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Abstract

Joint Text and Audio Multi-modal Speaker Diarization
By Mutian Li

Speaker diarization is a speech processing task that aims to determine the timeline and
content of each speaker. Despite significant advances in deep learning, speaker diarization
continues to be challenging, particularly in scenarios involving short utterances and noisy
audio environments.

This thesis analyzes the frequent error types of audio-based speaker diarization models
and proposes a novel approach to addressing these errors using GPT-4o. Then, we examine
whether speech segment clustering is a feasible choice. Finally, we introduce a novel approach
of fine-tuning a speech recognition model, Whisper[18], for the speaker diarization task.

Our research begins with the Trauma Interview dataset, collected by Emory Health,
utilizing annotations generated by the Azure tool. The speaker label error rate of the Azure
annotations is estimated to be 7.35%. Open-source models perform even worse; for instance,
the speaker label error rate of Pyannote Powerset[17] on the Trauma Interview dataset is
9.36%. By leveraging GPT-4o for error correction, the final speaker label error rate is
reduced to an estimated 4.26%. Although the proposed fine-tuned Whisper model does not
outperform the baseline, it shows potential for improvement with further refinement.

Experiments are conducted not only on Trauma Interview data from our laboratory but
also on publicly available datasets, including AMI and DailyTalk.

The findings of this research highlight the limitations of current speaker diarization re-
search, and provide a direction for future research.
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Chapter 1

Introduction

Speaker Diarization (SD) addresses ”who speaks when” question during speech processing.

For text-based Speaker Diarization, we also need to determine ”who speaks what”. Down-

stream applications, such as dialogue analysis, often prioritize the identification of ”who

speaks what” over ”who speaks when.” In this thesis, we conduct a series of experiments to

identify the optimal system for answering the ”who speaks what” question.

1.1 Motivation

The motivation for researching this topic is to process data intended for training a trauma

chatbot (referred to as the Trauma Interview dataset in following chapters). Our raw data

consists of audio recordings of interviews between psychologists and trauma patients. The

required data format is transcript with speaker labels, which necessitates the use of both

Automatic Speech Recognition (ASR) and Speaker Diarization. Although ASR models,

bolstered by advancements in Large Language Models (LLMs), can generate high-quality

transcripts, Speaker Diarization task remains challenging.

Initially, we use the paid Azure tool to generate transcripts with speaker labels. For the

ASR task, Whisper[18], an open-source model developed by OpenAI, outperforms Azure.

For the Speaker Diarization task, Azure outperforms current open-source models. However,
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Azure is expensive and still has fatal errors, especially in case of short utterances. Below is

an example from the Azure annotation of Trauma Interview dataset:

Speaker1: Have you ever had a period of time in your life when you

felt like super hyper high, full of energy?

Speaker1: No. No. OK. Have there ever been times in your life when

you’ve felt like that persistent irritability over several days? No.

In the conversation above, apparently, ”no” should be labeled as another speaker, like

”Speaker2”. However, in Azure’s annotation, all utterances are incorrectly labeled as ”Speaker1.”

This is because audio-based Speaker Diarization models rely on speaker embeddings. How-

ever, speaker embeddings are only precise on utterances longer than 3 seconds, while a

short sentence like ’no’ typically takes about 0.5 second. Another cause of this error is the

misalignment between Speaker Diarization and ASR result.

Current LLMs, such as ChatGPT, can partially detect and fix this kind of error. Conse-

quently, in the following chapters, we will investigate whether language models can enhance

the accuracy of speaker diarization results.

1.2 Overview

In this thesis, we explore multi-modal speaker diarizaion models which leverage both text

and audio to improve speaker diarization performance. We hypothesize that the introduc-

tion of semantic information can help improve the accuracy of speaker diarization (SD), as

diarization errors such as 1.1 are semanticly apparent. We first apply several state-of-the-art

models and perform error analysis. Then, we try improving diarization performance with

several methods, such as prompting ChatGPT, and clustering based on ASR segments. Fi-

nally, we modify an ASR model to incorporate SD results, enabling it to generate transcripts

with speaker labels.
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Our main contribution: 1. While most systems align speaker diarization results with

transcripts by word-level timeline, we demonstrate that aligning with sentence-level timeline

achieves a better performance. 2. We analyze and summarize common mistakes of SOTA

models, which facilitate targeted training in future researches. 3. We propose a novel

approach to improve speaker diarization result by combining diarization result of 2 models,

with relatively less ChatGPT api call. 4. We propose a novel idea of adapting pretrained

speech recognition model to fix speaker diarization errors and generate accurate transcript.

1.3 Research Questions

In this thesis, we address the following three research questions:

1. Why are current speaker diarization models insufficient for the Trauma Interview

dataset?

This question examines the limitations of Azure and other open-sourced speaker diariza-

tion models. In Chapter 3, we provide an evaluation of these models on our dataset, along

with a detailed error analysis.

2. Can Azure annotation on the Trauma Interview dataset be improved using audio and

text models?

To address this question, we first explore how GPT can help improve the accuracy of

speaker labels in Azure annotation. Then, we explore whether multi-modal methods achieve

better performance on this dataset. Details see Chapter 4.

3. Can fine-tuning an ASR model improve speaker diarization performance across differ-

ent datasets?

