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Abstract 
 

Challenge Reading Comprehension on Daily Conversation: 
Passage Completion on Multiparty Dialog  

 
By Kaixin Ma 

 
 

This thesis expands a previously constructed corpus and presents a robust deep learning 

architecture for a task in reading comprehension, passage completion, on multiparty dialog. Given a 

dialog in text and a passage containing factual descriptions about the dialog where mentions of the 

characters are replaced by blanks, the task is to fill the blanks with the most appropriate character 

names that reflect the contexts in the dialog. Previous researcher constructed a dataset by selecting 

transcripts from a TV show, generating passages for each dialog through crowdsourcing, and 

annotating mentions of characters in both the dialog and the passages. This work expands the 

previously constructed dataset following the same pipeline and fixes errors in the entire dataset. 

Given this dataset, a deep neural model is developed that integrates rich feature extraction from 

convolutional neural networks (CNN) into sequence modeling in recurrent neural networks (RNN), 

optimized by utterance and dialog level attentions. The model outperforms the previous state-of-

the-art model on this task in a different genre using bidirectional LSTM, showing a 13.0+% 

improvement for longer dialogs. The analysis shows the effectiveness of the attention mechanisms 

and suggests a direction to machine comprehension on multiparty dialog.  
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1 Introduction

Teaching machine to understand human language has been a long time goal

for researchers. Numerous approaches, datasets and evaluation matrics

have been developed to improve machine’s comprehension ability. Reading

comprehension that challenges machine’s ability to understand a document

through question answering has gained lots of interests recently. Most of

the previous works for reading comprehension have focused on either chil-

dren’s stories Richardson et al. (2013); Hill et al. (2016) or newswire Her-

mann et al. (2015); Onishi et al. (2016). Few approaches have attempted

comprehension on small talks, although they are evaluated on toy exam-

ples not suitable to project real-life performance Weston et al. (2015). It

is apparent that the main stream of reading comprehension has not been

on the genre of multiparty dialog although it is the most common and

natural means of human communication. The volume of data accumulat-

ing from group chat or messaging continues to outpace data accumulation

from other writing sources. 1 The combination of available and rapidly

developing analytic options, a marked need for dialogue processing, and

the disproportionate generation of data from conversations through text

platforms inspires the exploration of a corpus consisting of multiparty di-

alogs and the development of learning models that make robust inference

on their contexts.

Passage completion is a popular method of evaluating reading compre-

hension that is adapted by several standardized tests (e.g., SAT, TOEFL,

1https://medium.com/hijiffy/10-graphs-that-show-the-immense-power-of-
messaging-apps-4a41385b24d6
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GRE). Given a document and a passage containing factual descriptions

about the contexts in the document, the task replaces keywords in the

passage with blanks and asks the reader to fill in the blanks. This task is

particularly challenging when the document is in a form of dialog because it

needs to match contexts between colloquial (dialog) and formal (passage)

writings. Moreover, a context that can be described in a short passage,

say a sentence, tends to be expressed across multiple utterances in dialog,

which requires discourse-level processing to make the full interpretation of

the context.

This thesis expands a previously constructed corpus for passage completion

on multiparty dialog (Section 3), and presents a deep learning architecture

that produces robust results for understanding dialog contexts (Section 4).

The experiments show that models trained by this architecture significantly

outperform the previous state-of-the-art model using bidirectional Long

short term memory networks (LSTM), especially on longer dialogs (Sec-

tion 5). The analysis highlights the comprehension of newly developed

models for matching utterances in dialogs to words in passages (Section 6).
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2 Related Work

This chapter provides a overview of several topics that are related to this

thesis. There are a number of publicly available reading comprehension

datasets and passage completion datasets. Unlike the other corpora where

documents and passages are written in a similar writing style, they are

multiparty dialogs and plot summaries in the corpus this thesis explored,

which have very different writing styles.This raises another level of difficulty

to match contexts between documents and queries for the task of passage

completion.

2.1 Passage Completion

To address the lack of large scale supervised nature language passage

completion data, Hermann et al. (2015) introduced the CNN/Daily Mail

dataset where documents and passages were news articles and their sum-

maries respectively. They also evaluated neural models with three types

of readers on this dataset. Since its release, CNN/Daily Mail dataset has

attract a lot of research interests and multiple systems have been devel-

oped and experimented on this dataset. Chen et al. (2016) proposed the

entity centric model which incorporate traditional feature engineering and

ranking algorithm to find the answer. They also built an end-to-end bidi-

rectional LSTM model using attention and conducted a thorough analysis

on this dataset. Trischler et al. (2016) presented the EpiReader that tried

to mimic human’s reasoning process while reading (i.e plug the possible

answers into the question to see which makes the most sense). It contains
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an extractor that selects a set of candidates from documents and reasoner

that formulate hypothesis for each candidates and pick the answer that fits

the question best. The EpiReader used both CNN and RNN when encod-

ing documents and questions. Dhingra et al. (2017) proposed the gated-

attention reader that tried to mimic the rumination of human’s reading

process. (i.e goes back to re-read some parts of document to confirm) The

gated-attention reader incorporated a multi-hop architecture and applied

attention on multiplicative interactions between documents and passages.

