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Abstract

Hyperbolic 3-Manifolds as Discretized Configuration Spaces of Simple Graphs

By Michelle Chu

A discretized configuration space is a topological space of possible configurations

of particles in a graph in which multiple particles are not allowed in neighbouring

edges. In this paper, we consider discretized configuration spaces of three particles on

1-dimensional simple graphs, in particular, the discretized configuration spaces D3(K7)

and D3(K4,4). We prove that in both cases, removing certain vertices from the dis-

cretized configuration spaces on three particles results in complete finite-volume hy-

perbolic 3-manifolds. We describe their construction and triangulations by cubes and

tetrahedra. We also discuss their commensurability class in relation to each other and

to the complement of the figure-8 knot.
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1 Introduction

The topic of this paper is the study of the hyperbolic 3-manifolds that arise as the discretized

configuration spaces of three particles on simple graphs. We think of the particles as robots

moving on the graphs. These spaces related to motion-planning on graphs were first studied

by Abrams and Ghrist in [1, 2].

Before indulging in the study of these manifolds, we must first understand some basic

concepts which we describe in Section 2. We involve only necessary detail to explain graphs,

manifolds, hyperbolic geometry, cell-complex structures, and algebraic topology.

In Section 3 we introduce the preliminaries to this work. This section begins with an ex-

ample graph with its corresponding configuration space and discretized configuration space.

It moves on to formally define a discretized configuration space and provide the framework

for the rest of the paper. This section also provides the motivation. In particular, Proposition

3.1 in Section 3.3 produces a clear course of action for the rest of the work.

At last we reach the main topic of the paper in Sections 4 and 5. Section 4 provides

a detailed study of the discretized 3-space of the graph K7. It begins with a short study

of its predecessor, the discretized 2-space of the graph K5. We then describe in detail the

construction of D3(K7) and the nice properties it has. This section also contains many new

things we learned about this space throughout the course of this work. Section 5 proceeds in

a similar fashion to the previous section. It begins with the study of the discretized 2-space

of the graph K3,3 and continues with the construction and study of D3(K4,4).

In Section 6, we relate the two spaces D3(K7) and D3(K4,4) and conclude the paper with

some questions for further study.
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2 Prerequisites

2.1 Graphs

We begin with a brief introduction to graph theory. A graph consists of a set of vertices,

0-cells, and a set of edges, 1-cells, between pairs of vertices. A simple graph is one in which

no two edges share the same two boundary vertices and also no edges are loops both starting

and ending on the same vertex.

The order of a graph is the number n of vertices. The degree of a vertex is the number

of edges connected to such a vertex. We can represent graphs with diagrams in the plane as

in Figure 1.

Figure 1: A graph of order 4.

A graph is complete when each pair of distinct vertices are the endpoints of an edge.

A complete graph of order n has
(
n
2

)
= n(n − 1)/2 edges and is denoted Kn. Note that

sometimes when drawing a representation of a graph, we are forced to draw intersecting

edges where forced intersections do not form a vertex. Examples of this are the graphs K5,

K6, and K7 in Figure 2.

A complete bipartite graph Km,n is a graph with two sets of vertices, one with m elements

and another with n elements where each vertex is connected to all vertices in the opposite

set and to no vertices in the same set. Figure 3 shows the bipartite graphs K3,3 and K4,4.

Figure 4 shows an additional representation of K4,4.
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Figure 2: Complete graphs K1, K2, K3, K4, K5, K6, K7.

Figure 3: Bipartite graphs K3,3 and K4,4.

2.2 Manifolds and Hyperbolic Geometry

A manifold is a mathematical space that locally resembles Euclidean space of some dimen-

sion. The dimension of the Euclidean space is also the dimension of the manifold. More

specifically, a 3-manifold is a space in which every point is contained in a neighbourhood

homeomorphic R3. These neighbourhoods fit together nicely to cover the space.

Here, the word homeomorphic means that one can be continuously deformed into the

other by an invertible mapping called a homeomorphism. Roughly speaking, a homeomor-

phism is a continuous stretching and bending of one object into another. For example, a

solid cube is homeomorphic to a solid ball. Although they do not share the same geom-

etry, they share the same intrinsic topological properties. A doughnut and a ball are not

homeomorphic. However, a doughnut and a coffee cup are homeomorphic.

The topology of a space refers to the properties of that space that are unaffected by

continuous deformation like bending, stretching, or twisting, but not tearing or gluing. In

this way, a sphere and a cube are topologically equivalent, but a sphere and a doughnut are
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Figure 4: A representation of the graph K4,4.

not.

The geometry of a space refers to the properties that are affected by deformation, such as

curvature, volume, distance, and angle. These properties can help us determine the topology

of the space since not any space can admit, or be given, any geometry. A space is hyperbolic

if it can be made smoothly out of chunks of hyperbolic space by gluing together along faces.

Hyperbolic geometry is a non-Euclidean geometry in which the angles of a triangle add

up to less than π. In fact, the area of a triangle in hyperbolic space is determined solely by

its angles. The following Theorem is a modified version of Corollary 2.4.15 in [6].

Theorem 2.1. The area of a planar hyperbolic polygon with n sides is equal to (n− 2)π−S

where S is the sum of the interior angles.

The hyperbolic plane H2 is homeomorphic to R2. However, the geometry is very different.

As we have seen, the area of a polygon in the hyperbolic plane is not calculated in the same

way as it is calculated in the Euclidean plane R2. “Straight lines”, or curves which minimize

the distances between its points, are also different, and we refer to them as geodesics, to not

confuse them with the Euclidean counterpart.

It is difficult to picture the hyperbolic plane. Instead, we model hyperbolic geometry

with Euclidean models. There are many models of the hyperbolic plane in the Euclidean

plane, but throughout this paper we will use the upper half-plane model. It consists of the

upper half-plane together with a hyperbolic metric that models hyperbolic geometry. The

boundary line of the upper half-plane together with the point at infinity model the circle at

infinity of the hyperbolic plane. Geodesics are given by semicircles orthogonal to the line at
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infinity or by vertical Euclidean lines. This upper half-plane model of the hyperbolic plane

is particularly nice because it preserves the angles in the hyperbolic plane.

