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Abstract

Monkeying Around: Automatically Analyzing Malaria Infections in Rhesus Macaques

By Lindsay Hexter

In today’s age of big data, automatic processing techniques are becoming more important

than ever, especially in the field of biology and medicine. Many studies focus on genomic data,

following the rise of high throughput sequencing; this project instead analyzes certain blood data

parameters taken from rhesus macaques housed in Yerkes National Primate Research Center at

Emory University.

The Joyner et al. 2016 paper, “Plasmodium cynomolgi infections in rhesus macaques display

clinical and parasitological features pertinent to modelling vivax malaria pathology and relapse

infections,” was the initial motivation for this study (Joyner et al., 2016). Joyner and his team

follow the infection of malaria species P.cynomolgi in monkeys, taking blood data and other

biological information daily. While the paper discusses possible points of difference between

monkeys of varying disease severity, we endeavored to find an automatic way to use these “clinical

and parasitological features” to characterize and predict aspects of malaria, including severity

and stage of the longitudinal infection.

We propose to replicate existing analyses and to add new insights via various computational

techniques. Machine learning is traditionally used for very large datasets, and thus this thesis

intends to provide a proof of concept for automatically analyzing these types of smaller datasets,

given restrictions studying monkeys. The flow of computation is as follows: normalization of

data, creation of mathematical models, residual calculation, formation of residual matrices for

clustering, and lastly the generation of regression models. The aforementioned procedure is

then applied to shifted data for comparison, using Bayesian optimization. This study therefore



provides a comprehensive framework for automatic analysis of medical data, which can be applied

to other datasets.
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Chapter 1

Introduction

The field of medically-related research is characterized by finding models that are similar enough

to humans to uncover insights that will apply to our needs. Moreover, finding a model system

is a balance between similarity and practicality; while monkeys are very similar to humans,

the number of instances in experiments with these animals is necessarily small. It is nonetheless

important to study diseases in monkeys, as done at the Yerkes National Primate Research Center

(YNPRC) at Emory University, since they are evolutionarily close to humans.

The purpose of the background paper to this thesis by Joyner et al. was to assess certain

parameters important to the development and outcome of the given Plasmodium infection, while

providing data on which other experiments could build (Joyner et al., 2016). Even as there

are few monkeys in the study, the dimensionality of the data for each monkey is large, hence

motivating the use of automatic analysis. However, these datasets provide a challenge not only to

manual analysis but also to automatic analysis, as few instances and many attributes characterize

1
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the shape of the data (rather than vice versa, with many instances and fewer attributes, as many

machine learning datasets are).

The approach taken in this study is a combination of tactics used in machine learning,

applied specifically to medical research, which includes clustering, curve fitting, and regression

modeling. Because the data has many dimensions, these techniques can help to uncover insight

that cannot be found manually. The small size of the dataset confirms this project as a proof

of concept that can be built upon and fine-tuned with more data and initial manual validation,

rather than as a traditional machine learning approach.



3

1.1 Thesis Statement

We intend to provide a general framework for automatic analysis of small biological datasets,

using experiments conducted by Joyner et al. at the YNPRC as examples. While the initial

structure is based on the 2016 paper, “Plasmodium cynomolgi infections in rhesus macaques

display clinical and parasitological features pertinent to modelling vivax malaria pathology and

relapse infections” (Joyner et al., 2016), the same framework can be applied to other experiments

from the MaHPIC team as well as to other studies with similar biological time series data.

Therefore, this project provides an unconventional use of certain machine learning techniques

on smaller datasets to determine a procedure for analyzing medical data; which consists of

normalization, mathematical modeling, residual calculation, residual matrices, and regression

modeling. Moreover, Bayesian optimization is not generally used for this type of analysis, and

so it is implemented to provide yet another layer of insight to the differences among the monkey

data studied here.

http://plasmodb.org/plasmo/mahpic.jsp


Chapter 2

Background

Many areas of the sciences benefit from automatic analysis, and thus foundations are established

for different steps in data processing and analyzing. While the problem explored in this project

is different in that it combines ideas from computational modeling fields and machine learning

studies, previous work can be used as a starting point. Moreover, motivation behind this thesis

still echoes that of medically-related projects in general- a better way of analyzing data can help

reduce time and monetary costs while promoting goals to find better treatments.

4
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2.1 Why Malaria

The impetus for studying malaria is shown by its public health cost, both in lives and dollars;

3.2 billion people worldwide are at risk (CDC, n.d.), and the US alone spent $1 billion in 2016,

contributing to the global total of $2.7 billion (WHO, 2017). Therefore, researching the course

of the infection to help derive better treatments is crucial.

Malaria microorganisms are comprised of over 100 species, each having different clinical

implications and affecting diverse animal species. This thesis focuses most specifically on the

course of P.cynomolgi, which is closely related to the human parasite P.vivax. The dormant

liver populations of P.vivax, hypnozoites, can make this parasite hard to diagnose, as many

patients that are still contagious do not receive treatment for lack of symptoms (CDC, n.d.).

These dormant stages necessitate combination treatments because of varying implications on

transmission, infection severity, and relapse presented at different stages (Baird et al., 2016).

It is pertinent to study similar malaria-inducing species in model organisms because as

stated, relapse stages in P.vivax make this parasite difficult to diagnose and treat; for this reason,

P.cynomolgi was studied at YNPRC in rhesus macaques. P.cynomolgi is phylogenetically similar

to P.vivax, and they both are characterized by the aforementioned hypnozoites (Sanger Institute,

n.d.). In the Joyner et al. 2016 study (Joyner et al., 2016), the course of P.cynomolgi was followed

in five rhesus macaques. Monkeys are evolutionarily close to humans and show similar infection

characteristics, and thus providing specific data on malaria helps to formulate treatments and

facilitate understanding of human infection. The first step in this research is gathering data to

study the infection in a more controlled environment, as done at YNPRC. However, finding ways

to quickly analyze these results allows for faster and more in-depth comprehension of the given
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experiment, influencing the direction of future studies and contributing to overall understanding

of the infection. This globally pressing public health issue thus motivates the use of technology

in analyzing the results of malaria experiments.

2.2 Preprocessing and Normalization of Data

With biological data, it is common to have very large or missing values; therefore, a common

preprocessing technique is to fill any missing values with either zero or the row average of the

data and subsequently take the log to smooth any extreme values (Gomez, 2010). I used this

technique to compensate for missing and/ or extreme data-points.

In many machine learning studies, normalization is used to “equalize ranges of the features

and make them have approximately the same effect in the computation of similarity” (Aksoy

& Haralick, 2000). The reason for doing so is that common distance metrics are affected by

magnitude; therefore, in terms of algorithms like clustering, the similarity between two points

can be skewed without normalization. One such metric is Euclidean distance, which defines the

distance between two points q and p, in n-dimensional space, as:

d(q, p) =

√√√√ n∑
i=1

(qi − pi)2 (2.1)

With distance metrics like Euclidean, normalization then prevents skewing of data with respect

to magnitude as shown in the formula. In general, normalization is important in this study

because of the vast variation encountered in biological data (Gomez, 2010).

Normalizing data to the interval [0, 1] can be performed using various formulas. Two very

common ways are to divide each point by the maximum value as in 2.2 or to subtract the



7

minimum from each point and divide by the difference between the maximum and minimum

values, as in 2.3 (Witten et al., 2017). The latter method scales each value to the interval [0,1],

and so I used this method for creating residual matrices via sklearn MinMaxScaler as discussed

in Chapter 3. sklearn is a library in Python used for data processing and machine learning.

xi =
xi

max(values)
(2.2)

xi =
xi −min(values)

max(values)−min(values)
(2.3)

Additionally, while these formulas scale the data in each point to the interval [0, 1], I also

chose to normalize each dataset as a unit vector, following l1 -normalization as in 2.4 (Stern et

al., 2007); this ensures that data for any clinical parameter and any monkey are in the same

range and creates more discrepancy between very small and very large values (to emphasize

time-points that could be more important).

xi =
xi∑n
j=1 xj

(2.4)

There are existing methods in sklearn to do so; however, in order to best fit to the datatypes

I created, I chose not to use the method from sklearn and instead implement my own, following

the formula in 2.4.

http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
http://scikit-learn.org/stable/
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2.3 Nonlinear Least Squares and Gaussian Fitting

Curve fitting is used extensively to calculate and predict physiological values in various bio-

related fields, and in order to do so, some loss function must be reduced to find optimal curve

parameters. A common algorithm used is the Levenberg-Marquardt method, which avoids brute-

force calculation of all possible parameter values and combinations (Ahearn et al., 2005).

curve_fit implements the Levenberg-Marquardt algorithm for solving nonlinear least squares.

This algorithm combines gradient descent, a way to guess parameters for minimizing error rather

than solving complex derivatives, and the Gauss-Newton method, where optimal parameters are

assumed to be quadratic to simplify derivative calculation (derivative = 0 signifies minimal loss).

The Levenberg-Marquardt algorithm alternates between these two methods, depending on how

close the parameters are from the optimal solution (as defined by the loss function) (Gavin,

2011). Fitting mathematical functions to biological data is important for later analysis steps,

and so I used the curve_fit function from sklearn to fit Gaussian functions for each data

section found (as described in 3.2).

2.4 Regression Modeling

While correlation coefficients describe the relationship between variables, regression modeling is

instead a way to predict some Y based on some X. This allows for a more fine-grained analysis

of relationships among multiple variables at a time to identify which are best predictors (i.e.

hold the most ‘weight’). Finding a model is important for data simulation and prediction, and

it provides for doing so in the simplest way possible (Motulsky & Christopoulos, 2004). I chose
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linear regression in order to find the best linear combination of all clinical variables that could

predict the number of parasites per microliter, a good indicator of disease severity.

2.4.1 Ridge Regression

Linear regression can lead to over-fitting if there are many free parameters (Ng, 2004); over-

fitting signifies that while the model predicts the training data very well, it results in high-error

predictions for new samples that are different from this training data. Because the predictive

X was high-dimensional, using a method to avoid a highly specific and un-generalizable model

was necessary. I used Ridge regression from sklearn to include l2 -regularization, since this

method helps to prevent over-fitting of certain coefficients. l2 -regularization adds the squared

sum of weights w as a regularizer in updating coefficients shown in 2.5, penalizing a likely fit

that has improbable coefficients (the larger the coefficients, the less likely they will be chosen).

