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Abstract 

The Impact of Phthalate Exposure on the Gut Microbiota of Pregnant African American People 
in Atlanta, Georgia 

By Natalie Shen 

Phthalates, commonly found in household and personal care products, are endocrine disruptors 
that negatively impact reproductive health and fetal development. They are also associated with 
gut microbiota modulation, which can increase the risk of pre-eclampsia and preterm birth. 
Pregnant African Americans have higher concentrations of urinary phthalate metabolites and 
experience more preterm births compared to Caucasians, yet few studies have investigated the 
impact of phthalate exposure on the gut microbiota and its implications for pregnancy and birth 
outcomes in this understudied population. We used data from the Atlanta AA Maternal-Child 
cohort between 2016-2020 (N = 193). Maternal rectal swabs and urine samples were collected at 
8-14 weeks and 24-30 weeks gestation. Gut microbiota profiling was performed via 16S rRNA 
gene sequencing of rectal swabs while phthalate exposure was measured by urinary metabolite 
concentration and dichotomized into high and low exposure levels using the median threshold. 
We compared relative abundance of bacterial genera and alpha-diversity between high and low 
phthalate exposure groups. We used univariate Spearman correlation and multivariable linear 
regression to examine the associations between phthalate metabolite concentrations and gut 
bacterial abundance. We observed a significantly increased alpha-diversity in those with higher 
MBzP exposures. Additionally, Verrucomicrobiota was negatively associated with MiBP, while 
Proteobacteria was positively associated with MBP and MEHP. Peptostreptococcus was 
positively associated with MEP, while Bifidobacterium was negatively associated with MEHP. 
Our findings provide evidence that maternal gestational phthalate exposure may be associated 
with altered gut microbiota alpha-diversity. Moreover, higher phthalate exposure is associated 
with increased abundance of some pathogenic bacterial taxa and decreased abundance of some 
beneficial bacterial taxa. These negative associations between beneficial bacteria and phthalate 
metabolites provide insight for potential clinical applications to prevent or treat phthalate-
induced disease during pregnancy. While our study sheds light on the potential impact of 
phthalate metabolites on human health, future research should incorporate more diverse 
populations, assess dietary and plastic-product use patterns, and employ more advanced bacterial 
sequencing methods to confirm and expand upon these findings.  
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1. Introduction 

1.1 Phthalates 

Phthalates, diesters of 1,2-benzendicarboxylic acid (phthalic acid), are non-persistent 

ubiquitous xenobiotics commonly used in industrial applications1,2. As plasticizers, phthalates 

are widely found in many household and personal-care items, such as vinyl flooring, plastic 

packaging, soaps, shampoos, cosmetics, and hairsprays3. Therefore, exposure to phthalates in 

humans is widespread, with inhalation, dermal contact, and ingestion being the major routes of 

exposure in adults4, and additionally consuming breastmilk in infants5. Phthalates are known as 

endocrine disruptors, which are chemicals that interfere with the hormonal balance in the body6. 

As a result, they often impact reproductive health7. In women, phthalates can compromise 

ovarian function, pubertal development, and pregnancy outcomes. Multiple studies have 

confirmed that exposure to di-(2-ethylhexyl) phthalate (DEHP), a widely used phthalate ester, 

leads to disruption of primordial germ cells development and survival, as well as oocyte 

maturation and activation8,9. Another study illustrated the negative association between various 

phthalate metabolites and breast development and menstrual cycle initiation10. Because of its 

close ties with reproductive health, phthalate exposure also negatively impacts pregnancy and 

fetal development4. Specifically, an in vivo study demonstrated that pregnant mice exposed to 

DEHP experienced repressed placental angiogenesis11, and an observational study on females 

exposed to high levels of phthalates recorded decreased rates of pregnancy and increased 

miscarriage12. Similarly, a study by Latini et al. found that increased DEHP exposure was 

associated with increased rates of preterm birth13. In addition to pregnancy outcomes, murine 

studies have also shown that prenatal DEHP exposure can increase adiposity and impair social 
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interaction in offspring, indicating potential disruption of fetal metabolism and neuronal 

development14,15.  

1.2 Phthalates and the gut microbiota 

Phthalates are also associated with modulation of the gut microbiota16, which may 

elucidate their mechanism of action in maternal and infant health outcomes. Mice exposed to 

phthalate-containing microplastics were found to have significantly decreased beta-diversity (i.e., 

inter-group dissimilarity) compared to the control group, suggesting that phthalates changed gut 

microbial composition17. Dysbiosis (i.e., homeostatic disruption of the gut microbiota) is 

associated with various negative health effects, such as inflammatory bowel diseases, diabetes, 

and weight gain18. Dysbiosis of the gut microbiota has been observed in multiple studies to be 

associated with adverse pregnancy and birth outcomes. A recent study found that women with 

pre-eclampsia (PE) experienced decreased alpha-diversity compared to healthy controls in the 

third trimester of pregnancy19. Furthermore, fecal microbiota transplantation into mice using 

samples from PE patients resulted in a dramatic increase in murine blood pressure, which 

increased after gestation20. Another study demonstrated that the intestinal microbiota, rather than 

the vaginal microbiota, was the varying factor in preterm birth events21. Negative impacts of 

maternal phthalate exposure on in utero penile development has been observed as well22. 

Although there have been studies that investigate the effects of phthalates on the gut microbiota, 

most existing research involve only animal models and/or exposure to DEHP23-25. Therefore, we 

conducted this study to bridge the research gap by utilizing data from a human cohort study and 

different phthalate metabolites to gain a broader understanding of phthalate impact on the human 

gut microbiota. 
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1.3 Phthalate health disparities 

In the United States, there are great racial health disparities, especially among African 

Americans (AAs) compared to Caucasians. Based on the 2020 National Vital Statistics report, 

AA individuals are more likely to experience pre-term birth (14.36%) versus white individuals 

(9.10%)26. Additionally, AA and Hispanic people have higher concentrations of certain urinary 

phthalate metabolites compared to Caucasians across pregnancy27. However, there are few 

studies investigating the impact of phthalate exposure in pregnant AA people on the gut 

microbiota, as well as its implication for pregnancy and birth outcomes in this context. Thus, the 

purpose of this analysis is to determine the cross-sectional association between phthalate 

exposure (assessed using urinary phthalate metabolites) and the maternal gut microbiota among 

pregnant people in the Atlanta African American Maternal-Child Cohort. The results of this 

study may elucidate a potential gut microbiota target of phthalate-induced physiological changes. 

This study may also inform future targeted interventions for prenatal care in preventing adverse 

health effects and birth outcomes related to phthalate exposure or gut dysbiosis in the AA 

population.  

2. Methods 

2.1 Study participants 

This study leverages participant data from the prospective Atlanta African American 

Maternal-Child Cohort consisting of pregnant people recruited from Emory University Hospital 

Midtown and the Grady Memorial Hospital28. Inclusion criteria for enrolled individuals included 

1) self-identification as AA, 2) 8-14 weeks gestation with a verified singleton pregnancy, 3) 

between 18 and 40 years old, 4) able to comprehend written and spoken English, and 5) 

experiencing no current chronic medical condition. Biological samples (i.e., urine, rectal swabs) 
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were collected at the first (8-14 weeks) and second (24-30 weeks) clinical visits. Questionnaire 

data related to socio-demographics (i.e., age, education) was collected at the first clinical visit 

while health survey (i.e., medication and substance use) and clinical data (i.e., parity, gestational 

weeks) were collected at both clinical visits. For the current analysis, 193 individuals who had 

complete data related to sociodemographic and health history, as well as phthalate exposure 

assessment and gut microbiota, were included in the final analysis. Signed informed consent was 

obtained from all participants and the study was approved by the Emory University Institutional 

Review Board (IRB ID 1017). 

