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Abstract 
 

Exploring Grain Boundaries and Phase Boundaries Through Monte Carlo Simulation  
 

By Ziwei Guo 
 

Monte Carlo simulation methods such as grand canonical Monte Carlo (GCMC) and Gibbs 
Ensemble Monte Carlo (GEMC) use particle addition, removal, and exchange moves to equilibrate 
multiphase and/or multicomponent system.  This dissertation focuses on the use of a recently 
developed GCMC variety called Solvent-repacking Monte Carlo (SRMC) and its extensions as 
applied to the grain boundaries of two-dimensional colloidal solids and the phase coexistences 
(vapor/liquid and liquid/solid) of size asymmetrical mixtures of Lennard-Jones particles. 

Using SRMC to model grain boundaries (GB) of 2-d solids formed from a monolayer of 
colloids represented as hard spheres, the stiffness of the grain boundary under varying GB angles 
was determined using the capillary fluctuation method and correlated with the rate of grain 
coarsening for grains with different misorientations. Further studies, inspired by experiments, 
show that when surface pressure is increased, the simple dependence of GB shrinking rate on the 
thermodynamic property of stiffness no longer holds.  A complex dependence of GB dynamics on 
pressure, grain size, and method of preparation of misoriented grains can be traced to the 
geometries and mobilities of dislocation defects at the GB.  Similarly, in hard sphere mixtures with 
size-asymmetrical impurities, simulated using an extension of SRMC named mixed repacking 
Monte Carlo (MRMC), affinity of a specific size of impurity for GB of varying misorientation was 
found to depend on packing details of the GB structure.  We also extended our method to the quasi-
2D case where spheres are confined to be near a flat surface by gravity, which enables the study 
of the presence of particles in an overlayer influence the ordering transition and the GB stiffness 
of the lowest layer. SRMC can also be used to simulate more complex 3D systems including the 
Lennard-Jones model.  Extending the new SRMC approach to the Gibbs ensemble enables us to 
simulate the liquid-vapor phase coexistence boundaries of certain size-asymmetrical Lennard-
Jones mixtures much more efficiently than existing methods. Lastly, we use GCMC and Gibbs-
Duhem integration to map the solid-liquid phase coexistence of Lennard-Jones mixtures under 
conditions where solid-phase vacancies are occupied by multiple smaller impurities. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



Exploring Grain Boundaries and Phase Boundaries Through Monte Carlo Simulation  
 

 
By 

 
 
 

Ziwei Guo 
B.S., Fudan University, 2014 

 
 
 

Advisor: James T. Kindt, Ph.D. 
 
 
 
 
 

A dissertation submitted to the Faculty of the  
James T. Laney School of Graduate Studies of Emory University 

in partial fulfillment of the requirements for the degree of  
Doctor of Philosophy 

in Chemistry 
2019 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



	

	

Table of Contents 
 

Chapter 1 Introduction ........................................................................................................... 1 
1.1 Colloidal particle and Grain boundary ........................................................................ 2 
1.2 Lennard-Jones particle ................................................................................................ 6 
1.3 The Monte Carlo Method ............................................................................................ 8 
1.4 Outline of Dissertation .............................................................................................. 15 

Chapter 2 Simulations of grain boundaries between ordered hard sphere monolayer 
domains: orientation-dependent stiffness and its correlation with grain coarsening 
dynamics… .............................................................................................................................. 16 

2.1 Introduction ............................................................................................................... 16 
2.2 Methods..................................................................................................................... 19 
2.3 Results and Discussion ............................................................................................. 25 
2.4 Conclusions ............................................................................................................... 35 

Chapter 3 Partitioning of Size-mismatched Impurities to Grain Boundaries in 2-d Solid 
Hard Sphere Monolayers ....................................................................................................... 37 

3.1 Introduction ............................................................................................................... 38 
3.2 Methods..................................................................................................................... 40 
3.3 Results and Discussion ............................................................................................. 49 
3.4 Conclusions ............................................................................................................... 63 

Chapter 4 Dynamics of Grain Boundary Loops in 2-d Solid Hard Sphere Monolayers 65 
4.1 Introduction ............................................................................................................... 65 
4.2 Methods..................................................................................................................... 66 
4.3 Results and Discussion ............................................................................................. 70 
4.4 Conclusions ............................................................................................................... 79 

Chapter 5 Ordering of colloidal hard spheres under gravity: From monolayer to 
multilayer… ............................................................................................................................. 80 

5.1 Introduction ............................................................................................................... 81 
5.2 Methods..................................................................................................................... 84 
5.3 Results and Discussion ............................................................................................. 93 
5.4 Conclusions ............................................................................................................. 105 

Chapter 6 Gibbs Ensemble Monte Carlo with Solvent Repacking: Phase Coexistence of 
Size-asymmetrical Binary Lennard-Jones Mixtures ......................................................... 107 

6.1 Introduction ............................................................................................................. 107 
6.2 Methods................................................................................................................... 111 
6.3 Results and Discussion ........................................................................................... 117 
6.4 Conclusions ............................................................................................................. 128 

Chapter 7 Size-asymmetrical Lennard-Jones solid solutions: Interstitials and 
substitutions ........................................................................................................................... 129 

7.1 Introduction ............................................................................................................. 130 
7.2 Methods................................................................................................................... 132 
7.3 Results and Discussion ........................................................................................... 138 
7.4 Conclusions ............................................................................................................. 151 

Conclusion. ............................................................................................................................ 153 



Acknowledgements 
 
 

First of all, I would like to express my special thanks to my advisor, Prof. James, T. Kindt, for 

his patient guidance and continuous supports during my time at graduate school.  

I would also like to thank my committee members, Prof. Joel. M. Bowman and Prof. Francesco 

Evangelista, for their patient guidance and helpful advice. 

All past and current members in Kindt group are acknowledged. Especially, I would like to 

thank Dr. Lewen Yang, Dr. Lara Patel, Keon Reid, Xiaokun Zhang, Dr. Karthik Uppulury, Erdong 

Lu, Peiyao Wu for their constructive advice and useful discussion. 

I would like to express my gratitude to our collaborators in Prof. Eric Weeks group in 

Department of Physics at Emory University, computational resource support from Emerson Center 

for Scientific Computation and XSEDE Comet cluster at the San Diego Supercomputer Center, 

and funding support from Emory University Research Committee and ACS Petroleum Research 

Fund. 

Lastly, I would like to deliver my deepest appreciation to my parents, Li Guo and  Chunlan 

Sun, my wife Mingyi Tan, who always give their support and encouragement. 



	

	

	

List of Tables  
	
Table 2.1 Physical properties of systems at different pressures, with misorientation 30° and 

inclination 15° in a 200σ´200σ simulation box. Area fraction listed is taken from grain 
interiors. ...................................................................................................................... 30	

Table 3.1 Segregation of impurity with different sizes. In all cases, the fugacity of host particles is 
fixed at 1.0 ´ 10$ while misorientation and inclination of GB are fixed at 30° and 15°, 
respectively. ................................................................................................................ 52	

Table 3.2 Fitting parameters of Langmuir-McLean isotherm in simulation (fugacity f&=1.0 ´ 10$) 
and experiment (reference [38]). The free energy of adsorption is determined from the 
isotherm via e(/k+T	 = ln(K).. .................................................................................. 54	

Table 6.1 Number of neighbors at different large species fractions for system σ55: σ77  = 2:1, 
ϵ55: ϵ77=1:1.5, T*= 0.75. ........................................................................................... 122	

Table 6.2 Performance comparison (as rate of successful large-particle exchanges per CPU-hour, 
Suf/hr) of GEMC-IE and SRMC in dilute large species mixtures. ........................... 127	

Table 7.1 Compositions of solid phases under solid-liquid coexistence conditions for different 
systems with 863 large particles and 1 vacancy. NS<=> is the average number of small 
particles per vacancy NS?@ABC is the average number of small particles per interstitial 
site. ............................................................................................................................ 141	

Table 7.2 Lattice spacing d (defined as the edge length of one fcc unit cell; reduced unit σ55 is 
used) in different systems; and the expansion ∆d observed between the mixtures and 
pure systems. ............................................................................................................. 141	

Table 7.3 Total of unoccupied, singly, and multiply substituted large particle vacancies in solid 
phase at liquid-solid coexistence for different mixtures and pressures. Levels for pure 
systems are calculated by free energy of vacancy formation.  Mixtures (S2, S3 and E2) 
are calculated by the vacancy concentration in pure system divided by xempty , as 
discussed in section 7.3.2. ......................................................................................... 147	

 
 

 
  
 
 
 
 
 
 
 
 
 
 
 
 



	

	

 

List of Figures  
	
Fig. 2.1 Snapshot of a hard-sphere monolayer at fugacity 1´107 with the GBs presented in a 

200K´200K box (only one GB in a region 100K´100K is shown here for clarity). The 
spheres are color-coded by order parameter LM  represented by the color shown in the 
inset. The x and y axis represent the real and imaginary part of LM , respectively. ... 22	

Fig. 2.2 F.T. spectrum of the fluctuation of GB at fugacity f=1.0´107 in a 200K´200K box. Red 
line is the linear fit of the spectrum data (circle points) with slope fixed at -2. ......... 22	

Fig. 2.3 Stiffness dependence on (a) system size with fixed GB misorientation 27.4° and inclination 
11.1°; (b) pressure with fixed system size 200K ´200K , misorientation 30° and 
inclination 15°. The product of pressure with excess surface area per unit length of GB 
(N∆O/P) is also shown in (b). ..................................................................................... 26	

Fig. 2.4 Stiffness and excess interfacial enthalpy per unit length of GB (N∗∆O/P) from simulations 
at system size 200K´200K on (a) misorientation with and inclination 15° at fugacity 
2.0´106; (b) inclination with fixed misorientation 30° at fugacity 2.0´106; (c) 
misorientation with inclination 15° at fugacity 1.0´107; (d) inclination with 
misorientation 30° at fugacity 1.0´107. ...................................................................... 28	

Fig. 2.5 Snapshots of the buckled configuration with GB misorientation at 30° and inclination 0° 
after 23000 MC moves in grand-canonical ensemble at fugacity f = 1 ´ 108, initiated 
from a lower-density structure. This snapshot is color-coded by order parameter LM as 
shown in Fig. 2.1. ........................................................................................................ 32	

Fig. 2.6 (a) Starting arrangement shape of 2-grain system showing to indicate initial size and shape 
of misoriented domain; 30° misorientation shown.  (b)-(d) Snapshots of the 
configuration after 7000 MC moves in grand-canonical ensembles for GB 
misorientation 5°, 15° and 30°. All snapshots are color-coded by order parameter LM 
as shown in  Fig. 2.1. .................................................................................................. 32	

Fig. 2.7 (a) Snapshot of an initial configuration in a 4-grain system with misorientation 15° for 
both GBx and GBy; Snapshots of the configuration after 40000 MC moves in constant-
N ensemble in a 4-grain system with GBx misorientation (b) 5°; (c) 10° and (d) 15°. 
All snapshots are color-coded by order parameter LM as shown in Fig. 2.1. .............. 33	

Fig. 3.1 Snapshot of a hard-sphere monolayer mixture with a 1.4 size ratio at host particle fugacity 
1´10$and impurity fugacity 5´10R. Only one GB in a region 100KS´100KS is shown 
here for clarity.  Impurities are shown in red, at greater than actual size to aid 
visualization. The host particles are color-coded by order parameter LM represented by 
the color map shown in the inset; the x and y axis represent the real and imaginary part 
of LM, respectively. ..................................................................................................... 44	

Fig. 3.2 F.T. spectrum of the fluctuation of GB for the system with a 1.4 size ratio at host particle 
fugacity 1´10$ and impurity fugacity 5´10R in a 200KS	´200KS	 box. Red line is the 
linear fit of the spectrum data (circle points) with slope fixed at -2. .......................... 45	

Fig. 3.3 Dependence of impurity concentration on its fugacity for system (a) T = 1.4, in bulk; (b) 
T = 1.4, in GB; (c) T = 4.0, in bulk; (d) T = 4.0, in GB. The misorientation and 
inclination for all systems are fixed at 30° and 15°, respectively. The fugacity of host 
particles is fixed at 1.0 ´ 10$ (corresponding to area fraction 0.734).  Red solid lines 



	

	

are linear fits to the data (only fitting dilute regime for VWX). Black solid lines are non-
linear fitting of VWX by Eq. (3.2.13). ........................................................................... 49	

Fig. 3.4 Comparison between stiffness Γ obtained from simulations for T = 0.5 (black circle) and 
T = 4.0 (red triangle) with Γ calculated from the Gibbs adsorption isotherm for T =
0.5  (black solid line with slope -1) and T = 4.0  (red dash line). Simulations are 
performed in systems with a fixed GB misorientation of 30° and inclination of 15°. 50	

Fig. 3.5 Affinity for grain boundary [WX/[X\]^  for different impurity: host size ratio T. Red dash 
line marks the one-component system (T = 1). The misorientation and inclination for 
all systems are fixed at 30° and 15°, respectively. The fugacity of host particles is fixed 
at 1.0 ´ 10$. ................................................................................................................ 53	

Fig. 3.6 Composition variables _X and _WX for size ratio T = 2.25 and T = 4.0 in simulation at 
fugacity aS =1.0 ´ 10$  (corresponding area fraction 0.761) and 1.0 ´ 10M 
(corresponding area fraction 0.734). Dash lines and solid lines indicate the fit to the 
Langmuir-McLean isotherm in simulation and experiment (reference [40]), respectively.
..................................................................................................................................... 54	

Fig. 3.7 (a)VWX- abcd plot for different misorientations and inclinations at different fugacity for 
T = 4.0: (blue-green color bar represents different misorientation with fixed inclination 
15°; the black up-triangular label represents the inclination 0° with misorientation 30°); 
(b) VWX-misorientation plot on the same dataset as in (a); (c) Dependence of VWX on 
misorientation for T = 1.4  with abcd = 	2.0	´	10R , T = 3.0  with abcd = 	1.0	´	10fg 
and T = 4.0 with ahij = 	1.0	´	10kf, in dilute regime. Black diamond points show 
the free area change for one-component system (reprint from reference [112]). The 
fugacity of host particles is fixed at 1.0 ´ 10$ for all cases. Lines are drawn only to 
guide the eyes. ............................................................................................................. 58	

Fig. 3.8 Snapshot of GB in a system for T = 4 with aS = 	1.0	´	10$and abcd = 	1.0	´	10kf.  The 
orientation of host particle is color-coded as shown in Fig. 3.1. The impurity particles 
are omitted for clarity, but their locations can be seen as large voids. The green hexagon 
indicates an impurity site in the bulk that could be substituted for 7 host particles, while 
the red pentagons indicate impurity sites that could be substituted for 6 host particles.
..................................................................................................................................... 60	

Fig. 3.9 Examples of unreconstructed hexagonal bicrystals with grain boundaries of varying 
misorientation q.  Large circles represent sites where T =4 impurities can substitute for 
6 host particles (examples shown as filled circles) with approximate pentagonal 
symmetry. .................................................................................................................... 63	

Fig. 4.1 Probability distribution of bias moves mimicking LG beam and Gaussian beam in 
simulations with lg = 8K. .......................................................................................... 67	

Fig. 4.2 Averaged shrinking curves of system with lg = 8K prepared by (a) cut-and-paste method; 
(b) tweezer-mimic method. All simulations in this plot are performed at bulk area 
fraction 0.7825. ........................................................................................................... 71	

Fig. 4.3 Mobility at different misorientations (a) in systems with a fixed bulk area fraction at 
0.7825; (b) in systems with different bulk area fraction 0.7825 (Low), 0.7973 (Mid) 
and 0.8209 (High), but a fixed lg at 8K. .................................................................... 71	

Fig. 4.4 Snapshots of (a) initial configuration prepared by cut-and-paste method; (b) initial 
configuration prepared by tweezer-mimic method; (c) configuration after 37000 MC 
cycles of cut-and-paste structure; (d) configuration after 4000 MC cycles of tweezer-



	

	

mimic method. They all have an initial misorientation ng = 5°, lg = 8K and bulk area 
fraction p = 0.7825. ................................................................................................... 73	

Fig. 4.5 Number of different neighbors between initial and the last configuration for the system (a) 
prepared by cut-and-paste method; (b) prepared by tweezer-mimic method. They all 
have an initial misorientation ng = 5°, lg = 8K and bulk area fraction p = 0.7825.
..................................................................................................................................... 74	

Fig. 4.6 Voronoi graphs of system (a) prepared by cut-and-paste method with misorientation ng =
5°; (b) prepared by cut-and-paste method with misorientation ng = 15°; (c) prepared 
by cut-and-paste method with misorientation ng = 30°; (d) prepared by tweezer-mimic 
method with misorientation ng = 5° ; (e) prepared by tweezer-mimic method with 
misorientation ng = 15°; (f) prepared by tweezer-mimic method with misorientation 
ng = 30°. They all have an lg = 10K and bulk area fraction p = 0.8209. Pentagon 
cell (green), heptagon (red) and octagon (blue) are color coded, while the remaining 
cells are hexagon. ........................................................................................................ 74	

Fig. 4.7 Snapshot of the GB loop with ng = 5°, lg = 10K at high pressure (bulk area fraction 
0.8209). ....................................................................................................................... 76	

Fig. 4.8 Relation between 1/s∗ and lgng for system (a) at bulk area fraction 0.7825; (b) at bulk 
area fraction 0.7973; (c) at bulk area fraction 0.8209. ................................................ 78	

Fig. 5.1 Phase diagram of gravitationally confined HS systems with different Pe. The dash line is 
drawn only to guide the eyes to indicate the phase boundaries. The data of HD is 
obtained from previous work.139 ................................................................................. 94	

Fig. 5.2 Percentage of number of base layer particles at phase transition in ordered phase with 
different Pe. ................................................................................................................. 94	

Fig. 5.3 Mean squared order parameters LMt	of base layer particles versus total area fraction htot 
near phase transitions at different Pe. ......................................................................... 95	

Fig. 5.4 Phase diagram of gravitationally confined HS systems with different Pe plotted again the 
base layer area fraction pXuvw. The lines are drawn only to guide the eyes to indicate 
the phase boundary in disordered phase (black dash line), and ordered phase (red solid 
line). The data of HD is obtained from previous work.139 .......................................... 95	

Fig. 5.5 Height distribution in base layer at common pxyz{ (~0.755) in base layer with different 
Pe. |  is divided to bins with step size 0.01K . V(|) is the number density per unit 
volume for spheres in each bin. .................................................................................. 98	

Fig. 5.6 Stiffness of grain boundaries (assessed using base layer only) with different Pe. The data 
for HD is obtained from previous work.144 ................................................................. 98	

Fig. 5.7 Excess overlayer particles per unit length of GB at different Pe. .................................... 99	
Fig. 5.8 The hexagonal bond order parameter of spheres in base layer (blue circle) and second 

layer (red triangle) with (a) Pe=6; (b) Pe=8; and (c) Pe=10. .................................... 100	
Fig. 5.9 Snapshot of spheres in the second layer in a system with Pe =6 at fugacity (a) 1.45	×	10~; 

(b) 1.55	×	10~; and (c) 1.8	×	10~ which are in ordered phase near coexistence. The 
corresponding total area fractions p�Ä� are 2.216, 2.229 and 2.257 respectively. Spheres 
are colour-coded by order parameter Lf with respect to the spheres in the base layer, 
represented by the color map shown in the inset in (c); the x	and y axes represent the 
real and imaginary part of Lf, respectively. ............................................................. 101	

Fig. 5.10 Snapshot of spheres in base layer (blue) and third layer (red) in a system with Pe =6 at 
fugacity (a) 1	×	10Åg ; (b) 5	×	10Åg ; and (c) 1	×	10ÅÅ . The spheres in second and 



	

	

fourth layer are omitted for clarification. The corresponding total area fraction p�Ä� is 
2.866, 3.113 and 3.232, respectively. ....................................................................... 103	

Fig. 6.1 Scheme of SRMC in Gibbs ensemble: Insertion of a large particle in liquid box by SRMC, 
while using simple insertions to add multiple small species in vapor box. .............. 112	

Fig. 6.2 Acceptance probability(acc) and performance(Suf/hr) of SRMC method at different 
numbers of random trial positions k. ......................................................................... 118	

Fig. 6.3 Acceptance probability(acc) and performance(Suf/hr) of SRMC method at different cavity 
diameter ÇÉuÑ∗  (reduced unit is used here: ÇÉuÑ∗ = ÇÉuÑ/KÖÖ). .................................. 119	

Fig. 6.4 RDF of small species, Boltzmann weight of LJ potential, and difference (fitted by sum of 
Gaussian). .................................................................................................................. 120	

Fig. 6.5 Acceptance probability(acc) of SRMC method incorporating auxiliary bias potential 
scaled by factor T. ..................................................................................................... 120	

Fig. 6.6 Reduced pressure vs. mole fraction (a) and reduced density (b) for system (KÜÜ:KÖÖ = 2:1, 
áÜÜ: áÖÖ=4:1, à∗= 1.0): SRMC results (circle); literature data [68] (cross). ............... 123	

Fig. 6.7 Reduced pressure vs. mole fraction (a) and reduced density (b) for system (KÜÜ:KÖÖ = 2:1, 
áÜÜ: áÖÖ=1:1.2, à∗= 0.75). Lines on the phase boundaries are drawn only as a guide to 
the eye. Triangle indicates the liquid phase boundary, and circle indicates the vapor 
phase boundary. ........................................................................................................ 123	

Fig. 6.8 Reduced pressure vs. mole fraction (a) and reduced density (b) for system (KÜÜ:KÖÖ = 2:1, 
áÜÜ: áÖÖ=1:1.5, à∗= 0.75). Lines on the phase boundaries are drawn only as a guide to 
the eye. Triangle indicates the liquid phase boundary, and circle indicates the vapor 
phase boundary. ........................................................................................................ 123	

Fig. 6.9 Reduced pressure vs. mole fraction (a) and reduced density (b) for system (KÜÜ:KÖÖ = 2:1, 
áÜÜ: áÖÖ=1:2, à∗= 0.75). Lines on the phase boundaries are drawn only as a guide to the 
eye. Triangle indicates the liquid phase boundary, and circle indicates the vapor phase 
boundary. .................................................................................................................. 124	

Fig. 6.10 Reduced pressure vs. mole fraction (a) and reduced density (b) for system (KÜÜ:KÖÖ = 
2.5:1, áÜÜ: áÖÖ=1:1.5, à∗= 0.75). Lines on the phase boundaries are drawn only as a 
guide to the eye. Triangle indicates the liquid phase boundary, and circle indicates the 
vapor phase boundary. Only dilute large species part is shown in this diagram. ..... 124	

Fig. 6.11 Number of large species in liquid phase simulated by GEMC-IE and SRMC for system 
(KÜÜ:KÖÖ = 2:1, áÜÜ: áÖÖ=1:1.5, à∗= 0.75) at four total system compositions. ........... 126	

Fig. 6.12 Performance of GEMC-IE and SRMC at different large species fractions (liquid phase) 
for system (KÜÜ:KÖÖ = 2:1, áÜÜ: áÖÖ=1:1.2, à∗=0:75). ................................................ 126	

Fig. 6.13 Performance of GEMC-IE and SRMC at different large species fractions (liquid phase) 
for system (KÜÜ:KÖÖ = 2:1, áÜÜ: áÖÖ=1:1.5, à∗=0.75). ................................................ 127	

Fig. 6.14 Performance of GEMC-IE and SRMC at different large species fractions (liquid phase) 
for system (KÜÜ:KÖÖ = 2:1, áÜÜ: áÖÖ=1:2, à∗ = 0.75). ................................................ 127	

Fig. 7.1 (a) Number density of small species in system S2 (liquid phase) at different small species 
fugacity aÖ (error bar is smaller than the size of the data points); (b) Pressure of system 
S2 at different small species fugacity aÖ  at fixed large species fugacity aÜ = 20.9, 
showing method of initial approximation of aÖ at coexistence. ................................ 135	

Fig. 7.2 Solid-liquid phase diagram for three systems at mole fraction (small species)- pressure 
plane. Curves on the phase boundaries are drawn only as guide to the eye. Solid curves 
represent the solid boundaries (without the vacancy in solid phase), while dotted lines 
represent the liquid boundaries. Errors are smaller than the scale of data points. .... 137	



	

	

Fig. 7.3 Fugacity of small species at different mole fraction âÖ in system S3 (without the vacancy 
in solid phase) at different pressures. The fugacity of large species is fixed at 16.99, 
99.05 and 527.13, for pressure 6.0, 8.0 and 10.0, respectively. Fitting of data by 
Langmuir adsorption isotherm are shown in solid, dash, dot lines for pressure 6.0, 8.0 
and 10.0, respectively. .............................................................................................. 139	

Fig. 7.4 Radial Distribution Function (RDF) in solid phase without the vacancy for system (a) S2, 
(b) S3 and (c) E2 at pressure 6.0. .............................................................................. 140	

Fig. 7.5 A snapshot from our simulation for system S2 at pressure 10.0. Large species are shown 
in transparent blue, small species in interstices are shown in white, and particles in 
substitution position are shown in red. ..................................................................... 143	

Fig. 7.6 Distribution of small species substitution in the defect site for system (a) S2, (b) S3 and 
(c) E2. ........................................................................................................................ 143	

Fig. 7.7 Unoccupied vacancy fractions (âwcd�ä) for different systems at different pressures. .. 146	
Fig. 7.8 (a) Concentration of substitutional particles at different pressures; (b) Concentration of 

interstitial particles at different pressures; (c) fraction of substitutional particles 
(ãv\X (ãv\X +ãbç�wé))		at different pressures. ......................................................... 146	

Fig. 7.9 The projection of a System S2 trajectory on x-y plane for small particles with initial 
position in vacancy (red) and interstice (green) at pressure (a) 6.0, (b) 8.0 and (c) 10.0; 
The blue lattice points denote the tetrahedral holes in solid. .................................... 149	

Fig. 7.10 Small species probability distribution plots (Red) in large species defect site for system 
S2 at N∗=10.0 (nearest 12 neighbors of large species are shown in transparent blue to 
indicate the defect site “cavity”) are shown with (a) only one particle in the defect site; 
(b) three particles present in the defect site. a indicates the high probability region small 
particles presented, while b indicates the low probability region. ............................ 150	

Fig. 7.11 The distribution of maximum angle ncuè  in the triangle formed by the three small 
substitutional particles in vacancy for system S2 at N∗=10.0. .................................. 151	

Fig. 7.12 Distribution of (a) orientational tetrahedral order parameter ê, and (b) distance from 
particles to their average for four particles occupying vacancy in system S2 at N∗=10.0.
................................................................................................................................... 152	

Fig. 7.13 Distribution of order parameter _] for six particles occupying vacancy in system S2 at 
N∗=10.0. Red vertical lines denote the _] for regular octahedron in corresponding ë.
................................................................................................................................... 152	

 
	
	
	
	 	
	
	
	
	
	
	
	



	

	

	

References to Previously Published Work 
 
 

1. “Ordering of colloidal hard spheres under gravity: From monolayer to multilayer”, Ziwei 
Guo, Peiyao Wu, and James T. Kindt, Soft Matter. 15, 1027-1037 (2019) 

 
 
2. “Partitioning of Size-mismatched Impurities to Grain Boundaries in 2-d Solid Hard Sphere 

Monolayers”, Ziwei Guo and J. T. Kindt, Langmuir. 34 (43), 12947-12956 (2018)  
 
 

3. “Simulations of grain boundaries between ordered hard sphere monolayer domains: 
Orientation-dependent stiffness and its correlation with grain coarsening dynamics”, Ziwei 
Guo and J. T. Kindt, J. Chem. Phys. 149, 044503 (2018) 

	
	

4. “Size-asymmetrical Lennard-Jones solid solutions: Interstitials and substitutions”, Ziwei 
Guo and J. T. Kindt, J. Chem. Phys. 148, 164504 (2018) 

 
 

5. “Gibbs Ensemble Monte Carlo with Solvent Repacking: Phase Coexistence of Size-
asymmetrical Binary Lennard-Jones Mixtures”, Ziwei Guo and J. T. Kindt, Molecular 
Simulation. 44, 300-308 (2018)  

 
 
 



 

 
Chapter 1                                                                               

Introduction 

	

In statistical mechanics, in order to obtain the average of an observable quantity, we can either 

compute that quantity by time averaging or by ensemble averaging, which is practically conducted 

by Molecular Dynamics (MD) simulation or Monte Carlo (MC) simulation, respectively.1 MD 

simulation is similar to real experiments, where the movement of particles is subject to Newton’s 

equations of motion. Measurements of equilibrium properties are made once the system no longer 

evolves with time. The involvement of time enables MD to study dynamic properties of the system, 

like diffusion. In contrast, time does not directly participate in MC simulation. However, for some 

particular systems or topics of study, MC is preferable since it allows unphysical trial moves.  

These moves may be essential for the equilibration of the system,1 whether by overcoming energy 

barriers, establishing a virtual connection to a reservoir of constant chemical potential, or allowing 

particle exchange between coexisting phases without the need to have an interface present in the 

simulation box. 

We employed several variations of Configurational-Bias Monte Carlo2 to study the colloidal 

hard sphere particle, especially the grain boundary properties. We will also demonstrate the 

generalization of our new MC methods to the 3D soft potential case: size-asymmetrical Lennard-

Jones mixtures, to study its phase properties. 
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1.1 Colloidal particle and Grain boundary 

Colloidal particles have been shown to be useful model systems to study many phenomena and 

understand the underlying physics. The large size (~µm) and slow dynamics (~s) of the colloid, 

which make the it possible to follow the behavior directly by optical microscopy, facilitate the 

study by various experiments.3, 4 In this dissertation, we employed hard sphere model to simulate 

the colloidal particle, to understand properties of grain boundaries like stiffness and dynamics of 

grain coarsening. 

1.1.1 Phase behavior of hard sphere in 2D 

In colloidal solids (ordered assemblies of colloidal particles), colloidal can form grains with 

different size. Each grain is a region of uniform crystalline order; from grain to grain, the 

orientation and register of the crystalline lattice will change. It’s essential to know the phase 

behavior of colloidal particle assemblies, to prepare a system in its solid state with grains. In simple 

cases, colloidal particle can be simulated by hard sphere (HS) model, which is equivalent to hard 

disk (HD) model if confined in a 2D plane. The phase transition of HD has been studied by 

canonical simulation.5, 6 Staring from fluid phase, the HD will form a hexatic phase first as pressure 

increases, and then finally a long-ranged ordered solid phase. This two-stage ordering has been 

verified in experiments.7 The two-phase region between ordered and disordered phase is 

determined at 0.700<p<0.716, where p is the area fraction of the system. If a size-asymmetrical 

impurity present, the phase behavior is more complicated. Kindt shows the range of stability of 

the hexatic phase is suppressed by the impurity, as well as the long range translational order.8 

Russo et al. also found the stability window of the hexatic phase is suppressed due to the 

introduction of small disks.9 
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1.1.2 Grain boundary and Stiffness 

Grain boundaries (GBs), the interfaces between neighboring crystal domains that are similar in 

structure but differ in orientation, are very important in the study of physical properties of 

polycrystal materials such as metals, ceramics, and semi-conductors10-12. Material strength, grain 

growth, phase transformations, recrystallization and electrical conductivity are highly related to 

the GB13-17. Therefore, controlling the GB plays a vital role in manipulation of the mechanical, 

optical and electrical properties of polycrystalline materials18. One example is the molybdenum 

disulphide, where van der Zande et al. grew highly crystalline islands of monolayer  molybdenum 

disulphide and found that grain boundaries showed distinct, orientation-dependent 

photoluminescent properties related to the impact of the GB on local composition and bond 

strain.19 

A few models have been proposed to describe the GB, including dislocation models, island 

models, coincidence site models and structural unit model.20 Each model is based on some 

assumptions. In this dissertation, we used our new developed Monte Carlo simulation to study the 

GB in colloidal particle. At a continuum level, the properties of GB can be summarized through 

two key parameters: the grain-boundary stiffness Γ and the interface mobility s, which govern the 

structure and dynamics of curvature-driven grain-growth21. Stiffness Γ is related to the free energy 

of GB, as discussed in Chapter 1. Various methods have been developed to study the GB stiffness 

and mobility in experiments21-24 and simulations25-28. Practically, Γ  can be quantified through 

Capillary Fluctuation Method (CFM).21 The capillary fluctuation method is commonly used to 

relate the wavelength-dependent  fluctuation of the interface to the interfacial free energy or 

stiffness in a variety of contexts 21, 26, 29, 30. The spatial fluctuation ïℎ â  is transformed using Eq. 

