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Abstract 

Smoothing Tensor Factorization on Spatio-Temporal Data 
By Sihan Yue 

As spatio-temporal data violates many assumptions required in traditional machine learning/ data 
mining algorithms, tensor factorization (TF) has often been adopted in analyzing such data. Yet, 
the non-smooth factors that TF outputs sometimes misrepresent the underlying structure of the 
data and hinder the interpretability without domain knowledge. With the goal of smoothing the 
factors, we proposed three approaches: i) adopting Tikhnov regularization to CP_OPT; ii) adopt 
CP_OPT_SMOOTH in ParCube; iii) ParCube with neighbor padding. In order to examine the 
performance of these algorithms, we performed numerical experiments on the New York Uber 
Pickups dataset provided by FROSTT. Our results show that i) CP_OPT_SMOOTH improves 
the smoothness and the runtime with certain cost of accuracy; ii) with CP_OPT_SMOOTH, 
CP_OPT can now be adopted in ParCube but with some sacrifice in accuracy; iii) neighbor 
padding improves the smoothness while maintaining high accuracy. 
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Chapter 1

Introduction

Spatio-temporal data, as indicated by its name, are data where space (e.g.

latitude and longitude) and time attributes are ubiquitous. Massive amounts

of spatio-temporal data are collected across many application domains includ-

ing ride-sharing platforms for saving energy consumption and reducing traffic

congestion, urban planning through a better understanding of real estate mar-

ket analysis, and population health management to identify hot spot areas to

deploy portable clinics to prevent widespread epidemics. These seemingly dis-

tinct applications have the same underlying theme, the need for automated

discovery that centers around spatio-temporal-based pattern mining.Since

spatio-temporal observations are highly correlated with time and location and

therefore do not follow traditional assumptions of an independent and identi-

cally distributed variable, classic machine learning and data mining algorithms

on spatio-temporal data usually do not yield fast and accurate results as they

would on traditional data. Despite the complexity of the data itself, analyses
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on spatio-temporal data often require domain-specific manual work, and are

not computationally feasible for analyzing large-sized data [3, 19]. Some other

problems that hamper the usage of classical machine learning algorithms in-

clude the variability in measurements with respect to length and frequency, and

multi-sourced data that spans multiple sources of information and collected at

multiple sites.

One common approach to represent spatio-temporal data is to use a data

structure called tensor, which is a generalization of a matrix to multi-way data. A

tensor is a natural representation for high-dimensional since it is powerful and

flexible in allowing various succinct encodings of spatio-temporal data [5, 6, 14].

For example, ride-hailing demand can be represented as a three-way tensor

where each element represents the number of requests for a specific location,

the hour, and the day. Alternatively, the same information could be stored as a

four-way tensor where the location is encoded using the latitude and longitude.

Therefore, the tensor representation provides a sufficient representation for

analyzing large-scale spatio-temporal data.

Tensor factorization is a common technique that provides a data-driven

approach for automated discovery. Examples of tensor factorization methods for

spatio-temporal analyses include detecting anomalous urban mobility patterns,
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estimating path travel time, and forecasting points of interest in cities. The

PARAFAC/CANDECOMP (CP) model is one of the most popular tensor analysis

methods [2, 4]. CP decomposes a tensor into a sum of rank-one outer products

which effectively represents the underlying data concepts. Its popularity owes

to its intuitive output structure and uniqueness property that make the model

reliable to interpret [6, 7]. Common algorithms to solve the CP model includes

CP_ALS and CP_OPT. Although CP_ALS is easy to understand and implement,

the algorithm is not stable since it is not guaranteed to converge to a solution

where the objective function of CP ceases to decrease, not necessarily to a global

minimum or even a stationary point [6]. CP_OPT is a gradient-based method.

It achieves higher accuracies than CP_ALS at the cost of running three times

slower than CP_ALS [10].

However, the resulting factors of the CP model are usually not smooth, which

sometimes do not provide ideal information. For example, when analyzing a

ride-hailing demand, we typically expect smooth transition in values as we move

along the time coordinate and we expect close neighborhoods to have similar

information as well. However, CP factorizations often yield results that have

spikes. In order to obtain more accurate results, we would prefer the solution's

components to be as smooth as possible. Earlier works focus on promoting
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non-overlapping results for a specific, fixed tensor mode [18]. Yet, as such

an objective is still limited by the need for prior domain knowledge or even

an arbitrary choice of a tensor mode, recent works have started transitioning

to focus on promoting multi-modal smooth decomposition results. A similar

work, CP_ORTHO which focuses on promoting non-orthogonality for better

interpretation on multi-modes, has also suggested a similar approach could be

applied to promote smoothness [1].

1.1 Contributions

In this paper, we propose to modify known CP factorization algorithms to im-

prove the smoothness of the decomposition factors. Our contributions are as

folow:

• First, we propose to explore spatial and temporal smoothness using Tikhonov

regularization on a stable and accurate algorithm CP_OPT. We name this

algorithm CP_OPT_SMOOTH.

• Second, to scale to large datasets that may not fit into memory, we propose

to replace the core decomposition of ParCube with CP_OPT_SMOOTH.

• Lastly, we propose a modification to the sampling technique used in Par-
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Cube so that a smoother set of data will be sampled to provide more

information of the underlying structure of the data.

The rest of the paper is organized as follows. In Chapter 2, we introduce the

notations and the preliminaries necessary for easier understanding of our paper.

We also introduce tensor factorization algorithms related to our approach and

discuss their limitations. We then present our approaches to smooth decompo-

sition factors in Chapter 3. Finally, we follow up with experiments on a real-life

application in Chapter 4 and provide conclusions and future work directions in

Chapter 5.
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Chapter 2

Background

In this chapter, we first introduce the notations needed to quickly follow

the algorithms in this paper in section 2.1. A brief introduction to tensors and

common operators are provided in section 2.2. Section 2.3 offers an overview of

matrix and tensor factorization, and section 2.4 reviews an efficient parallelizable

method for tensor factorization (ParCube). Lastly, section 2.5 covers smoothing

techniques.