In this equation, there are k coefficients (k clinical parameters) and n days to predict; therefore,

the cost is greater if all coefficients are large (offset by some parameter lambda), and so this

regularization favors weights evenly distributed across parameters (rather than sparse weights).

cost =
n∑

i=1

(yi −
k∑

j=1

xijw
2
j ) + λ

k∑
j=1

w2
j (2.5)

Even as l1 -regularization is stated to beat l2 -regularization in work by Andrew Ng (Ng, 2004),

in practice it is less accurate and slower as identified in the LIBLINEAR documentation. As

seen in Table 2.1, the larger coefficients originally obtained with a standard linear model are

penalized after application of Ridge regression.

https://www.csie.ntu.edu.tw/~cjlin/liblinear/FAQ.html#l1_regularized_classification
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Table 2.1: RMe14: Weights for all features, example comparing standard Linear Regression
and Ridge regression (highlighted weights were especially penalized in the Ridge model).

Feature Ridge Standard Model

0 gran 3.61 2.89

1 hct -4.75 -7.00

2 hgb -4.23 -64.96

3 lymph 1.96 2.8

4 mch -2.58 103.15

5 mchc 2.22 -83.40

6 mcv -6.97 -80.02

7 mono 2.24 2.56

8 mpv -15.48 -19.07

9 plt 2.75 -2.27

10 rbc 12.39 81.41

11 rdw -21.60 -25.86

12 # ret -1.89 -0.90

13 ret / uL 1.96 0.97

14 ret % 0.31 0.33

15 wbc -5.42 -6.75

http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html
http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Ridge.html
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2.5 Clustering

Unsupervised learning is used for problems in which classifiers or labels are generally unknown

for entities in data; instead, similar entities are grouped automatically to establish connections

among those clusters. Clustering is extremely useful for gleaning information about unlabeled

data, and in the case of certain clinical parameters in this study, it is interesting to see which of

the parameters cluster together to derive certain classes. There are various types of clustering

algorithms, and many were tested in this project to determine which would be best suited based

on evaluation criteria.

Many approaches exist to implement clustering, all employing different methods to charac-

terize entities based on some similarity metric. The best-performing algorithm in this project as

determined by silhouette score was kmeans, a partition-based algorithm. Kmeans begins with

initial k centroids, which may be chosen randomly or based on furthest distance. Until some

given stopping criteria, such as when cluster composition is stable, all objects are reassigned to

clusters and the centroids are redefined as the mean of that new cluster sample (Madhulatha,

2012). The silhouette score is defined by the average similarity of a point within its own cluster,

a(i), and the average dissimilarity between a point within a cluster and its closest neighboring

cluster, b(i) (Rousseeuw, 1987):

si =
b(i)− a(i)

max{a(i), b(i)}

2.6 Bayesian Optimization

Bayesian optimization has a variety of applications in many different fields where automatic

parameter-finding is needed; such as in robotics, information extraction, and automatic machine
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learning (Shahriari et al., 2016). The purpose of this method is to maximize or minimize some

blackbox objective function. The algorithm selects a point at which to observe the blackbox

function based on an optimal acquisition function, which characterizes beliefs about an uncer-

tain quantity (that of the objective function); a loss function to minimize is then required to

assess the optimality of the result, which in this case is calculated from the residuals between

two monkey datasets. The generic algorithm, as detailed in Shahriari et al. (2016) is:

Algorithm 1 Bayesian Optimization
1: for n = 1, 2, ... do
2: select new xn+1 by optimizing acquisition function α
3: xn+1 = argmax α(x;Dn)
4: query objective function to obtain yn+t

5: augment data Dn+1 = {Dn, (xn+1, yn+1)}
6: update statistical model
7: end for

This algorithm is implemented by the Spearmint package, as discussed in Section 3.5, and it can

be used for numerous applications.



Chapter 3

Approach

3.1 Data Storage

The data was originally taken from PlasmoDB, an online repository of datasets related to Plas-

modium experiments, from various labs. It is free for public use, and data taken in this ex-

periment was collected by Joyner et al. Datasets are available as CSV files, and thus can be

easily loaded with Python. Initially, the new files generated were easy to track and store as

serialized files; however, even with only one user accessing the data, it became impractical to

store these data and log different file-naming conventions. Therefore, data was migrated to

MongoDB, a NoSQL document database that stores records in a JSON-like format; I chose

this framework to be consistent with the Spearmint package described in 3.5. Mongo databases

have collections, which contain records; when an experiment file is read, a new collection called

<experiment_name> is created, and a record for each monkey and its data is stored as follows:

13

http://plasmodb.org/plasmo/
https://www.mongodb.com/
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{

"name": <monkey_name>,

"raw_data": <BSON: raw data saved as Pandas DataFrame Object, with each datapoint as a row>,

"norm_data": <BSON: normalized data saved as Pandas DataFrame Object, with each datapoint as a row>,

"params_norm": <BSON: parameters fitted to normalized data saved as Pandas DataFrame Object, with each

datapoint as a row>,

"params_raw": <BSON: parameters fitted to raw data saved as Pandas DataFrame Object, with each datapoint

as a row>,

"days": <integer value of how many days the experiment ran for this monkey>,

}

Because various clinical parameters have large values, data was scaled appropriately (i.e.

data = log(data)) if values were >= 1. Missing data was replaced with the average over

all data for that parameter, as some values in the CSV files were “N/A”. I used scaling and

replacement of missing data as noted in Gomez (2010) for better results; initially I had replaced

missing values with zero, but this greatly skewed Gaussian fits, since the peak-finding function

as described in 3.2.0.1 would find those areas as false ‘peaks’.

In the case of E04, the data entailed five monkeys, where each had 18 different clinical

parameters stored. As further described in Section 3.4.1, because data was available only up to

day 23 for one monkey as a result of terminal complications, analysis was performed across all

100 days for four monkeys (resulting in six pairs) as well as for only up to day 23 (resulting in

10 pairs). The raw and normalized data, as well as all Gaussian fits (see Section 3.2), have data

for each clinical parameter as defined in Table B.1.
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3.1.1 Normalization of Data

Normalization was used in this project at different stages of data analysis. As mentioned in 3.1,

raw data was stored and normalized. While there are many different techniques to normalize

data, in this project normalization was performed row-wise (i.e. with respect to that clinical

parameter for that monkey), where the value for one day was divided by the sum of all values for

that parameter. The data over all days was then a unit vector, which should have theoretically

allowed for better comparison of different clinical parameters and different monkeys. Some re-

sults show that instead normalization reduced important magnitude-related variance that helped

characterize the data. I also tried the sklearn MinMaxScaler, which restricts every value to

a certain range (default (0, 1)) by using min-max normalization as in 2.3; this method returns

slightly larger values than those from unit vector normalization over all 100 days, so I believed

it could yield better results.

Moreover, I did not use normalized parameters from Gaussian fits for Bayesian Optimization,

since “[c]omputers can get confused by very small or very large numbers, and round-off errors

can result in misleading results.” (Motulsky & Christopoulos, 2004); instead, I fit parameters to

scaled raw data, and then normalized data after reconstruction over all days (using either unit

vector normalization or min-max normalization). For example, if a clinical parameter has four

Gaussian functions, these are fitted according to scaled raw data; the maximum value from all

four Gaussians is then calculated for each day, and the resulting dataset is finally normalized.

http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
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3.2 Gaussian Fitting

The Gaussian function is defined as:

f(x|amp, µ, σ) = amp ∗ exp −(x− µ)
2

2 ∗ σ2
(3.1)

In order to better manipulate data, we fit multiple Gaussian functions to each clinical data-point,

using the sklearn curve_fit function. Different functions can be used for curve fitting, which

involve characterizing a better fit via a user-defined loss function (as in the sklearn leastsq)

or a package-derived loss function (as in sklearn curve_fit). For example, curve_fit yielded

better results than leastsq, as shown in Figure 3.1.

Figure 3.1: Comparing fits for an example monkey white blood cell count, using curve_fit
and leastsq. As shown by the pink and blue curves, curve_fit provides better results.

The parameters to fit are mean, standard deviation, and amplitude, as denoted in equation

3.1. Finding an initial search space is very important for the curve_fit function, as otherwise

it does not converge. Initial parameters were guessed as follows:
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Parameter Guess

Sigma standard deviation normalized by maximal amplitude

Mean location of the peak in that data range

Amplitude magnitude of difference between the max and min points in the data

Although many of the data-points had very flat peaks, these were not reflected in the

general calculation for standard deviation, since variance was low; thus, in order to construct an

appropriate search space, the standard deviation was normalized by the maximal value in that

data range such that flat peaks could be detected automatically:

standard_dev =
standard_dev
max(data)

As an example, if all data-points within a fitting window are between 0 and 0.5, the standard

deviation will be small; dividing by 0.5 in that case will double the standard deviation to help

initialize that parameter closer to its optimal value.

The reasoning for this is also confirmed in (Motulsky & Christopoulos, 2004), as very large

or very small y-values in data can cause errors regarding rounding or overflow. In addition, the

location of the mean was predicted as the location of the peak; initially, the parameter search

space was not bound, which caused overlapping of fitting windows. Consequently, during the

later phases of data reconstruction over the entire range, the new peaks produced did not adhere

to those in the raw data; to fix this discrepancy, the search space was bounded by the x -range

for that data. For example, a section of (x, y) data may be from days 20-30; thus, the mean

would start at whichever value corresponds to the peak y-value, and it would be bounded on
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the interval [20, 30]. Each of these data sections is determined by the number of peaks found,

as further described in 3.2.0.1.

3.2.0.1 Peak finding

Given normalized or raw data, sections of Gaussians were fitted based on maxima and minima.

I derived a peak-finding algorithm to have a simplified, customized version. The scipy peak-

finding algorithm requires previous knowledge of peak width, which is impossible in this project;

peakutils from pypi is better since width is not necessary and peak threshold can be dictated,

though it does not find the flat plateaux like algorithm 2. As seen in Figure 3.2, negative peaks

in (b) are found in between Gaussians rather than at edges, as shown in (a). Peaks found at the

edges of these Gaussians are crucial for finding optimal fitting windows, so that the curve_fit

function can find parameters appropriately.

https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.signal.find_peaks_cwt.html
https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.signal.find_peaks_cwt.html
https://pypi.python.org/pypi/PeakUtils
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(a) Custom Peak Function

(b) Peakutils

Figure 3.2: Comparison of customized peak fitting and peakutils results; black arrows show
examples of peaks found. The log-scaled count of parasites / uL is on the y-axis, while days of

the experiment are on the x -axis.