At last, Cui et al. (2017) introduced the attention-over-attention reader

which is also based on bi-directional LSTM networks. In addition to the

widely used passage-to-document attention, attention-over-attention reader

also placed document-to-passage attention on top of that.

There are many other passage completion datasets that are in similar for-

mat as CNN/Daily Mail dataset. Hill et al. (2016) released the Children

Book Test dataset (CBT) where children’s book stories were used to con-

structed the dataset. The documents consist 20 consecutive sentences from

the story and the 21st sentence is used as question in which one of the

word is replaced by @placeholder. Paperno et al. (2016) introduced the

LAnguage Modeling Broadened to Account for Discourse Aspects (LAM-

BADA) dataset to encourage development of models that are able to make

inferences in broader contexts. LAMBADA dataset comprising novels from

the Book corpus, is designed so that the answers are hard to find if only any

single sentence is considered but easy if reading the whole document. On-

ishi et al. (2016) introduced the Who-did-What (WDW) dataset consisting

of articles from the LDC English Gigaword newswire corpus. The questions

and documents in WDW dataset come from two distinct articles about the
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same events, so it requires models to make stronger semantic analysis to

answer the questions. All corpora described above provide queries, that

are passages where certain words are masked by blanks, for the evaluation

of passage completion.

2.2 Reading Comprehension

More datasets are available for other types of reading comprehension tasks,

such multiple choice question answering and short phrase answer. Richard-

son et al. (2013) introducted MCTest, which consists stories and associated

questions in a variety of topics created by crowd source workers. Stories in

this dataset are relatively short and vocabulary used are easy as if they are

for children in grade school. Joshi et al. (2017) constructed a challenging

dataset TriviaQA containing question-answer-evidence triples. Questions

were first collected from various trivia websites, then evidence text were

gathered by web search and wikipedia of entities in the questions. Lai

et al. (2017) released the ReAding Comprehension Dataset From Exami-

nations dataset (RACE) , which consists real world reading comprehension

test questions. The data were collected from English exam from Chinese

middle school and high school. Thus the dataset was more well crafted and

the questions require higher level of reasoning to answer. Rajpurkar et al.

(2016) introduced the Stanford Question Answering Dataset (SQuAD),

consisting questions generated by crowdsource workers on Wikipedia ar-

ticles. The answers are constructed to be a span of text in the reading doc-

ument. All corpora described above have document-query-answer triples

in rather different format and different levels of difficulties. On some of

these datasets, the state-of-the-art system’s performance have come close
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to human performance whereas there are still large gaps on others.

2.3 Neural Architecture

Widely utilized for computer vision, CNN models have recently been ap-

plied to natural language processing and showed great results for many

tasks such document classification Kim (2014), semantic parsing Shen et al.

(2014) and question answering Yih et al. (2014). In some other tasks,

CNN models are also utilized as feature extractors because of their abil-

ity to capture n-grams. RNN models, on the other hand, are originally

designed for processing language. Because of RNN’s nature, that each

hidden states contains information from all previous hidden states, RNN

models are thought to catch long distance dependencies in language, which

are out of CNN models’ reach. However, in practice when the sequences

become long, RNN models’ performances are not as good as expected due

to the vanish gradients. Hochreiter and Schmidhuber (1997) introduced the

LSTM networks, which intends to alleviate vanishing gradient of regular

RNN. LSTM networks with attention have made remarkable breakthrough

in many fields of NLP including machine translation Li et al. (2017); Wu

et al. (2017), sentiment analysis Qian et al. (2017), and text summariza-

tion Nema et al. (2017); Tan et al. (2017). The combination of CNN and

LSTM has also been explored, which take the advantage of CNN in feature

extraction and RNN in sequence modeling. Yin et al. (2016) incorporated

CNN-LSTM model to capture local character features and lexicon matches

in name entity recognition task. Wang et al. (2016) proposed to use regional

CNN to encode each sentence and use LSTM to integrate the information

for dimensional sentiment analysis. Ma and Hovy (2016) introduced a neu-
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ral system that consists CNN layers to encode character representation,

LSTM layers to form context embedding and Conditional Random Field

(CRF) layer in the last to perform sequence labeling. The hybrid of CNN

and LSTM has produced promising results in many other tasks as well.
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3 Corpus

The Character Mining project provides transcripts of the TV show Friends

for ten seasons in the JSON format.1 Each season contains ≈24 episodes,

each episode is split into ≈13 scenes, where each scene comprises a sequence

of ≈21 utterances. Chen et al. (2017) annotated the first two seasons of

the show for an entity linking task, where personal mentions (e.g., she,

mom, Rachel) were identified by their corresponding characters. Jurczyk

and Choi (2017) collected plot summaries of all episodes for the first eight

seasons to evaluate a document retrieval task that returned a ranked list

of relevant documents given any sentence in the plot summaries.

Previous researchers generated passages for the first 8 seasons of the TV

show Friends using plot summaries collected from fan site and annotated

all mentions in the passages and dialogs through the crowdsource platform.

To created more samples, more plot summaries for the last two seasons of

Friends were collected from the same fan sites. Passages were generated

for each dialog in last two seasons using the same pipeline as suggested

by previous researchers. The details of the generation process is discussed

in (Section 3.1), mentions annotation process is discussed in (Section 3.2).

