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Abstract 
 

Ambient Air Quality and Pediatric Asthma Morbidity: Sociodemographic Influences 
 

By Cassandra Ruth O’Lenick 
 

 
Introduction. Increasing evidence suggests that ambient air quality (e.g., ambient air 
pollution and high ambient temperature) is associated with asthma morbidity among 
children. Susceptibility to the health effects of ambient air quality may be influenced by 
sociodemographic factors at both the individual (e.g. sex, race/ethnicity, insurance status) 
and neighborhood level, such as neighborhood socioeconomic status (SES). However, 
epidemiologic research has provided inconsistent findings on whether individual- and/or 
neighborhood-level factors modify short-term associations between ambient air quality and 
respiratory morbidity, particularly across different study areas. In this dissertation I examined 
the degree to which individual- and/or neighborhood-level factors influence air quality-
related respiratory emergency department (ED) visits among children 5-18 years old.  
 
Methods. In Chapter 1, conditional logistic regression (CLR) was used to estimate 
associations between air pollution and pediatric asthma ED visits in Atlanta. Effect 
modification by ZIP Code Tabulation Area (ZCTA) SES was examined via stratification. In 
Chapter 2, a 2-stage modeling approach (CLR followed by a Bayesian hierarchical meta-
regression) was used to estimate associations between ozone-related pediatric respiratory ED 
visits and to examine effect modification by neighborhood SES across multiple US cities 
(Atlanta, Dallas, and St. Louis). In Chapter 3, Poisson regression was used to estimate 
associations between high temperature and asthma ED visits. Effect modification by sex, 
race/ethnicity, insurance status (a proxy for individual-level SES), and neighborhood SES 
was examined via stratification.  
 
Results. Findings from Chapters 1 and 2 suggest that air pollution is associated with 
pediatric respiratory morbidity in multiple US cities and that neighborhood SES may modify 
this association in a non-linear manner. Findings from Chapter 3 suggest stronger 
associations between high temperature and asthma morbidity among males compared to 
females, non-white children compared to white children, children with private insurance 
compared to children with Medicaid, and among children living in high compared to low 
SES neighborhoods.  
 
Conclusion. Short-term ambient air quality is associated with increases in pediatric 
respiratory morbidity in multiple US cities; individual and neighborhood-level 
sociodemographic factors may confer vulnerability. Findings from this research can help 
identify vulnerable subpopulations in our study areas and may inform risk assessment and 
targeted prevention strategies. 
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 1 

PREAMBLE 

Greetings, dear readers: I am delighted to present to you a detailed account of my 

dissertation research. This body of work has been very fulfilling for me, and I hope that my 

enthusiasm for this research and for the environmental health science discipline is evident 

throughout these pages.  

Broadly, my dissertation research examines whether sociodemographic influences at the 

individual or neighborhood level confer vulnerability to the adverse effects of ambient air 

pollution and high temperatures on respiratory health among children.  In the Introduction, 

I take you on a brief tour of the relevant literature to provide the context in which my 

research takes place and to emphasize the significance of my work within the air 

pollution/climate-health discipline. Within the introduction, I also outline the specific 

research questions that have motivated this dissertation, and summarize the three aims that 

constitute the substantive work presented in each chapter  

Following the introduction are three chapters (chapters 1-3) that represent the three 

discrete aims of my dissertation research. These chapters are the pith of this dissertation and 

each chapter is a completed study, formatted for publication in a scientific journal. Currently, 

Chapter 1 is under review at the Journal of Epidemiology and Community Health (JECH), and has 

been formatted based on JECH requirements. Chapters 2 & 3 are formatted as complete 

manuscripts for submission to Environmental Health. Finally, the Discussion recounts the 

overarching strengths and limitations of this research, and distills the main findings from 

each study into a discussion on the contribution of this work to the broader air pollution and 

climate health research fields. 
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INTRODUCTION 

Asthma is characterized by chronic inflammation of the airways, recurrent episodes of 

wheezing, breathlessness, chest tightness, coughing, obstructed airflow, and bronchial hyper-

responsiveness.[1, 2] In 2010, the US Centers for Disease Control and Prevention estimated 

that 25.7 million people suffer from asthma in the US (approximately 18.7 million adults and 

7 million children).[3, 4] Annually, asthma exacerbations are responsible for over 12 million 

medical visits and approximately 3,300 deaths.[4] In the US, studies have consistently shown 

that asthma exacerbation disproportionately affects children, racial/ethnic minorities, and 

socioeconomically disadvantaged populations.[1, 4-10] The burden of asthma on individual 

lives and the US health care system translates into a considerable economic impact. A recent 

study estimated that direct and indirect expenditures associated with asthma cost the US 

economy over $56 billion US dollars in 2007.[11]  

Numerous studies have found that asthma symptoms and related respiratory disorders 

(e.g. wheeze, cough, bronchoconstriction) are exacerbated by a variety of environmental 

stimuli, including ambient air pollution, high ambient temperature, low ambient temperature, 

tobacco smoke, pollen, mold, pet dander, cockroach allergen, dust, and psychosocial 

stress.[1, 6, 9, 10] Children are among the most vulnerable to environmentally induced 

respiratory morbidity because their respiratory systems are not yet fully developed and, 

compared to adults, children breathe more air per unit of body mass, have higher ventilation 

rates, and anatomically smaller peripheral airways that predispose them to airway 

inflammation and obstruction.[12-16] In addition, children generally spend more time 

outdoors and are frequently exposed to communicable diseases in school settings. The 

unique time-activity patterns of children may translate into greater exposures to ambient 

pollutants, facilitate the spread of communicable airway diseases, or place children in contact 
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with environmental triggers of asthma. Because of their physiological and behavior-related 

risk factors, children are especially sensitive to environmental insults of the respiratory 

system. Gaining a better understanding of environmental mediators of childhood asthma 

morbidity and identifying vulnerable subpopulations remain primary objectives in pediatric 

respiratory health research. 

A large body of research has demonstrated associations between respiratory morbidity 

and ambient air pollutants, including ozone (O3), nitrogen oxides (NOx), nitrogen dioxide 

(NO2) sulfur dioxide (SO2), carbon monoxide (CO), and fine particles (PM2.5).[17, 18] Air 

pollution associated exacerbations of respiratory disease have been observed using 

emergency department (ED) visit and hospitalization data,[16, 19-27] self-reported illness 

surveys,[28-33] and asthma medication prescription trends.[34, 35] A much smaller body of 

literature has examined associations between high temperatures and respiratory morbidity. 

Among these studies, there is mounting epidemiologic evidence for an effect of high 

temperature on respiratory morbidity, especially among children and the elderly compared to 

other age groups.[36-40] Furthermore, several studies have found that the effects of 

temperature on respiratory morbidity persist despite controlling for ambient air pollution, 

[36, 41-44] suggesting a strong effect of high temperature on respiratory morbidity that 

occurs through pathways other than through the effect of temperature on air pollution. 

Additional studies on the respiratory effects of high temperature are needed, as climate 

change is expected to cause higher warm-season ambient temperatures, especially in large 

metropolitan cities where temperatures are amplified by the urban heat island effect.[45-47]  

Within the air pollution/climate-health literature there is suggestive evidence that 

intrinsic factors (e.g. sex, race/ethnicity), extrinsic factors (e.g. socioeconomic status), and 

differential exposures may potentiate susceptibility to the respiratory health effects of 
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ambient air quality (defined here as ambient air pollution and ambient temperature).[1, 9, 10, 

20, 48-58] However, epidemiologic research has provided inconsistent findings on whether 

individual factors and/or neighborhood-level indicators of SES modify short-term 

associations between ambient air quality and respiratory morbidity.[35, 38, 41, 50, 59-68] 

Indeed, disentangling the relative influence of these vulnerability factors is conceptually and 

analytically challenging.  

Conceptually, vulnerability can operate at both the individual- and neighborhood levels 

and may modify health associations through promoting higher exposures to harmful ambient 

air quality and/or by causing the emergence of additional sources of vulnerability. Figure 1 

represents a conceptual framework of the key pathways through which individual and 

neighborhood vulnerability factors can modify associations between ambient air quality and 

respiratory morbidity among children. Figure 1 illustrates how individual-level factors such 

as sex, race/ethnicity, and socioeconomic status (e.g. household income, parental education, 

access to health care) can convey vulnerability through greater exposures to indoor and 

outdoor ambient air quality, greater psychosocial stress associated with their home 

environment, and through reduced access to resources (e.g. nutritious food, health care, 

transportation). Concurrently, social inequalities at the neighborhood level may cultivate 

unhealthy residential environments and further compound vulnerability. For example, 

poorer neighborhoods may be clustered near roadways or industrial centers, and children 

living within these neighborhoods likely experience greater exposures to ambient air 

pollution. Additionally, a neighborhood with a high poverty rate may lack public parks and 

healthy food options. An inability to exercise regularly and eat a balanced diet may ultimately 

undermine proper immune function, leading to increased airway sensitivity to environmental 

insults.[9, 13, 49, 69-71]  
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Notably, Figure 1 emphasizes that socioeconomic hardships can be experienced at both 

the individual- and neighborhood-level and may result in numerous adverse impacts that are 

more proximal to the health outcome. One key impact related to respiratory health is the 

experience of persistently high levels of psychosocial stress, which can lead to altered cellular 

function.[50, 54, 55, 72-76] Due to physiological responses to stress that impair cellular 

growth and repair mechanisms, recurring stress may shape both lifelong health and the 

susceptibility of a child’s cardio-pulmonary system to the effects of harmful ambient air 

quality.[77-84]  

As evidenced in this conceptual framework, the vulnerability factors typically evaluated 

in epidemiological research are far upstream (distal) of the health outcome and are therefore 

only a proxy for the more downstream effects that truly actuate individual health outcomes. 

Individual)
Sex,%Race,%Income,%
Parental%educa3on,%
Insurance%status%

More)Sources)of)Vulnerability)

Neighborhood)
e.g.%ambient%pollutant%concentra3ons,%
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urban%heat%island%effect%
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Individual)
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Neighborhood)
e.g.%crime,%lack%of%greenCspace,%food%
desert,%reduced%social%cohesion,%poor%
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Individual)
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Low%physical%ac3vity%
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Lack%of%social%support%
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%Chronic%Stress%
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Air)PolluDon/
Temperature)

Childhood)
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Morbidity)

Figure 1: Conceptual framework illustrating the key pathways through which individual and neighborhood 
vulnerability factors and their downstream effects can modify associations between ambient environments 
and respiratory morbidity among children 
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Conceptually, we can envision how intrinsic and extrinsic vulnerability operate at both the 

individual and neighborhood levels, but specifying these relationships analytically is a 

formidable methodological challenge for environmental epidemiology.  

 

DISSERTATION AIMS 

The need to further understand environmental mediators of childhood asthma 

morbidity and to better identify vulnerable subpopulations is evident. This dissertation 

research was conceived within this context and motivated by a desire to better understand 

the potential reasons for inconsistent findings reported in the air pollution-respiratory 

morbidity literature and to better identify vulnerability factors among children in relation to 

ambient air quality related respiratory morbidity. 

This dissertation is organized into three main chapters that represent the three aims of 

this dissertation research. Common objectives within each chapter are (1) to assess the 

degree to which neighborhood SES modifies associations between ambient air quality and 

respiratory health among children and (2) to assess the impact of investigator decisions on 

observed effect modification. Additionally, each chapter addresses its own set of unique 

research questions outlined below: 

1. Chapter 1: To what extent do investigator decisions with regard to SES indicator 

choice and stratification criteria influence observed effect modification? Is it 

plausible that these choices are partially responsible for the reporting of 

incongruent findings on neighborhood SES as an effect modifier in the 

literature? 

2. Chapter 2: Is there evidence of non-linear effect modification by neighborhood 

SES? Can spatial mapping of health risk provide qualitative information on how 
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health risk varies across urban populations? Are results generalizable across 

geographically diverse study locations? 

3. Chapter 3: To what extent do individual factors (sex, race/ethnicity, insurance 

status) and neighborhood SES modify associations between high temperature 

and pediatric asthma? Does there appear to be a stronger modifying effect at one 

scale compared to another? Do indicators of individual-level SES and 

neighborhood SES produce similar patterns of effect modification?  

 

In Chapter 1, we investigate associations between air pollution and pediatric asthma and 

conducted a detailed assessment of the potential for neighborhood SES [defined as ZIP 

Code Tabulation Area (ZCTA) environments] to modify short-term air pollution-pediatric 

asthma associations in Atlanta. Results from Chapter 1 advance our current understanding 

of how investigator decisions affect observed effect modification and further advance our 

understanding of how neighborhood SES influences air pollution-pediatric respiratory 

morbidity. To our knowledge Chapter 1 provides the first comprehensive assessment of 

neighborhood SES as an effect modifier in this setting.  

 In Chapter 2, we select ozone as a candidate environmental exposure to extend our 

work from Chapter 1 and investigate the generalizability of results across geographically 

diverse US cities (Atlanta, Dallas, St. Louis). Chapter 2 provides an assessment of the 

consistency and generalizability of social-environmental pathways underlying childhood 

respiratory morbidity in US cities. A unique aspect of the study design in Chapter 2 is 

assessment of associations between ozone and respiratory disease at the neighborhood level 

and spatial mapping of estimated associations. Results within this chapter suggest non-linear 

effect modification by neighborhood SES and the implications of these findings are 
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discussed in detail. 

 In Chapter 3, we leverage a 20-year health dataset for Atlanta to assess the influence of 

individual- and neighborhood-level factors on high temperature related pediatric asthma. 

Chapter 3 evaluates vulnerability at both the individual- and neighborhood-level and assesses 

whether indicators of individual-level SES and neighborhood SES produce similar patterns 

of effect modification. Findings from Chapter 3 are inherently valuable, as few studies have 

ever examined vulnerability factors among children in relation to high temperature related 

asthma.  
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ABSTRACT 

Background. A broad literature base provides evidence of association between air pollution 

and pediatric asthma. Socioeconomic status (SES) may modify these associations; however, 

previous studies have found inconsistent evidence regarding the role of SES. Methods: 

Effect modification of air pollution-pediatric asthma morbidity by multiple indicators of 

neighborhood SES was examined in Atlanta, GA. Emergency department (ED) visit data 

were obtained for 5-18 year olds with a diagnosis of asthma in 20-county Atlanta during 

2002-2008. Daily ZIP-Code Tabulation Area (ZCTA)-level concentrations of ozone, 

nitrogen dioxide, fine particulate matter, and elemental carbon were estimated using ambient 

monitoring data and emissions-based chemical transport model simulations. Pollutant-

asthma associations were estimated using a case-crossover approach, controlling for 

temporal trends and meteorology. Effect modification by ZCTA-level (neighborhood) SES 

was examined via stratification. Results. We observed stronger air pollution-pediatric 

asthma associations in “deprivation areas” (e.g., ≥20% of the ZCTA population living in 

poverty) compared to “non-deprivation areas”. When stratifying analyses by quartiles of 

neighborhood SES, odds ratios indicated stronger associations in the highest and lowest SES 

quartiles and weaker associations among the middle quartiles. Conclusion. Our results 

suggest that neighborhood-level SES is a factor contributing vulnerability to air pollution-

related pediatric asthma morbidity in Atlanta. Children living in low SES environments 

appear to be especially vulnerable given positive odds ratios and high underlying asthma ED 

rates. Inconsistent findings of effect modification among previous studies may be partially 

explained by choice of SES stratification criteria, and the use of multiplicative models 

combined with differing baseline risk across SES populations. 
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INTRODUCTION 

Ambient air pollutants are well-documented causes of respiratory morbidity.[1, 2] A 

broad literature base provides evidence of association between asthma morbidity and diverse 

classes of air pollutants including ozone (O3), nitrogen oxides, nitrogen dioxide (NO2), and 

fine particulate matter (PM2.5); children are especially sensitive to the respiratory effects of air 

pollution due to physiological and behavior-related risk factors.[3, 4] Increasing evidence 

suggests that socioeconomic factors may further influence vulnerability to the health effects 

of air pollution among children.[5-9]  

Pathways through which low socioeconomic status (SES) may potentiate susceptibility to 

air pollution-related childhood asthma include higher exposures to outdoor and indoor air 

pollutants, greater psychosocial stress associated with the social environment (e.g., 

neighborhood poverty, neighborhood crime levels, parental unemployment), and reduced 

access to local resources (e.g., healthy food options, green-space, health care access).[10-12] 

However, toxicological studies focusing on such mechanisms are limited[13-15] and 

epidemiologic research has provided inconsistent findings on whether individual factors 

and/or neighborhood-level indicators of SES modify short-term air pollution-asthma 

associations. Notably, among population-based studies that have specifically examined 

modification of air pollution-asthma associations by neighborhood SES, 7 reported no 

evidence of effect modification,[16-22] 8 reported results suggesting stronger associations in 

lower SES populations,[23-30] and 2 reported stronger associations in high SES 

populations.[29, 31] 

Differences in analytical choices by investigators may partially explain these inconsistent 

findings.[32] While of similar study design, these studies assessed associations at different 

scales (region, county, ZIP code, census block, and census block group), considered 
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different indicators of SES, and used different cut-points to stratify populations by 

neighborhood SES (e.g. median,[25-31] tertile,[24] quartile,[20] or quintile[16-18, 30] values 

of neighborhood SES indicators). Among these studies, education, household income, and 

poverty were most commonly used as indicators of neighborhood SES; however, reported 

conclusions about effect modification by SES were contradictory between studies using 

similar indicators[16, 30, 31, 33] as well as between different SES indicators within the same 

study.[28-31] 

Previous work in Atlanta has identified strong associations between air pollution and 

pediatric asthma ED visits.[34-37] Here, we present a comprehensive assessment of 

neighborhood SES as a modifier of air pollution-pediatric asthma ED visit associations in 

Atlanta with a specific focus on the influence of SES indicator choice and stratification 

criteria on observed associations and interpretations. 
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METHODS 

Asthma emergency department visit data 

Patient-level emergency department (ED) visit data from January. 1, 2002 to December. 

31, 2008 were acquired from hospitals located within the 20-county metropolitan area of 

Atlanta; ED visit data were acquired directly from hospitals (2002-2004 period) and the 

Georgia Hospital Association (2005-2008 period). Relevant data elements included 

admission date, International Classification of Diseases, 9th Revision (ICD-9) diagnosis 

codes, age, and ZIP code of patient residence. ED visits for asthma were identified using 

primary and secondary ICD-9 diagnosis codes for asthma (493.0–493.9) or wheeze (786.07). 

We restricted our analyses to the pediatric population (5–18 years old) and to patients with a 

residential ZIP code (defined as US Postal Service delivery areas) located wholly or partially 

in 20-county Atlanta (232 ZIP codes).  

To facilitate merging with air quality and Census-based SES data, which were estimated 

for all Atlanta ZIP Code Tabulation Areas (ZCTA, 2010 Census Bureau boundaries, created 

from census blocks to approximate ZIP codes), each ZIP code in the ED visit dataset was 

assigned to one of 191 ZCTAs. Assignments were accomplished by matching ZIP-to-ZCTA 

ID numbers and verifying locations of ZIP code centroids via ZCTA map shapefiles in 

ArcGIS. ZIP code change reports facilitated ZCTA assignments for 31 ZIP codes that were 

altered or eliminated within the study period. ED data were excluded from 10 ZCTAs with 

no SES data (e.g., businesses, university campuses).   
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Air quality data 

Daily concentrations of ambient air pollutants for each ZCTA in 20-county Atlanta were 

estimated from January 1, 2002 to December 31, 2008. Pollutant concentration estimates 

were obtained by fusing observational data from available network monitors with pollutant 

concentration simulations from the CMAQ (Community Multi-Scale Air Quality) emissions-

based chemical transport model at 12x12 km grids over Atlanta.[38] Pollution concentrations 

were estimated for each ZCTA by determining the fraction of a ZCTA’s area within each 

12x12 km grid cell and area weighting the observation-simulation data fusion estimates to 

get the ZCTA-specific value. Supplemental Figure S1.1 illustrates the Atlanta study area with 

12x12 km pollution estimate grid cells overlaid onto ZCTAs. The following pollutants and 

daily temporal metrics were evaluated: 1-hour maximum nitrogen dioxide (NO2); 8-hour 

maximum ozone (O3); 24-hour average fine particulate matter (PM2.5); and 24 hour average 

major PM2.5 component, elemental carbon (EC). Daily meteorological data measured at the 

Atlanta Hartsfield International Airport were acquired from the National Climatic Data 

Center. 

