
Distribution Agreement
In presenting this thesis or dissertation as a partial fulfillment of the requirements for an
advanced degree from Emory University, I hereby grant to Emory University and its agents
the non-exclusive license to archive, make accessible, and display my thesis or dissertation
in whole or in part in all forms of media, now or hereafter known, including display on
the world wide web. I understand that I may select some access restrictions as part of the
online submission of this thesis or dissertation. I retain all ownership rights to the copyright
of the thesis or dissertation. I also retain the right to use in future works (such as articles or
books) all or part of this thesis or dissertation.

Signature:

Jeffrey B. Schriber Date



Development of Selected Configuration Interaction Methods for Problems
in Strong Correlation

By

Jeffrey B. Schriber
Doctor of Philosophy

Chemistry

Dr. Francesco Evangelista, Ph.D
Advisor

Dr. Joel Bowman, Ph.D
Committee Member

Dr. James Kindt, Ph.D
Committee Member

Accepted:

Lisa A. Tedesco, Ph.D
Dean of the James T. Laney School of Graduate Studies

Date



Development of Selected Configuration Interaction Methods for Problems
in Strong Correlation

By

Jeffrey B. Schriber
B.S., University of Richmond, 2014

Advisor: Dr. Francesco Evangelista, Ph.D

An abstract of
A dissertation submitted to the Faculty of the

James T. Laney School of Graduate Studies of Emory University
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in Chemistry

2019



Abstract

Development of Selected Configuration Interaction Methods for Problems
in Strong Correlation

By Jeffrey B. Schriber

In this dissertation, we develop and apply the adaptive configuration
interaction (ACI) method to enable computations on large chemical
systems with potentially many strongly correlated electrons. ACI
is a new variant of selected CI methods that provides the user with
a priori control over the error in the total energy by an iterative,
cumulative determinant screening algorithm. We benchmark the
ACI on the dissociation of N2 and on the singlet-triplet splittings
of oligoacenes up to decacene, achieving sub kcal mol−1 accuracy
in comparison to density matrix renormalization group data. We
then extend the ACI to compute excited states both by optimizing
determinantal spaces for each electronic state, and by using a sin-
gle determinantal space optimized for several states. We test these
methods using excited states of methylene, the avoided crossing in
LiF, and challenging excited states in long polyenes. To connect
the ACI to a dynamical correlation treatment, we then use ACI as
an affordable substitute for complete active space CI (CASCI) in
combination with the multireference driven similarity renormaliza-
tion group perturbatively expanded to second order (ACI-DSRG-
MRPT2). The ACI-DSRG-MRPT2 uses specialized techniques to
recover both static and dynamical electron correlations, and we are
able to treat active spaces with as many as 30 electrons in 30 or-
bitals in a total basis of 1350 orbitals. We apply this method to the
oligoacenes and achieve good agreement with experimental singlet-
triplet splittings, and the dynamical correlation treatment causes a
significant reduction in the observed radical character compared to
active space methods. Finally, we introduce a real time-dependent
ACI (TD-ACI) which uses ACI to generate a fixed basis for propa-
gating an initial state in real time. We apply the TD-ACI to study
charge migration dynamics following ionization, and we can repro-
duce experimental migration frequencies in iodoacetylene with min-
imal computational effort.
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Chapter 1

Introduction

1.1 Introduction

As famously summarized by Paul Dirac, quantum mechanics, even at its inception, had

the capacity to describe chemical phenomena but contained equations too complicated to

be practically solved. Thus, he continued, approximations are required to reduce the math-

ematical complexity while still conserving the desired properties of a particular molecular

system.1 The exponential growth of available computational power since then has rendered

parts of Dirac’s early prognostications obsolete; nonetheless, modern applications of quan-

tum mechanics to chemical problems still rely on appropriately chosen approximations.

Unfortunately, no single set of approximations has produced a theory or equation which

can adequately and tractably predict the behavior of molecules, despite the laws governing

the interaction of electrons and nuclei being known for decades.

The central goal of the modern quantum chemist is to develop predictive theories whose

range of applicability is, at best, broad and, at worst, well-understood. To achieve this goal,

a new theory needs to be traceable to an exact or near-exact theory through a series of

systematic, well-understood, and controllable approximations. The first approximations

commonly invoked in quantum chemistry are defined by our scope of interest, namely that

the desired chemical information we seek is largely determined by the behavior of the

electrons in a molecular system. Thus, we invoke the Born-Oppenheimer approximation
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and assume nuclei are fixed in space, so that mathematically we only need to solve for an

electronic wave function in a field of fixed nuclei. Furthermore, if we restrict our range of

applicability to moderately light elements, we can safely ignore the relativistic effects of

fast-moving electrons in the cores of heavy atoms, which can also greatly complicate the

mathematics.

This set of initial approximations together comprise the subfield known as electronic

structure theory, which is primarily concerned with obtaining the electronic energy and

wave function of a molecular system. These quantities arise from the solution of the time-

independent Schrödinger equation, which produces the electronic energy, En, and wave

function, Ψn for a particular state n, using the electronic Hamiltonian operator, Ĥ,

Ĥ |Ψn〉= En |Ψn〉 , (1.1)

which is a simple hermitian eigenvalue problem. The electronic Hamiltonian is written as,

Ĥ =−∑
i

1
2

∇
2
i −∑

i,A

ZA

ri,A
+∑

i, j

1
ri j

, (1.2)

where i and A label electrons and nuclei, respectively, ∇2
i is the Laplace operator, r is an

inter-particle distance, and ZA is the nuclear charge.2 Correspondingly, the first term is

the kinetic energy of each electron, the second term is the Coulombic attraction between

electrons and nuclei, and the final term is the electron-electron repulsion. This final term

simultaneously couples all pairs of electrons and correspondingly requires a wave function

that contains all 2-, 3-, . . . , up to N-body correlations. An exact solution to the Schrödinger

equation is thus impossible for systems with more than one electron because the wave

function becomes impossibly complex. Accurately approximating the electron repulsion

is a central challenge of electronic structure theory, and it is typically done by initially

assuming the electrons are essentially non-interacting and introducing electron-electron

interactions—called electron correlation—in a tractable way.

The goal of this thesis is to find new ways to solve the Schrödinger equation in cases
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where approximating electron correlation is particularly difficult due to the presence of a

phenomenon called strong correlation. In the remainder of this chapter, we will present

more details on electronic structure theory such that a precise definition of strong electron

correlation is reached. We will then provide a brief review of conventional techniques for

solving the Schrödinger equation for molecules with strongly-correlated electrons, with

particular attention paid to selected configuration interaction methods.

1.2 Electronic Structure Theory

As introduced previously, electronic structure theory is the branch of quantum chem-

istry primarily concerned with solving the time-independent electronic Schrödinger equa-

tion. Particularly challenging is handling the many-body nature of the exact wave function

that arises due to the electron repulsion term of the electronic Hamiltonian. A common

approximation to circumvent this many-body problem is to express the wave function in

a basis of one-electron wave functions, called spin orbitals, and to replace the electron re-

pulsion term of the Hamiltonian with some yet-undefined one-body potential between each

electron and an average field of the remaining electrons. Operating under this assumption

of an averaged field, we can write a solution for the wave function as a normalized and

antisymmetrized product of 2N spin orbitals, corresponding to N spatial orbitals,

|Ψn〉= |Φn〉 ≡
1√
2N!

∣∣∣∣∣∣∣∣∣
φ1(x1) φ1(x2) · · · φ1(x2N)
φ2(x1) φ2(x2) · · · φ2(x2N)

...
... . . . ...

φ2N(x1) φ2N(x2) · · · φ2N(x2N)

∣∣∣∣∣∣∣∣∣ (1.3)

where φi(xj) is a spin orbital with associated spatial and spin coordinates xj for electron

j. Writing the wave function as a determinant ensures indistinguishability of electrons and

antisymmetry of the wave function, as swapping two electrons corresponds to swapping

columns in the determinant to produce the necessary change of sign. This wave function

is called a Slater determinant, |Φ〉, and it defines a particular occupation of a set of spin

orbitals, or in more chemical terms, a single electronic configuration.
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To get the single Slater determinant that best approximates the Schrödinger equation,

we invoke the variational principle which states that the optimal Slater determinant mini-

mizes the total energy, defined as E = 〈Φn| Ĥ |Φn〉 for a normalilzed Φn. The optimizable

parameters in the variational minimization are the orbitals that compose the Slater determi-

nant. Furthermore, we cannot use a Hamiltonian with the complete electron repulsion term,

but instead we need to use an operator that replaces this term with an averaged electrostatic

field. Hartree–Fock (HF) theory defines such an operator in terms of the orbitals them-

selves, which requires an iterative procedure to optimize both the orbitals and the effective

electrostatic field self-consistently (SCF).2 What results is a set of orbitals that are varia-

tionally optimal for a single-determinantal solution to the electronic Schrödinger equation.

Furthermore, this set of Hartree–Fock orbitals defines molecular orbital theory, invaluable

to chemists, which relies on this foundational approximation that electrons are essentially

noninteracting and respond only to an external field.

This simplified picture of electrons does not adequately represent reality. Electrons are

negatively charged particles that continuously move in a concerted effort to minimize mu-

tual repulsions. Such a complex correlation of motion is not described under the Hartree–

Fock approximation. This phenomenon is termed dynamical correlation and it defines the

short-range cusp structure of the wave function in addition to long range dispersion.3 A

second failure of Hartree–Fock theory results from its single-determinantal form. If ener-

getic degeneracies among occupied and virtual orbitals exist in the Hartree-Fock solution,

then numerous electronic configurations (Slater determinants) can become equally impor-

tant in the exact wave function. Moreover, if electron-electron repulsion is large and similar

in magnitude to combined kinetic and electron-nuclear repulsion energies, then electrons

are less energetically “fixed” to the occupation defined in a single determinant and will

correspondingly occupy other orbitals. This situation, called static or strong correlation,

points to a more fundamental failure of the mean-field description of electronic repulsion,

which cannot produce a qualitatively correct wave function as a simple product of orbitals
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when these orbitals contain degeneracies.3–5 Strong correlation commonly occurs in bond-

breaking processes, open-shell transition metal species, electronically excited states, and

in large organic molecules with a high degree of orbital degeneracy.6–11 Cases of static

correlation can also indicate entanglement of electrons in the exact wave function, which

is defined by their inability to be described by a product of one-electron states. Therefore,

a wave function ansatz more flexible and complex than the single Slater determinant is re-

quired to describe this phenomena. Unfortunately, the concept of static correlation is rather

ad hoc in that its definition is intimately tied to the failure of Hartree–Fock in comparison

to the exact wave function, which is generally not known.

1.2.1 Second Quantization

Before discussing the various methods for adding a correlation treatment to a Hartree–

Fock reference, we will briefly introduce the language of second quantization which conve-

niently keeps track of orbital occupations and phase factors. We define the Fermi vacuum,

|−〉, as an empty state void of electrons. The creation operator, â†
i , creates a particle in

orbital φi, and the annihilation operator, âi, destroys a particle in the corresponding orbital.

When acting on the vacuum state, the annihilation operator sends the state to zero, e.g.,

â†
i |−〉= |φi〉 (1.4)

âi |−〉= 0. (1.5)

The creation and annihilation operators obey the following anticommutation relations,

{âi, â
†
j}= δi j (1.6)

{â†
i , â

†
j}= 0. (1.7)

These anticommutation rules provide consistency in determining the sign resultant from an

operation, and they enforce the antisymmetry requirement of the wave function. We can
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then write an N-particle Slater determinant as,

|Φ〉= â†
1â†

2 . . . â
†
N |−〉 . (1.8)

Using this notation, the electronic Hamiltonian in the spin-orbital basis can be written

as,

Ĥ = ∑
pq

hpqâ†
pâq +

1
4 ∑

pqrs
〈pq| |rs〉 â†

pâ†
qâsâr, (1.9)

where p,q,r,s, . . . index all spin-orbitals, and we define the one- and antisymmetrized two-

electron integrals, respectively,

hpq =
∫

φ
∗
p(x)h(x)φq(x)dx (1.10)

〈pq| |rs〉= 〈pq|rs〉−〈pq|sr〉 (1.11)

with the two-electron integrals in physicist’s notation defined as,

〈pq|rs〉=
∫

φ
∗
p(x)φ

∗
q (x
′)r−1

12 φr(x)φs(x′)dxdx′. (1.12)

From equation 1.9, we can see that the Hamiltonian contains one- and two- body terms and

will only produce non-zero expectation values for determinants that differ by no more than

four occupations, corresponding to the excitation of two electrons.

1.2.2 An exact solution

The language of second quantization simplifies how we write equations in improving

the correlation treatment of Hartree–Fock theory. Specifically, improvements to Hartree–

Fock are generally made by using excitations of electrons to model both the correlated

motion of electrons and any significant electronic configurations indicative of strong corre-

lation. A simple way to add correlation to a Hartree–Fock reference is to represent the

electronic wave function as a linear combination of Slater determinants, and solve the

Schrödinger equation in the basis of these determinants. This approach, denoted config-

uration interaction (CI), is particularly attractive in that its solution arises from simply
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diagonalizing the Hamiltonian in a basis of determinants, producing energies and associ-

ated wave functions as the eigenvalues/eigenvectors of ground and excited states.12 The CI

wave function is a linear combination of determinants, |ΦI〉,

|Ψ〉= ∑cI |ΦI〉 , (1.13)

with corresponding expansion coefficients labeled by determinant index, cI , determined in

the diagonalization of Ĥ. In fact, one can build the complete set of determinants for a given

number of orbitals (no) and electrons (ne) by generating a determinant for every possible

combination of ne orbitals. When this complete basis of determinants is used, the resultant

wave function and energy are formally exact within the orbital basis, a procedure called

full CI (FCI). We can write the FCI wave function in terms of the Hartree-Fock reference,

denoted Φ0, and second-quantized operators,

|ΨFCI〉= (c0 +∑
pq

cp
q â†

pâq + ∑
pqrs

cpq
rs â†

pâ†
qâsâr + ∑

pqrstu
cpqr

stu â†
pâ†

qâ†
r âuât âs + . . .) |Φ0〉 , (1.14)

where expansion coefficients c are labeled with orbital indices and the series includes all

n-body excitation strings up to the simultaneous excitation of all ne electrons. In writing

the FCI wave function in terms of the Hartree–Fock determinant, we can clearly see that

FCI is formally exact in the fixed orbital basis because all possible excitations—and thus all

possible correlations—are considered. Analyzing the FCI expansion coefficients can give

valuable insight into the nature of correlation in a particular computation. Most importantly,

the value of the coefficient for the Hartree–Fock determinant, c0, can indicate any strong

correlation if its square is smaller than about 0.9. If one could use FCI in a basis of infinitely

many orbitals, then the exact solution of the electronic Schrödinger equation—complete

CI—would be obtained.

Unfortunately, FCI is prohibitively expensive for all but trivially small systems. The

number of determinants in a FCI expansion,NFCI, defines a Hilbert space (H ) and grows
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combinatorially as the number of electrons in a set of orbitals,

NFCI =

(
no

nα

)(
no

nβ

)
, (1.15)

where nα and nβ are the numbers of electrons with α and β spin, respectively. Even with

the most sophisticated diagonalization algorithms, nα , nβ , and no are restricted to produce

no more than about 60 billion determinants.13–15 While this number is in many ways an

impressive feat, it limits computations to systems with tens of electrons, typically nothing

larger than diatomic molecules. For example, the largest FCI computation we are aware

of was done on the carbon dimer using 8 electrons in 66 orbitals, which required about 64

billion determinants.15

1.2.3 Single-reference Approaches

For cases where HOMO/LUMO gaps are large and strong correlation effects are ex-

pected to be small, the structure of the FCI wave function can be approximated fairly

straightforwardly. In other words, if the Hartree-Fock determinant is a reasonably good

approximation to FCI, then the only required corrections to achieve quantitative accuracy

are for dynamical correlations. This strategy of correcting a Hartree–Fock reference for

dynamical correlation defines a class of techniques called single-reference methods, which

generally come in variational, perturbative, or projective forms.

A common approach for single-reference methods is to only compute contributions

from determinants that couple directly to the Hartree-Fock determinant. From equation

1.9, we can see that these contributions are only the single and double excitations from

the reference, a space of determinants called the first order interacting space (FOIS). Note

that the concept of FOIS is general, and can be applied to a set determinants in addition

to a single reference. A very natural approximation to FCI is then to only include singly

and doubly excited determinants from the Hartree–Fock reference in the wave function.

This procedure, called CI with singles and doubles (CISD), uses a linear combination of
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determinants,

|ΨCISD〉= (c0 +∑
pq

cp
q â†

pâq + ∑
pqrs

cpq
rs â†

pâ†
qâsâr) |Φ0〉 , (1.16)

and produces variationally optimized expansion coefficients by diagonalizing the Hamil-

tonian in only the basis of the reference and FOIS. Since the CISD wave function is built

variationally from a subset of the FCI determinantal space, the CISD energy is always an

upper bound to the exact energy. In fact, this principle holds for any truncated CI wave

function built from the same one-electron basis. The CI ansatz is most commonly em-

ployed in this order-by order fashion, where triples and possibly higher excitations can be

added to increase the accuracy of the energy and wave function.

As we will discuss in great detail throughout this thesis, CI truncated by excitation

order suffers from many drawbacks. A technical problem with all truncated CI methods,

except CIS, is that they are not formally size consistent nor size extensive. Size consistency

refers to the numerical property that a computation on a bipartite system, AB, with A and

B completely noninteracting, gives the same energy as the energies summed from two

separate computations on A and B. This property is typically associated with the failure of

many CI variants to properly dissociate a diatomic molecule. Size consistency is usually

met when the form of the wave function includes products of excitations such that the total

wave function can be written as a product of subsystem wave functions. Size extensivity is

achieved when the scaling of the energy error in a computation with respect to the number

of electrons is constant, and it only occurs when products in the energy expression contain

no instances of mismatched numbers of indices, also known as disconnected terms. Finally,

CI truncated by excitation order is generally very inefficient with respect to the number of

parameters required for a given accuracy. For example, CISD scales already as O(n6
o),

with the exponent increasing by two for each order of excitation added, and 95% of the

correlation energy is not typically reached for small di- and triatomics at their equilibrium

geometries until triple excitations are included.12 In general, double excitations contribute

the most to the correlation energy, but numerous, small magnitude excitations higher than
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doubles are needed for quantitative accuracy. Despite this need for higher excitations,

many determinants at each excitation order end up being relatively unimportant in the exact

FCI wave function. Put another way, CI wave functions are usually very sparse when all

excitations of each given order are included.

An elegant improvement to CI methods is to replace the linear wave function ansatz

with an exponential representation as is done in coupled cluster theory (CC),16, 17

|ΨCC〉= eT̂ |Φ0〉 , (1.17)

where T̂ is the cluster operator and is composed of n-orbital excitation operators up to order

k,

T̂ =
k

∑
n=1

T̂n. (1.18)

We can write a general n-orbital excitation operator as,

T̂n =
1

(n!)2 ∑ tab...
i j... â†

aâ†
b . . . â jâi, (1.19)

where a,b, . . . index virtual orbitals, i, j, . . . index occupied orbitals, and tab...
i j... are the clus-

ter amplitudes determined by projection of a manifold of excited determinants, |Φab...
i j... 〉 =

â†
aâ†

b . . . â jâi |Φ0〉, onto the Schrödinger equation,

〈Φab...
i j... | ĤeT̂ |Φ0〉= E 〈Φab...

i j... |eT̂ |Φ0〉 . (1.20)

If the cluster operator includes all n-orbital excitations, then the theory is formally

equivalent to FCI. Similar to CI methods, we can manage the size of the coupled cluster

wave function representation, and thus the cost to solve the CC equations, by truncating the

cluster operator to a given rank. For example, we can represent the CCSD wave function

in a way analogous to the CISD wave function,

|ΨCCSD〉= exp(∑
pq

ta
i â†

aâi + ∑
abi j

tab
i j â†

aâ†
bâ jâi) |Φ0〉 . (1.21)

The exponentiation of the excitation operators produces not only single and double excita-
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tions, but also products of these excitation operators called the disconnected contributions

to the wave function.16, 17 These disconnected excitations differentiate the CC wave func-

tion from a CI wave function with the same orders of excitation included, and they are

responsible for the multiplicative separability of the CC wave function not possible in the

case of CI. Therefore, if a size consistent reference is used, then the CC method is size

consistent. Analysis of the coupled cluster equations, which we will not do here but is

summarized nicely in ref. 16, reveals that the CC method is also size extensive. Beyond

these formal properties, CCSD generally outperforms CISD, even though both methods

are parameterized by the same number of variables.12 Finally, the CCSD method can be

corrected perturbatively for triple excitations in a method denoted CCSD(T), which is con-

sidered the “gold standard” of quantum chemistry due to its high accuracy and moderate

cost.18–20

1.3 Multireference Methods

While both CI and CC approaches can systematically approach the FCI limit where all

correlation is recovered, static correlation is typically not recovered adequately until im-

practically high excitation operators (at least quadruples) are included. Correspondingly,

single-reference methods truncated to only doubles will rarely be accurate for computa-

tions involving strongly correlated electrons. As an example, Figure 1.1 shows the square

of the expansion coefficients computed with FCI and CISD for the nitrogen dimer near

equilibrium and at dissociation. This computation used the STO-3G basis set, and the set

of orbitals used to construct the correlated wave functions come only from the three π

bonding and three π∗ anti-bonding orbitals from a restricted Hartree–Fock reference. Near

equilibrium, the Hartree–Fock reference is clearly dominant in the FCI wave function, with

the squared magnitudes for excited determinants falling off rather quickly compared to the

coefficient of the Hartree–Fock determinant. This distribution of coefficients indicates that

the Hartree–Fock reference is a reasonable approximation to FCI, and a single-reference



CHAPTER 1. INTRODUCTION 12

0 50 100 150 200
DeterminDnt Index (I)

10
−12

10
−9

10
−6

10
−3

10
0

|C
I|2

0 50 100 150 200
DeterminDnt Index (I)

10
−12

10
−9

10
−6

10
−3

10
0

|C
I|2

r = 1.1 Å r = 3.0 Å

CISD

CISD

FCI

FCI

Figure 1.1: Squared magnitude of CI expansion coefficients computed from FCI and CISD
wave functions. Determinants are ordered based on magnitude in the FCI expansion, and
determinants with squared coefficient less than 10−12 are not shown.

method is appropriate. Indeed, we see that CISD does fairly well in capturing the most

important determinants, though we can see it still ignores some minorly important deter-

minants and includes numerous determinants with near-zero weight.

Upon dissociation, the FCI wave function looks quite different. Most notably is that the

Hartree–Fock reference has a small squared coefficient (≈ 0.2) and is one of eight determi-

nants that capture most of the wave function. In this case, Hartree–Fock alone qualitatively

fails to describe the ground state, and a single-reference method is bound to fail. As we can

see, the CISD wave function ignores several of the most important determinants, namely

the single and double excitations from those determinants with similar coefficient to the

reference. The errors in the CISD wave function in this strongly-correlated system are also

seen in the total energy, where the error with respect to FCI is 0.35 Eh, an incredibly high

amount, compared to the more reasonable 8 mEh error produced at equilibrium. Clearly,

single-reference methods fail to treat strong correlation primarily due to the qualitatively

incorrect region of Hilbert space they tend to span.

To begin building a theory capable of treating strong correlation, a fairly fundamental

shift in perspective is necessary. The notion of occupied and virtual orbitals in a Hartree–

Fock reference is no longer pertinent because multireference theories need to always con-

sider multiple reference occupations in an unbiased way. Instead, a reference state is typ-
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ically defined by partitioning the orbitals into three sets: core (C), active (A), and virtual

(V). The core orbitals are occupied in all reference determinants, the virtual orbitals are

always unoccupied, and the active orbitals are allowed variable occupation. This partition-

ing defines a reference wave function in what is commonly called a genuine multireference

method, where an active space is used to define and treat strong correlation, and the dy-

namical correlation is computed by coupling this space with core and virtual orbitals.

1.3.1 Active Space Treatments

A multireference approach is defined usually from two theories, one specialized for

each type of correlation. The most common treatment for the active orbitals is simply

FCI, particularly since the number of orbitals and electrons in many applications are man-

ageable. This procedure is also called complete active space CI (CASCI) since it exactly

recovers correlation in the active space. CASCI is commonly combined with orbital op-

timization such that the active orbitals are optimized along with the CI coefficients in an

approach called CASSCF.21–23 Since the static correlation is solved usually with CASSCF

or CASCI, the number of active orbitals (NA) and active electrons (Ne) are typically limited

to CAS(16,16), where we adopt the conventional notation of CAS(Ne,NA) to define active

space dimensions.