Lastly, errors in the entire dataset are fixed.

3.1 Passage Generation

An episode consists of multiple scenes, which may or may not be coherent.

In this corpus, each scene is considered a separate dialog. The lengths of the

1nlp.mathcs.emory.edu/character-mining

8



Figure 1: The overview of passage generation. Each episode is split into
scenes, and each summary is segmented to sentences. Elasticsearch passes
the scene-sentence pairs to crowd workers who are asked to check the rel-
evancy, replace all pronouns with the corresponding names, and generate
new passages for the scenes (Section 3.1).

scenes vary from 1 to 256 utterances; only scenes whose lengths are between

5 and 25 utterances are selected as suggested by the previous works Chen

and Choi (2016); Jurczyk and Choi (2017), which notably improves the

readability for crowd workers, resulting higher quality annotation.

The plot summaries collected from the fan sites are associated with episodes,

not scenes. To break down the episode-level summaries into scene-level,

they are segmented into sentences by the tokenizer in NLP4J.2 Each sen-

tence in the plot summaries is then queried to Elasticsearch that has in-

dexed the selected scenes, and the scene with the highest relevance is re-

trieved. Finally, the retrieved scene along with the queried sentence are

sent to a crowd worker who is asked to determine whether or not they are

relevant, and perform anaphora resolution to replace all pronouns in the

sentence with the corresponding character names. The sentence that is

checked for the relevancy and processed by the anaphora resolution is con-

2https://github.com/emorynlp/nlp4j

9



sidered a passage. 3 Besides the plot summaries, crowd workers are asked

to generated new passages which are descriptions about the dialog different

from collected plot summaries. Passages created in this procedure, how-

ever, may be biased toward frequently appeared characters. To alleviate

such issue, the second set of passages are generated. The lists of dominant

characters for each dialog are created. Then crowd workers are asked to

write descriptions about the dialog without using names on the dominant

list. The passages generated in this procedure are even more challenging

to answer. Figure 1 shows the overview of passage generation. Note that

Amazon Mechanical Turk is used for all crowdsourcing.

The newly generated passages from last two seasons are merged with pas-

sages generated by previous researcher. In total, the corpus contains 4,648

passages, 2,994 of them come from plot summaries, 616 of them come from

crowd workers generated descriptions and 1,038 of them are descriptions

without dominant characters.

3.2 Mention Annotation

For all dialogs and their passages, mentions are first detected automati-

cally by the named entity recognizer(NER) in NLP4J Choi (2016) using

the person entity, then manually corrected. For each passage including

multiple mentions, a query is created for every mention by replacing it with

the variable x:

3https://www.elastic.co

10



ID Speaker Utterance

1 - [Scene: Central Perk, @ent01 and @ent02 are there as @ent03 enters.]
2 @ent03 Hey! Oh, I’m so glad you guys are here. I’ve been dying to tell

someone what happened in the Paleontology department today.
3 @ent01 (To @ent02) Do you think he saw us or can we still sneak out?
4 @ent03 Professor @ent04, the head of the department, so ...
5 @ent02 They made you head of the department!
6 @ent03 No, I get to teach one of his advanced classes! Why didn’t I get head

of the department?
7 @ent01 Oh! Hey @ent02, listen umm ...
8 @ent02 Yeah.
9 @ent01 I got a big date coming up, do you know a good restaurant?

10 @ent02 Uh, @ent05’s Cafe. They got great food and it’s really romantic.
11 @ent01 Ooh, great! Thanks!
12 @ent02 Yeah! Oh, and then afterwards you can take her to the Four Seasons

for drinks. Or you go downtown and listen to some jazz.
Or dancing - Oh! Take her dancing!

13 @ent01 You sure are naming a lot of ways to postpone xxx, I’ll tell ya ...
14 @ent02 Ooh, I miss dating. Gettin’ all dressed up and going to a fancy

restaurant. I’m not gonna be able to do that for so long,
and it’s so much fun! I mean not that sitting at home worrying about
giving birth to a sixteen pound baby is not fun.

15 @ent01 Hey, y’know what?
16 @ent02 Huh?
17 @ent01 Why don’t I take you out?
18 @ent02 What?! @ent01, you don’t want to go on a date with a pregnant lady.
19 @ent01 Yes I do! And we’re gonna go out, we’re gonna have a good time,

and take your mind off of childbirth and c-sections and-and giant
baby heads stretching out ...

20 @ent02 (interrupting) Okay! I’ll go with ya! I’ll go! I’ll go with ya.
21 @ent01 I’ll be fun.
22 @ent02 All right?

Table 1: An example dialog from Friends : Season 8, Episode 12, Scene
2. All mentions are encoded by their entity IDs. @ent01: Joey, @ent02:
Rachel, @ent03: Ross, @ent04: Neuman, @ent05: Paul.

Rachel misses dating, so Joey offers to take Rachel out.

⇒ x misses dating, so Joey offers to take Rachel out.

⇒ Rachel misses dating, so x offers to take Rachel out.

⇒ Rachel misses dating, so Joey offers to take x out.