(1.1.1) into ïℎ [ , which is the intensity of the mode with wave number [ in Fourier Spectrum, 
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where [ = 	2ói P (i = 	0,±1,±2,…) and P is the length of GB. ïℎ [ t  is calculated as an 

average over all frames over the simulation trajectory, and is related to the stiffness Γ of the GB 

by CFM31 as shown in Eq. (1.1.2): 

ℎ [ =
Å

Ü
ïℎ â exp −h[â Çâ

Ü

g
     (1.1.1) 

log ïℎ [ t P = −2log	([) + 	log	(
^ûü

†
)    (1.1.2) 

Geometrically, the GB can be characterized by two angles: (i) “misorientation”, which is the 

difference in orientation between the two neighboring crystal grains, and (ii) “inclination”, which 

is the orientation of the GB line.32 (The inclination is defined as the smaller orientation difference 

between the GB and the two grain domains it divides.) 

1.1.3 Grain boundary segregation 

In a polycrystalline alloy, impurities tend to be adsorbed in GB, an effect known as GB 

segregation,33-40 for the general reason that GB can provide more free volume than bulk domains.  

Interactions between impurities and GB can affect the mechanical properties of polycrystalline 

alloys41 through impurity drag,32, 42 or Zener pinning,32, 43, 44 which also play important roles in 

grain growth.45, 46 Understanding of GB segregation is crucial to combating intergranular weakness 

in the steel industry35 and improving stability of nanocrystalline alloys.34, 39 Several techniques 

like Auger spectroscopy and X-ray absorption can be applied to study GB segregation in 

experiment.20 It is discovered that the GB segregation is governed by the interaction forces 

between the impurity and GB by experiment.47 Both structure properties (like misorientation) of 

GB and the property of impurity itself will contribute to interaction forces.  

GB segregation in colloidal particle monolayers has been studied by Lavergne et al., where they 

show the impurity size determines the adaption of either interstitial or substitutional sites, and the 
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GB segregation can be directly characterized by Langmuir-McLean adsorption model.40 In our  

simulation work, we have identified additional factors that affect the GB segregation like the 

pressure (area fraction) of the system and misorientation.  

1.1.4 Dynamics of grain coarsening 

Polycrystalline patterns can be widely observed in many systems including crystalline solids,33 

colloidal particles,48, 49 di-block copolymers50 and nonequilibrium dissipative structures.51 The 

smaller grains are eliminated through coarsening as the system evolves. The grain coarsening has 

been studied in order to engineer the polycrystalline materials,52 and to better understand the 

nonequilibrium ordering phenomenon.53 

The dynamics of grain coarsening, characterized by the mobility s, can be affected by many 

factors, like system pressure, misorientation between GBs, and the presence of impurity. In 

experiment, the dynamics of one special type of boundary, the GB loop, has been studied in several 

works.53-56 In the study of GB loop in colloidal particle, Lavergne et al. found the formation and 

kinetics of GB is related to topological constrains in their complex dislocation structure.54 They 

also demonstrate the dependence of the mode of deformation (either elastic or plastic) on 

misorientation angle. 

MD simulation has been used in study of GB migration and grain rotation.55, 56 Z. T. Trautt et 

al. simulated the isolated cylindrical grain in copper, where they found the dynamics of GB motion 

and grain rotation is affected by initial misorientation angle and temperature. They also employed 

the dislocation mechanisms to explain the motion of curved GBs.55 Another MD work by M. 

Upmanyu et al. shows the GB migration and grain rotation can occur simultaneously, where they 
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observed the grain rotated as a rigid body motion rather than by grain shearing by dislocation 

passage through the grain interior.56 

In this dissertation, we used MC to simulate the dynamics of GB. Although Monte Carlo 

simulation does not produce a trajectory that is directly related to a dynamic algorithm, the 

evolution of a Monte Carlo trajectory that uses local displacement moves can give qualitative 

insight into dynamics. This is particularly true for colloidal systems where Brownian dynamics 

might be a good approximation.57 

 

1.2 Lennard-Jones particle 

1.2.1 Phase behavior of Lennard-Jones particle 

The Lennard-Jones potential is a popular model to represent isotropic or approximately 

isotropic intermolecular interactions, for instance as seen in the condensed phases of rare gases or 

methane. Lennard-Jones (LJ) particle interacts with each other via Lennard-Jones potential: 

Φb¢ £ = 4áb¢[(
•¶ß

é
)Åt − (

•¶ß

é
)M]    (1.2.1) 

which is a soft potential with an attractive minimum with well depth of áb¢ and a repulsive core 

of diameter ~Kb¢. For the LJ mixtures, different mixing rules can be used to compute the interaction 

between different type particles. Phase diagram of one-component LJ system can either be 

generated by using Gibbs ensemble simulation58 or  Equation of States (EoS).59 One should notice 

that the phase diagram of LJ highly depends on the potential truncation method implemented. 

Work on generating phase diagrams for mixtures of LJ fluids using various theoretical 

approaches has spanned several decades.59-67 Size asymmetrical mixtures are studied by Gibbs 

Ensemble Monte Carlo (GEMC),63, 68 Grand Canonical Ensemble Monte Carlo (GCMC) method69, 
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70 or other simulation strategies.71-74 Complete phase diagrams of binary LJ mixtures were reported 

by Hall et al.73, 75  through Monte Carlo simulation and the Gibbs–Duhem integration method.76 

The first-order phase transition for binary mixtures has been calculated by the semigrand canonical 

ensemble method as well.77 Calculations using the Redlich-Kwong equation of state show the 

phase diagrams for molecules of unequal sizes are topologically different from similar size 

molecules.78 However, most research focuses on the LJ mixtures that have different well depth á 

but with size ratios K close to 1. In this dissertation, an efficient method to simulate the LJ mixtures 

with large size ratio (1.2, 1.5 and 2) will be demonstrated. 

1.2.2 Solid Solution 

Solid solutions or alloys, mixtures in which one component is distributed in a disordered 

arrangement throughout an otherwise regular crystal structure, have been widely studied due to 

their applications in photonics, optics, semiconductors and structure design79-83. In a substitutional 

solid solution (SSS), impurity particles occupy some fraction of lattice sites in place of the majority 

component particles; the prototypical example is bronze, which contains tin substituted within a 

copper lattice. In an interstitial solid solution (ISS) the impurity component occupies some fraction 

of the interstitial positions of the crystalline lattice of the first species; the prototypical example is 

steel, with carbon atoms occupying interstitial sites in an iron lattice84. The presence of the 

impurities may have important effects on the mechanical behaviors, phase diagrams, and electrical 

properties of the solids, and the ability to tune the properties by adjusting the amount and nature 

of the minority components have made solid solutions tremendously important in technology.  

Vacancy occupation by one or more impurity particles present interstitially and the equilibrium 

thermodynamics of vacancy levels has been addressed in the recent metallurgical literature85, and 
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appears to have implications for design of advance materials with many thermodynamic and 

kinetic properties like High Entropy Alloys (HEAs) with much better resistance to radiation 

damages. To gain some general perspective on whether interstitial and plural substitutional 

impurities might appear in the same phase we have investigated size-asymmetrical binary LJ solid 

solutions, with the smaller particle the minority component, at coexistence with the binary liquid 

mixture. 

 

1.3 The Monte Carlo Method 

We will first show the basic concept of the conventional Monte Carlo method including the 

Metropolis method, then introduce the Configurational-Bias Monte Carlo (CBMC). MC methods 

in different ensembles will also be discussed. Finally, we will illustrate the general concept of 

Solvent-Repacking Monte Carlo (SRMC) developed in our lab. 

1.3.1 The Metropolis method 

MC computes thermal averages by ensemble averaging. The observable quantity O of interest 

can be measured from the ratio of two integrals: 

 

O =
©™´©¨´	≠ ™´,¨´ 	BÆØ	[∞±ℋ(™´,¨´)]

©™´©¨´	BÆØ	[∞±ℋ(™´,¨´)]
   (1.3.1) 

where ™≥ and ¨≥ is the momenta and coordinate of all N particles, respectively; ℋ(™≥, ¨≥) is 

the Hamiltonian of the system; and ¥ = 1/[µà . If we only are only interested in the static 

properties, momenta and kinetic energy in (1.3.1) can be factored out of numerator and 

denominator and cancel out exactly, leaving: 
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O =
©¨´	≠ ¨´ 	BÆØ	[∞±∂(¨´)]

©¨´	BÆØ	[∞±∂(¨´)]
    (1.3.2) 

where ∂(¨≥) is the potential energy of the system. The integral in (1.3.2) cannot be directly 

evaluated by Monte Carlo importance sampling, but the ratio of integrals is possible to be sampled 

by Monte Carlo scheme, shown by Metropolis et al.86 One first define the probability density 

function ∑(¨≥) denoting the probability of randomly generating points in configuration space:  

∑(¨≥) ≡
BÆØ	[∞±∂(¨´)]

π
     (1.3.3) 

where ∫ ≡ d¨≥	exp	[−¥∂(¨≥)], the configurational part of the partition function. With this 

definition, Eq. (1.3.2) can be evaluated as:	 

O = d¨≥	O ¨≥ 	∑(¨≥)     (1.3.4) 

, which suggests that one can measure O by only knowing the relative but not necessarily the 

absolute probability of visiting different points in configuration space. 

The key of MC method is to generate trial moves from old state to new state, sampling the 

configurational space with a relative probability proportional to the Boltzmann factor. At 

equilibrium, the number of accepted trial moves from old state to new state should equal to the 

number of accepted trial move from new state to old state, to maintain a constant distribution. This 

constraint is described by the detailed balance:     

∑ o ó o → n = ∑ n ó n → o     (1.3.5) 

where ó is the transition probability between old state (o) and new state (n). In practice, ó can 

be further denoted as the product of the probability (º ) of attempting a trial move and the 

probability (acc) of accepting this trial move. Therefore, the final form of detailed balance can be 

derived: 

∑ o º o → n acc o → n = ∑ n º n → o acc n → o    (1.3.6) 
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If º  is chosen to be symmetrical, as in the original Metropolis scheme, the acceptance 

probability of accepting a trail move (o → n) is: 

acc o → n = min	[
BÆØ ∞±∂ @

BÆØ ∞±∂ ¿
, 1]    (1.3.7) 

The acc controls the number of accepted trial moves, thus maintaining (or guiding) the system 

to equilibrium state under pre-determined condition. 

1.3.2 Configurational-Bias Monte Carlo 

The Configurational-Bias Monte Carlo2, 87-89 (CBMC) is designed to speed up sampling 

configuration of chain molecule like polymer90, through “unphysical” MC trial moves. In contrast 

to the original Metropolis scheme, where º  is chosen to be symmetrical, the º o → n  and 

º n → o  in CBMC can be different. This asymmetrical transition matrix º can contribute to the 

speeding up, sometimes by many orders of magnitude.1 CBMC is implemented by Rosenbluth 

scheme91, where the Rosenbluth weight is used to bias the acceptance probability to giving the 

distribution proportional of Boltzmann weight. In CBMC, the chain molecule is grown stepwise. 

For each segment, we generate [ trial positions randomly and select one with a probability: 

Nb n =
BÆØ	[∞±\¶ @ ]

¡¶(ç)
     (1.3.8) 

where ¬b n  is the potential energy of the hth segment interacting with other molecules and the 

previous h − 1 segments of the molecule under construction;  √b(n) is defined as: 

√b n = exp	[−¥¬b j ]
^
¢≈Å      (1.3.9) 

The Rosenbluth weight can then be calculated as:    

∆ n = √b n
]
b≈Å                 (1.3.10) 
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for a molecule with ë segments. Similar scheme is used to regrow the old configuration, with 

the first trial position (« = 0) the same as the position of segment in its old state. The acceptance 

probability can be then derived as: 

acc o → n = min	[
» @

» ¿
, 1]           (1.3.11) 

1.3.3 Monte Carlo Simulation in different ensembles 

Monte Carlo simulation can be applied in various ensembles including canonical ensemble, 

microcanonical ensemble, isobaric-isothermal ensemble, isotension-isothermal ensemble, grand 

canonical ensemble and Gibbs ensemble.1 The choice of ensemble depends on the property 

intended to study. In this dissertation, we mainly conduct our MC simulation in canonical 

ensemble, grand canonical ensemble and Gibbs ensemble. 

In canonical (constant-NVT) ensemble, the probability of finding certain configuration is: 

∑ ¨≥ ∝ exp	[−¥∂(¨≥)]     (1.3.12) 

The acceptance probability of random walk in canonical ensemble is given in Eq. (1.3.7). MC 

simulation in canonical ensemble is often used to relax the system to equilibrium. 

 In grand canonical (constant- VT) ensemble, number of particles in system can change. 

The system can exchange particles (and energy) with a reservoir at given chemical potential  . 

From the partition function in grand canonical ensemble, one can show the probability distribution 

is: 

∑ ¨≥, N ∝
BÆØ	(±À≥)Ã´

ÕŒ´≥!
exp	[−¥∂(¨≥)]    (1.3.13) 

where Λ is the thermal de Broglie wavelength (Λ = ℎt 2ói[µà). In grand canonical Monte 

Carlo (GCMC) simulation, besides the regular displacement move as shown in canonical ensemble, 

insertion and removal of particles will also be performed, with the acceptance probability: 
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acc N → N + 1 = min	[
—

ÕŒ(≥“Å)
exp ¥[  − ∂ N + 1 + ∂ N ] , 1]  (1.3.14) 

         acc N → N − 1 = min	[
ÕŒ≥

—
exp ¥[  + ∂ N − 1 − ∂ N ] , 1]   (1.3.15) 

GCMC simulation can be used to establish phase coexistence if the same chemical potential(s) 

can produce two distinct system densities or compositions with the same pressure.  The Gibbs 

ensemble method, developed by Panagiotopoulos,92 is a method that can find the phase coexistence 

itself in a single simulation. Usually, there are two simulation boxes in Gibbs ensemble, 

representing the system in different phases. Gibbs ensemble method can establish the equilibrium 

between these two boxes so that they share the common chemical potential (although we cannot 

specify the value), pressure and temperature. From the partition function of Gibbs ensemble, the 

probability distribution of configuration can be derived as: 

∑ nÅ, VÅ, Å̈
@‘, ẗ

≥∞@‘ ∝
Ã‘
’‘(Ã∞÷‘)

´◊’‘

@‘! ≥∞@‘ !
exp	[−¥[∂ Å̈

@‘ + ∂( ẗ
≥∞@‘)]]  (1.3.16) 

where the quantity with subscript denotes its value in the first box or the second box. In Gibbs 

ensemble MC simulation, there are three types of trial move. The first one is particle displacement, 

identical to Eq. (1.3.7). The second trial move type is volume change, under the constraint that the 

total volume of the two boxes is fixed and with the positions of particles within each box scaled 

uniformly according to the ratio of new and old box dimensions. The acceptance of the volume 

change can be derived as: 

acc o → n = min	[
÷‘
’

÷‘
ÿ

@‘“Å ÷∞÷‘
’

÷∞÷‘
ÿ

≥∞@‘“Å
exp	[−¥ ∂ @̈

≥ − ∂ ¿̈
≥ ],1]    (1.3.17) 

The third type of trial move is the particle exchange between the two boxes, under the constraint 

that the total particle number in the two boxes is fixed. The acceptance of the particle exchange 

can be derived as: 

acc o → n = min	[
@‘ ÷∞÷‘
≥∞@‘“Å ÷‘

exp	[−¥ ∂ @̈
≥ − ∂ ¿̈

≥ ],1]     (1.3.18) 
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The Gibbs ensemble method has been shown to improve the efficiency of simulating phase 

equilibria significantly. However, its use is limited if one phase is very dense, since this method 

rely on the particle exchange to find the coexistence. 

1.3.4 Solvent Repacking Monte Carlo 

In a very dense system, the acceptance probability (even for CBMC) is usually very low when 

the space is all occupied by solvent, leaving no room for insertion without removing solvent, or 

removing solute puts a big empty space in the system which is a high-energy, low probability 

structure. Some algorithms are developed to tackle on this type problem. One famous method is 

semi-grand Monte Carlo, where the randomly selected particle can switch its identity to increase 

(or decrease) the particle size in place. The performance can be improved significantly by using 

semi-grand MC. However, the size ratio of different species cannot be too large, or the identity 

swap move will easily fail. In case of simulating highly size-asymmetrical system, a method 

developed by Ashton et,al.69 can be used, where they can insert a particle with larger size by 

increasing the size of “ghost” particle gradually. They have shown this method can successfully 

simulate the LJ binary mixture with size ratio 10:1. But it becomes more expensive with increasing 

small-particle volume fraction, as it relies for its efficiency on rapid grand-canonical sampling of 

the small particles, and could face bottlenecks associated with cavity wetting/dewetting transitions 

of strongly attractive small particles as repulsions from the large particle are gradually turned off 

or on. A Monte Carlo cluster algorithm is also developed to improve the efficiency for simulating 

size-asymmetrical system,93 through restricted GEMC simulation coupled with the highly efficient, 

rejection-free geometric cluster algorithm (GCA).94 The effectiveness of the GCA algorithm is 

limited, however, to a maximum small-particle volume fractions of about 0.34.95  
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A new approach named solvent repacking Monte Carlo (SRMC) is introduced by Kindt,8 which 

is a variation of CBMC, offers the possibility of interchanging states with different numbers of 

solvents in a selected cavity in solvent phases. In general, after removing the solute, trial positions 

for the first solvent particles are randomly generated and one is accepted with the probability of 

Boltzmann weights, while the trial positions that overlap with other solvent particles are rejected. 

After a position is successfully determined, the trial insertion is continued in a similar manner, 

keep adding the solvent particles until no allowed trial position can be found. SRMC has shown a 

good capability for repacking the hard disk model,8 which has the potential to  create a new 

structure while assessing its probability in the ensemble of possible structure. By using the 

auxiliary potential that can mimic the behavior of the particles inserted later, better configurations 

are generated as well as the improvement of acceptance probabilities. 

Various SRMC methods have been developed to simulate the hard sphere colloids and Lennard-

Jones particle. More details of the algorithm will be given in the following chapters. Generally, 

SRMC can perform well for colloidal HS monolayers, since the HS in 2D is equivalent to HD, and 

we can still apply the radial distribution function based biased potential (more details about bias 

potential can be found in the following chapters.). However, when move to soft potential LJ system 

in 3D, the performance of SRMC is not as good as HD. In some cases it is no better than the semi-

grand Monte Carlo method. We also noticed the use of bias potential does not improve the 

acceptance probability in LJ system. Reasoning for this phenomenon requires further exploration. 

It could be caused by the nature of the soft potential, and the complexity in the high dimension. 
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1.4 Outline of Dissertation 

SRMC has been shown to simulate the phase transition of dense HD system very efficiently.8 

Here we first extended the original SRMC method to simulate colloidal particle either confined in 

a 2D plane (with and without size-asymmetric impurities) or in a quasi-2D system where colloidal 

particle is subjected to gravity. In the simulation of GB properties of colloidal HS in 2D (Chapter 

2), we used the same SRMC algorithm as in ref 8. In aim of simulating HS mixtures with size-

asymmetrical impurity for studying GB segregation (Chapter 3), a new variation of SRMC named 

mixed repacking Monte Carlo (MRMC) was developed, which facilitates sampling the mixture 

where impurity is not sparse. Chapter 4 deals with dynamical aspects of grain coarsening, and uses 

only local translational moves to mimic the diffusive motion characteristic of colloids in 

experiments. We also extended our method to quasi-2D case with the presence of gravity, which 

enables the simulation of sedimentation of colloidal HS multilayer (Chapter 5). Chapter 6 shows 

our effort on extending the SRMC to more complex soft potential Lennard-Jones model in 3D. 

The new SRMC algorithm in Gibbs ensemble can simulate the liquid-vapor phase coexistence of 

size-asymmetrical LJ mixtures more efficiently under certain condition. We also explored the 

possibility of extending the SRMC to simulate LJ particle in the denser solid phase. However, 

original GCMC is more efficient to simulate the distribution of impurity in LJ solid with manually 

created vacancy. We thus showed our findings of LJ solid solutions with vacancy occupied by 

multiple impurities by using GCMC in Chapter 7. 
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Chapter 2                                                                                      

Simulations of grain boundaries between ordered hard sphere 

monolayer domains: orientation-dependent stiffness and its 

correlation with grain coarsening dynamics1 

 

The properties of grain boundaries (GBs) between ordered 2-d domains of a hard-sphere 

monolayer have been investigated using grand canonical Monte Carlo simulations. The capillary 

fluctuation method was used to determine the GB stiffness over a range of pressures, 

misorientations and inclinations. Stiffness was found to be sensitive to misorientation (mismatch 

in the orientation angle of neighboring grains), but not to depend on inclination (angle between the 

boundary and the grain orientation).  Excess area per GB length was observed to follow the same 

trend as stiffness with respect to grain misorientation and GB inclination angles. Dynamical studies 

of the evolution of bicrystalline or multicrystalline monolayers with simple geometries show that 

the calculated angle-dependent stiffnesses correlate well with the rate at which the evolving grain 

structure decreases the lengths of various GB, in agreement with recent experimental results on 

monolayers of colloidal microspheres. 

 

2.1 Introduction 

Grain boundaries (GBs), the interfaces between neighboring crystal domains that are similar in 

structure but differ in orientation, are very important in the study of physical properties of 

																																																								
1. Adapted	with	permission	from	Guo,	Z.	and	Kindt,	J.	T.,	J.	Chem.	Phys.	149,	044503	(2018)	with	the	permission	of	

AIP	Publishing.	
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polycrystal materials such as metals, ceramics, semi-conductors10-12. Material strength, grain 

growth, phase transformations, recrystallization and electrical conductivity are highly related to 

the GB13-17. Therefore, controlling the GB plays a vital role in manipulation of the mechanical, 

optical and electrical properties of polycrystalline materials18. GB can be characterized by two key 

parameters: the grain-boundary stiffness Γ  and the interface mobility s , which govern the 

structure and dynamics of curvature-driven grain-growth21. Geometrically, the GB can be 

characterized by two angles: (i) “misorientation”, which is the difference in orientation between 

the two neighboring crystal grains, and (ii) “inclination”, which is the orientation of the GB line.32 

(The inclination is defined as the smaller orientation difference between the GB and the two grain 

domains it divides.) Various methods have been developed to study the GB stiffness and mobility 

in experiments21-24 and simulations25-28.  

Colloidal polycrystalline monolayers have been shown to be useful model systems to study GB 

and grain growth96. Various experiments take advantage of the large size (~µm ) and slow 

dynamics (~s), which make it possible to follow the behavior directly by optical microscopy3, 4.  

Hexagonal polycrystalline monolayers can be prepared by confining spherical colloidal particles 

through gravity onto a liquid97 or solid surface24 or confined to a gap between surfaces98. Under 

appropriate conditions, the interactions between particles will be dominated by short-ranged 

repulsions so that the colloids can be modeled as hard spheres.7  In the limit where fluctuations 

normal to the plane can be neglected, monodisperse hard spheres become isomorphic to the two-

dimensional system of hard disks (HD).99
  

In the present study we will assume that this fully 2-d limit is reached, as is appropriate for 

sufficiently large and heavy colloidal particles.7 While we will continue to refer to “spheres” to 

emphasize the relevance to experimental colloidal systems, we will take also advantage of the  
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extensive simulation literature on HD phase behavior. It has been shown5, 6 that the HD phase 

diagram features a  first-order phase coexistence between a fluid phase at area fraction h = 0.700 

and hexatic phase at h = 0.716. The hexatic phase is stable over a narrow range of area fractions, 

and undergoes a continuous transition to a 2-d solid phase upon further compression to h » 0.720.6 

The grains modeled here fall in the range of area fractions from h = 0.727 to 0.782 and so can be 

considered 2-d solids. 

Although stiffness of GB in colloidal monolayers has been addressed through several 

experiments,21, 24, 98 no systematic study has been done to show the dependence of stiffness on 

misorientation, inclination and pressure. By engineering the grain domains in our simulations, we 

are able to study the GB systematically with controllable parameters. In this study, stiffness 

dependence on these variables will be reported for monolayers of uniform hard sphere, and 

compared with experimental observations21, 24. Simulations are performed in the grand canonical 

ensemble, implemented here using the solvent-repacking Monte Carlo (SRMC)8 algorithm to aid 

in particle exchange in the dense system. Setting a common chemical potential facilitates 

comparison across systems under varying geometries at the same pressure. Local particle insertion 

and removal moves, distributed across many processors in parallel through domain decomposition, 

allow the local density at the boundary and within the grains to reach equilibrium and undergo 

fluctuations independently, rather than relying on uniform expansion and compression of the 

whole system to achieve constant pressure. Fluctuations of the GB shape are interpreted via the 

capillary fluctuation method (CFM)31 to yield the stiffness.  

This chapter will first report calculations of the stiffness of boundaries between adjacent 

domains of hard spheres in the 2-d solid phase, with attention to effects of pressure, grain 

misorientation, and GB inclination. In the second section of this chapter, the pre-melting behaviors 
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of GB at pressures approaching the melting transition, and a non-equilibrium faceting behavior 

observed at high pressures, will be discussed qualitatively. Finally, dynamic Monte Carlo studies 

of simple 2- and 4-grain systems are used to show how the evolution of grain sizes and shapes are 

influenced by grain misorientation in manner that is qualitatively consistent with the trends in GB 

stiffness. 

 

2.2 Methods 

2.2.1 System Construction and initialization 

In the study of stiffness, ordered grains of spheres are set up in a pair of parallel stripes making 

two parallel GBs align with the â direction.  Initial ordered structures were taken from equilibrated 

2-d ordered phases generated in previous studies8. For simulations at the highest chemical 

potential/pressure conditions, the starting structure was a perfect hexagonal lattice with density 

close to the expected equilibrium density. The use of parallel stripe grains with boundaries that are 

continuous via periodic boundaries provide a well-defined misorientation between the grains, a 

fixed mean inclination between the boundary and the grains, and a fixed GB length. The two 

domains have the same area in the initial configuration, and are separated by a distance of K in the  

Ÿ direction to remove particle overlaps. This gap between the grains is filled quickly by the SRMC 

algorithm. 

In the dynamic study, the two (or four) domains with different orientations are engineered to 

the desired domain shapes. A distance of K between domains is applied for the same reason to 

prevent overlapping. The output configuration after 1000 MC cycles in grand canonical ensemble 

is used as the initial configuration for the dynamic study in NVT ensemble, in which the gaps are 

already filled while the areas of domains do not change significantly. 
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2.2.2 Solvent-Repacking Monte Carlo 

To sample over the grand canonical ensemble at some particle fugacity f = exp(bµ) at high 

packing density, the solvent-repacking Monte Carlo (SRMC) algorithm was used and is described 

here briefly. The SRMC method uses configurational bias Monte Carlo2 (CBMC) strategy to 

generate a set of positions for a set of particles to replace the particles present in a circular cavity 

randomly selected within the simulation box.  After defining the cavity and selecting its radius (as 

a random value between 1 and 1.4 K in the present case), a number [ of insertion moves will be 

performed to randomly and uniformly sample the cavity region in each cycle h. The «⁄th particle 

will then be selected with a probability: 

Nb,¢¤ = 	
BÆØ	(∞±\

¶,ß¤
¤ )

BÆØ	(∞±\
¶,ß¤
¤ )‹

ß›‘
= 	

BÆØ	(∞±\
¶,ß¤
¤ )

»¶
¤     (2.2.1) 

where ¬b,¢¤
⁄  is the auxiliary potential (the logarithm of the radial distribution function (RDF) for 

hard spheres with an area fraction 0.69 is used in this work; this and choices for k were consistent 

with previous work8) for the interaction of the «⁄th particle with particles inserted in previous cycle 

and the solvent shell around the cavity. The insertion cycle will be repeated until some 

predetermined conditions are met: either particle number in cavity reach a maximum (20 in this 

work) or none of the [ trial positions are successful. We thus can get a maximum number of 

particles ficuè  that can be inserted in this cavity region (which is independent of the current 

number.) 

The probability for selecting a configuration with number of particles h⁄ is: 

N h⁄ = 	
fl¶¤

fl¶
‡·‚„
¶›‰

        (2.2.2) 
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where the weight Âb¤ associating the configurations with different numbers of particles can be 

calculated as:  

Âb = 	
Ê¶

ÕÁ¶
	

ÑË‚È
¶

b! ^¶¤
¶
¶¤›‘

	∆b
⁄ BÆØ	(∞±Í¶)

BÆØ	(∞±Í¶
¤)

     (2.2.3) 

where Λ is the de Broglie thermal wavelength (set to 1 in all simulations); Ç is the dimension 

of the system; Îb and Îb⁄ are the true potential energy (always equal to zero) and the auxiliary bias 

potential energy, respectively.  Calculation of weights associated with the current configuration of 

particles involves the generating of alternative “dummy” trial positions, as is standard in CBMC. 

The overall acceptance probability for transition from current state with fiÉuÑ particles in cavity to 

the new state with fiÉuÑ¤ particles can be written as: 

yÏÏçË‚È→çË‚È¤ = ihfi 1,
fl¶,‡ÌÓ

‡·‚„,‡ÌÓ
¶›‰

fl¶,ËÔÌ‡Ò
‡·‚„,ËÔÌ‡Ò
¶›‰

   (2.2.4) 

2.2.3 Order parameter and GB detection 

Bond-orientational order parameter100 LM is used to characterize the local crystalline order of 

particle «: 

LM(£¢) =
Å

Úß
{bM∆Ûß‹

Úß
^≈Å        (2.2.5) 

where ∆n¢^  is defined as the angle between the â  direction with the vector connecting the 

central particle « and one of its Ù¢ nearest neighbor [ within a cutoff 1.5K. The orientation of the 

hexagon formed by six neighbors of particle « can then be calculated by nM = arg LM /6, which 

is a value varied from 0 to 60° due to the symmetry of hexagon. The orientation of the grain domain 

can be quantified by averaging all the nM of particles belonging to the domain. In the rest of this 

report, nM refers to the orientation of the domain instead of single particle for simplicity. 
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Fig. 2.1 Snapshot of a hard-sphere monolayer at fugacity 1´107 with the GBs presented in a 200K´200K box (only 
one GB in a region 100K´100K  is shown here for clarity). The spheres are color-coded by order parameter LM 
represented by the color shown in the inset. The x and y axis represent the real and imaginary part of LM, respectively. 