2.1 Notation

Scalars are denoted by lowercase letters, x. Vectors are denoted by boldface

lowercase letters, x. Matrices are denoted by boldface capital letters, X. Higher-

order tensors are denoted by boldface Euler script letters, X . The i
th entry of

a vector a is denoted by xi , similarly, xi j denotes element (i , j ) of a matrix X ,

and xi j k denotes element (i , j ,k) of a third-order tensor X . The ith column of a
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matrix X is denoted by xi . Indices typically range from 1 to their capital version,

e.g.,i = 1, ..., I . The n
th element in a sequence is denoted by a superscript in

parentheses, e.g. A
(n) denotes the nth matrix in a sequence.

2.2 Tensor and Common Operators

A tensor is a multidimensional or N-way array. In other words, a tensor is a

generalization of matrix to multiway arrays. The order or mode of a tensor is

the number of dimensions. An example of a third-order tensor is shown in

Figure 2.1.

Figure 2.1: Example of a tensor

A third-order (or 3-mode) tensor of size 3£3£2 with the tensor elements shown

on the right side.

Common tensor operations are slices and matricization. Slices are two-
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dimensional sections of a tensor, defined by fixing all but two modes. Matri-

cization is the process of unfolding or flattening the tensor by reordering the

elements of an N-way array into a matrix. For example, for a tensor X , as shown

in Figure 2.1, who has the two following slices ,

X(1) =

2

66666664

1 4 7

2 5 8

3 6 9

3

77777775

, X(2) =

2

66666664

10 13 16

11 14 17

12 15 18

3

77777775

its corresponding mode-n unfoldings are:

X(1) =

2

66666664

1 4 7 10 13 16

2 5 8 11 14 17

3 6 9 12 15 18

3

77777775

X(2) =

2

66666664

1 2 3 10 11 12

4 5 6 13 14 15

7 8 9 16 17 18

3

77777775

X(3) =

2

6664

1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18

3

7775

The norm of a tensor X 2 RI1£I2£···£IN is the square root of the sum of the
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squares of all its elements:

kX kF =

vuut
I1X

i1=1

I2X

i2=1
· · ·

INX

iN=1
x

2
i1i2···iN

X is an N -way rank one tensor if it can be written as the outer product of N

vectors, a(1) ±a(2) ± · · ·±a(N ), where each element x~i = xi1,i2,··· ,iN
= a

(1)
i1

a
(2)
i2

· · ·a
(N )
iN

.

2.3 Matrix & Tensor Factorization

Matrix factorization (MF) is a common dimensionality reduction approach,

which represents the original data using a lower dimensional latent space. A

standard MF approach is to find two lower dimensional matrices that when

multiplied together approximately produce the original matrix. The standard

formulation for MF is as follows: given a n £m matrix X, find matrices W and H

of size n £ r and r £m such that X º WH.

Tensor factorization (decomposition) is a natural extension of matrix factor-

ization. The factorization of higher-order tensors have several advantages over

matrix factorization as it utilizes information from the multi-way structure that

is lost when modes are collapsed to use matrix factorization algorithms [9, 17],

can identify components with very few observations [11], and has uniqueness

of the optimal solution without imposing orthogonality and independence of
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the factors. In the case of spatio-temporal data, the information on time and

location can be easily lost when we collapse the modes to use matrix factoriza-

tion. Using tensor factorization, on the other hand, will render a specific and

explicit decomposition where both time and location, or even time, longitude

and latitude, are straightforward for interpretation.

While a wide variety of decompositions are available [6, 11], we will focus on

the CANDECOMP / PARAFAC (CP) model [2, 4]. The CP model, illustrated in Fig-

ure 2.2, approximates the original tensor X as a sum of R rank-one components

X º
RX

r=1
∏r a(1)

r
± . . .±a(N )

r

= Ç∏;A(1); . . . ;A(n)É.

Note that Ç∏;A(1); . . . ;A(n)É is shorthand notation to describe the CP decom-

position, where ∏ is a vector of the weights ∏r and a(n)
r is the r

th column of

A(n). The standard formulation for finding the CP decomposition is posed as the

following optimization problem:

min
X̂

f = 1
2
||X °X̂ ||2

F

s.t. X̂ = Ç∏;A(1); . . . ;A(n)É
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Figure 2.2: CANDECOMP/PARAFAC tensor decomposition

2.3.1 CP_ALS

The typical method for finding the CP components is alternating least squares

(ALS) optimization, as proposed in the original CP papers [6, 11]. The premise

is to iteratively optimize one factor matrix at a time while holding other modes

fixed, rather than solving for A(1) through A(N ) simultaneously. For example, in

order to factor a three-way tensor, we start with an intial guess for the matrices

A, B, and C, and then solve a least square problem for A while holding B and

C fixed, then solve for B while fixing new A and C, and so on until the factors

converge, as illustrated in Figure 2.3 .
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Figure 2.3: CP_ALS illustrated on a 3-way tensor

With all but one factor matrix fixed, the problem reduces to a linear least

squares problem and has an exact solution. Thus, it is often the method of choice

due to its speed and ease of implementation. Yet, CP_ALS often fails to obtain

the underlying structure in the data, especially in the case of overfactoring. Since

we cannot know the rank in advance, we often face the problem of overfactoring,

i.e., computing CP when R is greater than the rank of the tensor [10].

2.3.2 CP_NMU

Nonnegative CP with multiplicative updates (NMU) is an extension of CP_ALS.

