 1.09 2.13 1.36

ωe Mean −11.2 7.2 11.2 11.1 11.1 11.8 11.9 11.8 13.0 11.9 11.9 54.9 −0.1
MAE 16.5 13.1 14.3 14.2 14.3 13.8 13.9 13.9 16.0 13.8 13.9 54.9 7.9
SD 20.0 19.0 22.0 21.9 22.0 21.9 22.1 22.1 26.3 21.6 22.2 64.5 10.7
Max 38.3 36.1 53.2 52.8 53.7 51.2 51.8 51.9 64.5 50.3 52.3 99.3 24.5

ωexe Mean 1.1 1.9 1.7 1.5 1.7 1.7 1.8 1.7 1.9 1.6 1.7 1.0 1.7
MAE 2.0 1.9 1.7 1.5 1.7 1.7 1.8 1.7 1.9 1.6 1.7 1.6 1.7
SD 2.4 2.5 2.3 2.1 2.3 2.3 2.6 2.3 2.6 2.2 2.3 2.6 2.6
Max 4.2 4.9 4.7 4.1 4.8 4.8 5.7 4.7 5.9 4.4 4.8 6.2 6.2

D0 Mean −5.0 0.1 −0.3 −0.1 −0.0 −0.6 −0.3 −0.5 −1.0 −0.5 −0.3 −9.5 −2.4
MAE 5.3 2.8 2.6 2.8 2.6 2.6 2.9 2.5 3.1 2.7 2.8 9.9 2.9
SD 6.8 3.5 3.5 3.7 3.5 3.7 3.8 3.6 4.0 3.7 3.8 11.8 3.3
Max 12.7 6.0 7.9 7.8 7.5 8.4 8.4 8.3 8.6 8.4 8.2 21.9 5.6

a Computed using conventional four-index two-electron integrals.

LDSRG(2) has an accuracy similar to that of CCSD(T), despite the fact that the

former does not include triples corrections.

To analyze the impact of each approximation of the MR-LDSRG(2) method, in

Table 4.2 we report the mean absolute difference between properties computed with

and without each approximation. The use of a sequential ansatz has a modest effect

on all properties, with the largest mean absolute differences observed for ωe (1.6 cm−1)

and D0 (0.3 kcal mol−1). Nevertheless, the MAE with respect experimental results is

nearly unchanged, if not slightly improving. The DF and NIVO approximations have

an effect on molecular properties that is comparable in magnitude and smaller than

the deviation introduced by the sequential ansatz. When these three approximations

are combined together, the resulting method shows errors with respect to experimental

values that are nearly identical to those from the conventional MR-LDSRG(2). The

only noticeable deviations are found for ωe (MAE 13.9 vs. 14.3 cm−1) and D0 (MAE

2.6 vs. 2.5 kcal mol−1).

In this study, we also investigate the effect of combining the DF-sq-

LDSRG(2)+NIVO method with truncation of the BCH expansion, i.e., terminating
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Table 4.2 The mean absolute differences in predicting equilibrium bond lengths (re, in
pm), harmonic vibrational frequencies (ωe, in cm−1), anharmonicity constants (ωexe, in
cm−1), and dissociation energies (D0, in kcal mol−1) of the eight diatomic molecules
between method pairs that differ by only one technique introduced in this report.
Techniques include: sequential transformation (ST), density fitting (DF), NIVO
approximation, and commutator truncation of the BCH expansion [comm(k), k = 2, 3, 4].
All results were computed using the cc-pVQZ basis set and core orbitals were frozen in the
MR-DSRG computations.

Technique MR-LDSRG(2) method pair Mean absolute difference
re ωe ωexe D0

ST Original ST 0.03 1.6 0.0 0.3
DF DF/ST 0.03 1.5 0.3 0.2

DF Original DF 0.00 0.2 0.1 0.2
ST DF/ST 0.00 0.2 0.1 0.3

NIVO DF DF/NIVO 0.01 0.4 0.1 0.2
DF/ST DF/ST/NIVO 0.01 0.3 0.1 0.3

comm(4) DF/ST/NIVO DF/ST/NIVO/comm(4) 0.00 0.1 0.0 0.3
4th comm. DF/ST/NIVO/comm(4) DF/ST/NIVO/comm(3) 0.01 0.8 0.1 0.4
3rd comm. DF/ST/NIVO/comm(3) DF/ST/NIVO/comm(2) 0.04 4.3 0.3 0.6