	

Fig. 2.2 F.T. spectrum of the fluctuation of GB at fugacity f=1.0´107 in a 200K´200K box. Red line is the linear fit of 
the spectrum data (circle points) with slope fixed at -2. 

To detect the variation in the position of the two GB’s along the x dimension, we divide the 

simulation box into a 100´100 grid.  Multiple tests showed this granularity is fine enough, and that 

the use of smaller grid squares does not affect the stiffness calculated. The average of the nM for 

particles in each grid and the four nearest grid squares of the same x coordinate is measured to 

represent the orientation of each grid square. (Averaging over several grid squares in the y direction 

serves to smooth over noise associated with local pockets of disorder, whether at the boundary or 

elsewhere, which otherwise lead to false indications of the GB location.)  The height h of the grain 
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boundary is taken as the y coordinate of the “edge point” grid square, defined as the grid square 

with nM closest to the mean of the nM values of the two grains. The GB is represented by connecting 

“edge points” all together (Fig. 2.1). 

2.2.4 Capillary Fluctuation Method 

The capillary fluctuation method is commonly used to relate the wavelength-dependent  

fluctuation of the interface to the interfacial free energy or stiffness in a variety of contexts.21, 26, 29, 

30 GBs in each frame during the simulation are represented by the method discussed above, which 

can be described by a function of the distance along the â direction and frame ˜: ℎ(â, ˜). To correct 

for drift or diffusion of the GB over the course of the simulation we use fluctuations relative to the 

current mean position of the GB: ïℎ â, ˜ = ℎ â, ˜ − ℎ(˜) è . For each frame, the following 

Fourier Transform (F.T.) can be written: 

ïℎ [ =
Å

Ü
ïℎ â exp −h[â Çâ

Ü

g
    (2.2.6) 

Each frame’s spatial fluctuation ïℎ â  is transformed using Eq. (2.2.6) into ïℎ [ , which is 

the intensity of the mode with wave number [ in Fourier Spectrum, where [ = 	2ói P (i =

	0,±1,±2,…) and P is the length of GB. ïℎ [ t  is calculated as an average over all frames, 

and is related to the stiffness Γ of the GB by CFM31: 

log ïℎ [ t P = −2log	([) + 	log	(
^ûü

†
)    (2.2.7) 

In practice, a linear fitting of Eq. (2.2.7) with a fixed slope –2 is performed to fit the F.T. 

spectrum to find stiffness Γ from the y-intercept (Fig. 2.2 ). We found in general that the power 

spectrum of fluctuations deviated upward from the low-k trend at high k (i.e. short wavelength).  

The CFM is derived from continuum theory and so is not expected to fit fluctuations with high k. 

The apparent crossover to a different high-k regime was dependent on the system, but for a general 
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rule points with i  higher than 15 (corresponding to k > 0.5 K∞Å, or the wavelengths < 12 K) are 

excluded from the linear fitting.  The enhanced local fluctuations of the interface on wavelengths 

significantly longer than a single particle diameter may be related to local melting and/or to 

uncertainty in defining the precise boundary positions. 

2.2.5 Implementation details 

A domain-decomposition scheme is used to parallelize the simulations.  The system (with a box 

size 200K´200K or 300K´300K in stiffness calculation, 200K´200K or 250K´250K in dynamic 

study) was divided into an 8´8 or 12´12 grid with a randomly selected origin. In each MC cycle, 

a predetermined number of MC move attempts were performed independently within each grid 

square on separate processors, with no addition, removal, or translation of particles within a zone 

of distance of 0.5K from domain borders. For GCMC simulation of GB fluctuations, each MC 

cycle contains 1000 SRMC move attempts followed by 2000 regular translation move attempts 

(max. displacement of 0.05K) performed in each grid square.  After every MC cycle, a new origin 

for the grid was chosen and particles are redistributed among processors so that the border regions 

are constantly changing. To sample GB fluctuations ïℎ â , the equilibration and production 

periods consisted of at least 5000 and 20000 MC cycles, respectively, within the grand canonical 

ensemble.  

In studies of the evolution of 2- and 4-grain systems, an equilibration period of 1000 MC cycles 

as defined above was used to allow the GB to relax from their initial straight arrangements and to 

allow the ordered grains to reach a steady density. 
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Dynamic MC studies were performed under canonical ensemble conditions (at constant N and 

A).  At least 3000 MC cycles are run, with 20000 regular translation moves per domain in each 

cycle. 

Reduced units, scaled to the particle diameter K and the thermal energy kBT are used throughout.  

The pressure P* (in units of [µà/Kt) was calculated using the radial distribution at contact101: 

N∗ = 	V +
¯

t
Vt˘(1“)     (2.2.8) 

with r = N/A. The radial distribution at contact is obtained by fitting the pair distance histograms 

to a third-order polynomial out to 1.05 times the contact length. Area fraction h is calculated as to 

πr/4, corresponding to the projected area of non-overlapping spheres on a flat surface or the area 

coverage of discs of unit area. The bulk area fraction is measured using the average number density 

within the grains’ interiors. 

 

2.3 Results and Discussion 

The first part of this section demonstrates the systematic measurement of stiffness under various 

conditions including box size, pressure (varied through changing particle chemical potential), 

misorientation and inclination. Enthalpic and entropic contributions to the stiffness will be 

discussed. The second part focuses on a phenomenon we noticed from our simulation: GB buckling 

or faceting during a gradual increase in the system pressure. The apparent origins of this 

phenomenon and implications for simulation approaches and the behavior of experimental systems 

under compression will be discussed. The last section presents the results of dynamic studies that 

test how the stiffness of GB correlate with the dependence of grain growth rates on orientational 

factors. 
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Fig. 2.3 Stiffness dependence on (a) system size with fixed GB misorientation 27.4° and inclination 11.1°; (b) pressure 
with fixed system size 200K´200K, misorientation 30° and inclination 15°. The product of pressure with excess surface 
area per unit length of GB (N∆O/P) is also shown in (b). 

2.3.1 Stiffness and line tension 

We first studied the stiffness dependence on system size. In principle, system size should not 

affect the GB. Practically, GB may suffer from the finite size effect in simulations.  Simulations 

at 100K´100K were tested but were not pursued because the drift in GB positions would sometimes 

bring them close enough together for a grain to fuse with its periodic image. We compared results 

of simulations under three pressures with different system size (200K´200K or 300K´300K), 

keeping misorientation and inclination the same (Fig. 2.3(a)). No significant difference is observed.  

The increase in computational expense to equilibrate the fluctuations with increasing box length L  

is expected to scale as L3, as the number of particles scales with L2 while the relaxation time of the 

longest-wavelength mode scales with L.26 Therefore, for efficiency and to allow better 

convergence, all following simulations are performed with a box size 200K´200K (except one case 

in the section 2.3.3 which required a larger box size). Although this range of box sizes is not wide 

enough to rule out the possibility of finite-size effects, the general agreement at these system sizes, 

the absence of a systematic size-dependent trend in the calculated stiffness, and considerations of 
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efficiency and statistical sampling led us to adopt a box size 200K´200K for all further stiffness 

calculations. The stiffness dependence on pressure is studied with a fixed misorientation and 

inclination (Fig. 2.3(b) and Table 2.1). A linear relation is observed.  A GB stiffness has been 

evaluated as 1.7×10-15 J m-1 from experimental images of a fluctuating GB in a system of 2.7  m 

colloidal particles21 at a number density of 0.11  i∞t.  Upon conversion to reduced units (kBT/K) 

this corresponds to Γ= 1.1, in good qualitative agreement with the present simulation results.  We 

hesitate to examine the agreement in stiffness values between experiment and simulation more 

closely, because of the difficulty in calibrating the state of the experimental system onto the 

simulation conditions with sufficient precision.  

Fig. 2.4(a) and (b) shows the stiffness dependence on misorientation and inclination. A higher 

stiffness is observed as the misorientation increases. Stiffness and enthalpy show the same 

dependence on misorientation. No significant dependence on inclination is seen in either the 

stiffness or the enthalpy of the grain boundary. These results are consistent with a recent 

experimental study of the dynamics of 2-d colloidal grain growth,24 which showed boundaries 

between neighboring grains with large misorientations disappeared faster than low-misorientation 

boundaries, but that the probability distribution of  GB was uniform and unchanging with respect 

to inclination angle.  From this we may conclude that the second derivative of GB free energy with 

respect to angle of inclination must be small, and that therefore the line tension can be assumed 

equal to the stiffness to a very good approximation.   
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Fig. 2.4 Stiffness and excess interfacial enthalpy per unit length of GB (N∗∆O/P) from simulations at system size 
200 K ´200 K  on (a) misorientation with and inclination 15° at fugacity 2.0´106; (b) inclination with fixed 
misorientation 30° at fugacity 2.0´106; (c) misorientation with inclination 15° at fugacity 1.0´107; (d) inclination with 
misorientation 30° at fugacity 1.0´107. 

Given that the stiffness extracted from simulation can be treated as a line tension (excess free 

energy per unit length), it is instructive to analyze the components of that free energy.  Since the 

potential energy of the HS system is zero for all allowable configurations and the kinetic energy 

per particle is only a function of temperature, the excess internal energy of the GB is zero.  The 

excess enthalpy ∆H for this 2-d system in reduced units is therefore P*∆A, with ∆A the excess area 

(the area difference in area between a uniform system and a system with the same number of 

particles having a GB).  The excess entropy associated with the GB at constant surface pressure is 

therefore T∆S = P*∆A - ∆G, and so the excess entropy per unit length of the GB is ∆S/L = (P*∆A/L 
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- G).  The red symbols in Fig. 2.3(b) and Fig. 2.4 show the product of pressure P* with excess 

surface area ∆A per unit length L of the GB. The difference between the red symbols and Γ reflects 

the excess interfacial entropy per unit length, which decreases with increasing pressure to about 

P*=12 and then levels off.  The dependences of enthalpy on GB misorientation and inclination at 

constant fugacity (Fig. 2.4(c) and (d)) track the corresponding dependences of stiffness on these 

properties.  

As pressure is decreased toward the melting pressure, the excess area per unit length associated 

with the boundary increases significantly (from about 0.2 s to about 0.3 s.)  This is caused by the 

interface widening as it turns into a locally liquid region, an example of pre-melting as has been 

observed at grain boundaries in a variety of polycrystalline systems102-104.  In fact, the presence of 

a wide and fluctuating pre-melted zone made it impossible to evaluate the position of the interface 

at pressures below 9.5 kBT/Kt.   

Pre-melting to a fluid layer of width w is expected to be spontaneous when the line tension 

between the two solid grains is greater than the combination of the combined fluid-solid interfacial 

tensions of the two solid-fluid interfaces formed102, plus a bulk contribution (which vanishes at the 

transition pressure) that is proportional to w. The fluid-solid interfacial tension is not easily 

obtained since the 2-d solid and fluid phases do not coexist at equilibrium.  Instead we consider 

the experimentally derived interfacial stiffness values reported by Thorneywork et al.7  for the 

fluid-hexatic interface at coexistence at an inclination 15°.  Converted into reduced units, this gives 

an estimate for the fluid-solid interfacial tension of G = 0.085. When we use the data in Fig. 2.3(b) 

to extrapolate our stiffness dependence to the transition pressure ( N∗ =9.18), we find the 

corresponding stiffness (G = 0.235) to be higher than twice this estimate, consistent with the 

observed pre-melting at the GB.   
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Table 2.1 Physical properties of systems at different pressures, with misorientation 30° and inclination 15° in a 
200K´200K simulation box. Area fraction listed is taken from grain interiors. 

fugacity N∗ area fraction h ˙ 

6×10˚ 9.58±0.18 0.7269±2E-4 0.327±0.033 

1×10M 10.01±0.18 0.7341±3E-4 0.468±0.038 

2×10M 10.82±0.21 0.7456±1E-4 0.681±0.050 

5×10M 11.49±0.22 0.7539±2E-4 0.960±0.082 

1×10$ 12.15±0.23 0.7611±2E-4 1.117±0.049 

1×10~ 14.56±0.25 0.7825±9E-5 1.756±0.071 

 

2.3.2 GB buckling during dynamical pressure compression 

When we investigated the stiffness dependence on pressure, we noticed that equilibration of 

systems at high pressure P* = 14.56 (corresponding to fugacity of 1.0 ´ 108) when starting from a 

lower area fraction (h=0.740) configuration tended to produce structures with buckled or faceted 

GB.  An example is shown in Fig. 2.5. Upon extending the trajectory, this buckled structure might 

evolve but would not relax to a flat boundary within a reasonable time for simulation.  The CFM 

analysis in such cases produced an amplitude spectrum that did not fit the k-2 model well at all, 

because the assumption of sampling over amplitudes at all wavelengths was not met. The 

spontaneous adoption of facets could be the result of a strong dependence of interfacial free energy 

on the angle of inclination, in apparent contradiction to our findings above.  In this case, however, 

the buckling occurred no matter the angle of inclination; setting up the ribbon with inclination at 

0° still produced facets. 
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The buckling occurred during equilibration under GCMC conditions while the total number of 

particles in the simulation was increasing. To determine whether buckling was a by-product of this 

non-equilibrium process, we constructed an ideal, defect-free hexagonal domain with an area 

fraction close to the value at the desired pressure (P* =14.56).  In this case, the buckling was not 

observed, and the CFM method yielded well-behaved results that were consistent in trends from 

lower pressure (shown in Fig. 2.3(b)).  Starting with an ideal, defect-free domain at a lower area 

fraction, and allowing the density to increase via particle exchange at the higher fugacity, produced 

buckling.  It can then be concluded that the GB buckling is related to the non-equilibrium process 

of increased densification of the grains at constant area through particle addition, which (through 

a mechanism that is unclear – not observably related to the creation or annihilation of specific 

dislocations) caused uneven stresses in the system that were relaxed through deformation of the 

GB. A recent experimental study by Cash et al.98 showed that formation of a locally melted region 

near a GB following a laser “blast” produced a deformation of the grain boundary in what may be 

a related phenomenon.  It is conceivable that other experimental cases where particles continue to 

add to a polycrystalline ordered surface could produce a similar buckling effect on GB. 

We have noticed that, compared with GCMC simulations in a square, monocrystalline, 

periodically repeating system, systems containing GB are much faster at the relaxation of total 

particle numbers and increasing local packing density in the 2-d ordered state.  The apparent reason 

is that the GB can act as both a source and a sink of dislocations, allowing the lattice constant to 

shrink at constant box dimension via the addition of rows to the domain stripes. This is perhaps  
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Fig. 2.5 Snapshots of the buckled configuration with GB misorientation at 30° and inclination 0° after 23000 MC 
moves in grand-canonical ensemble at fugacity f = 1 ´ 108, initiated from a lower-density structure. This snapshot is 
color-coded by order parameter LM as shown in Fig. 2.1. 

	

Fig. 2.6 (a) Starting arrangement shape of 2-grain system showing to indicate initial size and shape of misoriented 
domain; 30° misorientation shown.  (b)-(d) Snapshots of the configuration after 7000 MC moves in grand-canonical 
ensembles for GB misorientation 5°, 15° and 30°. All snapshots are color-coded by order parameter LM as shown in  
Fig. 2.1. 
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Fig. 2.7 (a) Snapshot of an initial configuration in a 4-grain system with misorientation 15° for both GBx and GBy; 
Snapshots of the configuration after 40000 MC moves in constant-N ensemble in a 4-grain system with GBx 
misorientation (b) 5°; (c) 10° and (d) 15°. All snapshots are color-coded by order parameter LM as shown in Fig. 2.1. 

the flip side of an experimental observation by Deutschländer et al.105, that polycrystalline 2-d 

systems quenched rapidly into melting conditions will generate defects preferentially near grain 

boundaries, which proceed inward to melt the ordered domains. 

	

2.3.3 Dynamics of grain coarsening 

Although Monte Carlo simulation does not produce a trajectory that is directly related to a 

dynamic algorithm, the evolution of a MC trajectory that uses local displacement moves (as 

opposed to the unphysical SRMC moves that can incorporate changes in particle number and 

collective rearrangements) can give qualitative insight into dynamics.  This is particularly true for 

colloidal systems where Brownian dynamics might be a good approximation.57 To determine how 

the MC dynamics of grain coarsening are influenced by grain and GB orientations, we first 

modeled an isolated hexagonal domain at misorientations of 30°, 15°, and 5°. The system 

containing a hexagonal domain (with an edge length 50K) is constructed within a 200K´200K box 
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(Fig. 2.6 (a)). The six GBs in each system have the same inclination as well, due to the symmetry 

of the hexagon. After 1000 MC cycles under grand canonical simulation, the shapes of the original 

hexagon shape cannot be recognized due to the fluctuation of the GB.  Fig. 2.6  shows the snapshots 

after 7000 MC cycles. The shrinking rate for the domain with misorientation 5° is much slower 

than other two systems, which shrink on similar timescales. Taken together with the results of Fig. 

4(c), these observations suggest that the GB shrinking rate is correlated with stiffness, as Γ 5° <

Γ 15° ≈ Γ 30° . Results obtained under constant-N ensemble simulation (not shown) are 

qualitatively similar. We also constructed the system containing a square domain (not shown) with 

the same area as the hexagonal domain, where GB at different direction will have different 

inclination. The result shows no apparent difference between the rates of shrinking in X and Y 

dimensions, confirming that the shrinking rates depend negligibly on inclination. 

A more complex system containing tiled octagonal and square grains with three different 

orientations was constructed as shown in Fig. 2.7(a), to further study how misorientation affects 

the domain coarsening when triple junctions (TJ) are present. Varying the orientation of the square 

domain (A1, A2) enables us to compare the shrinking rates of GB with different misorientations 

(GBx, GBy) in the same domain. The octagonal grains B and C have fixed nM  (0° and 30°, 

respectively) which fix the misorientation of GB30 at 30°. A larger simulation box (250K´250K) 

is used so that GB30 is not too short. Three cases are shown where the misorientation for GBx is 5°, 

10° and 15° (denoted as MisX5, MisX10 and MisX15, respectively); the corresponding 

misorientation for GBy is then 25°, 20° and 15°, respectively.  

The shrinking rates are much slower compared to the two-domain systems.  One reason is that 

if the square domains maintain their shape as they shrink, the reduction in GB length of the square 

will be counterbalanced by the increase in the octagon/octagon GB length, so the driving force (if 
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all line tensions are equal) is lower by a factor of (1-2-1/2).  Friction associated with the TJ motion 

may also contribute.  The order of overall shrinking rate is MisX5 < MisX10 ≈ MisX15 (Fig. 2.7), 

which can still be explained by the sum of the stiffness of GBx and GBy.  After 40000 MC cycles, 

the central domain (A1) becomes roughly rectangular (Fig. 2.7(b) and (c)), with the more-

misoriented GB shrinking faster, consistent with the increase in stiffness with misorientation angle.  

In the case of MisX5, the 5° GBx actually expands as domain C (along with the BC grain boundary) 

shrinks, again consistent with the stiffness predictions. The general behavior is in full agreement 

with the experimental results and explanations given by Lavergne et al.24, who found that low-

misorientation GB tended to grow at the expense of high-misorientation GB in polycrystalline 

systems, and observed isotropic distributions of GB inclination angles at all misorientations.   In 

concert with the CFM results presented earlier, these findings illustrate the influence of the 

thermodynamic property (line tension) on the dynamics. 

  

2.4 Conclusions 

The stiffness of grain boundaries in a two-dimensional hard-sphere system at packing fractions 

above the freezing transition has been analyzed using the capillary fluctuation method and grand 

canonical Monte Carlo. Stiffness was found to increase linearly with pressure, to be sensitive to 

misorientation of the grains (increasing steadily up to ~15° and changing slightly at higher angles) 

and to be nearly insensitive to the inclination of the GB with respect to the domains. The 

insensitivity to inclination indicates that in this system, it is a good approximation to equate the 

observed stiffness with the thermodynamic line tension. The enthalpic contribution to the line 

tension arising from the excess area decreases at low pressures, reaches a minimum, and increases 

as the excess area of the GB apparently approaches its minimum. Dynamic simulations of 2- and 
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4-grain systems arranged in simple geometries demonstrate the relevance of these findings to 

misorientation effects on grain coarsening rates, and are fully consistent with recently published 

experiments of 2-d colloidal grain coarsening dynamics.24 The current results could be useful in 

providing input parameters for mesoscale modeling of grain growth in these systems,106-108 as well 

a foundation for further studies of impurity segregation at GB in bidisperse hard-sphere 

monolayers.40 
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Chapter 3                                                                                 

Partitioning of Size-mismatched Impurities to Grain Boundaries in 

2-d Solid Hard Sphere Monolayers2 

 

Computational studies have been carried out to investigate the equilibrium partitioning of size-

mismatched impurities between the bulk solid and grain boundary (GB) environments in 2-d hard-

sphere monolayers.  The Solvent Repacking Monte Carlo method and a new variation were used 

to exchange varying numbers and types of particles under conditions of fixed particle fugacities, 

allowing efficient sampling of impurity particle distributions even within the bulk solid. 

Measurements of GB stiffness depression arising from the impurities were made via the capillary 

fluctuation method, and found to agree with calculations based on the Gibbs adsorption isotherm, 

providing a test of the internal consistency of the results. The dependence of the excess 

concentration at the GB on factors including impurity size (diameter ratios l=0.5 to 4 times the 

majority host particle diameter), impurity concentration, grain misorientation angle, and packing 

pressure were studied.  In general, the affinity of impurity particles for GB increased with the 

difference between their size and the host particles, and varied with grain misorientation angle 

with a dependence reflecting the excess free area at the GB.  Impurities with l=4 were exceptions 

to both these trends, due to their ability to substitute efficiently for 6-coordinate host particles 

within the bulk and for 5-coordinate host particles at dislocations in the grain boundaries.  

Comparison with results from an experimental study of mixed colloidal monolayers raises 

																																																								
2. Adapted	with	permission	from	Guo,	Z.	and	Kindt,	J.	T.,	Langmuir.	34(43),	12947	(2018).	Copyright	2018	

American	Chemical	Society.	
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questions about how kinetic effects during grain coarsening might produce less impurity 

segregation to the GB than equilibrium exchange. 

 

3.1 Introduction 

The grain boundary (GB), the interface between two ordered domains, is very important in the 

study of polycrystalline materials.10, 41, 109 In a polycrystalline alloy, impurities tend to be adsorbed 

in GB, an effect known as GB segregation,33-40 for the general reason that GB can provide more 

free volume than bulk domains.  Interactions between impurities and GB can affect the mechanical 

properties of polycrystalline alloys41 through impurity drag,32, 42 or Zener pinning,32, 43, 44 which 

also play important roles on the grain growth.45, 46 Understanding of GB segregation is crucial to 

combating intergranular weakness in the steel industry35 and improving stability of nanocrystalline 

alloys.34, 39 

Colloidal polycrystalline monolayers with impurities are useful model systems to study GB 

segregation and grain growth.96, 110, 111 The large size (~µm) and slow dynamics (~s) of colloidal 

particles allow direct observation of their behavior by optical microscopy in experiments.3, 4 Quasi-

2d colloidal monolayers can be prepared by confining spherical colloidal particles between 

surfaces98 or depositing them onto a liquid97 or solid surface.24 When interactions between particles 

are dominated by short-ranged repulsions, the colloids can be modeled as hard spheres (HS).7  A 

mixture of hard spheres resting on a common plane (with thermal fluctuations in the vertical 

dimension suppressed by gravity) maps onto a non-additive HD mixture, with the distance of 

closest approach in the plane between spheres of different size given by the geometric mean, not 

the arithmetic mean, of the particle diameters.40 Here we will assume the majority component (host 

particles) will have diameter 1; an isolated impurity sphere of diameter 	T (which also represent 



	

	

39	

the diameter ratio in this work), embedded among host spheres, will behave equivalently to a disc 

of diameter 2 T – 1 interacting with host disks of diameter 1.  The set of configurations available 

to a system of monodisperse HS confined to a planar surface is congruent to those of hard discs 

(HD), and so is expected to follow the two-stage ordering transition seen in simulations of HD 

systems.5, 6 Low concentrations of added impurities in simulations of HD systems have been shown 

to suppress the stability of the intermediate hexatic phase in favor of a broader liquid-solid 

coexistence region.9  The results presented here, as in our previous study of GB,112 will be under 

conditions where the host particles are in a 2-d solid state. 

The presence of impurities will tend to influence both thermodynamic and dynamic properties 

of the GB.  The thermodynamic stability of a GB is encapsulated in its stiffness Γ.  A measure of 

the GB resistance to curvature fluctuations, stiffness is the sum of the interfacial line tension ˛ 

(excess free energy per unit length of the GB) and its second derivative with respect to GB 

orientation, ˛⁄⁄. In our previous simulation study of monodisperse HS monolayers we were able to 

quantify how misorientation (the difference in orientation between the two neighboring crystal 

grains) and inclination (the orientation of the GB line) affect Γ.112 The observation that stiffness 

depends very little on GB inclination in this system leads to ˛⁄⁄ ≈ 0 and the useful simplifying 

approximation Γ = ˛. Here we use the solvent repacking Monte Carlo (SRMC8) method, along 

with a new extension called mixed repacking Monte Carlo (MRMC), to study how segregation of 

impurities towards GB depends on impurity size, impurity concentration, and GB orientation.  

Where possible, results are compared with experimental observations reported by Lavergne et al.40 

Impurity-dependent lowering of GB line tension was also calculated from the degree of 

segregation using the Gibbs adsorption isotherm, and checked against calculations of stiffness in 

GB systems containing impurities using the capillary fluctuation method (CFM).31 The agreement 
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between these calculations is further evidence that in these particular systems, the stiffness can be 

treated as equivalent to the line tension. 

A general trend that impurity segregation increases with increased mismatch between impurity 

and host size was observed, with an exception for spheres of diameter T=4. As discussed in 

previous reports,40 this size impurity sphere has a nearest neighbor distance of 2 host diameters, 

and so (like impurity disks of diameter 3 in additive HD systems8) can efficiently pack in a 

hexagonal lattice by occupying a lattice site and its six nearest neighbors.  An impurity sphere of 

size 2.25, on the other hand, which Lavergne et al.40 highlighted for its ability to fit within a 

hexagonal lattice while centered at an interstitial site, did not show distinctive behavior. 

Quantitative comparison with the degree of segregation observed in experimental colloidal 

monolayer showed much higher segregation in the initial simulations than in experiment.  

Subsequent tests pointed to two plausible explanations for this discrepancy: that simulation 

conditions corresponded to a higher surface pressure than experiment, or that the slow motion of 

impurities combined with the non-equilibrium dynamics of grain coarsening could inflate levels 

of impurities left in the bulk. The degree of impurity GB segregation at different grain 

misorientation angles was investigated for several impurity sizes. This dependence, for impurity 

sizes 1.4 and 3, was similar to the dependence of excess area on GB misorientation as previously 

measured.112  Impurities of size 4 again behaved exceptionally, showing a much stronger increase 

in affinity for the GB with misorientation angle. We propose an explanation for this difference that 

is based on the substitution of these impurities at 5-coordinate sites present at the GB.  

 

3.2 Methods 

3.2.1 System Construction and initialization 
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To systematically study the GB stiffness and their dependence on system composition under 

controllable conditions, ordered grains of spheres are set up in a pair of parallel stripes making two 

parallel GBs aligned with the â direction as in previous work112 in a square simulation box with 

periodic boundary conditions. The use of parallel stripe grains provides a controlled misorientation 

between the grains and a fixed inclination between the boundary and the grains; furthermore, the 

lengths of the boundaries are fixed (apart from fluctuations) by the box length, so fluctuations in 

the overall sizes of the grains are decoupled from changes in the interfacial energy.   

3.2.2 Mixed Repacking Monte Carlo 

In the “solvent repacking Monte Carlo” method for mixtures, a single large particle is added or 

removed in exchange for a variable number of small particles without moving any other large 

particles.8 This is effective when small particles occupy a majority of the system area, but if large 

particles are densely packed then the probability of finding a position to insert a large particle that 

does not overlap other large particles becomes vanishingly low. To facilitate fluctuations in 

structure and composition in such a system we allow for rearrangement of both large and small 

particles within a local cavity to accompany the addition or removal of large particles using a 

“mixed repacking Monte Carlo” move.     

As in the SRMC algorithm, after choosing a point at random in the system, a trial move is 

generated with a new packing for particles in a circular cavity centered at that point. In this study 

the range of repacking for large particles was set equal to the large particle diameter, while the 

range for small particles was extended to 1.5 times the large particle diameter. The volume of 

corresponding repacking region is denoted as ˇÉuÑ,Ö and ˇÉuÑ,Ü, respectively. One of three types of 

move attempts (with large particle number change ∆ÙÜ = −1,0, +1 ) is chosen with equal 
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probability.  In each case, repacking of large particles in the cavity is attempted first, up to the new 

number of large particles, and then the change in number of small particles is determined by the 

weightings of the states generated by successive addition of small particles. For large particle 

addition, a number [ of trial positions are generated that randomly and uniformly sample the cavity 

region in each cycle h to generate the hth large particle in cavity. The «⁄th position will then be 

selected with a probability: 

Nb,¢¤ = 	
BÆØ	(∞±\

¶,ß¤
¤ )

BÆØ	(∞±\¶,ß
¤ )‹

ß›‘
                 (3.2.1) 

where ¬b,¢¤
⁄  is the auxiliary potential for the interaction of the «⁄th particle with particles inserted 

in previous cycle and the solvent shell around the cavity.  The logarithm of the radial distribution 

function (RDF) for hard spheres with an area fraction 0.69 is used for the auxiliary potential in this 

work; this and choices for k were consistent with previous work.8 Nb,¢  is zero if the particle overlaps 

particles in the surrounding shell or particles already selected for insertion into the cavity; if there 

are no positions with non-zero P, the move fails.   

