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Abstract 

Improving Decoding of Electrocorticographic Signals using Deep Learning   
by Kejun Li 

 Brain-machine Interfaces (BMIs) are technologies that aim to assist people who 

suffer from loss of motor function due to accidents or neurodegenerative diseases, by 

providing a pathway between brain and external assistive devices. Electrocorticography 

(ECoG) is one of the recording methodologies that could be used to infer people’s 

movement intention for BMI systems. ECoG covers large areas of the brain and has a 

demonstrated safety record. However, its low spatial resolution usually leads to worse 

accuracy in decoding movement intention than BMIs that use intracortical recordings. In 

this study, we found that ECoG decoding performance could be improved by modeling 

neural population dynamics using a deep learning technique: Latent Factor Analysis via 

Dynamical Systems (LFADS). LFADS attempts to uncover structure from neural 

population activity that is consistent with a low-dimensional dynamical system. In 

previous applications to intracortical recording from motor cortex, LFADS improved 

decoding accuracy by uncovering estimates of neural population dynamics on a single-

trial, moment-by-moment basis. However, since LFADS was previously evaluated using 

intracortical recordings with high spatial resolution, it was unclear whether LFADS is 

appropriate for de-noising recordings with low spatial resolution, such as ECoG. To test 

this, we applied LFADS to ECoG recordings from seven human subjects who were 

being monitored as part of clinical treatment for epilepsy or glioma. Subjects performed 

a one-finger button-press task as their finger kinematics and kinetics were recorded. We 

compared our ability to decode behavioral states (i.e. pre-movement, movement or 

force) before and after application of LFADS. The accuracy of the discrete classifier was 



 

improved significantly by the application of LFADS. Our results represent a new avenue 

toward improving the performance of ECoG-based BMI systems.  
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Terminology and Abbreviations 

BMI: brain-machine interface 

ECoG: electrocorticography 

EEG: electroencephalography 

LFADS: latent factor analysis via dynamical systems 

MEA: microelectrode arrays 

PA: power amplitude 

PC: principal component 

PBT: population-based training 

PCA: principal component analysis 

RNN: recurrent neural network 

SCI: spinal cord injury 
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Introduction 

Brain-machine interfaces (BMIs) are technologies that allow communication 

between brains and external devices, such as computers or prosthetics. BMIs are a 

promising approach to restore lost motor function in patients who suffer from motor or 

sensory impairments, for instance by using brain activity to control electronic stimulation 

of paralyzed muscles or to command robotic limbs (Ajiboye et al., 2017). One of the key 

components of BMI system is the decoder, which is used to translate brain activity into 

control signals for external devices. Developing decoders that could infer subject 

movement intention accurately remains a critical challenge for building BMIs.  

The most accurate decoding to-date has come from intracortical BMIs that 

require surgical implantations of microelectrode arrays (MEA) (Hochberg et al., 2012; 

Ajiboye et al., 2017). Besides reactive activities such as gliosis and progressive 

meningeal fibrosis that may degrade the materials of the implants, signal longevity is a 

major concern for MEAs since the neurons recorded from these microelectrodes 

change considerably over time, which makes the decoding process more challenging 

(Nurse et al., 2016). As a result, researchers are considering alternative methods to 

monitor neural activity. Electrocorticography (ECoG) represents a promising interfacing 

option among current non-invasive and invasive BMI recording methods. Compared to 

scalp-recorded electroencephalography (EEG), ECoG has higher spatial resolution, a 

wider informative frequency range, higher characteristic signal amplitudes (50-100 μV 

vs. 10-20 μV), and less vulnerability to ambient noise (Schalk et al., 2008; Liang and 

Bougrain, 2012).  ECoG also covers a much larger area than intracortical recording, 

potentially enabling researchers to develop decoders that rely less on local neural 
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activity, and are thus less affected by slight changes in the implant position. Because 

ECoG is widely used in the treatment of epilepsy, it provides ample opportunities to 

record motor cortical activity from patients and test out any BMI prototypes.  