The method proposed in Chapter 4 does not perform well on public datasets, which

pushes us to explore more generalizable approaches. Specifically, we investigate whether the

Whisper [18] model can be fine-tuned for speaker diarization. The system design details and

evaluation are illustrated in Chapter 5.
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1.4 Thesis Statement

By leveraging large language models, we can correct a portion of speaker labels and enhance

speaker diarization results. Additionally, developing a specialized joint ASR and SD model

which takes in multi-modal input has the potential to improve the quality of transcripts with

speaker labels.
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Chapter 2

Background

2.1 Related Works

2.1.1 Audio-based Speaker Diarization Models

Audio-based speaker diarization models decide ’who speaks when’ via voice features. They

generally fall into two types: Clustering-based and End-to-End Neural Diarization (EEND).

Clustering-based methods usually consist 3 steps: 1. Using a voice activity detection

(VAD) model to detect homogeneous speech segments; 2. Using a speaker embedding model

to obtain embeddings of speech segments; 3. Applying clustering to speaker embeddings.

One advantage of Clustering-based methods is that the system is cheap and easy to imple-

ment, as both VAD and speaker embedding steps can utilize pretrained models. Besides,

each step can be optimized independently to achieve a better performance.

However, naive clustering-based methods struggle in handling overlapping speech. There-

fore, recent clustering-based methods, such as [9][2][17], use EEND models in the first step

to mediate this problem. For example, at step 1, [2] applies an EEND model (proposed

in [30]) for local speaker diarization on sliding windows (see figure2.1). The EEND con-

tains BiLSTM layers followed by three binary classification heads, each corresponding to

one speaker (assuming the number of speakers within a sliding window is at most three).
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Figure 2.1: Local neural speaker segmentation in pyannote[2]. Different colors corresponds
to different local speakers.

Then, generate embeddings on segments that contain the same predicted speaker label for

each sliding window, cluster those embeddings, and vote to aggregate the final results. [17]

follows the same structure as [2], except that the classification heads are replaced with a

powerset classification head (referred to as Pyannote Powerset in the following chapters).

EEND models were first introduced in [30]. Unlike clustering-based methods, EEND

models output speaker diarization results directly from a neural network. These models

have separate classification heads for different speakers, and utilize permutation-invariant

training for speaker labels. Each classification head performs binary classification to deter-

mine whether a speaker is active at a given time. Therefore, EEND models can predict

overlapping speakers.

Recently, to handle a flexible number of speakers, EEND models ([10][22][14]) also predict

an inner speaker embedding called an attractor. Attractors are predicted by a sequential

decoder from audio encoding; each attractor corresponds to one speaker. Then, similarities

are calculated between the attractors and audio frame encoding by cross-production, or any

other suitable method, to help decide whether the corresponding speakers are active on the

frame.

Different EEND models usually have their unique structures, which makes it difficult

to use pre-trained models. Therefore, compared to clustering-based methods, training an

EEND model is extremely data-hungry. Due to the lack of real-world speaker diarization
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data, training an EEND model requires a huge amount of synthetic data. Simulating real-

world dialogues has been a longstanding research topic([13]); however, a distribution gap

between synthetic and real-world data persists, leading to degraded performance in EEND

models.

2.1.2 Automatic Speech Recognition Models

In our experiments, all the transcripts are generated by Whisper[18] model. Whisper consists

of an audio encoder and a text decoder. In the audio encoder, the audio log-mel spectrogram

is passed to two 1-D convolution layers followed by a transformer encoder with sinusoidal

positional encoding. The audio embedding is then passed to a text decoder, which is a trans-

former decoder with learnable positional encodings. The overall architecture is illustrated in

Figure2.2.

2.1.3 Joint ASR and SD Models

Compared to training each task separately, multi-task training offers several advantages.

First, it enables the model to capture more general features, reducing overfitting to any

single dataset. Second, when one task lacks sufficient labeled data, multi-task training allows

a low-resource task to benefit from another high-resource task. Moreover, running multiple

tasks with one model costs less than running several models. As ASR and SD share common

”subtasks”, such as speech detection and ”noise removal”, and are often used together in

speech processing, training ASR and SD together is likely to be beneficial.

For example, [31] applies joint-training of ASR and speaker classification tasks to fine-

tune a wav2vector model. Furthermore, some researches([20][27]) achieve joint training of

ASR and speaker change detection by simply adding speaker change tokens to the ref-

erence transcripts while training ASR. However, speaker change detection can hardly be

post-processed into speaker diarization labels without extra models, even in a 2-speaker con-

versation scenario, because of the accumulative error of long sequences. Recent works have
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Figure 2.2: Whisper Model Pipeline[18]

realized both ASR and SD tasks in one model by adding extra modules. [11] combines an

ASR model with an EEND by adding an auxiliary network, while [5] performs both ASR

and SD on local sliding windows, and the results are aggregated to produce the final output.

2.1.4 Speaker Diarization Correction Models

Some SD errors, like the example illustrated in 1.1, are semantically apparent. Therefore,

recent researches have also explored the ability of the language model to correct SD errors.

DiarizationLM[24] and [7] prompt and fine-tune LLMs for SD error correction. However,

those two models only handle word alignment errors, like the example in Figure 2.3. They

fail to handle the case in 1.1, where a whole sentence is assigned to a wrong speaker. AG-
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Figure 2.3: Speaker Diarization Error Correction[7]

LSEC[16] corrects SD errors with a multi-modality fusion of semantic information extracted

by a pre-trained language model and speaker probability from an EEND model. This system

is able to handle the error in 1.1; however, its ability is limited to 2-speaker conversations.