2.2 Urinary phthalate metabolite identification  

To assess maternal exposure to phthalates, urine samples were collected at enrollment 

clinical Visit 1 (8-14 weeks) and follow-up clinical Visit 2 (24-30 weeks). Eight urinary 

phthalate metabolites were assessed, namely Monoethyl phthalate (MEP), Mono-n-butyl 

phthalate (MBP), Monoisobutyl phthalate (MiBP), Monobenzyl phthalate (MBzP), Mono(2-

ethlyhexyl) phthalate (MEHP), Mono(2-ethyl-5-oxohexyl) phthalate (MEOHP), Mono(2-ethyl-5-

hydroxyhexyl) phthalate (MEHHP) and Mono(2-ethly-5-carboxypentyl) phthalate (MECPP). As 

outlined previously, a volume of 0.5 ml urine sample was mixed with isotopically-labeled 13C 

stable analogues of the phthalate metabolites and 2000 units of β-glucuronidase in 1 mM 

ammonium acetate (pH 5) buffer29. The samples were subsequently incubated overnight at 

37 °C. Afterwards, sample enzymatic activity was terminated by adding 0.15 M sodium 

phosphate buffer. Then, Bond Elut solid phase extraction (SPE) cartridge (Agilent Technologies, 

Inc., Santa Clara, CA) was utilized to extract the phthalate metabolites. The dried extracts were 

mixed with Milli-Q water for reconstitution and target phthalate metabolites were separated 

using high performance liquid chromatography on a Betasil Phenyl (3 μ,150 × 2.1 mm) (Thermo 

https://www-sciencedirect-com.proxy.library.emory.edu/topics/earth-and-planetary-sciences/phenyls
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Scientific, San Jose, CA) analytical column. An Agilent 6460 triple quadrupole mass 

spectrometer (Agilent Technologies, Inc) was used to analyze the resulting metabolites via 

tandem mass spectrometry. From this, metabolite concentrations were calculated from a 

regression analysis of the area of the analyte ion divided by the area of the internal standard ion 

and the calibrant concentrations. The analyses included quality assurance and control procedures 

(i.e., analyses of NIST reference materials and quality control samples). The limits of detection 

(LOD) (ng/mL) for the eight target phthalate metabolites were as follows: 1.0 (MEP), 4.0 

(MBP), 2.0 (MiBP), 0.2 (MBzP), 0.2 (MEHP), 0.4 (MEOHP), 0.4 (MEHHP), and 5.25 

(MECPP).  Any values obtained below the LOD were assigned the LOD divided by the square 

root of two30. Urinary creatinine concentration (mg/dL) was also measured to correct urinary 

phthalate levels for urinary dilution by diving the raw phthalate values by the creatinine level31. 

The concentration values were then log-normalized. The median values for each phthalate 

metabolite concentration were obtained and used as the threshold for creating categorical high 

and low exposure variables for use in comparing alpha- and beta-diversity indices between 

groups. The use of median values was employed to establish categorical levels, allowing better 

comparability with prior publications that utilized median phthalate concentrations in 

analyses32,33.  

2.3 Fecal sample collection 

Maternal rectal swabs were collected at enrollment clinical Visit 1 (8-14 weeks) and 

follow-up clinical Visit 2 (24-30 weeks). Following the protocol by Corwin et al., they were self-

collected, stored in MoBio bead tubes (MoBio Laboratories, Inc., Carlsbad, CA), and frozen 

upright on dry ice until transported to the lab for storage until DNA extraction28.  

https://www-sciencedirect-com.proxy.library.emory.edu/topics/earth-and-planetary-sciences/quadrupole
https://www-sciencedirect-com.proxy.library.emory.edu/topics/earth-and-planetary-sciences/mass-spectrometer
https://www-sciencedirect-com.proxy.library.emory.edu/topics/earth-and-planetary-sciences/mass-spectrometer
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2.4 Fecal sample processing 

Bacterial DNA was extracted from the rectal swab samples using the MoBio isolation kit 

(MoBio Laboratories, Inc., Carlsbad, CA) in accordance with the HMP Standard Operating 

Protocol34. Hypervariable regions (V3/V4+) of a small subunit of the ribosomal RNA gene (16S 

rRNA) were then amplified using polymerase chain reaction (PCR) with primers unique to this 

project [319F (5′-ACTCCTACGGGAGGCAGCAG-3′) and 806R (5′-

GGACTACHVGGGTWTCTAAT-3′]. Quantified libraries were pooled and sequenced at 10pM 

loading density with 20% PhiX spike-in (FC-110-3001) on the Illumina MiSeq platform using v3 

600 cycle MiSeq Reagent chemistry (Illumina, catalog # MS-102-3003)35. 

2.5 Bioinformatic processing 

The raw fastq sequencing files were imported to Qiime2 (v2017.12) and denoised using 

dada236,37. Reads were truncated for quality control and amplicon sequence variants (ASVs) 

were characterized using SILVA 138.1 classifier with 99% identity threshold36,38. ASV feature 

tables were then analyzed using the phyloseq R package39. 16S rRNA gene approaches are 

limited in their ability to reliably assign many bacterial genera to the species level; as such, we 

glommed taxa at the genus level for analyses. For samples run in duplicate (N = 2), the read 

counts were averaged between the samples. Finally, the samples were rarified at the 750 read 

count level, resulting in 193 unique participants included in the final analyses. 

2.6 Statistical analysis 

All statistical analyses were performed using R (v4.2.0) and SAS ® OnDemand 

(v3.81)40,41. A descriptive summary of participant demographic and clinical information was 

presented in participants across the two sample collection time points (Visit 1 and Visit 2). 

Wilcoxon test (for continuous variables) and chi-square test (for categorical variables) was used 
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to test for significant differences in these measurements between Visit 1 and Visit 2 participants. 

Chi-square tests were also used to evaluate differences in the associations between exposure 

categories across Visit 1 and Visit 2 participants.  

To evaluate the associations between phthalate exposure and alpha-diversity, we 

calculated Inverse Simpson, Shannon, and Chao1 indices using the phyloseq R package39. The 

differences in alpha diversity between high and low phthalate exposure groups were analyzed 

using the Wilcoxon test. Alpha-diversity is the measure of community richness (number of taxa) 

and/or evenness (abundance distribution across taxa)42. Additionally, a principal coordinate 

analysis (PCoA) using the Bray-Curtis dissimilarity index for beta-diversity of the high and low 

phthalate exposure groups was created using the phyloseq R package, where points closer 

together denote bacterial communities that are more similar in taxa presence and abundance43. 

Beta-diversity, or dissimilarity, is the measure of diversity and variability between 

communities44.  