Previous work has demonstrated that ECoG signals are useful for decoding 

movement intention to control external devices such as computer cursors (Vansteensel 

et al., 2016) and robotic arms (Wang et al., 2013). However, as previously stated, the 

performance of ECoG BMIs are not as impressive as those of intracortical BMIs 

(Pandarinath et al., 2017). In this project, we aimed to test whether by applying cutting-

edge computational techniques (deep learning), we might be able to bypass the 

limitations imposed by the spatial resolution of ECoG. 

 We used a deep learning technique called Latent Factor Analysis via Dynamical 

Systems (LFADS) to uncover brain states from the recorded ECoG data. Briefly, LFADS 

attempts to denoise recorded neural activity based on the assumption that the complex 

firing patterns of motor cortical neurons reflect an underlying dynamical system. In such 

a dynamical system, the rules that decide how firing rates change over time remain 

consistent even if the external variables, such as movement directions change. LFADS 

aims to extract these rules to infer denoised representations of neural population activity 

on single trials. 

We chose LFADS because it outperforms current best approaches for de-noising 

neural population activity, which leads to more accurate prediction of movement 

intention (Pandarinath et al., 2018). It accepts unlabeled neural population activity, 

attempts to infer the underlying dynamics, and rejects signals that are not consistent 

with the learned dynamics to generate a denoised version of the data. LFADS can also 
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be modified to combine data across many sessions to better model one underlying 

dynamical system. This would lead to more robust decoding across hours/days, since it 

creates a better estimate of underlying dynamics, while also compensating for potential 

instabilities in the recording process. Even though not used in this project, the ability of 

combining data across sessions is incredibly useful in terms of BMI study since a 

consistent dynamical model learned across different tasks and across days could 

provide critical information to guide future BMI design in terms of which recording 

parameters to be used, and where to place the electrodes, etc.  

Because the performance of LFADS has only been evaluated on datasets with 

high spatial resolution, it remains unclear whether LFADS could model neural 

population dynamics using lower resolution data, such as ECoG. However, it has been 

shown that the underlying patterns for the dynamical system are broadly distributed 

across the cortex (Pandarinath et al., 2018), which suggests that the aggregated spiking 

activity ECoG recorded would still rely on the same set of rules and the location of the 

recording does not matter that much as long as it is still related to the task. As a result, it 

is likely that LFADS could perform relatively well since the decreasing in the spatial 

resolution of data should not significantly hinder the ability of LFADS to extract the latent 

factors that underlie these observed ECoG activity, which thus should not decrease that 

much of the overall performance of LFADS. Since ECoG has lower resolution than other 

invasive recording methods, if the decoding performance of ECoG data after going 

through LFADS is indeed compelling, it would provide strong evidence to demonstrate 

the potential of ECoG to be used as an alternative recording technology for BMI 

applications. 



 5 

We applied LFADS on ECoG data collected from human patients being 

monitored as part of clinical treatment for epilepsy or glioma by researchers at 

Northwestern University. Patients performed a cursor control task by using their index 

fingers to press on a button (force sensor). Both finger kinematics (movement) and 

kinetics (force) are recorded. In order to quantify whether LFADS output was indeed 

meaningful, discrete decoding analysis was performed to evaluate how well we could 

differentiate neural representations related to kinematics from kinetics. We 

hypothesized that LFADS should be able to generate a denoised version of the ECoG 

data that results in higher decoding accuracy.  
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Methods 

Subjects Overview 

 Seven human subjects were involved in this study (all males). One subject (S06) 

went through extraoperative intracranial monitoring prior to surgery as part of the 

treatment for epilepsy. Six other subjects had awake-intraoperative mapping prior to the 

resection of low-grade gliomas. The tumors of these six patients were located remotely 

to cortical areas that were related to hand grasp, and no upper limb sensorimotor 

deficits were found in their neurological testings.  

All experiments were performed under protocols approved by institutional review 

board of Northwestern University and were conducted by researchers from Slutzky 

Neuroprosthetics Laboratory. Written consent was obtained prior to subjects’ 

participation in the study. Subjects were recruited if the location of their craniotomy or 

the monitoring arrays were expected to cover primary motor cortex. 