Chemists are interested in molecular processes where the strong correlation can man-

ifest CAS spaces larger than CAS(16,16), for example, in biologically relevant transition-

metal catalysts and large, conjugated organic chromophores.24–26 To enable studies uti-

lizing active spaces larger than the conventional CAS(16,16) limit, approximate CASCI

theories that do not rely on a single-reference ansatz are needed. The simplest approximate

CASCI theory is realized by further partitioning the active space into smaller subspaces,

and restricting the occupations within each subspace.12 The first method of this type is

the restricted active space method (RAS), which adds two orbital spaces around the active

space and only allows single and double excitations into and out of these auxillary spaces.
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The RAS concept was generalized to an arbitrary number of active space partitions with any

user-defined set of occupation rules in both the occupation-restricted-multiple-active-space

(ORMAS)27 and generalized active space (GAS)28, 29 methods. Though these methods do

enable large active space computations, the selection of active space partitioning schemes

is neither straightforward nor intuitive, where changing a partitioning scheme to include

more determinants does not guarantee a more accurate reference.30 Development of ap-

proximate CAS techniques is an active area of research and is one of the main components

of this thesis.

The Density Matrix Renormalization Group

The most commonly used approximate CAS method is an algorithm called the density

matrix renormalization group (DMRG), and it achieves a compact representation of CASCI

wave functions using a nonlinear matrix product state ansatz.31–34 Consider a FCI wave

function written in terms of a FCI coefficent tensor, Cn1n2...nk ,

|ΨFCI〉= ∑
{n}

Cn1n2...nk |n1n2 . . .nk〉 , (1.22)

where we have represented a Slater determinant in terms of the occupations (ni) of all

orbitals (i), and the sum is over all possible combinations of occupations. For a given

orbital, four possible occupations exist (ni ∈ {|0〉 , |α〉 , |β 〉 , |αβ 〉}). This tensor contains

exactly the same information as the FCI expansion coefficients; only their organization is

changed from a vector indexed by determinant number to a multidimensional array indexed

by each orbital and its possible occupations. As such, the FCI tensor has a dimension of 4k,

and becomes intractably large already for about 14-15 orbitals. The approach of DMRG is

to factorize this tensor into a series of products,

|ΨDMRG〉= ∑An1
a1

An2
a1,a2

An3
a2,a3

. . .Ank
ak−1
|n1n2 . . .nk〉 , (1.23)

where each rank-3 site tensor Ani
ai−1,ai represents an orbital i with associated virtual bond

dimension ai, and has a dimension 4× ai−1× ai. The first and last site tensors are ma-
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trices with only one bond dimension so that contraction of all tensors for a given set of

occupations ni yields the expansion coefficient for a given determinant. For simplicity,

the virtual bond dimension at all sites is truncated to M, which is defined by the user and

allows DMRG computations to be systematically improved. For the case of M = 1, the

decomposition of the FCI tensor is approximated as a simple product of vectors containing

one coefficient for each occupation, and thus does not correlate the occupations of different

sites (no entanglement). As M is increased, correlation is introduced between sites up to

an arbitrarily high accuracy. The most clever aspect of the MPS wave function is exactly

this feature, where complexity of the wave function can be smoothly introduced without

assuming any element sparsity of the FCI vector.

Practically, the DMRG algorithm variationally optimizes the MPS wave function by

sweeping through each site and minimizing the total energy by varying elements in the site

tensor one at a time. Moreover, each orbital site is optimized individually with respect to

all other orbital sites at every iteration in the sweep algorithm, resembling the SCF proce-

dure in Hartree–Fock theory. The contraction of two neighboring sites directly correlates

their occupations, and correlations beyond the neighboring site are thus accounted for in-

directly. As a result, the DMRG method is extremely well-suited to treat local correlation

in one dimension, present in most strongly correlated linear systems. Perhaps the biggest

drawback of DMRG is that it accordingly cannot treat correlation as efficiently when it

spans more than one dimension. This problem is related to the fact that the site tensors in

the wave function need to be local and have a canonical ordering. Ordering the orbitals in

such a way as to maximize correlation between sites is a significant challenge—an NP-hard

problem—that in general limits the applicability of DMRG to near one-dimensional sys-

tems.34–36 Nonetheless, the DMRG has seen a lot of success in enabling large active space

computations using over 50 orbitals in complex applications,25, 37, 38 and it has also been

coupled with orbital-optimization schemes to yield accurate approximations to CASSCF

wave functions.34, 38, 39
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FCI Quantum Monte Carlo

Another approach to approximate a CASCI wave function is to stochastically solve

the Schrödinger equation within an active space. Quantum Monte Carlo (QMC) methods

achieve this by stochastically integrating the imaginary time-dependent Schrödinger equa-

tion,
∂Ψ

∂τ
=−ĤΨ, (1.24)

which is achieved by propagating a initial state, usually a Hartree–Fock reference, to the

infinite imaginary time limit,

|Ψ〉= lim
τ→∞

e−τ(Ĥ−E0) |Φ0〉 , (1.25)

where E0 is the exact ground state energy. Stochastic approaches are particularly useful in

this context because they are able to sample the imaginary time propagator very efficiently

with straightforward implementations on parallel architectures.40–46 Of numerous mani-

festations of QMC methods, FCIQMC is especially well-suited in approximating CASCI

because it operates in a basis of orthogonal Slater determinants and as a result does not suf-

fer from the fermionic sign problem, which causes artificial propagation to bosonic states

and plagues other QMC variants.47–53

The FCIQMC algorithm uses the dynamics of walkers to approximate the FCI wave

function. The walkers are signed and populate a set of Slater determinants, and the sum

of the walkers on a given determinant weighted by their sign is directly proportional to

the CI expansion coefficient for that determinant in the FCIQMC wave function. At each

imaginary time step, a walker can spawn a new determinant with a probability related to

the Hamiltonian matrix element between the new determinant and the parent determinant.

If this probability is greater than a randomly selected threshold between 0 and 1, then the

new walker is spawned. Similarly, walkers on determinants can be annihilated in a stochas-

tic process to prevent determinants with low importance from persisting in the simulation.

More details on the algorithm are presented in reference 47. FCIQMC has been success-
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fully applied to molecules using CAS(24,24) active spaces including orbital optimization,

in addition to being applied to excited states.47–55 While the stochastic nature of FCIQMC

allows for efficient implementations, it makes the method susceptible to random noise in

converging the wave function and the energy. The FCIQMC algorithm can also be sus-

ceptible to convergence issues, particularly for studying near-degenerate states of the same

symmetry.

The Variational Reduced Density Matrix Method

An interesting alternative to the wave function-based CASCI approximations we have

discussed is the variational two-particle reduced density matrix method (v-2RDM), which

does not use a wave function at all.56–59 To avoid the exponential scaling of the exact

solution, v-2RDM seeks to directly compute the 2-particle reduced density matrix,

γ
pq
rs = 〈Ψ| â†

pâ†
qâsâr |Ψ〉 , (1.26)

for active orbital indicies p,q,r,s and a general wave function Ψ composed of determinants

defined by active orbital occupations.60–62 The total energy can be written in terms of the

one- and two-particle RDMs, so the strategy of the v-2RDM method is to treat elements

of the RDMs as the variational parameters rather than the exponentially-many parameters

in the wave function. The number of variational parameters in the 2-RDM scales only as

roughly the fourth power of the number of active orbitals, making its direct optimization a

very attractive option.

Unfortunately, this approach is not without its complications. Left to freely optimize,

the RDMs can produce artificially low energies because they may not correspond to an-

tisymmetric N-electron wave functions and would thus be unphysical. In this case, the

RDMs are not N-representable. As a result, the v-2RDM method is defined by a variational

optimization of the RDMs subject to a series of constraints, so-called N-representability

conditions, that approximately ensure that the RDMs map to a physical wave function.

Along with constraints that conserve the symmetry, total spin, and number of active elec-
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trons, the RDMs are constrained to meet a set of p-positivity conditions, where unique spin

components of the 2-particle, 2-hole, and particle-hole RDMs are required to be positive

semidefinite. Practically, this optimization is achieved using the technique of semidefinite

programming, causing an overall scaling of approximately the sixth power of the number

of active orbitals. More accurate results can be obtained by applying constraints to higher-

order RDMs.

Recently, the v-2RDM method has shown promise in large active space computations,

and it has been combined with orbital optimization63 and a density functional theory-based

treatment of dynamical correlation.64 It was applied to the polyacene series, requiring up

to a CAS(50,50), and is very well-suited to study strong correlation in the ground states of

molecules.26, 62 Unfortunately, extension of this theory to electronic excited states is very

complicated, relying either on linear response approaches or on the derivation of active

space and state-specific representability conditions.

1.3.2 Multireference Methods for Dynamical Correlation

Multireference methods use specialized techniques to separately treat static and dy-

namical correlation, which in combination recover the total correlation. As mentioned, this

separation is realized by partitioning orbitals into an active set and a combined set of core

and virtual orbitals. A multideterminantal reference wave function, |Ψ0〉 is then computed

either exactly or with one of the approximate methods discussed previously, and it is cor-

rected with a theory of dynamical correlation. The dynamical correlation contribution can

be written generally as a wave operator, Ω̂, which is applied to the reference to yield a

totally correlated wave function,

|Ψ〉= Ω̂ |Ψ0〉 . (1.27)

The function of the wave operator is to couple the reference wave function with determi-

nants containing core-active, core-virtual, and active-virtual excitations. By using various

forms of the wave operator, multireference versions of single-reference theories can be
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developed.

Perhaps the simplest formulation of the wave operator is a sum of quantized opera-

tors that generate an explicit set of Slater determinants involving all single and double

excitations among core, active, and virtual spaces. This formulation, called MR-CISD,

corresponds to CISD generalized for a multideterminantal reference.11 MR-CISD provides

a protocol to produce a determinantal basis for diagonalizing the Hamiltonian that does not

rely on defining a Hartree–Fock reference and is thus well-suited for problems in strong

correlation. MR-CISD wave functions tend to be very large, and even with efficiency tricks

like internal contraction,65, 66 can only be applied to relatively small molecules. Also, is-

sues with size-consistency are still present, requiring a posteriori corrections. Nonetheless,

MR-CISD is extremely useful in computing potential energy surfaces and thermodynamics

of chemical systems involving less than ten atoms, in addition to producing benchmark

photochemical data for the excited states of similarly small molecules.11, 67

Drawing from its superior performance in single-reference contexts, an attractive alter-

native to MR-CISD is a mutlireference generalization of coupled cluster theory (MRCC).5, 10

The main challenge in developing MRCC methods is in formulating an affordable theory

that conserves properties of size consistency and extensivity. This challenge is further com-

plicated by the lack of a single ansatz for parameterizing the wave function. Specifically,

one can choose to apply the exponentiated cluster operator to a multideterminantal refer-

ence, i.e. Ω̂ = eT̂ in equation 1.27, to produce an internally-contracted MRCC wave func-

tion (ic-MRCC).68–70 Alternatively, individual exponentiated cluster operators can be ap-

plied to each determinant in the reference space to produce essentially a linear combination

of single reference coupled cluster wave functions, known as the Jeziorski–Monkhorst (JM)

ansatz.71 Because excitations of different reference determinants can produce the same ex-

cited determinant, the JM ansatz suffers from a redundancy of parameters that limits its

application to only small active spaces. In cases where small active spaces are appropriate,

a particular state-specific, numerically stable formulation of JM MRCC by Mukherjee et al.
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(Mk-MRCC) has provided valuable benchmark data for systems as large as naphthalene-

based diradicals.72–74 To access larger active spaces, the more tractable ic-MRCC approach

is required. In addition to being practically very complex (routine applications can easily

lead to equations with over 100,000 terms), ic-MRCC suffers from numerical instabili-

ties associated with linearly-dependent excitations associated with all internally contracted

theories. Both MRCC formulations have their complications and relatively high costs but

remain among the most accurate multireference theories available.69, 75

Due to its reduced cost compared to MRCI and MRCC methods, multireference per-

turbation theories (MRPT) are the most commonly used multireference methods in general

applications.76–78 The general approach in MRPT is to define a zeroth-order Hamilto-

nian, Ĥ0 solved exactly using a multideterminantal reference, and a perturbation defined

as V = Ĥ − Ĥ(0). For example, using a CAS reference Ψ0 one can derive a simple un-

contracted Epstein–Nesbet MRPT energy expression by defining the zeroth Hamiltonian

as,

H(0) = ∑
ΦI ,ΦJ∈Ψ0

Ĥ |ΦI〉〈ΦJ| , (1.28)

where ΦI is a determinant in the reference wave function, and defining the perturbation

V as the part of the FCI Hamiltonian that couples the reference wave function to its first

order interacting space, F . We can then write expressions for the first-order correction to

the wave function and the second-order correction to the energy, respectively, as

|Ψ(1)〉= ∑
ΦK∈F

〈ΦK| Ĥ |Ψ0〉
〈Ψ0| Ĥ |Ψ0〉−〈ΦK| Ĥ |ΦK〉

|ΦK〉 (1.29)

E(2) = ∑
ΦK∈F

| 〈ΦK| Ĥ |Ψ0〉 |2
〈Ψ0| Ĥ |Ψ0〉−〈ΦK| Ĥ |ΦK〉

, (1.30)

which are much simpler to compute than corresponding quantities from MRCI or MRCC

methods. More common MRPT methods including CASPT279–81 and the N-electron va-

lence state perturbation theory (NEVPT2) are formulated in a similar way, but using dif-

ferent definitions of the zeroth-order Hamiltonian.82 For example, CASPT2 uses a mul-
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tireference generalization of the Fock operator as a zeroth-order Hamiltonian, so that the

theory behaves like Moller–Plesset perturbation theory in the single-determinant limit.

NEVPT2 takes a similar approach, but uses a zeroth-order Dyall Hamiltonian. CASPT2

and NEVPT2 thus use perturbing determinants that are no longer orthogonal, and a costly

diagonalization of the 3-body cumulant is required. Furthermore, evaluation of the energy

of the excited determinants in CASPT2 an NEVPT2 requires the 4-RDM, a quantity with an

associated scaling O(N8
A) for NA active orbitals, which results in an overall computational

scaling of O(N9
A).

The requirement of the reference 4-RDM has a large impact on the scope of MRPT2

methods. Namely, this requirement limits the size of the active space in a computation to

about 25 orbitals, despite the treatment of many core and virtual orbitals being possible.

Approximating the the 4-RDM using products of lower-order RDMS can significantly re-

duce this bottleneck, but not without introducing uncontrollable and potentially significant

errors.83–85

Aside from cost considerations, the most troubling issue plaguing both MRPT and in-

ternally contracted MRCC methods is the so-called intruder state problem. The intruder

state problem occurs in perturbation theories when excitations outside of the reference be-

come energetically degenerate or near-degenerate with the reference state itself, and they

cause incurable problems with convergence in MRCC in the form of multiple solutions.5

This problem is best understood from the perspective of MRPT, specifically in equations

1.29 - 1.30, where intruders occur when the energy of an excited determinant, ΦK , is nearly

equal to the reference energy, causing the denominators to go to zero and the correspond-

ing contributions to the energy and wave function to be unphysically large. In the case of

MRPT2, this problem can be partially ameliorated by modifying the zeroth-order Hamil-

tonian or by shifting the denominator by an arbitrary value.86 For MRCC, however, these

instabilities largely remain an unsolved problem.
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1.3.3 The Driven Similarity Renormalization Group

Finding a solution to the intruder state problem has been one of the major thrusts of

our research group. In the final part of this chapter, we will give a basic overview of our

intruder-free strategy for dynamical correlation, the driven similarity renormalization group

(DSRG), and we will provide more explicit details relevant to this work in Chapter 4.

The DSRG is based on the SRG method of Glazek and Wilson87, 88 and Wegner,89, 90

which is defined by a continuous unitary transformation to bring a bare Hamiltonian, Ĥ, to

a block diagonal form.91 A time-like parameter, s, called the flow parameter, controls the

continuous transformation to produce the SRG Hamiltonian, H̄(s),

H̄(s) = Û(s)ĤÛ(s)†, (1.31)

where H̄(0) = Ĥ and H̄(∞) is fully block-diagonalized. This transformation decouples

the reference space from its excited configurations to produce an effective Hamiltonian,

defined as the subset of H̄ corresponding to the reference space. As a result, the correlation

effects of the decoupled excitations are folded into the effective Hamiltonian, which can

be diagonalized to produce ground and excited state wave functions. Moreover, if the

reference space is chosen to capture all static correlation effects, then one can think of

the continuous block diagonalization as a way to progressively fold dynamical correlation

effects into the computation of a multideterminantal reference.

Our main purpose with the SRG, and by extension the DSRG, is to perform this block

diagonalization to a finite value of s such that the individual excitations responsible for the

intruders and instabilities are not included in constructing the effective Hamiltonian.91 The

evolution of the SRG Hamiltonian is governed by a differential equation,

∂ H̄(s)
∂ s

= [η(s), H̄(s)], (1.32)

where the flow generator, η(s) = ∂Û(s)
∂ s Û†, is anti-Hermitian and is usually defined in terms
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of the diagonal [H̄(s)d] and off-diagonal [H̄(s)od] parts of the SRG Hamiltonian,89

η(s) = [H̄(s)d, H̄(s)od]. (1.33)

The SRG equations can be solved by numerically integrating equation 1.32 while updating

η(s) with equation 1.33. Approximate solutions can be obtained at a significantly reduced

cost by only retaining the 1- and 2-body interactions resultant from equations 1.32 and

1.33, and additionally a perturbative analysis of these equations is also possible. For a

single-determinantal reference, we can write the second order perturbative SRG energy

correction, E(2)(s),

E(2)(s) =
1
4

occ

∑
i j

vir

∑
ab

| 〈i j| |ab〉 |2
∆

i j
ab

(
1− e−2s(∆i j

ab)
2
)
, (1.34)

where we again write the two-electron integrals in physicist’s notation and introduce the

Moller–Plesset denominator, ∆
i j
ab = εi + ε j− εa− εb, written in terms of orbital energies.

Equation 1.34 can be viewed as the standard second-order Moller–Plesset perturbative en-

ergy correction (MP2) with a multiplicative regularization term dependent on s. While

vanishing denominators (∆i j
ab→ 0) usually destroy the numerical stability of PT2 theories,

we see that the SRG elegantly suppresses these unphysically large contributions.

We have seen that the SRG is capable of providing numerical stability in formulating

a theory of dynamical correlation. However, its general application requires the solution

of complicated ordinary differential equations which can introduce numerical instabilities

themselves. The DSRG improves upon the SRG by recasting the differential equation

in terms of coupled polynomial equations.91, 92 The unitary transformation that block-

diagonalizes the Hamiltonian is written in terms of unitary exponential operators,

H̄(s) = e−Â(s)ĤeÂ(s), (1.35)

where Â(s) is an n-particle rank operator written in terms of cluster operators, Â(s) =

∑
n
k=1 T̂k(s)− T̂ †

k (s). To drive the transformation, we equate the off diagonal block of the
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DSRG Hamiltonian (labeled “od”) to a yet undetermined source operator, R̂(s),

[H̄(s)]od = [−Â(s)ĤeÂ(s)]od = R̂(s). (1.36)

At s = 0, the source operator must leave the bare Hamiltonian unchanged, R̂(0) = [Ĥ]od,

and it must completely block diagonalize it as s approaches infinity, R̂(∞) = 0. To build

the DSRG many-body conditions, Â(s) is truncated to contain only one- and two- body

operators, and R̂(s) is defined to match the SRG flow equation to second order.91–93

The DSRG allows us to build an effective Hamiltonian for a fixed value of s without

numerical integration. By using different truncations to Â(s) and various approximations

to the evaluation of the exponential transformation of the bare Hamiltonian, a hierarchy of

intruder-free perturbative and nonperturbative multireference methods can be derived. In

any DSRG variant, the ground state energy can be computed by taking the expectation value

of the effective Hamiltonian, E(s) = 〈Ψ0| H̄(s) |Ψ0)〉, or by rediagonalizing the effective

Hamiltonian in the reference space. The former approach is denoted the unrelaxed energy,

and the latter approach is the relaxed energy since the reference wave function is allowed

to relax in response to the dynamical correlation treatment.

With a carefully chosen value of s, the DSRG is able to recover dynamical correlation

effects without exposing the computation to intruder states. The strong correlation effects

are captured in the reference wave function, usually computed with CASSCF, CASCI,

or an approximate version of either method. In connecting the reference to the DSRG,

RDMs appear in the energy and amplitude expressions, similar to previously discussed

multireference theories. Unlike CASPT2 and NEVPT2 which require the 4-RDM, the

DSRG only requires up to the 3-RDM and enables the use of reference wave functions

that span large active orbital spaces unfeasible with similar many-body theories. The large

active spaces accessible to the DSRG also require approximations to the CASCI wave

function, like those previously discussed.
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1.4 Selected Configuration Interaction

In the previous section, we provided a broad overview of current available multirefer-

ence methods. As discussed, a major challenge in developing multiereference theories is to

enable the use of large active spaces by formulating new approximations both in computing

active space wave functions and in the dynamical correlation treatment. One of the central

topics of this dissertation is the development and application of a new approximate CASCI

technique designed for large active spaces. This method, called the Adaptive CI (ACI) is

built upon decades of previous research in a class of wave function-based theories called

selected configuration interaction (sCI). In the remainder of this chapter, we will give some

historical perspective and current review of sCI methods, and finish with an outline of the

remainder of this dissertation.

The conventional CI approach is to build a model space of determinants by consid-

ering all excitations of a preselected order, i.e. all singles, doubles, etc. with respect to

a Hartree–Fock reference. This approach, as we saw in Figure 1.1, is inefficient in the

weakly correlated regime and qualitatively wrong when strongly correlated electrons are

present. Selected CI methods take an alternative approach in truncating the FCI wave

function, whereby determinants are included in the model space based on a well-defined,

determinant-specific importance criterion. In addition to a selection criterion, sCI meth-

ods are also defined by a screening algorithm that samples Hilbert space so that the most

important determinants in the FCI wave function are considered for selection. Though chal-

lenging to efficiently formulate, a good sCI method can be an extremely powerful tool for

exploiting sparsity in a FCI wave function regardless of the degree of static or dynamical

correlation present. Early sCI techniques were designed to recover the total correlation en-

ergy in small molecules, while more recent versions of the theory use it to replace CASCI

in computing reference wave functions for multireference computations.
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1.4.1 Early Selected CI Methods

To our knowledge, the first published method that fits our sCI definition was done in

1952 by Bernal and Boys,94 where they used second-order perturbative energy estimates,

ε(ΦI),

ε(ΦI) =

∣∣∣∣∣
∣∣〈Φ0| Ĥ |ΦI〉

∣∣2
E0−EI

∣∣∣∣∣ , (1.37)

based on a Hartree–Fock reference, Φ0, to determine if an excited determinant, ΦI , should

be included in a CI expansion. This procedure was used to study Na+, Li, and F− atoms,

and they were able to use a 5s4p1d STO basis and a CI wave function with 17 configu-

rations, representing one of the largest variational computations done at the time. Their

method produces an extremely truncated CISD wave function, and was one of the only

viable ways to build a configuration space without hand-picking determinants based on

chemical intuition. This idea of determinant selection by perturbative estimates was used

soon after in a similar context to reduce the cost of conventional CISD,95–99 but it was not

until a 1969 study by Whitten and Hackmeyer where a more rigorous selection algorithm

was combined with a determinant-based criterion.100 In their method, they begin with a

small set of reference determinants, {Φ(1)
k }, that describe one or more electronic state, and

augment the reference with determinants from the FOIS, ΦI , with a perturbative energy

correction,

ε(ΦI) =

∣∣∣∣∣∣∣
∣∣∣〈Φ(1)

J | Ĥ |ΦI〉
∣∣∣2

E j−EI

∣∣∣∣∣∣∣ (1.38)

above a user-specified threshold for at least one ΦJ ∈ {Φ(1)
k }. The Hamiltonian is diago-

nalized in this space, and a user-defined number of the energetically lowest roots are used

to define a new reference. The screening process is then repeated once more using this

updated reference. The first iteration of this method corresponds to a kind of selected MR-

CISD, but the second iteration allows for possibly higher excitations to be included.