Once fiÉuÑ,Ü  large particles have been inserted, this process will be repeated to insert small 

particles into the cavity, until some predetermined conditions are met: either small particle number 

in cavity reach a maximum (20 in this work) or none of the [ trial positions are successful. The 

probability for selecting a configuration with a number of fi ∈ 0, h  small particles is: 

N fi = 	
fl‡

fl¶
‡·‚„
¶›‰

        (3.2.2) 

where the weight Âb  associating the configurations with a number of h  particles can be 

calculated as: 

Âb = 	
Ê¶

Õ"
Á¶ 	

ÑË‚È,"
¶

b!#
	∆b

⁄ BÆØ	(∞±Í¶)

BÆØ	(∞±Í¶
¤)

     (3.2.3) 
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where ΛÖ is the de Broglie thermal wavelength (set to 1 in all simulations) of the small particle; 

Ç is the dimension of the system; $ = [b¤
b
b¤≈Å , which is the product of number of trial positions 

[ for all the previous cycles; Îb and Îb⁄ are the true potential energy (always equal to zero) and the 

auxiliary bias potential energy, respectively; ∆b (or ∆b
⁄ when applying auxiliary potential) is the 

Rosenbluth weight defined as:  

∆b = 	 exp	(−¥¬b,¢)
^
¢≈Å

çË‚È
b≈Å      (3.2.4) 

Weights Âb associated with the current configuration of particles also need to be calculated, 

which requires the current cavity configuration to be reconstructed in the same manner. The overall 

acceptance probability for transition from current state with fiÉuÑ,Ö	small particles in cavity to the 

new state with fiÉuÑ¤,Ö small particles and the same number of large particles ÙÜ can be written as: 

yÏÏçË‚È,",çË‚È,%→çË‚È¤,",çË‚È,% = min 1,
»%,‡ÌÓ

»%,ËÔÌ‡Ò

fl¶,‡ÌÓ
‡·‚„,‡ÌÓ
¶›‰

fl¶,ËÔÌ‡Ò
‡·‚„,ËÔÌ‡Ò
¶›‰

   (3.2.5) 

For attempt moves with ∆ÙÜ = ±1, the same strategy is used except the different point for 

switching over to small particle insertion. The corresponding acceptance probability for ∆ÙÜ =

+1 is: 

yÏÏçË‚È,",çË‚È,%→çË‚È¤,",çË‚È,%“Å = min 1,
çË‚È,%ÑË‚È,%

(çË‚È,%“Å)^‡Ë‚È,%&‘

Ê%
Õ%
Á

»%,‡ÌÓ

»%,ËÔÌ‡Ò

fl¶,‡ÌÓ
‡·‚„,‡ÌÓ
¶›‰

fl¶,ËÔÌ‡Ò
‡·‚„,ËÔÌ‡Ò
¶›‰

 (3.2.6) 

aÜ is the fugacity of large particle;  ΛÜ is the de Broglie thermal wavelength (set to 1 in all 

simulations) of large particle. The acceptance probability for ∆ÙÜ = −1 can be similarly derived 

as: 

yÏÏçË‚È,",çË‚È,%→çË‚È¤,",çË‚È,%∞Å = min 1,
çË‚È,%^‡Ë‚È,%

(çË‚È,%∞Å)ÑË‚È,%

Õ%
Á

Ê%

»%,‡ÌÓ

»%,ËÔÌ‡Ò

fl¶,‡ÌÓ
‡·‚„,‡ÌÓ
¶›‰

fl¶,ËÔÌ‡Ò
‡·‚„,ËÔÌ‡Ò
¶›‰

 (3.2.7) 
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3.2.3 Order parameter and GB detection 

The local crystalline order of particle « , containing Nj neighbors within a cutoff 1.5KS , is 

characterized by bond-orientational order parameter100 LM: 

LM(£¢) =
Å

Úß
{bM∆Ûß‹

Úß
^≈Å        (3.2.8) 

where ∆n¢^ is defined as the angle between the â direction and the vector connecting particle « 

and its neighbor indexed [.  The orientation of the hexagon formed by six neighbors of particle « 

can then be calculated by nM = arg LM /6, which lies in the range 0 - 60° due to the symmetry of 

hexagon. The orientation of the grain domain can be quantified by averaging all the nM of host 

particles belonging to the domain.  

	

Fig. 3.1 Snapshot of a hard-sphere monolayer mixture with a 1.4 size ratio at host particle fugacity 1´10$and impurity 
fugacity 5´10R. Only one GB in a region 100KS´100KS is shown here for clarity.  Impurities are shown in red, at 
greater than actual size to aid visualization. The host particles are color-coded by order parameter LM represented by 
the color map shown in the inset; the x and y axis represent the real and imaginary part of LM, respectively. 

To identify the positions of the two GB’s along the x dimension, we divide the simulation box 

into a 100´100 grid, which has been confirmed to be fine enough for calculating interfacial 

stiffness in our previous study.112  Smoothing over local pockets of disorder is achieved by taking 
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the average of  nM  in each grid and the four nearest grid squares of the same x coordinate to 

represent the orientation of each grid square. The height h of the grain boundary is then the y 

coordinate the grid square with nM closest to the mean of the nM values of the two grains, defined 

as the “edge point”, and the GB is represented as a sequence of segments connecting “edge points” 

(Fig. 3.1). 

	

Fig. 3.2 F.T. spectrum of the fluctuation of GB for the system with a 1.4 size ratio at host particle fugacity 1´10$ and 
impurity fugacity 5´10R in a 200KS	´200KS	 box. Red line is the linear fit of the spectrum data (circle points) with 
slope fixed at -2. 

3.2.4 Capillary Fluctuation Method 

The CFM is applied here in the same way as in previous work to calculate GB stiffness.112 The 

GB positions along the y direction determined as described in the section “Order parameter and 

GB detection” are treated as a function of position along the â direction and frame ˜: ℎ(â, ˜). The 

mean value of h(x,t) at each t is subtracted off to yield the fluctuation at that frame: ïℎ â, ˜ =

ℎ â, ˜ − ℎ(˜) è. At each frame analyzed, the Fourier Transform (F.T.) of the fluctuation function 

is calculated: 

ïℎ [ =
Å

Ü
ïℎ â exp −h[â Çâ

Ü

g
    (3.2.9) 
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to yield ïℎ [, ˜ , which is the intensity of the mode with wave number [ in Fourier Spectrum, 

where [ = 	2ói P  (i = 	0,±1,±2,… ) and P  is the length of GB. The trajectory-averaged 

square of intensities ïℎ [ t
�	are related to the stiffness Γ according to the CFM as:31  

log ïℎ [ t P = −2log	([) + 	log	(
^ûü

†
)   (3.2.10) 

In practice, a linear fit of Eq. (3.2.10) with a fixed slope –2 is used to find stiffness Γ from the 

y-intercept (Fig. 3.2). The CFM is derived from continuum theory and so is not expected to fit 

fluctuations with high k. In this study we found excluding points with i  higher than 15 produced 

satisfactory results in all cases. 

3.2.5 Gibbs adsorption isotherm 

The depression of stiffness due to the presence of impurity can be predicted from segregation 

data using the Gibbs adsorption isotherm: 

−Ç˛ = ΔÙbÇ b(
b≈Å      (3.2.11) 

where ˛ is the line tension, ΔÙb is the interface excess of component h, and  b is the chemical 

potential. We are performing simulations at fixed chemical potential of the host particle, so the 

only component contributing to the summation in Eq. (3.2.11) as impurities are introduced is from 

the increasing chemical potential of the impurity.  Since line tension ˛ is approximately equal to 

stiffness Γ in these systems,112 with ΔÙb the excess number of large particle per boundary length 

in our case (VWX, in units of KS∞Å), Eq. (3.2.11) can thus be rewritten as: 

−ÇΓ = 	VWXÇ WX      (3.2.12) 

VWX can be related to the impurity fugacity abcd empirically by the function (Figure 3b and d): 

VWX =
≠Ê¶·)

Å“µÊ¶·)
      (3.2.13) 
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where O  and *	are two constants. In conjunction with a = exp	(¥ ) , Eq. (3.2.12) can be 

written as: 

−ÇΓ = 	
≠

±(≠∞µ)+,-
ÇVWX      (3.2.14) 

Integrating Eq. (3.2.14): 

ΔΓ = 	 ≠
±µ
ln	(1 −

µ

≠
VWX)     (3.2.15) 

When the impurities at the grain boundary are dilute enough to be effectively non-interacting, 

the B term of Eq. (3.2.13) can be neglected and the GB excess VWX scales linearly with abcd: 

  

VWX = Oabcd     (3.2.16) 

Therefore: 

−ÇΓ = 	VWXÇ bcd = 	ÇVWX    (3.2.17) 

ΔΓ = 	−VWX    (3.2.18) 

Note the stiffness depression is only related to VWX in this limit. 

3.2.6 Implementation details 

Reduced units, scaled to the host particle diameter KS  and the thermal energy [µà are used 

throughout. The Gibbs excess number per unit length of the GB (VWX) is obtained by subtracting 

the expected total mean content of a bulk simulation box (VX\]^ ´ A) from the actual mean number 

of particles in the box containing the grain boundaries and dividing by the total length of the grain 

boundaries. We use this definition (which would be impractical to implement in a polycrystalline 

system) rather than a local area concentration within some defined zone near the interface (as was 

used in recent experiments40) because it provides an un-biased basis for comparing adsorbates of 
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different size without having to define the width of the interfacial zone. Furthermore it is directly 

related to interface thermodynamics via the Gibbs adsorption isotherm. 

Mixtures with size ratio T = 0.5, 0.75, 1.2, 1.4, 2.0, 2.25, 3.0 and 4.0 are investigated. In 

comparing with additive HD mixtures, the corresponding effective in-plane size ratios (T⁄ =

2 T − 1) are then 0.41, 0.73, 1.19, 1.37, 1.83, 2.0, 2.46 and 3.0, respectively. In the following, the 

size ratio T refers to the real size ratio, not the effective one (T⁄). MRMC was used for T = 0.5, 

0.75, 1.2 and 1.4 cases, while regular SRMC for larger size ratios.   

Sampling was performed in parallel using a standard domain decomposition scheme. The 

system (with a box size 200KS´200KS) was divided into an 8´8 or 12´12 grid with a randomly 

selected origin. A cycle of 2000 SRMC/MRMC move attempts (1000 each for small particle only 

SRMC and either small-big particle exchange or MRMC) followed by 2000 regular translation 

move attempts (max. displacement of 0.05KS) is carried out on separate processor in each grid 

square, freezing a zone of width TKS between borders during the cycle.  After each MC cycle, the 

grid is displaced to a new randomly chosen center.   Equilibration and production periods consisted 

of at least 5000  and 20000 MC cycles, respectively.   At sufficiently high fimp, the region of disorder 

and enrichment of impurities were observed to expand to dimensions comparable to the box size, 

indicating that a melting transition had been either approached closely or crossed.  Such systems 

were not included in the present data analysis. 

In the study of grain coarsening in comparison with experimental results, we first randomly 

insert 40 (30) impurities with T=2.25 (4.0) in an empty simulation box with a size 200KS´200KS, 

and then run SRMC on small particles only at fugacity aS=1.0 ´ 10$ to insert host particles. After 

2000 MC cycles, a polycrystalline phase can be obtained. Then the simulation is switched to 

regular translational MC moves (on both host and impurity particles) in NVT ensemble to resemble 
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the dynamical process of grain coarsening. The frames after at least 50000 MC cycles are used for 

partitioning analysis. 

	

Fig. 3.3 Dependence of impurity concentration on its fugacity for system (a) T = 1.4, in bulk; (b) T = 1.4, in GB; (c) 
T = 4.0, in bulk; (d) T = 4.0, in GB. The misorientation and inclination for all systems are fixed at 30° and 15°, 
respectively. The fugacity of host particles is fixed at 1.0 ́  10$ (corresponding to area fraction 0.734).  Red solid lines 
are linear fits to the data (only fitting dilute regime for VWX). Black solid lines are non-linear fitting of VWX by Eq. 
(3.2.13). 

3.3 Results and Discussion 

We will first demonstrate GB segregation of impurities of different size in grand canonical 

simulations of mixed hard spheres, and will illustrate the reduction in GB stiffness due to this 

segregation. The second section of this chapter will discuss comparisons between the current 

results and the experimental findings of Lavergne et al.40 Discussion of the dependence of 

segregation on grain misorientation and GB inclination will also be presented. 
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Fig. 3.4 Comparison between stiffness Γ  obtained from simulations for T = 0.5  (black circle) and T = 4.0  (red 
triangle) with Γ calculated from the Gibbs adsorption isotherm for T = 0.5 (black solid line with slope -1) and T =
4.0 (red dash line). Simulations are performed in systems with a fixed GB misorientation of 30° and inclination of 
15°. 

3.3.1 GB segregation and Stiffness depression 

We first studied the GB segregation of impurity particles with different sizes in domains with 

a fixed host particle fugacity aS (1.0 ´ 10$), misorientation (30°) and inclination (15°).  The area 

fraction of the host particles in the pure bulk solid112 at this fugacity is 0.761. The qualitative 

tendency of impurity particles to segregate towards the GB was apparent from viewing trajectories.  

The number density of impurity particles under dilute conditions can be fitted by a linear relation:  

VWX = [WXabcd      (3.3.1) 

VX\]^ = [X\]^abcd      (3.3.2) 

where [WX  and [X\]^  are two constants; abcd  is the fugacity of impurity; VWX  is the excess 

number of interfacial impurity particles per unit length of GB (in units of KS∞Å, which can be 

directly applied to Gibbs adsorption isotherm discussed in Eq. (3.2.15) and (3.2.18)) and VX\]^ is 

the impurity particle number in bulk per unit area (in units of KS∞t). The [X\]^ is fitted by using 

all the data obtained at various abcd.  Impurity concentrations in the bulk remain below 1 ´ 10∞f, 
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where interactions between impurities can be assumed to be minor. Within this range, surface 

pressure is expected to vary only slightly with impurity concentration at fixed host particle 

fugacity. Specifically, the presence of the impurities should add VX\]^ (in reduced units) to the 

pressure of the pure host solid at this fugacity.  We confirmed in several cases that surface pressure 

of all systems was within the uncertainty range 12.15±0.23 determined previously112 for the pure 

host solid at aS=1.0 ´ 10$ . In contrast, the non-linear dependence of VWX  on abcd  (Fig. 3.3) 

(reflecting direct or indirect interactions among impurities at the GB) is an important consideration 

in the systems studied, becoming more significant as impurity size increases. This is because the 

large size impurities will occupy more area in the GB, leading to excluded-volume interactions at 

lower number densities.  Eq. (3.2.13) was used to fit this non-linear dependence.   

The level of impurities, and the extent of inter-impurity interactions, both have a significant 

effect on the GB stiffness. The effects of the smallest (T=0.5) and largest (T=4.0) impurities on the 

line tension assessed using CFM are shown in Fig. 3.4.  Evidence from previous simulations112 has 

shown that for these HS monolayer systems, stiffness is insensitive to GB inclination, which allows 

us to equate stiffness with line tension.  Under this assumption, knowing the dependence of VWX	on 

impurity fugacity abcd allows use of the Gibbs adsorption isotherm to predict how stiffness will 

be lowered in the presence of impurities by using Eq. (3.2.15) or Eq. (3.2.18).  Here we check 

these predictions against stiffness calculated from GB fluctuations via the CFM. 

The impurities can stabilize the GB, which decreases the GB stiffness significantly compared 

to the pure system with a stiffness Γ= 1.12 (Fig. 3.4).  For smaller size impurities, in the density 

regime where impurities at the GB do not interact significantly, a simple line with slope -1 and y-

intercept at the pure system stiffness (Fig. 3.4, black line; derived from Eq. (3.2.18)) gives a good 

fit to the stiffness depression. The physical origin of the linear “ideal” contribution to the reduced 
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line tension is that a decrease in GB length reduces the translational entropy available to each 

impurity from moving along the GB.  Therefore, a kind of 1-dimensional osmotic line pressure 

works against the intrinsic line tension. For the largest particles, the non-ideality needs to be 

considered in the prediction by employing Eq. (3.2.15), which incorporates the fitting parameters 

to the non-linear dependence of VWX	on impurity fugacity abcd  (Fig. 3.4, red curve). Curves 

obtained at other impurity sizes (not shown) were distributed between these limits, with larger 

impurities showing greater deviation from linearity. The deviation from linearity for large 

impurities at high VWX	comes from an additional line pressure due to crowding. The agreement 

between the calculated and predicted stiffnesses serves as evidence for the overall thermodynamic 

self-consistency of these calculations.   

It bears noting that the fluctuations sampled by SRMC and MRMC algorithms include changes 

to the total number of particles and so in principle may sample over a greater ensemble of 

structures, and with different dynamics, than would simulations involving local moves only.  

Along these same lines, the topology of the defect structure within the host lattice upon addition 

of impurities can relax here in ways that may not be accessible when an impurity is introduced to 

an existing structure when the number of host particles is fixed. 

 

Table 3.1 Segregation of impurity with different sizes. In all cases, the fugacity of host particles is fixed at 1.0 ´ 10$ 
while misorientation and inclination of GB are fixed at 30° and 15°, respectively. 

T [X\]^	(KS
∞t) [WX	(KS

∞Å) [WX/[X\]^	(KS) 

0.5 3.154×10-4 3.198×10-2 1.014×102 

0.75 3.996×10-6 2.087×10-4 5.223×101 

1.2 1.476×10-10 1.894×10-9 1.283×101 
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1.4 1.539×10-14 1.373×10-11 8.923×102 

2.0 1.187×10-22 3.410×10-19 2.872×103 

2.25 5.384×10-26 1.819×10-22 3.379×103 

3.0 6.084×10-36 2.639×10-32 4.338×103 

4.0 1.185×10-48 3.019×10-45 2.551×103 

 

	

Fig. 3.5 Affinity for grain boundary [WX/[X\]^ for different impurity: host size ratio T. Red dash line marks the one-
component system (T = 1). The misorientation and inclination for all systems are fixed at 30° and 15°, respectively. 
The fugacity of host particles is fixed at 1.0 ´ 10$. 

 

For a measure of the tendency towards segregation for impurity particles interacting only with 

host particles and not with each other, we calculated the ratio [WX/[X\]^, with [WX derived only 

using data in the dilute regime (VWX < 0.05).  The two factors [WX  and [X\]^  for systems with 

different size impurities are listed in Table 3.1. Their ratio [WX/[X\]^, a measure of the tendency 

of impurities to segregate towards GB, is plotted against impurity size T in Fig. 3.5. As T increases 

from 1 to 3.0 (or decreases from 1 to 0.5), the [WX/[X\]^ increases since the larger size mismatch 
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will cause more distortion of neighboring host particles in the bulk, which encourages the impurity 

to stay in the GB.  One special case is size ratio 4.0, where [WX/[X\]^ is lower compared to T=3.0.  

	

Fig. 3.6 Composition variables _X and _WX for size ratio T = 2.25 and T = 4.0 in simulation at fugacity aS=1.0 ´ 10$ 
(corresponding area fraction 0.761) and 1.0 ´ 10M (corresponding area fraction 0.734). Dash lines and solid lines 
indicate the fit to the Langmuir-McLean isotherm in simulation and experiment (reference [40]), respectively. 

The special nature of this size ratio was discussed in a recent experimental study by Lavergne 

et al.40, who pointed out that the impurity with T=4.0 can perfectly replace seven small host 

particles in a “substitutional” position within a hexagonal lattice without producing long-ranged 

stress in the lattice. The same effect was invoked in a simulation study of the fluid/ordered phase 

segregation of impurities in hard disc mixtures, where impurities with diameter Ç=3.0 were more 

soluble in the ordered phase of d=1 host discs than were impurities of diameter Ç=1.4 or Ç=2.5.8 

	
Table 3.2 Fitting parameters of Langmuir-McLean isotherm in simulation (fugacity aS=1.0 ´ 10$) and experiment 
(reference [40]). The free energy of adsorption is determined from the isotherm via {u/[µà = ln	($). 

T _WX
vu� $ {u/[µà 

2.26 (experiment) 0.40 26.76 3.29 

2.25 (simulation) 0.27 2701 7.90 

10-5 10-4 10-3 10-2 10-1 1
10-3

10-2

10-1

100

=2.25 (1e7)
=4 (1e7)
=2.25 fit (sim.)
=4 fit (sim.)
=2.25 fit (exp.)
=4 fit (exp.)
=2.25 (1e6)
=4 (1e6)
=2.25 (poly.)
=4 (poly.)
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4.0 (experiment) 0.37 54.33 4.00 

4.0 (simulation) 0.35 2595 7.86 

 

3.3.2 Comparison with experimental results 

Lavergne et al.40 performed experiments on binary colloidal mixtures at T=2.26 and 4.0, 

monitoring the distribution of large particles in bulk and GB environments of a polycrystalline 

sample.  Over time their systems reached a stable partitioning, which over many experiments could 

be represented using the equilibrium Langmuir-McLean isotherm. To compare our results with 

this experimental study, we first re-analyzed the simulated segregation behavior in terms of the 

area fractions _X and _WX of impurity particles in bulk and GB environments. 

_X =
.¤/Ú¶·)

-

Ú0
-“.¤/Ú¶·)

-         (3.3.3) 

_WX =
.¤/Ú¶·)

,-

Ú0
,-“.¤/Ú¶·)

,-                (3.3.4) 

where	T⁄is the effective in-plane size ratio; ÙSX(ÙS
WX) is the number of host particles in the bulk 

(GB) and  ÙbcdX (Ùbcd
WX ) is the number of impurities in the bulk (GB).  Identification of bulk and GB 

environments followed the definitions in reference [40].  _X and _WX obtained in our simulations 

are shown in Fig. 3.6, along with the fit to the Langmuir-McLean isotherm rewritten in terms of 

_X and _WX: 

_WX = _WX
vu� #1-

Å“#1-
        (3.3.5) 

where GB composition at saturation, _WXvu� , and the equilibrium constant, $ , are two fitting 

parameters. The values of _WXvu� and $ in simulation and experiment40 are given in Table 3.2.   
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The impurity segregation data presented above, when recast in terms of partitioning between 

areas rather than partitioning from a 2-d environment to a 1-d interface, could be fit with the same 

Langmuir-McLean form as the experimental data (Fig. 3.6, circles and dashed curves).  There are 

several interesting discrepancies.  First, for a given _X, the _WX in our initial set of simulations is 

at least an order of magnitude higher than experiment (Fig. 3.6), when _X  is smaller than the 

saturation point.  Some portion of this difference can be explained by the use of GB with the 

highest possible (30°) misorientation in the simulations used to calculate _WX, which (as discussed 

below) yields greater partitioning of impurities to GB than low-misorientation GB. The 

polycrystalline structures in experiment will have a range of misorientation angles which, in the 

absence of impurities at least, is skewed towards low misorientations at long times24, and in any 

case will average lower than the maximum misorientation of 30°.  As discussed below, however, 

with the exception of T = 4 impurities at low concentrations, reducing misorientation angle would 

not produce a 10-fold variation in degree of segregation.  

The second possibility considered was that the effective pressure of the system was different in 

simulation and experiment, and that at lower pressures the drive toward segregation is not expected 

to be as strong. Simulations were repeated at a lower fugacity aS=1.0 ´ 10M (corresponding to area 

fraction 0.734), where the lateral pressure was previously measured at 10.01 ±0.18 and the GB 

stiffness at Γ= 0.47 is less than half its value at aS=1.0 ´ 10$.112 The tendency of impurities to 

segregate to GB is much reduced at this lower pressure condition (Fig. 3.6, triangles),  giving 

general agreement with experiment  (Fig. 3.6, solid curves).  It is therefore very plausible that the 

experiments show weaker segregation because the lateral pressure was weaker than in the original 

simulations; unfortunately, as discussed in previous work,112 direct comparison of system 

conditions between these simulations and experiments  is complicated.  
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We lastly considered the possibility that the _WX /_X  ratio observed in experiment does not 

reflect equilibrium statistics. The experimental evidence in support of the impurities’ equilibrium 

partitioning is that the observed stable distribution is consistent with the equilibrium Langmuir-

McLean isotherm model.  The large impurity particles, embedded in a dense matrix of host 

particles, are very limited in their mobility as evident from Movie S1 in reference [40], so the 

system evolves to a state with a given _WX /_X  ratio primarily through motion of the grain 

boundaries themselves. The free energy change associated with a GB moving toward or away from 

an impurity (the latter phenomenon called “depinning”) is a combination of the free energy of 

exchanging the impurity between bulk and GB environments and the change in interfacial free 

energy from changing the GB length.  As grains coarsen, it is possible that the free energy benefit 

from reducing GB lengths associated with depinning could drive the impurity partitioning away 

from equilibrium. To test this possibility, we set up polycrystalline systems with fixed number of 

host and impurity particles and performed regular translational MC moves only to resemble the 

experimental conditions. We observed the smaller domains with different orientations eventually 

merging to several bigger domains, behavior similar to Movie S1 in reference [40], leaving many 

impurity particles in the bulk (not shown). The corresponding _X and _WX in these NVT ensemble 

simulations are indicated as cross markers in Fig. 3.6 and lie within the scatter of experimental 

points presented in reference [40]. Therefore, the discrepancy between the simulation and 

experiment could also come from non-equilibrium effects in the experimental system (which does 

not benefit from an infinite virtual reservoir that can exchange impurities for host particles 

anywhere in the system). Whether it is possible for non-equilibrium dynamics to produce an 

apparent equilibrium result (the Langmuir-McLean isotherm) in this type of system is an 

interesting question for future study. 
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Fig. 3.7 (a) VWX- abcd plot for different misorientations and inclinations at different fugacity for T = 4.0: (blue-green 
color bar represents different misorientation with fixed inclination 15°; the black up-triangular label represents the 
inclination 0° with misorientation 30°); (b) VWX-misorientation plot on the same dataset as in (a); (c) Dependence of 
VWX on misorientation for T = 1.4 with abcd = 	2.0	´	10R, T = 3.0 with abcd = 	1.0	´	10fg and T = 4.0 with abcd =
	1.0	´	10kf, in dilute regime. Black diamond points show the free area change for one-component system (reprint 
from reference [112]). The fugacity of host particles is fixed at 1.0 ´ 10$ for all cases. Lines are drawn only to guide 
the eyes. 

 

0 5 10 15 20 25 30

misorientation
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0

0.05

0.1

0.15

0.2

0.25

=1.4
=3.0
=4.0
A/L

0 2 4 6 8 10
1044

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0

5

10

15

20

25

30

10 15 20 25 30

misorientation
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

43

43.5

44

44.5

45

(a)

(b)

(c)

m
isorientation

log(fim
p)



	

	

59	

In the previous section the distinctive behavior of T =4.0 impurities was noted and attributed to 

their ability to pack into a hexagonal lattice substitutionally. The size T =2.25 impurities were 

similarly identified as special case that can substitute interstitially for 3 host particles in the 

lattice;40 experiments showed lower propensity for GB segregation by these interstitial particles 

than by the substitutional particles.  In the simulations, the data do not provide a clear, consistent 

answer to which size impurity has greater affinity for the GB.  Under the higher pressure 

conditions, [WX/[X\]^ is higher for T =2.25 but _WX/_X is higher for T =4.  At lower pressure, the 

different metrics are still in disagreement, but each favors a different size than at high pressure.  It 

may be more instructive, rather than to focus on the comparison between these two particular sizes, 

instead to look back at the trends in Fig. 3.5.  These suggest that the GB segregation tendencies at 

the two sizes are similar, but that T =2.25 follows the general trend of increase in degree of 

segregation with increasing impurity size while T =4 is an exception to that trend. The simulation 

results therefore suggest that unlike the case of T  =4, the possibility of perfect matching for 

interstitial substitution at T =2.25 does not produce any remarkable effect on the tendency to 

segregate to the GB in comparison with larger and smaller size impurities.      

3.3.3 Dependence of segregation on GB orientation 

In a previous study,112 we have shown that GB stiffness and excess area per unit length (∆A/L) 

are sensitive to misorientation of grains, but insensitive to GB inclination, a result supported 

(indirectly) by experimental observations of the evolution of the distribution of GB angles.24 Fig. 

3.7(a) and (b) show the dependence of GB segregation on the orientation of GB for impurities with 

size ratio T = 4. The general trends in impurity segregation follow the trends observed for stiffness 

and excess area: the degree of segregation increases with greater misorientation but, in the cases 
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tested, shows little dependence on inclination. A closer look at the dependence of degree of 

segregation on GB orientation at different size ratios in the dilute regime shows some unexpected 

behavior. In Fig. 3.7(c), the misorientation dependence of the degree of segregation for T=1.4 and 

T=3.0 appears to correlate with the misorientation-dependent excess area of the GB (∆O/P) 

obtained in the absence of impurities (which also correlated strongly with the stiffness, not 

shown).112 However, GB segregation for T=4.0 shows a much more dramatic decrease with 

decreasing misorientation than does the excess area: GB with misorientation of 10° contain a factor 

of 10 lower levels of T=4.0 impurities than do GB with misorientation 30° at the same fugacity 

(i.e., at equilibrium with the same bulk composition). One implication is that, if GB with 

misorientation < 30° had been used to generate Fig. 3.5, the T=4.0 point would have been even 

more strongly anomalous. 

	

Fig. 3.8 Snapshot of GB in a system for T = 4 with aS = 	1.0	´	10$and abcd = 	1.0	´	10kf.  The orientation of host 
particle is color-coded as shown in Fig. 3.1. The impurity particles are omitted for clarity, but their locations can be 
seen as large voids. The green hexagon indicates an impurity site in the bulk that could be substituted for 7 host 
particles, while the red pentagons indicate impurity sites that could be substituted for 6 host particles. 

An explanation for this qualitative difference in behavior can be found by considering both the 

special substitutional nature of T=4.0 impurities in the bulk and the misorientation-dependent 

structure of the interface.  Moving an isolated impurity to the GB influences system free energy in 

two ways: removing local stress in the bulk associated with the impurity, and allowing the host 
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particles in less-efficiently packed GB sites to move to sites in the bulk where they will occupy 

less area. The T=4.0 impurity can substitute efficiently within a defect-free hexagonal lattice, 

displacing 7 host particles, so the first contribution is small for this size impurity. Therefore, to 

first order (neglecting more complex rearrangements and relaxation), we expect migration to the 

GB for a T=4.0 impurity to be favorable only if it can be inserted in exchange for a set of fewer 

than 7 host particles.  (The effect on the free energy will be approximately neutral if the impurity 

moves from the bulk to a site of similar size and symmetry near the GB.) If the impurity can occupy 

a position at the GB where otherwise only 6 host particles could fit, the process of making this 

exchange (and filling in the 7th site in the bulk vacancy left by the impurity) would reduce the 

system’s area at constant pressure by the area of lattice site. A T=4.0 impurity can readily substitute 

for an array of 6 host particles composed of a central particle and five near neighbors, e.g. part of 

the pentagon-heptagon structure that is the endpoint of a dislocation defect. Fig. 3.8 shows a 

snapshot from an actual simulated GB where the approximate pentagonal symmetry of the cavities 

occupied by T=4.0 impurities at the GB can be noted, along with the hexagonal symmetry of one 

bulk impurity site. 

Can the affinity of T=4.0 impurities for GB with different misorientations be correlated with 

their occurrence of such sites, which in various models of GB structure113 might be associated with 

dislocation origins, coincidence lattice sites, or steps?  According to the Read-Shockley model of 

GB114 (which is applicable only up to misorientations of q»15°) the linear density of dislocations 

at misorientation q and inclination q/2 is proportional to sint(q	/2) 	+ 	sin(q/2)cos(q/2) , a 

function that increases roughly linearly with q and so does not describe the observed nonlinear 

dependence of partitioning on q seen in Fig. 3.7(c).   A step model113 for such a GB will have 

points of close contact with density ~tan (q /2), which is also almost linear in q. To visualize how 



	

	

62	

the spacing and nature of potential 5-coordinate substitution sites depends on q, we generated 

unreconstructed GB separating hexagonal arrays at three misorientations by overlaying perfect 

arrays and deleting overlapping host particles. The translational offset for each bicrystal was 

chosen so that the two lattices would coincide on at least one host particle position that could be 

the center of a 5-coordinate site for substitution by a	T=4.0 impurities. These structures are shown 

in Fig. 3.9. At 30° misorientation, a dense and efficient packing is achieved in this idealized 

structure. At q = 20° and 10°, not only are there fewer 5-coordinate sites, but the overall packing 

efficiency in the presence of the impurities is increasingly worse at lower angles; the area that is 

empty, because it is excluded to both host and impurity particles, is greater. The combination of 

falling 5-coordinate site density at the GB and the lower efficiency of the packing arrangements 

produced by impurity substitution could account for the non-linear drop in segregation with 

decreasing misorientation angle. The excess free area that is not directly associated with the 5-

coordinate sites promotes segregation of impurities with T=3.0 and T=1.4, because segregation of 

the smaller impurities can relieve local packing inefficiencies wherever they may occur within the 

disordered structure at the GB while relieving stress in the bulk. In contrast, the T=4.0 impurity 

can improve the global packing primarily by substituting for an entire 5-coordinate site.   
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Fig. 3.9 Examples of unreconstructed hexagonal bicrystals with grain boundaries of varying misorientation q.  Large 
circles represent sites where T =4 impurities can substitute for 6 host particles (examples shown as filled circles) with 
approximate pentagonal symmetry.  