 

Recordings  

 In subject S06, a 32-electrode (8x4) array with a 1.5mm exposed recording site 

diameter and a 4mm inter-electrode spacing (Integra, Inc.) were placed according to 

clinical need. For all subjects other than S06, a 64 electrode (8x8) high-density ECoG 

array with the same size of electrodes and spacing as the 32-electrode array was 

placed over hand motor areas. Anatomical landmarks, preoperative fMRI or transcranial 

magnetic stimulation, and direct electrocortical stimulation mapping were used to 

identify functional motor areas.  Recordings were performed after the direct stimulation 

mapping. Intraoperative MRI was performed with Curve (BrainLab, Inc., Munich, 
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Germany). Primary motor cortex (M1), premotor cortex, and part of primary 

somatosensory cortex (S1) were covered in the recordings as demonstrated in figure 1.  

ECoG was sampled at 2k Hz with Neuroport Neural Signal Processor (Blackrock 

Microsystems, Inc) with a bandpass filter of 0.3-500 Hz. Finger kinematics were 

recorded by a 22-sensor CyberGlove (Immersion). Force was recorded with a custom-

built load cell sensor. Both finger kinematics and force were sampled at 2kHz. 

 

Experimental Protocol 

 The task was designed to only require movement from one’s index finger and all 

the other fingers should remain motionless during the trials. As a result, only data from 

the sensors of the CyberGlove that were related to the movement of index finger was 

analyzed. 

Subjects were instructed to hold their index finger at a neutral resting position. 

After a cue was presented, the subjects started a flexion movement, which allowed 

them to make contact with the force sensor using the palmar surface of their fingers. 

The subjects were then instructed to apply force to the force sensor to control a cursor 

on the monitor. The goal of their task was to make sure that the position of the cursor 

was matched with a force target presented on the monitor. The target force levels were 

randomly set for each trials.  The completion of the trial is indicated by either a 

successful match or a 2s timeout. The subjects then extended their fingers to the 

previous neutral position. After a delay of 1s, the next trial began. BCI2000 software 

was used to present target and provide feedback for the cursor. The time resolution for 

the movement of cursor was 50ms.  



 8 

 

Spectral Feature Extraction and Power Amplitude (PA) Matrix 

Only channels that covered primary motor cortex (M1) and premotor cortex (PM) 

were used for analysis. Spectral features of each ECoG electrode covering these area 

were extracted using a short-time Fourier transforms with a window width of 512 ms. 

The spectral power was log-normalized and averaged in 25 ms time bins. Another study 

demonstrated that ECoG activity in several specific frequency bands such as sub-bands 

(1-60Hz), gamma band (60-100 Hz) and fast gamma band (100-300 Hz) was related to 

the task (Liang and Bougrain, 2012). High gamma power (80-150 Hz) of the ECoG 

signals could be used to predict movement types as well as provide the best information 

that could be used to classify different movement types (Yanagisawa et al., 2011). 

Based on above evidence, we decided to use a low frequency feature (8-55Hz) and a 

high frequency feature (70-150 Hz) for each channel. These two features were 

rearranged into a power amplitude (PA) matrix through the concatenation of low 

frequency feature (8-55 Hz) and high frequency feature (70-150Hz) of each channel. 

Since there were two features for one electrode, this resulted in a matrix size of N x T, 

where N equals 2 * number of electrodes and T equals number of time bins. This PA 

matrix was later used as the input for LFADS. 

 

Latent Factor Analysis via Dynamical System (LFADS) 

We used LFADS to analyze the PA matrix and inferred a denoised version. 

LFADS is designed based on the idea that neural population activity could be described 

by low-dimensional dynamics. It is important to understand what low-dimensional 
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system and dynamical system mean before one can understand how LFADS model 

neural population activity.  