To obtain a global view of gut bacterial abundance in this population, the relative 

abundance of phyla (i.e., the highest bacterial taxonomic rank) per visit were calculated using the 

following equation:  

(Taxa read count)/(Total bacterial read count per visit)*100 

Phyla at less than 4% relative abundance in each visit were grouped together in the 

stacked barplot, created using the ggplot2 R package45. The Firmicutes/Bacteroidota (F/B) ratio, 

as an important marker of gut microbiota homeostasis, was also calculated for each visit using 

their relative abundance measurements46,47.  

A correlation analysis was performed for each visit to determine the relationship between 

gut bacteria and phthalate exposure, excluding bacteria with more than a 90% zero-count. Due to 
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the non-normal distribution of both gut bacterial read counts and phthalate metabolite 

concentrations, the non-parametric Spearman’s correlation (rho, ρ) was utilized, calculated using 

the Hmisc R package, along with the corresponding p-values48. These correlations were 

visualized by heatmaps, created using the ComplexHeatmap R package49.  

Finally, we used a multivariate linear regression model to determine the association 

between the maternal gut microbiota (read counts) and continuous phthalate metabolite levels 

(urinary concentrations) at each visit, excluding bacteria with more than a 90% zero-count. A 

directed acyclic graph (DAG) created using Daggity50 (not shown) was utilized to evaluate 

confounders, confirming the addition of age at enrollment, insurance type, education, tobacco 

use, alcohol use, and marijuana use as covariates in the linear regression model. The model also 

included the following a priori covariates determined using literature search and biological 

relevance: prenatal BMI, prenatal and gestational oral antibiotic use, and parity51,52. P-values 

were adjusted for multiple testing using the Benjamini-Hochberg method53. The following 

equation was the final, fully adjusted model used in the analysis: 

𝑌𝑌 =   𝛽𝛽0 +  𝛽𝛽1𝑃𝑃ℎ𝑡𝑡ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑎𝑎 𝑚𝑚𝑎𝑎𝑡𝑡𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚𝑡𝑡𝑎𝑎𝑚𝑚 + 𝛽𝛽2𝐴𝐴𝐴𝐴𝑎𝑎 + 𝛽𝛽3𝑃𝑃𝑃𝑃𝑎𝑎𝑃𝑃𝑎𝑎𝑡𝑡𝑎𝑎𝑎𝑎 𝐵𝐵𝐵𝐵𝐵𝐵 + 𝛽𝛽4𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑎𝑎𝑡𝑡𝑚𝑚𝑚𝑚𝑃𝑃

+ 𝛽𝛽5𝐵𝐵𝑃𝑃𝑚𝑚𝐸𝐸𝑃𝑃𝑎𝑎𝑃𝑃𝐸𝐸𝑎𝑎 𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎 + 𝛽𝛽6𝐴𝐴𝑃𝑃𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝑚𝑚𝐸𝐸 𝐸𝐸𝑚𝑚𝑎𝑎 + 𝛽𝛽7𝑃𝑃𝑎𝑎𝑃𝑃𝑚𝑚𝑡𝑡𝑡𝑡 + 𝛽𝛽8𝑇𝑇𝑚𝑚𝑚𝑚𝑎𝑎𝐸𝐸𝐸𝐸𝑚𝑚 𝐸𝐸𝑚𝑚𝑎𝑎

+ 𝛽𝛽9𝐴𝐴𝑎𝑎𝐸𝐸𝑚𝑚ℎ𝑚𝑚𝑎𝑎 𝐸𝐸𝑚𝑚𝑎𝑎 + 𝛽𝛽10𝐵𝐵𝑎𝑎𝑃𝑃𝑚𝑚𝑀𝑀𝐸𝐸𝑎𝑎𝑃𝑃𝑎𝑎 𝐸𝐸𝑚𝑚𝑎𝑎 + 𝜀𝜀 

3. Results 

3.1 Participant characteristics 

Demographic, clinical, and behavioral characteristics of the 193 study participants are 

presented in Table 1. 167 participants were included in Visit 1, while 123 were included in Visit 

2. There were no statistically significant differences between Visit 1 and Visit 2 groups for 

demographic, clinical, and behavioral characteristics (P > 0.05).  
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3.2 Phthalate metabolites 

In total, eight urinary phthalate metabolites were assessed, as listed in Table 2a-2b: 

Monoethyl phthalate, MEP; Mono-n-butyl phthalate, MBP; Monoisobutyl phthalate, MiBP; 

Monobenzyl phthalate, MBzP; Mono(2-ethlyhexyl) phthalate, MEHP; Mono(2-ethyl-5-

oxohexyl) phthalate, MEOHP; Mono(2-ethyl-5-hydroxyhexyl) phthalate, MEHHP; and Mono(2-

ethly-5-carboxypentyl) phthalate, MECPP. Their histogram distributions are shown in Figure 

S1. Non-parametric Wilcoxon test revealed no significant differences of metabolite 

concentrations between Visit 1 and Visit 2 (P > 0.05). There was a significant difference between 

high and low MEHP concentration across Visit 1 and Visit 2 (P < 0.01). However, there were no 

significant differences between high and low concentration levels of the other metabolites across 

visits (P > 0.05).  

3.3 Gut microbiota community structure 

The phyla relative abundance of the gut microbiota across Visit 1 and Visit 2 among the 

193 participants are displayed in Figure 1. Due to an abundance of low and zero read counts, 

taxa containing less than 4% relative abundance in each visit group were grouped together. The 

two most abundant phyla at both visits were Bacteroidota and Firmicutes, with 46.21% and 

41.11% in Visit 1 and 35.65% and 42.96% in Visit 2, respectively. The other phyla detected in 

the gut microbiota samples in Visit 1 and Visit 2 include Actinobacteriota (4.73% and 4.11%), 

Campylobacter (3.55% and 5.70%), Fusobacteria (4.09% and 3.16%), and Proteobacteria (3.29% 

and 1.87%). There was a 5.10% decrease in the relative abundance of Bacteroidota from Visit 1 

to Visit 2, while Firmicutes increased by 7.31%. The Visit 1 and Visit 2 Firmicutes/Bacteroidota 

ratios were 0.77 and 1.04, respectively. 
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3.4 Gut bacterial diversity 

Across visits, the alpha-diversity indices were similar (i.e., Chao1, Shannon, and Inverse 

Simpson) (P > 0.05, Visit 1 vs. Visit 2) (Table 3a). When examining Shannon diversity indices 

by exposure status, those with  high compared to low MBzP exposure had significantly higher 

Shannon diversity in Visit 2, while there were no differences in the Shannon diversity indices for 

all other phthalate exposures at either visit (Table 3b). Corresponding box plots of the Shannon 

alpha-diversity index across high and low exposure categories to each phthalate exposure at Visit 

1 and Visit 2 are shown in Figure 2. Beta-diversity was calculated using the Bray-Curtis 

dissimilarity index for high and low phthalate exposure for each visit are displayed in PCoA 

plots (Figure 3). Based on the distribution patterns of the PCoA plots and lack of clustering 

within high and low exposure strata, there were no differences in the gut microbiota beta-

diversity between high and low phthalate exposure groups. However, there were obvious clusters 

within the PCoA plots, potentially by other means, and thus future studies can investigate other 

factors that may explain the grouping patterns observed in the plots. 