Following Hermann et al. (2015), all mentions implying the same character

are encoded by the same entity ID. A different set of entity IDs are ran-

domly generated for each dialog; for the above example, Joey and Rachel

11



ID Passage

1 @ent03 announces that @ent03 is going to be teaching a graduate
class at the university.

2 @ent02 misses dressing up for romantic dates so @ent01 promises to
take @ent02 out.

3 @ent02 misses dating, so @ent01 promises to show @ent02 a good time.
4 @ent01 asks @ent02 where to go on a date and then @ent01 decides

to take @ent02 on a date to get @ent02’s mind off having a baby.

Table 2: Passages generated for the dialog in 1

ID Passage

1.a x announces that @ent03 is going to be teaching a graduate class at the university.
1.b @ent03 announces that x is going to be teaching a graduate class at the university.
2.a x misses dressing up for romantic dates so @ent01 promises to take @ent02 out.
2.b @ent02 misses dressing up for romantic dates so x promises to take @ent02 out.
2.c @ent02 misses dressing up for romantic dates so @ent01 promises to take x out.

· · ·

Table 3: Queries generated from passages in 2 The queries are generated
by replacing each unique entity in every passage with the variable x (Sec-
tion 3.2).

may be encoded by @ent01 and @ent02 in this dialog (Table 3), although

they can be encoded by different entity IDs in other dialogs. This random

encoding prevents learning models from overfitting to certain types of en-

tities. On the other hand, the same set of entity IDs are applied to the

passages associated with the dialog.

Two issues still remain in the dataset. One is that some entities in the pas-

sages and dialogs are not recognized by NER. As a result, some mentions

of the same entity are encoded and some are not. The second issue is that

characters in this dataset are often mentioned by several aliases (e.g., nick-

names, honorifics) such that it is not trivial to cluster mentions implying

the same character using simple string matching. For example, Monica can

be called by her nickname Mon, honorific Ms. Geller, or full name Mon-

ica Geller. Having the same character encoded to different entity IDs can

prevent the model from learning effectively. Thus a heuristic is designed to

12



clean up the dataset. First for every dialog and its corresponding passage,

an entity dictionary is created. All of tokens that appear in the entity dic-

tionary but not picked by NER are converted to entities. Then, an entity

mapping dictionary is created for each character whose key is the name of

the character and the value is a list of aliases for the character, manually

inspected throughout the entire show. This entity mapping dictionary is

then used to link mentions in both the dialogs and the passages to their

character entities.

Type Count

# of dialogs 1,682
# of passages 4,648
# of queries 13,487
Avg. # of utterances per dialog 15.8
Avg. # of tokens per dialog/passage 290.8 / 19.9
Avg. # of mentions per dialog/passage 24.4 / 3.0
Avg. # of entities per dialog/passage 5.4 / 2.2
Max # of mentions per dialog/passage 117 / 15
Max # of entities per dialog/passage 16 / 7

Table 4: The overall statistics of the corpus.

Table 4 shows the overall statistics of the corpus. It is relatively smaller

than the other corpora (Section 2). However, it is the largest, if not the

only, corpus for the evaluation of passage completion on multiparty dialog

that still gives enough instances to develop meaningful models using deep

learning.
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4 Approaches

This section presents the deep learning architecture that is designed specif-

ically for passage completion task on dialogs. This model integrates rich

feature extraction from convolutional neural networks (CNN) into robust

sequence modeling in recurrent neural networks (RNN) (Section 4.1). The

combination of CNN and RNN has been adapted by several NLP tasks such

as text summarization Cheng and Lapata (2016), essay scoring Dong et al.

(2017), sentiment analysis Wang et al. (2016), or even reading comprehen-

sion Dhingra et al. (2017). Unlike previous works that feed a sequence of

sentences encoded by CNN to RNN, a sequence of utterances is encoded by

CNN in this model, where each utterance is spoken by a distinct speaker

and contains one or more sentences that are coherent in topics. The best

model is optimized by both the utterance (Section 4.2) and the dialog (Sec-

tion 4.3) level attentions, showing significant improvement over the pure

CNN+RNN model.

This section also presents the entity centric classifier introduced by Chen

et al. (2016) and the attention over attention (AoA) reader introduced by

Cui et al. (2017). The entity centric classifier is a traditional linguistic

approach, but it outperforms previous deep learning approach by a large

margin on CNN/Daily Mail dataset. The AoA reader outperforms various

neural systems by a large margin on both CNN news dataset and Children

Book Test dataset. The author re-implemented these two models to serve

as baselines.
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4.1 CNN + LSTM

Each utterance comes with a speaker label encoded by the entity ID in

the corpus (Table 3). This entity ID is treated as the first word of the

utterance in CNN + LSTM models. Before training, random embeddings

are generated for all entity IDs and the variable x with the same dimension

d as word embeddings. All utterances and queries are zero-padded to their

maximum lengths m and n, respectively.

Convolution

U1

Convolution

Uk

LSTM↓d LSTM↓d

LSTM↑d LSTM↑d

· · ·

· · ·

Q

LSTM↓q LSTM↓q

LSTM↑q LSTM↑q

· · ·

· · ·

� � �

D

· · ·

~u1 ~uk

~h #d ~h #q~h "q~h "d

Softmax

Figure 2: The overview of the CNN+LSTM model.