3.4 Conclusions 

Grain boundaries in 2-d hard sphere or hard disc systems are zones of excess area and disorder, 

and so tend to draw impurities that might pack more efficiently in these disordered environments 

than in the bulk. It has been appreciated8, 40 that impurities of just the right size (with effective 

diameter 3 times that of the host particles, here meaning T =4) are accommodated more efficiently 

in the bulk than others of greater or lesser size. We have seen here that impurities of this size are 

distinctive not only for partitioning less strongly to the GB than smaller impurities, but also for 

their misorientation angle dependence.  The apparent reason is that these impurities can reduce the 

overall free area of the system by migrating from the bulk to sites with approximate 5-fold 

symmetry associated with dislocations at the GB. Free area associated with other structures, 

therefore, does not enhance the affinity of T =4 impurities for the GB, leading to a qualitatively 

different distribution across GB of different misorientations than observed at other impurity sizes.   

The solvent repacking Monte Carlo algorithm enabled the exchange of impurities between bulk 

and GB to equilibrate even though the impurities were effectively unable to move through the 

bulk.  Further investigations, using sampling methods that approximate realistic dynamics, will be 

x
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useful to determine under what conditions equilibrium segregation can be achieved and whether 

non-equilibrium distributions arising during grain coarsening dynamics can produce the 

Langmuir-McLean distribution reported in experiments on mixed colloids.40 
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Chapter 4                                                                                        

Dynamics of Grain Boundary Loops in 2-d Solid Hard Sphere 

Monolayers 

	

In this chapter, we investigated the dynamics of a special geometry of Grain Boundaries (GBs): 

the GB loop. We systematically studied how pressure, size, original misorientation and method of 

preparation affects the relaxation of the GB loop in a 2-d solid Hard Sphere (HS) monolayer. We 

found that at low pressure, the rate of shrinkage is controlled by the driving force (line tension) 

that will bias the very mobile GB towards reducing the overall perimeter of the included. At higher 

pressure, however, the dynamics of GB shrinkage depends more on the details of defect 

arrangement. Our simulation results are broadly consistent with the experimental observations of 

Lavergne et al. at high pressure with small loop size, but do not show the same common 

dependence on R0 ng  reported in experiment at higher loop size R=10. 

 

4.1 Introduction 

Polycrystalline patterns can be widely observed in many systems including crystalline solids,33 

colloidal particles,48, 49 di-block copolymers50 and nonequilibrium dissipative structures.51 The 

smaller grains are eliminated through coarsening as the system evolves. The grain coarsening has 

been studied in order to engineer the polycrystalline materials,52 and to better understand the 

nonequilibrium ordering phenomenon.53 

The dynamics of grain coarsening, characterized by the mobility s, can be affected by many 

factors, like system pressure, misorientation between GBs, and the presence of impurity. In 
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experiment, the dynamics of one special type of boundary, the GB loop, has been studied in several 

works.53-56 In the study of GB loop in colloidal particle, Lavergne et al. found the formation and 

kinetics of GB is related to topological constrains in their complex dislocation structure.54 They 

also demonstrate the dependence of deformation (either elastic or plastic) on misorientation angle. 

MD simulation has been used in study of GB migration and grain rotation.55, 56 Z. T. Trautt et 

al. simulated the isolated cylindrical grain in copper, where they found the dynamics of GB motion 

and grain rotation is affected by initial misorientation angle and temperature. They also employed 

the dislocation mechanisms to explain the motion of curved GBs.55 Another MD work by M. 

Upmanyu et al. shows the GB migration and grain rotation can occur simultaneously, where they 

observed the grain rotated as a rigid body motion rather than by grain shearing by dislocation 

passage through the grain interior.56 

In this work, we used MC to simulate the dynamics of GB. Although Monte Carlo simulation 

does not produce a trajectory that is directly related to a dynamic algorithm, the evolution of a 

Monte Carlo trajectory that uses local displacement moves can give qualitative insight into 

dynamics. This is particularly true for colloidal systems where Brownian dynamics might be a 

good approximation.57 Separate dynamic studies in canonical ensemble are used to show how 

impurity size, concentration and orientations of grains affect the grain growth, through the 

combined effects of impurities on GB thermodynamics (reduction of line tension) and dynamics 

(pinning effects).  

	

4.2 Methods 

4.2.1 Construction of GB loops by cut-and-paste method 
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In accordance with our previous simulation of GB loops,112 the round shape domain (with a 

radius lg and certain orientation angle respected to the â axis) is inserted into the center of the big 

square domain with a box length P (50K or 100K in this work) and a fixed orientation (aligned to 

the â axis). Any contact particle in the border between the two domains is removed.  

	

Fig. 4.1 Probability distribution of bias moves mimicking LG beam and Gaussian beam in simulations with lg = 8K.  

4.2.2 Construction of GB loops by tweezer-mimic method 

A uniform square domain (with box length P and average 0 orientation respect to the â axis) is 

used as the initial configuration in the tweezer construction method. Similar to the experiment54, 

we aim to transfer a rotational momentum on 2-d HS system. In Monte Carlo simulation, however, 

we cannot directly apply a force on the particle. Instead, we introduce bias when selecting the 

directions of random walk. Given a uniformly random selected particle in system, we consider 

performing a bias move towards the tangent of GB loop with probability NXbuv , or a regular 

translational move with equal probability in any direction. The NXbuv is set to 0.2 in this work, 

which is tuned for providing relaxation between particles during domain rotation. If the particle is 

considered for bias move, then the probability of actually making a bias move is Ncbè, which is a 

mixed probability of two probability density function NÜ2  and N2  (Fig. 4.1) depending on the 

distance from the selected particle to the box center £: 
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NÜ2 =
Å

t¯•%3
/
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/)        (Xb) 

The bias probability NÜ2  and N2  resemble the Laguerre-Gaussian (LG) beam and Gaussian beam 

in experiment, respectively,54 where the LG beam is the main motivation to drive the particle while 

Gaussian beam can maintain the round domain intact during rotation.  In contrast to the experiment, 

we found the domain can be intact under various combinations of standard deviation terms KÜ2  

and K2  (which tune the strength and width of the probability distribution), even there is no 

Gaussian beam at the center. For the best generalization to most systems, we set KÜ2=1.0 and 

K2=3.0 in all our simulations. The overall probability of making a bias move is NXbuvNcbè . If 

selected, the biased move will be an attempt to translate the selected particle to a position along 

circular path. The random move (bias or regular translational) is rejected if it produces an overlap 

with another particle.  

4.2.3 Order parameter  

Bond-orientational order parameter100 LM is used to characterize the local crystalline order of 

particle «: 

LM(£¢) =
Å

Úß
{bM∆Ûß‹

Úß
^≈Å        (4.2.1) 

where ∆n¢^  is defined as the angle between the â  direction with the vector connecting the 

central particle « and one of its Ù¢ nearest neighbor [ within a cutoff 1.5K. The orientation of the 

hexagon formed by six neighbors of particle « can then be calculated by nM = arg LM /6, which 

is a value varied from 0 to 60° due to the symmetry of hexagon. The orientation of the grain domain 
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can be quantified by averaging all the nM of particles belonging to the domain. In the rest of this 

report, nM refers to the orientation of the domain instead of single particle for simplicity. 

4.2.4 Mobility measurement from Monte Carlo simulation  

The shrinking rate of GB loop has a big variance in our simulation. For all mobility 

measurements, 16 shrinking curves starting from different initial structures constructed under same 

condition but different random number seeds were averaged to represent the mean shrinking rate 

(Fig. 4.2). A linear fit was then applied on these mean shrinking rates to extract the expected total 

shrinkage time Ễ (represented by number of MC moves in simulation). The reduced mobility can 

be calculated as s∗ = Og/(2ó Ễ), where Og is the area of the initial round domain with radius l. 

The outer grain has a fixed orientation nM at 0 degree (aligned with the x axis), the grain inside the 

GB loop will have a nM ranging from 0 to 30 degree. A particle is classified as one inside GB loop 

if its orientation angle nM is within ng ± 5°, where ng is the average orientation angle of the inner 

grain in the initial configuration. The particle number inside GB loop can then be used to calculate 

the Og. It should be aware that the mobility measured from our simulation (in unit of Kt, the 

shrinking area per MC move) cannot directly compared with the number in experiment (in unit of 

Kt/z), but we can still compare the relative mobility under different construction methods and 

conditions. 

4.2.5 Implementation details 

A domain-decomposition scheme is used to parallelize the simulations for system has a big size 

(200KS´200KS or 250KS´250KS in dynamic study under the presence of impurity). The simulation 

box was divided into an 8´8 or 12´12 grid with a randomly selected origin. MC cycles were 
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performed within each grid square on separate processors, with no addition, removal, or translation 

particles within a zone of distance of 0.5KS from domain borders.  After every MC cycle, a new 

origin for the grid was chosen and particles are redistributed among processors so that the border 

regions are constantly changing. Each MC cycle contains 2000 regular translation move attempts 

(max. displacement of 0.05KS) performed in each domain.  

 

4.3 Results and Discussion 

4.3.1 Dynamics of GB loop 

We first studied if there is any finite size effect in our simulation. We compared results of 

simulations under three pressures with different system size (50 K ´50 K  or 100 K ´100 K ), 

constructed by two methods (cut-and-paste or tweezer-mimic). Though some variance presented 

in the mobility in different box size, the general trend between different misorientations remain 

the same. Therefore, for computational efficiency, all following simulations of GB loop are 

performed with a box size of 50K´50K, except the case with large round domain (lg = 20K) 

constructed by insertion method that require a larger box size (100K´100K ) to prevent any 

potential finite size effect. 
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Fig. 4.2 Averaged shrinking curves of system with lg = 8K prepared by (a) cut-and-paste method; (b) tweezer-mimic 
method. All simulations in this plot are performed at bulk area fraction 0.7825. Ù is the particle number inside GB 
loop calculated as discussed in 4.2.4. 

	

Fig. 4.3 Mobility at different misorientations (a) in systems with a fixed bulk area fraction at 0.7825; (b) in systems 
with different bulk area fraction 0.7825 (Low), 0.7973 (Mid) and 0.8209 (High), but a fixed lg at 8K.  

To make sense of the 25 series of conditions in which we have looked at the misorientation-

dependent shrinking of GB loops, we start with the lowest of the three pressure conditions studied 

here (with a bulk area fraction of 0.7825) which is most similar to the systems whose behavior  we 

reported previously112 (at a bulk area fraction of 0.7611), where the rate of domain closure 

appeared to be proportional to the interfacial stiffness.  Fig. 4.2 and Fig. 4.3(a) show average results 

from simulations of GB loops of two sizes prepared according to two protocols: the cut-and-paste 

method featured in our previous work and the protocol (described above in Methods section 4.2.1) 

designed to mimic the torque by the experimental laser tweezer.  With one exception, the rate of 
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loop closure in this regime correlates to the stiffness, and does not depend strongly on the method 

of preparation.  We can explain this regime through a model in which random fluctuations of the 

GB are relatively facile but are biased in the direction of shrinking the GB loop to reduce its 

perimeter.  The strength of this bias, which is proportional to the line tension, determines the net 

rate of motion of the interface in the direction of shrinking the loop. The driving force for 5° 

misorientation is low enough that shrinking is relatively slow. The one exception is that at low 

misorientation for the smaller loop, preparing the system by rotating a domain rather than by cut-

and-paste method allows for faster shrinking of the GB loop. The initial structures that result from 

these two protocols are distinct, as shown in Fig. 4.4 (a and b). Under these conditions, the rate of 

GB loop closure for the cut-and-paste structures varied strongly from trajectory to trajectory.  Even 

for a trajectory whose rate of closure was relatively fast, like the one portrayed in Fig. 4.4 (a and 

c), the mechanism depends on the mode of preparation. Fig. 4.5 (a) shows that the process of 

domain shrinking for the twisted domain preserves local neighbor identities, consistent with an 

elastic rotation of the central domain back to its original orientation. In contrast, Fig. 4.5 (b) shows 

that shrinkage of the cut-and-pasted domain involves plastic rearrangement of the spheres through 

rearrangements that involve changes to the local neighborhoods of a majority of particles in the 

domain. 

Focusing on the smaller loop size studied, we see from Fig. 4.3 (b) that the sensitivity to the 

preparation of the misoriented domain is even greater at higher surface pressure, which can be 

considered analogous to decreased temperature for a thermal system.  At the two higher pressures, 

the simulation matches the experimental trend of diminishing mobility at higher misorientation 

when the domain is created using the tweezer-mimic method.  In contrast, when the domain is 

created using the cut-and-paste method, the mobility at 5° misorientation and higher pressure is 
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too low to measure in the current simulations as the loop remains locked in its original 

configuration. 

	

Fig. 4.4 Snapshots of (a) initial configuration prepared by cut-and-paste method; (b) initial configuration prepared by 
tweezer-mimic method; (c) configuration after 37000 MC cycles of cut-and-paste structure; (d) configuration after 
4000 MC cycles of tweezer-mimic method. They all have an initial misorientation ng = 5°, lg = 8K and bulk area 
fraction p = 0.7825. 
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Fig. 4.5 Number of different neighbors between initial and the last configuration for the system (a) prepared by cut-
and-paste method; (b) prepared by tweezer-mimic method. They all have an initial misorientation ng = 5°, lg = 8K 
and bulk area fraction p = 0.7825. 

	

Fig. 4.6 Voronoi graphs of system (a) prepared by cut-and-paste method with misorientation ng = 5°; (b) prepared by 
cut-and-paste method with misorientation ng = 15°; (c) prepared by cut-and-paste method with misorientation ng =
30°; (d) prepared by tweezer-mimic method with misorientation ng = 5°; (e) prepared by tweezer-mimic method with 
misorientation ng = 15°; (f) prepared by tweezer-mimic method with misorientation ng = 30°. They all have an lg =
10K and bulk area fraction p = 0.8209. Pentagon cell (green), heptagon (red) and octagon (blue) are color coded, 
while the remaining cells are hexagon.  
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4.3.2 Comparison with experimental results 

Lavergne et al. performed experiments on 2-d colloidal particles constructed by optical tweezer 

technique.54 They observed that below a critical misorientation given by  nÉ ≈ f

¯

•

5
, the GB loop 

will relax via “elastic deformation” through which the domain can rotate as a whole to 0° 

misorientation instead of shrinking.  At higher n , the loops were found to shrink through 

combinations of dislocations. The dynamic crossover was shown to originate in a structural 

transition; at the critical misorientation, the GB loop supports an arrangement of 6 dislocations 

known as a “flower defect”115 with a spacing ( ¯5
f

 = •

ÛË
) that matches the preferred spacing of 

dislocations for a GB of that misorientation, and Burgers vectors aligned perpendicular to the GB.  

At lower misorientation, dislocations may also appear at the GB but they will be oriented with 

Burgers vectors along the GB, as for a simple sliding offset of a pair rows in a hexagonal array. 

The contrast between these two cases is illustrated nicely in structures shown in Fig. 6a (generated 

through the cut-and-paste method and resembling the “flower defect”) and 6d (generated through 

the “tweezer-mimic” method and showing displaced rows at the GB).  As both structures were 

formed with the same original dimension of GB loop (R0=10.0) and misorientation ng = 5°, 

slightly below the nominal nÉ = 5.47° , the “flower defect” structure stands in apparent 

contradiction to the line of reasoning presented above.  The misorientation should be too small or 

the loop should too large to support the “flower defect” structure.   
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Fig. 4.7 Snapshot of the GB loop with ng = 5°, lg = 10K at high pressure (bulk area fraction 0.8209). 

What is the “loophole” that permits this loop to exist?  Inspection shows that it is qualitatively 

different from the “flower defect” structure presented by Lavergne et al., (Ref. [54] Fig. 3B) in that 

the dislocations found in our simulations have Burgers vectors that are not directed into the center 

of the loop but are rotated by 30°.  The result is a grain that somewhat resembles a 6-sided star 

(Fig. 4.7) rather than a compact hexagon.  The GB between the defects is not the simple straight 

boundary on which the preferred spacing of •
Û

 is based, and so the structure supports an 

arrangement of six dislocations even when they are closer to each other than would be stable for  

a regular hexagon.   

The dynamic behavior of the star-shaped loop is very different from that of the flower defect 

described previously.  In contrast to the hexagonal “flower defect” structure, which is reported in 

experiment to show the most rapid shrinkage, the star-shaped structure does not change.  Even 

though the dislocations in the star-shaped structure can still translate in the direction of their 

Burgers vectors, the shrinkage pathway through coupled translation and rotation to higher 

misorientation (preserving Rq) described by Cahn and Taylor116 is closed to this structure.  
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Even using the tweezer-mimic model of preparation, the trends in mobilities seen in simulations 

are not generally consistent with the experimental observations of Lavergne et al., who found a 

general relationship over varying initial size R0 and misorientation ng: 

1/s∗ = $(lgng − [ln]É)                                            (4.3.1) 

The approximately linear trend is followed only for the smaller loops at the higher pressures (Fig. 

4.8, panels b and c, dashed blue curves).  The larger loops show little dependence of mobility on 

misorientation. 

Adland et al. originally proposed the universal scaling of the inverse mobility with Rq  as a 

consequence of two factors:53 the rotation of the grain during shrinking, required to preserve 

dislocation structure until the final stage of shrinking, and a dissipative contribution from this 

rotation that scales with the area of the grain.  Phase-field-crystal simulations showed an increasing 

misorientation with shrinking grain size, maintaining fixed Rq, for initial misorientation angles up 

to 15° (in a square-lattice system).  At higher misorientation, a faster, alternative pathway that 

relied on dislocation reactions rather than grain rotation was observed.  They focused primarily on 

the regime where rotation was seen and showed that reducing the friction associated with collective 

rotation of the grain (using a “minimized bulk dissipation” model) removed the strong dependence 

of mobility on misorientation. 

Rotation of the grain to higher misorientation is almost never observed in the current simulations, 

and so based on that model a data collapse according to Rq  would not be expected.  Curiously, 

the experimental data for the plastic deformation regime do show scaling with Rq  (shown in Eq. 

4.3.1) even though the shrinkage mechanism (as shown in Movie S1) is not characterized by bulk 

rotation of the grain.54 The theoretical underpinning for the behavior described by Eq. 4.3.1 is 

therefore unresolved. 
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Fig. 4.8 Relation between 1/s∗ and lgng for system (a) at bulk area fraction 0.7825; (b) at bulk area fraction 0.7973; 
(c) at bulk area fraction 0.8209. 
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4.4 Conclusions 

To summarize, the relaxation of an isolated misoriented grain bounded by a GB loop in a 2d 

HS passes through several regimes depending on pressure, size, q, and method of preparation.  At 

low pressure, where fluctuations in the GB and formation of dislocations are facile, the rate of 

shrinkage is controlled by the driving force (line tension) that will bias the very mobile GB towards 

reducing the overall perimeter of the included grain, as we have reported previously112.  At higher 

pressure, dynamics of GB shrinkage becomes more sensitive to the details of defect arrangement, 

and hence will depend on all three factors.  In the limit of high pressure and small loop size the 

simulation results are broadly consistent with the experimental observations of Lavergne et al.  

First, small enough domains created by twisting may relax elastically if the rotation is not sufficient 

to allow for a stable arrangement of dislocations.  (A GB loop of similar size and misorientation 

created by a “cut and paste” approach may, however, remain locked in place due to its dislocation 

patterns preventing grain shrinkage.)  At higher misorientation, our GB loops of radius 8K display 

the reverse of the low-pressure trend, shrinking more rapidly at lower misorientation as reported 

in experiment.  The data do not, however, show the same common dependence on R0 ng as reported 

by Lavergne et al.; at higher R=10, the misorientation dependence is weaker.   
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Chapter 5                                                                                     

Ordering of colloidal hard spheres under gravity: From monolayer 

to multilayer3 

	

The phase behaviour of hard spheres confined by a gravitational potential to a thin layer (up to 

several monolayers) near a hard, flat surface is investigated using grand canonical Monte Carlo 

simulation.  Depending on the strength of the gravitational field, the bottom monolayer of spheres 

may adopt uniform hexagonal order before, during, or after the growth of the second layer of 

particles.  The crossover from ordering with a sparsely populated overlay to ordering with almost 

one-third of the system’s particles forming a second layer is observed upon decreasing the 

dimensionless Péclet number Pe = mgs/kBT from 18 to 16.  The particular sensitivity of the nature 

of the transition to particle size in this range is interpreted in terms of competing influences on the 

base layer structure by particles in the overlayer: promotion of order through increased pressure, 

versus stabilization of defects through occupation of low-lying sites on top of them. Simulations 

of grain boundaries between 2-d ordered domains of different orientation are used to correlate the 

degree of overlayer coverage to its effects on grain boundary stiffness as an indicator of defect free 

energy. Finally, we examine the structure of the ordered phases at coexistence over a range of 

gravitational strengths and find that orientational ordering of the second monolayer occurs along 

with first-order transition of the base layer at Pe=8 but not at Pe=10. 

 

																																																								
3.	Reproduced	from	Ref.	195	with	permission	from	the	Royal	Society	of	Chemistry.		
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5.1 Introduction 

When packed at high enough lateral densities, hard spheres confined to a plane undergo a 

transition to a hexagonally ordered state, in a process that has been studied for decades through 

theory and computation.117 Only recently have computer simulations on large systems been able 

to describe this transition unambiguously as a two-stage process: a discontinuous transition from 

a fluid to a hexatic liquid crystalline structure followed by a continuous transition to a 2-d 

solid.118  Even more recently, this two-stage process has been observed in experiments on 

monolayers of confined spherical colloidal particles.119  Ordered arrays of colloidal particles in 

two and three dimensions may be prepared via a variety of routes120  and find applications in optics, 

electronics, and sensing.120 Surface tension effects frequently drive colloids to adsorb strongly to 

interfaces between immiscible fluids, forming Pickering emulsions.121-123 Although colloidal 

monolayers at hard surfaces or fluid interfaces may interact via a wide range of direct and 

interfacially-mediated (e.g. capillary) forces, at high enough lateral densities simple steric effects 

are likely to dominate these interactions and hard-sphere (HS) models become relevant. 

This work builds on the now well-understood behaviour of the ordering transition of HS in a 

purely 2-d environment to address questions about this ordering under a gravitational field for 

sedimented particles. The ordering of sedimented HS in the multilayer limit under mild 

gravitational confinement has been studied in depth,124-132 as has the quasi-2d phase behaviour of 

HS under confinement between hard walls.99, 133-135 In systems of sedimenting particles, the Péclet 

number (Pe	 = 	i˘K/[µà, equivalent to ˘∗ or 1/ëW) is equivalent to the gravitational potential 

energy in units of [µà required to raise the particle by a distance of its diameter K. Using the 

buoyant density of silica spheres in water at 300 K as an example, the conversion from Pe to 

diameter is Pe = 2.06 µm∞kKk.  (It has been noted125 that an alternate definition of the Péclet 
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number at Pe = (∆r)˘lk/[µà also appears in the literature131, 132 and gives a value 8 times less.) 

A recent computational and experimental study136  has been made of structure and dynamics of 

colloidal monolayers under a moderate Pe (=6.3), but like earlier simulation work on the subject137  

it stopped short of any ordering transitions. Marechal and Dijkstra have used grand canonical 

Monte Carlo simulation to study ordering in HS multilayers under gravity, showing among other 

things that simultaneous freezing of the lowest two layers is a first-order transition in the range 

Pe=1-4, but that at Pe=10 the ordering of the second layer proceeds continuously after the freezing 

of the base layer,129 a result that was corroborated through experiment.138  

As spheres are added to the system they may either (roughly speaking) increase the density of 

the lowest level at a cost in packing entropy or occupy positions on top of this lowest level at a 

cost in gravitational energy.  At high Pe, we do not expect significant population above the base 

layer until the base layer is densely packed and in the 2-d solid state. Thorneywork et al. 

demonstrated this behaviour in showing that monolayers of colloidal spheres with Pe=41 undergo 

two-stage melting at densities close to the transitions derived from simulations of of hard disc (HD) 

systems.119  For more weakly confined particles, the lateral pressure in the base layer may be high 

enough to push particles to the second level before the hard disk (HD) ordering transition is reached.  

Using results from our previous work,139 we can estimate the critical value of Pe at which the 

crossover takes place.  The cost in gravitational energy to add to a second layer above a close-

packed monolayer is 2/3 (=0.816) Pe [µà. The entropic cost to add a particle to a densely 

packed, ordered monolayer can be estimated from 2-d HD simulations139 where the ordering 

transition occurred at a chemical potential of 12.8 [µà/molecule.  These are equal when Pe=15.6; 

we may estimate that above this value (which corresponds to 1.66 µm diameter spherical silica 

beads in water at 300 K), ordering of the base layer will precede population of the overlayer. For 
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particles with Pe below this threshold, as increasing numbers of particles accumulate in one or 

more upper layers, their weight will eventually produce enough pressure to drive an ordering 

transition in the base layer (or layers).  A main goal of this work is to test this prediction through 

simulation.  

The phase behaviour of HS confined to a slit pore with hard walls has been studied extensively 

through simulation99, 134, 135, 140 and experiment133, 141, 142 and bears some similarity to the 

gravitationally confined systems to be modelled here.  Particles held in soft confinement near a 

plane through a harmonic potential143 have also been studied.  At high packing density, these 

systems may adopt ordered structures with integer numbers of planar hexagonal (triangular) or 

square arrays; more complex intermediates (e.g. buckled structures) are also observed under hard 

wall confinement, while re-entrant melting or phase coexistence is seen under soft confinement.  

The non-hexagonal packing modes are driven by a trade-off between packing efficiently within a 

plane while accommodating multiple layers. In the present system, the broken symmetry between 

layers makes optimization of the packing efficiency in the base layer the most important factor, so 

we expect to see only hexagonally symmetric ordered structures. 

In this work, we explore gravitationally confined HS monolayers and bilayers with a relatively 

high range of Pe from 6 to 24. Here we use the solvent repacking Monte Carlo (SRMC) method,139 

along with a new extension adapting the simulation under a gravitational potential, to study the 

equilibrium phase diagrams and properties of gravitationally confined HS. The effects of overlayer 

on the thermodynamics of disordering are then singled out using studies of grain boundary (GB) 

stiffness. Finally, we address the structural nature of ordering in the ordered phase at coexistence 

in different limits. 
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5.2 Methods 

5.2.1 Algorithms for grand canonical Monte Carlo under a gravitational potential 

We treat a monodisperse system of HS whose minimum centre-of-mass position along | is 

limited to | = 0 by a hard, flat surface in the x-y plane (“floor”) and whose maximum position 

along | is influenced by a gravitational potential Î = Pe	[µà| and limited to |cuè by a second 

hard wall (“ceiling”).  We wish to establish an equilibrium between this system and a reference 

system of fugacity a, which can be characterized as a hypothetical non-interacting system of 

particles in a field-free 3-d space (Î = 0) at a number density a in units of K∞f.   

5.2.2 Single particle addition/removal moves 

The standard Grand Canonical Monte Carlo algorithm for such a system would be inefficient 

at high Pe and high |cuè because most insertion move attempts would be at heights with low 

thermal population.  Biasing the distribution of insertion attempts by the gravitational potential is 

a natural solution. Given the normalized probability distribution N | =

Pe	{∞7B	8 1 − {∞7B	8·‚„ , acceptance probabilities that would appropriately account for the bias 

can be easily constructed:  

yÏÏÚ→Ú“Å = min 1,
Ê

9
:&‘w

◊;<	=

> 8
= 	min 1, a

—

Ú“Å

Å∞w◊;<	=·‚„

7B
                 (5.2.1) 

yÏÏÚ“Å→Ú = min 1, a∞Å
Ú“Å

—

7B
Å∞w◊;<	=·‚„

                                     (5.2.2) 

For a system that is densely packed near | = 0 at high Pe, this will again produce inefficiencies 

because the insertion moves will be concentrated at the most densely packed region.  To increase 

the rate of exchange for the uppermost layer at least, while retaining the possibility of inserting 
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into cavities that open up near | = 0, we instead bias insertions according to the gravitational 

potential but over a range determined by a “local floor” using the following steps: 

1) A point within the x-y plane is selected at random. 

2) The positions of all particles whose x, y coordinates are in a cylinder of radius K centered 

at that point are used to calculate the height | at which a particle falling from |cuè would first 

collide with the existing particles; this is denoted |Ê]ÄÄé . If there are no particles within that 

cylinder, |Ê]ÄÄé = 0.  If a particle at |cuè would overlap with an existing particle, the move fails. 

3) The trial | coordinate is selected from the range [|Ê]ÄÄé,	|cuè], with probability weighted 

by {∞7B	8. 

The acceptance probability for insertion moves is then 

yÏÏÚ→Ú“Å = min 1, a
—

Ú“Å

w
◊;<	=?@AA∞w◊;<	=·‚„

7B
             (5.2.3) 

We note that this move can never insert a particle underneath another particle. 

For the removal move, 

1) One of Ù + 1 particles is selected at random. The positions of all particles whose x, y 

coordinates are in a cylinder of radius K centered at that particle’s projection on the x, y plane are 

used to calculate both |Ê]ÄÄé and |Éwb]bçW: the positions at which the particle would make contact 

(with walls or other particles) if it were to fall or rise without changing lateral position. 

2) If |Éwb]bçW is less than |cuè, there is another particle above our trial particle, and the move 

fails because it could not be reversed by an on-top addition and so would violate detailed balance. 

3) The acceptance probability for removing the selected particle is  

yÏÏÚ“Å→Ú = min 1, a∞Å
Ú“Å

—

7B

w
◊;<	=?@AA∞w◊;<	=·‚„

         (5.2.4) 
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If the removal move fails for either reason (either because the particle has another one above it, 

or because the acceptance probability is less than 1), knowing |Ê]ÄÄé and |Éwb]bçW allows us to make 

a rejection-free move along |, translating the particle to a position between these two values with 

a probability weighted by {∞7B	8.  This move is appealing in that the effective step size adapts 

automatically both to the local packing environment and the gravitational confinement, removing 

the need to re-optimize the step size to sample height distributions efficiently. The thermal 

distribution for an ideal (non-interacting) system under the gravitational potential with fugacity 

defined in this way would be:  

VfB â, Ÿ, | = a exp −¥Î = a exp −Pe	|                (5.2.5) 

Integrating VfB â, Ÿ, |  over | then yields a number per unit area of a 1 − {∞7B	8·‚„ Pe.  The 

single-particle on-top insertion and removal moves are in principle valid at any value of Pe, 

although for multilayer systems their ability to converge to the correct ensemble of particle 

numbers and configurations at a given fugacity relies on the efficient exchange of particles within 

and between layers below the top layer, through local moves.   