Soon after this work of Whitten and Hackmeyer, some of the most well-known sCI
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methods were introduced which still find applications today. Improving upon the method

of Whitten and Hackmeyer, Huron, Malrieu, and Rancurel introduced a new sCI method

in 1973 called configuration interaction by perturbation with multiconfigurational zeroth

order wave function selected by iterative process (CIPSI).101 CIPSI starts with a reference

wave function, usually a single Hartree–Fock determinant, which is perturbed to first order,

producing a set of singly and doubly excited determinants with perturbatively determined

coefficients. The excited determinants whose first-order contribution to the wave function

is greater than a threshold η are added to the reference, and the Hamiltonian is diagonalized

in this updated basis to produce a new reference. This procedure is iterated until the updated

references stabilize, or until they become prohibitively large. CIPSI was initially used to

generate a zeroth-order reference wave function for a larger perturbative treatment, but it

has since evolved into the “grandparent” of all sCI methods, where any new sCI theory

can be reasonably defined as a modified CIPSI variant. The key improvement that CIPSI

contributed is that it is iterative, and in principle does not converge until an appropriately

large amount of Hilbert space has been explored.

A year after CIPSI was introduced, Buenker and Peyerimhoff published an alternative

sCI method, called MRD-CI, which does not use perturbation theory to compute determi-

nant importance criteria.102, 103 The MRD-CI relies on the assumption that the most impor-

tant part of the wave function can be easily determined based on an analysis of molecular

orbital theory. Importance criteria for the excited determinants in the FOIS of the reference

are computed by solving numerous small secular equations involving the reference and

each excited determinant individually. Their importance criterion thus corresponds to the

energy lowering a given configuration contributes to the reference, and only determinants

whose lowering is greater than a threshold are included in the wave function. The MRD-CI

can be considered a selected MRCI method where the reference is not determined by an

active space but by hand. While these energy lowerings are more expensive to compute

than the perturbative estimates in CIPSI, they are useful in providing an accurate approxi-
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mation to the correlation energy not described in the final wave function. These accurately

computed energy lowerings are very valuable in reliably extrapolating the energy to the

zero-threshold limit.

Since these foundational sCI developments, the popularity of these methods has waned

with the emergence of efficient coupled cluster methods in quantum chemistry. Further-

more, sCI even lost favor in multireference cases since it is more expensive than the small-

CAS based methods we discussed previously, particularly in large basis sets. Motivated

by the need for near-FCI accuracy for benchmarking small chemical systems, a few devel-

opments in sCI did occur in the two decades following its initial emergence. CIPSI, for

example, underwent modifications to increase its flexibility in treating different classes of

determinants,104 in addition to improvements to the perturbative treatment of CIPSI refer-

ences.105 Starting with work by Knowles et al., a large effort was also put in to making

direct CI and diagonalization routines more efficient for sCI methods, where previously de-

veloped graphical and string-based methods in FCI had to be modified.13, 106–118 In 1991,

Harrison introduced a new sCI algorithm closely related to CIPSI, but which used second

order perturbative energy estimates rather than corrections to the wave function, possibly

leading to accurate energies but not guaranteeing accurate wave functions. This method,

called CI+PT, also uses configuration state functions rather than Slater determinants, so

that all CI wave functions built are guaranteed to be eigenfunctions of Ŝ2 without any

artificial modifications.119 Other interesting sCI developments include size-consistent for-

mulations120 and sCI methods tailored for the computation of excited states.121–123 A more

complete review of sCI methods in this era can be found in Ref 12.

1.4.2 Modern Selected CI

Over the past decade or so, sCI methods have been undergoing a revival inspired pri-

marily by the limitations in CASCI. To specify, CASCI requires the user to identify a set

of active orbitals responsible for strong correlation, with the constraint that the number of
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active orbitals be small (≤ 16). Owing to its flexibility, sCI has emerged as a very attractive

alternative, either because it can partially lift this small active space constraint or remove

the CAS paradigm entirely.

Central to the renewed success of sCI methods has been the improved efficiency of de-

terminant screening, which is required to rigorously sample the FCI wave function. One

interesting approach that has received renewed attention is to, at each iteration, add a man-

ageable number of randomly generated excited determinants to a reference, diagonalize the

Hamiltonian in this basis, and define a new reference using a subset of the wave function

with the largest coefficients. This method, called Monte Carlo Configuration Interaction

(MCCI), takes advantage of an efficient, easily parallelized Monte Carlo algorithm that

does not require computation of determinant-specific importance criteria.124–131 Other in-

teresting screening algorithms use new concepts of compressed sensing usually applied in

signal processing, where the sCI wave function is formulated as a functional minimiza-

tion of the energy and a penalty function that controls sparsity.132, 133 A number of new

sCI methods have appeared recently that use similar algorithms to CIPSI, but with some

modifications to the selection criterion.134–139

The combination of sCI wave functions with perturbation theory was done with the in-

troduction of CIPSI, and most sCI methods do provide a means of approximating the corre-

lation energy ignored from unselected determinants. This methodological structure, usually

called sCI+PT, allows any strong correlation and a portion of dynamical correlation effects

to be described rigorously by a CI wave functions, and any remaining correlations can be

described more affordably. With the high cost and low flexibility of CASCI, sCI+PT seems

like a very attractive option for diverse chemical systems so long as the total FCI wave func-

tion is well sampled by the sCI and PT algorithms. Again, the use of stochastic approaches

has been very useful in this context. Recently, a new implementation of CIPSI has been

used to produce a reliable nodal structure for diffusion Monte Carlo,41, 46, 140, 141 enabling

accurate computations of metal-containing compounds using large basis sets.142, 143
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One of the most promising sCI+PT methods is the heat-bath CI (HBCI) method devel-

oped by Holmes, Umrigar, Sharma, and coworkers.144–146 HBCI uses the observation that

screening the double excitations from the reference is frequently the computational bottle-

neck in sCI variants of CIPSI, and it addresses this bottleneck with two changes to CIPSI.

The first is in the determinant importance criteria (ε(ΦI)), which they take to be just part

of the numerator in the amplitude expression of CIPSI,

ε(ΦI) = max
ΦJ∈Ψ0

| 〈ΦI| Ĥ |ΦJ〉cJ|, (1.39)

where ΦJ is a determinant in the reference with expansion coefficient cJ . This criteria is

very efficient to compute since it does not require computation of the energy for external

determinants, and they show it behaves similarly to the full amplitude expression. Rather

than checking this criteria for all double excitations, HBCI sorts the two-electron integrals

and only generates an excited determinant for cases where 〈ΦI| Ĥ |ΦJ〉 is known to be rela-

tively large beforehand. This presorting is not too computationally demanding, and it leads

to a sCI algorithm that screens determinants with near-perfect efficiency, in that it does

not waste very much time in generating determinants that will not end up in the updated

reference. In addition to this efficient sCI algorithm, HBCI has been combined with de-

terministic, stochastic, and semistochastic perturbative treatments to in principle recover

static and dynamical correlation.145, 147, 148 Due to these algorithmic improvements, HBCI

with perturbative corrections is able to treat up to 30 electrons in about 100 orbitals,149 and

it has been applied to the ground state of transition metal-containing compounds using a

CAS(28,22).145

While various manifestations of sCI+PT can produce near FCI accuracy for a wide

range of chemical systems, many interesting cases containing strongly correlated electrons

are still out of reach. For example, to study correlation effects in heptacene using a triple-

zeta basis set would require treatment of 138 electrons in over 1000 orbitals, too large for

any sCI+PT algorithm. As a result, the approach of genuine multireference methods, which



CHAPTER 1. INTRODUCTION 31

requires partitioning orbitals into core, virtual, and active sets, is required. In this context,

sCI can be used to access active spaces much larger than the CAS(16,16) limit imposed

for CASCI. In this spirit, many sCI methods report results using the CAS(Ne, Na) notation,

and Smith et al. has reported a HBCI extension which incorporates orbital optimization

analogous to an approximate CASSCF.150 While approximating CASSCF and CASCI is

an often-cited goal and motivation for the development of new sCI methods, the only re-

ported example where an sCI method was coupled to a many-body dynamical correlation

treatment spanning a different (inactive) set of orbitals was performed by us,151 and is topic

of Chapter 4. The lack of published work in this area is somewhat surprising given the suc-

cess of other approximate CAS methods, namely DMRG, in this context.39, 64, 85, 152–155

Connecting large CAS sCI methods to theories of dynamical correlation has its challenges,

but it represents one of the few viable options to treat strong and dynamical correlation in

large molecules and will accordingly see much more development in the future.

1.5 Prospectus

In chapter 2, we introduce our new sCI method called the Adaptive CI (ACI), which

provides a flexible CI expansion whose energy error can be reliably predetermined by the

user. We apply this method to the dissociation of molecular nitrogen and to the singlet-

triplet splittings of the oligoacene series, treating only the strongly correlation electrons in

the latter case. In chapter 3, we develop several algorithms to compute electronically ex-

cited states using the ACI with the goal of conserving the predictive energy properties for

any type of electronic state (doube-excitation, charge-transfer, etc.). We benchmark these

excited state algorithms on the lowest three singlet states of methylene and on the avoided

crossing in the dissociation of lithium fluoride. As a final test, we study the lowest four

singlets of increasingly large all-trans polyenes, comparing excitation energies to CASCI

values when possible. In chapter 4, we combine ACI with the second-order perturbative

version of the driven similarity renormalization group (ACI-DSRG-MRPT2). We use this
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method to revisit the oligoacene series, where the addition of dynamical correlation pro-

duces singlet-triplet splittings that agree well with experimental data. Furthermore, analysis

of the wave function shows that dynamical correlation effects reduce the predicted radical

character in the ground states. In chapter 5, we introduce some preliminary work on time

propagation of selected CI wave functions. We benchmark a new strategy to use single-

state and state-averaged ACI algorithms to build a determinantal basis for propagating a

cationic wave packet. This real-time dependent ACI is then applied to charge migration

resultant from ultrafast near-valence ionization. Specifically, we study charge migration

following ionization in the π/π∗ manifold in benzene and in the experimentally studied

iodoacetylene.
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Chapter 2

The Adaptive Configuration Interaction Method

2.1 Introduction

Most popular methods in electronic structure theory by some means attempt to exploit

the sparsity of full configuration interaction (FCI) wave functions.1 The exponential scaling

of the number of determinants with respect to the number of orbitals required for FCI cal-

culations prevents its use for all but trivially small systems, or for active space calculations

no larger than 18 electrons in 18 orbitals. Recently, wave function factorization techniques

such as the density matrix renormalization group,2–6 and stochastic CI approaches such as

Monte Carlo CI (MCCI)7–10 and FCI Quantum Monte Carlo (FCIQMC)11–14 have risen

as promising alternatives to FCI and complete active space CI (CASCI), allowing for the

description of chemically interesting systems.15, 16

In this study, we propose a new adaptive configuration interaction (ACI) method that

produces compact wave functions with tunable accuracy. The ACI is based on the frame-

work of selected CI,17–20 which recently has received renewed attention.21–30 It uses two

parameters to control the treatment of electron correlation. As will be shown, a remarkable

property of the ACI is its ability to compute electronic energies with almost perfect control

over the energy error. Additionally, we demonstrate that the ACI is a viable alternative

to traditional complete active space (CAS) methods by performing ACI computations on

active spaces that are outside the reach of CASCI.
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2.2 The Adaptive Configuration Interaction Method

Given a set of orthonormalized one-electron molecular orbitals, {φp}, the ACI requires

the user to specify the number of electrons, the spin multiplicity, and two orbital subsets:

doubly occupied orbitals and active orbitals. The latter are partially occupied in all deter-

minants generated by the ACI. The ACI procedure is illustrated in Fig. 2.1 and consists of

the following steps:

i) At each iteration k we define the space of reference determinants [P(k)]:

P(k) = {Φµ : µ = 1,2, . . . ,dk}, (2.1)

where dk is the dimension of the P(k) space. To this space, we associate the configura-

tion interaction wave function Ψ
(k)
P , defined as:

|Ψ(k)
P 〉=

dk

∑
µ=1

Cµ |Φµ〉 , (2.2)

where the coefficients Cµ are determined by diagonalizing the Hamiltonian in the

space P(k). In most cases, we begin the ACI process with an initial reference space,

P(0), that contains a single determinant, though a set of determinants can be used to

speed convergence.

ii) From the reference space P(k), all singly and doubly excited determinants are gener-

Primary space Model spaceFirst-order interacting space

Screen first-order
interacting space

Build first-order
interacting space

Coarse grain
model space

New primary space

F (k) = (S(k) ∪D(k)) \ P (k) M (k) = P (k) ∪Q(k)P (k) = {Φµ} P (k+1) = {Φµ}
Build first-order interacting space

σ γσ

Figure 2.1: Evolution of determinant spaces in the ACI algorithm. Each node represents a
determinant, and the edges represent coupling through the Hamiltonian between two nodes.
The edges are weighted by the magnitude of this coupling, and the nodes are weighted
proportionally to the square modulus of the determinant coefficient (|Cµ |2).
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ated. For a given P(k) space, we define the usual first-order interacting space (FOIS),

F(k), as the union of all unique singly [S(k)] and doubly [D(k)] excited determinants

out of the reference space:

F(k) = (S(k)∪D(k))\P(k). (2.3)

Denoting the occupied (virtual) orbitals of determinant Φµ ∈ P(k) as i, j, . . . (a,b, . . . ),

then S(k) and D(k) may be written compactly as S(k) = {â†
aâiΦµ : ∀Φµ ∈ P(k)} and

D(k) = {â†
aâ†

bâ jâiΦµ : ∀Φµ ∈ P(k)}.

iii) To each determinant in F(k) we associate an estimate of the energy contribution.

Following degeneracy-corrected perturbation theory,31 we consider the two-by-two

Hamiltonian for a determinant ΦI ∈ F(k) interacting with a the P-space wave function

Ψ
(k)
P :

H =

(
〈Ψ(k)

P | Ĥ |Ψ
(k)
P 〉 〈Ψ

(k)
P | Ĥ |ΦI〉

〈ΦI| Ĥ |Ψ(k)
P 〉 〈ΦI| Ĥ |ΦI〉

)
=

(
EP V
V ∗ EI

)
. (2.4)

Diagonalization of H yields two real eigenvalues (λ1,λ2, λ1 ≤ λ2), the lower of which

differs from the energy of Ψ
(k)
P (EP) by:

ε(ΦI) = λ1−EP =
∆

2
−
√

∆2

4
+ |V |2, (2.5)

where ∆ = EI−EP. Eq. (2.5) defines the energy importance criterion used in ACI to

screen the first-order interacting space.

iv) Using the energy importance criterion we define the secondary space Q(k), the set of

the most important determinants in F(k). To build Q(k), we use an aimed selection

scheme.32 Firstly, we sort the set F(k) in decreasing order according to |ε(ΦI)|, the

absolute value of the energy importance criterion. Secondly, starting from the deter-

minant with the lowest |ε(ΦI)|, we exclude all those elements of F(k) such that the

cumulative energy error is less than a user-specified threshold σ expressed in units of
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mEh:

∑
ΦI∈F(k)\Q(k)

|ε(ΦI)| ≤ σ . (2.6)

The determinants that are not discarded from F(k) form the set Q(k).

v) With the Q(k) space built, we can define the total model space at iteration k [M(k)] as

the union between the reference space and the secondary space:

M(k) = P(k)∪Q(k), (2.7)

and diagonalize the Hamiltonian in the space M(k) to obtain the model space wave

function:

|Ψ(k)
M 〉= ∑

ΦI∈M(k)

CI |ΦI〉 , (2.8)

and the associated energy E(k)
M . The model space energy may be corrected for the

contributions of the determinants excluded from the secondary space [ΦI ∈ F(k)\Q(k)]

using the second-order perturbative estimate:

E(k)
F ≈ E(k)

M + ∑
ΦI∈F(k)\Q(k)

ε(ΦI). (2.9)

In the limit of V that goes to zero, the contribution of a single determinant to the

second-order perturbative correction is approximately ε(ΦI) ≈ −|V |2/∆. Therefore,

Eq. (2.9) may be viewed as a state-specific second-order correction based on the

Epstein–Nesbet partitioning of the Hamiltonian.18

vi) Rather than directly augmenting the total model space as the iterations proceed, as is

traditionally done in selected CI methods, we coarse grain the space M(k) to form an

updated reference space P(k+1). Specifically, the M(k)-space determinants are sorted

according to the square of the CI coefficients (|CI|2) in decreasing order. Determinants

are progressively included in P(k+1) until the sum of the squared coefficients is less
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than 1− γσ , where γ is a constant that has units of (energy)−1:

∑
Φµ∈P(k+1)

|Cµ |2 < 1− γσ . (2.10)

vii) Steps i–vi are repeated until the energy of the M(k) space is converged. This conver-

gence of the energy coincides with the convergence of P(k) and M(k) with respect to

the determinants included.

ACI improves upon previous selected CI methods like CIPSI18 and CI+PT20 in a num-

ber of important ways. Firstly, the aimed selection procedure gives the user a priori control

over the absolute error in a computation. Additionally, the coarse-graining step (vi) in-

creases the efficiency of the selection process (analogous to the initiator approximation of

FCIQMC)12 and decreases the dependence on the starting wave function guess.

2.3 Numerical Tests and Applications

For all ACI calculations, the parameters σ and γ are directly related to the desired

energy accuracy. We found it convenient to assume a constant value of γ , and in this work

all results were obtained using γ = 1 mE−1
h . Accordingly, ACI results will be denoted as

ACI(σ ), while the ACI energy corrected for the determinant excluded from the secondary

space [Eq. (2.9)] will instead be indicated as ACI(σ )+PT2.

2.3.1 The Dissociation of N2

To illustrate the ability of ACI to determine molecular energies with nearly constant ac-

curacy along a potential energy surface, we examine the dissociation of N2. To maximize

efficiency, ACI works in the basis of Slater determinants rather than configuration state

functions. Consequently, P(k) and M(k) may not form spin complete sets. To bypass this

issue, in certain cases we have enforced spin completeness by appropriately augmenting

P(k) and M(k). In practice, correcting for spin incompleteness is only necessary to describe

near-degenerate states of different spin. Therefore, in this work this procedure is only
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applied to our N2 computations to recover the correct asymptotic dissociation limit. Fig-

ure 2.2 shows the error with respect to FCI for the ground-state potential energy curve of N2

computed with ACI using canonical restricted Hartree–Fock (RHF) orbitals. In addition,

we plot results for the internally-contracted multireference CISD (MR-CISD),33 and MR-

CISD with Davidson’s correction (MR-CISD+Q)34 based on a CAS self-consistent-field

reference with six electrons in six orbitals [CASSCF(6,6)]. MR-CISD and MR-CISD+Q

data from Ref 35 was used. Figure 2.2A illustrates a distinguishing factor of the ACI: the

absolute error at each point along the curve is reliably estimated by the energy threshold

σ . Moreover, while the ACI(10) curve displays noticeable microscopic discontinuity, the

ACI(5) and ACI(1) curves are progressively smoother. The inclusion of the second-order

perturbative correction (see Fig. 2.2B) leads to curves that are approximately within 1 mEh

from the FCI energy. In comparison, MR-CISD shows fairly constant error throughout the

dissociation, but with a noticeable increase near 1.6 Å. With the +Q correction, the error

is fairly constant across the potential, though with a slight decrease in accuracy towards

dissociation. Additionally, these energies are not variational.

Table 2.1 compares the energy error with respect to FCI (∆E) and the size of the ACI

determinant space for N2 at the bond distances 1.1 and 3 Å. In both cases, ACI energy

errors with respect to FCI show very good correlation with the value of σ . For a given

value of σ , the energy difference |∆E(r = 3)−∆E(r = 1.1)| is only a fraction of the ab-

solute error, showing the ability of the ACI method to describe both static and dynamic

correlation in a balanced way. With the perturbative correction, the absolute energy errors

are further reduced but the NPEs remain virtually unchanged. When we use natural or-

bitals from second-order Møller–Plesset perturbation theory or CASSCF (see Table 2.1),

the ACI(1) gives a more compact model space, with improved energy error with respect to

RHF orbitals. This result suggests that the parameter σ effectively controls the ACI error

regardless of the molecular orbital basis.
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Figure 2.2: Ground-state potential energy curve of N2 computed with the cc-pVDZ basis
set. (A) Energy errors with respect to FCI for the ACI, MR-CISD, and MR-CISD+Q.
(B) Energy errors with respect to FCI for the ACI plus the second-order energy correction
[Eq. (2.9)]. ACI results used restricted Hartree–Fock orbitals while MR-CISD and MR-
CISD+Q results are based on a CASSCF(6,6) reference. The 1s-like orbitals of nitrogen
were frozen in all correlated computations.

2.3.2 Singlet-Triplet Splittings in Oligoacenes

To demonstrate the ability of ACI in accurately exploiting the sparsity of CASCI spaces,

we turn to the polyacene series.36–42 The polyacene geometries from Ref. 36 were used in

our calculations, and only the π bonding and antibonding pairs included in the STO-3G

basis were correlated. This corresponds to a CAS(4n+2,4n+2) wave function, where n is

the number of fused benzene rings. Such a problem is intractable with CASCI for n ≥ 4,

but it is well suited for DMRG36 and the two-electron reduced density matrix (v-2RDM)

method.42–44 To directly compare with previous results,36, 42 all ACI computations use

canonical RHF orbitals.

Table 2.2 shows the vertical singlet-triplet splittings (∆EST = ES=1−ES=0) for various

values of σ , in addition to comparison with DMRG36 and v-2RDM42 results. We also re-
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Table 2.1: Errors with respect to FCI (∆E, in mEh), number of variational parameters (Npar),
and non-parallelism error (NPE = |∆E(r = 3)−∆E(r = 1.1)|) for the ground state of N2 at
r = 1.1 and 3 Å computed with the cc-pVDZ basis set. ACI and MR-CI computations used
restricted Hartree–Fock and CASSCF(6,6) orbitals, respectively. The 1s-like orbitals of
nitrogen were frozen in all correlated computations. For σ = 1, we also report ACI results
computed using MP2 natural orbitals (NO) and CASSCF(6,6) orbitals (CAS).

r = 1.1 Å r = 3 Å NPE
∆E Npar

a ∆E Npar
MR-CISD 9.02 5352/28030 8.14 5352/28030 0.88
MR-CISD+Q −0.83 5352/28030 −1.96 5352/28030 1.13

ACI(50) 50.73 963 54.02 8044 3.29
ACI(10) 11.20 23940 10.88 54008 0.32
ACI(5) 5.00 104398 4.59 308804 0.41
ACI(1) 0.91 613198 0.78 1727993 0.13

ACI(1) (CAS) 0.90 369562 0.69 1338097 0.11
ACI(1) (NO) 0.87 348789 0.78 1494181 0.09

ACI(50)+PT2 0.73 963 4.03 8044 3.30
ACI(10)+PT2 1.20 23940 0.88 54008 0.32
ACI(5)+PT2 −0.01 104398 −0.41 308804 0.40
ACI(1)+PT2 −0.09 613198 −0.22 1727993 0.13

FCI 540924024 540924024
a For MR-CISD and MR-CISD+Q we report the total number of contracted/uncontracted configuration state

functions.

Table 2.2: Singlet-triplet splittings of the acene series computed with the ACI , DMRG,
and v-2RDM methods using the STO-3G basis set. All carbon π orbitals were correlated.

∆EST (kcal mol−1)
n CAS ACI(100) ACI(50) ACI(10) v-2RDM DMRG
2 (10,10) 67.4 66.3 62.4 63.8 61.5
3 (14,14) 51.8 51.0 46.8 45.2 46.0
4 (18,18) 38.4 38.3 35.5 32.8 34.7
5 (22,22) 30.5 29.4 27.4 24.5 26.7
6 (26,26) 25.3 22.4 21.0 19.7 21.0
8 (34,34) 13.0 15.3 15.4 14.2
10 (42,42) 9.1 13.0 11.6

port the corresponding numbers of determinants required in each computation in Table 2.3.

Note that to guarantee sub-kcal mol−1 accuracy, a σ value less than 1.6 mEh is in princi-

ple required. However, already for σ = 10 mEh, the ACI error with respect to DMRG is

consistently less that 1 kcal mol−1 through hexacene. For σ = 50 mEh, we see the max-

imum error at anthracene, and in general the errors in the singlet-triplet splitting decrease

with increasing n. A similar trend is seen with the v-2RDM data, where the maximum

in error is at n = 5. The singlet-triplet splittings were also computed with ACI+PT2, and
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Table 2.3: Number of determinants required for the ACI wave functions used for the
oligoacenes in this work.