 

Neighborhood-level socioeconomic data 

Estimates of ZCTA-level socioeconomic status (SES) were obtained from the 2000 US 

Census long form and the American Community Survey (ACS) 5-year (2007-2011) summary 

file, all normalized to 2010 ZCTA borders (“The Time-Series Research Package”, GeoLytics, 

Inc., East Brunswick, NJ, 2013). To examine the influence of SES indicator choice on air 

pollution health associations, we evaluated six single indicators that included education, 

household type, income, poverty, transportation, and unemployment socioeconomic 

domains (Table 1.1). In addition, to capture the multifaceted nature of neighborhood SES, 
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we included two composite indices of material and social deprivation, the Neighborhood 

Deprivation Index (NDI)[39] and the Townsend index[40] (Table 1.1). We used linear 

interpolation (by year) between Census 2000 and ACS (2007-2011) to obtain yearly SES 

indicators and account for possible changes in neighborhood-level SES over the 2002-2008 

study period. 

To examine the influence of SES stratification criteria on observed effect modification, 

we categorized ZCTAs based on “deprivation area” status [i.e. “poverty areas” were defined 

as ≥20% of the population living below the federal poverty line, and “undereducated areas” 

were defined as ≥25% of the adult population (≥25 years old) with less than a 12th grade 

education][12, 39] and also based on several a priori cut-points of continuous ZCTA-level 

SES data (above/below the 90th percentile, above/below the median, and quartiles). 
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Statistical analyses 

Associations between 3-day moving average (lag days 0-2) pollutant concentrations and 

pediatric asthma ED visits were assessed using conditional logistic regression in single-

pollutant case-crossover models, matching on ZCTA of patient residence, year, month, and 

day of week of the ED visit. By design, the case-crossover approach controls for individual-

level time-invariant confounders since case and control days are compared for the same 

person. Models included additional control for time-varying factors: indicator variables for 

season (4-levels), periods of hospital participation and holidays; cubic polynomials for 3-day 

moving average (lags 0-2) maximum temperature and mean dew point; interaction terms 

between season and maximum temperature; and a cubic spline on day of year (5 degrees of 

freedom) to control smoothly for recurrent within-window seasonal trends. See Appendix 1 

for the full conditional logistic regression equation. 

To evaluate effect measure modification, models were stratified by SES categories. Odds 

ratios (ORs) and 95% confidence intervals (CIs) are presented for associations between air 

pollution and pediatric asthma ED visits for each SES stratum, scaled to each pollutant’s 

approximate interquartile range. Difference between strata-specific ORs was tested in 

pairwise comparisons. To evaluate the robustness of results to different model 

specifications, we performed a series of sensitivity analyses, described in more detail in 

Appendix 2. All analyses were performed using SAS 9.4 (SAS Institute, Cary, NC). 
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RESULTS 

Descriptive analysis results: ED visits and air pollution data  

Our ED visit database included 1,624,572 total ED visits of children aged 5-18 years, 

with 128,758 ED visits for asthma during the years 2002-2008 in 20-county Atlanta (191 

ZCTAs). Supplemental Table S1.1 presents descriptive statistics for the ED visit database 

and Supplemental Table S1.2 presents descriptive statistics and Spearman correlations for air 

pollutants.  

 

Epidemiological results: air pollution–asthma associations 

Overall associations (per interquartile range) between short-term exposure to ambient air 

pollutants and pediatric asthma are reported in Table 1.2. Ozone exhibited the highest 

overall association with pediatric asthma, followed by PM2.5, and EC. 

 
Table 1.2. Odds Ratios From Case-Crossover Analyses Between 3-day Moving Average ZCTA-Level Pollutant 
Concentrations (per Interquartile Range Increase) and Asthma-Related Emergency Department Visits in 
Atlanta, Georgia, 2002-2008 
Air Pollutant  IQR Odds Ratio 95% CI P value 

O3 25 ppb 1.073 1.043, 1.104 < 0.001 

NO2 15 ppb 1.012 0.994, 1.030 0.18 

PM2.5 10 µg/m3 1.027 1.012, 1.043 < 0.001 

EC 0.5 µg/m3 1.013 1.005, 1.022 0.002 

       Abbreviations: CI, Confidence Intervals; EC, elemental carbon fraction of PM2.5; IQR, 
interquartile range; NO2, nitrogen dioxide; O3, ozone; PM2.5, particulate matter < 2.5 µm in 
diameter (fine particulate matter); ZCTA, Zip Code Tabulation Area. 
 

Descriptive analysis results: socioeconomic subpopulation characterization 

Table 1.1 presents summary statistics for each SES indicator and Supplementary Table 

S1.3 presents Spearman correlations between indicators. In summary, we found that 

socioeconomic composition varied widely across the 191 Atlanta ZCTAs (e.g., % living 

below the poverty line varied from 1.7% to 45.9%) and we observed moderate- to high-
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correlations between many but not all SES indicators (Supplemental Table S1.3), suggesting 

these indicators describe similar SES constructs and have similar spatial patterning. 

Appendix 3 provides further characterization of air quality and ED visits by neighborhood 

SES. 

 

Epidemiological results: effect measure modification 

Analyses stratified by deprivation area status (areas of extremely low SES were 

characterized as ‘poverty areas’ or ‘undereducated areas’) suggested stronger magnitudes of 

association in deprivation areas compared to areas of higher SES (non-deprivation areas). 

Differences in observed associations by deprivation area status were more apparent for 

ozone and the traffic-related pollutants (NO2 and EC) than for PM2.5 (Table 1.3). As an 

alternative definition of extremely low SES, we stratified neighborhoods using the 90th 

percentiles of continuous SES variables (or 10th percentiles for median income and median 

home value) as the categorical cut-points. In general, results from the 90th/10th percentile 

analysis were similar to the deprivation area results, as we observed stronger effect estimates 

in extremely low SES neighborhoods compared to areas of higher SES (Table 1.3). 

However, this pattern of effect modification was only consistent for NO2, across all SES 

indicators. In most analyses, differences in ORs between strata were not statistically 

significant due to the wide CIs in the low SES strata resulting from low ED visit counts.
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To assess the influence of SES stratification criteria on observed effect modification, we 

compared results of analyses stratified by deprivation area and 90th/10th percentiles (Table 

1.3) to results of analyses stratified using the median (Supplemental Table S1.4) or quartiles 

as cut-points (Supplemental Table S1.5). Figure 1.1 presents representative findings from our 

cut-point comparison for % <12th grade education and % below the poverty line for NO2 

and PM2.5.  

As Figure 1.1A shows, when using % <12th grade education to indicate neighborhood 

SES, patterns of effect modification differed by pollutant (NO2 and PM2.5), but patterns were 

similar across the different stratification criteria (undereducated area, or using cut points 

based on the 90th/10th percentile, median, or quartiles). Specifically, we observed stronger 

associations between NO2 and asthma ED visits in low SES compared to high SES strata for 

all stratification criteria based on % <12th grade education; however, significant differences 

between strata-specific ORs were only observed in the quartile analysis (Figure 1.1A). In 

contrast, for PM2.5, slightly weaker associations with asthma ED visits were observed in low 

SES strata compared to high SES strata; differences between observed ORs across strata 

were not significant (Figure 1.1A). Similar patterns of effect modification (and differences 

between pollutants) were found when stratifying by median home value (Supplemental Table 

S1.5). 

When using % below the poverty line to indicate neighborhood SES, patterns of effect 

modification differed across the different stratification criteria, but were generally consistent 

across pollutants (Figure 1.1B). In particular, we observed less pronounced patterns of effect 

modification when stratifying at the median compared to when using deprivation area or 90th 

percentile stratification criteria for both NO2 and PM2.5 (Figure 1.1B). Stratifying by quartile 

values of % below poverty provided insight into these findings, as odds ratios across strata 
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followed a U-shaped pattern, indicating stronger magnitudes of air pollution-pediatric 

asthma associations in the highest and lowest SES quartiles (Figure 1.1B). Similar U-shaped 

effect modification was consistently observed for all pollutants for several other indicators 

(median income, NDI, Townsend Index) when stratifying by quartiles (Supplemental Table 

S1.5). In sensitivity analyses, patterns of effect modification were similar by SES indicator, 

stratification criterion, and pollutant to those observed in main analyses (Appendix 2). 
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Figure 1.1. Comparison of alternative stratification criteria in relation to observed effect modification 
of associations between asthma emergency department (ED) visits and 3-day moving average ZCTA-
level pollutant concentrations in Atlanta, Georgia (2002-2008). Odds ratios and 95% confidence intervals (CIs) 
per interquartile range (IQR) increase are shown for 1A) associations between asthma ED visits, nitrogen dioxide (NO2) 
and fine particulate matter (PM2.5), stratified by undereducated area, or by categories defined by cut points based on the 90th 
percentile, median, and quartile values of % <12th grade education; 1B) associations between asthma ED visits, nitrogen 
dioxide (NO2) and fine particulate matter (PM2.5), stratified by poverty area, or by categories defined by cut points based on 
the 90th percentile, median, and quartile values of % below poverty. Interquartile range values are as follows: NO2=15 ppb 
and PM2.5=10 µg/m3. Quartile values of % <12th grade education: Q1 = <9.4%; Q2 = ≥ 9.4% to <14.8; Q3 = ≥14.8% to 
<21.5%; Q4 = >21.5%. Quartile values of % below poverty: Q1 = <7.6%; Q2 = ≥ 7.6% to <11.4; Q3 = ≥11.4% to 
<16.2%; Q4 = >16.2%. § indicates significant difference (one-sided P < 0.05) from referent group. Heterogeneity between 
strata-specific ORs was tested in pairwise comparisons by dividing the difference in log odds ratio by the square root of the 
sum of the variances and computing a Z-statistic. Abbreviations: % <12th grade, % of persons (25 and older) with < 12th 
grade education; % below poverty, % of households living below the federal poverty line; CI, Confidence Interval; ED, 
emergency department, IQR, Interquartile Range; NO2, nitrogen dioxide; PM2.5, particulate matter < 2.5 µm in 
diameter (fine particulate matter); ZCTA, Zip Code Tabulation Area 
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DISCUSSION  
 

In this analysis of over 128,000 ED visits for pediatric asthma, we assessed 

neighborhood SES as a potential modifier of acute air pollution-pediatric asthma 

associations over a 7-year period. Our comprehensive assessment considered multiple 

indicators of SES as well as multiple ways to categorize socioeconomic strata. 

In overall models we observed statistically significant associations between air pollutants 

and pediatric asthma, particularly for 3-day average concentrations of O3. When assessing 

the impact of living in a neighborhood characterized by extremely low SES, we generally 

observed stronger associations between air pollution and pediatric asthma in extremely low 

SES neighborhoods compared to areas of higher SES. Our results were particularly 

consistent across SES indicators when evaluating NO2, a traffic-related pollutant; these 

findings support similar results in the literature and a common hypothesis in the health 

disparities field that low SES environments confer vulnerability to a variety of health 

outcomes, including traffic pollution-related pediatric asthma morbidity.[6, 8]  

Patterns of effect modification of air pollution-asthma associations differed depending 

on our SES indicator choice and stratification approach. Notably, when indicating SES by % 

<12th grade education and median home value, we consistently observed stronger 

associations between asthma and traffic-related pollutants (NO2 and EC) in low SES strata, 

for all cut-point definitions. Conversely, for other SES indicators (e.g., % below poverty), 

results from analyses stratified by median cut-points contradicted results from deprivation 

area analyses (Figure 1.1B). Defining strata more finely through quartile values of 

neighborhood SES provided some insight into the differences observed.  In particular, for 

several SES indicators (median income, % below poverty, NDI, Townsend Index) we 

observed a distinct U-shaped pattern in OR estimates across quartiles, with stronger 



 

36 

associations in high and low SES quartiles and weaker associations in the middle quartiles 

(Figure 1.1B, Supplemental Table S1.5). This pattern of effect modification could be 

responsible for the null and unanticipated patterns observed with median cut-points. 

Complex spatial patterning of neighborhood SES (e.g. location being an important 

determinant of home value), as well as the possibility that single measures of SES are poor 

proxies for nuanced socioeconomic environments, may partially account for the different 

patterns of effect modification observed by SES indicator and pollutants. In our assessment, 

SES indicators based on % below poverty and the NDI provided the most consistent results 

across pollutants for the stratification criteria we examined. 

Although a U-shaped pattern of effect modification was consistently observed across 

multiple SES indicators and pollutants, it is important to consider the interpretation of our 

findings with respect to the mathematical scale of effect measures. Modeling of air pollution 

health effects on a multiplicative scale is common,[41, 42] however, the true nature of the 

effect of air pollution on asthma ED visits may be additive. In this scenario it is possible that 

low baseline risk in the highest SES strata could explain apparent stronger relative effects of 

air pollution. If air pollution increases the risk of ED visits on an absolute (i.e., additive) 

scale, and the highest SES strata has lower baseline risk compared to the lowest SES strata 

[an assumption supported by the literature[43] and our data (Figure 1.2)], we would expect 

an odds ratio from a multiplicative model to appear larger for the population with the lowest 

baseline risk (i.e. the highest SES strata).  However, assuming strict additivity, we would 

expect the high baseline risk in the lowest SES strata to result in weaker apparent effects on 

a multiplicative scale compared to the highest SES strata. Instead, in many analyses, we 

consistently observed strong, positive associations in both the highest and lowest SES strata. 

It is therefore possible that higher odds ratios in high SES strata reflect their lower baseline 
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risk, whereas higher odds ratios in low SES strata reflect supra-additive effects of SES and 

air pollution. 

 

Figure 1.2. Annual mean ED visit rates of pediatric asthma by neighborhood SES for each ZCTA in 
Atlanta, GA (2002-2008). Asthma ED rates are reported per 1000 children (5-18 years old) and were calculated for each 
ZCTA by dividing the annual total number of asthma ED visits by annual estimates of the 5-18 year old population. Annual 
ED Rates were then averaged over the entire study period (2002-2008). ED visit rates for each ZCTA are represented by 
the “+” symbol and shown in Figure 1.2A by percentage (%) of the adult population (≥ 25 years old) with less than a 12th 
grade education (% < 12th grade), in Figure 1.2B by % of households living below the federal poverty line (% below 
poverty), and in Figure 1.2C by the Neighborhood Deprivation Index (NDI). The solid black line represents local 
polynomial regression using weighted least squares to fit a line through the data. The dotted gray lines represent the 1st, 2nd, 
and 3rd quartile values of each SES indicator. In each panel, neighborhood SES decreases from left to right. Abbreviations: 
ED, Emergency Department; NDI, Neighborhood Deprivation Index; SES, socioeconomic status; ZCTA, Zip Code 
Tabulation Area. 
 

Synthesizing the results from our deprivation area and quartile analyses, and taking into 

account the high baseline risk in Atlanta’s lowest SES populations (Figure 1.2), we believe 

the data support our main conclusion that children living in low SES environments in 

Atlanta suffer from a higher burden of asthma due to air pollution compared to their 

counterparts living in wealthier SES environments. 

Our study had several limitations that should be acknowledged. First, differences in ORs 

across strata were small for some analyses (e.g. ORs for EC stratified by increasing quartile 

of % below poverty: 1.029, 1.004, 1.001, 1.016); while statistically different, these small ORs 

indicate that the contribution of air pollution to asthma ED visits may be small relative to 

other risk factors. Second, by assessing neighborhood SES effects at the ZCTA level, we 

assumed that ZCTA boundaries are relevant socioeconomic environments with regards to 

air pollution vulnerability. However, other scales may also be relevant, and the relevance of 
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specific scales may vary by geographical location due to regional patterns of urban 

development.[44] Third, our study utilized 12 x12 km pollution grids (the spatial resolution 

at which CMAQ was run) to estimate daily ZCTA-level air pollution concentrations. A 

12x12 km grid is a relatively large area to assess exposure to air pollutants, especially for 

spatiotemporally-variable primary pollutants (NO2 and EC). For these pollutants, 

concentrations vary over small scales due to influences of local traffic sources. The 

possibility of differential exposure error between SES strata could affect observed patterns 

of effect modification. Our exposure assignment approach, based on modeled ZCTA-

specific pollution estimates, was chosen to minimize the possibility of such differential error 

compared to common approaches in time-series studies which typically assign daily pollution 

values to an entire study area based on central monitor estimates. Finally, although we had 

large numbers of daily ED visits overall, we had low power to detect associations with air 

pollution in some socioeconomic strata. 

Overall, our findings suggest that neighborhood-level SES is a factor contributing 

vulnerability to air pollution-related pediatric asthma morbidity in Atlanta, and this study 

provides important insights on how the choice of neighborhood SES indicator and 

stratification criteria influence results. Published studies investigating SES effect 

modification of air pollution-health associations commonly define strata based on median 

cut-points of continuous SES.[25, 27, 30, 31] Given our current findings, it is possible that 

stratifying at the median may be partially responsible for the inconsistent reports in the 

literature of effect modification by neighborhood SES on air pollution-health associations. 

Inconsistent findings of effect modification may also be due to the use of multiplicative 

models and differing baseline risk across SES populations. We recommend evaluating 

multiple indicators of SES, using multiple stratification criteria including consideration of 
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strata indicating extremely low SES environments, and estimating baseline risks across 

diverse socioeconomic populations. Going forward, it will be critical to explore additive 

interaction models and whether diverse study areas have similar patterns of effect 

modification across multiple SES indicators and categorization criteria.  
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Supplemental Figure S1.1 Map of Atlanta study area with 12 x12 km pollution estimate grids overlaid onto 
ZCTAs. Abbreviations: ZCTA, Zip Code Tabulation Area. 
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Supplemental Table S1.1. Summary of Emergency Department Visit Data, Overall Visits and Visits by Zip 
Code Tabulation Areaa, Atlanta, Georgia, 2002-2008.  

  Total ED Visit  
Number 

  Mean Daily ED Visit 
Number 

      
 Overall Per ZCTA  Overall Per ZCTA 
  Mean Min Max   Mean Min Max 

         All ED visits 1,624,572 8,505.61 40 28,414  635.3 3.33 0 41 

Asthmab ED 128,758 674.13 4 3,269  50.4 0.26 0 9 

Primary Asthmac ED 62,308 326.22 1 1,984  24.4 0.13 0 7 

       Abbreviations: ED, Emergency Department; ICD-9, International Classification of Diseases, 9th Revision; ZCTA, Zip 
Code Tabulation Area. 
         a 191 Zip Code Tabulation Areas (ZCTAs) in 20-county Atlanta. 
         b Main asthma outcome of interest: primary and secondary diagnoses of asthma (ICD-9 codes 493.0 
493.9) or wheeze (ICD-9 code 786.07).  
         c Primary asthma: primary diagnoses of asthma (ICD-9 codes 493.0–493.9) or wheeze (ICD-9 code 786.07). 