The threshold used was 10% of the maximum value for each peak, and thus the peak

algorithm as described below finds peaks by filtering out those that are less than threshold

or that are false plateaux, while including true plateaux (e.g. not a flat line at 0). The 10%

threshold allowed for Gaussians to be found, while not including very small values that could
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Algorithm 2 Finding Peaks
1: procedure peaks(a, b) . Find peaks greater than threshold, given data
2: peaks← []
3: slopes← numpy.diff(slopes)
4: filteredSlopes← filt(data, slopes, threshold) . removes areas of false plateaux (flat at

0) and less than threshold
5: for i in range(0, len(filteredSlopes)-1) do
6: if (filteredSlopes[i] is not None)
7: and ((filteredSlopes[i+1] < 0.0 and filteredSlopes[i] > 0.0)
8: or (filteredSlopes[i+1] <= 0.0 and filteredSlopes[i] == 0.0)) then
9: peaks.append((i+1))

10: end if
11: end for
12: return peaks . Found peaks
13: end procedure

be considered noise. Each section was therefore determined by two negative peaks, as the peak-

finding algorithm was run on the data (to find positive peaks) as well as the data with reversed

signs (to find negative peaks). Using this algorithm, I could then automatically find appropriate

sections on which to fit Gaussian functions.

An example of fitting is as shown in Figure 3.2(a); the peak-finding algorithm divides the

x-range of days into appropriate sections on which to fit different Gaussian functions, with the

parameters as dictated in Table 3.1. In order to reconstruct the data from the various Gaus-

sian functions, the maximum value over all functions found is taken for each day; therefore, the

bounds on the peak index parameter are crucial to reproducing the data correctly, as they re-

strict the proper window for that particular day (e.g. a value for day 25 should not be calculated

from a Gaussian found in a window from [58, 61]).
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Table 3.1: Parameters found corresponding to Figure 3.2(a)

X-range Values From Peaks
Gaussian Parameters Found (in parasites / uL)

amplitude peakIndex stdDev

10 - 22 5.75 18.11 4.25

22 - 27 5.44 23.96 1.92

52 - 58 2.96 55.90 2.00

58 - 61 1.92 58.83 1.13

82 - 89 3.12 85.32 1.82

3.3 Regression Modeling

sklearn has linear regression models available that each have different parameters and appli-

cations. At first, I used the generic Linear Regression model; however, I needed to resolve the

problems of collinearity among different clinical parameters and of over-fitting, and thus I used

the Ridge model because it implements l2 -regularization (as described in 2.4). I chose to predict

parasites per microliter, as it is a good indicator of disease severity; hence, the resulting coef-

ficents would provide insight about what clinical parameters might be useful in understanding

disease progression.

http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html
http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Ridge.html
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3.3.1 Combined Model

I also constructed a combined model to predict parasites per microliter based on multiple mon-

keys, using the sklearn Stochastic Gradient Descent Regressor (SGD). For this method, predic-

tions from every monkey are first calculated separately for a given day. Next, these predictions

are combined into a single output value based on certain weights assigned to each monkey, which

are learned in the fitting process. Therefore, a final prediction is made that combines estimations

from all monkeys, over all days. The SGD package is useful for combining models, as it provides

l2 -regularization and an error tolerance parameter. Stochastic Gradient Descent is the process

by which optimal parameters are found via taking random walks, updating the error based on

the new values. In the case of the SGD, this process is used for updating the loss function, while

parameters are also penalized by regularization (l1 or l2, or a combination of both- I chose l2 ).

3.3.2 ‘Phased’ Regression

Because P.cynomolgi infections are characterized by relapses, I experimented with fitting regres-

sion models on phases (specified x-ranges) to assess if the resulting predictions for other monkeys

were more accurate. In this way, if phases could be found automatically and used to predict

other monkeys, the accuracy of those fits could be used as another metric for similarity between

monkeys of different phenotypes (to indicate level of severity). This process entails breaking the

experiment period (100 days) into smaller windows and fitting a regression model to that small

window, or ‘phase’; then, this more specific model can be used to predict a different monkey in

the same ‘phase’, and the error in the prediction can be used as a metric of similarity where

lower error signifies a more similar monkey. To find phases automatically, I continued using the

http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDRegressor.html
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same peak-finding function (see Algorithm 2), assuming that phases could be defined by the

same windows I used for Gaussian fitting.

3.4 Clustering

The basic idea of clustering is to glean information from unlabeled data, and there are many

different clustering algorithms available. In this study, I used Ward Agglomerative, Gaussian

Mixture, Spectral, and k -means clustering methods. I chose these methods experimentally, as

sklearn has existing modules available; ultimately I used k -means (Section 2.5) for analysis, as

it had the most consistent silhouette score (see Chapter 4). This metric considers both inter-

and intra-cluster similarity (Section 2.5), and so it was appropriate for evaluation.

In order to cluster data, however, vectors must be constructed to create a spatial representa-

tion of the data. Vector visualization in space can be shown by projecting the high-dimensional

data into only two dimensions, as with Principal Component Analysis in Figure 3.3. As explained

further, I used a few different methods to quantify clinical parameters in vector space.

http://scikit-learn.org/stable/modules/generated/sklearn.cluster.AgglomerativeClustering.html
http://scikit-learn.org/stable/modules/generated/sklearn.mixture.GaussianMixture.html
http://scikit-learn.org/stable/modules/generated/sklearn.mixture.GaussianMixture.html
http://scikit-learn.org/stable/modules/generated/sklearn.cluster.SpectralClustering.html
http://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
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Figure 3.3: Example of projecting the 18D residual matrix using PCA (matrix dimensions
explained in Section 3.4.1).

3.4.1 Residual Matrices

The first way to represent clinical data in vector space is to create a residual matrix, which

characterizes variance among monkeys with respect to each parameter (allowing parameters

that vary similarly to cluster together). In the matrix, constructed pairwise for all monkeys,

each row is a clinical parameter and each column is a pair of monkeys. Residuals are calculated

as follows, where y1 and y2 are two sets of y-values and n is the number of x-values in common

(e.g. for the monkey that died early, the residual is calculated only up to that day; otherwise, n

= 100):

residual(y1, y2) =
√

(y10 − y20)2 + (y11 − y21)2 + ...+ (y1n − y2n)2 (3.2)

Because the initial experiment includes a monkey that died early, the matrix in Table 3.2

has only the other four because residuals are calculated over 100 days; a different matrix was
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created for monkeys up to the twenty-third day. The final matrices for experiment E04 are either

18 x 6 or 18 x 10 (four monkeys or all five monkeys) dimensions.

Table 3.2: Residuals found corresponding to Figure 3.3, parameters as defined in Table B.1

RIc14_RFa14 RIc14_RSb14 RIc14_RMe14 RFa14_RSb14 RFa14_RMe14 RSb14_RMe14

gran 10.39 15.61 16.79 13.60 15.98 10.26

hct 4.25 3.82 5.64 3.33 3.00 4.52

hgb 4.40 3.87 5.58 3.40 3.18 4.09

lymph 8.57 11.93 13.71 12.02 14.03 6.20

mch 1.36 2.14 1.13 3.30 1.14 2.22

mchc 0.86 0.43 0.57 0.82 1.23 0.67

mcv 1.60 2.10 0.86 3.68 2.01 1.71

mono 17.09 14.10 13.80 14.69 15.31 9.21

mpv 3.05 4.96 3.90 7.14 5.88 2.69

parasitemia_perc 18.51 11.56 16.97 20.36 23.18 13.61

parasites_per_ul 75.19 57.78 55.48 67.88 74.42 69.48

plt 11.16 18.69 13.77 12.93 9.84 15.60

rbc 5.50 2.77 5.76 5.37 3.20 5.27

rdw 3.02 3.91 3.73 3.12 3.42 5.48

reticulocytes_num 15.55 19.45 14.16 15.99 19.76 24.30

reticulocytes_per_ul 17.68 18.37 15.08 13.46 20.78 21.87

reticulocytes_perc 67.95 61.84 65.90 84.11 96.76 90.65

wbc 11.80 13.30 21.75 7.61 14.94 14.81

3.5 Bayesian Optimization

I used Bayesian Optimization, as described in Section 2.6, to find the optimal parameters for

shifting monkey data such that the residual between two given monkeys is minimized. As

previously described, I chose to characterize clinical data with residuals between monkeys to
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show which data-points varied similarly, especially regarding monkeys of the same phenotype;

therefore, if the pattern of residuals is similar between two data-points, then those clinical

data may contain the same information with respect to determining severity of the malaria

phenotype. However, because biological variation is expected even among monkeys that have

similar symptoms and final outcomes, just as in humans, shifting the data pairwise among

monkeys can help to minimize these differences and better select important clinical parameters

(i.e. for one pair of monkeys, the data for each monkey in that pair is shifted to minimize the

residual between the two monkeys).

The reason for using this method in general is that it can automatically derive insight from a

very complex function. In this project, it would be impossible to find optimal shifting parameters

manually, as the shifting window has seven values (from [-3, 3], window chosen experimentally)

and could have even twenty Gaussian functions for each monkey (yielding 720 possibilities for

one monkey x 720 possibilities for the other); with this number of possibilities, it would also be

incredibly expensive to use brute-force methods. Bayesian optimization is therefore a natural

choice to guess information about the objective function, yielding shifting parameters appropriate

for minimizing the residuals. Rather than re-implement this complex method, I used a package

called Spearmint.

These new regression models were run with respect to pairs of monkeys (e.g. monkey1 is

shifted with respect to monkey2 and vice versa, and their models are refitted). In addition, the

combined models as described in 3.3.1 were re-run with respect to one monkey; as an example,

the regression model for monkey1 was kept constant, while the models for all other monkeys

were shifted with respect to monkey1 (using the shifted parameters found from Spearmint) to

culminate in a combined prediction model tailored to that monkey.

https://github.com/HIPS/Spearmint
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3.5.1 Spearmint Package

The Spearmint package (Snoek et al., 2012) requires a loss function on which to gauge the

optimality of parameters, and it was determined by the residual between two monkeys; this

residual was calculated by:

residual = get_max_gaussians(get_shifted_gaussians(monkey1, shift1),

get_shifted_gaussians(monkey2, shift2))

The Gaussians fitted previously on the data are thus shifted by the parameters guessed in the

objective function, and then the residual is calculated by reconstructing the entire set of data for

all days (calculate the maximum value over all gaussian parameters for that day), given the new

parameters. Spearmint subsequently guesses the next set of shift parameters that may reduce

the residual in the next run, allowing the statistical model to be updated at each experiment.