In hyperbolic spaces, including the hyperbolic plane, polygons with finite area (and also

polyhedra with finite volume) need not be closed and bounded as in Euclidean space. Poly-

gons (and also polyhedra) in hyperbolic space which have all vertices at infinity are said to

be ideal polygons with ideal vertices. Polygons can be either ideal, non-ideal, or semi-ideal,

when at least one but not all vertices are ideal. In Figure 5 we see two examples of congruent

ideal triangles in the upper half-plane model of the hyperbolic plane. Although they look

different, their angles add to 0 and they share the same area equal to π. They are in fact

isometric and we will see how.

Figure 5: Two regular ideal triangles in the upper half-plane model of the hyperbolic plane.

The 3-dimensional hyperbolic space H3 is also homeomorphic to its Euclidean counterpart

R3. In a similar way, we can model this space in Euclidean space with the upper half-space

model which we denote UHS. The UHS model consists of the upper half-space together with

a point at infinity and a metric which models hyperbolic geometry. The bounding plane

and the point at infinity constitute the sphere of infinity in this model. Planes in hyperbolic

space are given by half-spheres orthogonal to the plane at infinity in the UHS model or by

vertical planes.

In Euclidean space, an isometry is a map that preserves congruences. That is, reflections,

rotations, and translations in that preserve shape, size, and angles. Similarly, we have

isometries in hyperbolic space. In the upper-half space model, hyperbolic isometries are

given by Möbius transformations. Refer to Section 2.2 of [6]. Hyperbolic isometries preserve



6

shape, size, and angles. In fact, for any three ideal points in hyperbolic space, there is a

unique isometry taking those three points to any choice of three ideal points. Therefore,

all ideal triangles in H2 are congruent, or isometric, but all ideal tetrahedra are not. Since

we can take any three ideal points to any three, and the fourth point must follow along,

we describe the shape of a tetrahedron with a single complex number corresponding to the

fourth vertex when vertices 1, 2, and 3 are taken to the point at infinity and 0 and 1 on the

plane at infinity.

The triangles in Figure 5 are also regular. Polygons in 2-dimensions and polyhedra in

higher dimensions of hyperbolic space are regular when every combinatorial symmetry is

realized by a hyperbolic isometry. In particular, we can take any vertex to any other vertex

by a hyperbolic isometry. This definition of regular polyhedra implies that all dihedral angles

of a regular polyhedron are the same, since isometries preserve angles.

Analogous to the area of a hyperbolic polygon, the volume of a 3-dimensional convex

hyperbolic polyhedron is determined by solely its dihedral angles. This volume however, is

much more difficult to calculate. A straightforward way to find this volume is to triangulate,

which is basically to divide, the polyhedra into tetrahedra. The volume of a regular ideal

tetrahedron is well-known to be roughly 1.0149. Finding the volume of not so nicely shaped

tetrahedra is complicated. However, a computer can easily calculate the volume by using a

formula given in [3] which takes as inputs the six dihedral angles of a tetrahedron. Figure

6 shows an example of the regular ideal tetrahedron in the UHS model of hyperbolic space.

All dihedral angles are π/3. Notice that high enough cross sections are Euclidean equilateral

triangles.

Another model of hyperbolic space is the Poincaré ball model. In two dimensions, the

interior of a disk models the hyperbolic plane. The boundary circle models infinity just as the

line at infinity together with the point at infinity in the upper half plane model. Similarly,

the interior of a 3-dimensional ball models 3-dimensional hyperbolic space. In this case, the

boundary sphere models infinity. We will not refer back to this model in this paper except
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Figure 6: A regular ideal tetrahedron in the UHS model of hyperbolic space.

for a small part in Section 4.3.

More discussion on Möbius transformations, hyperbolic isometries, and different models

of hyperbolic space can be found in Chapter 2 of [6].

2.3 Cell Complexes

A cell-complex is a space built out of cells, where each cell is homeomorphic to an open

n-ball B ⊂ Rn for some dimension n, called n-cell. To build a cell-complex, sometimes

denoted a CW complex, we start with a set of discrete points or vertices. These are the

0-cells because they have dimension 0. We then add edges, or 1-cells, by specifying how

to attach their endpoints to the 0-cells already in place. We continue inductively to attach

the n-cells by specifying how to attach the boundary of each n-cell to the (n− 1)-skeleton,

where the k-skeleton is the union of all cells of dimension up to k. We will not worry about

infinite-dimensional cell complexes. Also, for the purpose of this paper, we need only be

concerned with cell complexes in which the set of k-cells, for each k, is finite.

2.4 Group Theory and Algebraic Topology

A group is a set together with an operation that takes two elements from the set into another

element in the set. A group has an identity element, distributive laws, and inverses for each
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element. In general, group operations need not be commutative. Those with commutative

operations are called abelian groups. For example, Z/n is an abelian group with the n

elements {0, 1, . . . , n− 1} and the operation of addition mod n. We refer to the number of

elements in a group as the order of the group.

A subgroup is a subset of a group which is also a group under the same operation. If H

is a subgroup of G we say that H is a normal subgroup if it is invariant under conjugations.

That is, for any g ∈ G with g−1 the inverse of g, gHg−1 = H. The index of the subgroup

H in G is the number of copies, called cosets, of H that fill G. Whenever H is a normal

subgroup, the set of distinct cosets G/H = {gH : g ∈ G} is in fact a group, called the

quotient group of G by H. The quotient group is an identification of elements in a larger

group. For more on group theory, refer to Part 1 of [4].

A topological space X has a covering space X̃ if there is a continuous map p : X̃ → X

such that each point in X has an evenly covered neighbourhood. More rigorously, there

exists an open cover {Uα} of X such that for each α, the inverse image p−1(Uα) is a disjoint

union of open sets in X̃, each mapped by p homeomorphically onto Uα. In particular, a

covering map is a local homeomorphism and X̃ is called a covering space of X. There is

an induced homomorphism of the fundamental groups of these spaces. A homomorphism is

a map between two groups satisfying specific conditions, and the fundamental group is the

group associated with each topological space. For more on homomorphisms, refer to Section

1.6 of [4]. The fundamental group of a path-connected space X is denoted π1(X). Refer to

Chapter 1 of [5] for more on fundamental groups and covering spaces.