Singlet Triplet
n CAS ACI(100) ACI(50) ACI(10) ACI(100) ACI(50) ACI(10)
2 (10,10) 14 41 332 16 43 376
3 (14,14) 76 230 8325 73 249 8600
4 (18,18) 278 930 136190 280 1097 146814
5 (22,22) 821 3444 1260702 849 4990 1495276
6 (26,26) 2174 31294 2770391 2220 40774 3352196
8 (34,34) 10580 1677179 11140 1496690
10 (42,42) 82403 81034

they on average deviated from the corresponding ACI values on the order of 0.01 kcal

mol−1 with a maximum of 0.4 kcal mol−1 for the σ = 100 calculation of naphthalene. Our

current pilot ACI code can be used to perform computations with up to about 5× 106 de-

terminants, which currently limits the ACI(10) to hexacene and the ACI(100) to decacene.

However, we anticipate that a production-level implementation of the ACI method that can

take advantage of distributed memory architectures will be able to routinely target 107–108

determinants.45 Furthermore, we anticipate that like in the case of the DMRG,3, 46 in the

context of the ACI a localized molecular orbital basis will be crucial to significantly com-

press the number of variational parameters, and in turn, expand the applicability of this

method to larger active spaces.

2.4 Conclusions

In summary, the major benefits of the ACI method are that: i) electron correlation can

be treated in a balanced way without a priori knowledge of a system’s electronic struc-

ture and ii) that the energy error is precisely controlled by one user-specified parameter.

The most promising application of ACI is as a replacement for prohibitively large CASCI

reference wave functions used in perturbative and non-perturbative treatments of electron

correlation. However, to overcome the deficiencies of CASCI, ACI can be coupled with

orbital optimization schemes to produce CASSCF-like references for active spaces much

larger than the CAS(18,18) limit. The straightforward computation of ACI reduced den-

sity matrices enables these extensions. Given that the ACI: i) is a variational deterministic
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procedure, ii) does not require orbital ordering, iii) can be straightforwardly extended to

excited states, and iv) can be easily implemented on distributed memory architectures, it is

an interesting alternative to DMRG, MCCI, FCIQMC, and v-2RDM methods.

All ACI results were obtained using our pilot code (FORTE),47 which is a suite of mul-

tireference methods written as a plugin to the open-source quantum chemistry package

PSI4.48
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Chapter 3

ACI for Computing Challenging Excited States

3.1 Introduction

Perhaps the biggest difficulty in modeling electronic excited states is in quantifying

varying degrees of dynamic and static electron correlation equally well among states of

different character. This challenge is exacerbated, for example, in multielectron excited

states, which frequently occur in chemically relevant systems containing transition met-

als or highly conjugated hydrocarbons.1–3 Conventional excited-state electronic struc-

ture methods, including time-dependent density functional theory (TD-DFT)4, 5 and the

equation-of-motion coupled cluster hierarchy,6, 7 often cannot efficiently compute multi-

electron excited states due to their considerable multireference character in which double

or higher excitations dominate. Another example of challenging excited states are avoided

crossings and conical intersections, which play a fundamental role in non-radiative pro-

cesses.8–10 In these cases, two or more electronic states with potentially different character

become degenerate or near-degenerate, a situation that is difficult to describe with single-

reference methods and state-specific multireference approaches, especially when the states

involved are the ground- and first-excited state. In this work, we generalize our previously

developed adaptive configuration interaction (ACI),11 which is very well-suited for treating

large numbers of strongly correlated electrons, to the general description of excited states,

including multielectron and near-degenerate states.
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In order to describe electronic states in which static correlation plays a dominant role,

a multireference method is typically required. The most common choice is to build a mul-

tideterminantal reference wave function by permuting a chosen number of electrons in a

set of selected active orbitals. While these complete active space (CAS) wave functions,

with (CASSCF) or without (CASCI) orbital optimization, are good references for excited

state computations, the number of variational parameters in CASCI wave functions grows

combinatorially with the number of electrons and orbitals and quickly becomes prohibitive.

Therefore, efficient alternatives to CASCI are required to describe the excitations of large,

chemically-relevant molecular systems.

Wave function factorization techniques,12–18 stochastic approaches,19–28 symmetry pro-

jection schemes,29–35 and various truncated configuration interaction (CI) methods11, 36–56

have risen as the most economical, near-exact representations of compressed full CI (FCI)

or CASCI wave functions. Moreover, these techniques have allowed accurate descriptions

of unprecedentedly large systems with significant multireference character by finding an

efficient, sub-combinatorial scaling of the number of parameters with respect to the size

of the active space. The density matrix renormalization group (DMRG)12–18 and full CI

quantum Monte Carlo (FCIQMC)20, 22 have been particularly successful in describing the

ground states of large systems by correlating to near exactness active spaces beyond the

conventional CAS limit of 18 electrons in 18 orbitals [CAS(18e,18o)].

In general, effective FCI and CASCI alternatives achieve sub-exponential scaling of

the number of variational parameters with respect to the active space by neglecting or

approximating the typically large number of unimportant terms in the full determinantal

expansion. For molecular systems characterized by weakly and strongly correlated elec-

trons alike, ground state wave functions can often be constructed using orders of magnitude

fewer determinants than in FCI, a point rigorously demonstrated in decades of selected CI

research,36–44, 57–60 including a recent revival of those techniques.11, 24, 46–56, 61, 62 In order

for selected CI methods to be viable for excited state computations, a similar sparsity must
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Figure 3.1: Squared expansion coefficients computed from full CI wave functions of the
three lowest singlets of methylene. The DZ basis was used without freezing orbitals, re-
sulting in a CAS(8e,14o) and 239,259 determinants. The squared coefficients are sorted
by magnitude, and vertical lines represent where the accumulation of squared coefficients
reaches 0.999 for each state.

be present in excited state wave functions, and we believe this to be generally true.

In Figure 3.1, we plot the square of the CI expansion coefficients, sorted, for all 239,259

determinants in the FCI wave function for the three lowest singlet A1 states of methylene.

Additionally, we show vertical lines representing the number of determinants needed to

capture 99.9% of the exact wave function for each state. While the excited state wave

functions are slightly less sparse, even for the 31A1 state less than 0.5% of the determinants

are required to reach the 99.9% threshold.

Even with sparsity in excited state wave functions, the application of DMRG, FCIQMC,

and selected CI to excited states is not straightforward, however.18, 21, 26, 37, 45, 63–69 For

these methods, excited states can be computed either sequentially or simultaneously. For

states computed sequentially, orthogonalization between individually computed states needs

to be addressed. In DMRG, for example, the renormalized basis states are in general not op-

timal for multiple roots, and can be sequentially optimized for each root in a state-specific

scheme. Recently introduced alternatives include derivations of Tamm-Dancoff (TDA)

or random phase approximations (RPA) from a DMRG matrix product state reference,65

in addition to time-dependent formalisms.70 For FCIQMC, state-specific algorithms can
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be achieved by using a Gaussian projector shifted near the energy of the desired root,66

or by projecting out all previously computed lower roots from the solution of the current

root.68, 71, 72 However, near-degenerate electronic states can pose a significant challenge for

state-specific methods, and typically an excited state method that computes states simulta-

neously is required.

Alternatively, methods that compute states simultaneously usually incorporate some

form of state-averaging, in which a common basis is used to describe multiple states. In

DMRG, this averaging is realized by renormalizing basis states with respect to multiple

roots, though this procedure generally requires more basis states to achieve accuracy com-

parable with ground state DMRG calculations.63 Coe and Patterson introduced a modified

Monte Carlo CI (MCCI), which stochastically samples Hilbert space by selecting deter-

minants based on a criterion averaged over roots of interests, and then forms and diago-

nalizes a matrix within the selected space.73 Blunt et al. recently proposed a modified

FCIQMC method in which all states are computed simultaneously, and orthogonalized

with a Graham-Schmidt procedure at each iteration.68 Finally, Rodríguez-Guzmán and co-

workers presented a method in which ground and excited states are expanded in terms of

nonorthogonal variationally-optimized symmetry-projected configurations.74

Another method well-suited to accurately describe very large excited states is the vari-

ational 2RDM (v-2RDM) method,75–80 which forgoes wave functions entirely and directly

optimizes the one and two-particle reduced density matrices subjected to N-representability

conditions. The v-2RDM method can treat the lowest energy state of a given symmetry and

total spin with high accuracy,80, 81 and its ability to compute excited states of the same sym-

metry based on the equations of motion of the 1-RDM has also been recently reported.82

Two of the most commonly used selected CI methods, CIPSI37 and MRD-CI,38, 83 both

have been modified to compute excited states using a single space of selected determi-

nants.39, 60, 84, 85 Though the definition of the selection importance criterion is different for

each method, both add determinants to the model space based on the maximum value of
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the selection criterion with respect to all electronic states. This approach is equivalent to

adding determinants to the model space that are important to at least one state being studied.

While the success of both methods has prompted numerous excited state studies,86–92 [See

Ref. 93 and references therein] there has been a lack of comparison of numerical results to

determine the most effective way to compute excited states with selected CI methods.

In this work, we provide a detailed analysis of both simultaneous and sequential ACI

methods for computing excited state wave functions. Although our analysis is focused on

ACI, our comparisons of various excited state methods is applicable to selected CI meth-

ods in general. One of the hallmark features of ACI is its ability to compute ground state

energies to a user-defined accuracy.11 Similar in spirit to the recently proposed variance-

matching variational Monte Carlo method of Robinson and Neuscamman,94 which com-

putes all states to a similar quality as monitored by the wave function’s energy variance,

we seek an adaptation of ACI such that any excited state energy can be efficiently com-

puted with a specifiable error. As shown in this work, ACI can be generalized to compute

excitation energies with state-specific error control and near perfect error cancellation.

3.2 Theory

3.2.1 Brief review of ground-state ACI

We begin with a brief overview of ACI.11 ACI is an iterative selected CI method which

generates and optimal space of Slater determinants such that the total error in the ground

state energy approximately matches a user defined parameter, σ :

|EFCI
0 −EACI

0 (σ)| ≈ σ , (3.1)

where EFCI
0 and EACI

0 are the FCI and ACI ground state energies, respectively. The proce-

dure is as follows:

1. At iteration k, we define a reference space, P(k) = {Φµ}, and associated reference
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wave function,

Ψ
(k)
P = ∑

µ∈P(k)

c(k)µ Φµ , (3.2)

where expansion coefficients c(k)µ are obtained by diagonalizing the Hamiltonian in

the P(k) space. The procedure is started with a reference space, P(0), comprised of all

determinants in a small CASCI (< 1000 determinants).

2. All singly and doubly excited determinants are generated from P(k) to form the first

order interacting space, F(k). An estimate of the energy contribution to the reference

space, ε(ΦI), is computed for each determinant ΦI ∈ F(k). This energy importance

measure is defined as the variational correlation energy of a two-state system involv-

ing Ψ
(k)
P and ΦI , and takes the form,95

ε(ΦI) =
1
2

(
∆I−

√
∆2

I +4V 2
I

)
, (3.3)

where the Epstein–Nesbet denominator (∆I) and coupling (VI) are defined as

∆I = 〈Ψ(k)
P | Ĥ |Ψ

(k)
P 〉−〈ΦI| Ĥ |ΦI〉 , (3.4)

VI = 〈Ψ(k)
P | Ĥ |ΦI〉 . (3.5)

The generation of all singles and doubles has a computational cost that scales as

|F(k)| ≈ |P(k)|N2
ON2

V, where |P(k)| is the number of determinants in the set P(k), while

NO and NV are the number of occupied and virtual orbitals, respectively. The quantity

VI is computed as

VI = ∑
µ∈P(k)

c(k)µ 〈Φµ | Ĥ |ΦI〉 , (3.6)

by an algorithm that generates all single and double excitations out of the determi-

nants in P(k). To reduce the memory necessary to store the vector VI , we apply screen-

ing and store only those elements for which one of the contributions |c(k)µ 〈Φµ | Ĥ |ΦI〉 |>

τV , where τV is a user-specified screening threshold. Unless otherwise noted, calcu-

lations reported in this work use a screening threshold τV = 10−12 Eh.
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3. We define the secondary space, Q(k), as the smallest possible subset of F(k) such that

the accumulation of error estimates for sampled determinants not in Q(k) is approx-

imately equal to σ , the energy selection parameter. In practice, this truncation of

F(k) is performed by accumulating the ε(ΦI) estimates in increasing order until σ is

reached,

∑
ΦI∈F(k)\Q(k)

|ε(ΦI)| ≤ σ . (3.7)

The total model space M(k) is then defined as the union of the secondary space and

the reference,

M(k) = Q(k)∪P(k). (3.8)

In our current implementation, this step has a computational cost that scales as

|F(k)| ln |F(k)| due to sorting of the error estimates |ε(ΦI)|. In principle, sorting can

be avoided by using an optimization algorithm that identifies an error threshold η

such that the difference between σ and the sum of the error estimates |ε(ΦI)| for

the determinants with |ε(ΦI)| < η is zero. This can be achieved by introducing a

function f (η),

f (η) = ∑
ΦI∈F(k)

|ε(ΦI)|θ(η−|ε(ΦI)|)−σ , (3.9)

and seeking the largest η such that f (η) ≤ 0. The function f (η) is monotonous

(albeit not continuous) and has one zero if σ ≤ ∑ΦI∈F(k) |ε(ΦI)| (otherwise, all de-

terminants should be included). Therefore, η may be found by using the bisection

method with cost proportional to |F(k)|.

4. The Hamiltonian is formed and diagonalized in the model space, M(k), yielding a

total energy E(k)
M and wave function,

|Ψ(k)
M 〉= ∑

ΦI∈M(k)

C(k)
I |ΦI〉 . (3.10)

The procedure ends when E(k)
M converges, which occurs when the determinantal
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makeup of M(k) is identical between iterations [M(k) = M(k+1)]. This diagonalization

is usually the most expensive step in the ACI procedure and has a cost between |M(k)|

and |M(k)|N2
ON2

V .

5. If the energy is not converged, the updated reference P(k+1) space is generated from

the most important subset of the M(k) space. Specifically, P(k+1) is formed by storing

determinants in M(k) with the largest |C(k)
I |2 values, until the accumulation of the

|C(k)
I |2 values of determinants kept reaches a second user-defined value,

∑
Φµ∈P(k+1)

|C(k)
µ |2 ≤ 1− γσ , (3.11)

where γ is a user-specified constant with units (energy)−1. Following our previous

work,11 we set γ = 1 E−1
h . This step requires sorting of the determinant coefficients

and scales as |M(k)| ln |M(k)|. However, as noted above, sorting may also be avoided

in this step. Analogous to the initiator approximation in FCIQMC,22 this step greatly

increases the efficiency of ACI by only allowing determinants important in the model

space to generate candidate determinants in F(k).

The aimed selection strategy gives the user nearly perfect control over the error for

ground state calculations. This control is achieved in step 3 by accurately identifying de-

terminants that need to be explicitly treated in the diagonalization procedure and ignoring

those determinants whose cumulative energy contribution is smaller than the desired error.

Another recently proposed selected CI method, heat-bath CI (HCI),52, 62 uses a very sim-

ilar algorithm to ACI with the important exception that its generation of the model space

is done without sampling any unselected determinants. Specifically, it selects determinants

individually using a threshold ε1, only adding a determinant ΦI to the model space for

which the inequality,

|HIJcJ|> ε1 ∀ΦJ ∈ P(k), (3.12)
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holds. Sorting of the integrals allows the selection of determinants to be done with perfect

efficiency, meaning that no determinants are sampled that are not added to the model space.

Additionally, HCI continually grows the model space, so that at iteration k+1 all the model

space determinants are retained,

P(k+1) = M(k), (3.13)

rather than truncating it as is done with ACI. The resulting method is extremely efficient,

but does not provide an inherent means of estimating the total energy error. The predictive

control over the error in ACI relies on a fairly complete sampling of unselected determi-

nants, and a potentially fruitful development in ACI would be to somehow adopt the heat-

bath sampling method while still preserving the predictive power of the current method. In

the following section, we generalize the ground state ACI method to determinant spaces

capable of describing excited state wave functions.

3.2.2 Excited State Methods in ACI

In principle, excited state wave functions can be obtained nearly automatically by solv-

ing for the lowest eigenvalues of the Hamiltonian in the ground state determinant space

(M0) optimized by ACI. However, the determinant set M0 is biased towards the ground

state and provides no way to control the accuracy of higher eigenvalues. One solution is a

state-averaged (SA) approach in which the definition of the selection importance criterion,

ε(ΦI), is modified to reflect importance with respect to multiple roots, resulting in a single

space of determinants capable of describing all roots of interest. Alternatively, an algorithm

may be preferred wherein determinant selection is done separately for each root, allowing

each state to be described by potentially unique determinant spaces. We expand upon both

approaches below.

For all methods considered, we generalize our definition of the energy importance cri-

terion, ε(ΦI), to apply to any arbitrary state n,

ε(ΦI,n) =
1
2

(
∆I,n−

√
∆2

I,n +4V 2
I,n

)
, (3.14)
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where,

∆I,n = 〈Ψ(k)
P,n| Ĥ |Ψ

(k)
P,n〉−〈ΦI| Ĥ |ΦI〉 , (3.15)

VI,n = 〈Ψ(k)
P,n| Ĥ |ΦI〉 , (3.16)

and |Ψ(k)
P,n〉 refers to the n-th eigenstate of the P(k) space. For converged wave functions, the

(k) superscript will be dropped.

By combining different definitions of selection criteria and model spaces, it is possible

to formulate several excited state methods. In this work we consider five excited state

ACI methods, which, for convenience are summarized in Table 3.1. We separate these

approaches into two categories: methods that use a single model space for all states, and

methods that use or combine different model spaces. What follows is a detailed description

of each excited state method.

State-averaged methods based on a single model space

The goal of a state-averaged ACI (SA-ACI) procedure is to obtain a single compact

space of determinants capable of describing multiple electronic states with controlled ac-

curacy. Algorithmically, the only difference in SA-ACI compared to the ground state al-

gorithm is the definition of the energy importance criterion, ε(ΦI,n), where we propose

two ways to define a determinant’s importance in lowering the energy of multiple states.

One option is to simply take the average importance of a determinant (|ε(ΦI,n)|) among N

roots of interest,

ε̄(ΦI) =
1
N

N−1

∑
n=0
|ε(ΦI,n)|. (3.17)

In addition, the reference space is updated by selecting determinants based on an average

of the expansion coefficient,

∑
Φµ∈P(k+1)

( 1
N

N−1

∑
n=0
|Cµ,n|2

)
≤ 1− γσ , (3.18)

where Cµ,n is the CI coefficient from root n corresponding to the reference space determi-

nant Φµ .
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This averaged procedure, denoted SA-ACIavg, only requires one optimization to ob-

tain multiple roots, which are rigorously orthogonal as they are eigenvectors of a common

Hamiltonian. However, the near-exact energy control in ground state ACI is exchanged for

a control over the average error among roots.

The loss of state-specific error control may become potentially hazardous if one state

has a significantly different determinantal makeup with respect to the other computed roots,

where the optimized space will become biased towards those roots described by similar

determinants. This biasing can be remedied either by adding user-specified weights to each

state, or by defining the selection importance criterion as a maximum function rather than

an average. Specifically, we can redefine ε̄(ΦI) as,

ε̄(ΦI) = max
0≤n≤N−1

|ε(ΦI,n)|, (3.19)

and similarly the maximum of the expansion coefficient among roots is then used to trun-

cate the model space M to update the reference. This procedure, denoted as SA-ACImax,

will build a final model space of determinants which are important to at least one root of

interest rather than all to roots of interest in averaged way.

Methods based on state-specific model spaces

Perhaps the most attractive feature of ground state ACI is that the error is predicted

by σ to remarkable accuracy. SA-ACI methods achieve this in an averaged way because

all states are computed with the same set of determinants. To better preserve error pre-

diction in higher roots, we propose a second class of ACI methods which form separate

model spaces Mn with corresponding wave functions ΨMn for each root n of interest, a pro-

cedure we define as unconstrained ACI. Unfortunately, the model space wave functions,

ΨMn , are in general not mutually orthogonal when optimized separately. In fact, the de-

gree of nonorthogonality between states can be viewed as a measure of the inaccuracy of

individually optimized wave functions, since all states become orthogonal in the FCI limit

(σ → 0). We propose three methods which attempt to preserve state-wise energy control
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while maintaining orthogonality among roots.

Two of the following methods begin with an unconstrained ACI calculation, yielding

separate determinant spaces for each root. In order to correctly converge each state to the

right solution, a reasonable initial guess is required. To achieve correct convergence to each

root, we start each computation with three or four warmup iterations of SA-ACI, select the

desired root, and then optimize it individually. To avoid the possibility of root flipping, we

do all optimizations within a root-following scheme

State Combined ACI. The N non-orthogonal states are first optimized separately with

unconstrained ACI to produce a set of converged model spaces {Mn}, with which we can

define a final model space MSC as the union of all individually selected spaces,

MSC = M0∪M1∪·· ·∪MN−1. (3.20)

Finally, the matrix representation of the Hamiltonian in the MSC space can be diagonalized

to yield orthogonal eigenstates for the N roots. This state-combined procedure (SC-ACI)

can also be viewed as a more rigorous way to remove any determinant space biasing in

SA-ACIavg. While the energy errors derived from the individually converged model sub-

spaces {Mn} are well controlled by σ , the final energies computed from the final model

space MSC may not be. Since this final model space will have more determinants than any

individually optimized space (unless all spaces Mn are identical), then the energies of the

final model space will be lower than their individually optimized counterparts. This energy

lowering effect should not be considered entirely a good consequence, as the lowering may

be inconsistent among roots, resulting in poorer error cancellation. Nonetheless, σ remains

an approximate upper bound to the expected error for each state.

Multistate ACI. Another approach to overcome the nonorthogonality problem in un-

constrained ACI is to simply recouple the nonorthogonal solutions to yield a multistate

ACI (MS-ACI). Specifically, we form the multi-state Hamiltonian in the basis of individ-

ually optimized states, and then solve the resulting generalized eigenvalue problem for N
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Table 3.1: Comparison of excited state ACI methods.

Method Energy importance criterion Model space

SA-ACIavg
1

N +1

N

∑
n=0

ε(ΦI,n) Single average space (Mavg)

SA-ACImax max
0≤n≤N

ε(ΦI,n) Single average space (Mmax)

SC-ACI


ε(ΦI,n)

Union of individual model spaces (MSC =
⋃

n Mn)

MS-ACI Union of individual model spaces (MMS =
⋃

n Mn)

OC-ACI Different spaces per state (M0 ⊆M1 ⊆M2 . . .)

roots,

HC= SCE, (3.21)

where the Hamiltonian (H) and overlap (S) matrices are defined as

(H)mn = 〈ΨMm| Ĥ |ΨMn〉 m,n = 0, . . . ,N−1, (3.22)

and

(S)mn = 〈ΨMm |ΨMn〉 m,n = 0, . . . ,N−1, (3.23)

while E= diag(E0, . . . ,EN−1) is a diagonal matrix. Though simple, this approach is vulner-

able to numerical instability when the eigenvalues of the overlap matrix, S, are nearly zero,

corresponding to near linear-dependencies in the basis of individually optimized states.

Near-degenerate electronic states may also pose a significant challenge for the initial com-

putation of nonorthogonal wave functions, however, and issues in correctly identifying the

root to be optimized and root-flipping could preclude the use of an ACI method. Addition-

ally, nonorthogonal wave functions create difficulties for certain properties and computa-

tions that require multiple wave functions, such as transition dipole moments.

Orthogonality-constrained ACI. The final excited state method, orthogonality con-

strained ACI (OC-ACI), sequentially optimizes determinant spaces Mn in the orthogonal

complement of the space spanned by the previous roots. This strategy has been success-
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fully applied in the context of density functional theory to obtain both valence96 and core-

excited states.97 In this procedure, the selection and screening for P(k) and M(k) spaces is

identical to the unconstrained ACI, but the computation of the energies and wave functions

for these spaces differs.