 
 
 
 
 
Supplemental Table S1.2. Daily ZCTA-Level Pollutant Descriptive Statistics and Spearman Correlation 
Coefficients, Atlanta, Georgia (2002-2008; n=488,387 ZCTA days) 
    Spearman Correlation Coefficients 

Pollutant Mean (SD) Median IQR O3 NO2 PM2.5 EC 

8-hr max O3, ppb 42.2 (17.3) 40.4 26.0 1 -0.11 0.54 0.07 

1-hr max NO2, ppb 19.4 (12.4) 17.5 19.1  1 0.21 0.75 

24-hr avg. PM2.5, µg/m3 15.2 (7.33) 14.0 9.21   1 0.53 

24-hr avg. EC, µg/m3 1.02 (0.68) 0.85 0.77    1 

       Abbreviations: EC, elemental carbon fraction of PM2.5; IQR, interquartile range; NO2, nitrogen dioxide; O3, ozone; PM2.5, 
particulate matter < 2.5 µm in diameter (fine particulate matter); SD, standard deviation; ZCTA, Zip Code Tabulation Area. 
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SE
S Indicator 

M
edian 

V
alues 

SE
S Strata

a  
O

3 (per 25 ppb) 
N

O
2  (per 15 ppb) 

P
M

2.5 (per 10 µg/m
3) 

E
C

 (per 0.5 µg/m
3) 

O
R

 
95%

 C
I 

O
R

 
95%

 C
I 

O
R

 
95%

 C
I 

O
R

 
95%

 C
I 

%
 <

12
th G

rade 
≤

14.8* 
H

igh* 
1.075 

1.035, 1.116 
1.001 

0.976, 1.027 
1.034 

1.013, 1.055 
1.011 

0.999, 1.023 
 

>
14.8 

Low
  

1.072 
1.028, 1.118 

1.022 
0.997, 1.048 

1.019 
0.997, 1.042 

1.015 
1.003, 1.027 

M
edian hom

e 
value ($) 

≥
 157,541* 

H
igh* 

1.079 
1.033, 1.126 

0.996 
0.969, 1.024 

1.036 
1.013, 1.059 

1.007 
0.994, 1.020 

<
157,541 

Low
 

1.068 
1.029, 1.109 

1.024 
1.000, 1.049 

1.020 
0.999, 1.040 

1.018 
1.006, 1.029 

M
edian H

H
 

incom
e ($) 

≥
 53,663* 

H
igh* 

1.092 
1.047, 1.139 

1.013 
0.985, 1.043 

1.037 
1.014, 1.060 

1.015 
1.001, 1.029 

<
 53,663 

Low
 

1.060 
1.020, 1.101 

1.008 
0.985, 1.032 

1.019 
0.999, 1.040 

1.012 
1.001, 1.023 

%
 Living in 

poverty  
≤

 11.4* 
H

igh* 
1.105 

1.059, 1.153 
1.013 

0.984, 1.044 
1.029 

1.006, 1.053 
1.016 

1.001, 1.030 
>

 11.4 
Low

 
1.052§ 

1.013, 1.092 
1.008 

0.986, 1.032 
1.026 

1.006, 1.046 
1.012 

1.001, 1.022 
 

 
 

 
 

 
 

 
 

 
 

%
H

H
 no vehicle 

available  
≤

 4.2* 
H

igh* 
1.076 

1.031, 1.122 
1.024 

0.994, 1.055 
1.036 

1.013, 1.060 
1.021 

1.007, 1.036 
>

 4.2 
Low

 
1.073 

1.033, 1.114 
1.003 

0.981, 1.027 
1.020 

1.000, 1.040 
1.009 

0.998, 1.019 
 

 
 

 
 

 
 

 
 

 
 

%
 Population 

unem
ployed  

≤
8.0* 

H
igh* 

1.102 
1.053, 1.154 

1.032 
0.999, 1.065 

1.039 
1.013, 1.065 

1.021 
1.006, 1.036 

>
8.0 

Low
 

1.061 
1.023, 1.100 

0.998§ 
0.977, 1.020 

1.021 
1.002, 1.040 

1.009 
0.999, 1.019 

N
D

I  
≤

 -0.1* 
H

igh* 
1.082 

1.037, 1.129 
1.017 

0.989, 1.047 
1.032 

1.009, 1.055 
1.014 

1.001, 1.028 
 

>
 -0.1 

Low
 

1.068 
1.028, 1.109 

1.004 
0.981, 1.028 

1.023 
1.003, 1.044 

1.012 
1.001, 1.023 

 
 

 
 

 
 

 
 

 
 

 
T

ow
nsend Index  

≤
 -0.8* 

H
igh* 

1.079 
1.032, 1.128 

1.029 
0.998, 1.062 

1.025 
1.001, 1.049 

1.020 
1.005, 1.035 

 
>

 -0.8 
Low

 
1.072 

1.033, 1.111 
1.001 

0.979, 1.024 
1.029 

1.009, 1.048 
1.010 

1.000, 1.020 

      A
bbreviations: C

I, C
onfidence Interval; E

C
, elem

ental carbon fraction of PM
2.5 ; H

H
, H

ousehold; IQ
R

, Interquartile R
ange; N

D
I, N

eighborhood D
eprivation Index; 

N
O

2 , nitrogen dioxide; O
3 , ozone; O

R
, odds ratio; PM

2.5 , particulate m
atter <

 2.5 µm
 in diam

eter (fine particulate m
atter); SE

S, socioeconom
ic status; Z

C
T

A
, Z

ip C
ode 

T
abulation A

rea. 
         aC

olum
n denotes w

hich stratum
 w

as designated as ‘high [SE
S]’ and ‘low

 [SE
S]’ 

      B
old typeface indicates confidence intervals that do not include the null value. 

      *Indicates referent group used in assessm
ent of heterogeneity of stratum

-specific O
R

s (i.e. referent strata is ‘H
igh [SE

S]’. 
      § indicates significant difference (one-sided P <

 0.05) from
 referent group. H

eterogeneity betw
een strata-specific O

R
s w

as tested in pairw
ise com

parisons by dividing 
the difference in log odds ratio by the square root of the sum

 of the variances and com
puting a Z

-statistic. 
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Supplem
ental T

able S1.5. O
dds R

atios From
 C

ase-C
rossover M

odels Stratified by Q
uartile V

alues of Socioeconom
ic Status for IQ

R
 Increases in 3-day M

oving 
A

verage Z
C

T
A

-Level Pollutant C
oncentrations and Pediatric A

sthm
a E

m
ergency D

epartm
ent V

isits in A
tlanta, G

eorgia, 2002-2008 

SE
S Indicator 

Q
uartile V

alues  
SE

S 
Strata  

O
3 (per 25 ppb) 

N
O

2  (per 15 ppb) 
P

M
2.5 (per 10 µg/m

3) 
E

C
 (per 0.5 µg/m

3) 
O

R
 

95%
 C

I 
O

R
 

95%
 C

I 
O

R
 

95%
 C

I 
O

R
 

95%
 C

I 
%

 <
12

th G
rade  

<
9.4* 

Q
1*  

1.133
  

1.065, 1.207 
0.996 

0.956, 1.039  
1.033 

0.999, 1.068  
1.001 

0.982, 1.020 
≥

9.4; <
14.8 

Q
2 

1.042§ 
0.993, 1.093 

1.004 
0.972, 1.037 

1.035
  

1.009, 1.062 
1.018

  
1.003, 1.034 

≥
14.8; <

21.5 
Q

3 
1.039§ 

0.979, 1.102 
1.003 

0.969, 1.040 
1.017 

0.987, 1.049 
1.010 

0.993, 1.027 
≥

21.5 
Q

4  
1.103

  
1.040, 1.171 

1.044§ 
1.007, 1.082 

1.021 
0.990, 1.054 

1.020
  

1.004, 1.037 

M
edian H

om
e 

V
alue ($) 

≥
208,800* 

Q
4* 

1.139 
1.060, 1.224 

0.969 
0.925, 1.015 

1.031 
0.994, 1.070 

0.993 
0.973, 1.014 

≥
157,541; <

208,800 
Q

3 
1.044§ 

0.989, 1.102 
1.009 

0.975, 1.044 
1.039 

1.010, 1.068 
1.015§ 

0.999, 1.032 
≥

127,548; <
157,541 

Q
2 

1.060 
1.009, 1.113 

1.024§ 
0.992, 1.057 

1.028 
1.002, 1.055 

1.021§ 
1.006, 1.037 

<
127,548 

Q
1 

1.076 
1.015, 1.141 

1.024§ 
0.987, 1.062 

1.006 
0.974, 1.039 

1.013 
0.997, 1.030 

M
edian H

H
 

Incom
e ($) 

≥
66,846* 

Q
4* 

1.105 
1.042, 1.173 

1.021 
0.980, 1.064 

1.034 
1.003, 1.067 

1.013 
0.994, 1.032 

≥
53,663; <

66,846 
Q

3 
1.077 

1.014, 1.143 
1.007 

0.967, 1.049 
1.040 

1.006, 1.074 
1.017 

0.997, 1.038 
≥

44,186; <
53,663 

Q
2 

1.064 
1.006, 1.126 

0.973§ 
0.937, 1.010 

0.988§ 
0.959, 1.018 

0.994 
0.976, 1.012 

<
44,186 

Q
1 

1.055 
1.002, 1.111 

1.030 
0.999, 1.061  

1.042 
1.015, 1.070 

1.021 
1.008, 1.034 

%
 Living in 

poverty 
<

7.6* 
Q

1* 
1.099 

1.034, 1.168 
1.037 

0.992, 1.083 
1.051

  
1.017,1.086 

1.029 
1.008, 1.050  

≥
7.6%

; <
11.4 

Q
2 

1.114 
1.050, 1.182 

0.993 
0.954, 1.034 

1.010§ 
0.978,1.043 

1.004§ 
0.985, 1.024 

≥
11.4%

; <
16.2 

Q
3 

1.030 
0.971, 1.094 

0.973§ 
0.936, 1.012 

1.005§ 
0.974, 1.037 

1.001§ 
0.983, 1.020 

≥
16.2 

Q
4 

1.068 
1.017, 1.121 

1.023 
0.994, 1.053 

1.040 
1.014, 1.066 

1.016 
1.003, 1.029 

%
H

H
 no 

vehicle available 
<

2.5* 
Q

1* 
1.082 

1.022, 1.145 
1.024 

0.983, 1.066 
1.031 

1.000, 1.062 
1.019 

0.999, 1.039 
≥

2.5; <
4.2 

Q
2 

1.070 
1.004, 1.141 

1.025 
0.981, 1.070 

1.044 
1.008, 1.080 

1.024 
1.002, 1.045 

≥
4.2; <

7.4 
Q

3 
1.070 

1.005, 1.140 
0.963§ 

0.923, 1.005 
1.001 

0.968, 1.036 
1.004 

0.984, 1.025 
≥

7.4 
Q

4 
1.078 

1.028, 1.130 
1.013 

0.985, 1.042 
1.030 

1.005, 1.055 
1.010 

0.998, 1.022 

%
 Population 

unem
ployed 

<
5.8* 

Q
1* 

1.126 
1.050, 1.208 

1.004 
0.955, 1.055 

1.024 
0.985, 1.065 

1.004 
0.982, 1.027 

≥
5.8; <

8.0 
Q

2 
1.082 

1.018, 1.149 
1.051 

1.007, 1.096 
1.047 

1.014, 1.082 
1.034§ 

1.014, 1.054 
≥

8.0; <
10.9 

Q
3 

1.066 
1.009, 1.126 

0.975 
0.940, 1.011 

1.003 
0.975, 1.032 

1.004 
0.987, 1.022 

≥
10.9 

Q
4 

1.058 
1.009, 1.110 

1.014 
0.986, 1.043 

1.035 
1.009, 1.060 

1.012 
0.999, 1.025 

N
D

I 
<

-0.8* 
Q

1* 
1.133

  
1.064, 1.206 

1.048
  

1.003, 1.095 
1.055  

1.021, 1.090 
1.027  

1.007, 1.048 
≥

-0.8; <
-0.1 

Q
2 

1.040§ 
0.982, 1.102 

0.996§ 
0.958, 1.035 

1.011§ 
0.981, 1.043 

1.004 
0.986, 1.022 

≥
-0.1; <

0.6 
Q

3 
1.074

  
1.009, 1.143 

0.931§ 
0.893, 0.972 

0.993§ 
0.960, 1.027 

0.988§ 
0.967, 1.009 

≥
0.6 

Q
4 

1.064
  

1.014, 1.116 
1.033

  
1.004, 1.063 

1.039
  

1.014, 1.066 
1.020

  
1.007, 1.032 

T
ow

nsend 
Index 

<
-2.3* 

Q
1* 

1.105 
1.038, 1.177 

1.014 
0.969, 1.061 

1.045 
1.010, 1.080 

1.018 
0.996, 1.040 

≥
-2.3; <

-0.8 
Q

2 
1.056 

0.992, 1.125 
1.040 

0.996, 1.086 
1.006 

0.973, 1.040 
1.022 

1.001, 1.044 
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≥
-0.8; <

1.3 
Q

3 
1.068 

1.007, 1.133 
0.956§ 

0.919, 0.994 
1.001§ 

0.970, 1.033 
0.993§ 

0.974, 1.012 
≥

1.3 
Q

4 
1.075 

1.026, 1.126 
1.022 

0.994, 1.051 
1.045 

1.020, 1.070 
1.017 

1.005, 1.029 

       A
bbreviations: C

I, C
onfidence Interval; E

C
, elem

ental carbon fraction of PM
2.5 ; H

H
, H

ousehold; IQ
R

, Interquartile R
ange; N

D
I, N

eighborhood D
eprivation Index; N

O
2 , 

nitrogen dioxide; O
3 , ozone; O

R
, odds ratio; PM

2.5 , particulate m
atter <

 2.5 µm
 in diam

eter (fine particulate m
atter); SE

S, socioeconom
ic status; Z

C
T

A
, Z

ip C
ode T

abulation 
A

rea. B
old typeface indicates confidence intervals that do not include the null value. 

       *Indicates referent group used in assessm
ent of heterogeneity of stratum

-specific O
R

s [i.e. referent strata is ‘Q
1’ (or ‘Q

4’ for m
edian incom

e and m
edian hom

e value)]. 
       § indicates significant difference (one-sided P <

 0.05) from
 referent group. H

eterogeneity betw
een strata-specific O

R
s w

as tested in pairw
ise com

parisons by dividing the 
difference in log odds ratio by the square root of the sum

 of the variances and com
puting a Z

-statistic. 

                         



 53 

APPENDICES 
 
Chapter 1: Assessment of neighborhood-level socioeconomic status as a modifier of air 
pollution-asthma associations among children in Atlanta 
 
Contents 
 
Appendix 1: Conditional Logistic Regression Equation…...………......................................................................54 
 
Appendix 2: Sensitivity Analyses…………………………….................................................................................56 
 
Appendix 3: Neighborhood Characterization……………..……………………................................................58 
  
Appendix 3, Table A1.1: Mean Pollutant Concentrations and Counts of ED Visits by Socioeconomic 
Strata…………………………………………….........................................................................................................60 
 
Appendix 3, Figure A1.1: Mean ZCTA-level Concentrations of Ambient Pollutants,  
2002-2008………..………..……………………...…………………………………………………………...61  
 
Appendix 3, Figure A1.2: Spatial Representation of ZCTAs Ever Designated as a  
Poverty Area, 2002-2008......…………………………...…….....................................................................................61 
 
Appendix 3, Figure A1.3: Spatial Representation of ZCTAs Ever Designated as an  
Undereducated Area, 2002-2008.………………………………………...................................………….............62 

 



 

54 

Appendix 1: Conditional Logistic Regression Equation 
 

Short-term associations between air pollution and pediatric asthma emergency department 

(ED) visits were assessed via a case-crossover model. The general form of the model was 

conditional logistic regression, matching on year, month, day of week of the ED visit (time-

stratified), and patient Zip Code Tabulation Area (ZCTA) of residence, as follows: 

 Logit[pr(Ykt=1)] = β0 + ζ!V!!
!!!   

 + β(pollutionti)  

 + ΣsΩs(SEASONts) + Σmλm(DOWtm)  + Σnνn(hosp_periodtn)  

 + g(γ1,…, γn;timet) + Σzψz(meteorologytz) 
 
 

We let Ykt indicate whether person k had the event at time t (1 = event; 0 = no event). Vk 

denotes the dummy variables that distinguish the case-control set, conditioned on the 

individual and x is the total number of case-control sets. ζk denotes parameters specific to 

the case-control set Vk. We defined pollutionti, as the exposure for subject k at time t in 

ZCTA i. The air pollutant variable (pollution) included daily ZCTA-level data on single 

pollutants from traffic-related sources [nitrogen dioxide (NO2) and the elemental carbon 

(EC) fraction of fine particulate matter] and secondary pollutants [ozone (O3) and fine 

particulate matter (PM2.5)]. For each air pollutant variable, we used a 3-day moving average 

of lags 0, 1, and 2 as the a priori lag structure. Other model covariates included indicator 

variables for season (SEASON, 4-levels), day of week and holidays (DOW), and indicator 

variables (hosp_period) for periods of hospital participation during the study period. A cubic 

spline on day of year (5 degrees of freedom) was included to control smoothly for recurrent 

within-window seasonal trends. Meteorology was controlled with cubic polynomials for 3-
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day moving average (lags 0-2) of maximum temperature and mean dew point; interaction 

terms between season and maximum temperature were also included.  
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Appendix 2: Sensitivity Analyses 
 
Methodology. A series of sensitivity analyses were performed to test the consistency of 

observed results to different model and data specifications. Case-crossover model results 

were compared with those from traditional Poisson time-series models.  In the Poisson 

models, the outcome was specified as daily counts of pediatric asthma emergency 

department (ED) visits for each Zip Code Tabulation Area (ZCTA) in the Atlanta 

metropolitan area. Exposure and covariate control was similar to the case-crossover 

approach: cubic polynomials for 3-day moving average (lags 0-2) maximum temperature and 

mean dew point; interaction terms between season and maximum temperature; monthly time 

splines to control for time trends; indicator variables for season, day of week and holidays; 

and indicator variables for periods of hospital participation during the study period. The 

sensitivity of our stratified results to socioeconomic status (SES) assignment [Census 2000 or 

American Community Survey (ACS) 2007-2011] was examined by assigning ZCTA-level 

SES values from Census data for the 2002-2005 period and ACS data for the 2005-2008 

period rather than a weighted average (linear interpolation) of both sources. The influence of 

the asthma outcome specification was examined by comparing results from models 

predicting asthma ED visits identified using both primary and secondary International 

Classification of Diseases, 9th Revision (ICD-9) codes with results from models predicting 

asthma ED visits identified using only primary ICD-9 codes (specified as ‘primary asthma’). 

Sensitivity of our results to potential errors in assigning ZCTAs to the 31 ZIP codes that 

were changed or eliminated during the study period was evaluated by excluding visits from 

these ZIP codes altogether. Finally, to examine the impact of potentially different lag 

structures in the air pollution-asthma association between SES strata, models were specified 

using 5- and 7-day moving average (lags 0-4 and 0-6, respectively) pollutant concentrations 
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(with maximum temperature and mean dew point temperature control similarly extended), to 

compare with results for 3-day moving average concentrations. 

 

Results. Sensitivity analysis results are summarized here and not presented quantitatively. 