3.5 Correlation analysis 

At the phylum level (Figure 4), among Visit 1 participants, Verrucomicrobiota was 

negatively correlated with MiBP (ρ = -0.19, P = 0.02) while Proteobacteria was positively 

correlated with MBP (ρ = 0.18, P = 0.02). Among Visit 2 participants, Firmicutes phylum was 

negatively correlated with MiBP (ρ = -0.21, P = 0.02). At the genus level (Figure 5), 

Peptostreptococcus was positively correlated with MEP (ρ = 0.23, P < 0.01), Fusobacterium was 

positively correlated with MEHP (ρ = 0.23, P < 0.01), and Bifidobacterium was negatively 

correlated with MEHP (ρ = -0.19, P = 0.01) among Visit 1 participants. On the other hand, 
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among Visit 2 participants, Streptococcus was positively correlated with MEHHP (ρ = 0.21, P = 

0.02) and Fenollaria was negatively correlated with MEHHP (ρ = -0.18, P = 0.02).  

3.6 Regression modeling 

Overall, several significant associations between gut bacteria and phthalate metabolites 

were observed at different taxonomic levels; however, many of these associations did not reach 

statistical significance after adjustment for multiple testing.  

At the phylum level (Table 4), there was a significant association between the relative 

abundance of Verrucomicrobiota and MiBP (β = -0.35, 95% CI: -0.65, -0.06, P = 0.02, PBH = 

0.17) at Visit 1, whereas at Visit 2 there was a significant association between the relative 

abundance of Bacteroidota and MiBP (β = 0.53, 95% CI: 0.14, 0.91, P = 0.01, PBH = 0.05) and 

MEHP (β = 0.31, 95% CI: 0.02, 0.61, P = 0.04, PBH = 0.12) and between the relative abundance 

of Proteobacteria and MEHP (β = 0.49, 95% CI: 0.062, 0.93, P = 0.03, PBH = 0.12).  

At the class level (not shown), there was a significant association between Bacteroidia 

and MiBP (β = 0.64, 95% CI: 0.14, 0.91, P = 0.01, PBH = 0.08), Clostridia and MEP (β = 0.55, 

95% CI: 0.11, 0. 98, P = 0.01, PBH = 0.14), and Gammaproteobacteria and MEHP (β = 0.31, 95% 

CI: 0.02, 0.61, P = 0.03, PBH = 0.17) among the Visit 2 participants.  

At the order level (not shown), there was a significant association between 

Peptostreptococcales Tissierellales and MEP (β = 0.51, 95% CI: 0.13, 0.90, P = 0.01, PBH = 

0.15), Bifidobacteriales and MEHP (β = -0.36, 95% CI: -0.66, -0.06, P = 0.02, PBH = 0.32), and 

Lactobacillales and MEHHP (β = 0.51, 95% CI: 0.06, 0.96, P = 0.03, PBH = 0.45) among the 

Visit 1 participants. Among those in Visit 2, there was a significant association between 

Bacteroidales and MEHP (β = 0.02, 95% CI: 0.61, 0.04, P = 0.04, PBH = 0.27), and between 
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Lachnospirales and MEHHP (β = 0.70, 95% CI: 0.11, 1.30, P = 0.02, PBH = 0.35), and MECPP 

(β = 0.80, 95% CI: 0.11, 1.49, P = 0.03, PBH = 0.39).  

At the family level (not shown), there was a significant association between 

Peptostreptococcaceae and MEP (β = 0.61, 95% CI: 0.25, 0.97, P = 0.001, PBH = 0.03), 

Streptococcaceae and MBzP (β = 0.39, 95% CI: 0.07, 0.7, P = 0.02, PBH = 0.40), and 

Bifidobacteriaceae and MEHP (β = -0.36, 95% CI: -0.66, -0.06, P = 0.02, PBH = 0.43) among the 

Visit 1 participants. Among those in Visit 2, there was a significant association between 

Rikenellaceae and MEOHP (β = -0.49, 95% CI: -0.80, -0.18, P = 0.002, PBH = 0.05) and 

MEHHP (β = -0.40, 95% CI: -0.71, -0.09, P = 0.01, PBH = 0.26), and between Coriobacteriaceae 

and MECPP (β = 0.67, 95% CI: 0.12, 1.23, P = 0.02, PBH = 0.43).  

At the genus level (not shown), there was a significant association between 

Bifidobacterium and MEHP (β = -0.31, 95% CI: -0.53, -0.09, P = 0.006, PBH = 0.17), 

Peptoniphilus and MEP (β = 0.51, 95% CI: 0.15, 0.86, P = 0.005, PBH = 0.08), and 

Peptostreptococcus and MEP (β = 0.52, 95% CI: 0.18, 0.87, P = 0.003, PBH = 0.08) among the 

Visit 1 participants. Among those in Visit 2, there was a significant association between 

Veillonella and MiBP (β = -0.55, 95% CI: -0.90, -0.19, P = 0.003, PBH = 0.08), Collinsella and 

MBP (β = 0.67, 95% CI: 0.12, 1.23, P = 0.02, PBH = 0.47), and between Prevotella and MiBP (β 

= 0.80, 95% CI: 0.15, 1.45, P = 0.02, PBH = 0.22).  

4. Discussion 

Using both targeted phthalate exposure assessment and gut microbiome profiling, we 

detected numerous significant associations between phthalate metabolites and gut bacterial taxa 

(at the level of phylum, class, order, family, and genus) among participants from the Atlanta 
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African American Maternal-Child cohort. These findings point to the gut microbiome as a  

potential biological mechanism by which prenatal exposure to phthalates impact pregnancy 

outcomes and can also inform future development of targeted interventions to mitigate harmful 

effects of these plasticizers. Overall, the results from this study highlight that bacteria from taxa 

commonly associated with pathogenicity were correlated or associated with higher exposure to 

phthalate metabolites. However, it is worth noting that when looking at the overall abundance of 

phyla in the participant cohort's gut microbiotas, they were found to be relatively normal and not 

significantly different from what has been reported in previous literature. For instance, the most 

abundant phyla in the gut microbiota of AA Atlanta pregnant cohort were Bacteroidota (or 

Bacteroidetes) and Firmicutes across both Visits, along with Fusobacteriota, Campylobacter, 

Actinobacteriota in lesser abundance. This is supported by previous research on pregnant 

populations that also observed that Bacteroidota and Firmicutes, along with Proteobacteria and 

Actinobacteria, were the most abundant phyla at the first and third trimesters54. Similarly, these 

phyla are also predominant in healthy, non-pregnant people55. Bacteroidota and Firmicutes have 

both been established as beneficial bacteria and balance of the Firmicutes/Bacteroidetes (F/B) 

ratio has been established as a marker of gut microbiota homeostasis and overall health status56. 

Our study found low F/B ratios of 0.77 and 1.04 across Visit 1 and Visit 2, whereas a previous 

study reported a F/B ratio of 0.6 in the elderly compared to 10.9 in adults57. This contrast 

highlights that the participants in this study have overall low gut bacterial abundance of 

Firmicutes in relation to Bacteroidota, which has been associated with inflammatory bowel 

disease47. Many Bacteroidota (or Bacteroides) species are able to provide nutrients and vitamins 

to the host by metabolizing polysaccharides and oligosaccharides58 while Firmicutes contains 
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probiotic genera (i.e., Lactobacillus, Ruminococcus) that can promote gut mucosal function59 and 

can also convert polysaccharides into host nutrient metabolites60.  