Given a group G and a set Y , a group action of G on the set Y is a homomorphism

ρ : G → Homeo(Y ) where Homeo(Y ) is the group of homeomorphisms from Y to itself. So

each element of G is associated with a homeomorphism from Y to itself. If the map ρ is

injective, then G is identified with a subgroup of Homeo(Y ). If g ∈ G then we think of g as

the homeomorphism from Y to itself. If for all y ∈ Y and all nontrivial g ∈ G, g(y) 6= y,

then the group action of G on Y is a free action. That is, an action is free if it has no fixed
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points. We introduce this concept of free actions because they provide a way to find quotient

spaces. If Y is some simply connected space and G acts freely on Y , then Y/G is a quotient

space of Y with fundamental group G. Refer to Section 1.3 of [5].

For the purpose of this paper, we consider two compact manifolds as commensurable if one

has a finite cover homeomorphic to a finite cover of the other. Actually, commensurability

is more general. It is a an equivalence class, for example if N1 shares a finite cover with

N2, which shares a finites cover with N3, which shares a finite cover with N4, then all of

N1, N2, N3, and N4 are commensurable. Two groups are commensurable if one has a finite

index subgroup that is isomorphic to a finite index subgroup of the other, or similarly as in

the manifold case, if they are in the same commensurability class. A cover of a space X is

uniquely determined by the corresponding conjugacy class of a subgroup of the fundamental

group of X. The definition of commensurability between two manifolds can be equivalently

defined by saying that their fundamental groups are commensurable.

3 Preliminaries and Definitions

3.1 Motion-Planning

As a motivation for our project, we begin with a simple problem that illustrates the general

questions of configuration spaces. We will formally define these spaces in Section 3.2.

Figure 7: A labelling of the vertices of K3.

Imagine two robots moving inside the graph of K3 labelled as in Figure 7. Obviously,

these two robots cannot occupy the same position at the same time. Consider all the possible
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positions of two robots with the property that the two robots are never on the same position.

This creates a topological space known as the configuration space of two agents in K3, or

C2(K3). The set of positions where the robots coincide is the pairwise diagonal ∆. Thus

C2(K3) = K3 ×K3 −∆.

An edge cross an edge yields a square, or 2-cell. The product graph K3×K3 consists then

of 9 squares glued together. Of these, 6 correspond to configurations in which the robots

are on distinct edges. The remaining three squares correspond to configurations in which

the robots are in the same edge. But these are each divided into 2 triangles by deleting the

diagonal ∆ corresponding to configurations in which both robots occupy the same position.

We then make identifications corresponding to the fact that once a robot has travelled from

vertex a to b to c, it comes back to vertex a. Therefore, we arrive at the space demonstrated

in Figure 8 on the left, before the making the identifications, and on the right after the

identifications.

Figure 8: The configuration space C2(K3) before identifications on the left and embedded in
R3 after identifications on the right. Dotted lines are in the diagonal.

If instead, we add another restriction by not allowing the two robots to lie on neighbouring

edges, that is on two edges who share a vertex, we get the discretized configuration space

D2(K3). This space is a subset of the configuration space above, with the space near the

diagonal removed. This space is demonstrated in Figure 9.

Another way to construct this space, which will also end in the same space D2(K3), is to

start with the 0-cells and inductively attach the next dimension of cells. In this case, there
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Figure 9: The discretized configuration space D2(K3) before identification on the left and
smoothly deformed after identification to fit nicely on the right.

is only one other dimension, as we have seen, however, it would make sense to check for

2-dimensions since it is the highest dimension a space on two robots can be, since we can

have an edge cross an edge. This construction is described as follows:

0-cells: The 0-cells correspond to having both robots on vertices of K3. Once one of the

robots is placed on one of three vertices, there are two vertices remaining in which the second

robots can be positioned. Therefore, our space has (3)(2) = 6 0-cells. These are obviously

(A,B), (A,C), (B,C), (B,A), (C,A), and (C,B).

1-cells: The 1-cells correspond to having one robot on a vertex and another on an edge of

K3. Once one of the robots is placed on one of three vertices, the other robot only has one

available edge to be on. See Figure 10. However, we also add a factor of 2 to account for

which robot is placed on a vertex first. In other words, we could have either vertex×edge or

edge×vertex. Therefore, we have (2)(3)(1) = 6 edges. Knowing this, it is easy to see which

0-cells bound each of these 1-cells, and therefore easy to attach the 1-cells to the 0-cells and

form the space on the right of Figure 9.

2-cells: These cells would correspond to both robots being on an edge. However, once a

robot is placed on an edge, the only availability for the second robot is the remaining vertex

and not the interior of any edges. Thus, there are no 2-cells and we are finished with the

construction of D2(K3).
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Figure 10: Placing a robot on the filled vertex of K3 leaves the remaining grey areas for the
placement of the second robot.

3.2 Formal Definition of Configuration Spaces

The configuration space of a graph Γ is defined as follows:

CN(Γ) := (Γ× · · · × Γ)−∆.

It is important to notice that CN(Γ) is not a manifold for a non-trivial graph Γ. Since Γ

itself is usually not locally euclidean, then neither are the products of this graph.

A graph Γ has a cellular structure of vertices and edges. The N -fold product of Γ with

itself inherits a cell structure consisting of products of N -cells, or N -dimensional cubes from

Γ. The diagonal ∆ slices product cells with repeated factors. These partial cells and all other

cells with closures intersecting the diagonal could be collapsed onto an essential skeleton of

the configuration space. This skeleton is a cell complex of dimension at most N and is

formally defined as the discretized configuration space:

DN(Γ) := (Γ× · · · × Γ)−∆

where ∆ is the set of all product cells whose closures intersect the diagonal ∆.

In Dn(Γ), all k-cells are k-dimensional cubes. As we saw in 3.1, we can construct the

discretized space in more than one way. In the remainder of the paper, we will construct

these spaces similarly to the second construction of D2(K3) starting with the 0-cells and

attaching the k-cells to the (k − 1)-cells as defined by the combinatorics of the space. This
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way of constructing the discretized spaces will work better for more discretized configuration

spaces of more complicated graphs.

3.3 The Premise

We saw in the example in Section 3.1 that D2(K3) is homeomorphic to a circle. However,

discretized configuration spaces of graphs are not generally manifolds. If D3(Γ) is to be a

3-manifold away from the vertices there are limited options as to what Γ can be. We have

the following result from [1].