2.1.5 Multi-modal Speaker Diarization Models

Audio-based SD models only catch speaker features, lacking the ability to incorporate se-

mantic information. Therefore, recent researches have also explored whether semantic in-

formation can help improve SD performance. MMSCD[25] concatenates audio and text

embeddings together, then passes them to an encoder-decoder model to perform word-level

speaker change detection. [4] utilizes speaker change detection and dialogue detection to

manipulate the clustering process. Multi-modal speaker diarization using joint text and au-

dio information remains an underexplored area, and this thesis aims to further investigate

its potential.
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2.2 Evaluation Metrics

2.2.1 Diarization Error Rate

Diarization Error Rate is often used for evaluate SD performance. This measurement is time

based:

DER =

∑
s∈S(dur(s) · (max(Nr(s), Nh(s))−Nc(s)))∑

s∈S dur(s) ·Nr(s)

Where S is a set of timeline segments in the audio; each segment s contains homogeneous

speaker labels in both reference (ground truth) and hypothesis annotation. Nr(s) and Nh(s)

are number of active speakers within s in reference and hypothesis annotation respectively.

Nc(s) is the number of correctly identified speakers in s. This metric contains three types

of errors: speaker confusion, where a segment is attributed to wrong speakers; false alarm,

where the system predicts more speakers than ground truth; missed speech, where the system

omits speakers within a segment.

2.2.2 Word-level Diarization Error Rate

For downstream applications, the focus is often on the speech content of each speaker rather

than the timeline. Consequently, the Word-level Diarization Error Rate (WDER) has been

introduced to measure errors in the lexical aspect. To calculate WDER, the system must

generate transcripts with speaker labels (the output of an audio-based SD model must be

aligned with an ASR transcript). The speaker labels from the hypothesis transcripts are then

mapped to the ground truth transcripts with word level. WDER represents the proportion

of words with incorrectly assigned speaker labels:

WDER =
SIS + CIS

S + C

Where S is the number of ASR substitutions, C is the number of correctly transcribed words.

SIS and CIS are the subsets of S, C with incorrectly assigned speaker labels.
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2.2.3 Text-based Diarization Error Rate

Despite WDER’s ability to evaluate SD performance at the text level, it fails to consider

the deleted (missed speech) and inserted (false alarm) words in the hypothesis transcripts.

Text-based Diarization Error Rate (TDER)[8] is introduced to provide a more comprehensive

measurement of SD at the text level.

TDER =

∑
u∈U len(u) · (max(Nr(u), Nh(u))−Nc(u)))∑

u∈U len(u) ·Nr(u)

Where U is the set of utterances in the reference transcripts. Similarly to DER, Nr(u) and

Nh(u) are the numbers of active speakers within u in reference and hypothesis annotations,

respectively, and Nc(u) is the number of correctly identified speakers in u. Note that tran-

scripts do not support overlapping speakers, so Nr(u) is always 1. Therefore, the formula

can be written as:

TDER =

∑
u∈U len(u) · (max(1, Nh(u))−Nc(u)))∑

u∈U len(u) ·Nr(u)

However, the definition of ’utterances’ requires further deliberation. In the official imple-

mentation of TDER, ’utterances’ are defined by grouping words with the same speaker label

in the reference transcript together. However, in the case where an utterance is extremely

long, meaning one speaker has a long speech without interruption, and the hypothesis tran-

script has only one word mislabeled within the utterance, then all words within the utterance

would be counted as wrong, which significantly improves TDER. Usually, this is not desir-

able, and this also causes the fact that while evaluating the same SD system output, the

value of TDER is often much higher than DER. Referencing the segments in DER, TDER

should also consider reference transcripts while generating utterances.
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2.2.4 Diarization F1

Proposed by [8], Diarization F1 is another metric used to evaluate speaker diarization at

the text level. Like the standard F1 formula, this metric requires two terms: precision and

recall.

F1 =
2× precision× recall

precision+ recall

Here, precision denotes the proportion of words with correct speaker labels in the hy-

pothesis transcript, and recall denotes the proportion of words with correct speaker labels

in the reference transcript.

precision =
|speaker match(Th, T r)|

|Th|

recall =
|speaker match(Th, T r)|

|Tr|

Where Th denotes all words in the hypothesis transcript, Tr denotes all words in the

reference transcript, and speaker match(Th, Tr) denotes words that have the same speaker

label in both the hypothesis and reference transcript.

2.3 Dataset

2.3.1 Trauma Interview

The Trauma Interview dataset comprises medical data from Emory’s mental health depart-

ment. The dataset includes audio recordings of interviews between psychologists and trauma

patients. Annotations of the dataset are generated by Azure, with text transcripts, speaker

labels, and segment timelines. However, although Azure outperforms open-sourced models,

its annotations still fail to meet our expectations. In the following chapters, we will discuss

how to improve the annotations.

In this dataset, the length of each audio file ranges from 20 minutes to 3 hours. Although



13

there are many more trauma interview recordings available, we conduct our experiments on

only 117 audio recordings, with a total length of 138 hours. Hopefully, the remaining audio

recordings can be processed using our model, instead of Azure.

This dataset consists of 411 interviews conducted with 336 participants, including lon-

gitudinal follow-ups (>1 month interval) for a subset. Demographic characteristics reveal:

93.4% female representation, 79.5% Black or African American (mean age = 31.4 years),

with 38.7% having a high school education or less and 57.9% reporting monthly household

income below $1,000.

2.3.2 Other dataset

Since the Trauma Interview dataset does not have golden-standard annotations, public

datasets with expert annotation can better help us develop and evaluate models. We use

the following datasets in our research:

AMI1: In this study, we utilize the Headset Mix version of the AMI dataset. The AMI

dataset consists of 100 hours of meeting recordings, with each meeting containing 3-5 speak-

ers. The AMI dataset has transcripts with a word timeline for each speaker, making it a

feasible choice for both speaker diarization and speech recognition research. Since most re-

cent works report evaluation performance on the AMI dataset, this dataset also allows us to

compare our work with state-of-the-art models.