CP_NMU differs from CP_ALS in that it imposes the constraint that the ele-

ments in each factor need to be nonnegative. This idea first arises in matrix

factorization when Paatero and Tapper[12] and Lee and Seung[8] proposed us-
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ing nonnegative matrix factorizations (NMF) for analyzing non-negative data,

such as environmental models and grayscale images, because it is desirable

for the decompositions to retain the nonnegative characteristics of the original

data and thereby facilitate easier interpretation[6]. As tensor factorizations are

generalizations of matrix factorizations, it is natural to extend NMF to tensor

factorizations by simply including additional constraints of non-negativity.

min
X̂

f = 1
2
||X °X̂ ||2

F

s.t. X̂ = Ç∏;A(1); . . . ;A(n)É

A(i ) ∏ 0 8 i = 1,2, ...,n

Note that A(i ) ∏ 0 denotes that each element of A(i ) is nonnegative. An exam-

ple of CP_NMU on a 3-way tensor is illustrated in Figure 2.4, where the parts

underlined in red highlight the difference between CP_NMU and CP_ALS:

Figure 2.4: CP_ALS illustrated on a 3-way tensor
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2.3.3 CP_OPT

In order to improve accuracy and stability, a gradient-based optimization ap-

proach for CP was proposed. The fundamental idea is to consider the CP ob-

jective function f as a mapping from the cross-product of N two-dimensional

vector spaces to R, and think of f as a scalar-valued function where the pa-

rameter vector x comprises the vectorized and stacked matrices A(1) through

A(N ),

x =

2

6666666666666666666666664

a1
(1)

...

aR
(1)

...

a1
(N )

...

aR
(N )

3

7777777777777777777777775

Now, the gradient of f can be obtained by calculating the partial derivative with

respect to each ar
(n) for r = 1,...,R and n = 1,...,N with the following formula,

@ f

@ar
(n)

=°(Z
N£

m=1,m 6=n

ar
(m))+

RX

l=1
∞rl

(n)al
(n)
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where ∞rl
(n) is defined as,

∞rl
(n) =

NY

m=1,m 6=n

ar
(m)al

(m)

The objective function can now be optimized using any first-order optimization

methods such as nonlinear conjugate gradient method or L-BFGS quasi-Newton

method. Compared to CP_ALS, CP_OPT solves for all factor matrices simultane-

ously and the numerical results from the original paper show that this leads to

increased accuracy in the case of overfactoring [10].

2.4 Parallelizable Tensor Factorization (ParCube)

ParCube is a fast and parallelizable method for speeding up tensor decompo-

sitions by leveraging random sampling techniques. The idea of the algorithm

is to randomly under-sample a tensor multiple times, process the different

samples in parallel and cleverly combine the results at the end to obtain high

approximation accuracy at low complexity and main memory cost as showin in

Figure 2.4.
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Figure 2.5: Illustration of ParCube

Suppose a tensor X is of size I £ J£K and we want a R-rank decomposition of

the tensor.The algorithm is composed of three steps: sampling, decomposition

of sub-blocks and merging. First, using mode densities as bias, randomly select

a set of 100p% (p 2 [0,1]) indices Ip , Jp ,Kp to be common across all repetitions.

With a fixed set of indices, now sample with a sampling factor of s on the remain-

ing indices, merge the newly sampled indices with the fixed set and perform a CP

decomposition (CP_ALS or CP_NMU). Repeat this process for r repetitions. After

r repetitions, merge the factors obtained from each individual decomposition.

In order to determine the correct correspondence of columns between different

factors, e.g. Ai , the algorithm calculates the inner product of the columns of

A1 and A2, where an output of 1 indicates the common set of indices due to

previous normalization on the common set. For details of the merging algorithm
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or parCube in general, please refer to Appendix A or the original paper [13].

The key advantage of ParCube is the fact that on its first phase, it produces

r independent tensors which are significantly smaller in size. Moreover, each

sub-tensor can be consequently decomposed independently from the rest, and

as a result, all r tensors can be decomposed in parallel (assuming that we have

a machine with r cores). Apart from the benefit on computing speed, the al-

gorithm tends to produce sparse outer-product approximations, which is a

desirable property in many applications. For instance, ParCube produces over

90% sparser results than regular PARAFAC, while maintaining the same approxi-

mation error [13].

2.5 Smoothing

Smoothing attempts to capture important patterns in the data, while leaving

out noise or other fine-scale structures/rapid phenomena. In smoothing, the

data points of a signal are modified so individual points (presumably because

of noise) are reduced, and points that are lower than the adjacent points are

increased leading to a smoother signal [15].

Tikhonov regularization is a popular smoothing technique used to regularize

ill-posed problems [15] It solves ill-posed ordinary least squares by replacing the
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original objective function kAx °bk2 with the following function,

min
x2Rn

kAx °bk2 +∏kLxk2

where the matrix L is referred to as the regularization operator and the scalar

µ∏ 0 as the regularization parameter [15]. Common choices of regularization

operators for problems in one space-dimension are the identity matrix, as well

as scaled finite difference approximations of a derivative, such as,

L1 =

2

666666666664

°1 0 0 ... 0

1 °1 0 ... 0

...
. . . . . .

...

0 0 ... 1 °1

3

777777777775

,L2 =

2

666666666664

2 °1 0 ...

°1 2 °1 ... 0

...
. . . . . .

...

0 0 ... °1 2

3

777777777775

Tikhonov regularization is a generalization of ridge regression in machine learn-

ing, where the objective function of ridge regression is,

min
x2Rn

kAx °bk2 +∏kxk2

where the matrix L in Tikhonov regularization is an identity matrix in ridge

regression.
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Chapter 3

Approach

The fact that the resulting factors of the CP model have abrupt spikes often

hampers the accuracy of the model as well as the interpretability of the factors

without advanced domain knowledge. In order to obtain more accurate and

easily interpretable results, we would prefer the solution's components to be as

smooth as possible. In this chapter, we propose modifications to known tensor

factorization algorithms to improve smoothness of the decomposition factors.

In section 1, we begin with smoothing regularization to CP decomposition.