 In cases where a large number of neurons are being monitored, if there are D 

neurons, it is often reasonable to consider the dimensionality of the system to be lower 

than D- because the recorded neurons are from the same common network, their 

responses are likely not completely independent of each other. The activity of this 

network is often considered to covary according to a small number (K) of explanatory 

variables, where K < D (Cunningham & Yu, 2014). LFADS can extract these K 

explanatory variables, often termed latent variables or latent factors, from neural 

population activity. LFADS provides a denoised version of the original activity by 

rejecting any data variance that is not captured by these latent factors.  

 In a dynamical system view, these latent factors could be considered to be the 

factors that describe the “dynamics” or the rules that neural population activity follow. By 

definition, a dynamical system is “a physical system whose future state is a function of 

its current state, its input, and possibly some noise” (Shenoy et al., 2013 P339).  

Considering a general dynamical system, a dynamics system consists of the current 

state of the system x(t), the function F that determines how x(t) is being updated, and 

the optional input u where: 

ẋ(t) = F(x(t), u(t)). 

 To model such dynamical system, the encoder network (an recurrent neural 

network or RNN in LFADS) processes single-trial activity and infers the initial condition 

(g0) of each trial. This initial condition serves as the initial state of the generator network 
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(another RNN in LFADS), whose task is modeling the underlying dynamics from the 

observed spiking activity (figure 4b).  

LFADS assumes that the observed action potentials for each neuron are 

samples from an inhomogeneous Poisson process, and attempts to infer this process 

(the inferred firing rate) for each neuron. In this study, since the ECoG power signal 

represents aggregated spiking activity from thousands of neurons, the underlying 

distribution was switched to Gaussian instead of Poisson.  

 

Hyperparameter tuning with Population-based training 

To apply LFADS or other deep learning algorithms, it usually requires careful 

hand-tuning of the hyperparameters that define the model structure and how the model 

is trained to make sure optimal performance could be reached. This step could be 

extremely challenging and time-consuming even for experts in this field. Thus, in our 

project we decided to use an automatic hyperparameter tuning method (population-

based training, PBT) developed by Mohammad Reza Keshtkaran in our lab that utilizes 

an evolutionary algorithm to search for optimal hyperparameters in combination with 

LFADS. This method trains a number of networks with different hyperparameters in 

parallel and evaluate and choose the best performing networks in the current generation 

to continue the training process. LFADS performance was trained on partially-sampled 

data and then cross-validated by the complementary samples to avoid overfitting during 

the training process. The performance of LFADS with PBT had been found either 

matched or outperformed the performance of original LFADS that was hand-tuned by 

experts consistently. By using such algorithm, we avoid the tedious hand-tuning process 
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to obtain the optimal hyperparameters, which allowed this project to be completed in 

time. 

 

Principal Component Analysis  

 Since LFADS denoises data by modeling the low-dimensional dynamics of the 

neural population activity, we would like to find a way to compare the dimensionality of 

the modeled data and PA matrix as well as visualize any dynamics LFADS might learn. 

A dimensionality reduction method, principal component analysis (PCA), was used for 

this purpose to generate a low-dimensional representation of the PA matrix and LFADS 

output. PCA finds a set of principal components (PCs), which are orthogonal 

components, i.e. linearly uncorrelated components. These PCs are able to reconstruct 

the original dataset and they the maximized the variance they explained in the given set 

of possibly correlated observed variables. After finding one PC, it then removes the 

variance explained by this component and seek for the next best component, and so on. 

For instance, considering a 2d example (Figure 1), the maximum number of PCs that 

could be found are two since PCA requires each PC to be linearly independent 

(perpendicular to each other in a 2d plane). To demonstrate how PCA find a low 

dimension representation, let’s try to find a 1d representation (i.e. a line) of this 2d 

example. In order to maximize the variance explained, where the variance is defined as 

the average squared distance from the center (white circle) of all the data points (blue 

dots), the projection of each data point (red dots) on the first principal component (black 

line) need to be as spread out as possible. Maximizing the variance explained also 

minimize the the difference between the found feature (first PC) and the actual data 
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points, which are represented by the red lines. It is obvious in a 2d plane that the one on 

Figure 1b is clearly the best line of fit, but not so intuitively in higher dimension. For 

instance, if we are looking for neural population activity, since there are so many 

potential features available, we are not able to visualize the systems and determine the 

most important features as easy as this one. But PCA could identify the these most 

essential of features for us (i.e. the first several PCs) by the nature of this method. By 

limiting the number of PCs that are plotted, we reduce the dimension of the original 

dataset to a lower dimension and thus allow visualization. One way of quantifying how 

well PCA is able to capture the structures or variances in the original data or how 

different the captured low dimension representation is from the original data is by 

calculating the percent variance explained by each of the PCs. 