Poisson regression results were consistent with the effect estimates and patterns of effect 

modification observed in case-crossover analyses. Patterns of effect modification were not 

sensitive to how Census 2000 and ACS 2007-2011 data were linked with ED databases; 

these analyses generated results with identical interpretations as those based on interpolated 

SES values. ZIP codes that changed or were eliminated during the study period contributed 

very few ED visits to the overall study population; therefore, removing these ZIP codes 

from our database in sensitivity analyses had minimal impact on odds ratio estimates. In 

both Poisson and case-crossover models, we observed similar patterns of association when 

primary asthma (instead of primary and secondary asthma) was used as our health outcome 

definition. In stratified analyses that used alternate pollutant lag structures (5- and 7-day 

moving averages) we observed slightly stronger associations across all strata with wider 

confidence intervals. However, patterns of effect modification were similar to patterns 

observed using 3-day moving averages of pollutant concentrations. 
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Appendix 3: Neighborhood Characterization 
 

We further characterized neighborhood air quality and emergency department (ED) visit 

rates by neighborhood socioeconomic status (SES) for select SES indicators: percentage with 

less than 12th grade education (% <12th grade education), percentage living below the federal 

poverty line (% below poverty), and the Neighborhood Deprivation Index (NDI). These 

indicators were selected based on the frequency of their use in the literature and because at 

least one of them was at least moderately correlated (Spearman’s ρ>0.65) with the other SES 

indicators of interest (see online material, Supplemental Table S1.3).  

 

ED visit data and neighborhood SES. We observed a greater number of ED visits in low SES 

quartiles, except for when evaluating quartiles of % <12th grade education (Appendix Table 

A1.1). Few Zip Code Tabulation Areas (ZCTAs) were identified as deprivation areas (i.e. 

undereducated areas and poverty areas) and therefore deprivation areas contributed fewer 

ED visits to stratified analyses than non-deprivation areas (Appendix Table A1.1). 

 

Air quality data and neighborhood SES. With regard to spatial distribution of pollutants across 

socioeconomic groups, ozone and PM2.5 concentrations were relatively homogenous across 

ZCTAs, with similar mean concentrations across SES quartiles (Appendix Table A1.1). 

Though ozone levels were largely similar across SES strata, we observed slightly lower 

concentrations in poverty as compared to non-poverty areas due to slightly lower levels of 

ozone in central Atlanta (Appendix Figure A1.1) where most poverty area ZCTAs are 

located (Appendix Figure A1.2). Conversely, for % below poverty and the NDI, mean NO2 

and EC concentrations were generally higher in low SES strata compared to high SES strata 
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(Appendix Table A1.1). However, when considering % <12th grade education as an indicator 

of neighborhood SES, we observed, on average, lower concentrations of NO2 and EC in 

low SES compared to high SES neighborhoods because ZCTAs at the periphery of our 

study area are characterized by low concentrations of traffic related pollutants (Appendix 

Figure A1.1) and high percentages of adults with <12th grade education (Appendix Figure 

A1.3) 
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A
ppendix T

able A
1.1. M

ean Z
C

T
A

-Level Pollutant C
oncentrations and C

ounts of E
m

ergency D
epartm

ent V
isits by Socioeconom

ic Strata, A
tlanta, G

eorgia (2002-
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488,387 Z
C

T
A

 days) 

SE
S Indicator 

O
3  

 (ppb) 
N

O
2  

(ppb) 
P

M
2.5  

 (µg/m
3) 

E
C

 

(µg/m
3) 

 
#

 P
rim

ary A
sthm

a 
E

D
 visits

a 
#

 A
sthm

a E
D

 
visits

b 
#

 A
ll E

D
 visits 

M
ean (SD

) 
M

ean (SD
) 

M
ean (SD

) 
M

ean (SD
) 

 
T

otal C
ount 

T
otal C

ount 
T

otal C
ount 

%
 <

 12
th G

rade (Q
uartiles) 

 
 

 
 

 
 

 
 

<
9.4 (H

igh SE
S) 

42.1 (17.9) 
23.1 (11.4) 

15.5 (7.39) 
1.17 (0.70) 

 
12,895 

25,934 
361,234 

≥
9.4 to <

14.8 
42.6 (17.7) 

20.2 (11.1) 
15.3 (7.36) 

1.06 (0.65) 
 

20,621 
43,858 

527,570 
≥

14.8 to <
21.5 

42.3 (17.0) 
18.3 (12.6) 

15.1 (7.34) 
0.97 (0.66) 

 
14,745 

30,208 
383,906 

≥
21.5 (Low

 SE
S) 

42.0 (16.8) 
16.0 (13.2) 

14.9 (7.22) 
0.88 (0.65) 

 
14,047 

28,758 
351,862 

 
 

 
 

 
 

 
 

 
U

ndereducated A
rea  

(≥
 25%

 <
 12th grade)  

 
 

 
 

 
 

 
 

N
o 

42.3 (17.5) 
20.0 (12.1) 

15.3 (7.35) 
1.05 (0.68) 

 
53,490 

111,446 
1,423,111 

Y
es 

42.0 (16.7) 
16.0 (13.1) 

14.8 (7.22) 
0.87 (0.65) 

 
8,818 

17,312 
201,461 

 
 

 
 

 
 

 
 

 
%

 B
elow

 P
overty (Q

uartiles)  
 

 
 

 
 

 
 

 
<

7.6 (H
igh SE

S) 
42.7 (17.5) 

17.5 (10.2) 
15.1 (7.20) 
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Appendix Figure A1.1. Average ZCTA-level Concentrations of Ambient Air Pollutants in 20-County 
Atlanta, Georgia (2002-2008). A) Spatial representation of ozone levels across metropolitan Atlanta by quartiles of 
average ZCTA-level O3 concentrations (ppb); B) Spatial representation of NO2 levels across metropolitan Atlanta by 
quartiles of average ZCTA-level NO2 concentrations (ppb); C) Spatial representation of PM2.5 levels across metropolitan 
Atlanta by quartiles of average ZCTA-level PM2.5 concentrations (µg/m3); D) Spatial representation of EC levels across 
metropolitan Atlanta by quartiles of average ZCTA-level EC concentrations (µg/m3). Abbreviations: EC, elemental carbon 
fraction of PM2.5; NO2, nitrogen dioxide; O3, ozone; PM2.5, particulate matter < 2.5 µm in diameter (fine particulate matter); 
ZCTA, Zip Code Tabulation Area. 
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Appendix Figure A1.2. Spatial Representation of ZCTAs Ever Designated as a Poverty Area in Atlanta, 
Georgia Between 2002 and 2008. Atlanta ZCTA categorized as a ‘poverty area’ if ≥20% of the households are 
living below the Federal Poverty Line. Abbreviations: ZCTA, Zip Code Tabulation Area. 
 

 
 
Appendix Figure A1.3. Spatial Representation of ZCTAs Ever Designated as an Undereducated Area in 
Atlanta, Georgia Between 2002 and 2008 (Atlanta ZCTA categorized as an ‘undereducated area’ if ≥25% of the 
population has less than a 12th grade education). Abbreviations: ZCTA, Zip Code Tabulation Area. 
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ABSTRACT 

Background.  Ground-level ozone is a potent airway irritant and a determinant of 

respiratory morbidity. Susceptibility to the health effects of ambient ozone may be 

influenced by both intrinsic and extrinsic factors, such as neighborhood socioeconomic 

status (SES). Questions remain regarding the manner and extent that factors such as SES 

influence ozone-related health effects, particularly across different study areas. Methods. 

Using a 2-stage modeling approach we evaluated neighborhood SES as a modifier of ozone-

related pediatric respiratory morbidity in Atlanta, Dallas, & St. Louis. We acquired multi-year 

data on emergency department (ED) visits among 5-18 year olds with a primary diagnosis of 

respiratory disease in each city. Daily concentrations of 8-hour maximum ambient ozone 

were estimated for all ZIP Code Tabulation Areas (ZCTA) in each city by fusing observed 

concentration data from available network monitors with simulations from an emissions-

based chemical transport model. In the first stage, we used conditional logistic regression to 

estimate ZCTA-specific odds ratios (OR) between ozone and respiratory ED visits, 

controlling for temporal trends and meteorology. In the second stage, we combined ZCTA-

level estimates in a Bayesian hierarchical model to assess overall associations and effect 

modification by neighborhood SES considering categorical and continuous SES (e.g., 

ZCTA-specific levels of poverty) indicators. We estimated ORs and 95% posterior intervals 

(PI) for a 25 ppb increase in ozone. Results. The hierarchical model combined effect 

estimates from 179 ZCTAs in Atlanta, 205 ZCTAs in Dallas, and 151 ZCTAs in St. Louis. 

The strongest overall association of ozone and pediatric respiratory disease was in Atlanta 

(OR=1.08, 95% PI: 1.06, 1.11), followed by Dallas (OR=1.04, 95% PI: 1.01, 1.07) and St. 

Louis (OR=1.03, 95% PI: 0.99, 1.07). Patterns of association across levels of neighborhood 

SES in each city suggested stronger ORs in low compared to high SES areas, with some 
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evidence of non-linear effect modification. Conclusions. Results suggest that ozone is 

associated with pediatric respiratory morbidity in multiple US cities; neighborhood SES may 

modify this association in a non-linear manner. In each city, children living in low SES 

environments appear to be especially vulnerable given positive ORs and high underlying 

rates of respiratory morbidity.  
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BACKGROUND 

Ground-level ozone, a criteria pollutant regulated by the US Environmental Protection 

Agency (EPA), is a potent airway irritant and well-known determinant of adverse health 

outcomes, including respiratory morbidity and mortality.[1] Increasing evidence suggests that 

intrinsic factors (e.g. age, sex, genetics), extrinsic factors (e.g. low socioeconomic status), and 

differential exposure among populations may potentiate susceptibility to the health effects of 

ambient ozone.[2] However, questions remain as to the degree of influence these factors 

exert on ozone-related health effects.[3] 

Intrinsically, children are considered more vulnerable than adults to the health effects of 

ozone due to their higher ventilation rates, a developing respiratory system, and time activity 

patterns that generally increase their exposures to ambient ozone. Concomitantly, 

physiological differences in airway structure and function cause greater doses of pollutants to 

be delivered into airways and predispose children to airway inflammation and obstruction.[4-

6] Extrinsically, low socioeconomic status (SES) may exacerbate vulnerabilities among 

children through greater exposure to indoor and outdoor air pollutants, greater psychosocial 

stress associated with their social environment, and reduced access to local resources (e.g., 

healthy food options, green-space, adequate health care options).[7-9] However, vulnerability 

to ozone-related respiratory morbidity among children has not been consistently observed 

between study locations, and findings to date have not conclusively identified SES as a 

modifier of ozone-related respiratory disease.[2, 3] These observed incongruences call into 

question whether findings from individual studies, often conducted in single cities or 

communities, can be generalized.  

Previous findings from our research team in Atlanta have identified robust associations 

between ground level ozone and pediatric respiratory health outcomes.[10-16] Analyses 
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examining effect modification of ozone-related pediatric asthma ED visits by neighborhood-

level SES suggest non-linear patterns of effect modification by neighborhood SES in 

Atlanta; for example, in some analyses we observed stronger associations between ozone and 

pediatric asthma ED visits in the highest and lowest SES strata and weaker associations in 

middle SES strata.[12] However, the generalizability of these findings to other study areas or 

other respiratory health outcomes has not been established.  

Several studies have utilized Bayesian hierarchical models to explore associations 

between air pollution and adverse health outcomes across multiple study locations, in a 

computationally efficient manner.[17-21] Furthermore, analyzing multicity data using 

Bayesian hierarchical models allows for assessment of factors that may help to explain 

between-location heterogeneity and ultimately ascertain population-level vulnerability 

factors.[17, 18] Here, we use a two-stage Bayesian hierarchical approach to examine effect 

modification of ozone-related pediatric respiratory disease by categorical and continuous 

measures of neighborhood SES in three diverse cities (Atlanta, Dallas, and St. Louis). By 

applying a consistent analytic approach we assess the generalizability of associations between 

ozone and pediatric respiratory disease across diverse study areas and evaluate whether 

patterns of effect modification differ by city.  
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METHODS 

Asthma emergency department visit data 

Multi-year ED visit data were collected from three diverse study locations, which 

included the metropolitan areas of Atlanta, Dallas, and St. Louis. These data have been used 

previously in air pollution health effects investigations [16, 22-24]. For the current analysis, 

ED data were available for 2002-2008 from 41 hospitals in 20-county Atlanta; data through 

2004 were collected from individual hospitals directly while 2005-2008 data were collected 

through the Georgia Hospital Association. ED data were available for 2006-2008 from the 

Dallas-Fort Worth Hospital Council Foundation for 36 hospitals in the 12-county Dallas 

metro area. In St. Louis, ED data were available for 2002-2007 from the Missouri Hospital 

Association for 36 hospitals in the 16-county metro area. ED visits for respiratory outcomes 

(upper respiratory infections, bronchiolitis, pneumonia, asthma, and wheeze) were identified 

using primary International Classification of Diseases, 9th Revision (ICD-9) codes 460-486, 

493, 786.07. We restricted our analyses to the pediatric population (5–18 years old) and to 

patients with a residential Zone Improvement Plan (ZIP) code located wholly or partially in 

20-county Atlanta (232 ZIP codes), 12-county Dallas (271 ZIP codes), or 16-county St. 

Louis (264 ZIP codes). The Emory University Institutional Review Board approved this 

study and granted exemption from informed consent requirements. 

To create spatial scales compatible with air quality and census-based data, each ZIP code 

in the ED visit database was assigned to a 2010 Zip Code Tabulation Area (ZCTA, Census 

Bureau boundaries, created from census blocks to approximate ZIP codes). Assignments 

were accomplished by matching each ZIP code to a 2010 ZCTA based on 5-digit Census ID 

numbers. ZIP code change reports helped facilitate ZCTA assignments for ZIP codes that 

were altered or eliminated during the study period. ZCTAs that were classified as businesses 
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or university campuses were excluded from the study. The resulting study areas included 191 

ZCTAs in Atlanta, 253 ZCTAs in Dallas, and 256 ZCTAs in St. Louis.  

 

Neighborhood-level socioeconomic data 

Estimates of ZCTA-level socioeconomic status (SES) were obtained from the 2000 US 

Census long form and the American Community Survey (ACS) 5-year (2007-2011) summary 

file, all normalized to 2010 ZCTA borders (“The Time-Series Research Package”, GeoLytics, 

Inc., East Brunswick, NJ, 2013). In our analyses, ZCTA boundaries were used to represent 

neighborhoods of patient residence and yearly values of neighborhood-level (i.e. ZCTA-

level) SES were estimated by linear interpolation of Census 2000 and ACS 2007-2011 values. 

We then averaged the yearly values across the study periods of each city (2002-2008 in 

Atlanta; 2006-2008 in Dallas, and 2002-2007 in St. Louis) to estimate a mean SES value for 

each neighborhood. We chose percentage of the population (≥25 years old) with less than a 

12th grade education (% < 12th grade), percentage of households living below the poverty line 

(% below poverty), and the Neighborhood Deprivation Index (NDI), a composite index 

comprised of 8 single indicators of SES that were summarized using principle components 

analysis[25], to represent neighborhood-level SES and to enable comparison of results across 

different SES indicators. 

 

Ambient ozone concentration data 

Our study used daily estimates of ambient 8-hour maximum ozone for each ZCTA in 

Atlanta, Dallas, and St. Louis. Daily concentrations of ambient 8-hour maximum ozone were 

estimated by combining observational data from network monitors in each city with 

pollutant concentration simulations from an emissions-based chemical transport model, the 
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Community Multi-Scale Air Quality version 4.5 (CMAQ) model at 12x12 km grids over 

Atlanta, Dallas, and St. Louis[26]. Ozone concentrations were estimated for each ZCTA by 

determining the fraction of a ZCTA’s area within each 12x12 km grid cell and area-weighting 

the observation-simulation data fusion estimates to get the ZCTA-specific value. Although a 

12x12 km grid is a relatively large area to assess exposure to air pollutants, ozone is a 

spatially homogenous secondary pollutant and concentrations are unlikely to vary 

substantially over the 12x12km grids used in each city. We specifically chose ambient ozone 

and our exposure modeling approach to minimize the potential for exposure measurement 

error in each city. Daily meteorological data were obtained from National Climatic Data 

Centers at Atlanta Hartsfield International Airport, Dallas/Ft. Worth International Airport, 

and St. Louis Lambert International Airport. 

 

Statistical analyses 

We applied a two-stage modeling approach to estimate associations between daily 

ZCTA-specific ozone concentrations and pediatric respiratory ED visits, as well as to 

evaluate effect modification by neighborhood SES across multiple locations. In the first 

stage, associations between 3-day moving average (lag days 0-2) ZCTA-specific ozone 

concentrations and pediatric respiratory disease were estimated for every ZCTA in Atlanta, 

Dallas, and St. Louis in case-crossover analyses using conditional logistic regression, 

matching on year, month, and day of the week of the ED visit. We chose a 3-day moving 

average of ozone as our a priori lag structure based on previous work.[10, 12, 27] We 

included additional control for time-varying factors: indicator variables for season (4-levels), 

periods of hospital participation and holidays; cubic polynomials for 3-day moving average 

(lags 0-2) maximum temperature and mean dew point; interaction terms between season and 
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maximum temperature; and a cubic spline on day of year (5 degrees of freedom) to control 

smoothly for recurrent within-window seasonal trends. The general structure of each ZCTA-

specific model was: 

 

Logit[pr(Ykt=1)] = β0 + ζ!V!!
!!!   + β(ozonetz)  + ΣsΩs(seasonts) +      Eq. 1 

Σmλm(DOWtm)  +  Σnνn(hosp_periodtn)  + g(γ1,…, γn;timet) + Σqψq(meteorologytq) 

 

where, Ykt indicates whether person k had the event at time t (1 = event; 0 = no event) and t 

indexes the event and control days. Vk denotes the indicator variables that distinguish the 

case-control sets for the various individuals, x is the total number of case-control sets, and ζk 

denotes parameters specific to the case-control sets (which are not estimated in conditional 

logistic regression). We defined ozonetz, as the ozone exposure for subject k at time t in 

ZCTA z. Other model covariates included indicator variables for season (4-levels), day of 

week and holidays (DOW), and indicator variables (hosp_period) for periods of hospital 

participation during the study period. We note that the above model assumes all confounder 

effects are ZCTA-specific. Using Eq. 1 (stage 1), we estimated the log odds ratio, !! ,!of 

ozone on respiratory disease for ZCTA z, and its estimated variance, !z. Stage 1 models with 

fewer than 50 total ED visits per ZCTA during the study period did not converge; therefore, 

these ZCTAs were excluded from the second stage of our modeling approach.  

In the second stage, we fit two-level Bayesian hierarchical models via the R package 

TLnise with noninformative priors.[28] Similar to a meta-regression analysis, ZCTA-specific 

effect estimates (log odds ratios, !!) were combined to generate city-specific estimates of the 

short-term association between ozone and pediatric respiratory ED visits, accounting for  (1) 

uncertainty associated with each ZCTA-specific log odds ratio as measured by its asymptotic 
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standard error, and (2) between-ZCTA variability of the true unobserved ZCTA-specific log 

odds ratio.[18, 29, 30] Specifically, we fit the following Bayesian hierarchical model: 

 

!!!|!!! ,!!!~!! !! ,!!                        Eq. 2 

!!!|!!!, !, !!!~!!(!! + !!
!

!!" , !!!) 

where, 

θz = the unobserved true log odds ratio  in each ZCTA 

Xzj = ZCTA-specific values of ZCTA-level covariates (j) in ZCTA z 

α0 = the average log odds ratio for ZCTAs 

ϒj = the change in the log odds ratio for a change in Xzj 

τ2 = heterogeneity variance across ZCTAs of the unobserved log odds ratio, θz, unexplained 

by ZCTA-level characteristics, Xzj. τ reflects the standard deviation and is the parameter we 

used to assess whether ZCTA-level characteristics explained heterogeneity in the effect of 

ozone on pediatric respiratory disease across ZCTAs.  