More specifically, we propose an extension of CP_OPT to solve this new problem

formulation. Second, to scale to large datasets that may not fit into memory, we

propose to replace the core decomposition of ParCube with CP_OPT_SMOOTH

in section 2. In the last section of this chapter, in the case that the improvement

of ParCube with CP_OPT_SMOOTH might be not significant, we also modify

the sampling technique of ParCube with CP_ALS, so that we might obtain a

smoother sample with more useful information.
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3.1 CP_OPT_SMOOTH

In machine learning, ridge regression is used to regularize linear regression

and prevent overfitting by punishing the loss function for high values of the

coefficients, i.e. x. Ridge regression enforces the large coefficients to be lower,

but it does not enforce the smaller ones to be zero. In other words, it will not

get rid of irrelevant features but rather minimize their impact on the trained

model. Similarly, for the purpose of our paper, in order to obtain smoother

decomposition factors where the results are non-overlapping and distinct, we

also want to penalize elements with large differences with its neighbors. To give

more emphasis on the smoothness between each element and its neighbour-

ing elements, we adopt Tikhonov regularization with a weighted matrix as the

regularization matrix instead of the identity matrix in ridge regression.

For the ease of understanding the approach, we use L1 from Chapter 2 as our

Li , such that it has °1 on the diagonals and 1 on the sub-diagonals. The product

of Li A(i ) gives the first-order row-wise difference for elements in each column.

Therefore, the smoother each factor is, the smaller the magnitude of g is.

Adopting the Tikhonov regularization of ordinary least squares discussed in

the previous chapter to tensor factorization yields the following new objective
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function,

min
X̂

f = 1
2
||X °X̂ ||2

F

| {z }
original f

+ 1
2
µ ·

NX

i=1
kLi A(i )k2

F

| {z }
g

s.t. X̂ = Ç∏;A(1); . . . ;A(n)É

where Li 2 Rn£n , A(i ) 2 Rn£r , and µ 2 R+.

Choosing to solve our approach in the same manner as CP_OPT, a gradient-

based algorithm where no close form solution is required, we take advantage of

the flexibility of CP_OPT in its capability to incorporate many different versions

of of regularization techniques, including the L_1 norm. Since the gradient of

the original objective funtion is known, we only need to derive the gradient of g .

@g

@ar
(n)

= L
T

r
Lr A(r )

Now the gradient of the new objective function becomes

@ f

@ar
(n)

=°(Z
N£

m=1,m 6=n

ar
(m))+

RX

l=1
∞rl

(n)al
(n) +L

T

r
Lr A(r )

and we could now pass the new function and its gradient to L-BFGS, to obtain

the optimal objective value and the factors that would yield such optimum.
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3.2 ParCube with CP_OPT_SMOOTH

The default algorithms used in ParCube are CP_ALS and CP_NMU. Although

CP_OPT is more stable and more accurate than ALS or NMU, it is not adopted

due to its slow speed which goes against the speedup purpose of ParCube. With

the expectation that CP_OPT_SMOOTH will speed up CP_OPT, the goal is to

adopt CP_OPT_SMOOTH in ParCube and explore how it works under the struc-

ture of ParCube.

3.3 ParCube_Neighbor

Since CP_OPT takes longer than CP_ALS or CP_NMU to converge, its disadvan-

tage in its speed might grow further when CP_OPT is used in ParCube as the

algorithm calls CP_OPT multiples times. The trade-off between the accuracy

and stability over the running speed might no longer be worthwhile. There-

fore, another option is to smooth the decomposition factors by smoothing the

distribution of the sampled indices, rather than modifying the gradient.

In order to preserve the running speed, we propose to perform "neighbor

padding" on both sides of the indices being sampled. For example, if the sampled

indices are [3, 9], the list after padding with a bandwidth of 1 becomes [2, 3, 4, 8,

9, 10] and becomes [1, 2, 3, 4, 5, 7, 8, 9, 10, 11] with a bandwidth of 2.
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However, if our goal is to sample n indices, the number of indices after

padding is highly likely to exceed n and could be at many as n·(1+2·band wi d th)

indices assuming no two indices are the same after padded. Therefore, in or-

der to be in consistent with ParCube’s original sampling initiative, we need to

downsample from n to n

1+2·band wi d th
indices when we first sample. Notice that

si ze_o f _tot al

1+2·band wi d th
> 1 is necessary, else all indices would be sampled. Yet, since it is

likely that some indices already exist in the list while padding, the number of the

indices after padding might not exceed the required number of n. In such case,

simply randomly draw with mode density as bias from the remaining indices

until the required number is reached as shown in Figure 3.1.
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Figure 3.1: Illustration of neighbor padding

The neighbor padding process. With an input of 15 numbers, if we were to

sample 10 numbers, the first random sampling samples 10/(2*2+1) = 2 numbers.

Padding [3,9] does not involve overlapping numbers, but padding [3,5] does

and it has less than 10 numbers after padding. The 3 missing numbers will be

randomly sampled from the remaining numbers in the pool, i.e. [8, 9, 10, 11, 12,

13, 14, 15].

Since this approach only modifies the sampling technique, it will work with

both default decomposition algorithms of ParCube, CP_ALS and CP_NMU as

well as CP_OPT.
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Chapter 4

Experiments

In this chapter, we evaluate our proposed methods on a real-life spatio-

temporal dataset. We apply our approach to a real-life spatio-temporal dataset.

Section 1 of this chapter will introduce the dataset and preprocessing needed for

our experiment. Then, the following two sections will introduce the evaluation

metrics and the baselines used for comparisons. Finally, section 5 presents the

experimental results.

4.1 Data Description and Preprocessing

We evaluate our approaches on New York City Taxi Data provided by the NYC

Taxi & Limousine Commission (TLC). The raw data contains over 4.5 million

Uber pickups in New York City from April to September 2014. The Formidable

Repository of Open Sparse Tensors and Tools (FROSTT) is a collection of publicly

available sparse tensor datasets and tools [16]. FROSTT parses the raw data and
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generates a publicly available sparse tensor dataset on NYC Uber pickups. The

data is converted to a four-way tensor where each mode represents dates, hours,

latitudes and longitudes and the tensor values are the pickup counts. Latitude

and Longitude values are rounded to three decimal places (i.e., 110 meters of

resolution). In other words, the area is divided into grids of 110 meter £ 110

meter.