DailyTalk[15]: The DailyTalk dataset is proposed for conversational Text-to-Speech de-

velopment, which contains 2,541 daily dialogues with a total duration of 22 hours. This is

an easy dataset for the speaker diarization task, as it contains only two-speaker conversa-

tions, and the audio recording is ”clean” – without noises, echoes, or overlapping speeches.

Therefore, this dataset helps us determine whether a speaker diarization model handles basic

cases well. Moreover, as most speaker diarization models do not include this dataset in their

training set, this dataset can also evaluate the generalizability of models.

1https://groups.inf.ed.ac.uk/ami/corpus/
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Chapter 3

Speaker Diarization Models and Error

Analysis

Recent works on speaker diarization that achieve state-of-the-art (SOTA) performance are

rarely open-sourced. To begin our research, we first try several open-sourced models, and

identify the best one to start with. Then, we will compare its performance with Azure, and

analyze the common mistakes of both Azure and the suboptimal open-sourced model.

3.1 Text-only Speaker Diarization Models

Intuitively, speaker diarization relies more on speaker voice features rather than speech

content. Therefore, little research has focused on text-only speaker diarization, except [26].

In this work, the speaker diarization task is formulated as text generation, utilizing T5[19]

model. The model inputs are transcripts with a special change token between two adjacent

sentences, and the outputs are lists of labels marking whether a speaker change occurs in

the corresponding change token position. This method uses the sliding window technique,

and voting to aggregate the final speaker change detection (SCD) labels. Then, the SCD

labels are transformed into a two-speaker diarization output, where each speech segment is

explicitly assigned to one of the two speakers. However, this method is limited to handling 2-



15

speaker conversations, and the results suffer from accumulative errors on long audios. In my

own experiment, when there are over 30 sentences within a transcript, the word diarization

error rate (WDER) is close to 0.5, which is similar to random guessing.

3.2 Audio-based Speaker Diarization Models

3.2.1 DiaPer

DiaPer[14] is an EEND model; its structure is illustrated in Figure 3.1. For the attractor-

decoder backbone, DiaPer uses a perceiver[12] instead of a transformer. Unlike transformers,

where the query, key, and values are all from the input sequence while calculating self-

attention, perceiver uses a trainable latent sequence to calculate query, and calculating cross-

attention with key and value from the input sequence. The latent sequence is much smaller

than the original input sequence, therefore, compared to a transformer, a perceiver is much

more time and space efficient, with a space complexity reduced from O(n2) to O(n).

The DiaPer model exchanges frame encodings and attractor information progressively on

a layer-by-layer basis. By training on simulated 2-speaker conversation data, DiaPer achieves

a DER close to SOTA models on the CallHome Dataset, even without fine-tuning. However,

this model does not perform well on most datasets, especially those with multiple speakers,

even with fine-tuning. We evaluate this model on the DailyTalk dataset, and obtain a DER

of 0.4433, which is not desirable. Therefore, we proceed with an alternative model for our

research.

3.2.2 Pyannote Powerset

Pyannote is an open-sourced speech processing python library that employs clustering-based

method for speaker diarization. Pyannote Powerset is a model built on the pyannote pipeline.

We start our research based on Pyannote Powerset for its outstanding performance: it

outperforms the standard Pyannote 2.1 model on most datasets. We also evaluate this
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Figure 3.1: DiaPer diagram[14]

model on the DailyTalk dataset without fine-tuning, and achieve a DER of 0.157, which is

acceptable. The whole pipeline contains the following four steps.

First, segmentation. In this step, the entire audio is converted into a sliding window

sequence, and local speaker diarization is applied to each window using a simple EEND

model. Visualization of the segmentation step’s output is illustrated in Figure 3.2. The

output is an N × f × s boolean vector, where N is the total number of sliding windows

(depending on the audio length), f is the number of frames per sliding window, and s is

the maximum number of speakers within a sliding window. Each entry of the vector marks

whether a speaker is active on the corresponding frame.

Second, embedding. For each sliding window, the corresponding speech segment is ex-
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Figure 3.2: Output of pyannote segmentation. For each iteration of the sliding window
and each local speaker label, the segmentation process determines the active status of each
speaker on a frame-by-frame basis. In the illustration, distinct colors represent different local
speakers.
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tracted from the audio, given the start and end time. For each speaker within the window,

frames where the speaker is inactive are masked. Finally, the speech segment is passed to a

speaker embedding model. The output of this step is an N × s× d vector, where d denotes

the embedding dimension. The Pyannote Powerset utilizes the ECAPA-TDNN[6] model for

speaker embedding.

Third, clustering. The Pyannote Powerset system uses agglomerative clustering to handle

a flexible number of speakers. The clustering output is an N × s integer vector, which

represents a mapping from local speaker labels to global speaker labels.

Finally, reconstruction. For overlapping parts of sliding windows, this step applies a

voting strategy to aggregate the final result.

3.3 Post-processing

Audio-base speaker diarization result requires post-processing to obtain transcripts with

speaker labels. In this research, we use WhisperX[1] to generate transcripts with a word-

level timeline. WhisperX applies Whisper[18] for speech recognition, and employs forced

alignment to synchronize transcript words with the audio.

We first try aligning the speaker diarization result and transcript by word-level timeline.

However, this would cause word-level offsets due to the inherent imprecision in both the

speaker diarization results and the transcript timelines. In the example below, the underlined

words highlight instances of word-level alignment errors.