Those with greater exposure to MBzP had significantly increased Shannon diversity (1.71 

± 0.48 [high exposure group] vs. 1.54 ± 0.39 [low exposure group], P < 0.05), suggesting that 

higher phthalate exposure, specifically to monobenzyl phthalate, is associated with an increase in 

gut microbial diversity. Although there are no prior studies on the specific impact of MBzP on 

the gut microbiota, another phthalate metabolite, DEHP, has been observed to increase alpha 

diversity of exposed mice as well61. Despite their significant difference, both diversity 

measurements from our study are considered low, since the Shannon index ranges from 1.5-

3.562. MBzP is a monoester metabolite of the parent compound, benzylbutyl phthalate (BzBP), 

which in high doses, can lead to developmental and reproductive health outcomes in rodents63. 

However, due to the paucity of research in this area, there is no corroborating prior evidence to 

support our findings.  

At the phylum level, Verrucomicrobiota was negatively associated with MiBP while 

Proteobacteria was positively correlated with MBP. Members of the Verrucomicrobiota and 

Firmicutes phylum have been found to be a biomarker of healthy gut59, as they have anti-

inflammatory properties and are protective for gut barrier functions and insulin sensitivity, 

among other qualities 64. Thus, its negative correlation with MiBP, which has been associated 

with gestational diabetes mellitus in pregnant women65, offers some insight into potential clinical 

applications among pregnant people and prevention or treatment of gestational diabetes. On the 

other hand, members of the Proteobacteria phylum have pro-inflammatory properties66, such as 

being predictive of neonatal necrotizing enterocolitis67 and a signature of several intestinal and 

extraintestinal human diseases68. It is positively correlated with MBP, of which prenatal 
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exposure has been found to be associated with earlier onset of spermatogenesis in male murine 

offspring69 and lower birth weight, birth length, and gestational age70, revealing that prenatal 

exposure to MBP might be adjacently-related to an increased abundance of Proteobacteria and 

these both synergistically result in adverse health outcomes for both mother and offspring. Our 

study also observed a significant positive association between Bacteroidota and MiBP and 

MEHP and between phylum Proteobacteria and MEHP. Although Bacteroidota are generally 

considered probiotic bacteria, some members can have a pathogenic effect and cause infection if 

the opportunity arises (i.e. compromised gastrointestinal barrier function)71, which may partially 

explain its positive association with MEHP, due to its relation with Bis(2-ethylhexyl)phthalate 

(DEHP) as a metabolite, which has been demonstrated to substantially decrease microbial 

abundance in wastewater. Translated to human health, a change in the gut microbial abundance 

and diversity (i.e., gut dysbiosis) can lead to increased disease susceptibility due to compromised 

immune function72. However, a disease-state of the human host can also result in modulation of 

the gut microbiota73, suggesting that MEHP, DEHP, and/or MiBP exposure may have 

contributed to the initial dysbiosis, which then resulted in an increase in potentially pathogenic 

Bacteroidota and Proteobacteria phyla.  

At the class level, Bacteroidia and MiBP, Clostridia and MEP, Gammaproteobacteria and 

MEHP were all significantly positively associated. Bacteroidia. Clostridia are commonly 

decreased in those experiencing pregnancy complications74 and are in high abundance in healthy 

individuals during early pregnancy75, which points to MEP as a potential confounder in this 

study. On the other hand, Gammaproteobacteria and Bacteroidia are increased in disease states 

of pre-eclampsia74 and Gammaproteobacteria are also positively associated with intrahepatic 

cholestasis of pregnancy (ICP)76, a liver disorder that causes buildup of bile acids in the blood77. 
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Furthermore, a previous study found evidence to support that maternal phthalate exposure during 

early pregnancy can be a risk factor of ICP78. Taken together, our results point to a possible 

therapeutic target of phthalate-associated ICP by modulating the abundance of 

Gammaproteobacteria in the maternal gut microbiota.  

 At the order level, there was a significant positive association between Bacteroidales and 

MEHP. However, a rat study by Yu et al. observed a decrease in Bacteroidales order and 

Lactobacillus genus with exposures to DEHP, which also dysregulated bile acid metabolism79. 

Although our study found conflicting evidence for the association between Bacteroidales and 

MEHP, a metabolite of DEHP, this gives insight into the potential for DEHP and/or MEHP to be 

related to the modulation of this bacterial taxa group. Members of Bacteroidales are mainly gut 

commensals and protect the host from pathogenic infections while providing nutrients for other 

gut microbiota residents58. 

At the family level, there was a significant positive association Coriobacteriaceae and 

MECPP. Similar to our study, Shum et al.80 found that DEHP exposure enhanced abundance of 

Coriobacteriaceae members (i.e., Collinsella), which are often found in the mucosa of Crohn’s 

disease patients but has also been found associated with good metabolic health in overweight and 

obese individuals81. Thus, these conflicting conclusions about the effects of Coriobacteriaceae 

warrant further studies investigating this specific bacterial family and phthalates to elucidate 

their temporality and mechanistic properties in relation to each other.  

At the genus level, there was a significant positive association between 

Peptostreptococcus and MEP. There have also been multiple members of the Peptostreptococcus 

genus implicated in adenoma and colorectal cancer, namely Peptostreptococcus anaerobius and 

P. stomatis. Due to its significant positive association with MEP in our study, there could be a 
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potential for MEP to mechanistically benefit from Peptostreptococcus, or vice versa, in 

producing toxic effects in the host. Our study findings also report a negative association between 

Veillonella and MiBP. Similarly, prior research has demonstrated a decrease of Veillonella in the 

intestinal tract of newborns exposed to DEHP82. Fusobacterium was positively correlated with 

MEHP in our study. Although part of the normal gut flora, they are considered opportunistic 

pathogens and can lead to production of cytokines and other pro-inflammatory response 

molecules83. Bifidobacterium genus was negatively correlated with MEHP in this study. It is 

considered non-pathogenic and rarely causes infection in patients84, which aligns with its inverse 

relationship with MEHP. Streptococcus was positively correlated with MEHHP. Exhibiting a 

dose-response behavior, prenatal exposure to MEHHP has been observed to be associated with 

an increased risk of miscarriage85 and autistic traits in young children86. Previous reports have 

found gut microbiota-derived Streptococcus implicated in a variety of adverse health effects, 

such as join pain and inflammation87 and gastric cancer88, and bacterial infection of neonates89, 

despite being found in the majority of healthy women. As both Streptococcus and MEHHP are 

negatively related to pregnancy and health-related outcomes, future studies can further 

investigate their synergistic effects and how novel interventions targeting these factors can 

mitigate their health impact.  

Although this study is the first to analyze multiple urine phthalate biomarkers and gut 

microbiota within a pregnant AA cohort, there are some important limitations. First, this is a 

cross-sectional study, so temporality between phthalate exposure and gut microbiota changes 

cannot be established, and findings cannot reflect the effects of long-term exposure. 