Specifically, in the optimization of the n-th root, we define the projector onto the space

complementary to the first n−1 roots (Q̂M,n)

Q̂M,n = 1−
n−1

∑
m=0
|ΨM,m〉〈ΨM,m| , (3.24)

where |ΨM,m〉 is the optimized wave function for root m computed from the Mm model

space. Thus, this projector makes the n-th root orthogonal to all n−1 roots in the intersec-

tion of their subspaces.

At each iteration, the P(k) and M(k) space wave functions are computed by projecting

out the converged wave functions of the previous roots,

Q̂M,nĤQ̂M,n |ΨP(k),n〉= EP,n |ΨP(k),n〉 (3.25)

Q̂M,nĤQ̂M,n |ΨM(k),n〉= EM,n |ΨM(k),n〉 , (3.26)

where the lowest eigenstate of this projected Hamiltonian yields the desired excited state

wave function. Note that this procedure is equivalent to the Gram-Schmidt orthogonaliza-

tion of an excited state wave function with respect to lower roots, with the requirement that

the Gram-Schmidt orthogonalized remains variationally optimal. In practice, Eqs. (3.25)-

(3.26) are implemented by projecting out eigenvectors for the first n−1 roots from the trial

vectors in the Davidson–Liu algorithm.98, 99

The excited state ACI methods are all developed in the freely available open-source

software, FORTE,100 written as a plugin to PSI4.101, 102
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3.3 Results and Discussion

3.3.1 Methylene

We compare all ACI excited state methods using benchmark data on the three lowest

singlet A1 states of methylene. These states provide a rigorous test for the various ACI

excited state methods due to their different determinantal character.103–108 The 1 1A1 state

is closed-shell with a single dominant configuration, while the 2 1A1 state has consider-

able double excitation character and the 3 1A1 is a multi-configurational open-shell singlet

biradical. The geometries used were taken from Ref. 105 and are of C2v symmetry. The

cc-pVDZ basis was used,109 augmented with additional s functions for both the carbon and

hydrogen atoms, as outlined in Ref. 105, and no orbitals were frozen, resulting in a FCI

space equivalent to a CAS(8e,27o).

In the limit σ → 0, all ACI methods are equivalent to FCI. However, the rates at which

each method converges to FCI as σ is reduced will likely be different, as each method

uses a different selection algorithm. Table 3.2 shows the error in excitation energy for the

two excited states studied computed with conventional CI truncated to double (SD), triple

(SDT), and quadruple (SDTQ) excitations, equation of motion coupled cluster with sin-

gles and doubles (EOM-CCSD),110 approximate coupled cluster with triples (CC3),111 and

excited-state ACI methods. For CI and CC methods, the computed 2 1A1 excitation energy

converges to the correct result much faster than for the 2 1A1 vertical excitation energy.

This result is well understood considering that the 3 1A1 state, though a multireference

open-shell singlet, is most significantly composed of determinants with excitation rank up

to triples. For the 2 1A1 state, however, higher excitations are required, and the inclusion of

triples in CC methods is required even to achieve sub-eV accuracy.

For the ACI methods, this trend does not hold—the 2 1A1 state is more easily described

than is the 3 1A1 state, and only slightly. Regardless of excitation rank, the 2 1A1 state is

largely dominated by a single determinant, so the ACI methods converge very quickly to
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Table 3.2: Methylene vertical excitation energies (eV) obtained with truncated CI, EOM-
CCSD, CC3, and ACI methods. All computations use restricted Hartree–Fock orbitals and
the modified cc-pVDZ basis described in Ref. 105 with no frozen orbitals, resulting in a
CAS(8e,27o).

All values shown are errors with respect to FCI, for which the excitation energy is instead
shown.

Number of variational Excitation Energy Error (eV)
Method parameters (Np) 2 1A1 3 1A1
CISD 3,607 2.639 1.990
CISDT 83,689 1.113 0.035
CISDTQ 1,020,759 0.046 0.032

EOM-CCSD 3,607 1.456 −0.005
CC3 83,689 0.471 −0.004

σ = 0.25 eV

SA-ACIavg 6279 0.056 0.220
SA-ACImax 12684 0.021 0.095
SC-ACI 8871 0.028 0.063
MS-ACI 1513/2525/6250 −0.016 0.026
OC-ACI 1513/2059/6282 −0.007 0.008

σ = 0.054 eV

SA-ACIavg 54,575 0.003 0.027
SA-ACImax 112,563 0.002 0.015
SC-ACI 70,253 0.003 0.013
MS-ACI 23,563/24,401/47,049 < 0.001 0.008
OC-ACI 23,563/24,094/47,875 < 0.001 < 0.001

FCI 77,145,700 4.655 6.514

the FCI result for this typically challenging case. With a threshold of σ = 0.054 eV, all

ACI methods produce excitation energy errors on the order of 1 meV or better for the 2 1A1

state. The 3 1A1 excitation energy is more challenging since it is multideterminantal, and

for the OC-ACI and MS-ACI methods it requires additional determinants to achieve the

same level of accuracy. Among the ACI methods, the OC-ACI shows the best performance

for methylene as it gives ∼1-8 meV accuracy while requiring much fewer determinants

than the other methods. Even for the modest σ values shown, we see that ACI, particularly
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Figure 3.2: Comparison of ACI excited state methods for three electronic states of methy-
lene. The points shown are computed for σ = 0.5, 0.25, 0.1, 0.05, and 0.005 eV. All
computations used the modified cc-pVDZ basis set as described in Ref. 105 with no frozen
orbitals.

OC-ACI, can compute excited state energies more accurately and efficiently than the CI

and CC methods in our example.

To further understand the varying efficiencies of each ACI method, we can analyze the
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absolute error of each state with respect to the required number of determinants, shown

in Figure 3.2. Note that the efficiencies of SA-ACIavg, SA-ACImax, and SC-ACI are very

similar for all three states, meaning that they produce comparable absolute errors with a

similar number of determinants. In contrast, OC-ACI and MS-ACI show an improved

efficiency for the 1 1A1 and 2 1A1 states. These lowest two states can be treated with

fewer determinants than the 3 1A1 state to achieve a similar absolute error, but this property

cannot be exploited by SA-ACI and SC-ACI as they employ a single set of determinants

for all states. In general, the efficiencies of ACI methods which use a single determinant

space for all states are spoiled if one of the states studied shows high multiconfigurational

character. OC-ACI and MS-ACI, in contrast, optimize each state individually with as few

determinants as possible, maximizing efficiency.

3.3.2 LiF avoided crossing

The avoided crossing in the dissociation potential of the two lowest 1Σ+ states of LiF is

a well-studied benchmark for excited state methods due to the presence of near-degenerate

electronic states.112–114 Near equilibrium, the ground state wave function is qualitatively

single-determinantal with ionic character, and the first excited state is an open-shell bi-

radical singlet dominated by low-weighted pairs of covalent configurations, requiring a

multireference treatment. At the avoided crossing point, the ionic and covalent character

swaps between these two states, thus requiring a balanced treatment of strong and weak

correlation to achieve good accuracy for both states.115, 116

All LiF computations used the Li (9s 5p)/[4s 2p]; F (9s 6p 1d)/[4s 3p 1d] basis defined

in Ref. 112 and restricted Hartree–Fock orbitals with the 1s-like molecular orbitals frozen

on each atom, resulting in the explicit treatment of 8 electrons in 27 orbitals. To ensure

proper convergence, we use a γ value of 0.1 mE−1
h . The FCI solution requires 7.7× 107

determinants and predicts the avoided crossing point to be around 11.5 bohr. We compare

our ACI methods to SA-MCCI,73 which is very similar to the SA-ACIavg except that it
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Table 3.3: Comparison of LiF avoided crossing curves. We report the average error for the
lowest two Σ+ states, the non paralellism error (NPE)a, the standard deviation (σ∆E) with
respect to FCI, and the average number of variational parameters (Np) required for each
computation. For OC-ACI computations, the two numbers represent the average number
of determinants required for ground and excited states, respectively. All values are reported
in mEh, and computed from seven bond distances from 8.5 a.u. to 14.5 a.u. incremented by
1 a.u. in order to enable comparison with PMC-SD and SA-MCCI. We do not show data
for MS-ACI and SC-ACI as they diverge near the avoided crossing. All ACI computations
used restricted Hartree–Fock orbitals and the custom basis set defined in Ref. 112, with the
two 1s-like molecular orbitals frozen on each atom resulting in a CAS(8,27).

Average Error (mEh) NPE (mEh)
Method X 1 1Σ+ 2 1Σ+ X 1Σ+ 2 1Σ+ σ∆E Np
CISDT 14.075 15.584 9.825 10.231 4.400 76,365
CISDTQ 1.295 1.273 1.275 1.378 0.593 978,423

SA-ACIavg(50) 42.853 48.873 13.896 21.110 7.368 488
SA-ACIavg(10) 10.243 10.052 1.262 1.314 0.437 3,341
SA-ACIavg(1) 0.891 0.830 0.089 0.109 0.047 57,798
SA-ACIavg(0.5) 0.448 0.410 0.055 0.071 0.029 95,711

OC-ACI(50) 46.185 46.150 2.845 11.205 2.234 246/261
OC-ACI(10) 10.721 9.685 1.043 1.593 0.721 1576/1929
OC-ACI(1) 0.963 0.871 0.102 0.077 0.055 37,986/38,675
OC-ACI(0.5) 0.471 0.442 0.038 0.041 0.020 65,144/67,980

bSA-MCCI – – – – 0.586 2734
cPMC-SD 1.571 1.143 1.000 2.000 0.497 5×106

a NPE is computed as the minimum error along the curve subtracted from the maximum error along the
curve.
b Values taken from Ref. 73, Np refers to configuration state functions.
c Values computed from data in Ref. 71, Np refers to the approximate number of walkers in projector Monte
Carlo simulation.

instead selects configuration state functions (CSFs) individually and stochastically. With

only 2,734 CSFs, SA-MCCI yields an avoided crossing curve with a shape very similar

to FCI, though shifted by roughly 5 mEh. We also compare our results with the projector

Monte Carlo method (PMC-SD), which computes excited states sequentially by projecting

out lower roots in the imaginary time propagator.71 However, they report only three decimal

places for the seven points they compute, so direct comparisons we make to their results

are only approximate.
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Figure 3.3: Absolute energy errors (mEh) for the avoided crossing of LiF computed with
various methods. For all ACI methods, values of σ = 10 and 1.0 mEh are used and plotted
as grey dashed lines. Solid lines represent errors in the ground X 1Σ+ state, while dashed
lines represent errors in the 2 1Σ+ excited state. The custom basis from Ref. 112 was used
with two 1s-like molecular orbitals frozen.

As noted, the MS-ACI and SC-ACI methods require first a state-specific optimization

of each root of interest. While these states are ultimately made orthogonal in both methods,

the degree of nonorthogonality prior to this step can spoil the computation in a number of

ways. The convergence in the state-specific optimization can lead roots to either collapse

into lower ones or to form spurious admixtures of several near-degenerate roots, even if

their optimization uses root-following. For SC-ACI, both issues effectively do not guaran-

tee that a given root is properly represented in the final combined Hamiltonian. For MS-

ACI, root collapse causes incurable linear dependencies in the multi-state Hamiltonian, and

states with significant overlap can lead to meaningless solutions in the multi-state solution.

These problems typically arise for small determinant spaces, and their threat diminishes as

the individually optimized states approach the exact solution. As a result, these two meth-

ods fail in the avoided crossing region. In the following we focus only on the OC-ACI and

SA-ACIavg methods. As shown in the previous example, the SA-ACImax method has an

efficiency that is comparable or smaller than that of the SA-ACIavg scheme, therefore, we

do not report results for it.

SA-ACImax results are not reported since this In Figure 3.3, we report absolute en-
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ergy errors in mEh for CISDT, CISDTQ, OC-ACI, and SA-ACIavg for σ = 10 and 1 mEh.

CISDT and CISDTQ fail to describe the multireference character of the covalent state with

the same accuracy as the ionic state, while both states are described to similar accuracy in

the ACI methods. For σ = 10 mEh, the OC-ACI(10) and SA-ACIavg(10) produce errors

near 10 mEh throughout the curve, with deviations up to about 2 mEh near the avoided

crossing point. Decreasing σ to 1 mEh gives nearly identical results for the two ACI meth-

ods, which both consistently yield an error near the preselected value without noticeable

deviations at this scale.

In Table 3.3 we report the number of variational parameters in each computation in

addition to the average error of each state, the non-parallelism error (NPE) and the standard

deviation (σ∆E) of each curve with respect to FCI. The OC-ACI(10) and SA-MCCI produce

an avoided crossing curve of similarly good quality using a modest number of parameters.

To achieve a comparably accurate PES, PMC-SD requires each state to be computed to

within 1 mEh, while all ACI methods can produce a given σ∆E value by computing each

state with an order of magnitude less accuracy. The systematic improvability allows the

ACI methods to compute the avoided crossing with NPEs on the order of 40 µEh.

The OC-ACI and SA-ACIavg give reasonably similar energy errors for all chosen σ

values, but with OC-ACI requiring fewer determinants without exception. Furthermore, the

OC-ACI shows consistently better NPEs for all σ values shown. This result is somewhat

surprising in that the SA-ACIavg is very well suited for this particular problem. While the

determinantal character for each state is different and swaps at the avoided crossing point,

the total determinantal makeup of both states in combination remains fairly unchanged

throughout dissociation. Despite the determinantal basis for the SA-ACIavg Hamiltonian

remaining fairly constant, it still shows greater NPEs with respect to OC-ACI because it

lacks the direct state-specific error control of OC-ACI.
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3.3.3 Extended polyenes

The trans-polyene series (CnHn+2) is a set of nearly one-dimensional conjugated carbon

chains, which contain numerous low-lying π-π∗excited states often with double excitation

character. As the chain length increases, the energies of π bonding and anti bonding orbital

pairs converge, which further enhances the strong correlation effects present in these low-

lying excited states.117–119

In the following sections, we first compare all ACI methods with available FCI bench-

marks on octatetraene to establish the capacity of each method to describe these low-lying

transitions. Next, we apply the OC-ACI to a series of extended polyenes.

Comparison of Methods

To investigate the performance of each ACI method on large numbers of dense states,

we studied the eight lowest singlets of octatetraene, the all-trans polyene with eight carbon

atoms and four double bonds. The geometry was obtained from a DFT optimization at

the B3LYP/cc-pVDZ level of theory using C2h symmetry.120 The ACI and CASCI compu-

tations employed a CAS(8,16) π-double active space in which all eight π electrons were

correlated in sixteen π bonding and anti bonding orbitals, all within the cc-pVDZ basis.

To achieve fast convergence in ACI computations, we use Pipek-Mezey split-localized

orbitals121, 122 in which the active π orbitals occupied in the initial RHF reference wave

function are localized separately from the active π orbitals unoccupied in the reference.

Additionally, the ACI computations were performed without symmetry for better localiza-

tion, though we report the results using C2h labels.

The CAS(8,16) is within the scope of CASCI calculations, allowing direct comparison

of absolute and excitation energies computed with ACI. Table 3.4 shows the absolute and

excitation energy errors with respect to CASCI of the lowest 8 states of octatetraene for

all ACI methods computed with σ = 10 and 1 mEh. Similarly with the LiF example, the

unconstrained ACI computation required for MS-ACI and SC-ACI suffered from incurable

variational collapse for σ = 10 mEh. In this case, the 2 1Bu state collapses into the 1 1Bu
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Table 3.4: Comparison of excited state ACI methods for the lowest eight singlet electronic
states of octatetraene (C8H10) computed with σ = 1 and 10 mEh. All computations use
split-localized orbitals, with an active space including all sixteen π orbitals defined in the
cc-pVDZ basis. We report both the excitation energy errors (∆Eex) and absolute energy
errors (∆Eabs) with respect to FCI in mEh.

State Average
X 1Ag 2 1Ag 1 1Bu 2 1Bu 3 1Ag 4 1Ag 3 1Bu 5 1Ag |∆E|

∆Eex(σ = 10 mEh)
SA-ACIavg 11.97 9.41 6.75 9.40 12.06 8.99 7.43 9.43
SA-ACImax 12.96 12.13 6.12 12.69 12.52 11.76 9.93 11.16
SC-ACI 4.95 4.27 3.45 4.49 4.32 3.76 4.10 4.19
OC-ACI −2.53 −1.85 −0.51 −0.62 −2.15 −2.20 −0.22 1.44

∆Eex(σ = 1 mEh)
SA-ACIavg 0.85 0.71 0.68 0.73 0.91 0.75 0.77 0.77
SA-ACImax 0.60 0.57 0.50 0.54 0.56 0.56 0.59 0.56
SC-ACI 0.40 0.37 0.35 0.37 0.38 0.36 0.38 0.37
MS-ACI −0.22 −0.20 −0.18 −0.18 −0.22 −0.23 −0.14 0.20
OC-ACI −0.30 −0.24 −0.20 −0.23 −0.26 −0.27 −0.19 0.24

∆Eabs(σ = 10 mEh)
SA-ACIavg 3.34 15.30 12.75 10.09 12.74 15.39 12.33 10.76 11.59
SA-ACImax 3.67 16.63 15.81 9.79 16.36 16.20 15.45 13.61 13.44
SC-ACI 3.65 8.61 7.92 7.10 8.14 7.97 7.41 7.76 7.32
OC-ACI 12.66 10.13 10.81 12.15 12.04 10.51 10.46 12.44 11.40

∆Eabs(σ = 1 mEh)
SA-ACIavg 0.26 1.12 0.98 0.95 0.99 1.17 1.02 1.04 0.94
SA-ACImax 0.21 0.81 0.78 0.70 0.75 0.77 0.77 0.79 0.70
SC-ACI 0.19 0.59 0.56 0.54 0.56 0.57 0.55 0.57 0.52
MS-ACI 1.14 0.92 0.95 0.96 0.96 0.93 0.91 1.00 0.97
OC-ACI 1.18 0.88 0.94 0.99 0.96 0.93 0.91 1.00 0.97

state, so MS-ACI is not feasible, but we do report SC-ACI values determined from the

seven roots the unconstrained ACI did converge. For σ = 1 mEh, all correct roots were

found in the unconstrained ACI.

In Table 3.4, we see that OC-ACI and MS-ACI consistently give the lowest errors in

excitation energy, 0.24 and 0.20 mEh respectively, compared to SC-ACI (0.37 mEh), SA-

ACIavg (0.77 mEh) , and SA-ACImax (0.56 mEh) for σ = 1 mEh. However, SC-ACI con-
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Figure 3.4: Absolute energy errors (mEh) and number of determinants required for the
lowest eight singlets of octatetraene computed with all excited state ACI methods with
σ = 1.0. The ground electronic state is labeled in each calculation, while all excited states
are unlabeled.

sistently gives the lowest absolute error for each state, and for many states the SA-ACI

methods give lower absolute errors than do the state-specific ACI methods. Most notably,

the ground state absolute energy errors for SC-ACI (0.19 mEh), SA-ACIavg (0.26 mEh),

and SA-ACImax (0.21 mEh) are significantly lower than the corresponding error of OC-

ACI (1.18 mEh) and MS-ACI (1.14 mEh), which are much closer to the value predicted by

σ . It is this over-stabilization of the ground state in SC-ACI and SA-ACI methods which

causes the large errors in the excitation energies. In fact, OC-ACI and MS-ACI both give

an average absolute energy error of 0.97 mEh, close to σ = 1.0 mEh, with little deviation

from each state, resulting in very accurate excitation energies.

As mentioned with the previous methylene example, the state-specific ACI methods

perform better for relative energies as they allow each state to be described by a different

number of determinants. Figure 3.4 shows the absolute error with respect to CASCI of

each of the eight states computed with all ACI excited state methods for σ = 1.0 mEh,

plotted against the required number of determinants. Note that SC-ACI, SA-ACIavg, and

SA-ACImax use the same number of determinants for all states, while OC-ACI and MS-ACI

do not. The determinantal contributions of higher roots in the SC-ACI, SA-ACIavg, and

SA-ACImax methods cause the observed energy lowering in the X 1A1
g ground state, while
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the state-specific ACI methods give errors close to σ = 1 for all states considered, though

differences in excitation energy errors are less than 1.0 mEh at this scale. Furthermore,

the state-specific ACI methods require much fewer determinants to achieve the desired

accuracy and ultimately give superior tunability and error control in comparison to the

state-averaged schemes.

The n-polyene series

Extended polyenes (C2nH2n+2) and their excited states serve as good models for many

interesting materials and various biological chromophores, including carotenoids, due to

their complex π−π∗ excitations. As the polyene chain length increases, excitation energies

systematically decrease as doubly excited determinants become increasingly important in

ground and excited state wave functions, which necessitates explicit treatment of strong

correlation for their correct description.65, 119, 123–128

We use OC-ACI to describe the lowest four singlets of (C2nH2n+2) where n = 4, 6,

8, 10, and 12, with n representing the number of double bonds in the polyene. Our OC-

ACI calculations are run in a π valence space, corresponding to CAS(2n,2n), with split-

localized orbitals and σ = 10 mEh. Optimized geometries were obtained at the B3LYP/cc-

pVDZ level of theory with C2h symmetry. For n = 12, we use a prescreening threshold

value of τV = 10−8 in building the external space F(k) which introduces an error negligible

with respect to the chosen value of σ = 10 mEh. For these polyenes, we report the excited

states with C2h symmetry labels in addition to the particle/hole symmetry label in order to

distinguish states characterized by ionic (+) or covalent (−) valence structures, as is done

conventionally (see Ref.64 for more details). Moreover, this labeling distinguishes the

1 1B−u state, which we compute, from the 1 1B+
u state, which we do not compute, despite

being the second excited state in experimental results. We do not compute the 1 1B+
u state

because it is largely described by π−σ excitations outside of our selected active space.

Table 3.1 shows vertical excitation energies for the 2 1A−g , 1 1B−u , and 3 1A−g states

as computed with CASCI, OC-ACI(10), DMRG with a projected atomic orbital basis
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Table 3.5: Vertical excitation energies (eV) for the polyene series (C2nH2n+2) computed
with various methods. All ACI, CASCI, and DRMG methods use a CAS(2n,2n), and the
NOCI calculation was performed with 10 nonorthogonal determinants as described in Ref
129. The OC-ACI computation uses σ = 10 mEh.

DMRG PAO- DMRG CASCI-
n CAS State CASCI OC-ACI CASCI64 CASSCF64 NOCI129 MRMP118

2 1A−g 4.97 4.96 6.33 4.69 5.09 4.26
4 (8,8) 1 1B−u 6.13 6.12 7.49 5.88 5.30

3 1A−g 6.82 6.86 7.95 6.60 7.20

2 1A−g 3.97 3.97 5.40 3.76 4.10 3.19
6 (12,12) 1 1B−u 4.94 4.95 6.30 4.74 3.98

3 1A−g 5.77 5.82 7.01 5.59 5.12

2 1A−g 3.42 3.43 4.90 3.25 3.46 2.50
8 (16,16) 1 1B−u 4.18 4.18 5.60 4.03 3.10

3 1A−g 4.81 4.85 6.28 4.78 3.99

2 1A−g 3.12 4.60 2.93 2.94 2.04
10(20,20) 1 1B−u 3.71 5.15 3.57 2.51

3 1A−g 4.31 5.71 4.20 3.11

2 1A−g 3.04 4.42 2.73 1.70
12(24,24) 1 1B−u 3.45 4.85 3.25 2.05

3 1A−g 3.89 5.31 3.78 2.45

(DMRG-PAO-CASCI),64 DMRG with orbital opitmization (DMRG-CASSCF),64 non-orthogonal

CI (NOCI),129 and the multireferece Møller–Plesset method with a CASCI reference (CASCI-

MRMP).118 The DMRG methods used the same active space as the OC-ACI, and CASCI-

MRMP used a subset of the π valence space in a CAS(10,10) for all polyenes and subse-

quently correlated the remaining orbitals perturbatively.118 Finally, the NOCI results were

obtained from ten nonorthogonal basis states, the selection of which is detailed in Ref. 129.

The CASCI and OC-ACI were run with identical geometries and a cc-pVDZ basis, while

comparison to the DMRG methods is complicated by slightly differing geometries despite

using the same basis set and geometry optimization procedure. The CASCI-MRMP and

NOCI correlate orbitals outside the CAS(2n,2n) active space, so any agreement with those

values is a direct result of the extent of active-virtual correlation.
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Figure 3.5: Vertical excitation energies (eV) for five polyenes computed with OC-ACI(10)
and with CASCI for the first three polyenes.