Speaker1: Yeah. What’s a typical daylight for you? Early

Speaker2: riser before the sun shines, because I work at this job from

to It’s a hour day. I haven’t been doing, well, I’ve been doing this

work a long time. A typical day for me is work and home. That’s

Speaker1: it. Gotcha. What do you like to do in the evenings or on

the weekends? Sit in front of the TV and binge watch.
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Therefore, under the assumption that each sentence always contains a single speaker, we

align the speaker diarization result with the transcript by sentence-level timelines. We first

group the words in the transcript into sentences and determine the corresponding start and

end times. Next, we assign a speaker label by identifying the speaker with the longest over-

lapping active speech duration within the sentence’s time span. The result of this alignment

is illustrated in the same example below.

Speaker1: Yeah. What’s a typical daylight for you?

Speaker2: Early riser before the sun shines, because I work at this

job from to It’s a hour day. I haven’t been doing, well, I’ve been

doing this work a long time. A typical day for me is work and home.

That’s it.

Speaker1: Gotcha. What do you like to do in the evenings or on the

weekends? Sit in front of the TV and binge watch.

Given the results of two types of alignment applied to a specific example, we assume that

sentence-level alignment outperforms word-level alignment. To verify our assumption, we test

two alignment methods on the AMI dataset, using Pyannote Powerset speaker diarization

result and whisperX transcript. The results, as seen in Table 3.1, show that sentence-level

alignment achieves a better performance than word-level alignment on all metrics listed

below.

WDER TDER Precision Recall F1
word-level 12.07 82.55 68.05 69.56 68.79

sentence-level 10.65 68.53 69.25 70.7 69.97

Table 3.1: Evaluation of two alignment methods on AMI dataset

3.4 Error Analysis

There are several types of errors in the speaker-labeled transcripts:
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1. Short utterance: this happens when the whole sentence (utterance) less than 1 second

is assigned to a wrong speaker label, such as in 1.1. This can result from alignment errors

or speaker diarization errors themselves. Since speaker embeddings achieve optimal per-

formance on speech segments of 3 to 5 seconds, shorter utterances can degrade embedding

quality, ultimately affecting the clustering results.

2. Diarization Error: this occurs when a sentence is incorrectly attributed to a speaker.

Such errors typically stem from clustering inaccuracies or local speaker diarization (SD)

errors (the first step of pyannote pipeline). Note that we exclude short utterances from

diarization error analysis because (1) errors occur more frequently on short utterances, and

(2) they typically stem from different causal factors.

3. Segment Error: this refers to cases where a sentence in the transcript contains speech

from more than two speakers.

4. Missed Speaker: this happens when no speaker is marked as active in the diarization

output for a given utterance in the transcript.

5. Overlapping Speech: this happens when two or more speakers are active simultane-

ously, and the corresponding sentence incorrectly assigns a speaker during the alignment

process.

To evaluate the overall performance and error distribution, we conducted a manual anal-

ysis of speaker-labeled transcripts from three audio files in the Trauma Interview dataset,

each approximately 20 minutes in length. We counted the speaker label errors for each ut-

terance. The total error rate was 9.36%, and the proportion of each error type is illustrated

in Figure 3.3. As shown, short utterances account for the majority of errors.

We also analyze the errors of Azure transcript using the same method. The total error

rate is 7.35%, and error distribution see figure3.4. Compared to Pyannote Powerset, Azure

has a better overall performance, especially when handling short utterances. However, short

utterances still make up most of the portion among all types of errors. Besides, Azure is

more sensitive to overlapping speech than Pyannote Powerset.
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Figure 3.3: Pyannote Powerset Diarization Error Distribution

3.5 Discussion

Besides the models discussed in this chapter, other open-source models, such as [22] and

[29], can also be explored. If these models achieve comparable performance, we may consider

majority voting to improve the final speaker diarization performance.

Although sentence-level alignment outperforms word-level alignment in our experiment,

Section 2.1.4 introduces several models to help correct alignment errors. We plan to apply

these models to transcripts generated through word-level alignment, and assess whether they

can achieve better performance than sentence-level alignment.

In Setcion 3.4, we conclude that incorrect speaker labels on short utterances are a com-

mon error among different speaker diarization models. However, in our literature survey, no

methods or datasets focusing on this kind of error exists. Since most public datasets contain

only a small proportion of short utterances, errors in this case have a minimal impact on

overall evaluation results. To bridge this gap, new datasets with a significantly higher pro-

portion of short utterances need to be developed. This would open a new research direction

for future speaker diarization studies.
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Figure 3.4: Azure Diarization Error Distribution

Finally, we address Research Question 1 with two key findings: 1. Current open-source

speaker diarization models generally perform worse than Azure; and 2. Among all open-

source models evaluated, Pyannote Powerset demonstrates the best performance. However,

both Azure and Pyannote Powerset fails to achieves a high accuracy in processing short

utterances.
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Chapter 4

Speaker Diarization Error Corretcion

and Multi-modal Model Development

4.1 Error Correction with ChatGPT

At this stage, we have two speaker-labeled transcripts from both Azure and Pyannote Power-

set outputs of the same audio file. To improve the diarization result, we reserve the utterances

that both models agree on (which are more likely to be correct), and consult ChatGPT for

the utterances on which the two models disagree. In this experiment, we use GPT-4o for

this purpose.

4.1.1 Motivation

Why not using existing speaker diarization error correction models introduced in Section 2.1?

Most SD error correction models are focused on alignment error, which we already fixed

by sentence timeline alignment. AG-LSEC[16] can correct speaker label error of a whole

sentence, but it is not open-sourced. Therefore, we explore our own speaker diarization error

correction method.