Given a query and a dialog comprising k-number of utterances, the query

matrix Q ∈ Rn×d and the utterance matrix Ui ∈ Rm×d are created using

the word, entity, and variable embeddings ∀i ∈ [1, k]. For each Ui, 2D

convolutions are performed for 2-5 grams, where each convolution takes

f -number of filters and the output of every filter is max-pooled, resulting

15



a vector of the size f . These vectors are concatenated to create the utter-

ance embedding ~ui ∈ R1×4·f , then the utterance embeddings are stacked

to generate the dialog matrix D ∈ Rk×4·f . This dialog matrix is fed into

a bidirectional LSTM consisting of two networks, LSTM↓d and LSTM↑d, that

process the sequence of utterance embeddings in both directions. In paral-

lel, Q is fed into another bidirectional LSTM with LSTM↓q and LSTM↑q that

process the sequence of word embeddings in Q. Each LSTM returns two

vectors from the last hidden states of LSTM↓∗ and LSTM↑∗:

~h ↓d= LSTM ↓d (D) ~h ↑d= LSTM ↑d (D)

~h ↓q= LSTM ↓q (Q) ~h ↑q= LSTM ↑q (Q)

All the outputs of LSTMs are concatenated and fed into the softmax layer

that predicts the most likely entity for x in the query, where each dimension

of the output layer represents a separate entity:

O = softmax(~h ↓d ⊕~h ↑d ⊕~h ↓q ⊕~h ↑q)

predict(U1, . . . ,Uk,Q) = argmax(O)

Figure 2 demonstrates our CNN+LSTM model that shows significant ad-

vantage over the pure bidirectional LSTM model as dialogs get longer.

4.2 Utterance-level Attention

Inspired by Yin et al. (2016), attention is applied to every word pair in the

utterances and the query. First, the similarity matrix Si ∈ Rm×n is created

for each utterance matrix Ui by measuring the similarity score between

every word in Ui and Q:
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Si[r, c] = sim(Ui[r, :],Q[c, :])

sim(x, y) = 1/(1+‖x−y‖)

The similarity matrix is then multiplied by the attention matrix A ∈ Rn×d

learned during the training. The output of this multiplication produces

another utterance embedding U′i ∈ Rm×d, which is channeled to the orig-

inal utterance embedding Ui and generates the 3D matrix Vi ∈ R2×m×d

(Figure 3):

U′i = Si · A

Vi = Ui � U′i

Vi is fed into the CNN in Section 4.1 instead of Ui and constructs the dialog

matrix D.

Q

�

Ui

Si

U0
i

⌦

Vi

A
Figure 3: The overview of the utterance-level attention.
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4.3 Dialog-level Attention

The utterance-level attention is for the optimization of local contents through

word similarities between the query and the utterances. To give a global

view to the model, dialog-level attention is applied to the query matrix Q

and the dialog matrix D. First, 1D convolutions are applied to each row in

Q and D, generating another query matrix Q′ ∈ Rn×e and dialog matrix

D′ ∈ Rm×e, where e is the number of filters used for the convolutions.

DQ ⌦

⌦ ⌦

Q0 D0

P
~pc

~pr~aq ~ad

1D Convolution

Sum

Figure 4: The overview of the dialog-level attention.

Q′ is then multiplied to D′T , resulting another similarity matrix P ∈ Rn×m.

Furthermore, the sum of each row in P is concatenated to create ~pc ∈ Rn×1,

and the sum of each column in P is also concatenated to create ~pr ∈ R1×m:

P = Q′ ·D′T

~pc[r] =
∑m

j=1 P [r, j]

~pr[c] =
∑n

j=1 P [j, c]

~pTc is multiplied to Q′ and ~pr is multiplied to D′, producing the attention

embeddings ~aq ∈ R1×e and ~ad ∈ R1×e, respectively. Finally, these attention

18



embeddings are concatenated with the outputs of the LSTMs in Section 4.1

then fed into the softmax layer to make the prediction:

~aq = ~pTc ·Q′

~ad = ~pr ·D′

O = softmax(~h ↓d ⊕~h ↑d ⊕~h ↓q ⊕~h ↑q ⊕~ad ⊕ ~aq)

predict(U1, . . . ,Uk,Q) = argmax(O)

Similar attentions have been proposed by Yin et al. (2016) and evaluated on

NLP tasks such as answer selection, paraphrase identification, and textual

entailment; however, they have not been adapted to passage completion. It

is worth mentioning that many other kinds of attention mechanisms have

been tried and empirically the combination of these two attentions yields

the best result for the passage completion task.

4.4 Entity Centric

This is the conventional feature based classifier from Chen et al. (2016).

For each candidate entity in the document, a set of features is extracted.

A ranking tool is used to rank each candidate’s feature vector and the

entity with the highest rank is chosen to be the answer. Since this is the

replication of Chen et al. (2016)’s work, the same feature template is used

and it is listed below.

• Whether the entity appear in the query

• Whether the entity appear in dialog

• The frequency of the entity in the dialog
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• Whether there are exact matches of words surrounding the x and the

entity. The combination of left and/or right one or two words are

extracted as features.

• The entity is aligned with the x and the minimum distance for every

non-stopping word in the question is calculated.

• Whether there is a verb or another entity that co-occur in the query

and in some utterances in the dialog.