To estimate overall associations between ozone and pediatric respiratory disease, we 

used Eq. 2 to fit ‘combined’ meta-regressions which pooled data from all three cities (535 

ZCTAs) and included indicator variables for each city, represented by Xzj in Eq. 2 [i.e. X(535x3) 

= (XAtlanta(z), XDallas(z), XSt.Louis(z)]. In secondary analyses, we used Eq. 2 to fit “city-specific” meta-

regressions which pooled ZCTA-specific data from each city individually (179 ZCTAs in 

Atlanta; 205 ZCTAs in Dallas; and 151 ZCTAs in St. Louis).  

To examine modification of ozone-related respiratory disease by neighborhood SES, we 

further included Xzj covariates in Eq. 2 that characterized ZCTAs with respect to their SES. 

In these analyses, ZCTAs of extremely low SES were identified using the following SES 
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indicators: undereducated area (yes/no)’ [≥25% of the population aged at least 25 years with 

<12th grade education; ‘poverty area status (yes/no)’ (≥20% of households living below the 

federal poverty line); and ‘above the 90th percentile of the NDI (yes/no)’. We also 

characterized ZCTAs by continuous values of SES and examined linear and non-linear effect 

modification through linear, quadratic, and cubic functions of neighborhood SES (indicated 

by continuous values of % <12th grade education, % below poverty, and the NDI).  

For our main effect modification analyses we fit ‘combined’ meta-regressions with the 

assumption that the effect of neighborhood SES on ozone-related respiratory disease is the 

same for each city. In combined models, Xzj covariates included an intercept, indicators for 

city, and categorical or continuous ZCTA-level SES. For example, the Xzj matrix from a 

combined meta-regression examining effect modification by linear % below poverty was 

X(535x4) = (1, XDallas(z), XSt.Louis(z), X%poverty(z)), where ‘1’ is the intercept and represents a ZCTA in 

Atlanta with 0% poverty. Consequently, all associations reported from combined models are 

interpreted as a summary estimate of effect modification by neighborhood SES based on 

data from three cities. In secondary analyses we assessed deviation from our assumption that 

the effect of neighborhood SES on ozone-related respiratory disease is the same for each 

city by fitting ‘city-specific’ meta-regressions, which pooled ZCTA-specific data from each 

city individually, and thus enabled each city to have its own ozone effect modification by 

SES.   

All associations between ozone and pediatric respiratory disease are reported as odds 

ratios (OR) and 95% posterior intervals (PI) scaled to a 25 ppb increase in ozone. 

Additionally, model parameter estimates were considered significant if the absolute value of 

the estimate divided by its posterior standard error was greater than 1.96 (analogous to a Z-

score). All analyses were performed using SAS 9.4 (SAS Institute, Cary, NC) and R version 
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3.2.2 (R Foundation for Statistical Computing, Vienna, Austria). 

 

RESULTS 

Three cities characterization 

The three study sites assessed in this analysis are large, urban cities located in three 

distinct US regions: the Southeast (Atlanta), Southwest (Dallas), and Midwest (St. Louis). 

Table 2.1 presents descriptive statistics for each study site including mean temperature, 

number of ozone monitors, ozone concentration, and socioeconomic composition of the 

population.  

Daily mean temperatures during the study period were on average higher in Dallas (68.8 

F) compared to Atlanta (63.1 F) and St. Louis (57.9 F). On average, Atlanta and Dallas had 

slightly greater daily concentrations of ozone across their respective study periods (42.2 and 

42.0 ppb) compared to St. Louis (40.0 ppb). With regard to socioeconomic composition, 

Dallas had the highest mean values of % below poverty (14.0%) and % <12th grade 

education (17.5%) across ZCTAs, indicative of lower SES neighborhoods, on average, in 

Dallas compared to Atlanta and St. Louis. Supplemental Figure S2.1 presents additional 

summary statistics and density distribution plots of % <12th grade, % below poverty, and the 

NDI for each city. Note, NDI values were standardized to mean neighborhood deprivation 

in each city, hence means of 0 and standard deviations of 1 in each city. 

 

Pediatric respiratory ED visits 

Our complete ED visit database for respiratory disease among children aged 5-18 years 

included 211,530 ED visits during the years 2002-2008 in Atlanta, 96,983 ED visits during 

the years 2006-2008 in Dallas, and 113,285 ED visits during the years 2002-2007 in St. Louis. 
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Due to model convergence issues in the first stage of our analysis, we excluded all ZCTAs 

that reported fewer than 50 ED counts over their respective study periods. This resulted in 

the exclusion of 12 ZCTAs in Atlanta, 48 ZCTAs in Dallas, and 105 ZCTAs in St. Louis; 

these ZCTAs contributed very few ED visits to our overall study and the exclusion of these 

ZCTAs from analyses resulted in less than 2% of the total number of ED visits from each 

city to be excluded. Figure 2.1 presents spatial maps of the included and excluded ZCTAs of 

the Atlanta, Dallas, and St. Louis study areas. Table 2.2 summarizes differences in ED data 

between our complete ED database and the analytical ED database, restricted to data from 

ZCTAs with at least 50 ED counts.  

 
 



 
76 

T
able 2.1: D

escriptive statistics of tem
perature, ozone concentrations, and population socioeconom

ic com
position in A

tlanta, G
eorgia (2002-2008); D

allas, T
exas 

(2006-2008); and St. Louis, M
issouri/Illinois (2002-2007) 

C
ity 

#
 

C
ounties 

#
  

Z
C

T
A

s 
T

em
p. 

(F
) 

8-hr m
ax O

zone* (ppb) 
 

Socioeconom
ic C

om
position 

#
 M

onitors 
M

ean (SD
) 

M
in 

M
ax 

IQ
R

 
 

%
 <

12
th G

rade 
M

ean (SD
) 

%
 B

elow
 P

overty 
M

ean (SD
 

A
tlanta 

20 
191 

63.1 
12 

42.2 (17.3) 
2.21 

125 
26.0 

 
15.7 (8.1) 

13.1 (7.84) 
D

allas 
12 

253 
68.8 

19 
42.0 (14.6) 

2.23 
118 

19.7 
 

17.5 (12.1) 
14.0 (9.75) 

St. L
ouis 

16 
256 

57.9 
18 

40.0 (17.3) 
0.15 

115 
25.4 

 
15.9 (8.14) 

12.5 (9.45) 
* D

aily Z
C

T
A

-specific concentrations of am
bient 8-hour m

axim
um

 ozone. M
ean, SD

, m
in., m

ax., and IQ
R

 are sum
m

arized across days and Z
C

T
A

s. 
A

bbreviations: %
 <

12
th grade, percentage of the adult population (≥

25 years old) w
ith less than a 12

th grade education; %
 below

 poverty, percentage of households living 
below

 the Federal Poverty Line; #
, num

ber; IQ
R

, interquartile range; M
ax, m

axim
um

; M
in, m

inim
um

; SD
, standard deviation; T

em
p, average daily m

ean tem
perature in degrees 

Fahrenheit; Z
C

T
A

, Z
ip C

ode T
abulation A

rea.  

    T
able 2.2. Sum

m
ary of respiratory E

D
 visit counts am

ong children aged 5–18 years, overall visits, and visits by Z
IP code tabulation areas for A

tlanta, G
eorgia (2002-

2008); D
allas, T

exas (2006-2008); and St. Louis, M
issouri/Illinois (2002-2007) 

 
C

om
plete E

D
 D

atabase
 

(data from
 all Z

C
T

A
s) 

 
A

nalytical E
D

 D
atabase 

(data from
 Z

C
T

A
s w

ith ≥
50 E

D
 visits) 

 
 

 
 

 
 

 
 

E
D

 visits per Z
C

T
A

 

C
ity 

N
um

ber of 
Z

C
T

A
s 

E
D

 visit 
N

um
ber 

 
N

um
ber 

of Z
C

T
A

s  
E

D
 visit 

N
um

ber 
%

 of total E
D

 
visits b  

 
M

in 
M

ean 
M

ax 

A
tlanta 

191 
211,530 

 
179 

211,207 
99.8%

 
 

54 
1,180 

4,883 
 

 
 

 
 

 
 

 
 

 
 

D
allas 

253 
96,983 

 
205 

96,108 
99.1%

 
 

51 
469 

2,237 
 

 
 

 
 

 
 

 
 

 
 

St. Louis 
256 

113,285 
 

151 
111,949 

98.8%
 

 
55 

741 
5,052 

         a prim
ary diagnosis of respiratory disease (IC

D
-9 codes 460-486,493,786.07) 

         b T
otal E

D
 visits are represented by E

D
 visit num

ber from
 the C

om
plete E

D
 D

ataset 
      A

bbreviations: E
D

, E
m

ergency D
epartm

ent; IC
D

-9, International C
lassification of D

iseases, 9
th R

evision; Z
C

T
A

, Z
ip C

ode T
abulation A

rea. 
  



 
77 

  
  

 
F

igure 2.1: Study area m
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ain analyses. G
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s included in analyses (≥

 50 respiratory disease E
D

 visits). H
ash m

ark areas 
represent excluded Z

C
T
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s (<

 50 respiratory disease E
D

 visits). Figure 2.1A
 represents the A

tlanta study area; Figure 2.1B
 represents the D

allas study area; Figure 2.1C
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bbreviations: E
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Epidemiological results: association between ozone and pediatric respiratory disease 

The combined meta-regression, which pooled data from all three cities (535 ZCTAs), 

and city-specific meta-regressions, which pooled ZCTA-specific data from each city 

individually (179 ZCTAs in Atlanta; 205 ZCTAs in Dallas; and 151 ZCTAs in St. Louis), 

produced identical overall associations between ozone and pediatric respiratory disease. 

Ozone exhibited the strongest overall association with pediatric respiratory disease in Atlanta 

[(OR= 1.08 (95% PI = 1.06-1.11)], followed by Dallas [OR=1.04 (95% PI = 1.01, 1.07)] and 

St. Louis (OR=1.03 (95% PI= 0.99, 1.07)].  

 
Epidemiological results: effect measure modification 

Categorical effect modification 

Categorical ZCTA-level variables were used in the second stage of our modeling 

approach to assess effect measure modification by neighborhood SES (undereducated area, 

poverty area, >90th percentile NDI). We did not observe differences in associations between 

ozone and pediatric respiratory ED visits by undereducated area status when using 

combined or city-specific models (Figure 2.2A). However, when assessing other indicators of 

neighborhood SES, we observed stronger associations between ozone and pediatric 

respiratory ED visits in poverty areas for all cities in both the combined and city-specific 

meta-regressions (Figure 2.2B) and stronger associations in areas designated as above the 

90th percentile of the NDI with the exception of Dallas in city-specific models (Figure 2.2C). 

These differences in association between SES strata were not statistically significant; ORs in 

low SES groups had very wide posterior intervals resulting from very few ZCTAs designated 

as extremely low SES (Supplementary Table S2.1).  
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Figure 2.2: Effect modification by categorical indicators of neighborhood SES using combined and 
city-specific models. Figure 2.2A: association between ozone and pediatric respiratory ED visits in 
undereducated areas (low SES) and non-undereducated areas (high SES). Figure 2.2B: association between 
ozone and pediatric respiratory ED visits in poverty areas (low SES) and non-poverty areas (high SES).  Figure 
2.2C: association between ozone and pediatric respiratory ED visits in areas above the 90th percentile of the 
NDI (low SES) and in areas below the 90th percentile (higher SES). Odds ratios and 95% posterior intervals per 
25 ppb ozone are presented. Black points and error bars represent ORs and 95% PIs in low SES areas; gray 
points and bars represent ORs and 95 % PIs in areas of higher SES. Undereducated areas: ≥ 25% the adult 
population (≥ 25 years old) with less than a 12th grade education. Poverty area: ≥ 20% households living below 
the Federal Poverty Line. Abbreviations: ED, Emergency Department; NDI, Neighborhood Deprivation 
Index; SES, socioeconomic status; ZCTA, Zip Code Tabulation Area. 
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Linear and non-linear effect modification 

For each city, linear and non-linear effect modification by neighborhood SES was 

evaluated through the use of linear, quadratic, and cubic functions of % <12th grade 

education, % below poverty, and the NDI. We present results from combined and city-

specific models for estimated ORs across the entire range of neighborhood SES values in 

each city; interpretations of these results were based on estimated ORs falling between the 

2.5th and 97.5th percentiles of neighborhood SES due to data sparseness at the extremes of 

the SES distributions outside of these bounds. 

In combined modes, estimated ORs tended to increase with decreasing SES, regardless 

of the continuous function specified in models (linear, quadratic, cubic); this pattern was 

observed across all SES indicators and in each city (Figure 2.3). In Atlanta, robust 

associations between ozone and pediatric respiratory disease were observed regardless of the 

socioeconomic environment in which children live. In Dallas and St. Louis, significantly 

positive estimated ORs were only observed in areas characterized as low to very low SES 

(i.e. above approximately 16% below poverty in Dallas and 20% below poverty in St. Louis). 

However, in many models specified with quadratic or cubic functions of SES we also 

observed a decrease in the magnitude of estimated ORs at the lowest extremes of the SES 

distribution (Figure 2.3).  

In combined models, we found no evidence of linear effect modification by 

neighborhood SES, but found some evidence of non-linear effect modification. Specifically, 

the parameter estimate for the cubic function of the NDI was nearly significant at the 0.05 

level (P = 0.052, 2-tailed) and the estimated mean ORs varied across NDI levels in a non-

linear manner (Figure 2.3). Note that in combined models, the relative similarity across cities 

in linear and non-linear patterns of effect modification reflects the underlying assumption 
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that the effect of neighborhood SES on ozone-related respiratory disease is the same in each 

city. To assess deviation from this assumption, we also fit city-specific models 

(Supplementary Figure S2.2). In city-specific analyses, patterns of estimated ORs generally 

reflected those of the combined models, however, some qualitative differences were 

observed. The differences between combined and city-specific models were primarily 

observed when comparing the shape of the nonlinear curve from models fit with quadratic 

functions of neighborhood SES. For example, when combined and city-specific models were 

fit with quadratic functions of neighborhood SES, estimated ORs in Dallas followed an 

inverted U-shape across levels of SES that was not observed in the other cities; however, 

this pattern was much more dramatic in city-specific models compared to the combined 

model (Supplementary Figure S2.2).  

Although our assessment suggested effect modification by neighborhood SES, inclusion 

of neighborhood SES in both combined and city-specific models did not substantively 

explain variability in the unobserved true effects of ozone across ZCTAs as measured by the 

between-ZCTA heterogeneity parameter, τ (results not shown); these findings imply 

unexplained heterogeneity across ZCTAs and warrant further inquiry. 
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Figure 2.3: Associations between 
ozone and pediatric respiratory ED 
visits by continuous neighborhood 
SES. Combined meta-regressions were 
used to examine effect modification of the 
association between ozone and pediatric 
respiratory disease by neighborhood SES. 
Linear, quadratic, and cubic functions of  
% <12th grade education (3A), % below 
poverty (3B), and the NDI (3C) were 
included in combined meta-regressions to 
examine linear and non-linear effect 
modification. Solid black lines represent 
estimated ORs between ozone and 
pediatric respiratory disease ED visits by 
ZCTA-specific values of neighborhood 
SES. Gray polygons represent 95% PIs of 
the estimated ORs. Histograms below 
each plot represent the distribution of 
ZCTA-specific SES values in each city. 
Dotted black lines represent the 2.5th and 
97.5th percentile values of neighborhood 
SES in each city. The y-axis scale on the 
right side of each graph represents the 
frequency count of ZCTAs. 
 
Abbreviations: Abbreviations: ED, 
Emergency Department; NDI, 
Neighborhood Deprivation Index; OR, 
odds ratio; PI, Posterior Intervals; SES, 
socioeconomic status; ZCTA, Zip Code 
Tabulation Area. Plots adapted from R 
code available at http://www.ag-
myresearch.com/lancet2015.html 
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Spatial mapping and risk visualization 

To visually and qualitatively explore spatial patterning, we transferred estimated mean 

ORs from combined models that included cubic functions of the NDI (Figure 2.3C) onto 

spatial maps (Figure 2.4). The spatial maps presented in Figure 2.4 reveal strong spatial 

patterning of the ORs and this mapping exercise allowed us to qualitatively assess 

commonalities among cities. For example, ORs tended to be greater in areas clustered near 

urban centers and along major roadways, suggesting common areas of concern in each city. 

We also observed distinct patterns of clustering in each city (e.g. a cluster of high ORs in 

southwest St. Louis); these differences may be related to patterns of urban development and 

socio-demographic clustering unique to each city.  
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DISCUSSION 

 
In this study, we assessed the short-term effects of ozone on respiratory ED visits 

among children in three US cities. We used a 2-stage Bayesian hierarchical approach to 

examine modification by neighborhood SES and we used information from three cities to 

improve the representativeness of our results. Our methodology is similar to previous work 

in this field, but extends that work in two key ways: (1) we specifically focused our meta-

regression on ozone-related respiratory disease in the pediatric population, a subpopulation 

with known sensitivities; and (2) by pooling effects at the ZCTA-level (instead of the city or 

county-level as is commonly done,[17-21] we were able to quantitatively and qualitatively 

(through spatial mapping) assess socioeconomic influences at a finer scale resolution than 

was done previously. Our findings add new insights, and new questions, to the burgeoning 

knowledge base on neighborhood socioeconomic modifiers of air pollution-health effects.  

In overall analyses we observed statistically significant associations between 3-day 

average concentrations of ozone and pediatric respiratory disease in Atlanta and Dallas. 

Associations were non-significant in St. Louis, but were similar in magnitude to observed 

associations in Dallas. These results and their respective magnitudes of association are in line 

with our previous findings from these cities [11, 16, 23, 24] and with work by others on 

ozone related respiratory disease.[31-34] 

A primary objective of our study was to examine effect modification by neighborhood 

SES in each city and to evaluate whether patterns of effect modification differed by city. We 

primarily assessed effect modification through the use of combined meta-regressions that 

pooled information across ZCTAs in our three cities. By combining information from all 

ZCTAs we were able to more generally assess the presence of linear and non-linear effect 

modification across study areas. Another advantage of the combined model approach was 
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greater power to detect effect modification versus city-specific models that had fewer 

ZCTAs contributing data; however, combined models forced the effect of neighborhood 

SES on ozone-related respiratory disease to be uniform across all cities. Because 

neighborhood SES may represent a confluence of extrinsic vulnerability factors and because 

these factors may differ by city, this is a strong assumption and therefore we also fit city-

specific models to assess this assumption. Comparison of results from combined and city-

specific models did not yield substantially different interpretations; in fact, patterns of effect 

modification were largely similar across cities and observed differences could have been due 

to limited power in city-specific models as well as observed sensitivity of the city-specific 

models to sparse data at extreme values of neighborhood SES. Therefore, results from 

combined meta-regressions were used to facilitate interpretations. 

In each city, results from combined meta-regressions fit with categorical SES indicators 

suggested stronger associations between ozone and pediatric respiratory disease in 

neighborhoods characterized as poverty areas and in neighborhoods above 90th percentile 

values of the NDI. However, differences between groups were not statistically significant 

due to wide posterior intervals. Similar patterns were found in Atlanta and St. Louis in 

previous studies that examined neighborhood SES as a modifier of associations between air 

pollution and pediatric asthma.[12, 24, 35] When using % <12th grade to indicate SES we did 

not observe differences between strata, suggesting that observed effect modification depends 

on the way in which neighborhood SES is measured. 