This package uses MongoDB to save experiments, and so I could access the results later when

the experiments finished. The more shifting parameters there are (i.e. more Gaussian functions

fitted), the longer this optimization takes; hence, I modified the code to stop after thirty runs.

I was able to use this package only after fixing many issues regarding MongoDB, configuration

files, and ‘broken’ experiments (term the package uses for experiments that did not run), as it

is very difficult to debug (see Section 5.3).

After finalizing shifting parameters for each pair of monkeys, I could then re-run all analyses

performed previously with non-shifted data to determine how minimizing residuals between

monkeys might improve machine understanding of the data.
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3.5.2 Sign-Match Matrices

As mentioned previously, each clinical parameter must have some kind of metric for representa-

tion in vector space. Residual matrices are one way, but we decided to record matching signs

before and after shifting to quantify how much shifting helped clarify similarities and differences

among data-points. Regression coefficients can show trends with negative or positive values, with

the coefficient magnitude as the weight of that data-point; recording which signs match can then

show any similar trends among data-points. Thus, determining the usefulness of shifting can be

done not only by comparing the same residual matrices before and after shifting, but also by

looking at whether or not signs match between monkeys. This helps both to represent differences

between monkeys of varying phenotypes and to reveal similarities between data-points having

similar trends.



Chapter 4

Results

4.1 Gaussian Fitting and Normalization

The resulting fits to the scaled data worked quite well, as shown by the example mean squared

error in figure Figure 4.2 and Figure 4.3. There is a stark difference to note in the normalized

data that was cautioned in (Motulsky & Christopoulos, 2004); because the values for parasites

per microliter are so large, the middle and end parasite counts are reduced to extremely small

values, leaving only the first phase with ample data, as shown explicitly in Figure 4.1. Therefore,

normalization must be applied to scaled data, in order to be meaningful. Regarding the other

two example data-points, lymphocytes and platelets, the integrity of the curves is kept even

after normalization to raw data.

29
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(a) Raw Data

(b) Scaled Data

Figure 4.1: Comparing min-max normalized data to raw data (a) and scaled data (b), for
an example monkey; as seen without scaling, the parasite count in the next two phases is
completely diminished, which could be removing important biological variation that helps to
distinguish different phenotypes. However, scaling helps to keep the integrity of phases even

after normalization.

Parameters fitted to scaled raw data were used for shifting in Bayesian Optimization rather
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than those fitted to normalized data or normalized scaled data; the acquisition function in

Spearmint can better update parameters based on a larger loss function, which is characterized

by larger initial values (i.e. not normalized). Normalization is thus useful later in clustering

after all values have been shifted accordingly, in order to equalize clinical parameters in vector

space. As discussed in Section 4.3.1, normalization was not useful in creating some of the residual

matrices, while it was helpful for some clustering results.

Figure 4.3 shows a proof of concept, however, in that fitting to small data values as a result

of normalization is possible with the Gaussian fitting methodology explained in Section 3.2,

especially in using the initial value for standard deviation normalized by the maximum y-value.

These results confirm that the first step in our data analysis framework, fitting Gaussian func-

tions to biological data, is viable.
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(a) Lymph (b) Parasites / uL

(c) Platelets

Figure 4.2: Example output of different Gaussian fits for monkey RSb14, fitted to scaled data;
MSE (mean squared error) is as shown on each subfigure.
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(a) Lymph (b) Parasites / uL

(c) Platelets

Figure 4.3: Example output of different Gaussian fits for monkey RSb14, fitted to normalized
data; MSE (mean squared error) is as shown on each subfigure.

4.2 Regression Modeling

The normalized mean-squared error ranges from 0.0054 to 0.0081 per day for the regression

models to predict the number of parasites per microliter, as seen in Table 4.1 . The lowest error

is in predicting RFv13 and RMe14, which are the lethal and very severe phenotypes, respectively.

This observation is interesting because it suggests, in accordance with Table 4.4 and Table 4.5,

that the more severe phenotypes have more predictive, or extreme, features. Also as seen in
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Table 4.1, the more severe or lethal phenotypes have a larger average magnitude of coefficients

as compared to the non-severe monkeys. These analyses show that there are possible markers

for the severe vs. non-severe phenotypes.

Table 4.1: Mean squared error for the monkey graphs, normalized against the number of days.

Monkey Normalized MSE Avg coeffs Avg coeffs (abs value)

RFa14 (sev) 0.0081 -0.154 4.63
RSb14 (non-sev) 0.0071 -0.514 2.18
RIc14 (non-sev) 0.0099 -0.619 3.26
RMe14 (very sev) 0.0066 -2.56 5.65
RFv13 (lethal) 0.0054 -0.226 3.84

Moreover, looking at Table 4.2, the highlighted features represent notable differences (whether

in sign, magnitude, or proximity to zero) between the monkey of the lethal phenotype and the

others; in order to compare coefficients from different monkeys better with values normalized to

the range [-1,1], the tanh function was applied to the the results as shown in Table 4.3. tanh

is commonly used as an activation function in machine learning for analyzing the differences in

output for neural networks; therefore, I chose to use this function to normalize coefficients while

keeping the significance of sign differences. Even as the magnitude of the platelets coefficient in

Table 4.2 for RFv13 was larger in comparison to the other monkeys, it was more similar to the

other monkeys in Table 4.3. tanh can therefore help to highlight differences that are more signif-

icant among monkeys, normalizing those that are due to noise or biological variation unrelated

to disease phenotype (rather than minimized variation that diminishes important distinguishing

factors). The two features that seem the most similar between the two non-severe monkeys

are lymphocytes and reticulocytes per microliter; Joyner et al. discuss the possible importance

of a modest increase in reticulocyte count between days 10-15 in the monkeys that survived,
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in contrast to RFv13 (Joyner et al., 2016). The similarity found between the two non-severe

monkeys is reflective of this finding, confirming that some insight can be found automatically.

In addition, hemoglobin is stated to be negatively correlated in the paper; after applying tanh,

the two non-severe monkeys have hemoglobin as positively correlated, while the other monkeys

show a negative correlation. As a result, hemoglobin could also be an indicator for differences

between severe and non-severe phenotypes. After application of the tanh function as well, red

blood cell distribution width, rdw, is the largest positive value for the lethal monkey; greater

variation in this parameter signifies illness, and thus the coefficients are reflective of this bio-

logical implication. Overall, regression showed interesting results and was rather accurate for

predicting parasites per microliter, as seen in Figure 4.4, Figure 4.5, Figure 4.6, Figure 4.7, and

Figure 4.8 (“Gold” means actual data, versus fitted data).

Table 4.2: Weights for all features: regression models fit with respect to that monkey itself.

Feature RFa14 RSb14 RIc14 RMe14 RFv13

0 gran 0.83 1.21 3.69 3.61 -1.52
1 hct 6.23 -3.30 -3.51 -4.75 2.04
2 hgb -4.50 2.24 4.48 -4.23 -1.26
3 lymph -1.42 -0.41 -0.49 1.96 -5.67
4 mch -3.45 -1.28 4.27 -2.58 0.63
5 mchc 18.42 5.57 4.81 2.22 2.15
6 mcv -4.34 -3.66 -3.93 -6.97 -0.39
7 mono 1.11 0.56 1.88 2.24 3.65
8 mpv -2.01 -0.14 -5.31 -15.48 -3.61
9 plt -5.00 -9.34 -6.83 -2.75 -15.63
10 rbc 4.93 1.18 -2.98 12.39 2.28
11 rdw -8.82 0.16 -3.35 -21.60 2.99
12 # ret 3.94 1.75 1.33 -1.89 1.45
13 ret / uL -3.35 0.67 0.66 1.96 8.70
14 ret % 0.34 -0.17 0.01 0.31 -4.42
15 wbc -5.38 -3.27 -4.63 -5.42 4.99
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Table 4.3: Tanh applied to weights for all features: regression models fit with respect to that
monkey itself.

Feature RFa14 RSb14 RIc14 RMe14 RFv13

0 gran 0.680476 0.836679 0.998754 0.998537 -0.908698
1 hct 0.999992 -0.997283 -0.998214 -0.999850 0.966747
2 hgb -0.999753 0.977587 0.999743 -0.999577 -0.851064
3 lymph -0.889599 -0.388473 -0.454216 0.961090 -0.999976
4 mch -0.997986 -0.856485 0.999609 -0.988582 0.558052
5 mchc 1.000000 0.999971 0.999867 0.976683 0.973226
6 mcv -0.999660 -0.998677 -0.999229 -0.999998 -0.371360
7 mono 0.804062 0.507977 0.954492 0.977587 0.998650
8 mpv -0.964727 -0.139092 -0.999951 -1.000000 -0.998537
9 plt -0.999909 -1.000000 -0.999998 -0.991860 -1.000000
10 rbc 0.999896 0.827452 -0.994853 1.000000 0.979293
11 rdw -1.000000 0.158649 -0.997541 -1.000000 0.994955
12 # ret 0.999244 0.941376 0.869249 -0.955373 0.895693
13 ret / uL -0.997541 0.584980 0.578363 0.961090 1.000000
14 ret % 0.327477 -0.168381 0.010000 0.300437 -0.999710
15 wbc -0.999958 -0.997115 -0.999810 -0.999961 0.999907

Figure 4.4: Regression model fitting for the monkey (RFa14) to itself and from a combined
model of all monkeys, predicting parasites/ uL.
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Figure 4.5: Regression model fitting for the monkey (RSb14) to itself and from a combined
model of all monkeys, predicting parasites/ uL.

Figure 4.6: Regression model fitting for the monkey (RIc14) to itself and from a combined
model of all monkeys, predicting parasites/ uL.
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Figure 4.7: Regression model fitting for the monkey (RMe14) to itself and from a combined
model of all monkeys, predicting parasites/ uL.