For the available CASCI values, the OC-ACI(10) vertical excitations are accurate to

less that 0.01 eV on average. OC-ACI(10) and DMRG-CASSCF consistently differ by

about 0.2 eV, suggesting some systematic error between the two as a result of slightly

different geometries. The effect of different geometries is also supported by the similar

error seen between DMRG-CASSCF and CASCI, where normally it is assumed that these

two methods give the same quality of result for the active spaces used. As expected, the

NOCI and CASCI-MRMP vertical excitation energies are consistently smaller that ACI and

DMRG results, further indicating that additional treatment of external orbitals is required—

particularly for larger polyenes. Fig. 3.5 shows the decreasing excitation energies with

increasing polyene length as computed by OC-ACI(10) and CASCI. Furthermore, the ex-

cellent agreement demonstrates the ability of OC-ACI to replace CASCI for computing

ground and excited states with large active spaces.

3.4 Conclusions

In this study, we have detailed five methods for computing challenging excited states

using the ACI formalism. These excited state methods iteratively optimize either a sin-

gle space of determinants or separate determinant spaces in describing multiple electronic
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states. We rigorously compared each method using challenging excited-state benchmarks

characterized by strong correlation and double excitation character, including methylene

excited states, the LiF avoided crossing, and many excited states of large polyenes. In these

comparisons, we find that the OC-ACI method is generally the most effective and widely

applicable because it shows the best error prediction and tunability while still maintain-

ing orthogonality among solutions. We attribute its success to its flexibility; by allowing

separate determinant spaces to describe each electronic state, the method can use the ap-

propriate determinants for each state such that their preselected errors are the same. We

demonstrate the ability of OC-ACI to compute large polyenes, with up to a CAS(24,24),

with remarkable error cancellation, in addition to computing excited states with accuracy

competitive with DMRG.

In its current form, OC-ACI is well-suited to compute excitation energies of small

molecules to high accuracy. Despite its remarkable error cancellation, computations in

larger basis sets including extrapolations to the complete basis limit are required for ex-

perimental predictability. For small systems, OC-ACI could be a very valuable tool in the

benchmarking of excited states, where single-reference methods like CC3 currently repre-

sent the highest applied level of theory. In application to larger systems (>100 orbitals),

OC-ACI and SA-ACI are most useful in generating reference wave functions which then

need to be connected to theories of dynamical correlation to enable comparison to experi-

ment. We are actively working on these extensions.

While this article was in revision, we noticed a similar study posted to the arXiv130

in which the aforementioned HCI is adapted for excited states. This work employs an

algorithm similar to SA-ACI in addition to a semi-stochastic multireference perturbation

theory, all which allow the authors to accurately compute excitation energies using large

basis sets.
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Chapter 4

Combining ACI with DSRG

4.1 Introduction

In order to make meaningful predictions about the electronic properties of molecules,

theoretical computations need to satisfactorily converge both correlation and basis set ef-

fects. By correlation, we refer to its normal decomposition into a static component, defined

by the strong mixing of electronic configurations typically resultant from degeneracies, and

a dynamical component, which includes short-range Coulombic and long-range dispersion

interactions.1, 2 Molecules with more than 2–4 strongly correlated electrons require a mul-

tireference method, wherein a specialized approach is adopted for both types of correlation.

Static correlation is treated rigorously with a multiconfigurational reference wave function

defined in a set of active orbitals, commonly from complete active space configuration

interaction (CASCI) or CAS self consistent field (CASSCF),3–5 while more affordable per-

turbative or non-perturbative many-body theories are invoked for dynamical correlation.

Unfortunately, both correlation treatments will fail once the number of active orbitals be-

comes too large, usually around 18 active orbitals for CASCI, relegating applications of

multireference methods to regimes in chemistry where static correlation is defined in just a

few orbitals. In this article, we introduce a new strategy capable of treating static and dy-

namical correlation using large active spaces and basis sets to approach chemical accuracy

(≤ 1 kcal mol−1 error).
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The limitations of CASSCF and CASCI arise from the number of variational parameters

growing combinatorially as the number of electrons and orbitals in the active space. New

techniques can achieve a sub-combinatorial cost, or a significant reduction of the prefactor,

by exploiting the sparse structure of CASCI wave functions, enabling reliable computa-

tions using significantly larger active spaces.6–32 However, when augmenting any CAS

method with a theory of dynamical correlation, numerical and practical concerns arise.

Most multireference theories suffer from numerical instabilities known as “intruder states”

which spoil computations with unphysical contributions difficult to systematically cure.33

Additionally, theories of dynamical correlation require the computation of high-order den-

sity matrices and cumulants, causing methods like CAS second-order perturbation theory

(CASPT2)34 to scale as the ninth power of the number of active orbitals, limiting these

methods to moderate active space sizes (<20–25). The development of approximate CAS

techniques has as of yet outpaced the ability for dynamical correlation methods to make

use of them.

Some recent work has connected large active space (≥ 20 orbitals) wave functions

with dynamical correlation treatments, including active space DFT approaches35–39 and

the combination of density matrix renormalization group with perturbative40–42 and CI-

based43 theories. Recently, the adiabatic connection has been used to compute correlation

energies from CAS wave functions and only requires two-body density matrices.44, 45 To

our knowledge, none of these approaches have treated the coupling of static and dynam-

ical correlation, which we refer to as the relaxation effect of the reference wave function

in response to a dynamical correlation treatment, the importance of which is not fully un-

derstood.46 For this reason, and other drawbacks related to cost, density functional de-

pendence, and potential neglect of static correlations, the development of a systematically

improvable, numerically stable, and computationally efficient multireference theory with

dynamical correlation is still an open problem.
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4.2 Theory

We seek a complete treatment of electron correlation by, for the first time, interfacing

two of our recently developed theories, the adaptive CI (ACI)22, 23 and the second-order

perturbative variant of the multireference driven similarity renormalization group (DSRG-

MRPT2).47–51

4.2.1 Adaptive CI

The goal of the ACI procedure is to converge an approximate CASCI wave function,

|ΨM〉= ∑
Φµ∈M

Cµ |Φµ〉 (4.1)

in an iteratively selected determinantal model space, M, such that the variational energy

error approximately matches a user defined parameter, σ , i.e.

|ECASCI−EM| ≈ σ (4.2)

where EM = 〈ΨM|Ĥ|ΨM〉 is the ACI energy. The ACI wave function is built by iteratively

growing a set of reference determinants (P) and screening its first order interacting space

(F) using perturbative energy estimates. To ensure error control, the screening is done

by excluding determinants with the smallest energy estimates such that the accumulation

of these perturbative corrections approximately equals the energy criterion, σ . Additional

details of the algorithm are presented elsewhere,22, 23 but we emphasize that the iterative

procedure rigorously samples the total CASCI wave function to very closely meet the con-

dition of eq (4.2) and yield a compact wave function whose energy error is controlled a

priori by the user. As a result, ACI wave functions for different electronic states can be

made with near-equal accuracy to approach perfect error cancellation in relative properties,

such as singlet-triplet splittings.22, 23 We have previously illustrated this error cancellation

in systems using up to 42 active orbitals.22

In our previous implementation, all determinants ΦI in F were stored simultaneously
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during the screening step of the algorithm, which incurs a memory cost of O(|P|N2
ON2

V )

where |P| is the number of reference determinants in the set P, and NO and NV are the

numbers of the occupied and virtual orbitals in the active space, respectively. In addition

to being the storage bottleneck, screening is usually the most expensive step with a com-

plexity of O(|P|N2
ON2

V log(|P|N2
ON2

V )) due to sorting of all energy estimates. This storage

becomes prohibitive if low values of σ are used in large active space computations. We

have now implemented a batched selection algorithm that can mitigate this memory bottle-

neck by sequentially screening subsets of F using a scaled σ value, summarized in Figure

4.1. The number of batches, NB, is chosen to be the smallest value such that an approxi-
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Figure 4.1: Summary of batched screening algorithm. (A) Determinants in the first batch
are generated from a subset of the single and double excitations from the reference P space.
The excited determinants in the batch are sorted and screened using a scaled σ value,
with only selected ones being stored. (B) The procedure in A is repeated for all batches
sequentially, with all selected determinants stored. (C) These selected determinants are
merged and sorted, and a final screening is done to ensure that the total correlation energy
ignored corresponds to the original σ value.

mate estimate of the memory requirement of |F |NB
can be handled by a single node. For each

batch B∈ {0,1, . . . ,NB−1}, we iterate through all determinants in P, compute a hash value

for each single and double excitation, h(ΦI), and store this determinant with its associated

energy estimate only if h(ΦI) mod B = 0. With the resulting subset of F , we do our con-

ventional screening described previously, but scaling σ by 1
10NB

to avoid over-truncation of
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each batch, where the factor of 1
10 is determined empirically. Once all batches have been

screened, the surviving determinants are merged, and the accumulated energy estimates of

determinants excluded are summed among batches to obtain an estimate of the total corre-

lation being ignored. With the merged determinants, we do a final screening with σ shifted

by the energy already screened from the batches. The remaining determinants merged with

the reference P define the full model space M. Importantly, our hash function is evenly dis-

tributed among determinants so each batch contains fairly equally-weighted determinants

and is thus able to exactly match results of the original algorithm. What results is memory

storage of O( 1
NB
|P|N2

ON2
V ) and a reduced complexity of O(|P|N2

ON2
V log( 1

NB
|P|N2

ON2
V )).

4.2.2 Implementation of RDMs

To connect ACI reference wave functions to the DSRG-MRPT2 perturbative treatment,

the 1-, 2-, and 3- body reduced density matrices (RDMs) are required. Introducing second

quantized creation (â†) and annihilation (â) operators, a generic k-particle RDM (γ pq...
rs... )

may be expressed as

γ
pq...
rs... = ∑

ΦI ,ΦJ∈M
〈ΦI| â†

pâ†
q . . . âsâr |ΦJ〉C∗I CJ (4.3)

Storage and contraction of the 3-RDM scales only as O(N6
A), where NA is the number of

active orbitals. This moderate scaling enables the use of large active spaces unreachable

with conventional many-body dynamical correlation methods, for which active spaces be-

yond 20–24 active orbitals are impossible to treat without invoking approximations that can

potentially introduce artificial numerical problems.40

Despite this reduced scaling, the construction of the 3-RDM from a selected CI (sCI)

wave function is itself a formidable task. As is commonly done in sCI diagonalization pro-

cedures, intermediate residue lists, which map all Slater determinants in a set to all possible

determinants with one or two fewer electrons,52 can be used to predetermine all non-zero

elements of the Hamiltonian matrix or of the RDMs. Our ACI implementation adopts this
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strategy for the 1- and 2- RDMs and in directly building the sigma vector σ = Hc during

diagonalization, as the storage scales at most as O(NdetN2
el) for Ndet determinants and Nel

active electrons. For constructing the 3-RDM, storage of these lists become impractical

since triple annihilations are required, increasing the memory scaling to O(NdetN3
el). These

lists also become prohibitive for the lower RDMs and for building σ for very large (≥ 107)

determinant spaces. We have implemented a more memory efficient algorithm similar to

the one described in ref 18, where we organize determinants by common occupation strings

of α or β electrons. For components of the RDMs whose indices all correspond to the same

spin, an element is easily computed by looping over determinants only with the same oc-

cupation in the opposite spin string, and performing a bitwise comparison to determine

the appropriate creation/annihilation indices for evaluating equation (4.3). For mixed spin

components, a loop over all α strings is required to determine which strings differ by the

desired number of occupation differences. Then, a double loop only over determinants

containing those α strings with the correct number of substitutions for the particular RDM

component is performed to compute eq (4.3). Thus, the storage requirement changes only

to twice the number of determinants, generally less than the 3-RDM itself, despite formally

costing O(N2
ON2

V NαK2
α +N2

ON2
V Nβ K2

β
) in computational time, with Nα/Nβ referring to the

number of α/β strings, and Kα/Kβ the average number of determinants per α/β string.

4.2.3 DSRG-MRPT2

All theories based on the MR-DSRG avoid intruder states by gradually block-diagonalizing

the Hamiltonian (Ĥ) using a unitary transformation dependent on a continuous flow param-

eter, s,

Ĥ→ H̄(s) = Û(s)ĤÛ†(s) s ∈ [0,∞) (4.4)

The unitary operator is written in a connected form as Û(s) = eÂ(s) = eT̂ (s)−T̂ †(s), where the

cluster operator T̂ (s) is analogous to the coupled cluster operator.53, 54 In the DSRG, T̂ (s)
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is determined implicitly by solving a set of nonlinear equations47

[H̄(s)]N = R̂(s) (4.5)

where the source operator, [R̂(s)], drives the transformation, and the many-body condition

expressed by eq (4.5) implies exclusive inclusion of nondiagonal (N) terms which couple

the reference to its excited configurations. The DSRG total energy is then computed as,

E(s) = 〈ΨM| H̄(s) |ΨM〉 (4.6)

Performing an order-by-order expansion of eqs (4.4)–(4.6), we can write the second-order

MR-DSRG energy48 as,

E(2)(s) =
1
2
〈ΨM| [H̃(1)(s), Â(1)(s)] |ΨM〉 (4.7)

where the modified first-order Hamiltonian, H̃(1)(s), is defined as H̃(1)(s) = Ĥ(1)(s) +

[R̂(1)(s)]N.

For our zeroth-order Hamiltonian, we use a spin-dependent Fock operator to compute

Ms = 0 states of both singlets and triplets. We represent the Fock operator in a semicanon-

ical basis so that core-core, active-active, and virtual-virtual blocks are diagonal, resulting

in a diagonal zeroth-order Hamiltonian. Our choice of a spin-dependent Fock operator and

the restriction to Ms = 0 states ensure that our dynamical correlation treatment will not

introduce spin contamination nor yield an imbalanced treatment between states of different

spins.55, 56

We will report the DSRG-MRPT2 energy from two procedures. Firstly, we can com-

pute the expectation value defined in eq (4.6) by coupling the reference, defined in a set of

active orbitals, with the full set of non-frozen occupied and virtual orbitals using eq (4.7).

This energy is the unrelaxed energy since the reference wave function is constant, and the

corresponding approach can be classified as a diagonalize-then-perturb method. Alterna-

tively, the second-order effective Hamiltonian, H̄(2)(s), can be rediagonalized to yield the
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relaxed energy and wave function in a diagonalize-perturb-diagonalize scheme, each di-

agonalization done with ACI. In principle, the relaxation of the wave function should be

self-consistently converged in order to approach the FCI solution, absent of approximations

in ACI and DSRG. We find that this convergence is fast, so in this work we report the par-

tially relaxed solutions in which the relaxation procedure is done once. Due primarily to

cost, reference relaxation is generally ignored in CASPT2 and fully internally-contracted

multireference CI methods,46 but the relaxation in DSRG-MRPT2 is done at the same cost

as computing the reference wave function, similar to the state-specific MRPT2 developed

by Mao et al.57 and the CIPT2 of Celani and coworkers.58

Previous combinations of sCI with perturbation theory (sCI+PT) usually employ both

the sCI and PT within the same set of orbitals, where contributions from determinants

not selected in the CI wave function are computed with Epstein-Nesbet perturbation the-

ory (ENPT) in either a deterministic, stochastic, or hybrid approach.18, 19, 29, 59–61 With

highly optimized implementations, sCI+PT can essentially reproduce FCI energies for

small molecules with around 30 electrons in up to 100 orbitals. Similar success has been

demonstrated in combining full-basis sCI with fixed-node diffusion Monte Carlo meth-

ods.62, 63 The PT2 variants typically employed in sCI+PT are decontracted and scale with

the complexity of the reference wave function. Our DSRG-MRPT2 approach requires only

active space 1-, 2-, and 3-RDMs, involves simple contractions, and can take advantage

of density fitting. By employing our dynamical correlation treatment in a different set of

orbitals than the sCI, we are able to target molecules requiring treatment of up to 138 elec-

trons in over 1000 orbitals. Furthermore, the active space formalism we adopt allows us to

easily connect ACI to higher-orders of perturbative and non-perturbative DSRG variants.

Similar to sCI+PT methods, we can use second-order ENPT (ENPT2) to correct for un-

selected determinants in the diagonalization of either the original or DSRG-MRTP2 trans-

formed Hamiltonian to improved unrelaxed and relaxed energies, respectively. As reported

in previous work, this procedure does not incur any additional cost because the energy con-
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tributions are already computed during the screening procedure in ACI. The application

of an a posteriori ENPT2 correction will reduce errors associated with using an incom-

plete determinant basis during diagonalization. We expect this correction to cancel nearly

exactly when computing energy differences between states containing the same number

of electrons but to be important in obtaining accurate absolute energies and in computing

relative quantities between systems with different numbers of electrons. In this work, we

report ACI-DSRG-MRPT2 with this correction by default unless noted otherwise.
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Figure 4.2: Size consistency errors [En(σ)− n× E1(σ)] for n non-interacting benzene
molecules computed with relaxed ACI-DSRG-MRPT2 using CAS(6n,6n) active spaces and
a cc-pVDZ basis set. Each curve is labeled by its σ value in mEh.

An additional advantage to the DSRG-MRPT2 approach is that its equations contain

only connected terms. This feature ensures size extensivity for unrelaxed, partially relaxed,

and fully relaxed procedures when the reference wave function itself is multiplicatively

separable, and its size consistency with exact references has been previously demonstrated

numerically.48 However, ACI references with σ > 0 are not multiplicatively separable

and break size extensivity in both relaxed and unrelaxed DSRG-MRPT2. We investigate

size consistency errors of relaxed ACI-DSRG-MRPT2 with and without the ENPT2 cor-

rection during the relaxation procedure for n noninteracting benzene molecules in Figure

4.2. Without the ENPT2 correction, we see that the size consistency error can be as large

as about −8 mEh when σ = 3.0 mEh which uses 19 determinants for n = 1 (CASCI =

400), and 1461 determinants for n = 4 (CASCI = 7.3×1012). The determinantal space for
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n = 1 is too small a dimension for ACI to reliably target an error of σ , causing negative

values for the unperturbed size consistency errors due to the higher accuracy for larger n.

Decreasing σ to 0.1 mEh leads to errors less than 0.3 mEh and requires 61 determinants for

n = 1 and 49,349 for n = 4. As expected, the ENPT2 correction significantly reduces the

size-consistency error by a factor of 10 on average. For the σ = 0.1 mEh case with n = 4,

the error is reduced to around 3 µEh. Generally, the size consistency errors in relaxed

ACI-DSRG-MRPT2 are well-controlled by the cumulative selection of the ACI and nearly

eliminated with application of the perturbative correction during relaxation. We do not ex-

pect size-consistency errors to affect the accuracy of the singlet-triplet gaps reported in this

work because of i) our inclusion of the ENPT2 correction and 2) the expected cancellation

of size-consistency error for states with the same number of electrons.

The combination of ACI and DSRG represents one of the few viable options for accu-

rately studying large molecules with complex electronic structures. ACI allows us to use

large active spaces while the DSRG provides an efficient, systematically improvable, and

intruder-free formalism to recover dynamical correlation. Beyond energies, the relaxation

procedure computes reference wave functions in response to dynamical correlation effects,

a feature neglected with MRPT2 and DFT approaches. These relaxed wave functions allow

us to probe electronic properties without inherent bias towards effects of static correlation.

4.3 The Oligoacenes

This balanced treatment of static and dynamical correlation is particularly important

in our application to the oligoacenes, or n-acenes for n linearly fused benzene rings. The

oligoacenes have long been of fundamental interest to chemists due to their semiconducting

and optical properties,64–74 and theoreticians have been studying their singlet-triplet split-

tings and ground state electronic structures with particular attention to the disputed emer-

gence of a stable, open-shell singlet ground state with increasing acene size.12, 22, 64, 75–86 In

characterizing the ground state, qualitatively different interpretations can arise depending
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on the degree of dynamical correlation included, with recent studies suggesting that pure

active-space methods tend to overestimate the radical character in these ground states.84–87

An accurate theoretical characterization of the oligoacenes is complicated, however, by (i)

strong correlation in the π/π∗ manifold, (ii) their size, prohibitive for many ab initio meth-

ods, and (iii) the large basis sets required for experimental comparisons. For these reasons,

a chemically accurate prediction of the singlet-triplet splittings and precise descriptions of

ground states have remained elusive to theoretical techniques. The application of ACI-

DSRG represents an important step in understanding fundamental electronic properties of

oligoacenes.

4.3.1 Computational Details

Singlet and triplet state geometries for the oligoacenes, reported in the supplemental

information, were optimized at the UB3LYP/6-31G(d) level of theory and are generally

the same as those reported by Hachmann and co-workers.76 Analytic Hessians were com-

puted with ORCA88 to ensure stability of our geometries and to compute zero-point vibra-

tional energy corrections (ZPVEs). The ACI-DSRG-MRPT2 approach was implemented

in FORTE, our freely available software, which is run as a plugin to PSI4.89 All ACI-

DSRG-MRPT2 computations use restricted Hartree-Fock (RHF) and restricted open-shell

HF (ROHF) orbitals for singlet and triplet computations, respectively, and the full π/π∗

manifold in the active space, resulting in a CAS(4n+2,4n+2), for n fused benzene rings.

We use the conventional notation of CAS(e,o), for e active electrons and o active orbitals.

To further compress CI expansions, we separately localize doubly occupied, singly oc-

cupied, and virtual active orbitals,90 which requires the use of C1 symmetry. The ACI

computations of the reference use a prescreening threshold of τV = 10−12 Eh (see ref 23)

for all acenes except heptacene which required τV = 10−7 Eh, which is still safely above

the corresponding value of σ . Our ACI-DSRG-MRPT2 computations are run in the cc-

pVXZ, (X = D, T, Q) basis sets,91, 92 with all 1s-like orbitals on carbon atoms treated
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with the frozen core approximation. For all computations, we use density fitted integrals

and a DSRG-MRPT2 implementation specialized for three-index integrals.50 We use the

corresponding cc-pVXZ-JKFIT auxiliary basis93 for RHF/ROHF computations, and the

cc-pVXZ-RI auxiliary basis sets94, 95 for DSRG-MRPT2 computations of the correlation

energy.

In running ACI-DSRG-MRPT2, two user-specified parameters need to be considered.

The first is the energy importance criterion in ACI, σ , which we choose to be as small as

practically possible. We will show that our reported energies are converged with respect

to σ . The second parameter we need to select is the flow parameter, s, of the DSRG-

MRPT2. Guided by our previous work with the DSRG,48, 50 we use s = 0.5 E−2
h for all

computations in order to recover sufficient correlation without becoming vulnerable to

intruders. Figure 4.3 shows the absolute energies of singlet and triplet states, the corre-

sponding singlet-triplet splittings, and the norm of the T1 amplitudes as a function of s for

pentacene using σ = 5 mEh and the cc-pVDZ basis computed without a PT2 correction.

While increasing s in principle recovers increasingly more correlation, we observe minima

in the total energies for both the singlet and triplet states around s = 1 E−2
h . Interestingly,

the singlet-triplet splittings are not particularly stable in this region and do not stabilize

with derivatives approaching zero until about s = 4 E−2
h . Finally, the norm of the triplet

T1 amplitudes increases rapidly, particularly compared to those of the singlet, signaling a

potential imbalance in the expected stability of the total energy for each state. The value

s = 0.5 E−2
h we use in this work is safely away from potential divergences in the energy,

while still being close to the energy minima we compute in this test. It is important to note

that, despite having favorable stability and being fairly well converged in the absolute en-

ergy, the singlet-triplet splittings are susceptible to 1–2 kcal mol−1 changes for deviations

of 0.1–0.2 E−2
h in s. Preliminary results for naphthalene show that a composite MR-DSRG

scheme that combines perturbative and nonperturbative (i.e., CCSD-like) approximations

reduces the s-dependence of the singlet-triplet splitting and yields values that are within
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h value used in the remainder of this work.

1–2 kcal mol−1 from the DSRG-MRPT2 values reported in this work. These composite

MR-DSRG schemes are a promising direction to improve the accuracy of the dynamical

correlation treatment even for large system.
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4.3.2 Singlet-Triplet Splittings

0 5 10

σ (mEh) σ (mEh)

15 20
−2

−1

0

1

2

3
En

er
gy

 E
rro

r v
s.