For the purpose of demonstration, we drop the date information and use a

three-way tensor. For faster computation, we have generated a smaller tensor by

dividing the spatial area into larger grids. Instead of having grids of 0.001 degree

£ 0.001 degree, we now use 0.0025 degree £ 0.0025 degree, which is roughly 278

meter £ 278 meter. The resulting tensor is of size 24 £ 647 £ 866.

4.2 Evaluation Metrics

The methods will be evaluated in terms of four different quantities: the fitness

of the decomposition, the smoothness of elements in each factor, the sparsity of

the factors and the computing time.

In order to evaluate how accurate the decomposition factors represent the

original tensor, we measure the fitness F of a tensor factorization by calculating

the norm difference between the approximated tensor X̂ , reconstructed using
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the decompostion factors Ç∏;A(1); . . . ;A(n)É and the original tensor X ,

F = 1° ||X °X̂ ||F
kX kF

= 1°

q
kX k2 +kX k2

F
°2· < X ·X >

kX kF

where < · > denotes the inner product of two tensors.

The smoothness G of the decomposition factors is computed using the

concepts behind Tikhonov regularization function,

G =
NX

i=1
kLi A(i )k2

F

As Li A(i ) calculates the row-wise first order difference for each column, the

smaller the norm is, the smoother the factors are. Notice that one of the goals of

this paper is to explore smoothing techniques in factorization algorithms. As

smoothing approximates a rough distribution of the data, we do anticipate a

slight reduction in the fitness in exchange for a smaller smoothness.

Lastly, we also want to evaluate each method on its computing time. We

anticipate improvement in time for both CP_OPT_SMOOTH and ParCube with

CP_OPT_SMOOTH. With a smoothing regularization parameter µ, the objective
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function f should converge faster, especially when µ is high. As for ParCube

with CP_OPT_SMOOTH, the run time is expected to be fast as well due to the

fact that the algorithm can be performed in parallel computing.

For each algorithm, we report the average fit, average smoothness, average

sparsity and average run time. Each result is reported after 10 iterations of the

algorithm. In order to avoid the underestimation brought by the instability of

certain algorithms, each average result is calculated after dropping the lowest fit

among the 10 iterations.

4.3 Results

4.3.1 Smoothing on CP_OPT

Baseline: CP_OPT

Since our first approach is to adapt smoothing to the stable and accurate gradient-

based algorithm CP_OPT, we need to use results from CP_OPT factorization as

our benchmark.

The only parameter involved in CP_OPT is the number of ranks r of the de-

composition factors. In order to determine an r that will be used across the rest

of the algorithms evaluated in this paper, we tune r for r in [5,10,15,20,25,30].

Figure 4.1 shows the average fit F and average running time T for each r .
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Figure 4.1: Plots of CP_OPT

The average fit F and average running time T of CP_OPT for r in

[5,10,15,20,25,30]. The plot on the left shows F v s. r , the plot on the right

shows T v s. r .

Notice that as r increases, the fit F improves because a higher-rank decom-

position captures more underlying structures of the original tensor with more

elements. However, the results in Figure 4.1 also shows that the improvement

in F becomes less and less obvious as r increases. On the other hand, T also

increases with r , but the amount of increase in T does not produce a significant

improvement in F . Thus, compromising between the fit F and the computing

time T , the results when r = 15 are chosen as the benchmark for later exper-

iments. A more detailed results that include the smoothness G are shown in

Table 4.1:
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Rank r Fit F Smoothness G Running Time T

5 0.5703 6.4949 62.6352

10 0.6842 15.1363 396.6122

15 0.7385 23.4836 1251.9445

20 0.7777 36.9896 1586.1656

25 0.8104 49.9276 2074.97938

30 0.8355 63.8163 2517.9802

Table 4.1: Detailed results of CP_OPT

Parameter tuning results of regular CP_OPT. The parameter and results in

boldface will be used as the baseline for later comparisons.

CP_OPT_SMOOTH

As mentioned in section 4.3.1, we compare our algorithm with the original

CP_OPT approach at r = 15. The additional parameter in our modified approach

is the regularization parameter µ. We tune our algorithm CP_OPT_SMOOTH for

each µ in µ= [100,10000,25000,50000,75000,100000]. The plots in Figure 4.2

shows the average fit f and average smoothness G for different regularization

parameters µ.
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Figure 4.2: Plots of CP_OPT_SMOOTH

The average fit and average smoothness for different regularization parameters

µ. Plot on the left: F v s.µ; plot on the right:G v s µ

From Figure 4.2, we could infer that there is barely any regularization power

when µ< 20000 as the fit F and the smoothness G have not deviated much from

the baseline. Yet, there is a significant improvement in G when µ= 50000 while

the sacrifice in F is tolerable. When µ> 50000, the changes in F and G are not as

conspicuous as the changes we observe at µ= 50000. Therefore, we conjecture

that µ= 50000 is the key turning point for smoothing when r = 15.

On the other hand, we observe a significant reduction in the running time T

of CP_OPT_SMOOTH in Figure 4.3 as µ increases, which meets our assumption

that smoothing would improve the computing time as the algorithm converges

faster when the regularization parameter µ becomes larger.
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Figure 4.3: The average running time at different µ

Overall, at r = 15, we observe that CP_OPT_SMOOTH sacrifices some fitness

in exchange of significant improvements on the smoothness of the factors and

the running time of the algorithm. A more detailed results of CP_OPT_SMOOTH

are shown in Table 4.2:
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µ Fit F Smoothness G Running Time T

0 (regular) 0.7385 23.4836 1251.9445

100 0.7391 22.0135 572.0885

10000 0.7299 21.5393 203.6456

25000 0.7106 20.3266 219.3096

50000 0.6758 13.5053 224.6507

75000 0.6558 10.4718 299.8607

100000 0.6371 9.2117 225.3254

Table 4.2: Detailed results of CP_OPT_SMOOTH

Parameter tuning results of CP_OPT_SMOOTH. The parameter and results in

italic are the baseline results from regular CP_OPT. The parameter and results in

boldface are the optimal trade-off results.