Figure 4.8: Regression model fitting for the monkey (RFv13) to itself and from a combined
model of all monkeys, predicting parasites/ uL.
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4.2.1 Combined Model with Bayesian Optimization Shifts

As seen in the tables below (Table 4.4, Table 4.5), the Ridge regression models were used in

combination to predict the number of parasites per microliter in each monkey; this was done over

all days of the experiment and for only up to day 23 (to include the monkey of the lethal pheno-

type). It is interesting to note that over only 23 days, the monkeys with non-severe phenotypes

(RIc14 and RSb14) have the lowest coefficients. With the combined model, each monkey pre-

dicts daily values for the monkey of interest, and these values are then combined via the weights

specified; therefore, since the non-severe monkeys have the lowest weight, the models show that

monkeys with more severe phenotypes are more predictive of parasite count, particularly in the

first phase of the infection.

Table 4.4: Weights for all monkey models
in predicting parasites / uL, over all days

(exclude RFv13).

Monkey Coefficient

0 RIc14 0.05
2 RSb14 0.23
3 RMe14 0.20
4 RFa14 0.54

Table 4.5: Weights for all monkey models
in predicting parasites / uL, until day 23
(include RFv13); distinctly low weights are

highlighted.

Monkey Coefficient

0 RIc14 0.04
1 RFv13 0.13
2 RSb14 0.03
3 RMe14 0.25
4 RFa14 0.40

As seen in Figure 4.9, the MSE decreases after shifting with respect to RFa14, showing that

the regression model for the combined monkeys is improved after Bayesian optimization.
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(a) Combined Prediction

(b) Combined Prediction, Post Shifting

Figure 4.9: RFa14: Comparing combined regression models over all monkeys (exclude
RFv13), with and without Bayesian Optimization shifts, predicting parasites/ uL.

This same trend is confirmed in Figure 4.10, reducing the MSE from 9.25 to 4.69, and

especially so in Figure 4.11 and Figure 4.12 with reductions from 44.5 to 4.63 and 88.7 to 4.06,

respectively.
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(a) Combined Prediction

(b) Combined Prediction, Post Shifting

Figure 4.10: RSb14: Comparing combined regression models over all monkeys (exclude
RFv13), with and without Bayesian Optimization shifts, predicting parasites/ uL.

(a) Combined Prediction

(b) Combined Prediction, Post Shifting

Figure 4.11: RIc14: Comparing combined regression models over all monkeys (exclude
RFv13), with and without Bayesian Optimization shifts, predicting parasites/ uL.
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(a) Combined Prediction

(b) Combined Prediction, Post Shifting

Figure 4.12: RFv13: Comparing combined regression models over all monkeys, with and
without Bayesian Optimization shifts, predicting parasites/ uL.

Lastly, regarding RMe14 in Figure 4.13, while the MSE actually increases, the trend is more

true to the actual data, since the middle peak predicted around day 40 is correctly diminished

after shifting. These results confirm that using Bayesian optimization to find optimal shifting

parameters, reducing the overall residual, helps create better models for analysis. After this

verification, I could then continue on to further analysis with combined shifted models to deter-

mine if all monkeys, shifted and subsequently combined, could create a more accurate predictive

model.
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(a) Combined Prediction

(b) Combined Prediction, Post Shifting

Figure 4.13: RSb14: Comparing combined regression models over all monkeys (exclude
RFv13), with and without Bayesian Optimization shifts, predicting parasites/ uL.

Furthermore, the two non-severe monkeys are best predicted by RSb14 and RFa14, one

non-severe monkey and one severe monkey respectively, as shown in Table 4.6. In contrast, the

two severe monkeys, RFa14 and RMe14, are best predicted by RFa14, with very similar weights

across all monkeys. RFa14, of a severe phenotype, has the largest average coefficient calculated

both using all coefficients and excluding its own coefficient. This result confirms again that

phenotypes of greater severity may have more significance in predicting the number of parasites

at a given time; because the parasite count also signifies the severity of the disease, it is logical

that the monkeys of more severe phenotypes have greater weight in predicting infection. The

reason for a low weight in RMe14, exhibiting a very severe phenotype, could be a result of its

receiving a blood transfusion, which could have changed the normal, possibly canonical course
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of biological fluctuations in a severe infection.

Table 4.6: Shifted with respect the monkey given: Weights for all monkey models in predicting
parasites / uL, over all days (exclude RFv13) and for up to day 23 (include RFv13).

Target monkey (shifted with respect to this monkey)

Fitted

Monkey

RFa14 RSb14 RIc14 RMe14 Rfv13 Avg Coeff Avg (exclude self)

RIc14 0.12 -0.32 -0.01 0.12 0.16 0.014 0.020

RSb14 0.10 0.70 0.31 0.15 0.24 0.30 0.20

RMe14 0.01 -0.06 0.12 0.06 -0.17 -0.0080 -0.025

RFa14 0.74 0.49 0.70 0.78 0.23 0.59 0.55

RFv13 0.41 0.41
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4.2.2 ‘Phased’ Regression

Using phased regression, as explained in Section 3.3.2, signifies fitting the regression model

within a certain time-point and using that model to predict the corresponding time-point in

another monkey, still using the parameters fitted to scaled raw data. The results show that

this method does not yield better results for predicting other monkeys or predicting the same

monkey itself. The mean squared error (MSE) for RFa14, over the entire 100 days, is 0.818, as

shown in Figure 4.4. In comparison, in Figure 4.14, the MSE is 1.35 for only the first phase from

days 0-18, while over the entire 100 days the total MSE is 7.528. The same trend is seen for all

monkeys in Table 4.7, which gives MSE values for every phase. The two highlighted values are

the largest MSE in the entire table, which result from pairwise shifting between the two non-

severe monkeys. This trend reflects results from residual matrices for parasites per microliter,

pre-shifting (Figure 4.25), as the residuals between the two non-severe monkeys were large before

shifting. Therefore, the phased regression does not do well in predicting general phases because

pre-shifting, the monkey phases can be different and therefore result in high-error predictions.

Figure 4.14: Regression model fitting for the monkey (RFa14) to itself for that phase, pre-
dicting parasites/ uL.
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Table 4.7: Mean squared error for predicting the given monkey, based on a model fitted to a
certain phase. The numbers in parentheses signify the beginning and end range of the phase;
the monkeys at the top in columns are those with the regression model, while those in rows are

predicted based on the monkey at the top.

RSb14

Monkey (0, 17) (17, 22) (22, 27) (52, 82) (82, 99) sum

RIc14 0.849 2.228 5.908 0.481 1.008 10.474

RFv13 6.737 16.629 0.011 23.377

RSb14 4.104 4.379 13.111 5.636 7.058 34.288

RMe14 2.338 4.764 3.405 3.494 6.992 20.933

RFa14 1.416 0.519 7.408 0.75 1.661 11.754

RFv13 RSb14

Monkey (0, 22) (0, 17) (17, 23) (23, 27) (59, 87) (87, 99) sum

RIc14 7.373 7.991 2.858 4.232 6.422 8.314 29.817

RFv13 0.11 1.286 4.69 5.976

RSb14 5.214 0.682 0.393 4.697 0.526 1.322 7.62

RMe14 26.52 3.459 0.258 1.025 1.931 1.408 8.081

RFa14 10.832 2.632 2.895 8.427 2.931 2.061 18.946

RMe14 RFa14

Monkey (0, 22) (24,

79)

(79,

84)

(84,

99)

sum (0, 19) (23,

27)

(94,

99)

sum

RIc14 3.453 2.095 1.5 0.99 8.038 2.741 3.463 1.747 7.951

RFv13 5.855 4.088

RSb14 0.945 1.225 0.202 0.98 3.352 1.248 9.36 0.358 10.966

RMe14 1.131 0.395 1.385 0.768 3.679 2.476 0.591 0.843 3.91

RFa14 3.701 1.176 0.51 0.777 6.164 1.351 4.417 1.76 7.528
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4.3 Clustering

4.3.1 Residual Matrices

Residual matrices were constructed as described in Section 3.4.1, in order to quantify similarity

among the monkeys. Moreover, residuals were minimized using Bayesian optimization to see

which clinical parameters might be more indicative of disease characterization and severity.

Using min-max normalization from sklearn yielded some helpful results, but others did not

improve; all normalized matrices are included in the Appendix, in Section A.1.1, as only the

final clustering and PCA results are explicitly discussed. Even as some normalized matrices did

not ‘improve’ regarding grouping non-severe monkeys and severe monkeys together, however,

normalization was still interesting clinical parameters were clustered in different ways, discussed

further in Figure 4.35.

As seen in Figure 4.15 for granulocytes over all days, while the residual was reduced over

all pairs of monkeys, it decreased the most among the non-severe monkeys, from about 16 to

11; this shows that shifting can help normalize the differences between monkeys to understand

better the importance of a certain parameter. For only up to day 23, shifting shows that the

monkeys were similar in general for number of granulocytes in the first phase of the disease,

whereas differences are more pronounced across all days of the experiment in (a). Regarding

Figure 4.16, it seems that while there is not a stark trend for the non-severe monkeys, the number

of red blood cells per total blood volume is more similar among severe monkeys as compared to

between non-severe monkeys; again, this trend is more important over the course of the entire

experiment, rather than only for the first 23 days as shown in (b).
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(a) Over all days, post-shifting on the right

(b) Up to day 23, post-shifting on the right

Figure 4.15: gran: Comparing residual matrices, with and without Bayesian Optimization
shifts.
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(a) Over all days, post-shifting on the right

(b) Up to day 23, post-shifting on the right

Figure 4.16: hct: Comparing residual matrices, with and without Bayesian Optimization
shifts.

For the hemoglobin levels in the blood, as seen in Figure 4.17, RIc14 is least similar to the

very severe monkey and most similar to the other non-severe monkey; while there are not enough

monkeys to confirm the trend in general, as it does not follow as starkly for RSb14, it may show

that hemoglobin is important in determining disease severity. This trend is also replicated in the

first phase, since the similarity increases in the same way for RIc14 (most similar to the other
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non-severe monkey and least similar to the very severe monkey). In both (a) and (b), the severe

monkeys are least similar to the non-severe monkeys.

(a) Over all days, post-shifting on the right

(b) Up to day 23, post-shifting on the right

Figure 4.17: hgb: Comparing residual matrices, with and without Bayesian Optimization
shifts.