In this project, the percentage of variance explained by the first three, i.e. the 

most important three, components were reported. The results of PCA analysis was also 

used to provide us with low-dimension visual representations of the original datasets.  

 

Decoding analysis  

To test whether the LFADS output was meaningful, we attempted to classify 

behavioral states. Data were labeled according to the following scheme: time bins 

between the target onset and the movement onset were designated “background”; time 

bins between the movement onset to force onset were designated “movement”; and 

time bins from force onset to force onset + 0.5 s were designated “force”. The length of 

the “force” window here was limited by discarding all the data from 0.5s after the force 



 13 

onset till the end of the trial to obtain more equal class sizes. Bootstrap aggregated 

(bagged) trees classifier was then used to classify the remained data.  

Bootstrap aggregating, also called bagging, is a technique used to build a 

machine learning ensemble that consists of multiple models. Bagging is often used in 

combination with a set of decision trees to reduce the variance of individual decision 

tree. By definition, a decision tree is a model that predict the values of a target variable 

based on the available inputs. For instance, the diagram below is a flowchart for how 

decision tree makes predictions (Figure 2). The internal (non-leaf) nodes shown in the 

diagram are labeled according to the given input feature. (i.e. A, B, C, etc.). What’s 

being learned during the training process is the cutoff threshold for each feature (i.e. 

what value A should equal to so that the tree should follow the left path). 

In our case, the bagged trees classifier is initialized with several different decision 

trees just like this one but with input features being different features of the recording. 

Specifically, low-frequency or high frequency features of each channel are used instead 

of A, C, or D. During learning, each decision tree finds a best cutoff threshold for each 

feature. By comparing the learned cutoff values with the actual values of the features 

during each internal node, a prediction could be made when the terminal node or leaf is 

reached. The bagged trees take one vote from each of the individual decision tree to 

make the final prediction, which was usually more robust than a single decision tree.  

The performance of the bagged classifiers was evaluated by 5-fold cross-

validation. For each test fold, every 25 ms time bin was classified and percentage 

accuracy of the classifiers was reported. Either PA matrix or LFADS-denoised ECoG 
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was used as the input for classification. A chance level performance was also evaluated 

by shuffling the class labels for 1000 times. 
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Results 

As described, ECoG activity was recorded from seven human subjects who 

required intraoperative or extraoperative mapping as part of their treatment for glioma or 

epilepsy. Subjects performed a cursor control task, where they were instructed to press 

the force transducer to move the cursor to meet with the target (Figure 3a). Both finger 

kinematics (movement) and kinetics (force) were recorded at the same sample rate as 

the ECoG signals (2 kHz). The ECoG arrays covered primary motor cortex, premotor 

cortex and in some cases, prefrontal or postcentral cortices (Figure 3b). 

To classify ECoG data into discrete behavioral states of background, movement, 

and force, we followed the following scheme (Figure 4a): ECoG data were first 

preprocessed with a short-time Fourier transform (STFT) and constructed into a power 

amplitude matrix, which then went through LFADS (Figure 4b). The LFADS-denoised 

ECoG data were then classified into the three discrete states mentioned above using a 

bagged trees classifier. In order to determine whether LFADS improve decoding 

performance, PA matrix was also used as input for a separate classifier to establish a 

baseline that LFADS results could be compared with.  