H̄(s) = H̃(s) +
∑k

n=1
1
n!
Ĉ(n)(s) at a given integer k. The recursive evaluation of H̄(s)

via Eq. (4.12) usually requires 10–12. Truncation of the BCH series to a few terms

may therefore introduce speedups of up to 3–4 times. In Table 4.1 and Table 4.2

we report statistics computed by approximating the BCH expansion up to 2, 3, and

4 commutators. The use of only two commutator introduces noticeable deviations

with respect to experiments for ωe and D0. Compared to the full BCH series, this

truncation level increases the MAE of ωe and D0 by 12.6 cm−1 and 0.5 kcal mol−1, re-

spectively. The inclusion of the triply-nested commutator significantly reduces these

deviations to only 0.1 cm−1 and 0.2 kcal mol−1, respectively. The four-fold commuta-

tor term yields re, ωe, and ωexe that are nearly identical to those from the untruncated

BCH series, while the MAE of D0 deviates only by 0.3 kcal mol−1.

Since the error introduced by neglecting the four commutator term is smaller or

comparable to the other approximations considered here, our results suggest that a

BCH series truncated to three commutators may offer a good compromise between

accuracy and speed.
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4.4.2 Cyclobutadiene

Next, we consider the automerization reaction of cyclobutadiene (CBD, C4H4).

We study the energy difference between the rectangular (D2h) energy minimum and

the square transition state (D4h).114 This reaction is a challenging chemistry prob-

lem for both experiment and theory.114,115,115–120,120–126 Due to its instability, there

are no direct measurements of the reaction barrier, and experiments performed on

substituted cyclobutadienes suggest the barrier height falls in the range 1.6–10 kcal

mol−1.115 In this work, we optimized the equilibrium and transition state geome-

tries using finite differences of energies to compute the barrier height. Specifically,

we compare both DF-MR-LDSRG(2)+NIVO and DF-sq-MR-LDSRG(2)+NIVO op-

timized geometries to those obtained from the state-specific MRCC of Mukherjee and

co-workers (Mk-MRCC)20,127–130 as implemented in Psi4.131

To reduce computational cost, all MR-DSRG calculations performed two steps

of the reference relaxation procedure discussed in Sec. 4.2.1. A comparison of this

procedure with full reference relaxation using the cc-pVDZ basis set shows errors of ca.

0.01 kcal mol−1 for absolute energies, 0.0001 Å for bond lengths, and 0.001◦ for bond

angles. We applied a Tikhonov regularization denominator shift132 of 1 mEh in all Mk-

MRCC calculations to guarantee convergence. The Mk-MRCC implementation used

in this work neglects effective Hamiltonian couplings between reference determinants

that differ by three or more spin orbitals, and therefore yield approximate results when

applied to the CAS(4e,4o) reference considered here. All computations utilized the cc-

pVXZ (X=D, T, Q, 5) basis set,110,111 and the corresponding cc-pVXZ-JKFIT81 and

cc-pVXZ-RI113 auxiliary basis sets for DF-CASSCF and DF-DSRG computations,

respectively. The 1s core electrons of carbon atoms were frozen in all post-CASSCF

methods. All results were computed using semi-canonical CASSCF orbitals.

Preliminary computations using the cc-pVDZ basis using the CAS(2e,2o) and

CAS(4e,4o) active spaces revealed an interesting aspect of this system. As shown in
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Fig. 4.4, the s-dependency of the automerization barrier displays significantly different

behavior for these two active spaces. In both cases, the predicted activation energies

change significantly for small values of s (< 0.2 E−2
h ), a normal trend observed for

all DSRG computations and due to the increased recovery of dynamical correlation

energy. Interestingly, while the CAS(4e,4o) curve flattens out for larger values of s,

the CAS(2e,2o) curve shows a significant s-dependence in the range s ∈ [0.5, 8] E−2
h .

To understand the origin of this difference we analyze the double substitution

amplitudes [tijab(s)] as a function of s for both the equilibrium and transition state

geometries, as shown in Fig. 4.5. In the CAS(2e,2o) case, we notice some abnormally

large amplitudes (indicated in red), some of which are as large as 0.1. These ampli-

tudes correspond to excitations within the four π orbitals of CBD, and suggests that

the CAS(2e,2o) space is insufficient to capture all static correlation effects in CBD.