Proposition 3.1. If Γ is a connected simple graph, then D3(Γ) is never a 3-dimensional

manifold.

The interiors of cubes are always manifold points. The only points that may fail to be

manifold points are those on the faces, edges, and vertices. These points are manifold points

if their neighbourhoods are homeomorphic to a 3-dimensional ball. Suppose that D3(Γ) is a

3-manifold. Then points in the faces are manifold points and therefore each face is contained

in exactly two 3-cells. In other words, if A is a set of two disjoint edges, then each vertex

of Γ − A has degree exactly 2. We refer to Γ − A as the subset graph of Γ with A deleted

and also all edges connected to vertices in A deleted as well. In particular, this means that

Γ−A is a disjoint union of cycles. Each cycle must have length at least 3, since no loops or

multiple edges are allowed in simple graphs.

Lemma 3.2. For any set of two disjoint edges A in Γ, if D3(Γ) is a 3-manifold, then Γ−A

is connected.

Proof. For any set of disjoint edges A in Γ, we know that Γ−A is a disjoint union of cycles.

Suppose that Γ − A is disconnected, that is, it has more than one disjoint cycle. Let B be

one of those cycles. We can then choose different choices of A′ to be any set of two disjoint

edges in Γ−B to see that none of the vertices in Γ−B are joined to any vertex in B. That

is, we pick A′ to be an edge in A and an edge in Γ − A − B or two edges in Γ − A − B.
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Since B will already be a cycle in Γ− A′, B is disjoint from any vertices in Γ− B. Then Γ

is a union of disjoint graphs and D3(Γ) is disconnected. We can conclude that Γ − A is a

connected cycle.

Lemma 3.3. For any set of two disjoint edges A in Γ, if D3(Γ) is a 3-manifold, then Γ−A

is a cycle of length 3 or 4.

Proof. From Lemma 3.2, we know that given a set of two disjoint edges A in Γ, Γ− A is a

single cycle of length at least 3. Suppose that Γ− A is a cycle of length at least 5 as in the

leftmost diagram of Figure 11. Choosing a different set A′ of two known disjoint edges and

including the edges in Γ − A disjoint from A′ results in the middle diagram of Figure 11,

since Γ−A′ must also be a cycle. Choosing yet another set A′′ of two known disjoint edges

of Γ and including the edges known from both Γ − A and Γ − A′ results in the rightmost

diagram of Figure 11.

Figure 11: Discovery of Γ through the complements of A, A′, and A′′ in Γ.

Choosing yet a fourth set A∗ of two known disjoint edges as in Figure 12 results in a

contradiction. Γ − A∗ is not a cycle, as shown by the drawn edges which are known from

Γ− A, Γ− A′, and Γ− A′′. Therefore, Γ− A is a cycle of length 3 or 4.

Figure 12: A∗ and known edges in Γ− A∗.
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Proof of Proposition 3.1. Following the results of Lemma 3.2 and Lemma 3.3, it suffices

to show that D3(Γ) is not a manifold when for any set of two disjoint edges A in Γ, Γ − A

is a cycle of length 3 or 4.

If the length of Γ−A is 3, then we have Figure 13. Choosing other combinations of two

edges in Figure 13 results in Figure 14. Notice that combinatorially, the choices made in this

figure are the only choices. It is then easy to see that Γ must be K7.

Figure 13: Γ− A and A when Γ− A is a 3-cycle.

Figure 14: Other choices of Ai and the corresponding 3-cycles Γ− Ai.

If the length of Γ−A is 4, then we have Figure 15. Choosing other combinations of two

edges in Figure 15 results in Figure 16. Notice that combinatorially, the choices made in this

figure are the only choices. It is then easy to see that Γ must be K4,4.

We have narrowed the list of possible graphs to K7 and K4,4. It is straight-forward to

check that a neighbourhood of a 1-cell is homeomorphic to a Euclidean 3-ball. Thus, the

1-cells in D3(K7) and D3(K4,4) are manifold points as well.



16

Figure 15: Γ− A and A when Γ− A is a 4-cycle.

Figure 16: Other choices of Ai and the corresponding 3-cycles Γ− Ai.

Consider now the vertices of D3(K7). If a vertex was locally Euclidean, then its neigh-

bourhood would have a boundary homeomorphic to a 2-dimensional sphere. This boundary

is the link of the vertex. We know that each vertex in D3(K7) is incident to 24 3-cells. We

can take a neighbourhood of each vertex and look at how its boundary intersects the 24

3-cells around the vertex. Each 3-cell will be intersected in a triangle. The gluing of these

24 triangles is determined by the gluing of the 3-cells and results in the boundary of the

neighbourhood of the vertex. In this case, this boundary is homeomorphic to a torus, and

not a 2-sphere. It has a cell structure as in Figure 17. Therefore, D3(K7) is not a manifold.

When considering the vertices of D3(K4,4), there are two types of vertices as described

in 5.2. We can check to see that neighbourhoods of type B vertices are locally Euclidean,

however neighbourhoods of type A vertices have torus boundaries with the same cellular

structure as the boundaries of neighbourhoods of vertices in D3(K7). Therefore, D3(K4,4) is

not a manifold.
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Figure 17: Cell structure of the boundary of the neighbourhood of a vertex of D3(K7).

The proof of Proposition 3.1 shows that K7 and K4,4 are the only simple graphs whose

discretized configuration spaces on three robots are manifolds away from the vertices. We

devote the rest of this paper to the study of these two spaces, D3(K7) and D3(K4,4).
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4 Discretized Space of K7

4.1 2-dimensional forerunner: D2(K5)

Consider the complete graph K5. The discretized configuration space of two points on this

graph is a 2-dimensional complex. We can use simple counting arguments to determine the

structure of this complex. It will become clear following the construction that this complex

is a 2-manifold. K5 has 5 vertices and 10 edges.

0-cells: 0-cells correspond to a vertex cross a vertex. This is when the two robots are at

different vertices. Therefore, we have (5)(5− 1) = 20 0-cells.

1-cells: 1-cells correspond to an edge cross a vertex. This is when one robot is on a vertex

and the other robot is on an edge disjoint from the vertex of the first robot. Placing first a

robot on one of five vertices, we see that there are six possible edges for the other robot. We

include also a factor of 2 for the two distinct points. This is since we can have vertes×edge

or edge×vertex. Therefore, there are (2)(5)(6) = 60 1-cells.