Furthermore, much of phthalate exposure is via dermal and ingestion pathways; however, we 

were unable to assess dietary patterns or usage of phthalate-contaminated products or include 
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related covariates in our regression model, so results and conclusions from this study should be 

drawn with caution. There is also limited generalizability as this study analyzes a specific 

pregnant and racial demographic. Further research that incorporates racial diversity is required to 

understand maternal health effects of phthalates in a more heterogenous population. However, a 

strength of this study is that it explores the associations between phthalate exposure and the gut 

microbiota in a traditionally understudied population. Additionally, the rectal swabs were 

sequenced using 16S rRNA-specific primers, which limits resolution in taxonomic assignment, 

direct functional determination of the various taxa, and may have resulted in lower read counts 

compared to using stool samples or shotgun metagenomic sequencing. Lastly, to the best of our 

knowledge, this is the first study to investigate the impact of phthalate exposure and maternal gut 

microbiota in pregnant African American individuals, which helps to address current research 

gaps in the literature, but also is limited in corroborating evidence. Future studies should 

incorporate racial heterogeneity, or look at other individual racial groups, to determine if the 

associations and correlations from this study are observed in other subpopulations. Furthermore, 

in order to infer more accurately the functions of the gut microbiota and their role in phthalate 

exposure sequelae, the use of shotgun metagenomic sequencing can be employed rather than 

solely relying on 16S rRNA sequences. Lastly, as dietary patterns and plastic-product usage is 

another large component of phthalate exposure, future studies can incorporate more data 

collection coverage in those areas as another way to determine extent of phthalate exposure on a 

more granular level. 

5. Conclusion 

This study analyzed the cross-section of phthalate exposure and the gut microbiota in a 

traditionally understudied population, which bears a disproportionate exposure to phthalates. In 
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conclusion, there are several opportunistic pathogens whose relative abundance in the gut 

microbiota was  positively associated with urinary phthalate metabolites, as well as multiple 

probiotic bacteria negatively associated with urinary phthalate metabolites. Although there was 

still some conflicting evidence with previous literature, this study highlights the potential for 

certain gut microbiota bacteria to be novel therapeutic targets to prevent or treat the harmful 

effects of phthalate exposure, specifically in the pregnant population, which would benefit not 

only maternal health, but also birth and infant health outcomes. Furthermore, the information 

gained from the study can aid future studies in elucidating a potential gut microbiota mechanism 

of phthalates in the human host.  
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Table 1. Demographic and clinical characteristics table of 193 African American pregnant participants 
from Atlanta, GA across Visit 1 (N = 167) and Visit 2 (N = 123). Statistics are listed as mean ± SD or 
frequency (%). Wilcoxon (continuous) or chi-square (categorical) tests were performed to assess 
differences in distribution of characteristics across visits. P < 0.05 indicates significant difference at the 
0.05 alpha level.  

Characteristics Visit 1 (N = 167) Visit 2 (N = 123) P-value 
Prenatal BMI (kg/m2) 28.87 ± 7.48 28.04 ± 7.17 0.39 

Underweight (< 18.5) 3 (1.8%) 4 (3.3%)  
Healthy weight (18.5-24.99) 60 (35.9%) 47 (38.2%)  
Overweight (25.0-29.99) 40 (24.0%) 30 (24.4%)  
Obese (30+) 64 (38.3%) 42 (34.1%)  

Age at enrollment [years] 25.72 ± 4.65 25.73 ± 4.93 0.88 
Education level   0.77 

Less than high school 23 (13.8%) 16 (13.0%)  
High school 71 (42.5%) 48 (39.0%)  
Some college or more 73 (43.7%) 59 (48.0%)  

Insurance type   0.46 
Low-income Medicaid 49 (29.3%) 40 (32.5%)  
Medicaid at start of pregnancy 84 (50.3%) 53 (43.1%)  
Private 34 (20.4%) 30 (24.4%)  

Prenatal or gestational oral antibiotic use   0.32 
No 99 (59.3%) 80 (65.0%)  
Yes 68 (40.7%) 43 (35.0%)  

Parity   0.86 
Nulliparous 71 (42.5%) 51 (41.5%)  
Multiparous 96 (57.5%) 72 (58.5%)  

Tobacco use in month prior to pregnancy   0.65 
No 135 (80.8%) 102 (82.9%)  
Yes 32 (19.2%) 21 (17.1%)  

Alcohol use in month prior to pregnancy   0.71 
No 149 (89.2%) 108 (89.1%)  
Yes 18 (10.8%) 15 (12.2%)  

Marijuana use in month prior to pregnancy   0.69 
No 98 (58.7%) 75 (61.0%)  
Yes 69 (41.3%) 48 (39.0%)  

Note: BMI, body mass index 
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Table 2. Descriptive summary of urinary phthalate metabolite levels of 193 African American pregnant 
participants from Atlanta, GA across Visit 1 (N = 167) and Visit 2 (N = 123). Raw metabolite values were 
corrected for urinary creatinine and log normalized. P < 0.05 indicates significance at the 0.05 alpha level. 
A) Continuous phthalate statistics are listed as log(Mean) ± SD. Wilcoxon tests were performed to assess 
differences between urinary phthalate metabolite levels across visits. B) High and low exposure levels 
were assigned based on the median threshold of continuous phthalate metabolite data. Statistics are listed 
as counts (N) and frequency (%). Chi-square tests were performed to assess differences in distribution 
between high and low exposure groups across visits.  

A.  Phthalate Metabolites Visit 1 Visit 2 P-value log(Mean) ± SD log(Mean) ± SD 
Monoethyl phthalate, MEP -0.19 ± 0.46 -0.17 ± 0.53 0.82 

Mono-n-butyl phthalate, MBP -1.24 ± 0.43 -1.16 ± 0.44 0.14 

Monoisobutyl phthalate, MiBP -1.28 ± 0.41 -1.24 ± 0.38 0.40 

Monobenzyl phthalate, MBzP -1.45 ± 0.45 1.44 ± 0.50 0.94 

Mono(2-ethlyhexyl) phthalate, MEHP -1.96 ± 0.53 -1.88 ± 0.53 0.13 

Mono(2-ethyl-5-oxohexyl) phthalate, MEOHP -1.67 ± 0.41 -1.64 ± 0.40 0.35 

Mono(2-ethyl-5-hydroxyhexyl) phthalate, MEHHP -1.46 ± 0.42 -1.52 ± 0.40 0.22 
Mono(2-ethly-5-carboxypentyl) phthalate, MECPP -1.28 ± 0.33 -1.26 ± 0.33 0.77 

B. Phthalate Metabolite Exposure Levels Visit 1 Visit 2 P-value N (%) N (%) 
Monoethyl phthalate, MEP   0.18 

High 79 (47.3%) 68 (55.3%)  
Low 88 (52.7%) 55 (44.7%)  

Mono-n-butyl phthalate, MBP   0.58 
High  80 (47.9%) 63 (51.2%)  
Low 87 (52.1%) 60 (48.8%)  

Monoisobutyl phthalate, MiBP   0.35 
High 79 (47.3%) 65 (52.8%)  
Low 88 (52.7%) 58 (47.2%)  

Monobenzyl phthalate, MBzP   0.88 
High  84 (50.3%) 63 (51.2%)  
Low 83 (49.7%) 60 (48.8%)  

Mono(2-ethlyhexyl) phthalate, MEHP   0.01* 
High 71 (42.5%) 72 (58.5%)  
Low 96 (57.5%) 51 (41.5%)  