The offending amplitudes converge at different rates as s increases, and introduce a

strong s-dependence in the energy barrier. Note also that in the limit of s→∞ there

is a significant difference in the barrier for the CAS(2e,2o) and CAS(4e,4o) spaces.

In contrast, in the CAS(4e,4o) computations all excitations within the π orbitals

are included in the active space and the resulting DSRG amplitudes have absolute

values less than 0.05. Diverging amplitudes in computations with CAS(4e,4o) refer-

ence wave functions, corresponding to intruder states, can also be seen in Fig. 4.5.

Our results reported in Table 4.3 are all based on the flow parameter value s = 1.0

E−2
h , which is significantly far from the region (s > 5.0 E−2

h ) where amplitudes begin

to diverge, and at the same time leads to well converged absolute energies. We also

performed computations using s = 0.5 E−2
h (reported in Table S4) to verify that the

automerization energies computed with different values of the flow parameter are con-

sistent. In general, the difference in automerization energies computed with s = 0.5

and 1.0 E−2
h is of the order of 0.6–0.7 kcal mol−1. Note that intruder states are also

encountered in Mk-MRCCSD computations based on the CAS(4e,4o) reference, and
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Table 4.3 Automerization reaction barrier (Ea, in kcal mol−1) and geometry parameters
(bond lengths in Å, bond angles in degree) of cyclobutadiene. All DSRG computations
used s = 1.0 E−2

h . All computations employed the CAS(4e,4o) reference and core orbitals
constructed from carbon 1s orbitals were frozen for MR-DSRG and MRCC computations.
As such, nC = 8 and nA = 4, where nX = NX/2 (X ∈ {C,A,V,H,P,G}) is the number
molecular spacial orbitals for space X.

Method Ea
D2h D4h

C−Ca C−−Ca C−H ∠C−C−Hb C−C C−H
cc-pVDZ (nV = 60)

CASSCF 6.49 1.5502 1.3567 1.0790 134.87 1.4472 1.0779
DF-MR-LDSRG(2)+NIVO 8.56 1.5769 1.3660 1.0945 134.92 1.4624 1.0932
DF-sq-MR-LDSRG(2)+NIVO 8.62 1.5768 1.3659 1.0944 134.92 1.4623 1.0931
Mk-MRCCSD 8.80 1.5733 1.3623 1.0931 134.91 1.4585 1.0920
Mk-MRCCSD(T) 7.56 1.5772 1.3699 1.0951 134.92 1.4652 1.0941

cc-pVTZ (nV = 160)
CASSCF 7.44 1.5475 1.3471 1.0694 134.83 1.4409 1.0683
DF-MR-LDSRG(2)+NIVO 9.87 1.5668 1.3488 1.0789 134.91 1.4483 1.0775
DF-sq-MR-LDSRG(2)+NIVO 9.93 1.5666 1.3487 1.0788 134.91 1.4481 1.0774
Mk-MRCCSD 10.09 1.5628 1.3452 1.0775 134.89 1.4442 1.0764
Mk-MRCCSD(T) 8.56 1.5671 1.3535 1.0797 134.90 1.4515 1.0786

cc-pVQZ (nV = 324)
CASSCF 7.53 1.5467 1.3462 1.0689 134.84 1.4400 1.0678
DF-MR-LDSRG(2)+NIVO 10.16 1.5634 1.3452 1.0782 134.96 1.4447 1.0768
DF-sq-MR-LDSRG(2)+NIVO 10.21 1.5631 1.3451 1.0781 134.96 1.4446 1.0766
Mk-MRCCSD 10.28 1.5591 1.3417 1.0768 134.94 1.4406 1.0756
Mk-MRCCSD(T) 8.69 1.5634 1.3500 1.0791 134.95 1.4480 1.0779

cc-pV5Z (nV = 568)
DF-MR-LDSRG(2)+NIVOc 10.26
DF-sq-MR-LDSRG(2)+NIVOc 10.30

a C−C and C−−C refer to the longer and shorter carbon–carbon bonds, respectively.
b ∠C−C−H is the bond angle between the C−H bond and the longer C−C bond.
c Based on the corresponding cc-pVQZ optimized geometries.

lead to convergence issues that could be avoided only via Tikhonov regularization.