2-cells: 2-cells correspond to an edge cross an edge. This occurs when the points are at

disjoint edges. Once the first point is placed on any of the ten edges, there are three possible

edges in which to place the second robot. Therefore, we have (10)(3) = 30 2-cells.

Notice that each 1-cell is incident to exactly two 2-cells connected along the 1-cell. We

can see this by considering a 1-cell in D2(K5). This corresponds to an edge cross a vertex in

K5. This 1-cell is a boundary of the 2-cells corresponding to the same edge on K5 together

with a second edge which is joined to the specific vertex. We can then see that once the first

edge for one of the robots is removed, the second robot currently on a vertex has exactly

two options of edges to go on. Refer to Figure 18. Similarly, each 0-cell is incident to six

1-cells, of which two adjacent 1-cells form a corner of a 2-cell. Refer to Figure 19. D2(K5)

is a connected, orientable manifold.

The classification theorem for surfaces tells us that we can determine our space using its
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Figure 18: A 1-cell in D2(K5) is shared by two 2-cells corresponding to the choice of grey
edge.

Figure 19: The neighbourhood of a vertex in D2(K5).

Euler characteristic, where g is the genus of the surface.

2− 2g = χ = (no. of vertices)− (no. of edges) + (no. of faces) = 20− 60 + 30 = −10

Therefore, D2(K5) is a closed orientable surface of genus six. It is made from 10 triangular

tubes glued on their boundary triangles. Figure 20 shows an embedding of D2(K5) in R3.

In D2(K5), 2-cells fit six around a vertex. Each of these 2-cells can be given the geometry

of a regular quadrilateral in hyperbolic space. Each interior angle is equal to π/3. By

Theorem 2.1, the area of D2(K5), is (30)(2π − 4π/3) = 20π, roughly 62.832.

4.2 Building Blocks

We now consider the space D3(K7). In Section 3.3 we saw that the discretized configura-

tion space of K7 is a 3-dimensional complex homeomorphic to a 3-manifold away from the

vertices. We can use simple counting arguments to determine the structure of this complex.
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Figure 20: The views are different angles of an embedding of the cell complex of D2(K5) as
a polyhedron in R3. On the bottom is the “x-ray” version of D2(K5).

K7 has 7 vertices and 21 edges.

0-cells: 0-cells correspond to a vertex cross a vertex cross a vertex. Therefore, we have

(7)(6)(5) = 210 0-cells.

1-cells: 1-cells correspond to an edge cross a vertex cross a vertex. This is when one robot

is on an edge but the other two robots are at vertices disjoint from the boundaries of the

edge where the first robot is. Placing first the two robots on vertices in K7 we see that the

remaining 5 vertices form a subset K5 where the third robot is allowed to be. Therefore,

the number of 1-cells is (3)(7)(6)(10) = 1260. We include a factor of 3 for the three dis-

tinct robots. This factor of 3 makes up for vertex×vertex×edge, vertex×edge×vertex, or

edge×vertex×vertex.

2-cells: 2-cells correspond to an edge cross an edge cross a vertex. Once a robot is placed on

any of the 7 vertices, and a second robot is placed on any of the edges in the remaining K6,

there is a remaining K4 disjoint from the 3 vertices corresponding to the first robot and the

second robot. Therefore, we have (3)(7)(15)(6) = 1890 2-cells. Again, we include a factor of
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3 for vertex×edge×edge, edge×vertex×edge, or edge×edge×vertex.

3-cells: 3-cells correspond to an edge cross an edge cross an edge. Once a robot is placed

on any of the 21 edges, there remains a K5 of possibilities for the second and third robot.

Therefore, we have (21)(10)(3) = 630 3-cells.

Notice that each 2-cell borders exactly two 3-cells in our complex. This shows that

small neighboorhoods of the faces are homeomorphic to Euclidean balls, which is consistent

with the definition of manifold on the faces. Also notice that each 1-cell borders six 2-cells.

Locally, an edge of D3(K7) looks like a vertex in D2(K5) cross an interval. Refer to Figure

21.

Figure 21: An edge of D3(K7).

From Proposition 3.1, we know that the vertices of D3(K7) are not manifold points.

However, D3(K7) with its vertices deleted is a 3-manifold. We denote this manifold M1.

4.3 Geometric Properties of M1

We want to build M1 out of regular ideal cubes in hyperbolic space. Let C be the ideal cube

in H3 with vertices forming a Euclidean cube in the boundary sphere of H3 as the Poincaré

ball model. Through this construction, we notice that the dihedral angles of C coincide

with the dihedral angles of the circles in the boundary sphere of H3. Thus we have dihedral

angles of π/3. We consider our cube C in the Upper Half Space model of Hyperbolic Space



22

where the point at infinity is vertex 0 on the cube on Figure 22. If vertices 1 and 2 are two

points on the plane at infinity, the line connecting the two is at an angle of π/3 from the

lines connecting vertices 1 and 3 and vertices 2 and 3. We can reflect to choose the line with

vertices 2 and 3, which then determines vertex 3.

Figure 22: A cube with labelled vertices.

Vertices 4, 5, and 7 lie on the same plane as vertex 1. Vertices 5, 6, 7 must lie on the same

plane as vertex 3, and vertex 4, 6, and 7 lie on the same plane as vertex 2. This means that

vertices 4 and 5 are at the same distance from 1, vertices 5 and 6 are at the same distance

from 3, and vertices 4 and 6 are at the same distance from 2. Since vertex 7 must on all

three planes corresponding to vertices 1, 2, and 3, this means that three circles at infinity,

each containing exactly one of vertices 1, 2, and 3 must meet at a point. But also, every

pair of these circles meets at exactly two points. For instance, the circle containing vertex

1 and the circle containing vertex 2 must meet at exactly two points, those corresponding

to vertex 4 and to vertex 7. In this way each vertex is determined. We have a hyperbolic

regular ideal cube which can be modelled in the Upper Half Space model as in Figure 23.

Notice that every symmetry of C is realized by a hyperbolic isometry. Therefore, our cube

C is regular and every regular ideal cube in H3 is isometric to C. We give M1 a hyperbolic

structure.