5.2.3 Solvent Repacking MC Moves under gravitational potential 

The SRMC algorithm has been detailed in several publications.139, 144  In the present system, 

the goal of the algorithm is to allow a local region of the system to adopt a new packing that might 

be kinetically inaccessible through single-particle moves. Disorder in the base layer can be 

stabilized by the presence of overlayer particles, and so in principle trial configurations that allow 

both layers to be altered simultaneously could overcome barriers to structural transitions. 

Like in previous work on 2-d systems, a position is randomly selected within the system and a 

set of trial configurations is generated in which all particles within a lateral distance rcut are 
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replaced with varying numbers of particles, whose positions are chosen using the configurational 

bias MC (CBMC) strategy.145  In the present case, we wish to build a configuration of particles 

that may extend to a second layer (or beyond) with guidance from the gravitational potential energy. 

As before, for the i'th particle added to the new trial configuration, a number k of positions in x 

and y are generated randomly within the circle of area πrcut
2. For each position, the local floor zfloor 

is calculated as defined above, except that only interactions with the previous i-1 particles in the 

new configuration (not with the surrounding “shell” particles that may overlap with trial positions) 

are used for this calculation. The new particle’s z coordinate is selected with an exponentially 

biased distribution (µ e-Pe z) between zfloor and zmax.  Trial positions that overlap shell particles are 

rejected, and one of the remaining positions is selected with a probability weighting 

Nb,¢ = 	
{∞±\

¤
¶,ß {∞>w	8?@AA,¶,ß − {∞>w	8·‚„

{
∞±\

¶,ß¤
¤

{∞>w	8?@AA,¶,ß¤ − {∞>w	8·‚„^
¢¤≈Å

 

=	
w
◊CÔ¤¶,ß w

◊DÌ	=?@AA,¶,ß∞w◊DÌ	=·‚„

¡¶
                                   (5.2.6) 

where u’i,j is an auxiliary potential, derived from a radial distribution function, that favours 

closely packed positions, and a Rosenbluth weight wi associated with the placement of the ith 

particle is introduced.  (The same auxiliary potential was used here as in previous work.144, 146)  

Particle addition is continued until either a predetermined maximum is reached or all positions 

generated are invalid (zfloor > zmax). 

A complication arises as we need to account for the probability of generating a given set of i 

particle positions in this manner, including permutations to the order in which they may be 

generated.  If no particle is above any other particle (in the sense that zfloor = 0 for all), then the 

number of permutations equals i factorial. In the event that some particles are on top of others, 

some of these permutations violate the ordering requirement for particles to be inserted earlier than 
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those that are on top of them.  To sample and count the allowed permutations for a given 

arrangement of i particles, we first count the number ntop,i of particles that have no particles below 

them, randomly select one to remove, and continue recounting until a single particle is left. The 

product of ntop,i : 

Ùdwéc,b = fi�Äd,b¤
b
b¤≈Å                                       (5.2.7) 

will equal the number of permutations, and so is used in place of i! in expressions for the 

acceptance probability. The probability weighting associated with the configuration ri of i particles 

within the grand canonical ensemble is 

N rb ∝ 	
Ê¶

Õ¶
exp −N{	 |b¤

b
b¤≈g                                (5.2.8) 

The probability of generating that given configuration (including selecting lateral positions for 

i particles from an area acav= πrcut
2, generating z coordinates from the gravitationally biased 

distribution between zfloor and zmax, and selecting one of k positions according to Eq. (5.2.7)) is: 

º rb = Ùdwéc,b
^¶¤
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                     (5.2.9) 

Acceptance probability weightings for moves in biased Monte Carlo algorithms should be 

proportional to the desired weighting within the ensemble and inversely proportional to the 

generation probability; dividing Eq. (5.2.8) by Eq. (5.2.5) yields the acceptance probability 

weighting of the new configuration with i particles: 

Âb = 	
Ê¶

Õ¶
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                                (5.2.10) 

 

As in conventional CBMC, all factors in Eq. (5.2.9) for the original (old) configuration must 

also be generated, using k-1 “dummy” alternate positions for each particle positioned to generate 

wi,old according to Eq. (5.2.7) and adding new additional “dummy” particles up to the same 
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stopping criterion as for the new structure. The acceptance probability for choosing one of the new 

structures is then: 

yÏÏ = min
fl¶

¶·‚„
¶›‰

flA@Á,¶¤
¶·‚„
¶¤›‰

, 1 	                               (5.2.11) 

If the move is accepted, the choice of how many of the particles to include in the new filling of 

the cavity (including the vacant cavity, i=0, with weight 1) is made through a random selection 

with probability:  

N h = 	
fl¶

fl¶¤
¶·‚„
¶¤›‰

                                         (5.2.12) 

 

5.2.4 Implementation of grand canonical Monte Carlo (GCMC) simulations 

GCMC simulations with varying fugacities f and Péclet numbers Pe were carried out through 

the moves described above using a grid-based domain decomposition scheme in which the system 

(a square box with periodic boundary conditions in two dimensions, whose size depended on the 

type of simulation as detailed below) is divided into n ´ n sectors.  During each cycle, a new origin 

for the first sector of the grid is selected at random and a series of Monte Carlo moves attempts is 

performed independently on a different processor on each sector, with boundary zones of width 

1K  between the sectors kept unchanged (with no particles allowed to enter, leave, or change 

position).  A single cycle consisted of 1000 SRMC repack attempts on each sector, each of which 

was followed by 600 single-particle move attempts. The type of single-particle move was 

randomly selected with equal chances of a simple lateral translational move attempt at constant z, 

a single-particle (on-top) insertion attempt, or a single particle removal/rejection-free vertical 

translation move as described above.   
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To determine the boundaries between ordered and disordered phases in systems with Pe 

numbers ranging from 6 to 24, a simulation box of lateral dimensions 100	K ´ 100	K was used, 

divided laterally into 16 sectors for parallel sampling.  At each value of Pe, we use an estimation 

and trial strategy to find the transition point. Starting from an empty box, simulations were 

performed at widely spaced trial fugacities, and the total particle number was monitored until it 

reached a stable level. This typically was achieved within 5,000-10,000 MC cycles (with each MC 

cycle including a total over all sectors of 16,000 repacking moves attempts and 9.6 ´ 10M single-

particle move or insertion/removal attempts).  The base layer (defined as particles with | < 0.5	K, 

where | = 0 represents the particle in contact with the hard surface) was visualized using VMD147 

to determine whether it had reached a state of uniform hexagonal order.  The structure at the lowest 

fugacity to yield an ordered state was then used as input for a series of simulations at gradually 

decreasing fugacity, until a system was observed in which the uniform order of the base layer was 

lost (melted).  Simulations initiated with disordered structures were then performed at smaller 

increases of fugacity (increments of 5-10%) until ordering was resumed.  In this way we zeroed in 

on a transition fugacity value –where the same fugacity will result in the ordered structures 

remaining ordered and the disordered structures remaining disordered over a 10,000 MC cycle 

trajectory.  Although there is some imprecision in this procedure, as the range of the bistable 

regions is finite for a finite equilibration time, the outer limits of this range (which we could place 

by the fugacities at which spontaneous transitions were observed) were far narrower than the shifts 

in the transitions from varying Pe. The properties of the two phases at coexistence are then 

approximated from the configurations observed at that transition fugacity obtained using different 

starting structures.  To represent the density of the system with a measure that reduces to the 2-

dimensional area fraction in the limit of a monolayer at infinite Pe, the total area fraction p�Ä� =
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¯

k

EÚF
≠

  is used, representing the mean sum of all projected areas of all spheres in the system as 

fraction of the area of the surface. (This measure can exceed 1 because of the possibility of multiple 

layers).  The area fractions pXuvw and pÄÑwé of the base layer (particles with | < 0.5K) and the first 

overlayer (particles with 0.5K < | < 1.5K) are similarly defined.   

With one exception, the ceiling height was set to |cuè = 5K; the choice of this maximum is 

large enough that the density of particles at or above this height is close to zero and should have 

negligible effects on the results presented.  In one case, at Pe=8, an additional series of simulations 

was performed using ceiling height |cuè = 0.5K to confine the particles in the system to the first 

layer, and the transition fugacity of such a system (where overlayer formation is effectively 

curtailed) was determined in the same manner as above.   

To systematically study the GB stiffness and its dependence on system composition and Pe 

under controllable conditions, ordered grains of spheres are set up in a pair of parallel stripes 

making two parallel GBs aligned with the â direction in a square simulation box (side length 200 

K) as in previous work.144, 146  Equilibration and production periods consisted of at least 5000 and 

20000 MC cycles, respectively. 

5.2.5 Analysis of orientational and translational order  

At each value of Pe, the complex hexagonal bond orientation order parameter ΨM	  was 

determined for all particles in the base layer (| < 0.5K); for systems with Pe=6, 8, and 10 the order 

parameter was also determined separately for particles in the first overlayer (0.5K < | < 1.5K). 

ΨM(£¢) =
Å

Úß
{bMÛß‹

Úß
^≈Å                    (5.2.13) 

Here the number of neighbours Nj is defined as the number of particles within the same layer 

(base layer or first overlayer) with projected distance from particle j in the x-y plane less than 1.5	K, 
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and n¢^ is the angle between the y axis and the x-y projection of the bond vector between particle 

j and its [�S neighbour.   

Selected systems were prepared in the ordered phase and equilibrated at the transition fugacity 

in a larger simulation box (350K´350K) to reduce finite size effects calculation of translational 

order correlation function following a procedure given in a previous study.139 The direction of 

translational correlation vector is chosen based on the orientation of the domain, to obtain the 

longest possible correlation length.  

5.2.6 Grain Boundary detection and calculation of grain boundary stiffness 

To detect the two GB’s positions along the x dimension from simulations of bicrystals, we 

divide the simulation box into a 100´100 grid, which has been confirmed to be fine enough for 

calculating interfacial stiffness in our previous study.144, 146  The orientation of the hexagon formed 

by six neighbours of particle « can be calculated by nM = arg ΨM /6, which is a value varied from 

0 to 60° due to the symmetry of hexagon, using only particles in the base layer. The orientation of 

the grain domain can be quantified by averaging all the nM of particles belonging to the domain.  

Here in all cases GB were constructed with grain misorientation (difference between the two grains’ 

orientation angles) of 30° and inclination (angle between the GB and grain orientations) of 15°.  

Smoothing over local pockets of disorder is achieved by taking the average of  nM in each grid and 

the four nearest grid squares of the same x coordinate to represent the orientation of each grid 

square. The height h of the grain boundary is then the y coordinate of the grid square with nM 

closest to the mean of the nM values of the two grains, defined as the “edge point”, and the GB is 

represented as a sequence of segments connecting “edge points” 
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The capillary fluctuation method (CFM) is applied here in the same way as in previous work to 

calculate GB stiffness.144, 146 The GB positions along the y direction determined as described in 

previous section are treated as a function of position along the â direction and frame ˜: ℎ(â, ˜). 

The mean value of h(x,t) at each t is subtracted off to yield the fluctuation at that frame: ïℎ â, ˜ =

ℎ â, ˜ − ℎ(˜) è , which can be converted to ïℎ [, ˜  by Fourier Transform (F.T.) with wave 

number [=2ói P (i = 	0,±1,±2,…) in Fourier Spectrum. The trajectory-averaged square of 

intensities ïℎ [ t
�	are related to the stiffness Γ according to the CFM as:148  

log ïℎ [ t P = −2log	([) + 	log	(
^ûü

†
)       (5.2.14) 

In practice, a linear fit of Eq. (5.2.13) with a fixed slope –2 is used to find stiffness Γ from the 

y-intercept, excluding points with i  higher than 15, which the CFM as a continuum-based model 

is not expected to fit.  In ordered systems with Pe=10 and below, convergence in GB fluctuation 

statistics was not reliable and so is not reported. 

 

5.3 Results and Discussion 

We will first show how the point of transition of the base layer from fluid to ordered phase 

depends on the degree of gravitational confinement as represented by Péclet number Pe. The 

second section will focus on interpreting these trends through consideration of the effect of 

overlayer particles on the ordering of the base layer, which can be studied more directly by 

examining the property of grain boundary stiffness at packings above the phase boundary.  Finally, 

the evolution of the nature of the ordered phase near coexistence will be considered, including 

both lateral translational correlations and the degree to which the second and third layers order in 

concert with the base layer.  
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Fig. 5.1 Phase diagram of gravitationally confined HS systems with different Pe. The dash line is drawn only to guide 
the eyes to indicate the phase boundaries. The data of HD is obtained from previous work.139 

 

Fig. 5.2 Percentage of number of base layer particles at phase transition in ordered phase with different Pe.  

	

5.3.1 Crossover from ordering before stacking to ordering with overlayer present 

We first studied the phase transition points of gravitationally confined HS under different Pe.  

As predicted, we see a shift in behaviour from an ordering transition that precedes population of  

overlayer sites (at high Pe) to an ordering transition that occurs with significant overlayer 

population (at low Pe).  The transition appears to take place in the range of Pe between 16 and 18, 
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close to our estimate of 15.6.  As shown in Fig. 5.1, the ordering transition for sedimented HS with 

relatively high Pe (18 and 24) takes place at a total area fraction p�Ä� shifted only slightly from the 

 

Fig. 5.3 Mean squared order parameters LM
t 	of base layer particles versus total area fraction htot near phase 

transitions at different Pe.  

	
Fig. 5.4 Phase diagram of gravitationally confined HS systems with different Pe plotted again the base layer area 
fraction pXuvw. The lines are drawn only to guide the eyes to indicate the phase boundary in disordered phase (black 
dash line), and ordered phase (red solid line). The data of HD is obtained from previous work.139 

HD system, since the occupancy of the overlayer is low, (see Fig. 5.2) and since the vertical 

fluctuations in the base layer are small.  Upon decreasing the Pe from 18 to 16, p�Ä� at the transition 

is dramatically increased, reflecting the presence of a significant (~37%) overlayer. On further 

lowering of Pe from 16 to 6, p�Ä� at the transition gradually increases, reflecting the need for more 

and more particles in the upper layers to exert sufficient pressure on the base layer to drive the 

transition.  
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5.3.2 Overlayer effects on phase and interface stability 

The base layer of HS in the sedimented system differs from the simple HD system in two 

potentially important ways: the presence of an overlayer and the fluctuations in height (position 

along |) that allow the spheres to approach each other with lateral distances less than their diameter.  

Over the range of Pe investigated, the boundaries of the ordering transition remain close to the HD 

limit, in terms of the shift in base layer hexagonal order parameter ΨM (Fig. 5.3) as well as the 

nominal area fraction pXuvw of the base layer (Fig. 5.4).  To distinguish effects of the overlayer 

from those of the fluctuations, we have simulated the Pe = 8 system under conditions where 

particles are restricted to a height |cuè = 0.5K (corresponding to a hard ceiling at a height 1.5 K 

above the floor).  This restriction prevents formation of an overlayer while allowing considerable 

thermal height fluctuations. The transition boundary is shifted to higher area fraction (cross and 

square marks in Fig. 5.4) relative to the HD limit, as expected given the effective softening149 of 

the lateral excluded area restrictions due to fluctuations in |. This shift is qualitatively consistent 

with the shifts in phase boundaries observed for HS confined between parallel walls in the absence 

of a gravitational field.99  In contrast, when the ceiling is not present, it is noteworthy that the area 

fraction of the ordered base monolayer at the phase boundary barely changes in the range from 

Pe=6 to Pe=12.8, remaining near pXuvw =0.735. (For comparison, the value of pXuvw  for a 

monolayer formed by the (111) face of an FCC crystal at the bulk HS freezing point, with volume 

fraction from simulations150 determined to equal 0.545, is h=0.739.)   It appears that the doubling 

in the degree of direct gravitational confinement on the base layer particles and the decrease in the 

number of particles above the base layer are compensating for each other to produce a consistent 

packing density in the ordered monolayer at coexistence.  This trend is consistent with previous 
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GCMC study that found of similar lattice parameters across ordered phases observed at the 

transition in the range Pe=1 to 4.129 

A related form of compensation is evident in the height distribution of the base layer, shown in 

Fig. 5.5, for particles of different Pe under conditions with the same base area fraction 

(hXuvw»0.755, well above the ordering transition). The height distribution broadens as expected 

when Pe is reduced from 100 to 50 to 24, as gravitational confinement is weakened, then remains 

approximately unchanged as Pe decreases by another factor of 2. Is this compensation to be 

expected?  In a simplified scenario (neglecting any specific effects of overlayer particles on the 

base layer packing behaviour) the lateral pressure within the base layer could be assumed to depend 

solely on pXuvw.  If enough particles are present in the overlayer so that lateral and vertical forces 

are coupled, this lateral pressure would be expected to be approximately equal to the pressure in 

the | direction.  The pressure on the floor can be equated to [µà times the number density at | =

0 (corresponding to particles whose center is 0.5s above the hard surface).129  Interestingly, even 

though the height distributions look remarkably similar over the range from Pe=12.8 to Pe=24, the 

pressure on the floor (as indicated by the density at | = 0)  shows a spread of about 20%.  This 

indicates that there are subtleties that modulate the dependence of lateral pressure on pXuvw and/or 

that the lateral pressure does not equal the normal pressure.  (It would in fact be surprising if the 

lateral pressure were to equal the normal pressure exactly near a phase coexistence in a thin 

sedimented system: the lateral pressures of two coexisting phases must be equal to minimize the 

free energy of the two-phase system, and unless the two phases have the exact same h�Ä�, they will 

not have the same normal pressure.)  Still, to a first approximation the combination of the direct 

effect of gravity on the base layer particles and the pressure due to the weight of the overlayers 

produces a similar height distribution at a given pXuvw, which in turn would be expected to produce 
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a similar effective 2-d equation of state for the base layer over different values of Pe – absent 

specific perturbations to the ordering process from overlayer particles.  The non-specific effect of 

increasing overlayer coverage therefore should be expected to favour ordering through its effects 

on base layer pressure. 

 

Fig. 5.5 Height distribution in base layer at common pXuvw (~0.755) in base layer with different Pe. | is divided to 
bins with step size 0.01K. V(|) is the number density per unit volume for spheres in each bin. 

	

Fig. 5.6 Stiffness of grain boundaries (assessed using base layer only) with different Pe. The data for HD is obtained 
from previous work.144 
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Fig. 5.7 Excess overlayer particles per unit length of GB at different Pe. 

To better understand other effects of overlayer coverage on ordering, we turn to the behaviour 

of grain boundaries, locally disordered regions that separate ordered domains with differently 

oriented lattices in a polycrystalline system.  The fluid phase at the phase transition in HD118  and 

similar151 2-d systems has some resemblance to a polycrystalline mosaic of locally hexagonal 

grains with different orientation.  In fact, the local hexagonal order is nearly as high as in the fully 

ordered phase (see Fig. 5.3) and the correlation length associated with this order is about 60 times 

the particle diameter for HD systems.  Properties of GB might therefore be expected to reflect the 

factors that control where and how the transition takes place.  (GB properties also influence the 

rate of grain coarsening,40, 96, 144, 152 and are essential for understanding the dynamics of sedimented 

systems at packings above the ordering transition.)  We have compared the (quasi-1d) GB stiffness, 

which is a measure of the free energy per unit length associated with the GB presence, at different 

Pe with the HD system (Fig. 5.6). In the HD limit of a fully 2-d system (Pe=¥), GB stiffness 

increases sharply with increasing area fraction above the transition.144  This dependence is weaker 

over a range of Pe in the regime from p�Ä� =0.8 to p�Ä� = 1.1, reflecting the fact that most added 

particles join the overlayer and only indirectly influence the base layer packing. Moreover, since 

the local arrangement of the base layer deviates from close-packing at the GB and features larger  
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Fig. 5.8 The hexagonal bond order parameter of spheres in base layer (blue circle) and second layer (red triangle) with 
(a) Pe=6; (b) Pe=8; and (c) Pe=10. 

cavities than are present in the bulk, overlayer particles that occupy sites atop these cavities will 

have lower | coordinates and therefore lower potential energy than those occupying sites above 
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the ordered regions. Counting all overlayer particles, we find a positive excess number of overlayer 

particles per unit length of the GB, confirming that overlayer particles tend to partition towards 

the GB and thereby stabilize it.  In this way, they are analogous to impurities in mixed systems 

that similarly reduce GB stiffness.40, 146 (A kinetic effect on the GB mobility due to overlayer 

particles, analogous to Zener pinning,32, 43, 44 is also possible but was not explored in the present 

study.)  Snapshots that visualize only those overlayer particles in the range 0.5K < | < 0.8K, 

which is excluded to particles atop closely packed hexagonal regions of the base layer, highlights 

the enrichment of the GB in these particles.  So, in addition to a collective pro-ordering effect of 

overlayer particles from their influence on the base layer’s pressure, we see a pro-disordering effect 

from individual overlayer particles’ affinity for defect sites.  

	

Fig. 5.9 Snapshot of spheres in the second layer in a system with Pe =6 at fugacity (a) 1.45	×	10~; (b) 1.55	×	10~; 
and (c) 1.8	×	10~ which are in ordered phase near coexistence. The corresponding total area fractions p�Ä� are 2.216, 
2.229 and 2.257 respectively. Spheres are colour-coded by order parameter Ψf with respect to the spheres in the base 
layer, represented by the color map shown in the inset in (c); the x	and y axes represent the real and imaginary part of 
Ψf, respectively.  

Fig. 5.7 shows that (except for Pe=16 and Pe=18) this excess follows a regular trend with 

increasing coverage of the overlayer.  The excess number ∆N/L increases with overlayer coverage 

at low pÄÑwé because more particles become available to occupy the GB sites. The excess reaches 

a plateau as these extra-stable sites presumably become saturated.  The excess number then starts 

(a) (b) (c)f = 1.45e8 f = 1.55e8 f = 1.8e8
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to decrease as the overlayer approaches 40% monolayer coverage, as lateral packing pressure 

within the overlayer grows and tends to suppress local density fluctuations.   

The anomalies in Fig. 5.7 at Pe=16 and Pe=18 can be attributed to the fact that in the regime 

pÄÑwé =0.1-0.4 that favors high excess numbers at the GB (for reasons described in the previous 

paragraph) these systems are still close to their order-disorder transitions.  Close to the transition 

point, the free energy cost of local melting in the base layer is relatively low.  Overlayer particles 

that migrate to GB sites and stabilize non-hexagonal arrangements in the base layer can contribute 

to pre-melting, increasing the number of advantageous sites. In contrast, the common behaviour at 

higher Pe suggests that the overlayer particles are simply occupying sites determined by the 

intrinsic structure of the GB; the pressure in the base layer is too high to allow a significant number 

of additional defects to be formed.  Pre-melting at the GB and an expanded zone of enrichment of 

overlayer particles can be seen in snapshots with Pe=16 and 18, in contrast to the localized 

distribution of packing defects and of overlayer particles at Pe=20. 

The tendency for a partial overlayer to stabilize disordered packing arrangements in the base 

layer is a reasonable explanation for why p�Ä� at the transition jumps from 0.75 at Pe=18 to over 

1.1 at Pe=16 (Fig. 5.1).  The same total pressure on the floor would be achieved with an increase 

only to p�Ä�=0.84.  Such an increase would at the same time raise pÄÑwé to approximately 0.1, a 

condition that strongly stabilizes defects in the base layer (Fig. 5.7) and so would suppress ordering.   

The ordered phase does not become stable until pÄÑwé=0.38, and even in the ordered phase the GB 

stiffness is especially low at Pe=16 indicating a susceptibility to local disorder (Fig. 5.6). 

5.3.3 Structure of ordered phase 
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The translational correlation function shows that the ordered phase at phase coexistence for Pe 

= 24 is almost the same as HD, with correlations decaying over a length scale of 10’s of particle 

diameters as characteristic of the hexatic phase.118  At Pe=16, even though the area packing fraction 

of the base layer of the ordered phase is much higher (>0.74) than for the HD system, decay of the 

translational order can still be observed, with a somewhat longer length scale. At Pe=6, the yet 

weaker decay in translational order correlation makes it difficult to identify whether the system is 

hexatic with a correlation length approaching the scale of the box size (350 particle diameters) or 

a 2-d solid with a power law correlation function.  In either case, it is likely that the cooperative 

ordering of the second layer (see following section) contributes to the increased order in the base 

layer. 

	

Fig. 5.10 Snapshot of spheres in base layer (blue) and third layer (red) in a system with Pe =6 at fugacity (a) 1	×	10Åg; 
(b) 5	×	10Åg; and (c) 1	×	10ÅÅ. The spheres in second and fourth layer are omitted for clarification. The corresponding 
total area fraction p�Ä� is 2.866, 3.113 and 3.232, respectively. 

As the gravitational force is lowered, the density along the | axis becomes more uniform, so 

that one might anticipate the equilibrium ordering transition at the surface to evolve from a quasi-

2d process to a collective 3-d freezing that extends farther from the wall.  As Pe	 → 0 , one might 

envision that the loss of the density gradient along | would lead to continued expansion of this 

cooperativity, culminating in a bulk-like transition150 between fluid at a volume fraction of 0.494  

into a many-layered crystal at volume fractions 0.545. On the other hand, the presence of a wall 

(a) (b) (c)

HCP-like FCC-like

f = 1e10 f = 5e10 f = 1e11
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has been shown to induce ordering below the bulk freezing pressure (prefreezing) in HS systems 

even in the absence of gravity,153, 154 suggesting that under reduced gravity the onset of ordering 

will always remain local to the surface.  Marechal and Dijkstra have found that at Pe=10, the base 

layer freezes without collective ordering of the second layer,129 and our results are consistent with 

that conclusion, showing no discontinuity in the second layer order parameter at the transition 

point for the base layer (Fig. 5.8(c)).  At Pe=8 and Pe=6 we see signs of simultaneous discontinuity 

in the order parameter of the first two layers, suggesting collective freezing, similar to that seen in 

simulations at Pe=2, 3, and 4 by Marechal and Dijkstra129 (who also detect simultaneous ordering 

in the third layer at Pe=1).  Particles in the second layer can populate either of two equivalently 

oriented lattices of trigonal holes formed by the base layer.  To distinguish between those lattices, 

we calculate the Ψf order parameter using the x-y projection of vectors connecting second-layer 

particles with the nearest three base layer particles.   

Ψf(£¢) =
Å

Úß
{bfÛß‹

Úß
^≈Å                                       (5.3.1) 

A colour map of the second layer for ordered Pe=6 systems at and above coexistence is shown 

in Fig. 5.9.  These snapshots show that the second layer has only short-ranged translational order, 

with domains that grow gradually with increasing p�Ä�	above the transition. Note that these 

domains behave as stable equilibrium structures, with individual regions growing, shrinking, and 

changing shape over the course of each trajectory without apparent growth in average domain size.   

Finally we compare results with the experiments by Ramsteiner et al.138 Experimental images 

of sedimented silica microspheres (Pe=7) taken after 6 hours of equilibration show less order than 

the simulation model with Pe =6 at the same overall particle loadings.  Figure 2 from ref[138] shows 

grains of the order of 10s of particle diameters in dimension in the base layer at a loading of 

N/A=4.2 s∞t  (p�Ä�=3.3).  Domains in the second layer are well correlated with those in the base 
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layer, without evidence of the competition between dual lattices highlighted here in Fig. 5.9.  The 

third layer shows little hexagonal order until higher loadings of N/A = 4.9 s∞t and 5.3 s∞t.  In the 

present simulations at Pe=6, at p�Ä�=3.23 the base layer (Fig. 5.10(c)) and second layer (data not 

shown) are monocrystalline while the third layer shows both HCP-like and FCC-like packing 

patterns,155, 156 which are easily visualized in Fig. 5.10 by displaying only the first and third layers 

and noting where they coincide (ABA packing pattern characteristic of HCP) or are offset (ABC 

packing pattern characteristic of FCC). The boundaries between the domains in the third layer 

sometimes take the form of a double row of particles arranged as a row of squares; this feature be 

seen both in Fig. 5.10 in the present study and in Fig. 2 from ref[138] at a higher particle loading of 

N/A = 5.3 s∞t. Discrepancies between simulation and experiment could arise from kinetic trapping 

of defects, from polydispersity or anisotropy effects in the real particles, or from periodic boundary 

artifacts in the simulations. Further simulation studies incorporating more realistic dynamics along 

with equilibrium properties in direct comparison with experiment will be needed to clarify the 

origins of these discrepancies. 

 

5.4 Conclusions 

Grand canonical Monte Carlo simulations of hard spheres confined by gravity on a flat hard 

surface have been carried out over a range of conditions to characterize how the 2-d ordering 

transition evolves when height fluctuations and overlayer effects are introduced. We have 

demonstrated that between Pe=18 and Pe=16, the transition shifts rapidly from a slightly perturbed 

2-d ordering with a sparsely populated overlayer to a transition with a nearly 50% occupied second 

layer.  Effects from the overlayer are complex, in that it is both a source of pressure to the base 

layer, favouring ordered dense packing structure, and a source of stabilization for defect sites in 
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the base layer.  The latter effect is clearly evident from the tendency of overlayer particles to 

segregate towards grain boundaries in a bicrystalline model system.  As the second layer is even 

more fully formed at the transition for lower Pe, its influence reverts to more of a mean-field 

blanket from above, but then becomes again involved in simultaneous ordering with the base layer 

below Pe=10.   

In principle, the large shift in behaviour between Pe=18 and Pe=16 could be controllable in 

experimental systems through modest variations in solvent density or centrifugal strength.  On the 

other hand, polydispersity will mean that particles spanning a range of Péclet numbers are likely 

to be present; the difference in particle diameters between Pe=18 and Pe=16 is less than 3%.  This 

polydispersity could blunt the impact of these sharp changes, but may also introduce other 

phenomena of interest, and will be a topic of interest for future studies using well-established 

Monte Carlo methods.157, 158  
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Chapter 6                                                                                          

Gibbs Ensemble Monte Carlo with Solvent Repacking: Phase 

Coexistence of Size-asymmetrical Binary Lennard-Jones Mixtures4 

 

We describe a Monte Carlo method for simulation of vapor-liquid phase coexistence in size-

asymmetrical Lennard-Jones (LJ) binary mixtures. The method incorporates the Solvent 

Repacking Monte Carlo (SRMC) approach, which offers efficient trial moves for the exchange of 

a large particle for several small particles, into the Gibbs Ensemble Monte Carlo (GEMC) method. 

SRMC yields a significant efficiency improvement in simulation of dilute large species mixtures 

at low temperature compared to the original Gibbs ensemble Monte Carlo method with identity 

exchange (IE) moves. Vapor-liquid phase diagrams are reported for LJ mixtures with a diameter 

ratio KÖÖ: KÜÜ  of 1:2 with well-depth ratios áÖÖ: áÜÜ  = 1.2, 1.5 and 2, producing spindle-type, 

azeotrope, and closed loop types of phase diagram, respectively. 