With Table 4.2, we conjecture that CP_OPT_SMOOTH is a substitute for

CP_OPT when the scenario focuses more on smoothness and running time

rather than simply the fitness. To verify this idea, we also experimented our

approach on different ranks, when r = [5,10,20,25]. Here, we only show visual-

ization of the results on half of the previously used regularization parameters,

µ= [100,10000,25000]. For complete result table and plots, please refer to the

Appendix B.

The plots in Figure 4.4 show the average fit and smoothness of CP_OPT_SMOOTH

at different ranks with different magnitudes of the regularizing parameter.



34

Figure 4.4: Plots of CP_OPT_SMOOTH at different r

The average fit and average smoothness for different regularization parameters

µ and different ranks. The lines in red, blue, green and magenta are when r = 5,

10, 20, 25, respectively. Plot on the left: F v s.µ; plot on the right:G v s µ.

As shown in Figure 4.5, except for r = 5 where there is an increase in the

running time at first, we observe an immediate decline in the running time

of CP_OPT_SMOOTH for all other ranks starting from when µ= 100. We thus

confirm the effectiveness in reducing computation time of CP_OPT.



35

Figure 4.5: Runtime of CP_OPT_SMOOTH at different r

The average running time of rank r = [5, 10, 20, 25] at µ = [0, 100, 10000, 25000].

The complete results are shown in Table 4.3. Overall, although when both

the rank r and the regularization parameter µ are small (µ< 10000), the decrease

in F as shown in Table 4.3 is minimal, we do indeed observe that as r increases,

the impact of the same regularization parameter grows and the deviations in F

and G become relatively more noticeable. In applications where smoothness

is preferred, a trade-off between fit and smoothness is acceptable, particularly

when there is a reduction in the running time of the algorithm.



36

r µ F G T

5 0 0.5703 6.4949 62.6352

5 100 0.5702 6.3975 75.7730

5 10000 0.5689 6.0561 24.8119

5 25000 0.5653 5.6967 27.3519

10 0 0.6842 15.1363 396.6122

10 100 0.6842 14.8822 312.1898

10 10000 0.6801 14.4166 91.1463

10 25000 0.6664 13.3855 85.2114

20 0 0.7777 36.9896 1586.1656

20 100 0.7781 36.8996 787.8983

20 10000 0.7630 35.3419 354.9436

20 25000 0.7309 25.2179 503.4650

25 0 0.8104 49.9276 2074.97938

25 100 0.8117 49.9798 1232.2461

25 10000 0.7846 42.7149 654.7238

25 25000 0.7473 30.6858 734.2529

Table 4.3: Experimental results of CP_OPT_SMOOTH at different ranks r = [5, 10,

20, 25].

4.3.2 ParCube with CP_OPT_SMOOTH

Baseline: ParCube with CP_OPT

The result in the previous section demonstrates the ability of CP_OPT_SMOOTH

to significantly speed up CP_OPT and smooth the factors at the cost of some loss

in accuracy. The improvement on the calculating speed immediately becomes
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convenient for the second approach of our study, which is to adopt CP_OPT

or its modified version to ParCube. As introduced previously, the default CP

methods in ParCube are CP_ALS and CP_NMU since CP_OPT is slow, but now we

might be able to apply CP_OPT to ParCube with CP_OPT_SMOOTH. In order to

evaluate the performance of ParCube with CP_OPT_SMOOTH, we will compare

its performance with CP_OPT, CP_OPT_SMOOTH, and ParCube with CP_OPT.

The parameters involved in ParCube include the fixed ratio p that determines

the percentage of the indices to be shared across all sub_tensors, the sample

factor s that indicates each sub_tensor is of the size I

s
£ J

s
£ K

s
, and t i mes that

implies the number of repetitions of factorizing on sub_tensors. As suggested

in the original paper, a reasonable value of p is about 10%-20%[13], but in

practice, p = 55% is commonly used across all ParCube models. We tune the

parameters of the baseline model on [s, t i mes] using the cartesian product of

s = [1.5,2,2.5,3,3.5,4,4.5,5] and t i mes = [5,10,15]. An example of the results

when the sample factor s = 2 is shown in Table 4.4:

r F G T

5 -1.1034 6.4189 e8 87.1683

10 -1.2684 4.8778 e8 521.2419

15 -1.8014 1.0773 e10 1608.2130

Table 4.4: Results of regular ParCube with CP_OPT when s = 2
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Although we did expect that the running time would be significantly slower

than any other algorithms discussed previously, we did not expect the negative

fits as shown in the table above. Furthermore, we observe that the smoothness

G of ParCube has a significantly larger scale than the ones shown previously, but

this makes sense as the nature of ParCube with random sub-sampling promotes

sparsity.

ParCube with CP_OPT_SMOOTH

The additional parameter that ParCube with CP_OPT_SMOOTH has is the regu-

larization parameter µ. Here, we arbitrarily choose µ= 10000 based on observa-

tions from the complete table of results in Appendix B. Since we observe that

there typically is a significant improvement in smoothness when µ= 50000 and

ParCube’s scheme samples only a fraction of the original data, we therefore arbi-

trarily shrink the optimal µ= 50000 to 10000 so that the regularization strength

will not completely over-shadow the original fitting objective.