Mono(2-ethyl-5-oxohexyl) phthalate, MEOHP   0.27 
High 77 (46.1%) 65 (52.8%)  
Low 90 (53.9%) 58 (47.2%)  

Mono(2-ethyl-5-hydroxyhexyl) phthalate, MEHHP   0.27 
High 87 (52.1%) 56 (45.5%)  
Low 80 (47.9%) 67 (54.5%)  

Mono(2-ethly-5-carboxypentyl) phthalate, MECPP   0.99 
High 83 (49.7%) 61 (49.6%)  
Low 84 (50.3%) 62 (50.4%)  

Note: *P < 0.05; SD, standard deviation 
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Table 3. Alpha diversity across Visit 1 (N = 167) and Visit 2 (N = 123) in 193 African American 
pregnant participants from Atlanta, GA. No reads were excluded after initial rarefication to obtain the 
most representative measure of gut microbiota diversity. Wilcoxon test was used for statistical testing 
between groups. P < 0.05 indicates significant difference at the 0.05 alpha level. A) Descriptive summary 
of genus-level alpha diversity indices (Chao1, Shannon, and Inverse Simpson) of maternal gut microbiota 
samples across visits, listed using mean ± SD and median measurements. B) Shannon alpha diversity 
measurements across high and low phthalate metabolite exposure levels across visits.  

A.    Alpha Diversity Index Visit 1 Visit 2 P-value 
Mean ± SD Median Mean ± SD Median 

Chao1 12.1 ± 5.2 12 11.4 ± 4.9 11 0.3 
Shannon 1.4 ± 0.5 1.5 1.4 ± 0.5 1.5 0.24 

Inverse Simpson 3.5 ± 1.5 3.3 3.3 ± 1.4 3 0.2 

B.    Phthalate Metabolites 
Shannon Diversity Index 

P-value High Exposure Low Exposure 
Mean ± SD Mean ± SD 

Visit 1    
MEP 1.64 ± 0.40 1.72 ± 0.43 0.07 
MBP 1.71 ± 0.40 1.65 ± 0.43 0.42 
MiBP 1.69 ± 0.40 1.68 ± 0.43 0.96 
MBzP 1.69 ± 0.40 1.67 ± 0.43 0.98 
MEHP 1.69 ± 0.40 1.67 ± 0.42 0.74 

MEOHP 1.72 ± 0.45 1.68 ± 0.39 0.84 
MEHHP 1.67 ± 0.45 1.69 ± 0.38 0.9 
MECPP 1.69 ± 0.46 1.68 ± 0.37 0.63 
Visit 2   
MEP 1.60 ± 0.44 1.66 ± 0.45 0.4 
MBP 1.67 ± 0.46 1.58 ± 0.43 0.27 
MiBP 1.71 ± 0.40 1.54 ± 0.47 0.06 
MBzP 1.71 ± 0.48 1.54 ± 0.39 0.03* 
MEHP 1.69 ± 0.45 1.58 ± 0.44 0.17 

MEOHP 1.70 ± 0.40 1.55 ± 0.47 0.08 
MEHHP 1.66 ± 0.42 1.57 ± 0.47 0.45 
MECPP 1.62 ± 0.45 1.63 ± 0.44 0.92 

Note: *P < 0.05; MEP, monoethyl phthalate; MBP, mono-n-butyl phthalate; MiBP, monoisobutyl 
phthalate; MBzP, monobenzyl phthalate; MEHP, mono(2-ethlyhexyl) phthalate; MEOHP, mono(2-ethyl-
5-oxohexyl) phthalate; MEHHP, mono (2-ethyl-5-hydroxyhexyl) phthalate; MECPP, mono(2-ethly-5-
carboxypentyl) phthalate 
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Table 4. Multivariate linear regression model results of the phylum-level gut microbiota associations with each phthalate metabolite as the main 
predictor. The model adjusted for prenatal BMI, maternal age, education level, insurance type, prenatal and gestational oral antibiotic use, parity, 
tobacco use, alcohol use, and marijuana use. Beta coefficients for each phthalate metabolite are reported along with their 95% confidence intervals 
and P-values. P < 0.05 indicates significance at the 0.05 alpha level. 

Phylum 
MEP MBP MiBP MBzP MEHP MEOHP MEHHP MECPP 
β P-

value 
β P-

value 
β P-

value 
β P-

value 
β P-

value 
β p-

value 
β p-

value 
β p-

value (95% CI) (95% CI) (95% CI) (95% CI) (95% CI) (95% CI) (95% CI) (95% CI) 
Visit 1                 

Actinobacteria -0.04 0.85 0.13 0.58 -0.16 0.49 -0.27 0.22 -0.26 0.14 0.001 1 0.03 0.91 0.03 0.93 (-0.44, 0.36) (-0.32, 0.57) (-0.63, 0.30) (-0.70, 0.16) (-0.61, 0.09) (-0.44, 0.45) (-0.40, 0.46) (-0.53, 0.58) 

Bacteroidota 0.23 0.07 0.12 0.40 0.17 0.25 0.13 0.34 0.16 0.16 0.14 0.33 0.14 0.29 0.14 0.42 (-0.02, 0.47) (-0.16, 0.40) (-0.12, 0.45) (-0.14, 0.39) (-0.06, 0.37) (-0.14, 0.41) (-0.12, 0.41) (-0.20, 0.48) 

Campylobacterota -0.08 0.71 0.22 0.35 0.12 0.61 -0.14 0.53 -0.14 0.44 -0.11 0.62 -0.22 0.32 -0.09 0.74 (-0.48, 0.33) (-0.24, 0.67) (-0.35, 0.59) (-0.57, 0.30) (-0.50, 0.22) (-0.56, 0.34) (-0.65, 0.22) (-0.66, 0.47) 

Firmicutes 0.02 0.74 -0.003 0.96 -0.01 0.88 -0.04 0.54 0.01 0.84 0.02 0.74 0.07 0.35 0.08 0.39 (-0.11, 0.15) (-0.15, 0.14) (-0.16, 0.14) (-0.18, 0.09) (-0.10, 0.12) (-0.12, 0.17) (-0.07, 0.20) (-0.10, 0.26) 

Fusobacteriota -0.23 0.26 0.24 0.29 0.05 0.84 0.35 0.11 0.13 0.47 0.007 0.98 0.04 0.86 -0.01 0.96 (-0.62, 0.17) (-0.21, 0.68) (-0.41, 0.51) (-0.08, 0.77) (-0.22, 0.48) (-0.44, 0.45) (-0.39, 0.46) (-0.57, 0.54) 

Proteobacteria 0.14 0.45 0.39 0.07 0.37 0.09 0.06 0.75 0.08 0.65 0.09 0.68 0.02 0.91 -0.18 0.49 (-0.23, 0.52) (-0.02, 0.80) (-0.06, 0.80) (-0.34, 0.47) (-0.25, 0.41) (-0.33, 0.50) (-0.38, 0.43) (-0.70, 0.34) 

Verrucomirobiota -0.26 0.05 -0.17 0.27 -0.35 0.02* -0.27 0.06 -0.07 0.53 -0.12 0.42 -0.15 0.30 -0.15 0.42 (-0.53, 0.002) (-0.46, 0.13) (-0.65, -0.06) (-0.55, 0.01) (-0.31, 0.16) (-0.41, 0.17) (-0.43, 0.13) (-0.52, 0.20) 
Visit 2                 