• Whether the entity share common parent or child with the x in the

dependency parse tree.

Both queries and dialogs are first dependency parsed using NLP4J. Choi

(2016) Then all features are extracted from the dependency parse trees.

Following Chen et al. (2016) the implementation of LambdaMART Wu

et al. (2010) in the Ranklib 1 package is used to rank the feature vectors.

4.5 Attention over Attention

This is the Attention over Attention (AoA) Reader introduced by Cui et al.

(2017). Similarly, the speaker label is treated as the first word of the

utterance. Then all of utterances in the dialog are concatenated into one

long document. Given a query consisting m words and a dialog with n

words, the query matrix Q ∈ Rm×d and dialog matrix D ∈ Rn×d are created

through embedding layer where d is the embedding dimension. Then the

dialog and query matrix are feed into two separate Bi-LSTM networks,

which return sequence of hidden states. Thus D ∈ Rn×d is encocoded to

D′ ∈ Rn×h and Q ∈ Rm×d is encoded to Q′ ∈ Rm×h where h is the hidden

1https://sourceforge.net/p/lemur/wiki/RankLib/
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dimension size.

Figure 5: The overview of the AoA Reader.

Then attention matrix A ∈ Rn×m is computed by taking the dot product

of Q′ ∈ Rm×h and transpose of D′ ∈ Rn×h. Each row in A denotes the

attention of the document word to all question words and each column

denotes attention of the question word to all document words. Column-

wise softmax and row-wise softmax are perfromed on A ∈ Rn×m seperately

to get C ∈ Rn×m and R ∈ Rn×m. By doing so, the attention values

are normalized. Then the R ∈ Rn×m is averaged along columns to get

R′ ∈ R1×m. Since the operation is average, the normalization is maintained

and R′ ∈ R1×m can be seen as attention from whole document on each

question words. Then R′ ∈ R1×m is applied on C ∈ Rn×m to determine

the importance of each question word’s attention, hence attention over

attention. So the final attention vector α ∈ Rn×1 is calculated by taking

the dot product of C ∈ Rn×m and R′ ∈ R1×m. The overview of this model

is shown in 5.
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A = Q′ ·D′T

C = softmax(A)

R = softmax(AT )

R′ = average(R)

α = C · R′T

Finally, as suggested by Cui et al. (2017), the attention sum mechanism

Kadlec et al. (2016) is applied to R′ ∈ R1×m to make predictions. The prob-

ability of the word in the dialog being correct answer is given by summing

up all attention values of this word.

Pr(w | D,Q) =
∑

i∈I(w,D)α[i]

A minor modification of this model is also experimented. After computing

the final attention vector α ∈ Rn×1, instead of summing up attention

values for prediction. It is used to weight the document context embedding

D′ ∈ Rn×h and compute final hidden vector V ∈ R1×h. The prediction is

made by taking softmax of the final hidden vector V ∈ R1×h.

V = D′T · α

Prediction = Argmax(softmax(V))
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5 Experiments

The Glove 100-dimensional pre-trained word embeddings Pennington et al.

(2014) are used for all experiments (d = 100). The maximum lengths of

utterances and queries are m = 92 and n = 126, and the maximum number

of utterances is k = 25. For the 2/1D convolutions in Sections 4.1 and 4.3,

f = e = 50 filters are used, and the ReLu activation is applied to all

convolutional layers. The dimension of the LSTM outputs ~h ↓↑∗ is 32, and

the tanh activation is applied to all hidden states of LSTMs. Finally, the

Adam optimizer with the learning rate of 0.001 is used to learn the weights

of all models. Table 5 shows the dataset split for our experiments that

roughly gives 80/10/10% for training/development/evaluation sets.

Train Develop Evaluate Total

Queries 10,785 1,349 1,353 13,487

Table 5: Dataset split for our experiments, where each query is considered
a separate instance.

5.1 Utterance Pruning

Most utterances in the dataset are relatively short except for a few ones so

that padding all utterances to their maximum length is practically ineffi-

cient. Thus, pruning is used for those long utterances. For any utterance

containing more than 80 words, that is about 1% of the entire dataset,

stopwords are removed. If the utterance still has over 80 words, all words

whose document frequencies are among the top 5% in the training set are

removed. If the length is still greater than 80, all words whose document

frequencies are among the top 30% in the training set are removed. By
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Model
Development Set

Org. 25 50 100

Majority 28.61 27.65 21.57 19.79
Word Distance 28.17 28.17 27.43 27.21
Entity Centric 52.28 45.29 45.82 42.17
AoA attention sum 61.25 - - -
AoA hidden vector 63.91 - - -
Bi-LSTM 72.24 68.90 64.51 55.17

CNN+LSTM 70.97 70.24 69.40 65.43
CNN+LSTM+UA 72.42 71.73 70.67 66.46
CNN+LSTM+DA 72.24 71.30 70.21 66.37
CNN+LSTM+UA+DA 72.21 72.14 71.45 67.86

Table 6: Results on the development set from all models.

doing so, the maximum length of utterances is reduced down from 1,066 to

92, which dramatically speeds up the modeling without compromising the

accuracy.