In combined meta-regressions fit with continuous values of neighborhood SES, we 

found some evidence of non-linear patterns of effect modification across levels of SES, 

particularly for the NDI; overall, these results reflected those observed with categorical 

indicators of SES in that ORs tended to increase with decreasing neighborhood SES. Our 
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investigation of modification by continuous SES also resulted in the following key 

observations: (1) we observed robust associations between ozone and pediatric respiratory 

disease in Atlanta regardless of the socioeconomic environment in which children live (i.e. 

nearly all ZCTA-specific ORs were significantly positive between the 2.5th and 97.5th 

percentiles of neighborhood SES). However, in both Dallas and St. Louis, significantly 

positive associations between ozone and pediatric respiratory disease were only observed in 

areas that are characterized as low to very low SES (i.e. between the 75th and 95th percentile 

of neighborhood SES); and (2) in some analyses we observed weak associations in the lowest 

SES neighborhoods [i.e., neighborhoods at or above the 95th percentile of % below poverty 

(the extreme right-tail of the SES distribution)]. 

Non-linear effect modification by continuous neighborhood SES has not been examined 

previously and findings from this study add to the knowledge base on neighborhood SES as 

a modifier of air pollution-respiratory disease associations among children. While stronger 

associations between ozone and respiratory disease have been consistently observed in 

children compared to adults,[2, 16, 34] the evidence on extrinsic factors (e.g. low 

socioeconomic status) and their potential to modify ozone-health associations is limited.  A 

recent systematic review by Vinikoor-Imler et al. designates the weight of evidence, 

regarding neighborhood SES as a modifier as suggestive only, citing “inconsistencies within 

a discipline” or “lack of coherence across disciplines” as reasons for not being able to make 

more definitive inferences.[2] Our results suggest potential non-linearity in effect 

modification, different patterns of effect modification depending on choice of neighborhood 

SES indicator, and spatial patterning of risk.   The non-linear patterns and different findings 

with different SES indicators may account for some of the inconsistencies observed in the 

studies reviewed by Vinikoor-Imler et al.  
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However, our results also raise additional questions worthy of investigation. For 

example, why are ORs weak in the lowest SES neighborhoods? These observations are in 

stark contrast with our intuition and belief that children from impoverished neighborhoods 

would be more vulnerable to the respiratory effects of ozone, compared to children living in 

wealthy neighborhoods. Our study is not designed to answer this question directly, but one 

possible reason for this observation may be that children living in wealthier neighborhoods 

have few component causes of air pollution-health effects; therefore, ozone has a substantial 

relative influence (i.e. a large piece of the ‘causal pie’) on air pollution-health associations[36]. 

Whereas children in living in lower SES neighborhoods may have a multitude of exposures 

that could exacerbate respiratory disease, and ozone is only one of many factors (i.e. 

exposure to ozone constitutes a small piece of the ‘causal pie’). 

Another plausible reason for having observed weaker associations in low SES 

populations may be due to our use of multiplicative models and the mathematical scale of 

effect measures. While multiplicative models are used in the vast majority of air pollution-

health studies,[3, 37] the true nature of the effect of ozone on ED visits may be additive. In 

our own data, we observed a marked increase in ED rates from high SES to low SES in each 

city and for each SES indicator (Figure 2.5). Assuming additive effects, low baseline risk 

could explain stronger relative effects of ozone in the highest SES populations and apparent 

weaker relative effects in the lowest SES populations.[12, 38] However, in many analyses we 

observed strong, positive associations in low SES areas, which may reflect supra-additive 

effects of SES and ozone.[12] While there are methods for estimating additive interaction 

based on results of multiplicative models (e.g. the Relative Excess Risk due to Interaction 

(RERI) and the Synergy Index), these methods cannot be straightforwardly applied to our 

models, and the validity of applying these methods to models with multiple covariates and a 
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continuous exposure is uncertain.  

Another potential factor influencing observed associations is complex spatial patterning 

of respiratory disease risk and socioeconomic status. Our modeling approach enabled us to 

qualitatively assess similarities and differences in spatial patterning of ozone-health 

associations across cities by transferring estimated ZCTA-specific ORs onto a spatial canvas 

to visualize locations of low- and high-risk areas. Findings from this qualitative assessment 

show that spatial influences are apparent in each city. The observed clustering of health risk 

around urban centers and roadways (seen in all cities), as well as spatial patterning that is 

unique to each city, may partially account for the patterns of effect modification observed. 
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Figure 2.5: Annual mean pediatric respiratory disease ED visit rates by neighborhood SES for each 
ZCTA in Atlanta (2002-2008), Dallas (2006-2008), and St. Louis (2007-20008). Respiratory disease ED 
rates are reported per 1000 children (5-18 years old) and were calculated for each ZCTA by dividing the annual 
total number of respiratory disease ED visits by annual estimates of the 5-18 year old population for each year 
in the study period. Annual ED Rates were then averaged over the study period of each city. ED visit rates for 
each ZCTA are represented by the “+” symbol and shown in Figure 2.5A by percentage (%) of the adult 
population (≥ 25 years old) with less than a 12th grade education (% < 12th grade), in Figure 2.5B by % of 
households living below the federal poverty line (% below poverty), and in Figure 2.5C by the Neighborhood 
Deprivation Index (NDI). The solid black line represents local polynomial regression using weighted least 
squares to fit a line through the data. The dotted gray lines represent the 1st, 2nd, and 3rd quartile values of each 
SES indicator. In each panel and city, neighborhood SES decreases from left to right. Abbreviations: ED, 
Emergency Department; NDI, Neighborhood Deprivation Index; RDAS, respiratory disease; SES, 
socioeconomic status; ZCTA, ZIP Code Tabulation Area. 
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In our study, inclusion of neighborhood SES in models did not appear to significantly 

explain heterogeneity in ozone-related pediatric respiratory disease across ZCTAs. There are 

several limitations that could have contributed to this observation. First, by assessing 

neighborhood SES effects at the ZCTA level, we assumed that ZCTA boundaries are 

relevant socioeconomic environments with regards to air pollution vulnerability. However, 

previous studies using similar methods have only assessed city or county-level effects;[17-21] 

given that neighborhood SES often varies over smaller spatial scales than counties, our 

approach, which assessed neighborhood effects at the ZCTA-level, is an improvement over 

these previous studies. Second, we used neighborhood SES values that were averaged across 

the study periods to evaluate effect modification of ozone-health associations. While these 

averages accounted for any shifts in socioeconomic composition that may have occurred 

during the respective study periods of our three cities, use of these averages in epidemiologic 

analyses assumed that the SES of all ZCTAs were constant. Due to Dallas’ relatively short 

study period, we expect this type of exposure misclassification to be less of an issue for 

Dallas than Atlanta or St. Louis. Finally, although we have large numbers of daily ED visits 

within each city, power to detect effect modification by socioeconomic factors may have 

been limited. 
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CONCLUSION 

It is well established that ozone is a potent oxidizer and highly toxic to the epithelial cells 

of the entire respiratory tract. In toxicological studies, acute exposures to ozone induce 

transient physiological and biochemical changes while chronic exposures lead to cumulative 

damage or permanent decreases in airway function.[39] Continued efforts to better identify 

individual- and population-level vulnerabilities, while producing generalizable findings, are 

imperative. 

Our findings suggest that neighborhood-level SES is a factor contributing short-term 

vulnerability to ozone-related pediatric respiratory morbidity in Atlanta, Dallas, and St. 

Louis. While nuanced relationships between neighborhood SES and ozone-respiratory 

health were observed in each city, overall findings were largely generalizable. Synthesizing 

our results from combined meta-regressions and taking into account the high baseline risk in 

low SES populations (Figure 2.5), we conclude that children living in low SES environments 

in Atlanta, Dallas, and St. Louis suffer from a higher burden of respiratory disease due to 

ozone compared to their counterparts living in wealthier SES neighborhoods.   
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Supplemental Figure S2.1. Distribution and summary statistics of ZCTA-level SES for % below 
poverty (1A), % <12th grade education (1B), and the NDI (1C) in each city. Descriptive results include 
data from the complete ED database (data from all ZCTAs). Abbreviations: % <12th grade, percentage of the 
adult population (≥25 years old) with less than a 12th grade education; % below poverty, percentage of 
households living below the Federal Poverty Line; Max, maximum; Min, minimum; n miss., number missing; 
NDI, Neighborhood Deprivation Index; p25, 25th percentile; p50, 50th percentile (median), p75, 75th 
percentile; SD, standard deviation; SES, socioeconomic status, ZCTA, Zip Code Tabulation Area.  
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Supplemental Table S2.1. Number of respiratory disease ED visits and number of ZCTAs contributing data 
to high and low SES neighborhoods in each citya 

City 

  Undereducated Area 
(UA) Status 

 Poverty Area (PA) 
Status 

 Deprivation Area Status 
(≤ or > 90th %tile NDI) 

Metric Total # 
Not UA 

(high SES) 
UA 

(low SES)  
Not PA 

(high SES) 
PA 

(low SES) 

 ≤ 90th %tile 
NDI 

(high SES) 

> 90th %tile 
NDI 

(low SES) 
Atlanta #ED visits 211,207 183,156 28,051  163,880  47,327   173,169 38,038 
 #ZCTAs 179 155 24  153 26  162 17 

Dallas #ED visits 96,108 62,105 34,003  58,181 37,927   76,623 19,485 
 #ZCTAs 205 158 47  155 50  182 23 

 St. Louis #ED visits 111,949 92,261 19,688  80,236  31,713   82,739 29,210 
 #ZCTAs 151 131 20  122 29  128 23 
a Descriptive results limited to data from Analytical ED database (ZCTAs with at least 50 ED counts) 
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Supplemental Figure S2.2: 
Associations between ozone and 
pediatric respiratory ED visits 
by continuous neighborhood 
SES. City-specific meta-regressions 
were used to examine effect 
modification of the association 
between ozone and pediatric 
respiratory disease by 
neighborhood SES. Linear, 
quadratic, and cubic functions of  
% <12th grade education (2A), % 
below poverty (2B), and the NDI 
(2C) were included in city-specific 
meta-regressions to examine linear 
and non-linear effect modification. 
Solid black lines represent 
estimated ORs between ozone and 
pediatric respiratory disease ED 
visits by ZCTA-specific values of 
neighborhood SES. Gray polygons 
represent 95% PIs of the estimated 
ORs. Histograms below each plot 
represent the distribution of 
ZCTA-specific SES values in each 
city. Dotted black lines represent 
the 2.5th and 97.5th percentile values 
of neighborhood SES in each city. 
The y-axis scale on the right side of 
each graph represents the 
frequency count of ZCTAs. 
 
Abbreviations: Abbreviations: ED, 
Emergency Department; NDI, 
Neighborhood Deprivation Index; 
OR, odds ratio; PI, Posterior 
Intervals; SES, socioeconomic 
status; ZCTA, Zip Code 
Tabulation Area. Plots adapted 
from R code available at 
http://www.ag-
myresearch.com/lancet2015.html 
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CHAPTER 3 
 

Evaluation of individual and neighborhood factors as modifiers of the association between 
warm-season temperature and pediatric asthma morbidity in Atlanta, GA 
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ABSTRACT 
 
Introduction. Previous studies have found associations between respiratory morbidity and 

high temperatures; however, few studies have explored associations in potentially sensitive 

subpopulations. Methods. We evaluated individual and neighborhood factors as modifiers 

of the association between warm-season (May-Sept.) temperature and pediatric respiratory 

morbidity in Atlanta during 1993-2012. We used emergency department (ED) visit data 

among 5-18 year-olds with a diagnosis of asthma or respiratory disease. Daily maximum 

temperature (Tmax) was acquired from the observing station at Atlanta Hartsfield 

International Airport. Poisson generalized linear models were used to estimate rate ratios 

(RR) between daily Tmax and asthma or respiratory disease ED visits, controlling for time 

and meteorology. Tmax was estimated for single-day lags of 0-6 days and modeled with 

cubic terms to allow for non-linear relationships. Effect modification by individual factors 

(race, sex, insurance status) and neighborhood socioeconomic status (SES; ZIP code levels 

of poverty, education, and the neighborhood deprivation index) was examined via 

stratification. Results. Estimated RRs for Tmax and pediatric asthma ED visits were 

positive and significant for lag days 0-4 and strongest on lag day 2 (RR=1.06, 95% CI: 1.03, 

1.09 for a change in Tmax from 27 °C to 32 °C (25th to 75th percentile). We observed 

stronger RRs between Tmax and asthma among males compared to females, non-white 

children compared to white children, children with private insurance compared to children 

with Medicaid, and among children living in high compared to low SES neighborhoods, 

defined by poverty levels. Associations between Tmax and respiratory disease ED visits were 

weak and non-significant. Conclusions. Results suggest individual-level socio-demographic 

factors confer vulnerability to temperature-related pediatric asthma morbidity, and may aid 

in risk assessment and targeted prevention strategies. 
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INTRODUCTION 

Global surface temperatures have risen steadily and rapidly for the past several decades, 

resulting in location-specific variation in ambient temperatures and more frequent episodes 

of extreme heat.[1, 2] Climate change is expected to cause higher warm-season ambient 

temperatures, especially in large metropolitan cities where temperatures are amplified by the 

urban heat island effect.[3-5] Although high ambient temperature is a well-documented 

cause of cardiorespiratory mortality, particularly among the elderly,[6-12] much less is known 

about the effects of high ambient temperature on respiratory morbidity and the influence of 

modifying factors among sensitive subpopulations remains largely unexplored.  

Among the studies that have investigated high temperature-related respiratory morbidity, 

there is mounting epidemiologic evidence for a lagged effect of temperature[10, 13-17], and 

stronger associations among children and the elderly compared to other age groups[10, 14, 

15, 18, 19]; several studies have also found that the effects of temperature on respiratory 

morbidity remain after controlling for ambient air pollution [10, 17, 20-22] suggesting a 

strong, independent effect of high temperature that does not only occur through the effect 

of air pollution. However, there is less agreement on whether thresholds or non-linear 

exposure-response functions exist regarding the effects of high temperature on respiratory 

outcomes[10, 16, 23]. Some studies have reported threshold or non-linear exposure-response 

functions[15, 18, 19, 22], while others have not [13, 20, 24, 25], and multi-city studies have 

reported heterogeneity in the exposure-response function between study areas.[18, 21] 

Inconsistencies between studies may be due to a variety of factors including differences 

in the climate of the study area, different adaptive strategies employed in cities (e.g. high 

utilization of AC, cooling centers, early warning systems), differences in population-level 

acclimation to climate, and the use of disparate temperature metrics to capture exposure to 
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high ambient temperature (e.g. daily minimum temperature, daily mean temperature, daily 

maximum temperature, diurnal temperature ranges, heat waves, and heat stress indices).[23, 

26] Despite a small body of literature, and some inconsistencies, commonalities among 

studies have emerged: (1) high temperatures are generally associated with increases in 

respiratory morbidity; (2) health impacts vary across population subgroups and study areas; 

(3) exposure-response functions may vary by location; and (4) children are among the most 

vulnerable.  

Children are considered a susceptible population to respiratory morbidity due to higher 

ventilation rates, developing respiratory and immunological systems, and anatomically 

smaller peripheral airways that predispose children to airway inflammation and 

obstruction.[27-30] Children are also uniquely susceptible to the adverse health effects of 

temperature due to an underdeveloped thermoregulatory system that results in a diminished 

capacity to maintain optimal internal temperatures under heat stress.[31] Impaired 

thermoregulation and prolonged heat exposure can result in hyperthermia and lead to 

increases in core body temperature, systemic inflammation, protein damage, increased 

cardiac output, and increases in tidal volume, respiratory rate, and pulmonary ventilation[21, 

31-33]. Additionally, inhalation of hot, humid air was shown to trigger bronchoconstriction 

in patients with mild asthma [34, 35] and airway hypersensitivity in toxicological studies.[36] 

Given the impacts of high temperature on lung function via hyperthermia and 

bronchoconstriction and the physiological susceptibility of children, exposure to high 

temperature poses a serious health concern for children, especially those with underlying 

diseases or vulnerabilities. 

In addition to physiological factors, other intrinsic (e.g. sex, race) and extrinsic [e.g. 

socioeconomic status (SES), health care access] factors may confer susceptibility and 
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vulnerability to temperature related pediatric respiratory disease. Extrinsic factors can 

operate at multiple scales (such as the individual- or neighborhood-level); therefore, it is 

important for epidemiological studies, when feasible, to evaluate both individual- and 

neighborhood-level factors for their ability to modify temperature-respiratory health 

associations. Improved understanding of modifying factors will serve to enhance climate 

change adaptation efforts and help protect vulnerable populations from life-threatening 

environmental exposures. Furthermore, identification of vulnerable populations in large 

urban areas is critical: populations living in large metropolitan areas will be 

disproportionately impacted by climate change due to the urban heat island effect,[3-5] and 

emerging research has shown that sprawling cities, like Atlanta, are experiencing a rapid 

increase in the number of extreme heat events occurring annually (double the rate of 

increase observed in compact cities).[5, 17] 

Our study builds on previous work in Atlanta from an extensive assessment of heat-

related morbidity for 17 different health outcomes across 4 different age groupings (0-4 

years, 5-18 years, 19-64, and >65)[17]. One sub-analysis of this comprehensive study 

identified positive and significant associations between high warm-season temperature and 

asthma ED visits among children, 5-18 years old; associations were non-significant across 

other age groupings[17]. Here, using a similar methodology, we focus on this previously 

observed association between high temperature and respiratory morbidity among children 

(5-18 years) to specifically examine the degree to which individual-level factors (sex, 

race/ethnicity, insurance status) and neighborhood (SES) modify associations, and to 

examine the non-linear effects of temperature across different modifying factors.  
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METHODS 

Data sources 

Hourly meteorological data for 20-county Atlanta for the period January 1, 1993 through 

December 31, 2012 were obtained from the automated surface observing station located at 

Atlanta Hartsfield International Airport. Hourly observations were used to create daily 

ambient meteorological metrics including daily maximum temperature and dew-point 

temperature (defined as the highest recorded hourly temperature or dew-point temperature 

in a 24 hour period), and daily total precipitation. We selected daily maximum temperature 

(in degrees Celsius, °C) as our primary exposure of interest based on our previous work[17] 

and use of this metric by others in related health studies.[26, 37-41] 

Patient-level emergency department (ED) visit data for the period January 1, 1993 to 

December 31, 2012 were acquired from hospitals located within the 20-county metropolitan 

area of Atlanta; ED visit data from 1993-2004 were acquired directly from individual 

hospitals and ED data from 2005-2012 were acquired from the Georgia Hospital 

Association. Relevant data elements included admission date, age, sex, race/ethnicity, 

method of ED visit payment, ZIP code of patient residence, and International Classification 

of Diseases, 9th Revision (ICD-9) diagnosis codes. ED visits for asthma were identified using 

primary ICD-9 diagnosis codes for asthma (493.0–493.9) or wheeze (786.07) and ED visits 

for respiratory disease were identified using primary ICD-9 codes 460-466, 477, 480-486, 

491-493, 496, 786.07, which indicated diagnoses of upper respiratory infections, 

bronchiolitis, pneumonia, chronic obstructive pulmonary disease, asthma, and wheeze.  Data 

were restricted to the pediatric population (5–18 years old) and to patients with a residential 

ZIP code located wholly or partially in 20-county Atlanta. Data were aggregated to daily 

counts of asthma and respiratory ED visits by strata defined by individual factors [sex, 
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race/ethnicity, insurance status (a proxy for individual-level SES)] and neighborhood SES 

variables of interest. The Emory University Institutional Review Board approved this study 

and granted exemption from informed consent requirements. 