The result of ParCube with CP_OPT_SMOOTH is shown in Table 4.5:

r F G T

5 0.4753 1.4018 e8 32.4673

10 0.4844 1.8111 e8 135.2103

15 0.4610 1.6706 e8 412.4211

Table 4.5: Results of regular ParCube with CP_OPT_SMOOTH when s = 2
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With CP_OPT_SMOOTH, we manage to obtain positive and reasonable

fits rather than the negative fits obtained through ParCube with CP_OPT. The

smoothness appears to be much smaller but it might not be reasonable to

compare these results with the ones shown in Table 4.4 where all the corre-

sponding fits were negative. Furthermore, since our focus of ParCube with

CP_OPT_SMOOTH is its performance in terms of accuracy and runtime, we

compare these values against those of CP_OPT and CP_OPT_SMOOTH.

As shown in Table 4.6, although we have managed to improve the result

of ParCube with CP_OPT using CP_OPT_SMOOTH, compared to simple, non-

parallel methods, such as CP_OPT or CP_OPT_SMOOTH, we observe obvious

decrease in fit as shown in Table 4.6. Furthermore, Table 4.5 shows that we

observe obvious decrease in speed when compared to CP_OPT, but the running

time did not outperform that of CP_OPT_SMOOTH. However, our results are

computed in parallel on a machine with 4 cores. As the algorithm is designed to

run in parallel, the running time would outperform CP_OPT_SMOOTH when

the ParCube approach is ran on a machine with more computing power.

Overall, with the speedup benefit from CP_OPT_SMOOTH, we were able

to implement a smoother CP_OPT in ParCube. The new approach loses a por-

tion of accuracy for a faster runtime than CP_OPT, and a faster runtime than
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CP_OPT_SMOOTH if ran on a machine with high computing power.

r CP_OPT CP_OPT_SMOOTH ParCube with CP_OPT_SMOOTH

5 0.5703 0.5594 0.4753

10 0.6842 0.6505 0.4844

15 0.7384 0.6758 0.4610

Table 4.6: Results of fit F for CP_OPT, CP_OPT_SMOOTH and ParCube with

CP_OPT_SMOOTH

r CP_OPT CP_OPT_SMOOTH ParCube with CP_OPT_SMOOTH

5 62.6352 28.9384 32.4673

10 396.6122 85.2512 135.2103

15 1251.9445 224.6507 412.4211

Table 4.7: Results of runtime T for CP_OPT, CP_OPT_SMOOTH and ParCube

with CP_OPT_SMOOTH

4.3.3 ParCube_Neighbor

Different from the approach above, ParCube_Neighbor tries to obtain smoother

result factors in ParCube through smoothing its sampling method. Since our

dataset represents the number of Uber pickups in an area, it makes more sense to

explore our approach using ParCube with CP_NMU than with CP_ALS. Therefore,

we use the performance of regular ParCube with CP_NMU as the baseline, and

compare the performance of our approach with it.

Similar to our experiments in the previous approach, We tune the param-
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eters of the baseline model on [s, t i mes] using the cartesian product of s =

[1.5,2,2.5,3,3.5,4,4.5,5] and t i mes = [2,4,6,8,10]. An example of the results

when the sample factor s = 2 and s = 2.5 is shown in Figure 4.6 and Figure 4.7:

Figure 4.6: Padding vs. Non-padding at s = 2

Figure 4.7: Padding vs. Non-padding at s = 2.5

With the red line denoting the performance of the padded ParCube and the

blue the original approach, we easily observe that at s = 2, ParCube_Neighbor



42

has an improvement in fit when the number of repetions t i mes performed

in ParCube is low and maintains the same accuracy when t i mes is high. We

could almost reach the same conclusion from Figure 4.7 where we observe that

ParCube with padding mostly maintains the same fit level, except for the big

drop of negative at t i mes = 8. This might have happened since CP_NMU, as

an extension of CP_ALS, is also not stable and do not guarantee to converge to

a global minimum or a stationary point. Such unstability might have caused a

bad approximation of the original tensor, which further results in a negative fit.

In terms of smoothness, which is our priority focus of the paper, we observe

that there are significant improvements in smoothness until t i mes = 6. This

might have happened because at t i mes = 6, we have sampled the majority

of the indices that contain important information of the tensor, padding or

not would not make an obvious difference in the decomposition. Overall, Par-

Cube_Neighbor significantly improves smoothness while maintaining the same

level of accuracy.
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Chapter 5

Conclusion

With the convenience of tensor representation of spatio-temporal data, ten-

sor factorization has become the popular approach people take to analyze

spatio-temporal data. Yet, as many tensor factorization methods produce re-

sults that are highly non-smooth, advanced domain knowledge is still often

required to further interpret each factor. In order to obtain more accurate and

easily interpretable results, we would prefer the solution's components to be as

smooth as possible. Whereas earlier works have been focusing on promoting

non-overlapping results for a specific, fixed tensor mode [18], which would still

require prior domain knowledge, we propose three approaches in promoting

multi-modal smooth decomposition

5.1 Current Work

The first approach CP_OPT_SMOOTH achieves smoother factors by impos-

ing Tikhonov regularization in the objective function of CP. Although we lose
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some accuracy as the regularization strength increases, we not only observe

improvement in smoothness but also a significant drop in the running time of

the algorithm. Especially when the regularization parameter is small, we observe

that the algorithm maintains roughly the same fit and smoothness at a much

faster speed.

The benefit of the first approach allows us to move on to our second ap-

proach, which is to adopt CP_OPT, an algorithm more stable and accurate than

CP_NMU or CP_ALS but much slower, to ParCube, a parallelizable factoriza-

tion method designed to achieve high accuracy at low complexity. As we have

managed to incorporate CP_OPT_SMOOTH as a substitute for CP_OPT in Par-

Cube, this algorithm sacrifices quite some accuracy when compared to simple

CP_OPT. Furthermore, this algorithm runs faster than CP_OPT but slower than

CP_OPT_SMOOTH when ran on a 4-core machine. Yet, as the algorithm is de-

signed to perform in parallel, we do expect a significant reduction in computing

time when using a higher computing power machine.