 In order to visualize the neural population activity, we applied PCA to both the PA 

matrix and LFADS-denoised ECoG to generate a low-dimensional representation for 

each subject’s neural population activity. The first PC of LFADS-denoised ECoG 

explained far more variance of the data than that of PA matrix. This is true across all 

subjects, with an average of 67.18% ± 9.5% explained by the first PC for LFADS, and 

26.93% ± 13.25% explained by the first PC of the PA matrix. The cumulative variance of 

first three PCs follow this trend as well. The average cumulative variance explained by 
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the first three PCs was 46.1%±16.98% and 94.6%3±2.91% for PA and LFADS, 

respectively (Figure 5). These results suggested that the dimensionality of the dynamics 

LFADS extracted was incredibly low since 3 PCs were sufficient to explain most of the 

variance even though a much larger number of latent factors, ranging from 10-30 were 

allowed when applying LFADS. This also means that the visualization PCA provided, 

especially the 3-PC trajectories, captured majority of the variance of the original data. 

 The example single trial from Subject S04 clearly demonstrate that LFADS 

output was smoother and more structured than the PA data (Figure 6a, b), suggesting 

that LFADS may be rejecting noise. Visualization of PCA trajectories, both the 

progression of the first PC over time, and progression of 3 PCs in state space for 

subject 4 or subject 5, also suggested that LFADS output was denoised relative to the 

original PA data (Figure 6c & d, 6 e & f, 6 g & h). 

 While the visualization results were promising, it is unclear whether LFADS was 

actually removing noise from the data, or also removing essential features of the data. 

In order to test that, we performed a classification analysis to determine if the LFADS 

outputs contained enough information to classify the participant’s behavioral states. We 

used bagged trees classifier here to classify ECoG data before (PA matrix) and after 

LFADS into three discrete states: background, movement, and force.  

For PA matrix, mean decoding accuracies and standard error of mean ranged 

from 77.2% ± 1.2% to 90.7% ± 0.7% across the 7 subjects with an overall mean 

decoding accuracy and standard error of mean of 83.47% ± 1.7%. For LFADS-denoised 

ECoG, mean decoding accuracies and standard error of mean ranged from 86.8% ± 

3.8% to 93.9% ± 2.7% across the 7 subjects. The overall mean decoding accuracy and 
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standard error of mean for all subjects was 89.9% ± 1.15%. LFADS significantly 

improved performance of the bagged trees classifier for 5 out of 7 subjects (Figure 6).  

Overall, decoding using the LFADS-denoised ECoG resulted in better 

performance than the PA matrix (p=2-31, Kruskal-Wallis test). The decoding accuracy for 

all subjects was statistically significantly higher than chance (Figure 7). 
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Figures 

 

Figure 1: Demonstration of PCA analysis (plots generated using code written 

by amoeba, 2018). Each blue dot represents a data point in the original 

dataset. The black line represents potential direction of first principal 

component (PC).  Each red point on the black line represents the projection 

of the data points onto the first PC. The grey line represents the direction of 

second PC, which is determined according to the direction of the first PC 

since it has to be perpendicular to it by the nature of PCA.  The red line that 

connected blue dots and red dots are the reconstruction error (i.e. how 

different the low-dimension representation is from the original dataset). a) the 

black line does not maximize the explained variance. b) the black line 

maximize the explained variance 

 

 

 

a b 
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Figure 2: Decision tree diagram (Fielding, n.d.). This is a example decision 

tree diagram for a binary classification problem (groups I and II). The 

predictors, which are inputs, are either continuous (A, C & D) or categorical 

(B). Each internal node is associated with one of the features. By following 

along one of the paths for the tree, a classification result is determined if a 

terminal node (leaf) is reached. 
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Figure 3: Experimental protocols and ECOG array placement. a) Example 

trials. The subject first held their index finger at a neutral resting position until 

the target showed up on the screen. They then started flexion movement 

(light blue traces) to make contact with the force transducer. In order to 

match the cursor on the screen with the target, they started to press the force 

transducer (dark blue traces) till the task was indicated as successful. They 

repeated the same procedure for each trial. The light blue triangle indicates 

the movement onset and the dark blue circle indicates the force onset. b) 

Electrode placement for all the subjects. S01 and S02 were recorded from 

the right hemisphere, while all other subjects were recorded from the left 

hemisphere. 
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Figure 4: Scheme for discrete state classification. a) ECoG data were 

rearranged into the PA matrix and then denoised by LFADS. The LFADS-

denoised ECoG was then used in the bagged trees classifier, to label each 

25ms time bin as either “background”, “movement”, or “force”. In order to 

determine the effect of applying LFADS, PA matrix was also used as input for 

the bagged trees classifier. b) The detailed structure of LFADS. After LFADS 

takes in observed neural activity, the encoder RNN infers the initial state g0. 