Geometric parameters for the optimized structures and energy barriers of CBD

computed with the CAS(4e,4o) reference are reported in Table 4.3. A comparison

the energy barrier computed at the CASSCF and correlated levels shows that dy-

namical correlation is important in this system as it increases is by about 1–3 kcal

mol−1. Our best estimate for the automerization barrier of CBD is 10.3 kcal mol−1

at the DF-sq-MR-LDSRG(2)+NIVO/cc-pV5Z level of theory. This value is likely

to be slightly higher then the exact results since in the Mk-MRCC results pertur-

bative triples corrections contribute to lowering the barrier by ca. 1.5 kcal mol−1.

In general, the MR-LDSRG(2) results are between those of Mk-MRCCSD and Mk-
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MRCCSD(T), reinforcing the same observation we made in the benchmark of diatomic

molecules. For instance, the MR-LDSRG(2) predicted C−C bond length at the D4h

geometry is 1.4446 Å, which is almost midway between the Mk-MRCCSD (1.4406 Å)

and Mk-MRCCSD(T) (1.4480 Å) values. As expected, the differences between the

conventional and sequentially transformed MR-DSRG(2) results are negligible. Our

results in cc-pVDZ and cc-pVTZ bases also agree well with other reported theoretical

values, especially those computed with multireference methods,114,117,120,120–125 and

the experimental range reported in Ref. 115. Using our new implementation, we were

able to perform, for the first time, nonperturbative multireference computations on

cyclobutadiene using the cc-pV5Z basis (580 correlated orbitals) on a single node with

128 GB of memory.

4.5 Conclusion

In this work, we describe a strategy to reduce the computational and memory

costs of the multireference driven similarity renormalization group (MR-DSRG). We

demonstrate that the cost of the linear MR-DSRG with singles and doubles [MR-

LDSRG(2)] can be lowered substantially without compromising its accuracy by using

a combination of: 1) a sequential unitary transformation, 2) density fitting (DF) of

the two-electron integrals, and 3) the non-interacting virtual orbital (NIVO) operator

approximation. The sequential MR-DSRG scheme introduced in this work [sq-MR-

DSRG] reduces the cost of evaluating single-excitations and allows to treat them

exactly. Like in the case of Brueckner coupled cluster theory,133–135 this approach

reduces the number of algebraic terms in the DSRG equations because there are no

terms (diagrams) containing single excitations. The use of DF integrals reduces the

memory requirements of the original MR-DSRG(2) from O(N4) to O(N2M), where

N is the number of basis functions. Density fitting is particularly convenient when

combined with the sequential approach because the contributions of singles can be
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directly included in the DF auxiliary three-index integrals, reducing the integral trans-

formation cost from O(N5) to O(N3M), where M is the number of auxiliary basis

functions. The NIVO approximation neglects the operator components of a commu-

tator with three or more virtual indices. A formal analysis of this approximation

showed that the leading error is of fourth order in perturbation theory. In practice,

NIVO is crucial to both avoiding the memory bottleneck of the MR-DSRG(2) and

reducing the computational cost to evaluate the transformed Hamiltonian.

To benchmark the MR-LDSRG(2) and sq-MR-LDSRG(2) approaches and assess

the impact of the DF and NIVO approximations, we computed the spectroscopic

constants of eight diatomic molecules using the full-valence active space and the cc-

pVQZ basis set. Compared to experimental data, both MR-DSRG methods yield

results that are as accurate as those obtained with CCSD(T). Moreover, the DF-

sq-MR-LDSRG(2)+NIVO results are almost identical to those computed without the

NIVO approximation: the harmonic vibrational frequencies, anharmonicity constants,

and dissociation energies only differ by, on average, 0.1 cm−1, 0.1 cm−1, and 0.2 kcal

mol−1, respectively. These results supports our claim that the speedup brought by

the NIVO approximation does not sacrifice the accuracy of both variants of the MR-

LDSRG(2).