Neighborhood SES was evaluated using census data at the ZIP code level. To create 

spatial scales compatible with census based data, each ZIP code in the ED visit database was 

assigned to a 2010 Zip Code Tabulation Area (ZCTA, Census Bureau boundaries, created 

from census blocks to approximate ZIP codes). Assignments were accomplished by 

matching each ZIP code to a 2010 ZCTA based on 5-digit ZCTA ID numbers. ZIP code 

change reports helped facilitate ZCTA assignments for 31 ZIP codes that were altered or 

eliminated during the study period. ZCTAs that represented locations of businesses, P.O. 

boxes, and university campuses were excluded from the study. The resulting study area 

included 191 ZCTAs in Atlanta. 

ZCTA-level (neighborhood) SES was estimated from the 1990 US Census long form, 

the 2000 US Census long form, and the American Community Survey (ACS) 5-year (2007-

2011) summary file, all normalized to 2010 ZCTA borders (“The Time-Series Research 

Package”, GeoLytics, Inc., East Brunswick, NJ, 2013). We estimated annual values of 

neighborhood SES between 1993 and 2006 by linear interpolation of Census 1990, Census 

2000, and ACS 2007-2011 data. Neighborhood SES from 2007-2012 was estimated using 

only ACS 2007-2011 data. To represent neighborhood-level SES we chose percentage of the 

population (≥25 years old) with less than a 12th grade education (% < 12th grade), percentage 

of households living below the poverty line (% below poverty), and the Neighborhood 

Deprivation Index (NDI), a composite index comprised of five socio-demographic domains 

(income/poverty, education, employment, housing, and occupation) that were summarized 

with principle components analysis.[42] The 1990 Census did not include all of the variables 
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that constitute the NDI; therefore, ED visit data from 1993-1999 were assigned NDI values 

based on data from the 2000 Census.  

 

Statistical analyses 

Poisson generalized linear models were used to estimate associations between daily 

maximum temperature and daily counts of pediatric asthma or pediatric respiratory disease 

ED visits. All analyses were restricted to the warm-season, defined here as May through 

September, and daily maximum temperature values were estimated for single-day lags of 0-6 

days. Poisson models were fit with cubic functions of maximum temperature (using a 

combination of linear, squared, and cubic terms) to allow for non-linear relationships. 

Associations between maximum temperature and ED visits were assessed for lag days 0 to 6, 

using separate models for each lag day and for each health outcome (asthma or respiratory 

disease). Models accounted for Poisson overdispersion, and included additional control for 

days with any precipitation (yes/no) and maximum dew-point temperature using cubic terms 

at the same lag period as maximum temperature. Time-varying factors were controlled for 

using indicator variables for day of the week, holidays, periods of hospital participation, year 

of the study period, year-specific linear trend of day-of-year, and a cubic spline for day of the 

warm season with monthly knots to control smoothly for time-trends.  

In stratified analyses, we evaluated whether individual factors (sex, race/ethnicity, and 

insurance status) or neighborhood SES modified associations between maximum 

temperature and pediatric respiratory morbidity. For the individual factors, daily ED visit 

counts were aggregated for the following strata: male or female sex; white or non-white race 

(a consolidated category that included African American, Hispanic, and other 

race/ethnicity); and private insurance or Medicaid insurance. ED visit records with missing 
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information on sex, race/ethnicity, or insurance status were excluded from these analyses, 

and ED visits paid by worker’s compensation or paid for directly by the patient were also 

excluded from analyses examining modification by insurance status. For neighborhood SES, 

daily ED visit counts were aggregated for strata based on several a priori cut-points of 

continuous ZCTA-level education, poverty, and NDI values including median, tertile, 

quartile, and 90th percentile cut-points. 

For all models, we estimated rate ratios (RR) and 95% confidence intervals (CI) for 

changes in maximum temperature relative to a maximum temperature value of 27 °C, the 

25th percentile value of daily maximum temperature during the study period. The primary 

temperature increment evaluated was 27-32 °C, representing an interquartile range increase 

in maximum temperature from the 25th to 75th percentile; other temperature increments were 

considered for evaluating non-linearity in effects. RRs for a given temperature relative to 

27°C were estimated by contrasting linear, squared, and cubic terms of the chosen maximum 

temperature value to the referent value. Evidence of significant effect modification by 

individual factors and neighborhood SES was assessed by estimating the degree of 

heterogeneity between stratum-specific RRs in pairwise comparisons for the primary 

temperature increment (27-32 °C).[43] All analyses were performed using SAS 9.4 (SAS 

Institute, Cary, NC) and R version 3.2.2 (R Foundation for Statistical Computing, Vienna, 

Austria). 
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RESULTS 
 
Descriptive results 

During 1993-2012, year-round daily maximum temperatures ranged from -7.80 °C to 

40.6°C and were highly correlated with maximum dew-point temperature (Spearman’s ρ of 

0.89, Table 3.1). Monthly average distributions of maximum temperature from 1993 to 2012 

indicated that the 5 warmest months in Atlanta were May to September, defined here as the 

warm-season, with peak temperatures observed in July and August (Figure 3.1). During the 

warm-season, maximum temperature values ranged from 13.3 °F to 40.6 °C (Table 3.1); 

previous findings in Atlanta reported no apparent trend in daily warm-season maximum 

temperature from year to year between 1993 and 2012.[17] 

Our warm-season health outcome database included 1,528,145 total ED visits among 

children aged 5-18 years with 51,360 ED visits for asthma and 161,301 ED visits for 

respiratory disease during the years 1993-2012 in 20-county Atlanta (191 ZCTAs). Although 

nearly all asthma ED visits recorded information on patient sex and insurance status 

(missing for <1% and 5% of ED visits, respectively), approximately 50% of ED visits did 

not have information on race/ethnicity; this was primarily due to complete missingness of 

race/ethnicity data from 2007-2009 (Table 3.2). A greater number of ED visits were made 

by male compared to female children, non-white compared to white children, and children 

paying for their visit using Medicaid compared to private insurance (Table 3.2).
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During our study period, socioeconomic composition of the population varied widely 

across the 191 Atlanta ZCTAs (e.g., in 2010, % below poverty varied from 1.66% to 45.5%) 

and large variability was observed consistently during each year of our study period (Figure 

3.2). Between 1993 and 2012, maximum and mean values of % <12th grade education 

declined, indicating an increase in educational attainment for Atlanta neighborhoods during 

our study period (Figure 3.2). Conversely, mean values of neighborhood % below poverty 

increased from 1993 to 2012, suggesting, on average, an increase over time in the number of 

households in Atlanta neighborhoods that were living in poverty (Figure 3.2). Across 

indicators of neighborhood SES, we observed moderate-correlations between % <12th grade 

education and the other SES indicators, and high-correlation between % below poverty and 

the NDI (Spearman’s ρ>0.87), suggesting that % below poverty and the NDI describe 

similar SES constructs and have similar spatial patterning (Table 3.3). 
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Overall associations 

Associations between maximum temperature and pediatric respiratory morbidity for lag 

days 0 to 6 are reported in Table 3.4. Significant associations between maximum temperature 

and pediatric asthma ED visits were observed across lag days 0-5, with the strongest 

association observed on lag day 2 [RR = 1.059 (95% CI: 1.030, 1.088) for an increase in 

maximum temperature from 27 °C to 32 °C]. Associations between maximum temperature 

and pediatric respiratory disease ED visits were weak and non-significant for all lag days 

examined.  

Table 3.4: Associations between maximum temperature and pediatric respiratory outcomes on lag 
days 0 to 6 per increase in maximum temperature from 27 °C to 32 °C 

Tmax  Asthmaa ED  Respiratory Disease b ED 
Lag day  RRs 95% CI      RRs 95% CI 

0 1.037 1.006 1.069  1.008 0.988 1.029 
1 1.043 1.014 1.073  0.997 0.978 1.016 
2 1.059 1.030 1.088  1.008 0.990 1.027 
3 1.058 1.030 1.088  1.006 0.987 1.024 
4 1.038 1.010 1.067  0.987 0.970 1.006 
5 1.037 1.009 1.065  0.988 0.970 1.006 
6 1.025 0.997 1.053  0.989 0.971 1.007 

a primary diagnosis of asthma/wheeze (ICD-9 codes 493.0–493.9/786.07) 
b primary diagnosis of respiratory disease (ICD-9 codes 460-486, 493.0–493.9,786.07) 
Abbreviations: RR, rate ratio; CI, confidence interval; Tmax, daily maximum temperature °C 

Effect modification 

For all analyses examining effect modification, we focused on results for lag day 2 

(Figures 3.3-3.5); results for lag days 0 to 6 are presented in the Supplemental Material. 

Unless otherwise noted, stratum-specific RRs are scaled to an increase in maximum 

temperature from 27°C to 32°C. 

Effect modification: Individual factors 

Analyses stratified by sex (male verses female) suggested somewhat stronger associations 

between maximum temperature and asthma ED visits in males compared to females for lag 

days 0 to 4 [e.g. lag 2 RR among males = 1.064 (95% CI: 1.029, 1.100); lag 2 RR among 

females = 1.054 (95% CI: 1.015,1.095)] (Figure 3.3a, Supplemental Figure S3.1a); however, 
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confidence intervals were wide and the differences in RRs between strata were not 

significant at the 0.05 level. Similarly, associations between maximum temperature and 

pediatric respiratory disease ED visits did not differ by patient sex, and associations among 

both males and females were non-significant for all lag days (Figure 3.3b, Supplemental 

Figure S3.1b).  

In analyses stratified by race/ethnicity (white verses non-white), results suggested 

stronger associations between maximum temperature and asthma ED visits in non-white 

children compared to white children for lag days 0 to 3 (Supplemental Figure S3.1a), with 

near significant (P=0.07) differences in RRs between strata on lag day 2 suggesting potential 

effect modification of temperature-related asthma by race/ethnicity (Figure 3.3a). We did 

not find evidence that race/ethnicity modified the association between maximum 

temperature and respiratory disease. Note that significant associations between temperature 

and respiratory disease were observed within each race stratum for lag days 0-3 

(Supplemental Figure S3.1b); these observations were different from the weak overall 

associations we observed between maximum temperature and pediatric respiratory disease 

ED visits (Table 3.4) and are likely due to missingness among the race data in the later time 

period of our study (our data on race/ethnicity was more complete prior to 2007). In 

sensitivity analyses, we observed stronger associations between maximum temperature and 

respiratory outcomes (asthma and respiratory disease) in the years prior to 2007 (e.g., for 

respiratory disease ED visits prior to 2007, lag 2 RR = 1.052 (95% CI: 1.030,1.075 per 27-32 

C increase) compared to the later time period (for respiratory ED visits between 2007-2012, 

lag 2 RR = 0.961 (95% CI: 0.931, 0.992). Although the reason for attenuated RRs in the later 

time period is unknown, these findings agree with previous findings from Atlanta[17]. 
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Results from analyses stratified by insurance status (private insurance verses Medicaid 

insurance) showed consistently stronger associations between maximum temperature and 

respiratory outcomes in children whose ED visit was paid by private insurance compared to 

those who used Medicaid insurance [e.g. for asthma, lag day 2 RR by private insurance = 

1.095 (95% CI: 1.053,1.140); lag day 2 RRs by Medicaid = 1.064 (95% CI: 1.007, 1.075)] 

(Figures 3.3a-3.3b). This pattern was observed consistently across all lag days and significant 

differences between strata were detected (Supplemental Figure S3.1), suggesting insurance 

status modifies the effect of maximum temperature on asthma and respiratory disease 

among children.  

To visualize the non-linear effects of maximum temperature and assess differences in the 

shape of maximum temperature effects across individual factors, we also estimated RRs and 

95% CIs for several temperature changes from a reference maximum temperature of 27 °C. 

Maximum temperature changes of -8 °C to +10 °C relative to 27 °C were chosen to capture 

values between the 1st and 99th percentiles of the maximum temperature distribution during 

our study period and represent a temperature range of 19 °C to 37 °C. Through this 

assessment we observed striking differences in the shape of the effect of maximum 

temperature on asthma and respiratory disease, particularly when stratifying by race/ethnicity 

and insurance status (Figures 3.3c-3.3d; Supplemental Figure S3.2). These graphs illustrate 

distinct, stratum-specific relationships with maximum temperature and, for some 

comparisons (i.e. white versus non-white race), differences between strata were more 

apparent at the lower and upper temperature extremes compared to mid-range temperatures, 

as represented by the main 27-32 °C (25th-75th percentile) increment for example. 
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Effect modification: Neighborhood SES 

Neighborhood SES was examined for its potential to modify associations between 

maximum temperature and pediatric respiratory outcomes. In general, observed patterns of 

effect modification (determined by differences between strata per change in maximum 

temperature from 27°C to 32°C) were consistent across stratification criteria (median, tertile, 

quartile, or 90th percentiles values of continuous neighborhood SES), indicating that models 

stratified by median SES values sufficiently captured patterns of effect modification 

observed across other stratification approaches (lag day 2 results presented in Figure 3.4; 

results for all lag days presented in Supplemental Figures S3.3-S3.5).  

However, effect modification was inconsistently observed depending on the choice of 

SES indicator. For example, when examining effect modification by gradations of % < 12th 

grade as an indicator of neighborhood SES, magnitudes of associations between maximum 

temperature and pediatric respiratory outcomes (asthma and respiratory disease) were very 

similar across all strata, demonstrating no modification by %<12th grade (Figures 3.4a-b; 

3.5a-5b). Conversely, when neighborhood SES was characterized by % below poverty or the 

NDI, we observed weaker associations between maximum temperature and respiratory 

outcomes among children living in low SES neighborhoods compared to children living in 

areas of higher SES (Figures 3.4a-b; 3.5a-b). This pattern was observed for both asthma and 

respiratory disease and across most lag days (Supplemental Figures S3.3-S3.5). 

In models stratified by median values of neighborhood SES, we also graphed the non-

linear effects of maximum temperature by plotting RRs and 95% CIs per maximum 

temperature changes of -8°C to +10°C relative to 27°C for each strata (maximum 

temperature range of 19°C to 37°C). The shape of the maximum temperature-response 

function differed between high and low SES strata when neighborhood SES was defined by 
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% below poverty or the NDI, and differences in RRs between strata increased at higher 

increments in maximum temperatures compared to the 27 C reference (Figures 3.5c-3.5d). 
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Figure 3.4. Associations 
and 95% CIs between 
maximum temperature at 
lag 2 and asthma and 
maximum temperature  at 
lag 2 and respiratory 
disease stratified by 
categories of 
neighborhood 
socioeconomic status. 
Figure 3.4a represents 
associations between maximum 
temperature (Tmax) at lag 2 
and pediatric asthma across 
SES strata for a change from 
27°C to 32°C. Figure 3.4b 
represents associations between 
maximum temperature (Tmax) 
at lag 2 and pediatric respiratory 
disease across SES strata for a 
change from 27°C to 32°C. * 
indicates significant statistical 
difference (two-sided P < 0.05) 
from referent group (i.e. the 
highest SES strata). Quartiles 
values are reported in Table 3.3. 
Abbreviations: CI, confidence 
interval; SES, socioeconomic 
status; Tmax, daily maximum 
temperature. 
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DISCUSSION 

In this 20-year time-series study, we evaluated the short-term effects of maximum 

temperature on respiratory ED visits among children in Atlanta, and assessed the degree to 

which individual or neighborhood factors act as effect modifiers. Only a few studies have 

examined vulnerability to temperature-related respiratory outcomes among children and our 

findings add to the small, yet growing body of literature on climate-related health effects 

among sensitive subpopulations.  

In overall analyses, we found significant associations between maximum temperature and 

pediatric asthma ED visits across several lag days. Conversely, we observed weak, non-

significant associations between maximum temperature and pediatric respiratory disease. 

Observed differences in effect across these health outcomes may be due in part to greater 

specificity of the asthma/wheeze health outcome compared to general respiratory disease, 

which included upper respiratory infections, bronchiolitis, pneumonia, COPD, asthma, and 

wheeze. Previous studies have also reported larger magnitudes of associations between 

temperature and asthma/wheeze compared to other respiratory outcomes.[17, 20, 21] 

Studies exploring the mechanistic causes of temperature-related respiratory morbidity 

suggest that inhalation of hot air activates airway sensory nerves, the cholinergic reflex 

pathway, and transient bronchoconstriction[34, 35]; therefore, it is possible that 

asthma/wheeze and related cough disorders may have a more direct relationship with high 

temperature compared to other respiratory illnesses such as upper or lower respiratory 

infections.  

We found a lagged effect of high ambient temperature on asthma, with the strongest 

associations observed on lag days 2 and 3. Previous studies have also reported lagged effects 

for temperature-related respiratory morbidity[10, 13-17, 20]; plausible reasons for a lagged 
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effect include delayed onset of respiratory symptoms, failed attempts at personal 

management of respiratory symptoms, reduced access to health care for some of our ED 

population, and/or the concurrence of high maximum temperatures during the day with 

relatively high ambient minimum temperatures at night, (i.e. a narrow diurnal temperature 

range), preventing adequate physiological thermoregulation and recovery from high daytime 

temperatures.[10, 31] 

A primary objective of this study was to identify susceptibility and vulnerability factors 

among children in relation to temperature and respiratory health. In stratified analyses, we 

evaluated both individual- and neighborhood-level factors for their ability to modify 

associations because these factors can operate at multiple scales and predispose children to 

temperature-related respiratory disease due to differences in airway physiology, 

immunological responses, time-activity patterns, cultural practices (e.g. burning of incense 

indoors), differential indoor and outdoor exposures, and/or reduced access to adequate 

health care[28, 44-49],  

 

Effect modification by individual-level factors 

At the individual-level, we examined potential effect modification by sex, race/ethnicity, 

and insurance status (a proxy for individual-level socioeconomic status). When assessing 

modification of temperature-related asthma by sex, we observed significant RRs among 

males for lag days 0-4, while RRs were typically weaker and non-significant among females 

on the same lag days; however, these differences in effect between males and females were 

not statistically significant. Previous studies focusing on temperature-related pediatric 

respiratory health have also reported slightly stronger effects between temperature and 

respiratory symptoms among male children compared to female children.[15, 20]  Male 
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children may be more susceptible to respiratory morbidity due to sex differences in airway 

maturation and function (young males tend to have greater airway resistance), a greater 

propensity for atopy, differences in immunological function, and time-activity patterns that 

increase their exposure to environmental triggers.[50-52] While physiological differences and 

gendered behaviors may confer vulnerability among young males, distinguishing sex effects 

among children is challenging due to changes in lung development and pubertal maturation 

that occur with age and differ by sex.[51, 52] For example, young males have more 

physiological disadvantages than young females, but these disadvantages are less apparent by 

adolescence and by adulthood women may have greater physiological susceptibility.[50, 51] 

Given little evidence in the literature on the potential for modification of temperature-

respiratory morbidity by sex, and the analytical difficulties of examining a sex effect among 

children, additional studies examining modification by sex are needed. 