The generator RNN then uses g0 and the learned dynamics to infer the 

vector of activity, which are then later transformed into denoised rates. 
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Figure 5: Percent variance explained by the first three principal components 

from PCA for PA matrix and LFADS. For each subject, PA matrix results are 

on the left (indicated by blues), LFADS results on the right (indicated by red). 

Each three PCs are indicated by different forms of blue or red. The intensity 

of the color reflected how important that PC was. For instance, the darkest 

blue or red means this is the most important PC (PC1) and the lightest 

segment would be the least important PC (PC3).  
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Figure 6: Example trial for ECoG and PCA trajectories for PA matrix and 

LFADS-denoised ECoG. a) PA matrix for one example trial subject 4 (S04) 
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performed. b) LFADS-denoised ECoG for one example trial subject 4 (S04) 

performed. Seventy-two features were used for this dataset. Features 1-36 

and 37-72 are low frequency and high frequency features from 36 electrodes, 

respectively. For both panels a) and b), movement onset (FlexOn) is marked 

by green dash lines and force onset (ForceOn) is marked by the red dash 

lines. d) First principal component of PA matrix (c) and LFADS-denoised 

ECoG (d) for subject 4 (S04). All 69 trials were plotted. e, f) First three PCs of 

PA matrix (e) and first three PCs of LFADS output (f) for all 69 trials for 

subject S04. g, h) First three PCs of PA matrix (g) and first three PCs of 

LFADS output (h) for all 78 trials for subject S05. For the first three PCs plot, 

each point on the trajectory is representing the projection of original data 

onto the first three PCs at one specific time point.  
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Figure 7: Bagged trees decoding performance. The chance level decoding, 

performed by using shuffled labels, and actual classification results using either 

PA matrix or LFADS as input was indicated by yellow, blue, red markers, 

respectively. Error bars represent standard error of the mean. For all subjects 

except S06, LFADS performed significantly better than PA. For subject S05, the 

LFADS decoding was significantly worse than that of PA. There was no statistical 

difference between LFADS and PA performance for subject S06. S06 is also the 

subject with epilepsy, who was monitored using an array with fewer contacts (32 

channels) than for other subjects (64 channels). Decoding from both the PA 

matrix and LFADS output resulted in performance that exceeds chance levels. 
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Discussion 

We evaluated LFADS performance in extracting low-dimensional dynamics and 

de-noising ECoG through performing a discrete behavioral state classification. When 

using bagged trees classifiers with LFADS-denoised ECoG activity, the decoding 

performance of 5 out of 7 subjects improved significantly, with an average of 

89.9%±1.2% that was better than PA matrix with an average of 83.47% ± 1.7%. 

Traditionally, ECoG studies rely on a selected range of features such as the sets of 

channels and range of spectral frequency bands to be used to reach optimal decoding 

performance on subject intention. These features that are selected usually vary across 

subjects, task, cortical areas and require experts in this area to evaluate them manually 

for optimal performance (Pailla et al., 2018). For instance, the channels to be included 

at the end were not simply selected based on the anatomical position but through 

massive evaluation of different combinations of frequency bands and channels (i.e. for 

one channel, its low frequency feature might be responsive to behavioral variables, but 

its high frequency feature is not). In our case, we selected channels purely according to 

the brain area they covered (M1, PM channels) and used the same general range of low 

frequency feature and high frequency feature across all channels. Our results suggest 

that LFADS can effectively denoise ECoG and would at least allow us to reduce the 

effort that are required for manual selection in traditional ECoG studies by modeling the 

neural population dynamics. This application is not limited to ECoG data only. Other 

recording methods with low spatial resolution, such as stereo-electroencephalography 

(SEEG), may also be modeled by LFADS and potentially lead to a higher performance 

in decoding analysis. Combining the advantage of a larger coverage for ECoG array 
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and extracting low-dimensional neural population dynamics of LFADS, ECoG also has 

the potential to be used to study other basic science questions for systems 

neuroscience, which could then in return benefits BMI development in the future.  