Now that we have determined the shape of the regular ideal cube in hyperbolic space,

we know that each dihedral angle is π/3. Therefore, we can triangulate our cube into five
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Figure 23: The plane at infinity of the Upper Half Space model of the hyperbolic regular
ideal cube on the left, and the UHS model of the cube on the right.

regular ideal tetrahedra, whose volume is finite and well-known. We divide our cube as in

Figure 24.

Figure 24: A triangulation of a cube into 5 tetrahedra. Since our cube is a regular ideal
hyperbolic cube, all five tetrahedra are regular ideal hyperbolic tetrahedra.

Recall from Section 2.2 that there is at most one isometry taking 4 points at infinity to

4 points at infinity. Therefore, there is only one way to glue the faces of our cubes in M1.

This determines completeness of the manifold as defined in Chapter 3 of [6]. The gluing is

determined. We have the following Theorem.

Theorem 4.1. M1 is a complete hyperbolic 3-manifold with 210 cusps and volume (630)(5) =

3150 times the volume of a regular ideal tetrahedron, or roughly 3197.067.



24

4.4 Other Discoveries

Figure 25: The figure-8 knot.

Consider the space K of the figure-8 knot complement, the space obtained from the 3-

sphere by deleting the figure-8 knot embedded in S3 (see Figure 25). This space is studied

extensively in Chapter 1 of [6]. K is a complete finite-volume hyperbolic 3-manifold with 1

cusp and a structure with two regular ideal tetrahedra. It is conceivable that our manifold

M1 is a 1575 sheeted cover of K, where each point in K is 1575 identified points on M1. If

this were the case, 210 cusps in M1 cover the 1 cusp in K. However, although our cubes can

be triangulated into regular ideal tetrahedra to compute the exact volume of our manifold,

our entire space cannot be consistently triangulated into tetrahedra in that way. This is

because when we look at one of our cubes, the way we divide it into 5 tetrahedra determines

the way the adjacent cubes are divided into tetrahedra so that the faces of the tetrahedra

match.

There are exactly two ways in which to divide a cube into 5 tetrahedra. If we start with

a cube divided in a certain way, the adjacent cubes must be divided in the opposite way in

order to fit in the faces nicely. Now consider some cube in D3(K7). This cube is defined by

choosing three edges in the graph of K7, call it cube 1. We can pick face a of this cube to

find the adjacent cube 2 sharing the face a. The opposite face in cube 2, face b then defines

cube 3. On cube 3, the face opposite face b is face c which defines the next cube. However,

this next cube is again cube 1. These moves correspond to one robot moving around a K3

subset of K7 while the other two robots remain stagnant and determines the stacking of
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cubes. Refer to Figure 26.

Therefore, if cube 1 has the first triangulation into 5 tetrahedra, then cube 2 has the

second, and then cube 3 has again the first triangulation. But this would make cube 1 have

the second triangulation, and this is a contradiction. Therefore, the triangulation into 5

tetrahedra is inconsistent with the gluing pattern. In fact, an argument due to Thurston

shows that M1 does not cover K. We will omit the proof in this paper. Refer to [7].

Figure 26: The cycle of one robot in a K3 subset of K7 determines the stacking of cubes in
M1.

We then considered another question. Are K and M1 commensurable? It is conceivable

that a two-sheeted cover of M1 could be consistently triangulated into regular ideal tetrahe-
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dra. In fact, in [7], there is an argument that the smallest cover of M1 which is also a cover

of K would have to be at least an 8-sheeted cover. Finding a common cover of M1 and K is

not necessarily to show the two spaces are commensurable. We can construct a two-sheeted

cover of M1 which can be triangulated into 6300 regular ideal tetrahedra. We notice that

there is a tiling of H3 by regular ideal tetrahedra whose symmetry group contains an index 2

subgroup with quotient K and an index 6300 subgroup with quotient the two-sheeted cover

of M1. Therefore, M1 and K are commensurable.
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5 Discretized Space of K4,4

5.1 2-dimensional forerunner: D2(K3,3)

Consider the complete graph K3,3. The discretized configuration space of two points on this

graph is a 2-dimensional complex. As in the case of D2(K5), we can use simple counting

arguments to determine the structure of this complex. It will become clear following the

construction that this complex is also a 2-manifold. Our cell complex has (6)(5) = 30

0-cells, (2)(6)(6) = 72 1-cells, and (9)(4) = 36 2-cells.

Figure 27: A vertex of type A on the left and a vertex of type B on the right. These are
both based on Figure 3. In particular, vertices on the top are not joined to other vertices on
the top through edges, and similarly for vertices on the bottom with vertices on the bottom.

Notice that we have two distinct types of vertices, which we will denote type A and type

B as in Figure 27. A vertex of type A is incident to six edges and, thus six 2-cells, while a

vertex of type B is incident to four edges, and thus four 2-cells. Also, each edge is incident

to exactly two 2-cells. The Euler characteristic tells us that D2(K3,3) is a closed orientable

surface of genus four. Figure 28 shows an embedding of D2(K3,3) in R3.

Consider any 2-cell, or “square” in D2(K3,3). We can pick an edge of the square and move

to the next square. We then pick the edge of this second square that is opposite from the

edge we just came from and move through that edge on to the next square. If we continue

to do this, we return to the starting square after visiting three others, so four squares in

total, regardless of which square we pick or which edge on that square we pick. These moves

correspond to having one robot moving around a 4-cycle subset of K3,3 while the other robot

remains in place. We can redraw the edges of D2(K3,3) consistently by drawing “straight”

lines between vertices of type A and making these the edges of new regular quadrilaterals.

Then, six squares fit around a vertex. Also, a quarter of the new regular quadrilateral
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Figure 28: The views are different angles of an embedding of the cell complex of D2(K3,3)
as a polyhedra in R3. On the bottom is the ”x-ray” version of D2(K3,3).

occupies half the area of an old quadrilateral. It might seem strange to change the structure

of the complex in the same space, however, this serves as a foreshadow to a construction of

the space of D3(K4,4). Exactly 18 regular quadrilaterals tile the discretized space of K3,3.

Each interior angle is equal to π/3, since they fit six around a vertex. Thus by Theorem 2.1,

the area of D2(K3,3), is (18)(2π − 4π/3) = 12π, roughly 37.699.