Why not generating speaker-labeled transcripts using more than three models and ap-
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plying a voting strategy to aggregate the final result? Such an ensemble strategy is only

effective when all models exhibit a similar performance. However, pyannote powerset is the

best open-sourced model we have found so far, but still underperforms Azure; other mod-

els perform even worse. In this case, applying ensemble learning may even downgrade the

performance.

Why not invoking ChatGPT for every utterance? ChatGPT makes mistakes as well;

without speaker voice features, ChatGPT performs even worse than audio-based speaker

diarization models. Additionally, calling ChatGPT on all utterances is expensive. Therefore,

we apply ChatGPT only on utterances which two models disagree, as the speaker labels on

these utterances are more likely to be wrong in Azure transcripts.

Why not using another audio-based model for ”consulting,” given that GPT also does

not perform well on SD tasks? As explained in Section 3.4, mislabeling short utterances is

a common issue among audio-based SD models. However, errors like 1.1 are easy to detect

and fix semantically given the context window. Therefore, language models like ChatGPT

have an advantage over audio-based models in this case.

4.1.2 Prompt

We fix speaker diarization errors by calling the ChatGPT API. In a chat completion, we

provide the user input as a context window of approximately six sentences. The context

window contains the utterance whose speaker label need to be examined and fixed, along

with 2-3 sentences preceding and succeeding the utterance. We also provide additional user

and assistant messages to guide ChatGPT for few-shot learning. We have tried several

prompt strategies:

1. Selection from two predictions. Unfortunately, its performance is not desirable, espe-

cially when Pyannote Powerset’s performance is much worse than Azure’s.

2. Masked Speaker Label. We mask the disputed speaker label and ask GPT to fill in

the correct label. This method also performs poorly, often producing results close to random
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guessing.

3. Context Window with Azure Predictions. We provide a context window with all

speaker labels from Azure’s prediction, and instruct ChatGPT to fix when necessary. Its

performance is the best among all prompt strategies we have tried, so we finally choose

this method for error fixing of the Trauma Interview dataset. The final chat completion is

provided below.

<System>: The following is the speaker-diarization result of a conversation

between two speakers. There may be some utterances assigned to a wrong

speaker. Correct the error if necessary. Make sure that the conversation

makes sense and is coherent after correction. Please use speaker labels

of format ’Speaker1’, ’Speaker2’. Please format the output as a list

of speaker labels.

<User>: Speaker1: Have there been times when you felt especially irritable

or angry and it showed in your behavior? Speaker1: No. Speaker1:

OK. Speaker1: Or in the past month, have there been times when you

were taking more risks or doing things that might have caused you harm?

<Assistant>: Speaker1, Speaker2, Speaker1, Speaker1

<User>: [input context window]

In the chat completion framework, the initial ’User’ message and subsequent ’Assistant’

message form an input-output demonstration pair. This structure guides ChatGPT to gen-

erate responses following the specified pattern. The ’input context window’ refers to the

contextual segment containing the target speaker label for correction, formatted identically

to the first ’User’ message example.
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4.1.3 Post-processing

Given the modified label of a whole context window, we only choose the label which needs

to be fixed. However, the output speaker labels of ChatGPT are not always correspondent

with the original input transcript. For example, if the input is the following context window:

Speaker2: Have you ever had a period of time in your life when you

felt like super hyper high, full of energy?

Speaker2: No. No.

Speaker2: OK.

Speaker2: Have there ever been times in your life when you’ve felt

like that persistent irritability over several days?

Speaker1: No.

The output might be this:

Speaker1, Speaker2, Speaker1, Speaker1, Speaker2

We can easily tell that in this example, ChatGPT relabels the entire conversation window,

and swaps Speaker1 and Speaker2. To handle this case, we require a speaker mapping from

chat completion output to original input. We manage this by simply counting the number of

speaker labels within the window which the chat completion output is different from original

transcript. If more than half of the labels within the window differ, we choose a speaker

label different from the modified speaker label within the context window.

4.1.4 Evaluation Result

We evaluate the performance of correction on three complete audio files from the interview

dataset. These transcripts contain a total of 3,992 utterances, with 499 of them having

different speaker labels from Pyannote Powerset and Azure. We analyze these 499 utterances
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by counting the number of speaker label errors, from the results of Pyannote Powerset and

Azure, and after fixing with ChatGPT. The results are presented in Table 4.1. From the

results, we can conclude that ChatGPT can fix over half of the errors in the disagreement

utterances.

Pyannote Powerset Azure GPT
349 213 90

Table 4.1: Speaker label error count of Pyannote Powerset, Azure output and after fixing by
GPT, out of 3,992 utterances.

Finally, we run error fixing on the entire Trauma Interview dataset. In the following

experiments, we view the labels after fixing as ground truth labels of the Trauma Interview

dataset. The error rate of the corrected labels can be estimated as (3992× 7.35%− (213−

90))/3992 = 4.26%.

4.2 Multi-modal Model Development

Having processed the Trauma Interview dataset, we now explore models that may achieve

better performance on this dataset.

4.2.1 Multi-modal Segmentation

Pyannote Powerset performs local speaker diarization on sliding windows, based on audio

waves. We first explore whether we can replace the audio-only model with a multi-modal

model for local speaker diarization.

The most straightforward approach is to concatenate audio and text tokens. To enable

this, we first need to synchronize audio with text tokens. Here, we use the same alignment

method as [25]: aligning text tokens with the nearest audio chunks. Audio chunks are

converted to speaker embeddings using Redimnet[28]. Text embeddings are generated using

BGE[3]. The audio and text embeddings are then concatenated and passed to a transformer
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encoder followed by a classification head to predict speaker labels. However, when we train

the model, the loss does not decrease. Therefore, we proceed with other methods.