Lastly, our approach to smooth the sampled indices in ParCube was suc-

cessful when experimenting with CP_NMU. We observe that the algorithm

significantly improves smoothness of factors while achieving the same accuracy

without smoothing applied.
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5.2 Future Directions

The successful result we observe from the third approach ParCube_Neighbor

experimented with CP_NMU brings out the question of whether this method can

improve the smoothness of any type of ParCube. Ideally, since our approach only

modifies the sampling method in ParCube, it should be applicable to ParCube

with CP_ALS as well. More experimental results need to be done to confirm or

reject this idea.

Second, as CP_OPT is more stable and accurate than the other two algo-

rithms, it is more ideal to incorporate ParCube with CP_OPT. As we have man-

aged to make it possible by reducing its runtime with CP_OPT_SMOOTH, comb-

ing ParCube_Neighbor with CP_OPT_SMOOTH could potentially produce a

more stable and much smoother outcome.



46

Appendix A

ParCube Algorithms

Algorithm 1 BiasedSample
1: Input: Original tensor X of size I £ J £K , sampling factor s.

2: Output: Sampled tensor X̂ , index sets I ,J ,K .

3: Compute

xa(i ) =
JX

j=1

KX

k=1
Xi,|,k, xb(i ) =

IX

i=1

KX

k=1
Xi,|,k, xc (i ) =

IX

i=1

JX

j=1
Xi,|,k.

4: Compute set of indices I as random sample without replacement of

{1, ..., I }of size I /s with probability pI /(
P

I

i=1 xa(i ). Likewise for J ,K .

5: Return X̂ = X I ,J ,K

Algorithm 2 BasicParCube
1: Input: Tensor X of size I £ J £K , rank r , sampling factor s.

2: Output: Factor matrices A, B, C of size I £F, J £F,K £F , respectively.

3: Run Biased Sample(X , s) (Algorithm 1)

4: Run CP_ALS and obtain X̂s and I ,J ,K .

5: A(I , :) = As ,B(J , :) = Bs ,C (K , :) =Ck .
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Algorithm 3 ParCube
1: Input: Tensor X of size I £ J£K , rank r , sampling factor s, number of factors

r .

2: Output: PARAFAC factor matrices A, B, C of size I £F, J£F,K £F , respectively,

and vector ∏ of size r £1 which contains the scale of each component.

3: Initialize A, B , C to all-zeros.

4: Randomly, using mode densities as bias, select a set of 100p% (p 2 [0,1])

indices Ip , Jp , Kp to be common across all repetitions.

5: for i = 1, . . . ,R do

6: Run Algorithm 2 with sampling factor s, using Ip , Jp , Kp as a common

reference among all r different samples and obtain Ai , Bi , Ci . The sam-

pling is made on the set difference of the set of all indices and the set of

common indices.

7: Calculate the l2 norm of the columns of the common part: na(r ) =
kAi (Ip ,r )k2, nb(r ) = kBi (Jp ,r )k2, nc (r ) = kCi (Kp ,r )k2 for r = 1. . .R.

Normalize columns of Ai , Bi , Ci using na ,nb ,nc and set ∏i (r ) =
na(r )nb(r )nc (r ). Note that the common part will now be normalized

to unit norm.

8: end for

9: A =FactorMerge (Ai ), B =FactorMerge (Bi ),C =FactorMerge (Ci )

10: ∏ = average of ∏i .
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Algorithm 4 FactorMerge
1: Input: Factor matrices Ai of size I £F each, where i = 1. . .r , and r is the

number of repetitions, Ip : set of common indices.

2: Output: Factor matrix A of size I £F .

3: Set A = A1

4: for i = 2, . . . ,r do

5: for r1 = 1, . . . ,R do

6: for r2 = 1, . . . ,R do

7: Compute similarity v(r2) = (A(Ip ,r2))T (Ai (Ip ,r1)))

8: end for

9: c = arg maxc 0 v(c
0)

10: Update only the zero entries of A(:,c) using vector Ai (:,r 1).

11: end for

12: end for
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Appendix B

Complete Result of CP_OPT_SMOOTH
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r µ F G T

5 0 0.5703 6.4949 62.6352
5 100 0.5702 6.3975 75.7731
5 10000 0.5689 6.0562 24.8120
5 25000 0.5653 5.6968 27.3519
5 50000 0.5594 5.2572 28.9384
5 75000 0.5551 4.9018 30.4896
5 100000 0.4915 3.8446 26.0330
10 0 0.6842 15.1363 396.6122
10 100 0.6843 14.8823 312.1898
10 10000 0.6801 14.4167 91.1464
10 25000 0.6665 13.3856 85.2115
10 50000 0.6505 11.7261 85.2512
10 75000 0.6349 10.4533 94.6779
10 100000 0.6178 8.5544 106.1122
20 0 0.7777 36.9896 1586.1656
20 100 0.7781 36.8996 787.8983
20 10000 0.7630 35.3419 354.9436
20 25000 0.7309 25.2180 503.4651
20 50000 0.6914 15.8321 522.4559
20 75000 0.6695 11.7956 472.7661
20 100000 0.6477 9.5556 412.0116
25 0 0.8104 49.9276 2074.97938
25 100 0.8118 49.9798 1232.2461
25 10000 0.7846 42.7150 654.7238
25 25000 0.7474 30.6859 734.2529
25 50000 0.7027 17.8443 1053.5411
25 75000 0.6706 12.0774 762.5556
25 100000 0.6537 9.8782 716.4697
30 0 0.8355 63.8163 2517.9802
30 100 0.8365 63.0155 1863.5534
30 10000 0.8022 48.5213 1469.4938
30 25000 0.7576 34.9737 1507.8197
30 50000 0.7121 20.8218 1849.7939
30 75000 0.6781 12.7963 1299.6351
30 100000 0.6540 10.0304 945.0380
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