5.2 Building Blocks

We now consider the space D3(K4,4). In Section 3.3 we saw that the discretized configuration

space of K4,4 is a 3-dimensional complex homeomorphic to a 3-manifold away from the

vertices. We can use simple counting arguments to determine the structure of this complex.

K4,4 has 8 vertices and 16 edges.

0-cells: 0-cells correspond to a vertex cross a vertex cross a vertex. Therefore, we have a

total of (8)(7)(6) = 336 0-cells. However, we differentiate between two different types of

vertices. Type A vertices and type B vertices are as in Figure 29.

We have (8)(3)(2) = 48 type A vertices and (3)(8)(4)(3) = 288 type B vertices. Recall
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Figure 29: A vertex of type A on the left and a vertex of type B on the right. These are
both based on Figure 3. In particular, vertices on the top are not joined to other vertices on
the top through edges, and similarly for vertices on the bottom with vertices on the bottom.

from Section 3.3 that the neighbourhoods of B vertices are balls but neighbourhoods of A

vertices have torus boundaries.

1-cells: 1-cells correspond to an edge cross a vertex cross a vertex. Placing the first robot

on an edge, we see that the remaining 6 vertices form a subset K3,3 where the second

and third robots are allowed to be on. We include a factor of 3 for vertex×vertex×edge,

vertex×edge×vertex, or edge×vertex×vertex. Therefore, the number of 1-cells is (3)(16)(6)(5) =

1440. However, we differentiate between two different types of edges. Type α edges connect

between an A and a B vertex. Type β edges connect between two B vertices. These are as

in Figure 30.

Figure 30: An edge of type α on the left and an edge of type β on the right.

We have (3)(16)(6)(2) = 576 type α edges and (3)(16)(3)(3) = 864 type β edges. There

is annother important distinction between these edges. Type α edges have 6 cubes around

them, while type β edges have only 4 cubes around them.

2-cells: 2-cells correspond to an edge cross an edge cross a vertex. Placing the first robot on

an edge, we see that the remaining 6 vertices form a subset K3,3 where the second and third

robots are allowed to be on, one on an edge and the other on a vertex. Again we include a

factor of 3 for vertex×edge×edge, edge×vertex×edge, or edge×edge×vertex. Therefore, we

have (3)(16)(9)(4) = 1728 2-cells. Notice that all 2-cells are combinatorially the same. They

have one type A vertex and three type B vertices.

3-cells: 3-cells correspond to an edge cross an edge cross an edge. Once a robot is placed
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on any of the 16 edges, there remains a K3,3 of possibilities for the second and third robot.

Therefore, we have (16)(9)(4) = 576 3-cells. Notice that all 3-cells are combinatorially the

same. They have two type A vertices and six type B vertices.

Similar to the case of D3(K7), we can delete the vertices of type A from D3(K4,4) which

are not manifold points. We then have a 3-manifold which we will denote M2.

5.3 Geometric Properties of M2

Since each cube has two deleted vertices, we want to build M2 out of nice geometric semi-ideal

cubes. We would like to show that there exists a semi-ideal cube in H3 with two opposite

ideal vertices, 6 non-ideal vertices, and dihedral angles suitable for building M2 Let D be the

cube with two opposite type A vertices and six type B vertices. Type A vertices are ideal

while type B vertices are not. We consider our cube D in the Upper Half Space model of

Hyperbolic Space where the point at infinity is one of the vertices of type A and a point on

the plane at infinity is the other type A vertex of the cube. D has six type α edges with six

cubes fitting around each and six type β edges with cubes cubes fitting around each. The

geometry of D in Hyperbolic Space is determined by the angles of π/3 for type α edges and

π/2 for type β edges. We build our semi-ideal cube as in Figure 31.

Figure 31: The plane at infinity of the Upper Half Space model of the hyperbolic semi-ideal
cube on the left, and the UHS model of the cube on the right.

Notice that the dihedral angles of the edges of type α (those connecting between a type
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A and a type B vertex) are π/3 on the model. The β edges are intersection of half spheres

with vertical planes that go through the center of the spheres. Then, the dihedral angles

of the β edges are π/2 on the model. This is good because it means that we can make M2

out of cubes in H3, giving it a hyperbolic structure. We also know M2 is complete from the

definition in Chapter 3 of ??. Therefore, we have the first part of the following Theorem.

Theorem 5.1. M2 is a complete hyperbolic 3-manifold with 48 cusps and volume 864 times

the volume of a regular ideal tetrahedron, or roughly 876.910.

To determine the volume, we can triangulate our cube into six semi-ideal tetrahedra by

cutting along the geodesic connecting the two type A vertices. In this way, all six tetrahedra

are congruent, with two ideal vertices, and two non ideal vertices. The tetrahedron has

angles π/6, π/3, π/3, π/6, π/2, π/2 as in Figure 32.

Figure 32: A triangulation of a cube into 6 tetrahedra. The open vertices represent ideal
vertices in our semi-ideal cube.

Using the formula described in [3], we calculated the volume of this tetrahedron to be

a fourth of the volume of a regular ideal tetrahedron. In fact, cutting an edge from the

midpoint of one edge of the regular ideal tetrahedron to the midpoint of the opposite edge

and declaring those two points as the non-ideal vertices divides the regular ideal tetrahedron

into four tetrahedra of the type we are looking for. Six of these semi-ideal tetrahedra make
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up our semi-ideal cube by rotating around the geodesic. We can imagine our cube made out

of a fourth of each of six regular ideal tetrahedra as in Figure 33.

Figure 33: Before and after a triangulation of a regular ideal tetrahedron into four semi-ideal
tetrahedra. The dotted lines are new edges in the triangulation of the tetrahedron. The open
vertices represent ideal vertices.

There is only one way to glue the faces of our cubes inM2. The gluing is determined, again

because there is at most one hyperbolic isometry taking 4 points to 4 points. Then, M2 is a

complete finite-volume hyperbolic 3-manifold with 48 cusps. Its volume is (576)(3/2) = 864

times the volume of a regular ideal tetrahedron.

5.4 Other Discoveries

In an effort to get a better understanding of M2, we study a related manifold, which we will

call UM2. UM2 is the manifold we get by unlabelling the three robots. UM2 is obtained as

a quotient space of M2 which has 1/6 the number of cubes; that is, it is constructed from

96 semi-ideal cubes. This is because there are 6 ways to label the three robots. This also

means that UM2 has the volume of (96)(3/2) = 144 regular ideal tetrahedra.