Even though for one of the subjects (S05), LFADS-denoised ECoG has a lower 

decoding accuracy than PA matrix, modeling neural population dynamics using LFADS 

significantly improve the overall performance of ECoG (p=2-31) and the performance of 

LFADS-denoised ECoG could be further improved in several ways. First, the current 

recording was a relatively short one (~300s), it is possible that we can obtain higher 

decoding accuracy by training LFADS with longer recording durations. Second, as 

previously mentioned, we can modify LFADS to combine data from across days to 

generate a more consistent model over time for the neural population activity. Another 

thing to notice is that the chance level was higher than a purely random classification of 

three states, which should be 33% if each state is equally likely to occur. This was likely 

due to the disproportion of the three behavioral states because the force state occurs 

more often than movement even after we limited the amount of force data we used 

(Figure 3). The classification performance for a different experimental task with more 

balanced behavioral states may also be evaluated in the future to provide a thorough 

assessment.  

As the ability to grasp and manipulate objects is essential to our daily lives, the 

restoration of hand and arm function was ranked first among other loss motor functions 

in the patients who have limited hand functions (Xie et al., 2018). Developing a BMI that 

allows patients to execute object interaction movement is thus definitely a priority goal 

to provide a better standard of life for these subjects. Even though ECoG generally 
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performed poorly in terms of decoding accuracy when compared to intracortical 

recording methods, our results demonstrated that LFADS could help ameliorate this 

disadvantage as the ability to differentiate the states of moving and force is essential to 

develop functional BMIs that could be used for daily activities (Downey et al., 2018). 

Because in our results, ECoG could be used to accurately determine the behavioral 

states, ECoG has the potential to be used for hand control, which was not likely to be 

achieved when only using traditional spectral feature extraction. 

Although ECoG is invasive, survey results concluded that spinal cord injury (SCI) 

patients preferred wireless brain implants than wired EEG caps, indicating that in some 

cases, the convenience and cosmetic appearance of a system is more strongly weighed 

than surgical concerns (Blabe et al, 2015). Because non-invasive interfaces, like EEG, 

result in relatively poor decoding of neural activity, they are not suitable to restore 

behaviors like grasping, which requires fine control (Krucoff et al., 2016). The leading 

intracortical recording method, the Utah array, has high decoding performance, but only 

has been implanted chronically in a small set of patients. Most of these patients had no 

remaining motor function, and therefore, little clinical safety data is available to 

demonstrate that implanting intracortical arrays does not interfere with residual motor 

function. In contrast, ECoG recording is widely used during clinical treatment for 

epilepsy. On the timescale of weeks, ECoG has a well-proven safety record, which is 

ideal for rehabilitative applications, and may hold promise for patients that have some 

remaining motor function. 

As mentioned early, hand grasping is so essential that developing a rehabilitative 

BMI that utilizes the unique opportunity ECOG and LFADS provided for hand should be 
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the priority and is considered as one of the future directions for this project. Because 

rehabilitative BMIs usually facilitate motor function restoration through pairing patients’ 

movement intention with precisely-timed execution and feedback of the task to activate 

plasticity mechanisms, a real-time decoder for the BMI needs to be developed and 

tested first. Individuals who have chronic epilepsy are usually monitored with ECoG 

recording for days or weeks in an epilepsy monitoring unit, which will provide us with a 

unique opportunity to build a pre-trained LFADS model using the first days of data and 

then apply LFADS in real-time to evaluate its performance in closed-loop BMI setting. 

We can also evaluate the performance of LFADS in improving ECoG decoding 

performance for more complex behaviors.  
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