Contrastingly, for lymphocytes (Figure 4.18), shifting does not exacerbate or reveal any in-

teresting trends; the non-severe monkeys are more similar to severe monkeys and vice versa for
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both over all days of the experiment and only up to day 23. The number of lymphocytes may

not be a determining factor for severity all throughout the course of the infection. Regarding

mean corpuscular hemoglobin, as shown in Figure 4.19, the monkeys align with respect to more

similar phenotypes, except for RIc14 (non-severe) which is most similar to RMe14 (very severe).

However, for up to day 23, residuals are lowest between RFa14 (severe) and RIc14 (non-severe)

and between RMe14 (very severe) and RSb14 (non-severe). Mean corpuscular hemoglobin con-

centration is with respect to the number of red blood cells, and so it is interesting that in

Figure 4.20, the two non-severe monkeys are most similar to each other in (a) but are most simi-

lar to the very severe monkey in (b). Therefore, mch and mchc, as they are related, may not be as

variable in the first phase of the disease, or at least as much of an indicator, as in the next phases.
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(a) Over all days, post-shifting on the right

(b) Up to day 23, post-shifting on the right

Figure 4.18: lymph: Comparing residual matrices, with and without Bayesian Optimization
shifts.
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(a) Over all days, post-shifting on the right

(b) Up to day 23, post-shifting on the right

Figure 4.19: mch: Comparing residual matrices, with and without Bayesian Optimization
shifts.
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(a) Over all days, post-shifting on the right

(b) Up to day 23, post-shifting on the right

Figure 4.20: mchc: Comparing residual matrices, with and without Bayesian Optimization
shifts.

The residuals of mean red blood cell volume, mcv, change very little before and after shift-

ing, as shown in Figure 4.21, and there is again an opposing trend in both (a) and (b). These

opposing trends are also seen for mean platelet volume, mpv, in Figure 4.22. The most simi-

lar residuals pairwise for mpv are between RFa14 (severe) and RIc14 (non-severe) and between
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RMe14 (very severe) and RSb14 (non-severe), which are the same pairs in mean corpuscular

hemoglobin for up to day 23. While the similarity between mpv and mch is telling about the

relationship between hemoglobin and platelet size in the disease, both mcv and mpv may not be

as indicative of severity overall based on this experiment because of the opposing trends existing

in residual matrices calculated only up to day 23 and over all days (as shown in non-normalized

results).
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(a) Over all days, post-shifting on the right

(b) Up to day 23, post-shifting on the right

Figure 4.21: mcv: Comparing residual matrices, with and without Bayesian Optimization
shifts.
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(a) Over all days, post-shifting on the right

(b) Up to day 23, post-shifting on the right

Figure 4.22: mpv: Comparing residual matrices, with and without Bayesian Optimization
shifts.

Interestingly in Figure 4.23, the lethal monkey is least similar to a non-severe monkey and

most similar to the very severe monkey; while the trends are not indicative over all days, this

could suggest that the number of monocytes is an important trend for the first phase of the

infection. In terms of the biology, monocytes are part of the innate immune system but can

influence the adaptive immune system. Therefore, a better adaptive immune response could be
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prognostic of survival in the long run; the monkey could respond better in relapse events, being

better equipped with immunological memory at that point to curb the infection.

(a) Over all days, post-shifting on the right

(b) Up to day 23, post-shifting on the right

Figure 4.23: mono: Comparing residual matrices, with and without Bayesian Optimization
shifts.

It does seem strange that the trend for parasitemia percent, the percentage of infected red
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blood cells, is not the same as that for parasites per microliter, which reflects the overall con-

centration of parasites, in Figure 4.24 and Figure 4.25. Over all days, the residuals between

monkeys are similar for parasitemia percent, whereas there are pronounced differences for par-

asites per microliter. The residual for any monkey against the lethal monkey is very different

for parasitemia percent, but it is most similar to the very severe monkey. Regarding parasites

per microliter, the non-severe monkeys are the most similar after shifting. Therefore, Bayesian

optimization did help clarify the trends in these two clinical parameters, especially between the

two non-severe monkeys over all days. However, it is also interesting that the lethal monkey,

RFv13, has parasite counts most similar to the non-severe monkeys, which could indicate that

it was another clinical parameter that caused the different outcome in that monkey.
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(a) Over all days, post-shifting on the right

(b) Up to day 23, post-shifting on the right

Figure 4.24: % parasitemia: Comparing residual matrices, with and without Bayesian
Optimization shifts.
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(a) Over all days, post-shifting on the right

(b) Up to day 23, post-shifting on the right

Figure 4.25: parasites / uL: Comparing residual matrices, with and without Bayesian
Optimization shifts.

Regarding platelet count, in Figure 4.26, it is not exactly the same trend as mpv, even

though it may seem that mean platelet volume should follow that of platelet count; instead,

over all days, the severe monkeys are most similar to each other, while the two non-severe mon-

keys are least similar. This could mean that there is a varying platelet count in the non-severe
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monkeys, while this variation is no longer present in severe phenotypes (i.e. there could be a

canonical platelet count to represent more severe phenotypes, whereas there is not one for nor-

mal phenotypes). On the other hand, the results could also signify that platelet count does not

determine phenotype severity.

(a) Over all days, post-shifting on the right

(b) Up to day 23, post-shifting on the right

Figure 4.26: plt: Comparing residual matrices, with and without Bayesian Optimization
shifts.
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The trends exhibited in number of red blood cells per microliter (Figure 4.27) did not change

after shifting, but in general do show that the lowest residuals, in both over all days and only

up to day 23, were the lowest between the two non-severe monkeys and the two severe monkeys.

This makes sense, as anemia (not enough normal red blood cells) is a condition that arises with

malaria.

(a) Over all days, post-shifting on the right

(b) Up to day 23, post-shifting on the right

Figure 4.27: rbc: Comparing residual matrices, with and without Bayesian Optimization
shifts.
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The red blood cell distribution width, rdw, denotes the variation in the size of red blood

cells - more variation signifies illness, as a deviation from a standard size. This concept is not

exactly shown in the residual matrices in Figure 4.28, although the largest residual in the matrix

is between the very severe monkey and a non-severe monkey (whereas the others are a relatively

similar in comparison). Therefore, while increased rdw does show illness, there could be a stan-

dard change across all phenotypes. There is not enough data to determine whether the former

conclusion is acceptable, or if the the fact that the largest difference exists between the very

severe and the non-severe monkey is more significant.
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(a) Over all days, post-shifting on the right

(b) Up to day 23, post-shifting on the right

Figure 4.28: rdw: Comparing residual matrices, with and without Bayesian Optimization
shifts.

Joyner et. al (Joyner et al., 2016) discuss the possible importance of reticulocyte number

in survival, and this is partially shown in Figure 4.29. For up to day 23, the lethal monkey is

least similar to a non-severe monkey, and likewise over all days, the very severe monkey is least

similar to a non-severe monkey. Both the very severe and the lethal monkey show the greatest

differences compared to other monkeys for up to day 23, thus demonstrating the importance
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of the number of reticulocytes in the first phase. In addition, for white blood cell count in

Figure 4.32, the lethal monkey is most similar to the two severe monkeys and least similar to

the non-severe monkeys, showing that initial overall immune response, i.e. in the first phase,

could be important in survival. Over all days, white blood cell count is most different between

the very severe monkey and one of the non-severe monkeys, showing the same trend.

(a) Over all days, post-shifting on the right

(b) Up to day 23, post-shifting on the right

Figure 4.29: # reticulocytes: Comparing residual matrices, with and without Bayesian
Optimization shifts.
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(a) Over all days, post-shifting on the right

(b) Up to day 23, post-shifting on the right

Figure 4.30: reticulocytes / uL: Comparing residual matrices, with and without Bayesian
Optimization shifts.
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(a) Over all days, post-shifting on the right

(b) Up to day 23, post-shifting on the right

Figure 4.31: % reticulocytes: Comparing residual matrices, with and without Bayesian
Optimization shifts.
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(a) Over all days, post-shifting on the right

(b) Up to day 23, post-shifting on the right

Figure 4.32: wbc: Comparing residual matrices, with and without Bayesian Optimization
shifts.
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Table 4.8: Quick summary of trends in residual matrices.

Clinical Parameter Over all days (+) Up to Day 23 (+) Negative trend (both days) Other*

gran X

hct X

mch X

mchc X

hgb X X

rbc X X

wbc X X

# ret X X

mono X

mpv X

mvc X

plt X

* Other = severe are most similar, non-severe are least similar

(+) = severe are most similar to each other, non-severe are most similar to each other

(-) = severe are most similar to non-severe, and vice-versa
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Table 4.9: Summary of analyses

Joyner et al. (2016) Automated analyses

# Reticulocytes - possible indicator of lethal

phenotype

X

Anemic phenotype worsens with severity X

Relationship between hemoglobin and: par-

asitemia kinetics, mean corpuscular volume

(red blood cell size)

X

Role of thrombocytopenia (platelet defi-

ciency) not well understood

X

Lower parasitemia in non-severe phenotype X

4.3.1.1 Clustering Results

For Figure 4.33, the silhouette score stayed relatively constant after k = 3 (where k is the number

of clusters), and thus the clusters for k = 3 and k = 4 are shown because at k = 2 the result

would not be meaningful (since two parameters are very far away from the others). At k = 3,

it is interesting that after shifting, parasites per microliter are clustered with reticulocytes and

monocytes, while this data-point is in its own cluster pre-shifting; this change suggests that for

up to day 23, reticulocytes and monocytes could be important in determining the severity of

the disease, as previously discussed in Section 4.3.1. At k = 4, in contrast, the clusters are the

same both pre- and post-shifting. The clusters do make sense in terms of the biology; the white

blood cell types are in the same cluster, while the more red-blood cell related parameters are in
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another. Platelets are separate from mean platelet volume, which makes sense in that platelet

size does not necessarily correspond with platelet number.