 

6.1 Introduction 

Phase diagrams of mixtures have intrigued the interest of scientific community for decades due 

to their importance in vapor-liquid distillation, supercritical extraction, and related industrial 

processes. Work on generating phase diagrams for mixtures of Lennard-Jones (LJ) fluids using 

various theoretical approaches has spanned several decades.59-67 Size asymmetrical mixtures are 

studied by Gibbs Ensemble Monte Carlo (GEMC),63, 68 Grand Canonical Ensemble  Monte Carlo 

																																																								
4.	Adapted	from	an	article	published	by	Taylor	&	Francis	in	Molecular	Simulation	on	Sep	11	2017,	available	online	
https://www.tandfonline.com/doi/abs/10.1080/08927022.2017.1373192	
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(GCMC) method69, 70 or other simulation strategies.71-73 Complete phase diagrams of binary LJ 

mixtures were reported by Hall et al.73, 75 through Monte Carlo (MC) simulation and the Gibbs-

Duhem integration method76. The first-order phase transition for binary mixtures has been 

calculated by the semigrand canonical ensemble method as well.77 Calculations using the Redlich-

Kwong equation of state show the phase diagrams for molecules of unequal sizes are topologically 

different from similar size molecules.78 However, most research focuses on the LJ mixtures that 

have different well depth á but with size ratios close to 1. 

The development of the GEMC method by Panagiotopoulos facilitated the study of phase 

coexistence of mixtures.159 Given the proper initial set up, the system can tune itself to produce a 

phase coexistence point. Due to these attributes of GEMC, it has broad applications in molecular 

simulations of phase equilibria160, 161 including simulations of vapor-liquid coexistence in size-

asymmetrical mixtures.63 For asymmetrical mixtures, a trial move that can exchange the identity 

of different species is included in addition to the displacement move, volume exchange, and small 

particle swap moves. In practice, however, this GEMC method with identity exchange (IE) suffers 

from the low acceptance probabilities in simulations of dense systems at low temperature, 

especially when we want to insert a large particle into the space occupied by a large number of 

small particles.  

The success of modified Gibbs ensemble Monte Carlo with IE moves depends on the existence 

of small particles that occupy cavities spacious enough to fit a large particle. These environments 

become vanishingly rare with increasing size ratio or with increasing density of the small particle 

in the liquid phase.  The case of large size ratios and low small-particle density has been explored 

using innovative methods. Phase diagrams of highly size-asymmetric mixtures (with a 10:1 

diameter ratio) in which the small component is not strongly attractive and is present at low (5%) 
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volume fraction have been successfully studied93, 162 through restricted GEMC simulation coupled 

with  the highly efficient, rejection-free geometric cluster algorithm (GCA).94 The effectiveness of 

the GCA algorithm is limited, however, to a maximum small-particle volume fractions of about 

0.34.95 A multicanonical staged insertion method has also been applied successfully to the same 

system;69 it also becomes more expensive with increasing small-particle volume fraction, as it 

relies for its efficiency on rapid grand-canonical sampling of the small particles, and could face 

bottlenecks associated with cavity wetting/dewetting transitions of strongly attractive small 

particles as repulsions from the large particle are gradually turned off or on. 

Here we will show that incorporation into GEMC of the Solvent Repacking Monte Carlo 

(SRMC) method,8 which offers the possibility of exchanging a variable number of small particles 

for a single large particle, can facilitate simulations in which the large species is effectively 

dissolved in an excess of the small species. The SRMC method is based on the Configuration bias 

Monte Carlo (CBMC) algorithm,2 which was originally developed to perform efficient trial moves 

for segmented chain structures in dense environments. The basic idea for CBMC is to generate 

multiple possible positions for each segment, and only one is chosen based on their Boltzmann 

weights, biasing the positions of early segments toward lower-energy positions. When the trial 

steps reach the end of the segmented chain, the entire new chain configuration is accepted or 

rejected based on an acceptance probability that accounts for the biasing. CBMC has been 

commonly used in conjunction with the Gibbs Ensemble to improve acceptance probabilities for 

exchange of single, multisite particles between boxes.161 

In only a few cases has the CBMC approach been applied to generate configurations for 

multiple independent particles, because these cases can generally be treated efficiently using 

single-particle moves. In one case it was used to reposition small particles during large particle 
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displacements in a size-asymmetric mixture.163 Exchange of one particle with multiple particles of 

a different type has also been used in CBMC/GEMC simulations of mixtures of hard spheres with 

infinitely thin needles.164 In a study by Wijmans et al.,165 polymer chains in solution could be 

exchanged very efficiently across GEMC boxes using a 1:1 exchange of polymer segments for 

solvent particles without changing the coordinates of either; CBMC sampling was used to select 

which solvent particles would be linked together into a chain. This relies on a similarity in 

interaction potentials between solvent and monomer particles. SRMC is distinguished by two 

innovations that are intended to address the challenge of generating a new arrangement of small 

particles to fill the cavity left by the large: the flexibility to exchange a variable number of small 

particles for a single large particle (depending on the microenvironment and the system state) and 

the use of an auxiliary potential to improve the chance of generating a well-packed solvent 

arrangement in the cavity.  In the present system, we find that the auxiliary potential was not 

helpful, in contrast to its usefulness in a GCMC study of the fluid/ordered transition in bidisperse 

hard disk systems.8 

In the present work, we implement SRMC on three-dimensional Gibbs ensemble systems with 

a continuous interaction potential and study the phase behaviors for several mixtures.  In cases 

where large particle has a greater attractive energy than the small particle, then this would describe 

a dilute solution of a non-volatile solute, which is not very interesting. Here, we consider the 

opposite case,  áÖÖ > áÜÜ, where the pairwise attraction energy between small particles, áÖÖ, is 

greater than that between large particles, áÜÜ. As far as we know, the phase behavior of these LJ 

systems have not been simulated before. After confirming that our SRMC can reproduce the 

gas/liquid coexistence boundaries of LJ fluid mixtures previously reported in literature, we apply 

it to study the phase diagrams of LJ binary mixtures that have a 2:1 size ratios under different 
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large/small particle á ratios (1:1.2, 1:1.5 and 1:2) at a temperature of 0.75áÖÖ[µ. The efficiency 

analysis shows that the SRMC method is a useful complement to the simple IE move, allowing for 

reasonable success rates under conditions when the IE move fails, specifically at low liquid phase 

fractions of the large species and at low temperature. 

 

6.2 Methods 

In this section, the acceptance probabilities of Gibbs ensemble SRMC moves will be derived. 

A similar method in grand canonical ensemble is described in the paper of SRMC on hard disk 

mixtures.8  

6.2.1 Gibbs ensemble SRMC algorithm 

In our new Gibbs ensemble Monte Carlo with solvent repacking, regular translation move and 

volume exchange move will be performed as well as the single particle swap for small species. To 

equilibrate the number of large particles across the two boxes, a large particle is exchanged for 

zero, one, or (usually) more small particles as shown schematically in Fig. 6.1. 



	

	

112	

 

Fig. 6.1 Scheme of SRMC in Gibbs ensemble: Insertion of a large particle in liquid box by SRMC, while using simple 
insertions to add multiple small species in vapor box. 

The scheme of original solvent repacking move in hard-disk system is shown in Fig. 1 of 

reference[8]. First, a box for the large species to be removed from, one of the large particles it 

contains, and its new trial position in the other box are selected at random. If the liquid (“a” is 

used as indicator of liquid box in equations) box (defined as the box with the greater density, which 

in the present simulations is always unambiguous) is chosen, then a cavity is defined as the 

spherical volume within a distance of 1.38KÖÖ, which is justified in section 6.3.1.2 below, from the 

position of the large particle.  If any small particles are present within this cavity (very unlikely 

due to repulsion from the large particle) the move is rejected. Otherwise, over a series of cycles 

indexed by h, which is also the index of the particle to be inserted, a number [ of random positions 

that uniformly sample the space of the “cavity” will be generated. For each position « out of these 

[ positions, the potential energy ¬b,¢  is calculated as the sum of the interactions with particles 

outside the cavity and the particles inserted in previous cycles (h⁄ < h). In each cycle, one of the [ 

positions is selected as the hth particle for the new trial set based on the probability of choosing 

position «⁄, 

Nb,¢¤ =
BÆØ	(∞±\¶,ß¤)

BÆØ	(∞±\¶,ß)
‹
ß›‘

        (6.2.1) 
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After selecting one as the hth particle in the new configuration set, we can proceed to the next 

cycles, increasing h by one. (In a previous study for hard disk system, an auxiliary potential was 

used to improve the acceptance probabilities of SRMC. However, as discussed in section 6.3.1.3, 

an auxiliary potential is not used here because it was not found to improve the acceptance 

probabilities.) 

To determine how many small species are inserted into the cavity during repacking, we define 

a weight associated with each state that has h particles inserted: 

Âb =
ÑË‚È
¶

b!^¶
∆b

ÚI,!

(ÚI,∞b)!

Å

—,
¶       (6.2.2) 

where É̌uÑ is the volume of the cavity, ÙvW is the number of small species in vapor box, JW is 

the volume of the vapor box. ∆ is the Rosenbluth weight, which can be defined as 

∆b = exp	(−¥¬b¤,¢)
^
¢≈Å

b
b¤≈Å                                          (6.2.3) 

Cycles generating new particle positions are continued until ∆b falls below a predetermined 

value (here set equal to 100). The maximum number that will then be considered, ficuè, is set to 

be 1 fewer. The weight Âb is used to select which value of h⁄ ∈ [0, ficuè] will represent the number 

of particles to be actually inserted into the cavity. The h⁄ small particles to be removed from the 

vapor box are selected at random. For reverse move that goes from a new configuration to an old 

one, if the sum of the Boltzmann weights is smaller than ∆É\� = 100 but we still have particles 

from the old configuration that need to be inserted, this entire SRMC move will be terminated 

immediately to preserve detailed balance. 

The probabilities of generating a specific trial move to remove a large species from liquid box(a) 

to insert it into vapor box(˘) is: 

ºÊ→W =
Å

Ú%?

fl‡ÌÓ
fl‡ÌÓ,¶¤

‡·‚„
¶¤›‰

çË‚È!

ÑË‚È
‡Ë‚È ( [bNb,¢¤,çw¡

çË‚È
b≈Å )

Å

—,

(ÚI,∞çË‚È)!

ÚI,!
fiÉuÑ!   (6.2.4) 
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For its reversal, to transfer that large species from vapor box to liquid box is: 

ºW→Ê =
Å

—?

Å

Ú%,“Å

çË‚È!

—,
‡Ë‚È      (6.2.5) 

where ÙÜÊ is the number of large species in liquid box, ÙÜW is the number of large species in 

vapor box,  JÊ is the volume of the the liquid box. 

An acceptance probability satisfying detailed balance can be derived as: 

yÏÏ =
ºW→Ê
ºÊ→W

exp −¥ ÎÊ,çw¡ − ÎÊ,Ä]B + ÎW,çw¡ − ÎW,Ä]B  

=
—,Ú%? fl‡ÌÓ,¶¤

‡·‚„
¶¤›‰

—?(Ú%,“Å)

BÆØ	(∞±Í%,,‡ÌÓ)

BÆØ	(∞±Í%?,A@Á)BÆØ	(∞±Í",,A@Á)
     (6.2.6) 

where Î  is the potential energy of liquid box or vapor box in new configuration (after 

transferring a large species from liquid box to vapor box) or old configuration. 

If the vapor box is selected for removal of large species, a random position for the cavity will 

be generated to insert the large species in the liquid box. Meanwhile, a number h⁄ of small species 

in that cavity region will be moved to randomly selected positions in the vapor box. The probability 

of the reverse move, which is the move to insert h⁄ small species back to the cavity in the liquid 

box by SRMC, will be calculated by sampling of “dummy” positions to calculate the appropriate 

Rosenbluth weights ∆b. The acceptance rule can be derived using the same method as removing a 

large species from the vapor box: 

yÏÏ =
ºÊ→W
ºW→Ê

exp −¥ ÎÊ,çw¡ − ÎÊ,Ä]B + ÎW,çw¡ − ÎW,Ä]B  

=
—?Ú%,

—,(Ú%?“Å) flA@Á,¶¤
‡·‚„
¶¤›‰

BÆØ	(∞±Í%?,‡ÌÓ)BÆØ	(∞±Í",,‡ÌÓ)

BÆØ	(∞±Í%,,A@Á)
     (6.2.7) 

6.2.2 Implementation details 

Pairs of particles interact via the Lennard-Jones potential: 
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Φb¢ £ = 4áb¢[
•¶ß

é

Åt
−

•¶ß

é

M
]     (6.2.8) 

The following mixing rule is applied when calculate the cross term of potential energy: KÖÜ =

(KÖÖ + KÜÜ)/2, áÖÜ = áÖÖáÜÜ. The shifted potential Φ is used in all simulations:  

ΦK £ =
Å

éL
−

≠

f
£ − £vSbÊ�

f
−

µ

k
£ − £vSbÊ�

k
− ã; (£vSbÊ� ≤ £ ≤ £É\�)  (6.2.9) 

ΦK £ =
Å

éL
− ã; (£ ≤ £vSbÊ�)    (6.2.10) 

where the parameters O,	* and ã can be calculated as: 

O =
K[ K“Å éI0¶?Ò∞ K“k éËÔÒ]

éËÔÒ
(L&/) éËÔÒ∞éI0¶?Ò

/      (6.2.11) 

* =
K[ K“Å éI0¶?Ò∞ K“f éËÔÒ]

éËÔÒ
(L&/) éËÔÒ∞éI0¶?Ò

Œ      (6.2.12) 

ã =
Å

éËÔÒ
L −

≠

f
£É\� − £vSbÊ�

f
−

µ

k
£É\� − £vSbÊ�

k
   (6.2.13) 

where º represents the power of the respective LJ terms (6 or 12). Shifted potentials enable the 

potential and force to continuously and smoothly decay to zero between £vSbÊ� = 3K and the cut-

off distance £É\� = 4K, and were useful for cross-checking our Monte Carlo codes with results 

from molecular dynamics simulations (not shown). In our study, different £vSbÊ� and £É\� are used 

for three interactions (two interactions among small and large, one cross term of interaction).  

We employed periodic boundary conditions with long-range corrections to approximate infinite 

thermodynamic properties of systems with finite size systems, which will give us the phase 

diagrams and thermodynamics properties reflecting a true LJ fluid. The following functions for 

pressure and potential energy are added to the mean values used or extracted from simulations as 

mean-field corrections for the long-ranged contributions of the LJ potential that are neglected in 

simulations due to truncation166: 
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j]éÉ =
32
9
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+
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+
Mk

R
óVÖVÜ(£É\� OP ∞R −

f

t
£É\� OP ∞f)    (6.2.14) 

 

¬]éÉ =
8
9
óÙÖVÖ £É\� OO ∞R − 3£É\� OO ∞f  

+
8
9
óÙÜVÜ £É\� PP ∞R − 3£É\� PP ∞f  

+
ÅM

R
óÙÖVÜ(£É\� OP ∞R − 3£É\� OP ∞f)    (6.2.15) 

The equilibration and production periods each consisted of at least 2×10˚ MC moves. In our 

SRMC Gibbs ensemble simulations, the type of MC move was selected randomly according to the 

following ratios: 1(consisted of 1000 single particle swap cycles):5(SRMC):1(volume exchange). 

In Gibbs ensemble simulations with IE used to make the performance comparison, the type of MC 

moves has a ratio: 1(consisted of 1000 single particle swap cycles):5(consisted of 600 IE 

moves):1(volume exchange). In both cases, each move was followed by 100 translation moves for 

small and large species, respectively. The only difference is we replaced 1 SRMC move with 600 

IE moves, because we found the CPU time for one SRMC is approximately equal to 600 IE moves. 

The diameters of the cavities are fixed at 2.76KÖÖ. Multiple insertions ([ = 500) are used in SRMC 

moves. The maximum distance for translation move is set to 0.05KÖÖ and 0.01KÖÖ for small and 

large species, respectively. The maximum volume change is set to 0.1KÖÖf . Error bars in the 

following phase diagrams are generated by block averaging.  
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6.3 Results and Discussion 

In this section, we first present the different strategies used to optimize our new SRMC method. 

Then, the vapor-liquid phase transition of LJ fluid mixtures is demonstrated and compared with 

literature results to validate our SRMC method. The applications to binary mixtures under different 

ratios of á  at a low temperature is described and performance analysis is reported to show 

capability and efficiency enhancement of SRMC in simulations of dilute large species fluids. 

6.3.1 Optimization of SRMC 

In order to get the best performance, we optimized our SRMC from the following approaches: 

the number of random trial position [, cavity size, and use of auxiliary bias potential function. 

	

6.3.1.1 Optimization of [ 

The number of random trial positions [ affects both acceptance probability and performance of 

the SRMC method. A low [  will save computational effort but decrease the acceptance rate. 

Therefore the objective is to find a balance between these two that gives the best performance. To 

quantify the performance, we define a parameter O¬a/ℎ£  to characterize the successful large 

particle swap moves per CPU hour. Fig. 6.2 shows the acceptance probabilities and O¬a/ℎ£ at 

different [. The best performance can be obtained in the range 10 < [ < 25. In this work we used 

a higher value, [ = 500, which we anticipate would be more appropriate for replacement of even 

larger particles. 



	

	

118	

	

Fig. 6.2 Acceptance probability(acc) and performance(Suf/hr) of SRMC method at different numbers of random trial 
positions k. 

6.3.1.2 Optimization of cavity size 

Fig. 6.3 shows the effect of cavity size on acceptance probabilities and performance. Best values 

can be obtained at cavity radius equal to 1.38KÖÖ. Due to the 2:1 size ratio, KÖÜ equals 1.5KÖÖ. The 

best cavity radius is therefore slightly smaller than KÖÜ, so small particle trial positions will lie 

inside the solvent shell of the large particles. 
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Fig. 6.3 Acceptance probability(acc) and performance(Suf/hr) of SRMC method at different cavity diameter ÇÉuÑ∗  
(reduced unit is used here: ÇÉuÑ∗ = ÇÉuÑ/KÖÖ). 

6.3.1.3 Use of auxiliary bias potential function 

Auxiliary bias potential function can be used to improve acceptance probabilities by 

incorporating many-body effects into the selection of particle positions, accounting in a mean field 

way for the influence of particles not yet inserted into the cavity. In previous work using the SRMC 

method, use of the radial distribution function (RDF) as an auxiliary potential (¬Xbuv = ln ˘(£)/¥) 

increased the acceptance rate significantly for large size ratio hard disk mixtures.8 For the 3D LJ 

mixtures we generated a fit to the difference between LJ potential with RDF using a sum of 

Gaussian functions (Fig. 6.4). To then determine whether an auxiliary potential improved the 

acceptance probability of the SRMC method, we introduced a bias potential function 

exp −¥¬Xbuv = exp −¥¬Xuéw + T(˘ £ − exp	(−¥¬Xuéw)), where the contribution from the 

RDF bias potential can be scaled by a parameter T. By tuning T from 0 to 1, we can gradually 

switch our bias potential from full bare potential to full RDF. However, in contrast to 2D hard disk 

system, using the RDF to bias selection of particle positions does not increase the acceptance 

probability (Fig. 6.5). It is possible that the RDF does not give a good representation of interparticle 

distances in the environment of the average cavity left by a large particle, or that the cavities are 
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too small for incorporation of these effects to be helpful. We tried auxiliary bias potential function 

at a larger size ratio system (KÜÜ :KÖÖ  = 2.5:1), but similarly found no increase in acceptance 

probability. 

	

Fig. 6.4 RDF of small species, Boltzmann weight of LJ potential, and difference (fitted by sum of Gaussian). 

	

Fig. 6.5 Acceptance probability(acc) of SRMC method incorporating auxiliary bias potential scaled by factor T. 

6.3.2 Phase diagram of binary mixtures 

The SRMC is applied to studying the phase behavior of LJ binary mixtures with diameter ratios 

KÜÜ:KÖÖ = 2:1. To validate the SRMC-GEMC method, we first applied it to a system with á ratios: 

áÜÜ: áÖÖ=4:1 at à∗ = 1.0áÖÖ[µ. Fig. 6.6 shows the comparison between our SRMC and original 
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GEMC with IE. Our simulated data has a good agreement with the GEMC data reported in 

literature 68, which validates our method in the simulation of LJ mixtures. Next, the phase diagrams 

of 3 LJ systems with size ratio 2:1 at à∗ = 0.75áÖÖ[µ are shown in Fig. 6.7, Fig. 6.8 and Fig. 6.9. 

â(P) , Ÿ(P)  denotes the the mole fraction of large species in liquid phase and vapor phase, 

respectively. As áÜÜ is decreased, there is a shift in vapor phase enrichment from small species to 

large species across different systems, listed in Table 6.1.74 It can be explained by the balance 

between á  and number of neighbors for certain particle. When the attractive energies of both 

species are similar (as in 1:1.2 ratio, Fig. 6.7), large particles are preferentially retained in the 

liquid phase they have more neighbors to attract them, even if the average energy of attraction is 

slightly lower. After decreasing the áÜÜ (Fig. 6.8, and Fig. 6.9), the stronger attractions of small 

species become more important than their smaller number of neighbors, which make large species 

more likely to escape to the vapor phase. The phase diagram of á ratio 1:1.5 (Fig. 6.8) shows an 

azeotrope point at large species fraction near 0.75. When large species fraction is smaller than 0.75, 

large particles are over-represented in the vapor phase, while in high large species concentration 

mixtures(â(P)  > 0.75), the small species is a little bit enriched in vapor phase. Trends in 

coordination numbers of large and small species (Table 6.1) might shed light on this behavior. The 

crossover seems to coincide with the transition from small particles having mostly small neighbors, 

allowing for the strongest neighbor bonding in the system, to having mostly large neighbors, where 

the number of large neighbors surrounding a small particle is limited by steric factors. For the á 

ratio 1:2, the phase diagrams demonstrate a closed circle because the temperature is higher than 

the critical point of the large species.  
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Table 6.1 Number of neighbors at different large species fractions for system KÜÜ:KÖÖ = 2:1, áÜÜ: áÖÖ=1:1.5, à∗= 0.75. 

â(P) fiPPu fiOO fiPO fiOP 

0  12.78   

0.0135 0.95 12.05 24.05 0.33 

0.0576 3.14 10.47 18.62 1.14 

0.3167 7.47 5.06 8.15 3.77 

0.5779 10.70 3.10 4.38 6.01 

0.7489 10.67 1.62 2.30 6.82 

0.8321 10.64 0.78 1.35 6.70 

0.9161 10.51 0.24 0.62 6.75 

1 10.36    

aThe first letter denotes the center particle while the second letter denotes its neighbors. The cut-off for a neighbor is 

defined at 1:5KÖÖ for nSS, 3:1KÖÖ for nLL, 2:1KÖÖ for nLS and nSL, respectively. 

 

 Fig. 6.10 shows a partial phase diagram for size ratio KÜÜ:KÖÖ =2.5:1 with áÜÜ: áÖÖ=1:1.5, which 

demonstrate the applicability of SRMC to a larger size ratio.  However, increasing the size ratio to 

3:1 resulted in a too low acceptance probability that prevented us from achieving equilibrium in a 

reasonable simulation time. 
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Fig. 6.6 Reduced pressure vs. mole fraction (a) and reduced density (b) for system (KÜÜ:KÖÖ = 2:1, áÜÜ: áÖÖ=4:1, à∗= 
1.0): SRMC results (circle); literature data [68] (cross). 

	

Fig. 6.7 Reduced pressure vs. mole fraction (a) and reduced density (b) for system (KÜÜ:KÖÖ = 2:1, áÜÜ: áÖÖ=1:1.2, à∗= 
0.75). Lines on the phase boundaries are drawn only as a guide to the eye. Triangle indicates the liquid phase boundary, 
and circle indicates the vapor phase boundary. 

	

Fig. 6.8 Reduced pressure vs. mole fraction (a) and reduced density (b) for system (KÜÜ:KÖÖ = 2:1, áÜÜ: áÖÖ=1:1.5, à∗= 
0.75). Lines on the phase boundaries are drawn only as a guide to the eye. Triangle indicates the liquid phase boundary, 
and circle indicates the vapor phase boundary. 
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Fig. 6.9 Reduced pressure vs. mole fraction (a) and reduced density (b) for system (KÜÜ:KÖÖ = 2:1, áÜÜ: áÖÖ=1:2, à∗= 
0.75). Lines on the phase boundaries are drawn only as a guide to the eye. Triangle indicates the liquid phase boundary, 
and circle indicates the vapor phase boundary. 

	

Fig. 6.10 Reduced pressure vs. mole fraction (a) and reduced density (b) for system (KÜÜ:KÖÖ = 2.5:1, áÜÜ: áÖÖ=1:1.5, 
à∗= 0.75). Lines on the phase boundaries are drawn only as a guide to the eye. Triangle indicates the liquid phase 
boundary, and circle indicates the vapor phase boundary. Only dilute large species part is shown in this diagram. 

6.3.3 Performance Comparison between SRMC with identity exchange swap method 

Table 6.2 compares the performances (O¬a/ℎ£), measured in successful large particle swaps 

per hour, of SRMC and the IE method in Gibbs ensemble at different large species mole 

fractions(â(P)) in the liquid phase. We tracked the number fluctuations of large particles achieved 

using different methods versus CPU time. Clearly, SRMC can swap the large species more 

frequently than simple IE move (as shown in Fig. 6.11), which allows few or no successful swaps 

in a dilute large species environment. The reason why the original IE method failed in this regime 

is due to the increasing difficulty finding the free volume to fit a large particle size increase in IE 

(a) (b)

(a) (b)



	

	

125	

in a very dense phase consisting of a large amount of small species. In contrast, SRMC can swap 

large species into dense environment in exchange for multiple small particles, allowing access the 

phase properties of dilute large species mixtures. We note that the IE method is more efficient 

when the large species is not dilute. We plot O¬a/ℎ£ versus the large species fraction in liquid 

phase to compare the performances of the two methods (Fig. 6.12, Fig. 6.13, and Fig. 6.14), and 

see a crossover from conditions where SRMC is more efficient to where single IE is preferable as 

the mole fraction of large particles increases. The crossover takes place near a mole fraction	â(P) 

of 50% at á ratios 1:1.2 and 1:1.5, but at much lower fraction for the á ratio 1:2 case. In that case, 

the increase in large particle content brings the coexisting phases near a critical point, with the 

density of the liquid phase falling while the density of the gas phase rises.  The decrease in density 

of the liquid phase helps the simple IE move while the increase in density of the gas phase hurts 

the SRMC move, which in the present implementation involves multiple unbiased insertions of 

the small particles into this dense gas. Incorporating multiple trial positions for insertion into the 

gas phase could improve performance under these circumstances. 

The performance measures are low in absolute terms for a combination of reasons. Our code 

will achieve 203,000 successful simple small particle swaps per hour on an Intel Xeon E5-2680v3 

processor core of the Comet cluster at the San Diego Supercomputer center at à∗ = 1.0. This rate 

decreases to 10,800 at à∗ = 0.75 due to the increased density and decreased temperature. These 

values reflect the availability of voids, thermally generated within the liquid phase, whose volume 

is sufficient to insert a small particle. As evident from the values shown in Fig. 6.12, Fig. 6.13 and 

Fig. 6.14, IE moves in a mixture with a diameter ratio of 2:1 are further suppressed by one or more 

orders of magnitude (depending on mixture composition) because they require a free volume of 

approximately the difference between the large and small particle volumes (i.e. seven times the 
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small particle volume). The solvent repacking approach can avoid this problem by exchanging a 

large particle for a cluster of solvent with equal volume. The trade-off in computational expense, 

however, is the challenge of finding a compact, low-energy packing arrangement for multiple 

solvent particles in the large particle's vacated cavity, requiring many trial positions to be generated 

per move. 

 

	

Fig. 6.11 Number of large species in liquid phase simulated by GEMC-IE and SRMC for system (KÜÜ:KÖÖ = 2:1, 
áÜÜ: áÖÖ=1:1.5, à∗= 0.75) at four total system compositions. 

	

Fig. 6.12 Performance of GEMC-IE and SRMC at different large species fractions (liquid phase) for system (KÜÜ:KÖÖ 
= 2:1, áÜÜ: áÖÖ=1:1.2, à∗=0:75). 
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Fig. 6.13 Performance of GEMC-IE and SRMC at different large species fractions (liquid phase) for system (KÜÜ:KÖÖ 
= 2:1, áÜÜ: áÖÖ=1:1.5, à∗=0.75). 

	

Fig. 6.14 Performance of GEMC-IE and SRMC at different large species fractions (liquid phase) for system (KÜÜ:KÖÖ 
= 2:1, áÜÜ: áÖÖ=1:2, à∗ = 0.75). 

	

Table 6.2 Performance comparison (as rate of successful large-particle exchanges per CPU-hour, Suf/hr) of GEMC-
IE and SRMC in dilute large species mixtures. 

KÜÜ: KÖÖ áÜÜ: áÖÖ â(P) Suf/hr(GEMC-IE) Suf/hr(SRMC) 
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2:1 1:1.2 0.1277 2.22 82.70 

     

2:1 1:1.5 0.0282 0.05 38.01 

2:1 1:1.5 0.0576 0.41 63.11 

2:1 1:1.5 0.0888 3.78 89.39 

2:1 1:1.5 0.1233 16.66 128.27 

     

2:1 1:2 0.0004 0 0.90 

2:1 1:2 0.0066 0 0.71 

2:1 1:2 0.0109 0 0.62 

2:1 1:2 0.0205 0 0.26 

 

 

6.4 Conclusions 

In summary, we implemented the SRMC method for the study of vapor-liquid coexistence of 

size-asymmetrical binary LJ mixtures. The SRMC can overcome the low acceptance probabilities 

in traditional GEMC simulations of dilute solute mixtures at low temperature, which offer the 

exchange of one large particle for several small particles. We have applied our SRMC to phase 

transition studies of three binary size-asymmetric LJ mixtures with different á ratios, and seen a 

range of vapor-liquid phase transition behaviors. Further refinements of the SRMC method may 

enable its application to thermodynamic and phase behavior of more complex fluid systems, 

including aqueous solutions. 
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Chapter 7                                                                                             

Size-asymmetrical Lennard-Jones solid solutions: Interstitials and 

substitutions5 

 

We present simulation studies of solid solutions formed upon compression of mixtures of 

Lennard-Jones (LJ) particles with diameter ratios 2:1 and 3:1. Grand canonical Monte Carlo 

(GCMC) and Gibbs-Duhem integration were used to determine the compositions of coexisting 

solid and liquid phases at several pressures and fixed temperature. Concentrations of small 

particles dissolved in interstitial sites of the large-particle lattice, under liquid-solid coexistence 

conditions, were determined directly from GCMC simulations. Indirect methods were used to 

calculate levels of small particles dissolved substitutionally, either singly or in plural, with the 

average number of small solutes occupying a lattice site vacated by a large particle increasing with 

higher pressure.  In the cases studied, the fraction of small solutes occupying these substitutional 

sites was found to be small (2% or lower, depending on the mixture and conditions), but to stay 

roughly constant with increasing pressure. Structural and dynamic characteristics of the solid 

solutions are described and compared with reported characteristics of the related interstitial solid 

solution formed by hard spheres.    