Actinobacteria -0.18 0.52 0.25 0.47 -0.46 0.17 0.24 0.46 -0.11 0.68 -0.09 0.79 0.06 0.86 0.12 0.75 (-0.73, 0.38) (-0.45, 0.95) (-1.12, 0.20) (-0.40, 0.88) (-0.62, 0.40) (-0.75, 0.57) (-0.59, 0.71) (-0.63, 0.87) 

Bacteroidota 0.16 0.34 0.07 0.73 0.53 0.01* 0.19 0.33 0.31 0.04* 0.29 0.14 0.27 0.16 0.3 0.19 (-0.17, 0.49) (-0.35, 0.49) (0.14, 0.91) (-0.20, 0.57) (0.02, 0.61) (-0.10, 0.68) (-0.11, 0.65) (-0.15, 0.74) 

Campylobacterota 0.05 0.87 0.38 0.32 0.236 0.52 0.52 0.13 0.54 0.05 0.464 0.19 0.35 0.32 0.06 0.89 (-0.55, 0.65) (-0.37, 1.14) (-0.49, 0.96) (-0.16, 1.21) (-0.002, 1.07) (-0.24, 1.17) (-0.35, 1.05) (-0.76, 0.87) 

Firmicutes -0.01 0.87 -0.01 0.95 -0.13 0.21 -0.04 0.71 -0.06 0.46 -0.07 0.50 0.01 0.93 -0.01 0.94 (-0.19, 0.16) (-0.22, 0.21) (-0.34, 0.07) (-0.24, 0.16) (-0.22, 0.10) (-0.27, 0.13) (-0.19, 0.21) (-0.24, 0.22) 

Fusobacteriota -0.06 0.82 -0.1 0.75 -0.1 0.75 -0.09 0.76 -0.14 0.56 0.25 0.41 0.29 0.34 0.37 0.30 (-0.58, 0.46) (-0.76, 0.56) (-0.73, 0.53) (-0.69, 0.52) (-0.62, 0.34) (-0.36, 0.87) (-0.31, 0.90) (-0.34, 1.07) 

Proteobacteria 
0.03 

0.91 
0.12 

0.71 
-0.32 

0.28 
-0.14 

0.62 
0.49 

0.03* 
0.3 

0.30 
0.45 

0.11 
0.57 

0.08 (-0.46, 0.51) (-0.50, 0.73) (-0.90, 0.26) (-0.70, 0.42) (0.06, 0.93) (-0.27, 0.873) (-0.11, 1.01) (-0.08, 1.22) 

Note: *P < 0.05; MEP, monoethyl phthalate; MBP, mono-n-butyl phthalate; MiBP, monoisobutyl phthalate; MBzP, monobenzyl phthalate; MEHP, 
mono(2-ethlyhexyl) phthalate; MEOHP, mono(2-ethyl-5-oxohexyl) phthalate; MEHHP, mono (2-ethyl-5-hydroxyhexyl) phthalate; MECPP, 
mono(2-ethly-5-carboxypentyl) phthalate 
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Figure 1. Summarized maternal gut phyla composition of 193 African American pregnant participants 
from Atlanta, GA across visit 1 (N = 167) and Visit 2 (N = 123). Taxa with less than 4% relative 
abundance were grouped together at each visit.  
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Figure 2. Box plots of genus-level Shannon diversity index measurements across high and low phthalate 
metabolite exposure among maternal fecal samples collected at A) Visit 1 (N = 167) and B) Visit 2 (N = 
123). MEP, monoethyl phthalate; MBP, mono-n-butyl phthalate; MiBP, monoisobutyl phthalate; MBzP, 
monobenzyl phthalate; MEHP, mono(2-ethlyhexyl) phthalate; MEOHP, mono(2-ethyl-5-oxohexyl) 
phthalate; MEHHP, mono (2-ethyl-5-hydroxyhexyl) phthalate; MECPP, mono(2-ethly-5-carboxypentyl) 
phthalate. 
 
  

A. 

B. 
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Figure 3. Principal coordinate analysis (PCoA) plot of Bray-Curtis dissimilarity index according to high 
and low urinary phthalate metabolite exposure among maternal fecal samples collected at A) Visit 1 (N = 
167) and B) Visit 2 (N = 123). MEP, monoethyl phthalate; MBP, mono-n-butyl phthalate; MiBP, 
monoisobutyl phthalate; MBzP, monobenzyl phthalate; MEHP, mono(2-ethlyhexyl) phthalate; MEOHP, 
mono(2-ethyl-5-oxohexyl) phthalate; MEHHP, mono (2-ethyl-5-hydroxyhexyl) phthalate; MECPP, 
mono(2-ethly-5-carboxypentyl) phthalate. 
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Figure 4. Spearman’s rho correlation coefficients between phylum-level gut microbiota and phthalate 
metabolites at A) Visit 1 (N = 167) and B) Visit 2 (N = 123). Blue indicates negative correlations; red 
indicates positive correlations. P-values were approximated by using the t or F distributions and 
correlations are considered significant at P < 0.05, indicated by boxed outlines. MEP, monoethyl 
phthalate; MBP, mono-n-butyl phthalate; MiBP, monoisobutyl phthalate; MBzP, monobenzyl phthalate; 
MEHP, mono(2-ethlyhexyl) phthalate; MEOHP, mono(2-ethyl-5-oxohexyl) phthalate; MEHHP, mono (2-
ethyl-5-hydroxyhexyl) phthalate; MECPP, mono(2-ethly-5-carboxypentyl) phthalate.   
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Figure 5. Spearman’s rho correlation coefficients between genus-level gut microbiota and phthalate 
metabolites at A) Visit 1 (N = 167) and B) Visit 2 (N = 123). Blue indicates negative correlations; red 
indicates positive correlations. P-values were approximated by using the t or F distributions and 
correlations are considered significant at P < 0.05, indicated by boxed outlines. MEP, monoethyl 
phthalate; MBP, mono-n-butyl phthalate; MiBP, monoisobutyl phthalate; MBzP, monobenzyl phthalate; 
MEHP, mono(2-ethlyhexyl) phthalate; MEOHP, mono(2-ethyl-5-oxohexyl) phthalate; MEHHP, mono (2-
ethyl-5-hydroxyhexyl) phthalate; MECPP, mono(2-ethly-5-carboxypentyl) phthalate.  
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Supplementary Figure 
 

 
 

Figure S1. Distribution of urinary phthalate metabolites in African American pregnant participants from 
Atlanta, GA across A) Visit 1 (N = 167) and B) Visit 2 (N = 123) after creatinine correction and log 
normalization. MEP, monoethyl phthalate; MBP, mono-n-butyl phthalate; MiBP, monoisobutyl phthalate; 
MBzP, monobenzyl phthalate; MEHP, mono(2-ethlyhexyl) phthalate; MEOHP, mono(2-ethyl-5-
oxohexyl) phthalate; MEHHP, mono (2-ethyl-5-hydroxyhexyl) phthalate; MECPP, mono(2-ethly-5-
carboxypentyl) phthalate. 
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