 E
xp

er
im

en
t  

(k
ca

l/m
ol

)

2
3

4

5

6

cc-pVDZ

0 5 10 15 20
−2

−1

0

1

2

3
cc-pVTZ

2

3

4
5

6

0 5 10 15 20
−3

−2

−1

0

1

2 2

3
4

5

6

0 5 10 15 20
−3

−2

−1

0

1

2

2

3
4 5

6 R
el

ax
ed

U
nr

el
ax

ed

Figure 4.4: ACI-DSRG-MRPT2 error in adiabatic singlet-triplet splitting of n-acenes (2≤
n ≤ 6) with respect to experiment using cc-pVDZ (left) and cc-pVTZ (right) basis sets
and unrelaxed (top) and relaxed (bottom) references. The shaded area indicates a ±1 kcal
mol−1 error window, and no zero-point vibrational energy correction is included.

To understand the behavior of ACI-DSRG-MRPT2, we first analyze the errors in the

adiabatic singlet-triplet splittings (∆EST = ET−ES) of n-acenes (n = 2− 6) with both re-

laxed and unrelaxed references built with varying σ , using the cc-pVDZ and cc-pVTZ basis

sets. These computations use optimized geometries for both singlet and triplet states, and

we show the errors with respect to experimental adiabatic ∆EST
96–100 in Figure 4.4. For

unrelaxed references, the convergence of the error with respect to decreasing σ is slow and

at times erratic, particularly for naphthalene computed with cc-pVDZ. Upon relaxation of

the reference, we see that the errors become very stable, even for large σ (10 mEh). This

effect suggests that the reference relaxation can help alleviate inaccuracies from an overly-

truncated reference wave function. Even for small σ values, relaxation effects can be large

and tend to be larger for smaller acenes. Using the cc-pVTZ basis, the errors in the relaxed

energies for all acenes converge with decreasing σ and seem to loosely agree with the ex-

perimental values despite neglect of vibrational effects and the non-exact geometries we
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employ. The most important result from Figure 4.4 is that, using a large basis set and a re-

laxation procedure, we can use highly-truncated wave functions without incurring serious

energetic errors.

The stability of the relaxed singlet-triplet splittings can also be rationalized by consid-

eration of the corresponding absolute energies, reported in Table 1 and 2 of the supporting

information. The relaxed ACI-DSRG-MRPT2 energies computed with truncated refer-

ences show errors with respect to CASCI-DSRG-MRPT2 (σ = 0) that are approximately

equal to σ , an effect not seen in the unrelaxed energies. The ability of σ to control the error

of relaxed energies leads to a cancellation of truncation error in our singlet-triplet split-

tings, making this quantity almost σ -independent, as seen in the flat error curves of Figure

4.4 and in the exact cancellation of the PT2 corrections. Thus, our only expected error in

these splittings can be tied to inaccuracies of the DSRG-MRPT2, which has been shown

to be of similar magnitude to other second-order multireference perturbation theories. For

the simple case of naphthalene, for example, the relaxed CASCI-DSRG-MRPT2 absolute

energy is above the Møller–Plesset second order perturbation theory (MP2) value by only

about 8 mEh due to our finite value of s = 0.5 E−2
h used.

The singlet-triplet splittings in Figure 4.4 corresponding to the smallest σ used are

summarized in Table 4.1 along with available cc-pVQZ data, for which the largest number

of basis functions we could treat was 1350 for tetracene in the cc-pVQZ basis. We also

report singlet-triplet splittings for heptacene, requiring a CAS(30,30), although we were

restricted to σ = 10 mEh due to computational time and memory constraints. While we

do see that our relaxed energies are stable with respect to an increasing σ , the results from

heptacene are possibly affected by an overly truncated reference. Moreover, the heptacene

splittings are the only ones that increase with relaxation, which can be interpreted as sign

of an insufficient reference being corrected by relaxation. Generally, we see that relaxation

reduces splitting energies by up to 1 kcal mol−1, though decreasingly so with increasing

acene size. Increasing the basis set from cc-pVTZ to cc-pVQZ increases the splittings by



CHAPTER 4. COMBINING ACI WITH DSRG 111

over 1 kcal mol−1, indicating the importance of basis set effects in accurately predicting

these quantities. The singlet-triplet splitting values we report are all computed with the

ENPT2 correction for both relaxed and unrelaxed references. Singlet-triplet gaps without

the ENPT2 correction differ from the corrected values by at most 2×10−4 kcal mol−1 and

by about 10−6 kcal mol−1 in most cases (see Supporting Information for absolute energies

with and without the ENPT2 correction). Note also that the ENPT2-corrected absolute

energies are exactly identical to the uncorrected ones for σ = 0.

Table 4.1: Adiabatic singlet-triplet splittings (kcal mol−1) of the acene series computed
with ACI and ACI-DSRG-MRPT2 with both unrelaxed and relaxed references.

∆EST (kcal mol−1)
ACI-DSRG-MRPT2

n CAS(n,n) Nbf
a σb ACI unrelaxed relaxed

cc-pVDZ
2 (10,10) 170 0.0 68.3 63.7 62.3
3 (14,14) 232 0.0 43.6 41.7 40.3
4 (18,18) 294 1.0 30.9 27.7 27.0
5 (22,22) 356 3.0 21.4 18.7 17.7
6 (26,26) 418 5.0 13.6 11.7 11.2

cc-pVTZ
2 (10,10) 402 0.0 64.1 62.1 61.4
3 (14,14) 546 0.0 45.6 43.4 42.0
4 (18,18) 690 1.0 33.2 28.9 27.9
5 (22,22) 834 3.0 22.1 18.9 18.0
6 (26,26) 978 5.0 14.8 11.5 11.4
7 (30,30) 1122 10 9.5 7.2 7.7

cc-pVQZ
2 (10,10) 790 0.0 64.5 63.1 62.2
3 (14,14) 1070 0.0 47.0 44.4 43.2
4 (18,18) 1350 1.0 32.8 29.2 28.3

a Number of non-frozen orbitals.
b The ACI energy importance criteria (in mEh). See eq (4.2).

Additionally in Table 4.2 we summarize experimental and theoretical predictions of

∆EST from a variety of methods including DFT, CC, various multireference theories, and

ACI-DSRG-MRPT2 best estimates.36, 42, 76, 78, 101 None of the values reported in Table 4.2

include zero-point vibrational energy corrections (ZPVEs), which we show computed with

UB3LYP/6-31G(d). Aside from UB3LYP, the methods with the least amount of explic-

itly treated static correlation, coupled cluster with singles, doubles, and perturbative triples
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Table 4.2: Comparison of the best ACI-DSRG-MRPT2 adiabatic singlet-triplet splittings
(kcal mol−1) of the acene series with selected literature values

n-acene
Method 2 3 4 5 6 7 MUDn

UB3LYPa 62.6 41.8 27.7 17.9 10.9 5.6 2.9
CCSD(T)b 65.8 48.2 33.5 25.3 17.7 13.4 3.0
pp-RPA@Uc 66.2 45.7 32.1 22.6 15.2 9.0 1.2
CAS(8,8)-CISD+Qd 65.5 48.4 38.5 27.7 24.2 16.6 5.7
GAS-pDFT (FP-1)e 70.6 45.5 33.6 25.4 19.7 16.5 3.9
GAS-pDFT (WFP-3)e 64.7 43.1 28.8 20.5 15.0 10.0 1.4
DMRG-pDFTf 67.1 46.1 31.6 22.6 16.8 14.3 1.7
DMRG-CASPT2g – 39.0 27.2 18.8 13.3 – 3.2
DMRG-CASPT2h – 39.8 29.6 19.8 14.2 – 2.2
This work 62.2 43.2 28.3 18.0 11.4 7.7 2.5

ZPVE −3.4 −2.3 −1.8 −1.5 −1.3 −1.2
Exp. 60.9,i 61.0j 42.6,i 43.1k 29.4i 19.8±0.7l (12.4±1.2)m –

a Ref. 76. b Data for n = 2− 6 taken from ref. 78, value for n = 7 computed in this work. c Unre-
stricted geometry. Ref 65. d 6-31G basis; see ref 101. e tPBE functional and 6-31+G(p,d), Active space
partitioning in parentheses defined in Ref. 36. f tPBE functional and 6-31+G(p,d) Ref. 39. g CAM-
B3LYP/6-31G* geometry. Ref. 42. h CAS(12,12)-CASPT2-D geometries. Ref. 42. i Ref 96. j Ref 97. k

Ref 98. l Ref. 99. m Ref. 100, based on extrapolated correlations of triplet energies to singlet energies and
ionization potentials for lower acenes. n Mean unsigned deviation with respect to vibrationally corrected
experimental values.

[CCSD(T)], the particle-particle random phase approximation (pp-RPA), and CAS(8,8)-

CISD+Q, generally overestimate the splittings with errors increasing with acene length.

When ZPVE corrections are included, ACI-DSRG-MRPT2 consistently underestimate the

experimental gaps by 1.7–3.3 kcal mol−1, similar on average to the DMRG-CASPT2 re-

sults reported by Kurashige and Yanai42 which show larger (≈ 5 kcal mol−1) absolute er-

rors for the smaller acenes with respect to experiment. The DMRG-pDFT predicts singlet-

triplet gaps around 2–5 kcal mol−1 larger than our results and are on average closer to

the experimental values by 0.8 kcal mol−1 compared to ACI-DSRG-MRPT2 despite us-

ing a smaller basis set. Interestingly, DMRG-CASPT2 using the DFT-optimized geometry

and GAS-pDFT using an active space partitioning which maximizes the number of de-

terminants included both agree well with ACI-DSRG-MRPT2 with an average absolute

deviation of about 2 kcal mol−1.

As shown by the DMRG-CASPT2 data in Table 4.2, different geometry optimization
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procedures can cause deviations in ∆EST on the order of 1–3 kcal mol−1, suggesting that a

geometry optimization scheme more accurate than DFT is required to enable reliable com-

parisons with experiment. Additionally, most experimental data shown here involve solid

or liquid stabilizing matrices, and in some cases are derived from indirect measurements,

both having unpredictable deviations with respect to the zero-temperature, gas-phase re-

sults from calculations. In light of these complications in experimental comparisons, the

general agreement of the relaxed ACI-DSRG-MRPT2 and the DMRG-CASPT2 results of

Kurashige and Yanai42 when both computations use DFT optimized geometries is partic-

ularly encouraging considering that the ACI-DSRG-MRPT2 can be applied to heptacene

using a CAS(30,30). Furthermore, the absolute errors of the ACI-DSRG-MRPT2 with re-

spect to experiment do not systematically deviate as a function of acene length, with all

errors within a 1.6 kcal mol−1 window. This observed consistency would predict an exper-

imental singlet-triplet gap for heptacene to be roughly 2.5 kcal mol−1 above our reported

value.

4.3.3 Emergent Radical Character

One of the greatest benefits of our approach is that we can analyze the importance of

relaxation effects on electronic properties. We emphasize that the relaxed wave functions

and densities we present span the π/π∗ active spaces used in building the references, and

they are optimized in response to dynamical effects rather than being built in the full orbital

basis of the DSRG-MRPT2. To investigate the emergent radical character, and the impor-

tance of relaxation effects in accurately describing it, we compute the effective number of

unpaired electrons as defined by Takatsuka et al.,102, 103

# of unpaired electrons =
all

∑
i

ni(2−ni) (4.8)

for each natural orbital occupation number (ni) computed from relaxed and unrelaxed active

space densities. In our wave function analysis, we use a constant σ per number of electrons
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in order to ensure that each acene is computed to the same relative accuracy, so that our

interpretation of trends is unaffected by any potential differences in reference wave function

quality.
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Figure 4.5: Number of unpaired electrons for the ground state singlets of the oligoacenes
computed from unrelaxed (dashed line) and relaxed (solid line) ACI-DSRG-MRPT2 wave
functions. Sigma values are chosen to produce a constant 190 µEh error per electron.

Figure 4.5 shows the effective number of unpaired electrons for the acene series com-

puted from unrelaxed and relaxed references of ground state singlets, using STO-3G, cc-

pVDZ, and cc-pVTZ basis sets. Improving the dynamical correlation treatment by both

increasing the basis set and relaxing the reference reduces the observed radical character

dramatically. When used in small basis sets, this metric yields only qualitative information

about the relative radical character among acenes and is unable to provide any definitive in-

sight into when the degree of radical character is significant. In computing this metric more

accurately, we see quantitative evidence for the emergent diradical character in hexacene,

though we are cautious to map this metric directly to a chemical observable. While increas-

ing the correlation treatment and basis set quality is likely to further decrease this metric,

we already see relatively close agreement between results using cc-pVTZ and cc-pVDZ ba-

sis sets. Our observation of a slower emergence of radical character is consistent with the

previously reported notion84–86 that small basis sets and only an active-space treatment of

electron correlation can lead to overestimating the radical character and misinterpreting the

nature of the ground state. Ultimately, ACI-DSRG-MRPT2 results do show weak emergent
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radical character with acene length.
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Figure 4.6: Log-plot of the spin-spin correlation function using carbons 1 and 6 as ref-
erences, computed for the ground state singlet of pentacene with a relaxed ACI-DSRG-
MRPT2 wave function.

4.3.4 Analysis of Spin-Spin Correlation

As a final analysis, we characterize spatial correlations of spin by computing the spin-

spin correlation function (Ai j) between two atomic sites i and j, defined as Ai j = 〈Ŝi · Ŝ j〉−

〈Ŝi〉 · 〈Ŝ j〉, where each site is defined as an atom-centered, Pipek–Mezey localized104 car-

bon 2pz-like molecular orbital (plotted in the Supporting Information), and Ŝi is the total

spin operator for site i. This correlation function depends on the 1- and 2- RDMs of the

ACI wave functions, enabling us to understand the effect of reference relaxation on the

spin correlations, though it will not include spin correlations outside the π/π∗ manifold.

As shown in Figure 4.6, spin-spin correlation in pentacene is large at small distances but

quickly decays with a pattern characteristic of short-range antiferromagnetic order. Inter-

estingly, opposite-spin correlations are larger than same-spin correlations along the same
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edge, but have similar magnitudes along for the opposite edge. This result indicates that

any radical character in the acenes is localized along the long axes of the molecule and

stabilized with antiferromagnetic ordering, supporting previous hypotheses.86

In addition, we also compute the spin-spin correlation density with respect to site i

[Ai(r)], defined as,

Ai(r) = 〈Ŝ(r) · Ŝ j〉−〈Ŝ(r)〉 · 〈Ŝ j〉 ≈∑
j
|φ j(r)|2Ai j (4.9)

where Ŝ(r) is the total spin operator in real space and the last approximate equality assumes

that overlap terms can be neglected due to orbital localization. In Figure 4.7, we use this

metric to illustrate the spatial distribution and the effect of reference relaxation on spin-spin

correlation in pentacene. Dynamical correlation generally increases same and opposite

spin correlations for long range interactions, while decreasing the short-range opposite

correlations indicative of bonding. Thus, the relaxation effects enhance long-range effects

while reducing short-range ones. Note that our plots of the spin correlation density do

not explicitly reflect open shell character, but they do show short-range antiferromagnetic

order.

Unrelaxed

Relaxed

Difference

* *

*

*

*

*

Figure 4.7: Spin correlation densities plotted from unrelaxed and relaxed references, in
addition to the difference of relaxed and unrelaxed results. We show two reference sites,
marked with “*”, corresponding to central and terminal carbons consistent with the labeling
in Figure 4.6, with all reference sites plotted in the SI.
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4.4 Conclusions

In this work, we have introduced the ACI-DSRG-MRPT2 method for studying large-

scale strong correlation. Our approach uses the efficient, tunable ACI to recover static

correlation within large active spaces and the intruder-free DSRG-MRPT2 to recover dy-

namical correlation, which we can use to recompute active space wave functions with con-

sideration of dynamical correlation. We have shown that this strategy can be applied to

large active spaces, up to CAS(30,30), and for systems using up to 1350 basis functions

on a single node. We find that this procedure provides accurate energies and high-quality

wave functions suitable for quantitative analysis. Our application to the oligoacenes has

demonstrated that relaxation effects can significantly influence interpretation of chemical

properties, with notable reduction of radical character and a shifting of spin correlations to

longer distance.

In addition, the ACI-DSRG-MRPT2 is flexible. With reference wave functions formed

from determinants, we can easily apply our approach to excited states using state-specific

or multistate DSRG approaches.51 Furthermore, we are not limited to second order pertur-

bation theory, as the higher-order non-perturbative variants of the DSRG still only require

at most the 3-RDM. With further development of ACI, we can apply ACI-DSRG theories

to ground and excited states of even larger, more complex molecules.
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Chapter 5

Real-Time Propagation of Selected Configuration
Interaction Wave Functions Applied to Charge Migration

5.1 Introduction

In recent years, the development of high-intensity attosecond laser pulses1 has enabled

chemists to probe the dynamics of electrons with unprecedented detail.2–6 Attosecond dy-

namics in molecules involves only electronic motion, as the dynamics of the much heavier

nuclei occur at femtosecond timescales. Unlike charge transfer processes which typically

involve the coupled motion of nuclei and electrons, charge migration is defined as the

ultrafast electronic motion that occurs before the onset of nuclear effects. In principle, ul-

trashort laser pulses can induce charge migration resulting in a new distribution of charge

in a molecule, which then causes motion in the nuclei in response to the new electronic

field. The notion of controlling chemical reactions by tuning attosecond charge migration

is commonly referred to as “attochemistry" and can potentially induce chemical reactions

or bond rearrangements that are typically hard to control.2–4, 7–13 Due to the difficulty and

high cost10 of experimentally probing charge migration, theoretical models are required

to determine how the electron dynamics proceed. For theoretical methods, computation

of the dynamics can be difficult due to the potentially many electronic states required to

accurately model the charge migration.

One way to initiate charge migration is by ultrafast ionization, where the sudden re-
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moval on an electron can create a superposition of cationic states that form a time-evolving

wave packet.11, 14, 15 Cederbaum and Zoberly introduced the idea that attosecond charge

migration in this context is driven by electron correlation manifested in the number of en-

ergetically similar cationic states and the degree to which they couple.14, 16–19 Correlation-

driven dynamics has since been theoretically observed from core, valence, and inner-

valence ionizations in a number of studies employing Green’s function techniques based on

the non-Dyson intermediate-state representation of the third- or fourth- order algebraic di-

agrammatic construction [ADC(3), ADC(4)].6, 11, 20–28 Work by Bruner et al.29 employed

time-dependent density functional theory (TD-DFT)30, 31 to study charge migration, where

they also report correlation-driven dynamics following core ionization. Very recently, a

time-dependent density matrix renormalization group (TD-DMRG) method was able to

reproduce experimentally observed hole oscillations in ionized iodoacetylene.32

ADC(3), ADC(4), and TD-DFT can affordably capture charge migration effects in

many cases, but they inherently depend on a single-reference description of correlation

effects. A single-reference method is appropriate if the ionization spectrum of a molecule

shows only a few energetically-separated and weakly-coupled cationic states that are re-

lated by single or double excitations.33 However, a single-reference theory may fail if the

ionization spectrum has many coupled satellite states, and in the extreme case a large den-

sity of states, corresponding to numerous near-degenerate cationic states that are no longer

simple hole excitations from a dominant state. This situation is most likely to occur for

inner-valence ionizations and cases with many degenerate orbitals. TD-DMRG is well-

suited to treat dynamics involving any combination of cationic states as it does not rely

on a single-reference ansatz. However, TD-DMRG uses a matrix product state (MPS) for-

malism to compress the information in the full CI (FCI) wave function, and propagation

of a MPS wave function comes with many difficulties. For example, many propagation

schemes involve the addition of multiple intermediate wave functions which is not a well-

defined function for MPSs and requires costly workarounds.34, 35 Also, propagation meth-
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ods usually require many products of the Hamiltonian with the wave function, which scales

as O(N4
AM2 +N3

AM3) for virtual bond dimension M and NA correlated orbitals.36

As an alternative, we propose to use our selected CI variant, called the adaptive CI

(ACI),37–39 to study the attosecond charge migration resultant from ultrafast ionization.

ACI is based on the very old idea of selected CI40–60 and is one of numerous new manifes-

tations of these techniques.61–77 To the best of our knowledge, a real-time variant of any

selected CI method has not appeared in the literature, perhaps surprisingly. The novelty of

ACI lies in its ability to compute a compact wave function with a tunable, approximately

predeterminable energy error. This property was also extended to to electronically excited

states,38 and as a result, we see the ACI as being an efficient means of approximating the

cationic Hamiltonian used in charge migration dynamics studies. In particular, ACI is well-

suited to describe all relevant cationic states compactly and with equal accuracy, regardless

of coupling or presence of strongly correlated electrons in these states. With details of

the algorithm presented elsewhere,37–39 ACI wave functions are constructed in a basis of

Slater determinants, making the definition of ionized initial states trivial, unlike in DFT

where only the initialization of core-ionized states is feasible.29
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Figure 5.1: Sorted squared magnitudes of all determinants in the FCI wave function. The
wave function is computed for a lithium dimer separated by 1.0 Å, computed with the
STO-3G basis and propagated using the exact exponential propagator. Each curve shows
the coefficients at 10, 100, 1000, and 10000 as snapshots. We also plot a labeled vertical
dotted line at the number of determinants that recover 99% of the exact FCI wave function.
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The success of a time-dependent ACI (TD-ACI) in treating charge migration relies

on the exact wave function being sparse throughout propagation. To test the sparsity of

propagated wave functions, we analyze the squared magnitude of FCI coefficients (|cI|2)

computed at four time steps in the evolution of a core-ionized lithium dimer in Figure

5.1. We will present more theoretical details in later sections, but the relevant dynamics

in this model system involve a core hole migrating from one lithium atom to another with

a frequency of around 250 as. Also shown in Figure 5.1 is the number of determinants

required to recover 99% of the FCI wave function. We see that as the propagation proceeds,

the sparsity is reduced only slightly, requiring at most 126 determinants out of a total of

5400 throughout a 10 fs simulation. This result is promising, and suggests that the entire

wave function may not be necessary to recover the relevant dynamics.

5.2 Theory

5.2.1 Time-Dependent ACI

Studying ultrafast dynamics of electrons requires the solution to the time-dependent

Schrödinger equation (in atomic units),

i
∂

∂ t
|Ψ(t)〉= Ĥ |Ψ(t)〉 , (5.1)

which dictates how a wave function, Ψ(t), evolves in time according to the Hamiltonian

(Ĥ). For a time-independent Ĥ, the evolution of a wave function can be written exactly,

|Ψ(t +∆t)〉= e−iĤ∆t |Ψ(t)〉 , (5.2)

where ∆t is the timestep over which the wave function evolves. Many time-dependent

variants of methods in electronic structure theory have been proposed to approximate

equations 5.1-5.2, including real-time versions of Hartree–Fock,78, 79 configuration interac-

tion,80–85 multiconfigurational self consistent field,86–88 density functional theory,30, 89–91

and coupled-cluster theories.92–96
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To study charge migration following ionization, we first perform a ground-state ACI

computation, producing an N-electron wave function, |ΨN
0 〉, in an associated selected de-

terminantal space, M,37–39

|ΨN
0 〉= ∑

ΦN
µ∈M

|ΦN
µ 〉cµ (5.3)

The quality of the ACI energy, and to some extent the wave function, is controlled by a

user-defined parameter, σ , which controls the error in the computed energy, EACI, with

respect to the exact value, EFCI,

|EACI−EFCI| ≈ σ . (5.4)

In our dynamics studies, we invoke the commonly-used sudden ionization approximation,

where the initial wave function for the simulation [ΨN−1(t = 0)] is defined immediately

after the ionization process by annihilating an electron in spin orbital φi,

|ΨN−1(t = 0)〉= âi |ΨN
0 〉

〈ΨN
0 | â†

i âi |ΨN
0 〉

. (5.5)

In propagating this cationic wave function, we need to build a cationic Hamiltonian. The

basis, MN−1, for the cationic Hamiltonian is constructed from a set of cationic determi-

nants, {ΦN−1
I }, defined by applying a single annihilation to all determinants in the original

basis M,

MN−1 = {ΦN−1
I : Φ

N−1
I = âi |ΦN

µ 〉 , ∀i ∈ A and ∀ΦN
µ ∈M}, (5.6)

where A denotes the set of all active orbitals. We then define the TD-ACI wave function,

where the time-dependence is entirely encoded in the expansion coefficients [cI(t)],

|ΨN−1(t)〉= ∑
Φ

N−1
I ∈Mc

cI(t) |ΦN−1
I 〉 , (5.7)

and the wave function can be determined at any time t using the propagator from equa-

tion 5.2. The number of determinants in the initial wave function is typically smaller than

|MN−1|, and contributions from determinants in MN−1 are added as the propagation pro-
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ceeds.