5.2 Datasets with Longer Dialogs

The average number of utterances per dialog is 15.8 in the corpus, which is

relatively short. To demonstrate the model robustness for longer dialogs,

three more datasets are created in which all dialogs have the fixed lengths

of 25, 50, and 100 by borrowing utterances from their consecutive scenes.

The same sets of queries are used although models need to search through

much longer dialogs in order to answer the queries for these new datasets.

The three pseudo-generated datasets as well as the original dataset are used

for all the experiments except the human evaluation and the AoA reader.

5.3 Human Evaluation

Human performance is examined on the test dataset of the original length

using Amazon Mechanical Turk. Turkers are presented with passages and
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Model
Evaluation Set

Org. 25 50 100

Human Evaluation 74.02 - - -
Majorit 30.08 28.23 21.58 17.59
Word Distance 28.08 26.24 25.06 25.94
Entity Centric 47.36 43.83 45.56 42.47
AoA attention sum 60.11 - - -
AoA hidden vector 61.07 - - -
Bi-LSTM 71.21 67.37 62.95 53.76

CNN+LSTM 70.28 69.20 68.35 64.13
CNN+LSTM+UA 71.84 69.88 69.18 66.99
CNN+LSTM+DA 71.46 69.88 69.30 65.51
CNN+LSTM+UA+DA 72.42 71.01 69.98 66.99

Table 7: Results on the evaluation set from all models.

corresponding dialogs and they are asked to choose the answer from the

list of entities that appear in the dialog. To make fair comparison, the

same inputs for models are used in this case. In other words, characters in

dialogs and passages are replaced with entity IDs so that workers couldn’t

rely on the help of external knowledge. Workers are paid at the rate of 6$

per hour. Each hit is designed to take 1 minute to 2 minutes depending

on the length of the dialog. The working times of workers are checked and

found to be reasonable.

5.4 Baselines

Four models are used to establish comprehensible baseline results:

Majority This model picks the dominant entity in the dialog as the an-

swer for each query.

Word Distance Every entity is aligned with the variable x and calculate

the minimum distance for every non-stopping word in the question. The

entity with average minimum distance is chosen to be the answer.

25



0 50 100 150 200 250 300 350 400

Epochs

0

10

20

30

40

50

60

70

80

D
ev

 A
cc

ur
ac

y

CNN+LSTM+UA+DA
Bi-LSTM

Figure 6: Training curves on the original dataset.

Entity Centric This is the reimplementation of Chen et al. (2016)’s

entity centric model. This implementation was evaluated on the CNN/

Daily Mail dataset and showed a comparable result to the previous work.

Bi-LSTM This is the bidirectional LSTM model introduced by Chen

et al. (2016), which outperforms their entity centric model by a large mar-

gin. Chen et al. (2016)’s implementation of this model is used for exper-

iments;1 the input to this model is a list of words across all utterances

within the dialog. All hyperparameters are tuned using the development

set.

5.5 Attention-over-Attention

This is the reimplementation of Cui et al. (2017)’s AoA reader. This imple-

mentation is first experimented on the CNN dataset and achieved similar

1github.com/danqi/rc-cnn-dailymail
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Figure 7: Training curves on the length-100 dataset.

results as reported in their paper. This model is then experiemnted on

the original length dataset. However, even after hyperparameter turning

on development set, this model couldn’t achieve results close to those of

either Bi-LSTM or CNN + LSTM models, so further experiments on longer

dialogs are not performed.

5.6 Results

Table 6 shows the results from all models on the development set and table

7 shows the results from all models on the test set. The human perfor-

mance on the evaluation set is only 1.6+% higher than the best performing

model, which on part shows the difficulty of the task. It should be noted

that character anonymization process makes it harder to for people to find

the answer. However, it also possible that some participants of the evalu-

ation may enter the answer randomly (i.e the results may not truly reflect

human performance). Notice that the performance of the majority model
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on this dataset is similar to the ones in the CNN/Daily Mail dataset, which

validates the level of difficulty the newly created corpus. When the dialogs

get longer, it is expected that majority model’s accuracy would drop. The

word distance model’s performance is consistent across datasets of differ-

ent lengths. When of dialogs is relatively short, it is on par with majority

model, whereas it has significant advantage on longer dialogs. As expected,

the entity centric model sets its performance in between the majority model

and other deep learning models. For all of CNN + LSTM models and Bi-

LSTM, experiments are run three times with different random seeds and

the accuracies are averaged. The accuracy of Bi-LSTM reported on the

CNN dataset is 72.4, which is similar to its performance on this dataset.

CNN+LSTM model coupled with both the utterance-level and the dialog-

level attentions outperform all the other models except for the one on the

development set of the original dataset. The purposed neural architectures

show significant advantage over Bi-LSTM as the length of the dialog gets

larger.

Figure 6 shows the learning curves from Bi-LSTM and CNN+LSTM+UA+

DA on the original dataset. The red circle and the black star mark the

peaks of CNN+LSTM+UA+DA and Bi-LSTM, respectively. Although the

accuracies between these models are very similar, CNN+LSTM+UA+DA

converges in fewer epochs. Figure 7 shows the learning curves from both

models in 3 trials on the length-100 dataset. CNN+LSTM+UA+DA again

takes fewer epochs to converge and the variance of performance across trials

is smaller, implying that it is not as sensitive to the hyperparameter tuning

as Bi-LSTM.
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6 Analysis

6.1 Attention Visualization

Figure 8 depicts the dialog-level attention matrix, that is P in Section 4.3,

for the example in Table 3. The x-axis and y-axis denote utterances and

words in the query, respectively. Each cell represents the attention value

between a word in the query and an utterance.