The clusters over all days, as shown in Figure 4.34, are similar to those found in up to 23

days and are the same for both pre- and post-shifting. However, as seen at k = 3, parasites per

microliter are grouped with reticulocytes percentage, rather than number or concentration; the

percentage reflects the proportion of reticulocytes out of total red blood cells (rather than raw

count or concentration). It is unclear if this result has biological significance or if because the

two outlying ‘clusters’ are slightly closer together, they are grouped together. Either way, the

previous finding that reticulocyte count and concentration clustered with parasites per micro-

liter is consistent with the conclusion in the paper- that a critical window of a slight increase

in reticulocytes in the first phase could have been an indicator of the lethal monkey phenotype

(Joyner et al., 2016); the fact that it does not show in the clustering over all days also matches

this idea, since the critical window is early.
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(a) Silhouette scores, post-shifting on the right

(b) k = 3, post-shifting on the bottom
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(c) k = 4, post-shifting on the bottom

Figure 4.33: Up until day 23 (including RFv13), clustering the residual matrices to charac-
terize each clinical parameter.
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(a) Silhouette scores, post-shifting on the right

(b) k = 3, post-shifting on the bottom
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(c) k = 4, post-shifting on the bottom

Figure 4.34: Over all days (excluding RFv13), clustering the residual matrices to characterize
each clinical parameter.

Looking at the normalized clusters was also interesting, as seen in Figure 4.35. Clustering

non-normalized data resulted in clinical parameters that were grouped in terms of similar cell

types, i.e. clustering red blood cell related parameters together and white blood cell related

parameters together. The normalized results instead show clusters representative of different

information. For example, platelets are clustered with mean corpuscular volume for both up to

day 23 and over all days, which associates thrombocytopenia with anemia. While both conditions

are signs of malaria, the role of thrombocytopenia in disease severity is debated and uncertain

(Joyner et al., 2016). Thus, the normalized clusters could be gleaning information about the
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relationship between the two conditions, since the residuals between monkeys are similar for

both. Moreover, the parasitemia level is grouped specifically with granulocytes, hematocrit,

hemoglobin, and red blood cell count over 23 days, while the same cluster includes reticulocytes

and mean platelet volume over all days. This cluster composition change shows the importance

of different stages in the longitudinal infection. Overall the normalized results not only support

the finding in Joyner et al. (2016) that reticulocyte count is significant in determining disease

severity, but also suggest other parameters that could be indicative of infection stage or severity.

(a) k = 4, up to day 23

(b) k = 4, over all days

Figure 4.35: Comparing normalized results for up to day 23 (excluding RFv13) and over all
days.
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4.3.2 Sign-Match Matrices

Sign-match matrices show similar results to that of normal clustering, in that many of the data-

points cluster better post-shifting (even as silhouette scores are lower, the representation in

space is more reasonable). At first the patterns in the pre/post shifting matches do not seem

relevant; enough parameters change signs before and after shifting such that the total number of

matches before and after are very similar. As an example, the two non-severe monkeys, RIc14

and RSb14, matched at 10 signs before shifting and only 8 after; this reduction seems counter-

intuitive because the non-severe monkeys are expected to have an increase in matches, reflective

of the residual matrices results. However, it is shown in clustering that Bayesian Optimization

improves representation in vector space and therefore analysis, even if the sign matches seem

contrary at first; these changes suggest that some sign matches could be more important than

others.



79

Table 4.10: Signs that matched in regression model coefficients, comparing monkeys pairwise,
all days (exclude RFv13); pre = pre-shifting, post = post-shifting.

RIc14_RFa14 RIc14_RSb14 RIc14_RMe14 RFa14_RSb14 RFa14_RMe14 RSb14_RMe14

Pre Post Pre Post Pre Post Pre Post Pre Post Pre Post

rdw 1 1 1 1 1 0 1 1 1 1 1 1

plt 0 0 1 1 1 1 0 0 0 1 1 0

hct 0 1 1 0 0 1 0 1 1 1 0 0

mch 1 0 1 0 0 1 1 0 0 1 1 0

ret / uL 0 0 0 1 0 0 1 1 1 1 1 1

mchc 1 1 1 0 1 0 1 1 1 1 1 0

# ret 1 1 1 0 1 1 1 1 1 1 1 1

mpv 1 1 1 0 1 0 1 1 1 1 1 1

rbc 1 0 1 1 1 0 1 1 1 0 1 1

ret % 1 1 1 1 1 1 1 1 1 1 1 1

wbc 0 0 0 1 0 1 1 1 1 1 1 0

gran 1 1 0 0 1 1 0 1 1 0 0 1

lymph 1 0 1 0 0 0 1 1 0 0 0 1

mono 0 1 1 1 1 0 0 1 0 0 1 0

hgb 1 1 0 1 1 0 0 0 1 1 0 0

mcv 1 1 1 1 1 1 1 1 1 1 1 1

sum 11 10 12 9 11 8 11 13 12 12 12 9

4.3.2.1 Kmeans Clustering

As seen in both Figure 4.36 and Figure 4.37, the silhouette scores of the matrices are much

lower after shifting, so the clusters are scored better before shifting (but seem more reasonable

after shifting). The cluster composition, for the shifted clustering, is not very different than

that for residual matrices, as there are only a few parameters that switch groups. For example,

in Figure 4.37, there is now a cluster for number of reticulocytes, hemoglobin, and monocytes,

which reflects the previous finding that in the first phase, reticulocytes and monocytes could be
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Table 4.11: Signs that matched in regression model coefficients, comparing monkeys pairwise,
up to day 23 (include RFv13); pre = pre-shifting, post = post-shifting.

RIc14_RFv13 RIc14_RSb14 RIc14_RMe14 RIc14_RFa14 RFv13_RSb14
Pre Post Pre Post Pre Post Pre Post Pre Post

rdw 0 1 1 0 1 1 1 0 0 0
plt 0 0 0 1 1 1 1 1 1 1
hct 1 0 0 1 1 1 1 1 0 1
mch 1 1 1 0 1 0 1 0 1 1
ret /
uL

0 1 1 1 0 1 1 1 0 0

mchc 1 0 1 0 1 0 1 0 1 1
# ret 1 1 1 1 1 1 1 0 1 1
mpv 1 1 1 0 1 0 1 1 1 1
rbc 0 1 0 0 1 0 0 0 1 1
ret % 1 0 1 0 1 1 1 1 1 1
wbc 0 0 0 0 1 0 1 1 1 1
gran 1 1 0 0 0 0 0 1 0 1
lymph 0 1 1 1 1 1 0 0 0 0
mono 0 0 0 1 0 1 0 0 1 1
hgb 0 1 1 1 1 0 1 1 0 1
mcv 0 1 1 1 1 1 1 1 0 0
sum 7 10 10 8 13 9 12 9 9 12

RFv13_RMe14 RFv13_RFa14 RSb14_RMe14 RSb14_RFa14 RMe14_RFa14
Pre Post Pre Post Pre Post Pre Post Pre Post

rdw 0 0 0 0 1 1 1 0 1 1
plt 0 1 0 1 0 1 0 1 1 0
hct 1 0 1 0 0 1 0 1 1 1
mch 1 1 1 0 1 0 1 1 1 0
ret
/
uL

0 1 0 0 0 1 1 1 0 1

mchc 1 1 1 1 1 1 1 1 1 1
#
ret

1 1 1 1 1 0 1 0 1 0

mpv 1 1 1 1 1 1 1 0 1 0
rbc 0 0 1 1 0 1 1 1 0 0
ret
%

1 1 1 0 1 1 1 1 1 1

wbc 0 1 0 1 0 1 0 0 1 1
gran 0 1 0 1 1 1 1 1 1 1
lymph 0 1 1 0 1 1 0 1 0 1
mono 1 0 1 0 1 0 1 0 1 0
hgb 0 1 0 1 1 0 1 0 1 0
mcv 0 0 0 0 1 1 1 1 1 0
sum 8 10 9 8 11 12 12 10 13 8
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important indicators. Hemoglobin is normally found to be negatively correlated with parasite

number, so it is interesting that it clusters with the other two parameters; this change could

be due to the fact that while some clinical parameters may be positively correlated and oth-

ers negatively correlated with parasite counts, these data-points clustered together because of

similar significance in predicting infection severity. Over all days, platelets cluster with mean

corpuscular hemoglobin and notably white blood cell count in Figure 4.36, possibly showing the

relationship between increased white blood cell count (i.e. greater immune response) and throm-

bocytopenia (i.e. a sign of illness, a low count of platelets). Therefore, this type of clustering

could be pulling out different information about the relationships among clinical parameters, as

compared to the residual matrices, even as shifting does lower silhouette scoring.
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(a) Silhouette scores, post-shifting on the right

(b) k = 5, post-shifting on bottom

Figure 4.36: Over all days (omitting RFv13), clustering the match-sign matrices to charac-
terize each clinical parameter.
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(a) Silhouette scores, post-shifting on the right

(b) k = 4, post-shifting on bottom

Figure 4.37: Up until day 23 (including RFv13), clustering the match-sign matrices to char-
acterize each clinical parameter.
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4.3.3 Other Experiments

As mentioned before, this framework for analysis can be applied to other experiments. I applied

clustering to E03 and E23 as examples, after first following the same steps of Gaussian fitting

and residual matrix calculations. While I did not use Bayesian Optimization on these experi-

ments, it still could be implemented; I included these analyses only as proof of concept for the

generalization of my thesis methodology to other studies.

E03 is another experiment on rhesus macaques, but with a different species of malaria:

P.coatneyi. The clinical parameters still cluster similarly; in Figure 4.38 for k = 5, all white blood

cell types are in one cluster (also including platelets), with red blood cell related parameters in

another. Parasite level is again clustered alone. The silhouette score decreases as k increases, but

this is likely skewed by the large distance from parasites per microliter and percent reticulocytes.

E23 follows a similar course to E04, the main experiment analyzed in this paper, in that

rhesus macaques were infected with a different strain of the same parasite species, P.cynomolgi.

It is therefore unsurprising that the clusters found here are similar to those in Figure 4.34. The

clusters in both E04 and E23 also correspond to those in Figure 4.38; the only exception is

that white blood cell total count is clustered with reticulocytes. Cluster composition is shifted

but still very similar, showing that although the immune response may be species-specific, the

integrity of relationships between certain clinical parameters is kept.
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(a) Silhouette scores

(b) k = 4

(c) k = 5

Figure 4.38: E03: Clustering the residual matrices to characterize each clinical parameter.
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(a) Silhouette scores

(b) k = 4

(c) k = 5

Figure 4.39: E23: Clustering the residual matrices to characterize each clinical parameter.