When we stratified models based on patient race/ethnicity (white or non-white), we 

found suggestive evidence that race/ethnicity modifies associations between temperature 

and asthma ED visits, with stronger RRs observed among non-white compared to white 

children. Similar findings have been observed in other temperature-health studies[22, 53-56] 

and previous research in Atlanta has reported similar findings concerning modification by 

race/ethnicity of air pollution related-health effects.[57] Our results lend further support to 

findings across multiple disciplines that report non-white race as a risk factor for adverse 

health outcomes. Although the underlying etiology of effect modification by race/ethnicity is 

unclear, racial/ethnic differences of home environments (e.g. pets, environmental tobacco 

smoke, incense burning), and racial/ethnic differences in adherence to medication and/or 

asthma control may be contributing factors to the observed vulnerability to temperature-

related asthma morbidity in this study.[58-61]  
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To examine effect modification by individual-level SES, we used the patient’s insurance 

status as a proxy for household SES. Children were considered from a low SES household if 

their ED visit was paid using Medicaid insurance and from a high SES household if their ED 

visit was paid with private insurance. In stratified analyses, we observed statistically stronger 

associations between temperature and respiratory outcomes (asthma and respiratory disease) 

among children whose visits were paid through private insurance (high SES) compared to 

children whose visits were paid through Medicaid for changes in maximum temperature 

from 27°C to 32°C, indicating evidence of effect modification by insurance status. Because 

Medicaid eligibility in Georgia is based on family size and income limits at or below the 

Federal Poverty Line (https://dch.georgia.gov/eligibility-criteria-chart), we assumed that 

individual-level health insurance status is a meaningful indicator of low household 

socioeconomic status for children, and we assumed it would have been directly related to a 

child’s vulnerability through reduced access to health care, medications, or healthy food 

options. However, our findings suggested otherwise. Interestingly, similar findings were 

reported in a comprehensive study examining effect modification of nitrogen dioxide (NO2)-

related asthma exacerbation by insurance status and race[62]. In that study, Grineski et al. 

disaggregated insurance status into three categories: private insurance, Medicaid, and no 

insurance. They found significantly lower relative risks to NO2-related asthma, among 

children on Medicaid compared to children on private insurance,[62] and significantly greater 

relative risks among uninsured children compared to those using Medicaid or private 

insurance. Grineski et al. also examined the combined modifying effect of race and insurance 

status, and reported no racial disparities in the effect of air pollution among children on 

Medicaid, but did find racial disparities in the effect of air pollution among children on 

private insurance. Their findings may be due to differences in asthma control among 
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children with private insurance, and/or due to the possibility that some children have more 

barriers to adequate health care despite being insured. Due to low numbers of ED visits we 

were unable to estimate associations by race and insurance status. However, in light of the 

findings by Grineski et al., our results may have been more interpretable had we been able to 

disaggregate our ED data further, exploring associations among the uninsured population 

and distinguishing insurance status based on race/ethnicity.  

Further disaggregation by race and insurance status would have also enabled us to better 

understand why the directionality of the race/ethnicity effect seems to be in conflict with 

that of the insurance status effect given that non-white race was associated with Medicaid 

insurance in our population [i.e. associations between high temperature and asthma ED 

visits were stronger among non-white children compared to white children, while 

associations between high temperature and asthma ED visits were stronger among children 

on private insurance (high SES children), compared to children on Medicaid insurance (low 

SES children)]. Although our study cannot directly address this discrepancy, the racial 

composition of our ED data may be partially responsible for the observed patterns of effect 

modification: non-white children accounted for approximately 85% of asthma ED visits paid 

by Medicaid insurance and approximately 61% of asthma ED visits paid by private 

insurance. If racial disparities in exposure-response relationships are not apparent among 

children on Medicaid insurance, but are apparent among children on private insurance, as 

suggested by Grineski et. al., then having a majority of non-white children among our private 

insurance subgroup could have driven the stronger associations observed within this strata 

compared to the Medicaid strata. Note, that we are only able to assess racial composition 

across insurance status categories for asthma ED visits with information on race/ethnicity 

and insurance status (about 50% of asthma ED visits). 



 

 

129 

Effect modification by neighborhood-level SES 

We also explored the influence of low SES at the neighborhood level by characterizing 

neighborhood (ZCTA) of patient residence by gradations of neighborhood % <12th grade 

education, % below poverty, and the NDI. There was no evidence that associations varied 

across SES strata based on gradations of %<12th grade. However, when using % below 

poverty and the NDI to indicate neighborhood SES, we observed weaker associations 

among children living in low SES compared to high SES ZCTAs, regardless of the 

stratification approach used (e.g. median, tertile, quartile, and 90th percentiles). These results 

echoed our findings of effect modification by insurance status, an indicator of individual-

level SES. With regard to data source, indicators of individual SES and neighborhood SES 

were completely independent in these analyses and yet the same patterns of effect 

modification were observed. If being insured through Medicaid is a good proxy for 

individual low SES and if the ZCTA-level is a suitable scale to assess the social environment 

of one’s neighborhood then the similarities in effect modification (i.e. weak associations in 

low SES populations) for both individual and neighborhood level SES effects lend strength 

to our findings, especially given that observed modification was not in the expected direction 

(i.e. we would have expected to observe stronger associations in low SES groups). We did 

not have sufficient power to stratify on both individual and neighborhood SES, and as such 

it is unclear whether neighborhood SES, individual SES, or a joint effect of both were 

drivers of the observed modification.  

Although weaker associations in low SES populations run counter to our belief that 

children from impoverished households or neighborhoods would be more vulnerable to the 

respiratory effects of temperature, similar patterns of effect modification (or no evidence of 

effect modification) have been observed in air pollution-health studies. [63-74] Plausible 
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reasons for observing weaker associations among low SES populations compared to high 

SES populations include 1) complex spatial patterning of health risk and neighborhood level 

SES; 2) the possibility that single measures of SES are poor proxies for nuanced home or 

neighborhood socioeconomic environments; 3) the use of multiplicative models on health 

outcomes that tend to have differing baseline risks across socioeconomic subpopulations 

(i.e. asthma); and 4) children from wealthier households or living in wealthier neighborhoods 

may have few component causes of respiratory morbidity; therefore, temperature would 

have a substantial relative influence (i.e. a large piece of the ‘causal pie’).[75] Children from 

low SES households or living in low SES neighborhoods may have many different exposures 

that could exacerbate respiratory disease; in this context, high ambient temperatures may 

only be one of many contributing factors, thus exerting little relative influence on respiratory 

morbidity (i.e. a small piece of the ‘causal pie’). 

While, these myriad reasons may limit the interpretability of our results on SES effect 

modification, acknowledging them can be useful for informing future research and 

understanding inconsistent findings already reported in the literature. Based on our results, 

future studies could consider (1) modeling temperature-health effects on the additive scale, 

(2) evaluating individual and neighborhood effects within the same model, (3) examining 

effect modification by multiple indicators of SES, including composite indices, and (4) using 

health, exposure, and socioeconomic data with enhanced spatial resolution. 

A major contribution of this study was our examination of the non-linear effect of 

maximum temperature on health associations across individual- and neighborhood-level 

factors. By plotting a continuum of effect estimates relative to a reference value we observed 

differences in the shape of the maximum temperature-morbidity functions across strata of 

sex, race/ethnicity, insurance status, and neighborhood SES. Although we did not test for 
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statistical differences between strata along the entire range of the non-linear maximum 

temperature curve, differences in estimated RRs between strata of individual factors were 

greater at low and high ambient temperature extremes, while differences in RRs between 

neighborhood SES strata were greater at high ambient temperature extremes.  

Our ability to examine modification by individual and neighborhood SES factors was 

facilitated by the long 20-year study period, and rich, patient-level data. However, there are 

several limitations that we took into consideration when interpreting results. First, daily 

maximum temperature data were only available at the city-level and may have induced 

exposure misclassification error. However, a recent study found that models using non-

spatially resolved temperatures were equally as good as spatiotemporal models at estimating 

associations between daily temperature and mortality.[76] Second, we did not include control 

for air pollution in our temperature-health models; by not controlling for air pollution, our 

RRs represent the total effect of maximum temperature, including that which may be 

mediated by air pollution or aeroallergens[77]. However, previous studies by our research 

group[17] and others[10, 20-22] have shown that control for air pollution made a nominal 

impact on effect estimates, usually increasing the magnitude of the temperature effect. Third, 

50% of our ED visit data were missing information on race/ethnicity which may have 

severely limited the interpretability and generalizability of the observed pattern of effect 

modification. Forth, by assessing neighborhood SES effects at the ZCTA level, we assumed 

that ZCTA boundaries were relevant socioeconomic environments. However, other scales 

may also be relevant, and the relevance of specific scales may vary by geographical location 

due to regional patterns of urban development.[78] Fifth, SES variables were not available 

for every year of our study period and in some cases we had to impute SES data from later 

time periods; these imputed data would not be able to capture important shifts in 
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socioeconomic composition that may have occurred during the study period. Finally, 

although we had large numbers of daily ED visits during our 20-year study period, we had 

limited power to assess individual and neighborhood factors in models together. 

 

CONCLUSION 

As warm season temperatures rise due to climate change, populations living within large, 

sprawling metropolitan areas, like Atlanta, will become exceedingly exposed and vulnerable 

to high temperatures. Our results demonstrate that short-term exposures to maximum 

temperature significantly increase pediatric asthma ED visits in Atlanta, and observed lagged 

(delayed) effects suggest that health impacts can be observed for several days after exposure 

to high temperatures. We also identified race/ethnicity and insurance status as potential 

vulnerability factors at the individual-level. At the neighborhood level, results suggest that 

neighborhood-level SES (specifically poverty-related SES) is a factor contributing short-term 

vulnerability to temperature-related pediatric asthma in Atlanta. However, it is unclear 

whether neighborhood effects were influenced by individual-level SES effects (indicated by 

insurance status) or were independent of them. Our findings on vulnerability factors 

contribute new insights to the growing knowledge base on climate-related health effects and 

can be used to help tailor climate change adaptation and public health interventions 

strategies. 
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ssociations betw
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axim

um
 tem

perature and pediatric asthm
a (1a) or pediatric respiratory disease (1b) by 

individual factors per change in m
axim
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perature from
 27°C

 to 32°C
. * indicates significant statistical difference (tw

o-sided P <
 0.05) from

 referent group 
(i.e. fem
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hite race, or private insurance) and § indicates nearly significant difference (P =

 0.07) from
 referent group. H
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R
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as tested in pairw
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parisons by dividing the difference in log odds ratio by the square root of the sum
 of the variances and com

puting a Z
-statistic. 
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ental F
igure S3.2. A

ssociations betw
een cubic m

axim
um

 tem
perature and pediatric respiratory outcom

es by individual factors per change in 
m

axim
um

 tem
perature from

 27°C
. Figure S3.2a represents associations betw

een cubic m
axim

um
 tem

perature and pediatric asthm
a. Figure S3.2b represents 

associations betw
een cubic m

axim
um

 tem
perature and pediatric respiratory disease. 
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 Supplem

ental F
igure S3.5. A

ssociations betw
een cubic m

axim
um

 tem
perature and pediatric asthm

a (5a) or pediatric respiratory disease (5b) by the N
D

I 
per change in m

axim
um

 tem
perature from

 27°C
 to 32°C

. * indicates significant statistical difference (tw
o-sided P <

 0.05) from
 referent group (i.e. the highest SE

S 
strata). H

eterogeneity betw
een stratum

-specific O
R

s w
as tested in pairw

ise com
parisons by dividing the difference in log odds ratio by the square root of the sum

 of 
the variances and com

puting a Z
-statistic. N

D
I quartiles: Q

1: <
 -0.76; Q

2: ≥
 -0.76 - <

 -0.08; Q
3: ≥

 -0.08- <
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 0.55. 
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CONCLUSION 
 

Sociodemographic inequalities are posited to be key mechanisms through which 

environmental exposures induce respiratory health disparities across subpopulations. 

However, toxicological studies focusing on mechanisms of susceptibility are limited, and 

epidemiologic research has provided inconsistent findings on whether individual factors 

and/or neighborhood SES modify short-term associations between ambient air pollution or 

ambient high temperature and respiratory morbidity. From the outset, this body of work has 

endeavored to better understand the reasons underlying inconsistent reports of effect 

modification by sociodemographic factors in air pollution/climate health literature. Our 

investigation focused on the pediatric population and on the respiratory health effects of air 

pollution and high temperature because these exposures disproportionately impact 

vulnerable populations in urban settings and are also expected to increase with climate 

change.  

To some extent, the individual studies included within this dissertation were successful in 

answering our specific research questions. In other cases, findings from these studies raised 

new questions instead of answering those we focused upon initially. However, this body of 

work helped clarify the impact investigator decisions have on observed effect modification 

by neighborhood SES, while also offering analytical design recommendations for future 

evaluations.  

 

CONTRIBUTIONS 

This body of work offers several important findings. The comprehensive assessment 

performed in Chapter 1 revealed that observed modification by neighborhood SES of 

associations between air pollution and pediatric asthma depends heavily on investigator 
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decisions regarding choice of neighborhood SES indicator and SES stratification criteria. 

Furthermore, these decisions may be partially responsible for the inconsistent reporting of 

modification by neighborhood SES in this field. Based on the findings from Chapter 1, 

recommendations for future studies included (1) evaluating multiple indicators of 

neighborhood SES, including composite indices that may better capture the multifaceted 

nature of neighborhood SES, (2) use of nuanced stratification criteria to examine possible 

non-linearity in effect modification, (3) consideration of neighborhood SES indicators that 

identify extremely low SES environments (i.e. poverty area status), and (4) estimation of 

baseline ED rates within neighborhoods and across socioeconomic strata to facilitate the 

interpretation of results. Additionally, results from Chapter 1 suggested non-linear effect 

modification by neighborhood SES in Atlanta, a finding that had not been explicitly reported 

or discussed in the literature.  

Work performed in Chapter 1 was extended to multiple study areas for the purposes of 

investigating the generalizability of results across geographically diverse US cities (Atlanta, 

Dallas, St. Louis) and to test for the presence of non-linear effect modification. In Chapter 2, 

we estimated ZCTA-level associations between ozone and pediatric respiratory disease 

across three cities and examined effect modification by ZCTA-level characteristics. Previous 

studies using similar methods have only examined associations at the city and county-level. 

Results from the multi-city assessment detailed in Chapter 2 further bolster the 

recommendations discussed above. In addition, results from Chapter 2 provided further 

support for potential non-linear effect modification by neighborhood SES. Observed non-

linear effect modification may be due to a variety of factors and the implications of these 

findings are discussed in detail in Chapter 2. Despite having found evidence of effect 

modification by neighborhood SES, it was somewhat surprising that inclusion of 
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neighborhood (ZCTA) level characteristics in our models did not significantly explain 

heterogeneity in the true effect of ozone on pediatric respiratory disease across ZCTAs. 

These findings imply unexplained heterogeneity across neighborhoods and warrant further 

inquiry. In general, results from Chapter 2 raised several additional questions worthy of 

investigation in future studies.  

Another contribution of Chapter 2 stemmed from the spatial mapping procedure and 

our qualitative assessment of similarities and differences in spatial patterning of ozone-health 

associations across cities. Findings from this assessment indicated that spatial influences on 

ozone-related respiratory morbidity were apparent in each city: on average, estimated 

associations between ozone and pediatric respiratory morbidity were greater in 

neighborhoods clustered near urban centers and along major roadways, suggesting common 

areas of concern in all of our study areas. While we did not undertake a quantitative 

assessment of spatial effects (i.e. our results are based on temporal contrasts of 

environmental exposures), these findings underscore the importance of considering spatial 

influences on air pollution-health associations. This study is the first to spatially map 

estimated associations between ozone and pediatric respiratory morbidity at the ZCTA level.  

Findings from Chapters 1 and 2 clearly demonstrated an increase in both asthma and 

respiratory ED visit rates as neighborhood SES decreased. This trend was observed across 

all study areas (Atlanta, Dallas, and St. Louis) and for each indicator of SES examined (% 

<12th grade, % below poverty, and the NDI), underscoring three important findings that are 

also important contributions to the literature: (1) low SES populations have a greater 

baseline burden of asthma and respiratory morbidity, (2) low SES populations experience a 

greater burden of air pollution-related asthma than do their counterparts living in areas of 

higher SES, and (3) it is critical to consider differing baseline ED rates across socioeconomic 
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strata when interpreting results generated from models that estimate associations on the 

multiplicative scale. 

Finally, the study detailed in Chapter 3 corroborated our previous findings on 

investigator choices and provided further support that observed modification is dependent 

on the choice of neighborhood SES indicator. Additionally, individual-level factors, 

race/ethnicity and insurance status, appeared to modify associations between high 

temperature and asthma among children. However, the directionality of the race/ethnicity 

effect was opposite that of the insurance status effect (insurance status was used as a proxy 

for individual-level SES). This is an important finding as it supports the assertion that 

although race/ethnicity and socioeconomic status are linked in the US, they are not 

interchangeable variables, and this work emphasizes that this discordance is an important 

theoretical and analytical distinction to make within this field. It is also worth noting that 

patterns of effect modification were similar between our indicators of individual level SES 

(insurance status) and neighborhood SES. However, we were not able to determine the 

underlying reasons for this similarity and these results warrant further investigation. Other 

important contributions from Chapter 3 are the findings themselves. As very few studies 

have examined vulnerability factors among children in relation to high temperature and 

respiratory morbidity, the work performed in Chapter 3 inherently adds to the growing base 

of climate-health literature. 

 

LIMITATIONS 

The methodological challenges discussed in each chapter are also pervasive limitations of 

the air pollution/climate health field. These limitations primarily stem from the data 

themselves due to low spatial resolution of the health, environmental exposure, and 
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sociodemographic data. Until improved access to spatially resolved data is made more readily 

available to researchers, these inherent limitations will continue to be problematic for this 

field.  

Within the context of this dissertation research, we were unable to assess the influence 

of neighborhood SES at finer scales such as the census track or census block level because 

information on patient residence was only available at the ZIP code level. Related to this 

limitation is the possibility that ZCTAs may not be the most relevant social environments to 

assess effect modification of air pollution/climate effects on respiratory morbidity among 

children. Indeed, there may be too much social heterogeneity within a ZCTA to infer an 

individual’s experience with his or her social environment. In addition, we were unable to 

account for the uncertainty surrounding Census and ACS data. Finally, our studies were not 

powered to stratify models on both individual- and neighborhood-level factors, thereby 

limiting our ability to discern independent or joint effects of these variables.  

 

CONCLUSIONS 

As evidenced in this work, as well as the work of others, environmental, social, and 

spatial influences on health are tethered together. To ultimately understand the 

environmental and social mechanisms underlying susceptibility and vulnerability to 

respiratory disease, enhanced spatial resolution of data is necessary as well as improved 

generalizability. This field would benefit greatly from more multicity studies with access to 

fine-scale resolution data.  

This body of work has highlighted the importance of using multiple lenses through 

which to characterize the socioeconomic composition of neighborhoods. Furthermore, 

during the course of this dissertation it became evident that individual and neighborhood 
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factors should be considered together for a more unified understanding of vulnerability. 

Related to this point is our finding on modification by insurance status, which suggested a 

possible protective effect of being on Medicaid. Future studies would be well served to 

examine the role of health care access among children as it may provide important insights 

into health disparity and may be a channel through which interventions can be actualized. 

Additionally, complex spatial patterning of area-level SES and area-level health risk may 

hinder efforts to ascertain an independent effect of neighborhood level SES on air 

pollution/climate-health associations; greater utilization of spatio-temporal analyses may 

provide valuable insights into spatial influences on air pollution/climate-health associations. 

Finally, this work underscores the importance of accounting for differing baseline risk across 

socioeconomic subpopulations. 

Ultimately, these results may be leveraged to advance the study design of future analyses, 

inform policy, and facilitate the implementation of targeted health interventions by 

identifying vulnerable populations within our study areas. Going forward, it will be critical to 

explore additive models and multi-level models that can combine information at both the 

individual and neighborhood level. I hope the results presented in this dissertation research 

will help motivate other studies to examine diverse SES characterization methods and 

further explore mechanistic pathways that may potentiate vulnerability to air 

pollution/climate-related health effects across diverse socioeconomic populations. 