From this visualization, query words such as misses, take, good, and time

have the most attention from utterances as they are the keywords to find

the answer entity. The utterances 14, 15 and 17 that give out the answer

also get relatively high attention from the query words. This illustrates the

effectiveness of the dialog-level attention in CNN+LSTM+UA+UD model.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Rachel

misses

dating

,

so

x

offers

to

take

Rachel.

out

and

show

Rachel,

a

good

time

.
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 8: Visualization of the dialog-level attention matrix P for the ex-
ample in Table 3.
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6.2 Comparisons

Table 8 shows the confusion matrix between Bi-LSTM and CNN+LSTM

+UA+DA on the original dataset. During the error analysis, it is noticed

that Bi-LSTM is better at capturing exact string matches or paraphrases.

As shown by the first two examples in Table 9, it is clear that those queries

can be answered by capturing just the snippets of the dialogs. In the first

example, “x makes up his mind about something” in the query matches

“@ent06 sets his mind on something” in the dialog. In the second example,

query phrase “the closet that x and @ent03 were in” also has the exact

string match“the closet @ent18 and @ent03 were in” in the dialog. Al-

though these cues are usually parts of sentences in long utterances, since

Bi-LSTM is based on only words, it still is able to locate them correctly. On

the other hand, CNN+LSTM +UA+DA encodes each utterance and then

feeds encoded vectors to LSTMs, so the high level representation of the

cues are mixed with other information, which hinders the model’s ability

to find the exact string matches.

Model Bi-LSTM: T Bi-LSTM: F

C+L+U+D: T 850 133

C+L+U+D: F 118 252

Table 8: The confusion matrix between Bi-LSTM and CNN+
LSTM+UA+DA.

CNN+LSTM +UA+DA is better at answering queries that require infer-

ence from multiple utterances. As shown by the last two examples in

Table 9, the cues to the answers distribute across several utterances and

there is no obvious match of words or phrases. In the third example, the

model needs to infer that in the sentence “(She reaches over to look at
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the label on the box)”, she refers to @ent18 and connect this informa-

tion with the later utterance by @ent18 “This is addressed to Mrs. @ent16

downstairs” in order to answer the query. In the last example, finding the

correct answer requires the model to interpret that the utterances “What

the hell was that?!” and “(They both scream and jump away.)” reflect

the outcome of startles, which is the verb in the query. As dialogs become

longer in the padded datasets, because of the utterance encoding procedure,

CNN+LSTM +UA+DA’s ability to locate relevant part of dialog is not in-

fluenced as much, whereas it becomes much more difficult for Bi-LSTM to

find the matches.

Model Query Dialog

Bi-LSTM
@ent12 says that once x Because you know as well as I do that
makes up his mind about once @ent06 sets his mind on
something, @ent06 will have something, more often than not, he ’s
xxx with it. going to have sex with it.

Bi-LSTM
@ent06 points out that people Oh, by the way. Two people screwing in
are screwing in the closet that there (points to the closet @ent18
x and @ent03 were in. and @ent03 were in) if you want to check

that out.
x saw on the box that @ent18 This is the best cheesecake I
the cheesecake was addressed have ever had. Where did you get this? (She

CNN+LSTM to Mrs. @ent16. reaches over to look at the label on the
+UA+DA box.) @ent10 It was at the front door. When

I got home. Somebody sent it to us. @ent18
@ent10, this is not addressed to you. This
is addressed to Mrs. @ent16 downstairs. ...

@ent17 startles @ent02 and x @ent17 DANGER !!! DANGER !!!!! @ent02
CNN+LSTM in the hallway to prove @ent17’ @ent17 !!! @ent03 What the hell was

+UA+DA point, which sets off an on-going that ?!(They both scream and jump away.)
competition of psuedo-attacks.

Table 9: Examples for model comparison. The first column denotes the
model that makes the correct prediction.
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7 Conclusion

An existing corpus consisting of multiparty dialogs and crowdsourced an-

notation for the task of passage completion is expanded and thoroughly

examined. A deep learning architecture combining convolutional and re-

current neural networks, coupled with utterance-level and dialog-level at-

tentions is also presented. Models trained by this architecture significantly

outperform the one trained by the pure bidirectional LSTM, especially on

longer dialogs. Two other previously published models are re-implemented

and experimented on this corpus. The analysis demonstrates the compre-

hension of the CNN+LSTM+UA+DA model using the attention matrix.

The advantages of Bi-LSTM and CNN +LSTM+UA+DA are also ana-

lyzed with examples respectievely. For the future work, the annotation for

more entity types may be extended and an entity linker may be explored to

automatically link mentions with respect to their entities. Also, only one

mention of entities in the query is replaced with blank currently. Multiple

mentions of the same entity or mentions of different entity may be replaced

with blanks in the query. Predicting all these blanks at one time could be

a more challenging task and interesting to explore in the future.
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