4.2.2 Speech Segment Clustering

Although multi-modal local speaker diarization is ineffective, multi-modal speaker change de-

tection (SCD) remains a feasible approach. Inspired by [4], we plan to utilize speaker change

detection to improve speaker diarization results by manipulating the clustering procedure.

For example, refining the affinity matrix in spectral clustering.

Before exploring SCD’s ability to improve clustering results, we first explore whether

clustering on speech segments, which are audio segments cut by the start and end times of

sentences, has a reasonable performance. We first try this strategy on the Trauma Interview

dataset. Here, we use the spectral clustering method introduced in [23]. The predicted

speaker label accuracy is 90.05%, which is acceptable for future exploration.

Then, we explore whether speech segmentation improves speaker diarization results, com-

pared to audio segmentation. Specifically, we use the same embedding and clustering pipeline

as Pyannote Powerset, and compare the performance with Pyannote Powerset on the AMI

dataset. The evaluation results are shown in Table 4.2. It turns out that speech segment

clustering has no advantage, even when evaluated with WDER. Since offsets exist in the

transcript sentence timeline, the DER gap is even larger. Since speech segment clustering

does not generalize well on datasets with a flexible number of speakers, we will explore more

generalizable models in the next chapter.

DER WDER
Pyannote Powerset Baseline 20.1 10.52
Speech Segment Clustering 35.4 12.05

Table 4.2: Evaluation result of speech segment clustering method, and comparison with
Pyannote Powerset baseline. When calculating WDER, baseline model uses sentence-level
speech-transcript alignment.
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4.3 Discussion

4.3.1 Future Exploration of LLM Speaker Label Fixing

Providing more examples in chat completion may help solve the label mismatch problem in

4.1.3. Besides few-shot learning of ChatGPT, we may even try fine-tuning.

Since our experiments involve using LLM speaker label fixing in a specific scenario: an

interview between a psychologist and a trauma patient, we can provide more information

in the system message. We may first try to predict the identity (psychologist or patient) of

a speaker label with ChatGPT, or other language models, by providing a few conversation

windows within a transcript. Then, we provide the identity information of speaker labels in

each API call. This may help ChatGPT decide the speaker of each sentence more accurately.

Moreover, in 3.4, we conclude that both Pyannote Powerset and Azure fail to handle

short utterances well. However, we only pass the segments where the two models disagree

to ChatGPT. This method fails to fix many short utterances with incorrect speaker labels.

Otherwise, we may try passing the disagreement segments as well as short utterances to chat

completion, and manually evaluate the performance of ChatGPT to see if this can improve

overall speaker label accuracy.

Recently, more LLMs are emerging. We have tried speaker error fixing with both Claude-

3.5 and Deepseek-v3 on the user interface. Although Claude-3.5 fails in this task, Deepseek-

v3 can correctly fix speaker labels in several examples. Since Deepseek-v3 is much cheaper,

and may perform as well as, or even better than GPT-4o, it is worth trying with prompts

and API calls.

4.3.2 Speaker Change Detection to Improve Speech Segment Clus-

tering

By predicting whether a speaker change exists between two sentences (speech segments),

speaker change detection (SCD) models can potentially help improve speech segment clus-
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tering. For example, in spectral clustering with an affinity matrix of the distance between

segment embeddings, if SCD indicates that a speaker change exists between two adjacent

segments, we can increase the corresponding entries in the affinity matrix; if the detection

model indicates that no speaker change exists, we can decrease the corresponding entries.

Although we do not currently have a suitable SCD system, this method is worth exploring.

4.3.3 Conclusion

Therefore, we can answer research question 2: with the annotation of another audio-based

method, we can identify the speaker labels in the Azure annotation that are more likely

to be incorrect. Then, by calling ChatGPT APIs, we can correct over half of these labels,

which can significantly improve the overall transcript quality. However, we still struggle

to find multi-modal models that perform better in both the Trauma Interview dataset and

other publicly available datasets, and speech segment clustering with SCD refinement can

potentially be effective.
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Chapter 5

Fine-tuning Automatic Speech

Recognition Model for Speaker

Diarization

Automatic Speech Recognition (ASR) transcription timeline contains errors, which can lead

to text diarization errors when aligning outputs of an audio-based speaker diarization model

with ASR transcripts. Besides, since ASR models take in audio wave and generate text tran-

scripts, they are capable of handling both audio features and context information. Therefore,

we explore whether ASR models can catch temporal information of Speaker Diarization (SD)

timeline, utilize context information to fix Speaker Diarization errors, and finally enhance

text diarization result. In our system, a modified ASR model takes both audio features and

speaker diarization timeline as the input, and generates transcriptions with speaker labels.

Here, we use Whisper[18] as the backbone ASR model, and the output of the Pyannote

Powerset[17] model as input SD timeline.
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Figure 5.1: Proposed Audio & Speaker Diarization Labels Encoder

5.1 Model

Whisper[18] model’s structure has been introduced in Section 2.1. Whisper is an encoder-

decoder model, while the encoder extracts audio features, and the decoder generates tran-

scripts. The audio encoder takes an audio log-mel spectrogram, which is passed to two 1-D

convolution layers, followed by a transformer encoder. The modified encoder layer adds

speaker diarization embeddings between the last convolution layer and the transformer en-

coder. The structure of the modified encoder is illustrated in Figure 5.1.
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5.1.1 Speaker Diarization Embedding

The speaker diarization annnotations consist of lists of segments, each containing start time,

end time and active speaker. Note that time overlaps may exist between two different

segments.