Combining DF and the NIVO approximation, both the traditional and sequen-

tial MR-LDSRG(2) can be routinely applied to chemical systems with more than

500 basis function. We demonstrate this point by studying the automerization reac-

tion of cyclobutadiene using a quintuple-ζ basis set (584 basis functions). Our best

estimate of the reaction barrier from DF-sq-MR-LDSRG(2)+NIVO/cc-pV5Z is 10.3

kcal mol−1. However, we expect that this result is likely overestimated due to the

lack of three-body corrections in the MR-LDSRG(2) theory. Our results agree well

with Mk-MRCCSD predictions and multireference coupled cluster reported in the

literature.
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In conclusion, we have shown that it is possible to significantly reduce the cost of

MR-LDSRG(2) computations without reducing the accuracy of this approach. The

sequential approach and NIVO approximations are general, and can be applied to

improve the efficiency of other unitary nonperturbative methods (e.g., unitary coupled

cluster theory) and downfolding schemes for classical-quantum hybrid algorithms.47
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Chapter 5 Concluding remarks and outlook

In this dissertation, we have presented several efficient methods for both static

and dynamical correlation. Their improvements upon existing methods pushed the

limit on the treatable size of strongly correlated systems.

In the initial stage of our research, we tried to convert the full configuration

interaction quantum Monte Carlo (FCIQMC) method into an efficient deterministic

method. We introduced a general projector diagonalization approach and combined it

with path filtering to create a novel projector configuration interaction (PCI) method.

In PCI, we apply path filtering with a user-provided spawning threshold (η), the

determinant space is expanded but only include the most important determinants.

The path filtering algorithm distinguishes PCI from selected CI algorithms by the

fact that the Hamiltonian diagonalization is also approximated, which dramatically

decreased the computational cost. We reported computations with large CI space

containing over 108 determinants. The benchmarks show chemical accuracy can be

achieved using only a small fraction of the Hilbert space of determinants.

Efforts then devoted to further improve the accuracy and efficiency of the PCI

method. To improve accuracy, we implemented a Hermitian version of PCI with-

out significantly increasing the computational cost. Computation on an N2 potential

energy curve showed half the non-parallelism error. As for efficiency, with the ap-

proximated Hamiltonian being Hermitian, we introduced the Davidson–Liu algorithm

that converges three times faster than the 5th order wall-Chebyshev generator. We

also show that if the PCI determinant space is exactly diagonalized, the result en-

ergy is almost identical to the Heat-bath CI (HCI) energy computed with the same

threshold. Meanwhile, with the same theoretical computational cost, PCI is able to

compute more accurate wave function than selected CI methods.
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However, we realized the bottleneck of PCI is the computation of the variational

energy, in which the Hamiltonian matrix cannot be approximated so the computa-

tional cost is the same as selected CI methods. Although we have not figured out

a solution for efficiently variational energy, but recent developments1 in the field

provides potential application of PCI where accurate wave function is needed, but

not the variational energy. Furthermore, there are still many open questions in the

PCI theory. To better understand PCI, we need further research on how to target a

give accuracy like in adaptive CI2 and how to perturbatively correct the PCI results.

These problems should be investigated in future projects.

In the last part of this dissertation, we focused on the MR-DSRG methods. We

reduce the cost of the linear MR-DSRG with singles and doubles [MR-LDSRG(2)]

without compromising its accuracy by using a combination of 1) a sequential unitary

transformation, 2) density fitting (DF) of the two-electron integrals, and 3) the non-

interacting virtual orbital (NIVO) operator approximation. These techniques reduced

the memory requirement from O(N4) to O(N2M + N2N2
H), where N is the number

of basis functions,M is the number of auxiliary basis functions and NH is the number

of hole orbitals. The computational time is also reduced by one order of magnitude

in our benchmarks. These cost reductions enabled the study of the cyclobutadiene

automerization reaction using basis sets as large as quintuple-ζ.

This dissertation establishes the PCI as a CI method more efficient than general

selected CI methods and provides a low-cost alternative to the original MR-LDSRG(2)

method. A straightforward future project is to combine these two methods for accu-

rate description of large strongly correlated chemical systems. Similar research has

been published in our group that the combination of adaptive CI with the DSRG-

MRPT2 method (ACI-DSRG-MRPT2)3 is able to predict properties of acene series

on an active space of 30 electrons in 30 orbitals with more than 1000 correlated basis

functions. We expect the combination of PCI and DSRG methods shows similar or
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even better results in the future.
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