Consider the non-ideal vertices of UM2. These are the vertices which we referred to as

type B in D3(K4,4) (see Figure 29). They can be divided into two types, those with two

robots on the top row (and only one in the bottom row), and those with two robots on the

bottom row (and only one in the top row). In UM2 after unlabelling the robots, there are
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(
4
2

)
ways to choose two top vertices on K4,4 and 4 ways to choose a vertex on the bottom

row. Thus, we have have 24 non-ideal vertices of the two-on-top type in UM2. For each

of these there are 6 choices of edges to connect them to a two-on-bottom non-ideal vertex

which makes (24)(6) = 144 edges. These 144 edges are the edges that cut through a regular

ideal tetrahedron separating it into four tetrahedra, each of which makes up one sixth of the

semi-ideal cube (refer to 5.2). Notice that these non-ideal edges define the ideal tetrahedra,

as in Figure 34, in a way that different tetrahedra do not intersect.

Figure 34: A regular ideal tetrahedron defined by a non-ideal edge. The open vertices
represent ideal vertices. On the left is a regular ideal tetrahedron defined on 4 cubes. On
the right is two adjacent regular ideal tetrahedra in 6 cubes.

There is a 1-to-1 correspondence between these edges and the tetrahedra. In particular,

this implies that UM2 can be triangulated with tetrahedra, 144 of them. Furthermore, since

UM2 is a quotient space of M2, the triangulation of UM2 by regular ideal tetrahedra lifts

to a cover of M2 by regular ideal tetrahedra. A chunk made out of twelve cubes of M2 and

also of UM2 looks like the image in Figure 35. However, in UM2 some of the open vertices

are identified and this figure may be misleading.

The fact that M2 and UM2 can be triangulated by regular ideal tetrahedra shows that

M2 and UM2 are commensurable with the figure-8 knot complement K described in Section

4.4. This is because the symmetry group of the tiling of H3 by regular ideal tetrahedra

contains finite index subgroups with quotients M2, UM2, and K.
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Figure 35: A chunk of M2 or UM2 from twelve semi-ideal cubes. The open vertices represent
ideal vertices. The long edge between ideal vertices that runs through the center is a part
of six regular ideal tetrahedra, each of which contains that edge together with two adjacent
ideal vertices from the middle and all the points in between.

The group Z8 acts onM2 and UM2. The action is given by 1
8

rotation of the representation

of K4,4 given on Figure 4. We can check that this action is free by checking that it has no

fixed points. It is straight forward to see that given a 3-cell of the discretized space, that is

three disjoint edges in K4,4, only the identity rotation will give the same 3-cell. This shows

that the interiors of the cube are not fixed by the action. In the same way, we can check

that 0-cells of the discretized space are not fixed. In this case, each of these is a choice of 3

vertices of K4,4. Since 3 and 8 are relatively prime, only the identity rotation will give the

same 0-cell. This shows that the 0-cells of the discretized space are not fixed by the action.

The only thing left to show is that the 1-cells and the 2-cells of the discretized space are

not fixed. The 1-cells would be fixed only if the boundary 0-cells are interchanged by the

rotation. Once again, it is easy to see that this does not happen. Rotation does not fix

2-cells either because rotation by eighths does not fix 3 vertices on K4,4. A 2-cell is defined

by two edges in K4,4 (each of which takes 2 vertices) and one extra vertex. Thus, the three

left over vertices are not fixed by rotation since 3 and 8 are relatively prime. We conclude

that the action given by 1
8

rotation is a free action.

Since the action by rotation on the graph of K4,4 is free, we can mod out UM2 by the
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group Z8. We call the quotient M∗
2 . M∗

2 is made from 12 3-cells, 36 2-cells, 30 1-cells, and 7

0-cells. One of the 0-cells is the cusp, while each of the remaining 6 corresponds to 8 0-cells

in UM2. This smaller space can also be triangulated by regular ideal tetrahedra. We now

have 18 non-ideal edges which are in one-to-one correspondence with the tetrahedra in the

triangulation.

An interesting question to consider is whether M∗
2 is a covering of the figure-8 knot

complement K. If this were the case, then M∗
2 would be a 9-fold cover with one cusp. We

first introduce the concept of cusp shape. The torus-shaped boundary of a neighborhood of a

cusp in M∗
2 inherits a Euclidean structure from the hyperbolic structure of our manifold M∗

2 .

Up to scaling, Euclidean structure on the torus boundary is known as the cusp shape. This

cusp shape is described by a single complex number. A Euclidean torus tiles the complex

plane. We can describe the shape of this torus by two vectors. Letting one of those vectors

be the vector 1, the complex number describing the second vector is then the cusp shape.

We know that K has a cusp shape of 2
√

3. If M∗
2 is a covering of K, then the cusp shape

of M∗
2 would have to be an index 9 subgroup of 2

√
3. M∗

2 has the cusp shape in Figure 17,

that is 1
2

+
√
3
2
i. Unfortunately, 1

2
+
√
3
2
i is not an index 9 subgroup of 2

√
3.

The fact that M∗
2 is not a covering of K does not imply that UM2 or M2 are not coverings

of K. It only shows that if they were coverings of K, then they would have to be direct

coverings that do not go through the intermediate step M∗
2 .
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6 The Relationship

A link is a collection of circles embedded in S3, much like knots but allowing multiple

components. We would like to note that neither M1 nor M2 are link complements. The

cusps of M1 and M2 have torus links. Therefore, we can fill them in with solid tori. However,

conning off the cusps results in D3(K7) and D3(K4,4) respectively. These two spaces have

nontrivial fundamental group, but S3 does have trivial fundamental group. Conning off cusps

kills the fundamental group generators on the cusps, so if conning off does not trivialize the

fundamental groups, neither can filling the cusps with solid tori.

We have seen in Sections 4.4 and 5.4 that both M1 and M2 are commensurable with the

figure-8 knot complement K. In particular, this means that M1 and M2 are commensurable

with each other. An interesting question we can ask is whether there is a finite simple graph

G whose discretized configuration space, away from the vertices, is related to both M1 and

M2 in some special way. Also, we could find a large manifold that covers both M1 and M2

and directly show how the two of these are commensurable.
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