87

In terms of comparing normalized results for these other two experiments in relation to

E04, the cluster composition does shift significantly with respect to each experiment. Regarding

parasite level, E23 is more similar to E04 than E03, which as mentioned before is reasonable

because the two experiments use the same parasite species. However, E23 is a different strain,

which could be the reason for discrepancies; parasite level is clustered with relatively more

parameters in E04, as E23 shares only hemoglobin, reticulocyte number, and red blood cell

count. E23 also includes white blood cell count and monocytes, which could be indicative

of differing immune responses to the separate strains. E03, in contrast, groups parasite level

with red blood cell distribution width and reticulocytes. Reticulocytes consequently seem to

be significant across different strains and species, marking this clinical parameter for further

investigation. Normalized results therefore illuminate variation among the strains and species

while also highlighting important similarities, helping to further a more generalized model to

consider a more diverse pool of data.
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(a) k = 4, E03

(b) k = 4, E23

Figure 4.40: Comparing normalized results for E03 and E23.



Chapter 5

Conclusions

This paper is a proof of concept that automatic analysis can be applied as another layer to

manual inspection, while complete replacement of manual work can be a future goal. The main

results in the Joyner et al. study discuss the possible importance of reticulocytes as indicators

of severity, while comparing signs such as thrombocytopenia and anemia (Joyner et al., 2016).

In this study, we have shown that some of these insights can be extracted automatically by

applying certain data analysis techniques, which shed light on other parameters as well. As

an example from the results, monocytes influential in the adaptive immune response could be

important in final disease outcome; additionally, clustering results relate thrombocytopenia and

anemia, extracting information about these conditions that was unresolved in the actual study.

While this thesis specifically focused on replicating analysis for experiment E04, the same

framework can be applied to other malaria experiments (as discussed in Section 4.3.3), and the

ideas are transferable to other experiments in general. Because of the few datasets available,

this study was limited by the noise that arises with little information; applying these techniques

89
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to other experiments could help characterize specifics of those studies while also adding to the

overall data on which to build a larger and more flexible model for disease severity and stage.

5.1 Contributions

The main contribution of this study is providing a step-by-step framework to begin automatically

analyzing small biological datasets, starting with fitting mathematical models and ending with

clustering and regression modeling. While some studies have used machine learning to help

classify types of malaria in human cases (Andrade et al., 2010), this kind of computational

approach to small experimental malaria datasets has not been employed. Therefore, this project

provides a preliminary study of which methods might work and what kinds of results should be

expected, yielding a stepwise framework for approaching these types of datasets.

5.2 Future Work

As mentioned, this entire framework can be applied to other datasets, as seen in Section 4.3.3;

different or similar results could both be meaningful in determining important conclusions re-

garding the specifics of the experiment analyzed. In addition, there are yet more methods to

expand or improve the existing framework. Scalability could be achieved by joining Gaussian

fitting windows to reduce shifting computation, which could help in applying the framework

to other data. Moreover, the residuals could be normalized against the number of Gaussian

functions fitted to the data, which might better characterize differences that are minimized by

shifting (e.g. two Gaussians that merge into one because of the shifts). While MongoDB was a
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good way to store data, a larger and more flexible database could be created for related experi-

ments available on PlasmoDB to include all raw data and the analyses detailed in this paper; for

now, there are separate databases to hold shifting parameters and to hold raw data and related

preprocessing- an overarching database containing both raw data and all analyses applied would

be helpful in determining next steps for new experiments. Lastly, after running this framework

on other datasets, a general model could be constructed for malaria to characterize other features

even about the parasite (e.g. the species, relapse or not, etc.).

5.3 Challenges and Learning

Many obstacles arose along the way in my attempts to analyze this dataset, most of them

concerned with Bayesian Optimization. Because the Spearmint package is better run with more

CPUs, since it involves very complicated computations, I wanted to migrate this process to our

remote lab machine. Spearmint also requires MongoDB, and as it was precarious to rely on a

remote instance (since it was not under my control), I first logged into a Mongo server on my

local machine from the remote machine- this workaround was viable until my IP changed, and

so instead I had to deploy an online MongoDB cluster. More problems arose, as the free clusters

have both connection and collection limitations, and hence I could only run a few optimization

calls at once. Each pairwise comparison takes hours, and so running eighteen data-points for

multiple monkeys, each requiring pairwise analysis, was impractical. Additionally, this process

was nearly impossible to debug, as often the code would yield no results while also raising no

errors. For these reasons, I do not have shifting results for any of the experiments save for E04.

With more time, I could have resolved these issues to allow for streamlined automation of the

entire process from initial Gaussian fitting to regression modeling and clustering.
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Additionally, because the dataset is necessarily small, it is difficult to determine what kinds of

analysis are appropriate and valid. In machine learning, datasets usually have the opposite shape;

rather than few rows and many columns (i.e. five monkeys and many clinical parameters on

each), datasets have fewer columns and many rows (thousands of instances and fewer attributes).

While these challenges impeded analysis considerably, working through them helped me

understand how to approach a new dataset; I employed different software packages, ran code

remotely, setup and accessed NoSQL databases across various machines, and overall became

much better at devising creative solutions. Furthermore, I was using packages for many of the

algorithms taught in my Data Mining course, which helped solidify my understanding of the

concepts both regarding my thesis and the course. I am confident that I can now tackle novel

data via the framework established in this project.



Appendix A

Other Results

A.1 Normalized Results

A.1.1 Residual Matrices
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(a) Over all days, post-shifting on the right

(b) Up to day 23, post-shifting on the right

Figure A.1: gran: Comparing residual matrices, with and without Bayesian Optimization
shifts.
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(a) Over all days, post-shifting on the right

(b) Up to day 23, post-shifting on the right

Figure A.2: hct: Comparing residual matrices, with and without Bayesian Optimization
shifts.
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(a) Over all days, post-shifting on the right

(b) Up to day 23, post-shifting on the right

Figure A.3: hgb: Comparing residual matrices, with and without Bayesian Optimization
shifts.
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(a) Over all days, post-shifting on the right

(b) Up to day 23, post-shifting on the right

Figure A.4: lymph: Comparing residual matrices, with and without Bayesian Optimization
shifts.



98

(a) Over all days, post-shifting on the right

(b) Up to day 23, post-shifting on the right

Figure A.5: mch: Comparing residual matrices, with and without Bayesian Optimization
shifts.
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(a) Over all days, post-shifting on the right

(b) Up to day 23, post-shifting on the right

Figure A.6: mchc: Comparing residual matrices, with and without Bayesian Optimization
shifts.
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(a) Over all days, post-shifting on the right

(b) Up to day 23, post-shifting on the right

Figure A.7: mcv: Comparing residual matrices, with and without Bayesian Optimization
shifts.
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(a) Over all days, post-shifting on the right

(b) Up to day 23, post-shifting on the right

Figure A.8: mono: Comparing residual matrices, with and without Bayesian Optimization
shifts.
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(a) Over all days, post-shifting on the right

(b) Up to day 23, post-shifting on the right

Figure A.9: mpv: Comparing residual matrices, with and without Bayesian Optimization
shifts.
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(a) Over all days, post-shifting on the right

(b) Up to day 23, post-shifting on the right

Figure A.10: % parasitema: Comparing residual matrices, with and without Bayesian
Optimization shifts.
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(a) Over all days, post-shifting on the right

(b) Up to day 23, post-shifting on the right

Figure A.11: parasites / uL: Comparing residual matrices, with and without Bayesian
Optimization shifts.
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(a) Over all days, post-shifting on the right

(b) Up to day 23, post-shifting on the right

Figure A.12: plt: Comparing residual matrices, with and without Bayesian Optimization
shifts.
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(a) Over all days, post-shifting on the right

(b) Up to day 23, post-shifting on the right

Figure A.13: rbc: Comparing residual matrices, with and without Bayesian Optimization
shifts.
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(a) Over all days, post-shifting on the right

(b) Up to day 23, post-shifting on the right

Figure A.14: rdw: Comparing residual matrices, with and without Bayesian Optimization
shifts.
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(a) Over all days, post-shifting on the right

(b) Up to day 23, post-shifting on the right

Figure A.15: # ret: Comparing residual matrices, with and without Bayesian Optimization
shifts.
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(a) Over all days, post-shifting on the right

(b) Up to day 23, post-shifting on the right

Figure A.16: reticulocytes / uL: Comparing residual matrices, with and without Bayesian
Optimization shifts.
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(a) Over all days, post-shifting on the right

(b) Up to day 23, post-shifting on the right

Figure A.17: % ret: Comparing residual matrices, with and without Bayesian Optimization
shifts.
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(a) Over all days, post-shifting on the right

(b) Up to day 23, post-shifting on the right

Figure A.18: wbc: Comparing residual matrices, with and without Bayesian Optimization
shifts.



Appendix B

Abbreviations

Table B.1: Abbreviations for Clinical Parameters

Abbreviation Description Units

gran proportion of granulocytes relative to white

blood cell counts (type of white blood cell that

has granules which release enzymes during infec-

tion)

as a % of white blood

cells

hct red blood cells / total blood volume as a % of red blood cells

to total blood volume

hgb hemoglobin in blood grams/deciliter (g/dL)

lymph proportion of lymphocytes relative to white

blood cell counts (B cells / T cells)

as a % of white blood

cells

mch mean corpuscular hemoglobin (hgb in terms of

mass / weight)

picograms
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mchc mean corpuscular hemoglobin concentration

(hgb per unit volume of red blood cells)

g/dL

mcv mean corpuscular volume (mean volume of red

blood cells)

fL (femtoliters)

mono proportion of monocytes relative to white blood

cell counts (part of adaptive immunity: differen-

tiate into macrophages and dendritic cells)

as a % of white blood

cells

mpv mean platelet volume (average size of platelets) fL

parasitemia % percentage of infected red blood cells (parasites / uL) / (rbc /

uL) * 100

parasites / uL parasitemia % with respect to red blood cell con-

centration in the complete blood cell count (i.e.

total platelets, red blood cells, white blood cells,

hemoglobin)

plt # platelets / uL

rbc # red blood cells / uL

rdw red blood cell distribution width (variation in

size of rbc’s - increased variation denotes illness)

degree of variation, so %

deviation

ret reticulocytes: immature red blood cells (in-

creased numbers show illness, i.e. being made

too quickly)

# ret / uL (% ret as %

of rbc)

wbc total white blood cells white blood cells / uL
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