Defining MN−1 using a selected CI procedure enables efficient representation of the

exact dynamics, but the cationic Hamiltonian will generally still be too large to use in exact

propagation. Specifically, evaluating the exponential in equation 5.2 requires computation

of all eigenvalues and eigenvectors of Ĥ, which is impractical for most computations. As

a result, we use the fourth-order Runge–Kutta technique for integrating differential equa-

tions, which is equivalent to approximating the exact exponential propagator using a Taylor

series truncated to fourth order so long as Ĥ is time-independent. The fourth order Runge–

Kutta integrator approximates the exact propagator using a series of intermediates,

|k1〉=−iĤ |ΨN−1(t)〉 (5.8)

|k2〉=−iĤ(|ΨN−1(t)〉+ 1
2

∆t |k1〉) (5.9)

|k3〉=−iĤ(|ΨN−1(t)〉+ 1
2

∆t |k2〉) (5.10)

|k4〉=−iĤ(|ΨN−1(t)〉+∆t |k3〉), (5.11)

for a finite time step ∆t. The wave function at t +∆t is then written as,

|ΨN−1(t +∆t)〉= |ΨN−1(t)〉+ ∆t
6
(|k1〉+2 |k2〉+2 |k3〉+ |k4〉)+O(∆t5). (5.12)

One drawback of the Runge–Kutta integrator is that it does not preserve the norm as the

wave function propagates in time, requiring a renormalization at each time step that could

potentially affect the accuracy of the wave function. As we can see from equations 5.8-5.12,

fourth order Runge–Kutta also requires four matrix-vector products between the Hamilto-

nian and the CI coefficients, which comprise the most computationally demanding part of

the algorithm. A key advantage of the Runge–Kutta method is that these matrix-vector

products can performed extremely efficiently by using the σ -vector algorithms from direct

Davidson–Liu diagonalization procedures. Furthermore, these products are computation-

ally less demanding than Lanczos methods if more than four Krylov subspace vectors are

needed, as those require additional orthogonalization and diagonalization steps.
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In TD-ACI, the main source of error is not expected to result from the approximation

of the exponential propagator but rather from the truncated basis, MN−1, of the cationic

Hamiltonian. While ΨN−1(t = 0) can be constructed from a singly-annihilated ground-

state ACI wave function, MN−1 needs to consider the determinants most important to de-

scribe the various cationic states that drive the dynamics. These cationic states can be

described as simple hole states, defined with a single annihilation of the ground state, or

they can have more complex structure if they involve single annihilations coupled with

electronic excitations. This second class of cationic state can be built from annihilating

electronically excited states of the neutral species, and they can be challenging to identify

but necessary to produce correct dynamics.14, 17, 19, 28, 33 In a previous work, we showed that

time-independent ACI can be successfully applied to electronically excited states using al-

gorithms that either optimize individual sets of determinants for each state, or build a single

set of determinants for all states of interest.38 In TD-ACI, a single set of determinants is

required to describe many cationic states in H, so we define MN−1 with equation 5.6 and

choose M such that its determinants can be used accurately for the ground and lowest-

lying excited states. To build M, we use the state-averaged ACI (SA-ACI), which finds an

optimal set of determinants to describe multiple roots by using a determinant importance

criterion averaged over each state of interest.

To analyze the dynamics from a TD-ACI computation, we monitor the migration of the

hole throughout the molecular orbitals used. Specifically, we can define a hole occupation

number, ni for an orbital i, as the difference between the occupation of orbital i in the

ground state and the ionized state at time t,

ni(t) = 〈ΨN
0 | â†

i âi |ΨN
0 〉−〈ΨN−1(t)| â†

i âi |ΨN−1(t)〉 . (5.13)

The hole can occupy multiple orbitals and migrate among them as the propagation pro-

ceeds, all dictated by the degree of correlation in ΨN−1(t).

In this work, we focus on valence and near-valence ionization-induced charge migra-
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tion. Consequently the cationic states required for a reasonably accurate simulation can be

well-approximated using a complete active space (CAS) form of the wave function, where

only the subset of the orbital basis most important in defining the cationic states is used

to build the wave function. Using TD-ACI, we are able to study dynamics using active

spaces much larger than the FCI limit, and we will show that our flexible ansatz is capable

of efficiently characterizing the relevant cationic states required for correct dynamics.

5.3 Results and Discussion

In the following section, we apply TD-ACI to charge migration triggered by valence and

inner-valence ionization in both benzene and iodoacetylene. Our application to benzene

will serve as a benchmark to understand the behavior of TD-ACI, after which we will

compute hole migration dynamics in iodoacetylene, comparing to recent theoretical and

experimental data.

5.3.1 Valence Ionization of Benzene

To understand the effects of basis truncation and approximate propagation, we study

the charge migration following a valence ionization in benzene. The dynamics of the ion-

ized state is characterized by hole migration within the π/π∗ manifold, with weak hole-

occupation of a nearby σ -bonding orbital. A complete active space containing the six π/π∗

valence orbitals and electrons and the energetically nearest σ/σ∗ bonding/antibonding pair

is thus required, resulting in a CAS(8,8) shown in Figure 5.2.28 This active space is small

enough to use both FCI and the exact propagator, making it a good model system to test

our approximations.

The benzene geometry was optimized using density functional theory (DFT) with a

B3LYP functional and the cc-pVDZ basis set using the PSI4 program.97 The TD-ACI

uses the aforementioned CAS(8,8) active space computed within the cc-pVDZ basis using

density fitted integrals using the cc-pVDZ-JKFIT basis in computing the RHF references.98
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3 b1g 1 b1u 1 b2g 1 b3g

2 b1u 1 Au 2 b2g 7 ag

Figure 5.2: Active space used in all benzene computations. Orbitals are computed with
restricted Hartree–Fock using C1 symmetry, though we use D2h labels here for convenience.

The computation was run using C1 symmetry, but we plot the active orbitals in Figure 5.2

using corresponding D2h labels for clarity. In the TD-ACI simulation, we use a time step

of 0.05 as for total simulation time of 2 fs, and the initial state is prepared by annihilating

the alpha spin orbital corresponding to the lowest energy π-bonding orbital, with symmetry

label 1b1u.

Upon ionization of the 1b1u orbital, the hole migrates between a superposition of the

degenerate b2g and b3g orbitals occupied in the initial state and the original 1b1u orbital.

Using a simplified CAS(8,8) model, this oscillation occurs smoothly and with a frequency

of roughly 750 as. This hole oscillation is faster by about 200 as compared to those previ-

ously reported28 because our use of a CAS(8,8) excludes configurations that serve to slow

the dynamics and create more complex interference patterns. Nonetheless, our model will

be effective in determining the utility of determinant selection in TD-ACI because the os-

cillating hole occupations will likely require determinants different in character from those

that define the ground state.

We test three different schemes to build MN−1 based on either single-state or state-

averaged ACI algorithms, where M is built to optimize one, two, or four roots of the neutral

species. These time-independent computations are run with varying values of σ , which

are selected to produce similar dimensions of MN−1 to facilitate comparisons. With the

various MN−1 bases, we propagate the initial wave functions using the fourth-order Runge-
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Kutta algorithm, and we plot the error in the overlap of these propagated wave functions

with respect to the FCI result in Figure 5.3. These overlap errors contain only truncation
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Figure 5.3: Error in propagated wave functions computed with various σ values using one,
two, or three reference states in computing the cationic basis. The error is defined as the
deviation between unity and the overlap of the approximate wave function with the exact
wave function, for which |MN−1| = 3920 determinants. Each error curve is labeled with
the number of determinants in the cationic space. The exact wave functions are propagated
with the exact propagator, and TD-ACI wave functions are propagated with the fourth order
Runge–Kutta propagator.

errors, and we see that the observed error is not necessarily correlated with the number

of determinants in each computation. For example, the propagations with the single-state

MN−1 (left plot) show errors that grow up to 0.3 at 2 fs when the cationic space is defined by

about 200 determinants. With a similar dimension, the two-state variant already shows an

approximate 10-fold increase in accuracy, and the four-state method shows the least error

for a given number of determinants, with only minor improvements to the two-state scheme.

This result can be rationalized by consideration of the cationic states that couple strongly

in the Hamiltonian. Specifically, this particular dynamics in benzene has been reported to

involve strong coupling of two-hole/one-particle states in addition to hole-excited states.28

The cationic Hamiltonian therefore needs states characterized by the initial hole state, states

with the hole located in different orbitals, and most importantly hole states that also have

single or higher electronic excitations. This third type of state is more efficiently reached

when building MN−1 with the SA-ACI procedure because the states considered have single,

double, or higher excitation character with respect to the ground state.
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As mentioned, the dynamics under study involves a rapid hole migration from the 1b1u

orbital to a superposition of b2g and b3g orbitals. This dynamics is shown in Figure 5.4,

where the exact hole occupations are shown in light grey in each panel. The exact hole

occupation of the 1b1u orbital is shown in each plot starting at unity, and the b2g and b3g

hole occupations start from zero and are always identical. In the upper four panels, we show

hole occupations computed with TD-ACI using the exact propagator and various numbers

of optimized roots in defining MN−1 in addition to various sizes of MN−1. The lower panels

show the same data, but instead using the fourth-order Runge–Kutta propagator. Our first

observation is that the TD-ACI dynamics are indistinguishable when using either exact or

Runge–Kutta propagations in this case, showing that our expected propagation errors are

negligible even with determinant selection so long as an appropriate time step is chosen.

When the MN−1 is optimized with respect to one root, the hole occupation oscillates too

quickly and does not transfer from the 1b1u orbital (red) to the b2g and b3g orbitals (blue

and green) with enough magnitude. Interestingly, the hole occupations of the b2g and b3g

orbitals are correctly always identical. Using the two-state procedure to build a similarly-

sized MN−1, the magnitude of the hole occupation numbers is much more accurate, though

the dynamics is slightly too fast and the occupations of the b2g and b3g orbitals are now

different. Finally, the four-state procedure gives nearly exact dynamics, and with a larger

MN−1 space, gives occupations nearly indistinguishable from the exact result.

These results indicate that TD-ACI is a viable technique in studying charge migration

resultant from ionization, particularly if the basis for the cationic Hamiltonian is truncated

using importance criteria that can consider multiple roots. This use of an SA-ACI compu-

tation to build the basis enables a faster convergence to the σ = 0 limit, and does not bias

the determinantal makeup of cationic Hamiltonian towards the ground cationic state.
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Figure 5.4: Hole occupations of 1b1u (red), 1b2g (blue), and 1b3g (green) orbitals computed
using TD-ACI with various sizes of MN−1 optimized for 1, 2, and 4 states. The top row
shows occupations computed using the exact propagator, and the bottom row used the
fourth order Runge–Kutta propagator. Each plot shows the exact occupations with a grey
line.

5.3.2 Charge Migration in Iodoacetylene

Iodoacetylene has been a valuable model of charge migration for theorists and exper-

imentalists alike. Recently, Kraus et. al have used high-harmonic generation pulses to

achieve 100 as resolution and control over charge migration following ionization.5, 10 The

dynamics following ionization was reproduced theoretically by a TD-DMRG study using

a CAS(16,36) active space.32 In iodoacetylene, two cationic states drive the dynamics, one

characterized by a hole in the 5p-like orbitals of iodine perpendicular to the molecular axis,

and the other having a hole in the two π-bonding orbitals in the acetylene triple bond. These

states have considerable degeneracies and thus a multiconfigurational time-dependent ap-

proach may be required.

Driven by the two aforementioned cationic states, the dynamics of ionized iodoacety-

lene involve the ionized hole migrating between the iodine and acetylene groups with a

measured frequency of about 0.93 fs. Our final test of TD-ACI will be to reproduce this

migration frequency using a truncated determinantal basis of cationic determinants. We op-

timize the geometry with DFT using a PBE0 functional and def2-SVP basis set. This basis



CHAPTER 5. REAL-TIME PROPAGATION OF SELECTED CONFIGURATION
INTERACTION WAVE FUNCTIONS APPLIED TO CHARGE MIGRATION 138

was used in all iodoacetylene computations with an effective core potential that contains

28 electrons. Within the remaining 59 orbitals, we use a CAS(16,22), which includes all

molecular orbitals generated from the 2p-like orbitals in the acetylene group, and 4d and

5p-like molecular orbitals from the iodine. In the dynamics simulations, we use a timestep

of 0.02 as for a total simulation time of 2 fs. The initial state is prepared by annihilating

a valence 5p-like orbital on the iodine atom, and all computations are run in C1 symmetry

with split-localized orbitals in the active space.

Our first simulation uses a single-state ACI computation with σ = 8 mEh to generate

a cationic basis containing 93,554 determinants, where the Hilbert space defined from our

CAS(16,22) contains roughly 1011 determinants. We plot the hole occupation numbers for

the ionized 5p-like orbital on the iodine and the in-plane π-bonding orbital of the acetylene

in Figure 5.5 for the 2 fs simulation. The hole migrates from the iodine to the acetylene and

back in about 0.9 fs, agreeing closely with the experimental frequency of 0.93 fs. We also

see that this migration still leaves some degree of hole occupation on each moiety. To fur-

ther analyze the charge migration dynamics, we can compute a representation of the density

of the ionized hole (ρH) by weighting the Hartree–Fock orbitals by the corresponding hole

occupation,

ρH = ∑
i
|φi|2ni, (5.14)

which we show in the lower panel in Figure 5.5. Interestingly, the relatively good agree-

ment between our computed frequency of hole migration and the experimental value sug-

gests that the single-state ACI procedure is building an adequate space of determinants to

describe the relevant cationic states. The cationic states that drive the dynamics, namely

those characterized by valence ionizations of acetylene and iodine, therefore do not involve

a significant coupling between the hole excitation and additional electronic excitations.

We can more rigorously test this conclusion by comparing the hole migration frequen-

cies computed from similarly sized determinantal spaces optimized for one, two, and three

electronic states. In Table 5.1, we show the time required for the hole to migrate to the
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Figure 5.5: Hole occupations of the 5p-like molecular orbital on iodine (red) and the π on
the acetylene (blue) in the same plane. Below the plot we show the migration of the hole
using the representation of the hole density defined in the text. The snapshots selected for
the densities shown correspond to maxima, minima and intersection of the hole occupation
curves.

acetylene group and then back to the iodine from three computations using roughly 104

determinants in MN−1. We also show the migration times resultant from the TD-ACI com-

putation using a larger cationic determinantal basis optimized for one state that was used

for Figure 5.5. For a nearly constant size of MN−1, we see that increasing the number of

states used to generate the cationic basis has a negligible effect on the hole migration times.

Only when the total number of cationic determinants is increased, even when optimized for

the neutral ground state, do we see the migration times approach the experimental and TD-

DMRG values. This result depends solely on the determinantal makeup of the cationic

states most important in forming the evolving wave packet. In this case, these states are

simple cationic hole states with the hole located on the iodine or acetylene moieties, and

no coupled electronic excitations are as significant as they were for our previous study on

benzene. As a result, the dominant contribution for both hole states comes from different

annihilations of the ground state and not from annihilations of excited states. A very appeal-
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Table 5.1: Hole migration times (as) for various dimensions of MN−1 optimized with re-
spect to one, two, or three electronic states.

Time for maximum hole occupation (as)
Number of states |MN−1| acetylene iodine

1 10127 862 1684
2 10827 864 1660
3 10759 868 1610

1 93554 886 1780

ing property of our TD-ACI approach is that we can effectively optimize MN−1 regardless

of the character of the relevant cationic states, whether simple or complex

5.4 Conclusions and Future Challenges

In this work, we have used ground and excited state ACI algorithms to solve the time-

dependent Schrödinger equation. TD-ACI is able to effectively model the real-time prop-

agation of the exact wave function using a truncated space of determinants selected by the

time-independent ACI algorithm. We apply this methodology to charge migration dynam-

ics that follow ultrafast ionization. We find that ACI is well-suited to find determinants

relevant to the initial state, and determinants important at later points in time can be ini-

tially identified in excited state computations to reduce systematic increases in error as the

wave function evolves. We also find that the single-state ACI computation can recover

these determinants if a sufficiently large value of σ is used. Due to the short time scale

of charge migration, we did not encounter significant issues in using approximations to

the exact time propagator, though these effects could be important in longer simulations.

Propagation error and truncation errors were studied using a charge migration model in

benzene, where we found that cationic spaces optimized for multiple roots are needed to

efficiently capture dynamics in which two-hole one-particle states are relevant. This type

of state is not always relevant to the dynamics in propagating our initial state, as we saw

in our application to hole migration in iodoacetylene. Using various schemes to build our

cationic basis, we were able to compute hole migration times between acetylene and iodine
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groups that match experimental results. As we have shown, TD-ACI is an extremely flexi-

ble option for studying charge migration because it can determine an optimal cationic basis

regardless of the character of the dominant cationic states.

Following the success of this initial TD-ACI study, we anticipate numerous future di-

rections of study. While the SA-ACI procedure was successful in building a determinantal

space for the entire dynamics, we envision an even more efficient scheme where the selec-

tion and removal of determinants can be done during the simulation itself. For example,

one can imagine an algorithm that estimates the importance of a determinant at a future

timestep using low-order approximate propagation. Additionally, integration of the cur-

rent TD-ACI scheme with a time-dependent Hamiltonian would enable ab initio studies

of molecules interacting with fluctuating electric or magnetic fields. Finally, we envision

including dynamical correlation effects beyond our active space treatment by combining an

effective Hamiltonian theory with a time-dependent reference wave function.
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Chapter 6

Conclusions and Future Directions

In this dissertation, we have outlined the initial development of a novel selected CI method

and have presented various algorithmic extensions enabling the computation of excited

states, dynamical correlation effects, and time-dependent quantities. Our method, the

Adaptive CI (ACI), represents a large step towards increasing the applicability of mul-

tireference methods to more diverse problems in chemistry.

Our first study was devoted to the initial development of the ACI algorithm. The goal of

ACI is to exploit the sparsity in a full CI (FCI) wave function by estimating the importance

of determinants in Hilbert space, and then keeping a certain number of these determinants

such that the energy error of the total wave function matches a user-defined parameter.

This algorithm was achieved by iteratively screening, adding, and removing determinants

as more of the FCI wave function is deterministically sampled. The novelty in ACI is that

the desired error in the energy can be reliably predicted before the computation, as the

algorithm can efficiently add the correct determinants to approximately achieve this error.

We tested this error control and tunability on the dissociation of N2, where we saw potential

energy curves that paralleled the FCI result nearly exactly, with flat error curves located at

or near the predefined error. We then applied ACI as a replacement for complete active

space CI (CASCI) to enable the use of very large active spaces. We computed the singlet-

triplet splittings in the oligoacene series, which required active spaces containing up to 42

electrons in 42 orbitals [CAS(42,42)]. Due to the reliable error prediction achieved by the
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ACI algorithm, the singlet-triplet splittings were within a kcal mol−1 of DMRG benchmark

data, with some computations using around 3×106 determinants from a Hilbert space with

dimension on the order of 1014.

Following the initial development of the ground state ACI method, we explored several

new algorithmic extensions designed to compute excited states. The goal of an excited state

ACI method is twofold: (1) to achieve predictive error control for arbitrary numbers of elec-

tronic states with diverse determinantal makeups and (2) to preserve orthogonality among

computed states. To fulfill these requirements, we considered strategies either where each

state is described by an individual set of determinants or where one set of determinants

is used for multiple roots. By modifying the determinant importance criteria to consider

multiple roots in the reference, we were able to test numerous algorithms for computing

excited states. The best performance came from the orthogonality constrained ACI (OC-

ACI), which uses a state-specific criterion to generate a determinantal space optimized for

each state of interest. Starting with the ground state, these roots are sequentially optimized

such that the previously computed states are projected out of the solution of the current

state, ensuring orthogonality and avoiding variational collapse. OC-ACI was able to accu-

rately compute the singlet excited states of methylene, the avoided crossing in the lithium

fluoride dissociation, and excited states of long polyenes using up to a CAS(24,24). For

example, OC-ACI computed excitation energies of polyenes up to octatetraene with errors

on the order of 0.01 eV. An interesting alternative to OC-ACI is to define the determinant

importance criterion as an average over several states, as is done in the state-averaged ACI

(SA-ACI) method. While slightly less accurate and flexible than OC-ACI, SA-ACI does

not require multiple ACI computations and is in principle not considerably more expensive

than a ground state ACI computation. In future applications connecting ACI to theories

of dynamical correlation, the SA-ACI method may be more convenient in state-averaged

treatments.

The aim of the first two projects was to develop necessary parts of the ACI algorithm
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to be affordably applicable to ground and excited states. While ACI can efficiently sample

FCI wave functions in small to medium sized molecules, any selected CI method with be

too expensive for cases where thousands of orbitals are desired. Thus, we use ACI as a

replacement for CASCI in combination with a multireference theory of dynamical corre-

lation. Specifically, we use the second-order perturbative driven similarity renormalization

group (DSRG-MRPT2) optimized for density fitted integrals because it can recover dy-

namical correlation very affordably and without susceptibility to intruder states. Part of

this affordability is due to DSRG requiring only the three-particle reduced density matrix

(RDM), whereas similar multireference perturbation theories require the 4-RDM and thus

cannot make use of techniques that enable large active spaces. We apply the ACI-DSRG-

MRPT2 again to the oligoacenes to reveal the effect of dynamical correlation on both the

singlet triplet splittings and on properties of the wave function. Using up to a CAS(30,30)

and 1350 basis functions, ACI-DSRG-MRPT2 was able to produce singlet-triplet splittings

in oligoacenes within a few kcal mol−1 of available experimental data. Furthermore, ACI-

DSRG-MRPT2 allows for computation of reference wave function properties, including

effective numbers of unpaired electrons and spin-spin correlations, with dynamical corre-

lation effects included. We find that treating only the active orbitals tends to overestimate

the computed number of effectively unpaired electrons, and dynamical correlations serve

to reduce this number significantly. Analysis of these relaxed wave functions also shows

an antiferromagnetic ordering of the electron spin in the π/π∗ manifold. A very promising

extension of this work is to connect ACI with the nonperturbative variants of DSRG that

can produce coupled-cluster accuracy with only moderate cost.

In the final component of this work, we used ACI to solve the time-dependent Schrödinger

equation. Motivated by the general lack of real-time dependent multireference methods, we

formulate a time-dependent ACI (TD-ACI) method in which we propagate an ACI wave

function in a selected determinantal basis. Starting with a set of determinants optimized for

either the ground state or a few of the lowest-lying states, we are able to build an initial hole
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state by removing an electron and propagate it using a Hamiltonian built from the set of

all selected cationic determinants. This procedure allows us to study the attosecond-scale

charge migration that can occur immediately following ultrafast ionization of a molecule.

We applied TD-ACI to model the dynamics within the π/π∗ manifold in benzene, where

using a state-averaged ACI (SA-ACI) procedure in selecting cationic determinants led to

improved accuracy of the wave function. This improved accuracy was resultant from the

ability of SA-ACI to build a determinantal basis capable of describing complex cationic

states that are characterized by simultaneous hole and electronic excitations. To further

benchmark the method, we then applied TD-ACI to the charge dynamics in iodoacetylene.

TD-ACI successfully and efficiently reproduces the experimentally determined hole mi-

gration frequency between the iodine and acetylene groups. We attribute the success of

TD-ACI in reproducing these dynamics to the optimal and compact set of cationic deter-

minants generated from ACI and SA-ACI.

By reformulating the very old idea of selected CI as a tool to describe strongly corre-

lated electrons, we are able to extend the applicability of multireference methods. Despite

the advances made in this work, new directions involving ACI are diverse. New algorith-

mic developments could lead to ACI computations in active spaces larger than our current

limit of approximately 42 electrons in 42 orbitals. These developments would need to avoid

simultaneous storage of all candidate determinants during the screening step. Additionally,

ground and excited state ACI algorithms can be connected to state-specific or multistate

theories of dynamical correlation to obtain a complete correlation treatment of electroni-

cally excited states. Furthermore, we envision ACI-DSRG treatments more accurate than

second-order perturbation theory, including hybrid approaches that use high-order, non-

perturbative DSRG methods to handle the most important excitations in the dynamical

correlation treatment. Such an extension could set the new standard for accuracy among

multireference methods.
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