 

																																																								
5.	Adapted	with	permission	from	Guo,	Z.	and	Kindt,	J.	T.,	J.	Chem.	Phys.	148,	164504	(2018)	with	the	permission	of	
AIP	Publishing.	
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7.1 Introduction 

Solid solutions or alloys, mixtures in which one component is distributed in a disordered 

arrangement throughout an otherwise regular crystal structure, have been widely studied due to 

their applications in photonics, optics, semiconductors and structure design79-83. In a substitutional 

solid solution (SSS), impurity particles occupy some fraction of lattice sites in place of the majority 

component particles; the prototypical example is bronze, which contains tin substituted within a 

copper lattice. In an interstitial solid solution (ISS) the impurity component occupies some fraction 

of the interstitial positions of the crystalline lattice of the first species; the prototypical example is 

steel, with carbon atoms occupying interstitial sites in an iron lattice84. The presence of the 

impurities may have important effects on the mechanical behaviors, phase diagrams, and electrical 

properties of the solids, and the ability to tune the properties by adjusting the amount and nature 

of the minority components have made solid solutions tremendously important in technology.  

One obvious distinction between substitutional and interstitial localization of impurities is that 

the former is more likely for impurities that are similar in size to the primary component, while 

the latter is more likely for impurities that are significantly smaller.  It is natural to speculate, then, 

about whether a dimer or cluster of small impurities can play the role of a large impurity and form 

plural substitutional defects within a primarily interstitial crystal. Colloidal crystals have been 

predicted and synthesized in which icosahedral clusters of 13 small “B” spheres occupy sites 

similar (though not identical) to large “A” spheres167, although this is a compound with a fixed 

stoichiometry of AB13 and not an alloy. Density functional theory (DFT) calculations suggest that 

vacancy sites within carbon steel will be occupied by a carbon dimer168. Vacancy occupation by 

one or more impurity particles present interstitially and the equilibrium thermodynamics of 

vacancy levels has been addressed in the recent metallurgical literature85, and appears to have 
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implications for design of advance materials with many thermodynamic and kinetic properties like 

High Entropy Alloys (HEAs) with much better resistance to radiation damages. 

To gain some general perspective on whether interstitial and plural substitutional impurities 

might appear in the same phase we have investigated size-asymmetrical binary Lennard-Jones (LJ) 

solid solutions, with the smaller particle the minority component, at coexistence with the binary 

liquid mixture.  The composition at the coexistence point is of interest as represents the highest 

impurity content that the solid can absorb at a given pressure and temperature without becoming 

unstable with respect to phase separation. 

Binary mixtures of LJ solids have been studied for decades169-175. However, only few studies 

focus on the ISS phase of LJ solids, which treat the species in interstitial places as impurity176, 177. 

There are multiple approaches to study the solid-liquid phase coexistence for LJ systems. Ferreira 

et al. obtained the solid-liquid coexistence by absolute free energy calculations79. Gibbs ensemble 

simulation has been extended to simulate the solid-liquid phase equilibrium by Quirke et al178. 

Escobedo et al. applied virtual Gibbs ensemble to directly simulate the solid-liquid phase 

coexistence179. A phase-switch Monte Carlo was developed by Errington to investigate the 

coexistence180. Cottin et al. studied the phase equilibrium of binary LJ mixtures from a cell theory 

approach181. MD simulation is also used to study the crystal growth in binary LJ mixtures at liquid-

solid interfaces182. A widely used current method to study the solid-liquid phase equilibrium is 

Gibbs-Duhem integration developed by Kofke76, 183. With the prior knowledge of one coexistence 

point, one can integrate starting from the existing point using the Clapeyron formula to find the 

coexistence point at new temperature. Hall et al. reported the solid-liquid phase diagram of the 

binary LJ mixtures in the temperature-composition plane at fixed pressure by Gibbs-Duhem 

integration with MC simulation73, 184.  



	

	

132	

Here, we employ a variation of Gibbs-Duhem integration to track the coexistence points at 

different pressures with fixed temperature. We start from the coexistence point for a pure large 

species LJ system whose phase coexistence data is available from the literature79, then used Gibbs-

Duhem integration to get the new coexistence point at higher pressure with some small species 

present using grand canonical Monte Carlo simulation (GCMC).  The solid phases would actually 

describe an ISS phase in which the large species forms a face centered-cubic (fcc) lattice while the 

small impurity species primarily occupy the interstices, but may also occupy the main lattice 

positions either singly or in clusters. Three systems were studied in this work. The mixtures in two 

cases have the same á but different sizes, with K ratios 1:2 and 1:3. (system S2 and S3 as shown 

in Table 7.1). In the third case (system E2 as shown in Table 7.1) the large particles are more 

strongly attractive than the small component (K ratio 1:2, á ratio 1:1.5), mirroring the typical trend 

in experimental systems  like neopentane/methane185. For all systems, we studied the coexistence 

points under three pressures (6.0, 8.0 and 10.0 [µà/KÜÜ
3) and performed structural analysis on the 

liquid phase and solid phase.  To investigate the substitution behavior by the small components, 

we created a vacancy in the large-particle lattice manually, and observed the occupation of the 

vacancy by small particles at the chemical potential determined for the system at coexistence. 

Using standard approaches to estimate the free energy of vacancy formation186, 187, we then used 

the occupation statistics to estimate the concentration of all vacancies (substituted or empty) for 

each system.    

 

7.2 Methods 

7.2.1 Determination of solid-liquid coexistence points 
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The Gibbs-Duhem integration method is commonly applied to track how the pressure at 

coexistence between two phases varies with temperature76, and has also been applied to find the 

variation of coexisting compositions with changing T (at fixed pressure) in a binary mixture73. 

Here we consider the application of the same strategy while fixing T and varying pressure.   

The solid-liquid phase coexistence point of LJ system can be accessed via various methods79.  

With the densities of solid and liquid phases at coexistence at a specified temperature and pressure 

P0 obtained from the literature, Grand Canonical Monte Carlo (GCMC) can be used to determine 

the chemical potential of the liquid state (and by extension, the solid). 

Given the Gibbs-Duhem equation: 

ÙbÇ b
(
b≈Å = −OÇà + JÇN      (7.2.1) 

variations in pressure and composition in a binary mixture at constant à are related by: 

		ÇN = VÖÇ Ö + VÜÇ Ü                                                (7.2.2) 

where the subscripts designate small (S) and large (L) particles. If we make the approximation 

that in the solid phase VÜ is a constant and small particles partition strongly to the liquid phase 

VÖ zPëhÇ ≪ 	 VÖ ëhê¬hÇ , the large component’s chemical potential at higher pressure P > P0 can 

be obtained without further information about the small component’s behavior: 

N − Ng = 	VÜ∆ Ü                                                       (7.2.3) 

Substituting the chemical potential as fugacity a = exp	(βµ), with the de Broglie thermal 

wavelength set to 1, we have: 

N − Ng = 	VÜëfi
Ê%
Ê%
‰                                                      (7.2.4) 

Since the approximations that produce Eq. (7.2.3) and Eq. (7.2.4) are not ultimately satisfied, 

we rely on these equations for a first approximation only.  For each pressure P of interest, the 

liquid phase is first simulated using GCMC with fixed aÜ obtained from Eq. (7.2.4) and varying aÖ 
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to find the value that produces a pressure P in the mixture (Fig. 7.1 ).  In principle, simulation of 

the solid phase at constant fS, fL, and V would produce an equilibrated state whose pressure could 

be compared with P to test the assumptions made above. However, the rigidity of the lattice 

structure and the need for the lattice spaces to be commensurate with the periodicity imposed by 

the simulation box make this unreliable.  Instead, the solid phase is simulated by GCMC, either at 

constant P, NL, and fS, or at constant P, fL and fS, in which case the kinetic barrier to changing the 

lattice structure imposes an effective fourth constraint on number of cells in the system.  Through 

the simulations at constant P, fL and fS, we saw it is a rare event for solid phase having a vacancy, 

therefore, for efficiency concern, we manually create a vacancy in crystal structure (remove a large 

particle in simulation box) and run simulations at constant P, NL, and fS to find the small species 

partition in solid phase (Table 7.1). The manually created vacancy is implemented in all the 

following results except the discussions on phase diagrams, small species absorption and radial 

distribution function (RDF). In any case, we cannot rely on particle exchange moves to ensure that 

the fugacity of large particles in the solid phase is in fact equal to the fL of Eq. (7.2.4), so we rely 

again on the Gibbs-Duhem equation. 
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Fig. 7.1 (a) Number density of small species in system S2 (liquid phase) at different small species fugacity aÖ (error 
bar is smaller than the size of the data points); (b) Pressure of system S2 at different small species fugacity aÖ at fixed 
large species fugacity aÜ = 20.9, showing method of initial approximation of aÖ at coexistence. 

 

At fixed pressure, Gibbs-Duhem equation gives: 

Ç Ü = −
+"
+%
Ç Ö                                                     (7.2.5) 

Therefore, in order to calculate the ∆ Üto make the correction at  Ü, we need to rewrite Ç Ö 

first. 

We find empirically that VÖ (in the solid phase, at fixed pressure and NL) can be related to aÖ by 

the function: 

VÖ =
≠Ê"

Å“µÊ"
=

≠BÆØ	(±À")

Å“µBÆØ	(±À")
		   (7.2.6) 

in which O and * are two constants. 

Differentiating Eq. (7.2.6): 

S+"
SÀ"

=
≠±BÆØ	(±À")

[Å“µBÆØ	(±À")]/
                                                   (7.2.7) 
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Ç Ü = −
+"
+%
Ç Ö = 	−

Å“µBÆØ	(±À")

±+%
TVÖ                                    (7.2.8) 

From Eq. (7.2.6), we have: 

aÖ = exp ¥ Ö = 	
+"

≠∞µ+"
                                             (7.2.9) 

Rewriting Eq. (7.2.8) with Eq. (7.2.9): 

Ç Ü = −
Å“µ

U"
V◊ûU"

	

±+%
TVÖ                                            (7.2.10) 

Integrating Eq. (7.2.10) yields: 

∆ Ü = 	
≠

±µ+%
[ln 1 −

µ

≠
VÖ ]                                        (7.2.11) 

The new corrected (lower)  Ü calculated from Eq. (7.2.11) can then be used in the first step, 

simulation of the liquid. An increase in the small-particle content of the liquid will then be needed 

to bring the liquid pressure up to P, and the small-particle fugacity in the solid will also increase.  

This process is repeated until self-consistency is reached. 

 

7.2.2 Implementation details 

Pairs of particles interact via the Lennard-Jones potential: 

Φb¢ £ = 4áb¢[
•¶ß

é

Åt
−

•¶ß

é

M
]                                       (7.2.12) 

The following mixing rule is applied when calculating the cross term of potential energy: KÖÜ =

(KÖÖ + KÜÜ)/2, áÖÜ = áÖÖáÜÜ. The potential is simply truncated at the cutoff distance £É\� = 4K. 

Different  £É\� are used for three interactions (two interactions among small and large, one cross 

term of interaction).  Periodic boundary conditions with long-range corrections are applied. 
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In the liquid phase, the equilibration and production periods each consisted of at least 106 MC 

cycles for liquid phase.  Each MC cycle contains 50 insertion or removal trials for small species 

and 150 insertion or removal trials for large species. For solid phase, the equilibration and 

production periods each consisted of at least 5´107 single insertion and removal moves. In both 

phases, each move was followed by 100 translation moves attempts for small and large species, 

respectively. The initial solid phase is constructed by 864 LJ particles formed into a fcc lattice. 

The maximum distance for translation move is set to 0.05 KÜÜ and 0.01 KÜÜ for small and large 

species, respectively. The maximum volume change is set to 0.1 KÜÜf  in constant pressure solid 

phase simulations. Reduced units, scaled to the large species KÜÜ and áÜÜ, are used in all the data 

reported in this work, and all simulations are performed at kBT = áÜÜ=1. VMD was used for 

molecular graphics188. 

 

	

Fig. 7.2 Solid-liquid phase diagram for three systems at mole fraction (small species)- pressure plane. Curves on the 
phase boundaries are drawn only as guide to the eye. Solid curves represent the solid boundaries (without the vacancy 
in solid phase), while dotted lines represent the liquid boundaries. Errors are smaller than the scale of data points. 
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7.3 Results and Discussion 

7.3.1 Solid-liquid phase coexistence and interstitial absorption 

Compositions of liquid and solid solutions of small particles at coexistence (Fig. 7.2) have been 

determined for three systems S2, S3 and E2 (Table 7.1) at three pressures using the Gibbs-Duhem 

integration method described above.  The most pronounced difference is that in system S3 (s ratio 

1:3) the solubility of small particles in the solid phase is much greater than in systems S2 or E2 (s 

ratio 1:2).  The mole fraction of small species in solid phase in system S3 are even comparable to 

the fractions in liquid phases at coexistence in system S2 and E2. It is interesting to compare this 

system with the interstitial solid solution of hard spheres (HS) of diameter ratio 0.3:1 studied by 

Filion and Dijkstra83. As in the HS mixture, the small LJ particles primarily occupy octahedral 

sites in the fcc lattice of the larger particles. Insight into the thermodynamics of absorption into 

the solid phase can be derived from the variation of fugacity with composition.  If the interstitial 

sites behave as independent single-occupancy sites (as in the Langmuir adsorption isotherm, 

although this case involves absorption and not adsorption), then the fugacity would increase non-

linearly as these sites fill: 

a	 = 	ã	Q/	(1 − 	Q) 	= 	ã	âÖ	/(1	– 	2âÖ)                                         (7.3.1) 

Fig. 7.3 shows that in the case of system S3, the absorption of small particles within the solid 

follows a more nearly ideal dependence than predicted from the single-occupancy model.  In fact, 

the radial distribution function (Fig. 7.4) for the solid phase mixture of system S3 (and system S2) 

contains a peak in ˘ OO  at distances nearer than the nearest small-large neighbor peak, indicating 

that impurities do in fact pair up within the interstitial sites. This contrasts with the HS case, where 

the interstitial solid solution was seen to reach a maximum of number ratio of small to large 

particles of 1:1. (Higher loading of small particles into the HS solid occurred via a first-order 
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transition to the PO6 structure where 6 small particles can be found in interstitial sites of a bcc 

lattice.) The possibility of multiple occupancy in interstitial sites is presumably facilitated by the 

softer nature of the potential and the attractions between small particles, since reduction in that 

attraction (system E2) appears to suppress it. We have not accessed high enough pressures to 

determine whether the interstitial solid solution remains stable up to (or beyond) a mole fraction 

âÖ = 0.5 as was seen in the hard-sphere system83; an additional data point at N∗=12 generated for 

system S3 alone yielded âÖ of 0.306 in the solid phase at coexistence (Fig. 7.2).  

	

Fig. 7.3 Fugacity of small species at different mole fraction âÖ in system S3 (without the vacancy in solid phase) at 
different pressures. The fugacity of large species is fixed at 16.99, 99.05 and 527.13, for pressure 6.0, 8.0 and 10.0, 
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respectively. Fitting of data by Langmuir adsorption isotherm are shown in solid, dash, dot lines for pressure 6.0, 8.0 
and 10.0, respectively. 

	

Fig. 7.4 Radial Distribution Function (RDF) in solid phase without the vacancy for system (a) S2, (b) S3 and (c) E2 
at pressure 6.0. 

	
The presence of the small particles expands the lattice spacing of the large particles slightly 

(Table 7.2). Since the lattice spacing change is very small (<1%), it is still reasonable to 

approximately estimate the vacancy concentration through the method discussed in 7.3.2. Higher 

pressure will suppress the lattice spacing in both pure large systems and mixtures (Ç in Table 7.2); 

the lattice spacing difference between the mixture and pure large system is bigger at higher 

pressure (∆Ç in Table 7.2) due to the presence of more small species in solid solutions.  
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Table 7.1 Compositions of solid phases under solid-liquid coexistence conditions for different systems with 863 large 
particles and 1 vacancy. ÙÖv\X is the average number of small particles per vacancy, ÙÖbç�wé is the average number of 
small particles per interstitial site. 

system KÜÜ:	KÖÖ áÜÜ:	áÖÖ N∗ VÖ ÙÖ
v\X ÙÖ

bç�wé 

 2:1 1:1 6.0 0.018 1.58 0.016 

S2 2:1 1:1 8.0 0.029 2.65 0.024 

 2:1 1:1 10.0 0.036 3.30 0.029 

       

 3:1 1:1 6.0 0.255 1.30 0.246 

S3 3:1 1:1 8.0 0.331 2.53 0.310 

 3:1 1:1 10.0 0.479 5.04 0.440 

       

 2:1 1.5:1 6.0 0.019 1.40 0.017 

E2 2:1 1.5:1 8.0 0.033 2.30 0.028 

 2:1 1.5:1 10.0 0.042 2.89 0.035 

 

Table 7.2 Lattice spacing Ç (defined as the edge length of one fcc unit cell; reduced unit KPP is used) in different 
systems; and the expansion ∆Ç observed between the mixtures and pure systems. 

N∗ Ç>\éw	ÜuéWw ÇÖt ∆ÇÖt ÇÖf ∆ÇÖf ÇXt ∆ÇXt 

6.0 1.5618 1.5643 0.0025 1.5717 0.0099 1.5642 0.0024 

8.0 1.5467 1.5505 0.0038 1.5572 0.0105 1.5506 0.0039 

10.0 1.5346 1.5388 0.0042 1.5492 0.0146 1.5392 0.0046 

 

7.3.2 Substitutional absorption 
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Although the small particles appear to favor interstitial sites, we sought to characterize and 

quantify the substitutional absorption in this system, particularly the possibility of plural 

substitution, with more than one of the small species occupying a lattice position vacated by a 

large particle (Fig. 7.5). In simulations initiated with a large particle vacancy defect, the average 

number of dopants occupying the vacancy at coexistence with the mixed liquid is on average 

greater than one (Table 7.1). The distribution of occupancy numbers is shown in Fig. 7.6.  We can 

clearly see the trend that the vacancy tends to have greater occupancy at increasing system pressure. 

It is somewhat surprising that reducing the dopant diameter from 1/2 to 1/3 of the larger component 

does not increase the average number of dopants occupying the vacancy at low pressure (although 

it does increase the occupancy at N∗=10.0). These very small dopants are easily accommodated in 

the interstitial spaces, where they interact with 6 large particle neighbors without causing steric 

strain. A single S3 system dopant in the vacancy can only be near to ~3-4 large neighbors 

simultaneously, and the second or third dopants to occupy a single vacancy are not optimally 

positioned to interact both with the lattice and with each other (so adsorption to the vacancy is not 

cooperative).   In contrast, the dopants in systems S2 and E2 can fit more easily into the vacancy 

than into interstitial sites, and successive occupying dopants will be in position to attract each other 

and the large particles simultaneously. 
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Fig. 7.5 A snapshot from our simulation for system S2 at pressure 10.0. Large species are shown in transparent blue, 
small species in interstices are shown in white, and particles in substitution position are shown in red. 

 

Fig. 7.6 Distribution of small species substitution in the defect site for system (a) S2, (b) S3 and (c) E2. 
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coexistence.  In principle, we could find vacancy concentrations in the doped solids directly from 

0

0.2

0.4

0.6
P*=6.0
P*=8.0
P*=10.0

0

0.2

0.4
P*=6.0
P*=8.0
P*=10.0

0 1 2 3 4 5 6 7 8 9 10 11 12
0

0.2

0.4
P*=6.0
P*=8.0
P*=10.0

(a)

(b)

(c)



	

	

144	

GCMC, using large particle exchange moves at the fugacities fL and fS determined in section 3.1.  

We found that conventional single-particle insertion and removal moves were more efficient for 

this purpose in these systems than the solvent-repacking Monte Carlo algorithm8, 189, but that the 

overall levels of substitutional defects were too low to obtain good statistics during reasonable 

simulation times.  Instead we used our knowledge of the equilibrium between empty vacancies 

and singly- or multiply-substituted vacancies under coexistence conditions, along with estimates 

of the un-substituted vacancy levels in the pure solid obtained by standard methods186, 187. 

Specifically, after defining a spherical subvolume ˇ with a diameter of 1.06KÜÜ, which is centered 

at the empty lattice site in a crystal, trial insertion and removal are performed in this subvolume 

with acceptance probability NuBB ˇ 	and Néwc ˇ , respectively. The expression for free energy of 

vacancy formation is then 

Y = −[µàëfi(ˇNuBB ˇ Néwc ˇ ΛB)                                     (7.3.2) 

in which Λ is de Broglie wavelength and Ç is system dimension. The vacancy concentrations 

can thus be calculated from free energy Y, and the vacancy concentrations for pure large species 

are listed in the first row of Table 7.3. These are very small and decrease exponentially with 

increasing pressure.    

The possibility of substitution shifts the total equilibrium vacancy concentration (including 

vacancies occupied by one or more dopant) to higher values compared to the pure solid; a dopant 

residing in a vacancy will prevent it from being filled by a large particle190. The total vacancy 

concentration (including substituted vacancies) in the doped systems then is the concentration of 

unoccupied vacancies divided by the equilibrium fraction of vacancies that are unoccupied in the 

doped system, âwcd�ä  for a given dopant type and system pressure (Fig. 7.7). To check the 

reliability of this method, we compared its predictions with the results of direct GCMC simulation 
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incorporating large-particle insertion/removal moves for one test case (system S2 at pressure 6.0) 

and found an average vacancy concentration of 1.46´10-4, in satisfactory agreement with the value 

of 1.75´10-4 found through the indirect method.  The agreement suggests that the free energy of 

forming an unoccupied vacancy is the same, to a fair approximation, in the doped solids as is 

calculated for the pure solid.   

The combined concentration of empty and substituted large-particle vacancies, shown in Table 

7.3, stays approximately constant in all systems with increasing pressure. Keeping in mind that the 

values reflect the solid-liquid coexistence condition and that increasing pressure favors 

configurations of high packing efficiency, this result suggests that the space-filling efficiency of 

the small particles occupying the vacancy sites is similar to their packing efficiency in the 

coexisting liquid in systems.  

The total concentration of substitutional dopants is then the product of the total combined 

vacancy concentration and the average vacancy occupation, which is shown in Fig. 7.8 along with 

the total concentration of interstitial dopants. Although the probability of occupation of interstitial 

sites is not as large as for vacancies, the much larger number of these sites makes interstitials the 

majority dopant type. At most, the fraction of dopants in substitutional sites reaches 1-2% of the 

interstitial dopant concentration; their levels are thus not significant for determination of the phase 

diagram, but could conceivably be detectable with an appropriate experiment.   
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Fig. 7.7 Unoccupied vacancy fractions (âwcd�ä) for different systems at different pressures. 

	

Fig. 7.8 (a) Concentration of substitutional particles at different pressures; (b) Concentration of interstitial particles at 
different pressures; (c) fraction of substitutional particles (ãv\X (ãv\X + ãbç�wé))	at different pressures. 
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Table 7.3 Total of unoccupied, singly, and multiply substituted large particle vacancies in solid phase at liquid-solid 
coexistence for different mixtures and pressures. Levels for pure systems are calculated by free energy of vacancy 
formation.  Mixtures (S2, S3 and E2) are calculated by the vacancy concentration in pure system divided by âwcd�ä, 
as discussed in section 7.3.2. 

system ãÑuÉuçÉä	(KÜÜ
∞f) 

N∗ = 6.0 N∗ = 8.0 N∗ = 10.0 

Pure Large 2.34´10-5 2.66´10-6 3.78´10-7 

S2 1.75´10-4 2.30´10-4 2.36´10-4 

S3 7.76´10-5 2.46´10-5 3.86´10-5 

E2 1.46´10-4 1.19´10-4 1.18´10-4 

 

7.3.3 Dynamical and structural analysis of solutes in solid solution 

We took some configurations of our GCMC simulations and run only the regular translation 

MC moves on these configurations for system S2 at different pressures to investigate the dynamics 

of small-particle diffusion. Small particles in interstice have some mobility (green trajectories in 

Fig. 7.9; particles migrate between neighboring interstitial sites, similar to the behavior found in 

hard sphere ISS system83. We also observed a decrease in this mobility upon increasing the 

pressure, which leads to a more compact octahedron and tetrahedron hole in interstice. These 

trajectories were initiated with 4 small particles in a substitutional site. Small particles occupying 

vacancies explore the volume vacated by the large particle as well as the six neighboring octahedral 

holes, creating a 4-pointed star when projected on the x-y plane (red trajectories in Fig. 7.9.  Few 

transitions from the vacancy zone into neighboring octahedral holes were observed, all of which 

returned to the vacancy during the period of observation, and (like transitions between interstitial 

sites) all passing through the tetrahedral sites. In some cases (like Fig. 7.9(b)), the interstitial 
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particle enters into the vacancy and remains there.  In additional tests (not shown) we have found 

that interstitial particles will enter a vacancy, or leave a vacancy that is occupied by an excessive 

number of particles, at comparable rates to the migration between interstitial sites.  So, the vacancy 

site appears to act as a stable trap for small particles without a particularly high barrier to enter.  

Fig. 7.10 shows a close look at the probability distribution of small species in the defect site of 

system S2 at N∗=10.0. The probability distribution for the small species confined by the vacancy 

has an octahedral shape, even when there is only one small particle present (Fig. 7.10(a)). However, 

when there are more particles presented (Fig. 7.10(b)), the density distribution splits into some 

high probability regions and low probability regions, which indicates some structure in the 

arrangements of multiple small species in the defect site.  The distribution of angles in the 3-fold 

occupied system shows most of time they formed a triangle with a maximum angle smaller than 

90° (Fig. 7.11). When moving up to the case that 4 particles occupying the vacancy, a highly 

symmetrical tetrahedral structure would be optimal in terms of attractions between the small 

particles. Therefore, the orientational tetrahedral order parameter ê is employed to analyze the 

configurations191, 192: 

ê = 1 −
f

~
ÏPzn¢^ +

Å

f

t
k
^≈¢“Å

f
¢≈Å                                  (7.3.3) 

in which n¢^ is the angle formed by the lines joining the average position of four particles in 

consideration and the small particles « and [. For a regular tetrahedron, ê will equal 1. Fig. 7.12 

shows the major configuration is a tetrahedron as we predicted. Interestingly, there is also a second 

probable configuration (the second peak in Fig. 7.12(a)), associated with a planar structure Fig. 

7.12(b) shows the distribution of distances between the particles in the tetramer and their center of 

mass, whose peak is slightly above the distance (0.343 KÜÜ) for a perfect tetrahedron with edge 

lengths at the potential minimum of 1.12 KÖÖ.  
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Fig. 7.9 The projection of a System S2 trajectory on x-y plane for small particles with initial position in vacancy (red) 
and interstice (green) at pressure (a) 6.0, (b) 8.0 and (c) 10.0; The blue lattice points denote the tetrahedral holes in 
solid. 

A widely used order parameter _] developed by Steinhardt et al.193 is employed to identify the 

cluster structure of 6-fold occupied system. _] is defined as: 
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_] =
k¯

t(]“Å)

Å

Ú
Z]c(n¢,[¢)Ú

¢≈Å

t
]
c≈∞]

Å/t

                            (7.3.4) 

where Ù is the number of lines joining the six particles in vacancy and their average position, 

Z]c(n¢,[¢) is a spherical harmonic, and n¢ and [¢ are the angular coordinates of the «th particle 

with respect to some reference frame. Fig. 7.13 shows the _k and _~ in our system deviates from 

the values in regular octahedron, although the _M and _Åg fit the regular value quite well. We 

therefore cannot conclude the most probable structure in vacancy is octahedral. From visualization 

of the clusters in vacancy, we do see many distorted structures; only a few can be identified as the 

configuration close to the regular octahedron. We did not analyze the case more than 6-fold 

occupied system, due to the complexity of the cluster analysis when there are more particles, and 

the fact that it is a rare case to have an occupation larger than 6 for system S2 (Fig. 7.6(a)). 

	

Fig. 7.10 Small species probability distribution plots (Red) in large species defect site for system S2 at N∗=10.0 
(nearest 12 neighbors of large species are shown in transparent blue to indicate the defect site “cavity”) are shown 
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with (a) only one particle in the defect site; (b) three particles present in the defect site. a indicates the high probability 
region small particles presented, while b indicates the low probability region. 

 

	

Fig. 7.11 The distribution of maximum angle ncuè in the triangle formed by the three small substitutional particles in 
vacancy for system S2 at N∗=10.0. 

7.4 Conclusions 

While interstitial and 1:1 substitution are well-studied modes of solution for small particles in 

the solid crystal formed by a larger particle type, we have quantified and characterized the degree 

of plural substitution in Lennard-Jones solid solutions at coexistence with fluid mixtures. The 

number of smaller solutes or dopants that occupy insterstitial sites was significantly greater than 

the number absorbed substitutionally for the three cases studied, with diameter ratios 1:2 or 1:3.   

Nonetheless, the phenomenon of plural substitution had a significant effect on the total number of 

large-particle lattice vacancies, keeping their level approximately constant as the pressure 

increased, in contrast to a lattice formed purely of large particles. Dynamical and structural analysis 

show similarities between the 1:3 LJ mixture and a similar hard-sphere interstitial solid solution, 

but that the Lennard-Jones particles tend toward multiple occupancy of interstitial sites as well.  
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Fig. 7.12 Distribution of (a) orientational tetrahedral order parameter ê, and (b) distance from particles to their average 
for four particles occupying vacancy in system S2 at N∗=10.0. 

	

Fig. 7.13 Distribution of order parameter _] for six particles occupying vacancy in system S2 at N∗=10.0. Red vertical 
lines denote the _] for regular octahedron in corresponding ë. 
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Conclusion 
	

			This dissertation describes the development of Solvent Repacking Monte Carlo (SRMC) and 

its applications on various systems including 2D Hard Sphere, quasi-2D Hard Sphere under gravity, 

and 3D Lennard-Jones particles. The SRMC and its variations are particular important for 

simulating the dense systems like particles in solid phase, or mixtures with size-asymmetrical 

impurity. Our ultimate goal is to develop a grand canonical method that can exchange a solute 

molecule with a number of solvent molecules.  In studies not described here, we have tested the 

performance of our SRMC on explicit TIP3P water model and a united-atom acetonitrile model, 

which indicates the SRMC algorithm still needs to be improved in order to efficiently simulate the 

3D system with soft potential for anisotropic molecules. One future direction is developed some 

other advanced algorithm to achieve the solvent repacking in 3D for soft potential molecules. This 

could be achieved by designing a new bias potential function, or developing other particle insertion 

strategy rather than the simple stepwise insertion. 

Back to colloidal hard sphere system, there are still many explorations could be made through 

SRMC simulation. First, we can introduce another variable, curvature of surface, to discover the 

packing pattern/defect sites arrangement of hard sphere on a curved surface.194 Also, in our study 

of colloidal hard sphere under gravity (Chapter 5),195 the presence of overlayer yields many 

different behaviors compared to the single layer in 2D. Therefore, we can further explore the 

behaviors of multilayers by studying the hard sphere packing on a surface with curvature under 

gravity. The second direction is to study the grain boundary properties in 3D, where more complex 

structures/behaviors could be observed. With these current and future researches, we can gain more 

insights of the phase transition, grain boundary, impurity partitioning, which are very import either 

in fundamental chemical physics or material science. 
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