To adapt speaker diarization annnotations for a neural network, we represent them as

vector embeddings. Before that, we need to convert annotations into labels (integer vectors).

The labels are created with a resolution of 0.02 second, to match audio encoding dimension

after convolutions. On the labels, we mark the start and end times of each segment. Specif-

ically, if speaker i is active from t1 second to t2 second, then label[t1 × 50] = 2i + 1, and

label[t2 × 50] = 2i + 2. All other positions of the labels are filled with 0. In the encoder

model, we add a learnable embedding layer to generate label embeddings.

5.1.2 Output Format

Whisper model’s original output transcripts contain only speech contents. Our modified

output adds speaker labels <spki > preceding each sentence, and a newline sign ’\n’ at the

end of each sentence. Below is an example:

<spk0>: Hi, guys.

<spk0>: Good morning, everybody here.

<spk0>: And I want to introduce myself.

5.1.3 Sliding Window

To further improve our model’s performance, we also apply the sliding window aggregation

technique for speaker labels during the inference stage. The input audio wave of our model

contains several adjacent speech segments. In our default method, the input audio waves

contain no overlapping segments. However, in the sliding window method, the next window
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simply moves one segment forward, resulting in overlapping parts between adjacent win-

dows. Ideally, except for the speaker label, the model generates the same text for the same

overlapping segments, regardless of their position within the window. Then, we can align

different windows by finding the identical text segments, and vote to decide the speaker

labels. However, slight differences often exist among different windows, so we require an

alignment technique. We use the word-level Needleman–Wunsch algorithm to align adjacent

windows, with the Levenshtein distance for scoring. Details can be seen in Algorithm 1.

In the algorithm, seq1 represents all words from the transcript in the front sliding window,

and seq2 corresponds to those in the back sliding window. Unlike the first row, which is

initialized with increasing values, the first column of the dynamic programming (DP) matrix

remains zero. This ensures that a gap at the beginning of seq1 and seq2 does not incur any

alignment cost, as such a gap is naturally expected between two adjacent sliding windows.

After aligning the sliding windows, for each sentence and corresponding speaker labels, we

use the voting strategy to aggregate the final predicted speaker label.

5.2 Results and Discussion

5.2.1 Dataset

We use the AMI Headset Mix dataset for training. The dataset is split into training, vali-

dation, and testing sets using an 8:1:1 ratio.

5.2.2 Baseline Model

Our baseline model utilizes the diarization results from the Pyannote Powerset model, and

aligns them with the WhisperX transcript using sentence-level timelines.
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5.2.3 Experiment Setup

In our experiments, we utilize the speaker diarization annotations generated by Pyannote

Powerset as the speaker diarization labels. During the training process, each input window

contains several adjacent sentences from the ground truth transcripts, as well as the corre-

sponding audio chunks and SD model predictions extracted with the start and end times of

the window. For inference, we utilize Silero[21], a voice activity detection (VAD) model to

obtain speech segments that are short enough for our model, while avoiding cutting within a

sentence. The model was fine-tuned using initialized weights from the pre-trained Whisper

base model.

5.2.4 Evaluation Results

We use WDER and TDER metrics to evaluate the text-level diarization performance of

our model. We also evaluate our model on the Trauma Interview dataset without further

adaptation. The evaluation results are presented in Table 5.1.

5.2.5 Discussion

The results are unsatisfactory, even worse than the baseline model, and the sliding window

aggregation technique provides little improve. We attribute this result to the fact that the

model fails to capture the time alignments between speaker labels and audio, or overfits on

the error correction of the speaker labels, as the provided speaker labels are not the actual

ground truth. To address this, we plan to provide the actual ground truth speaker labels

during the training stage, and see if this can help bridge the gap.

There are also problems with the output format. The decoder model only has information

about the previous tokens while generating the next token. However, in our current output

format, the speaker labels are placed before the speech content. Therefore, the model lacks

text information of the current utterance while predicting the speaker label. Intuitively, when
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deciding the speaker of a sentence, the content of the sentence matters more than the previous

context. This means that in our model, text information helps little to improve speaker

diarization results, or even disturbs the results. Therefore, we plan to try placing speaker

labels behind the speech content for each sentence. Besides, we may also try adding extra

transformer layers or bidirectional LSTM to correct speaker labels, using context information

from both the front and the back.

Regarding Research Question 3, our experiments fail to enhance speaker diarization per-

formance by fine-tuning the Whisper model. However, with further modifications, this ap-

proach could potentially be effective.
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Algorithm 1: Two sequences alignment algorithm

Input: Two sequences seq1 and seq2
Output: Indices of aligned sequence pairs

1 m← length(seq1);
2 n← length(seq2);
3 Initialize dp as a (m+ 1)× (n+ 1) matrix with zeros;
4 for j ← 1 to n do
5 dp[0][j]← j;
6 end
7 for i← 1 to m do
8 for j ← 1 to n do
9 cost← 1− S(seq1[i− 1], seq2[j − 1]);

10 dp[i][j]← min(dp[i− 1][j] + 1, dp[i][j − 1] + 1, dp[i− 1][j − 1] + 2× cost);

11 end

12 end
13 Initialize aligned as an empty list;
14 i← m, j ← n;
15 while i > 0 or j > 0 do
16 if j == 0 or dp[i− 1][j] < min(dp[i][j − 1], dp[i− 1][j − 1]) then
17 Append (i− 1,None) to aligned;
18 i← i− 1;

19 end
20 else if i == 0 or dp[i][j − 1] < min(dp[i− 1][j], dp[i− 1][j − 1]) then
21 Append (None, j − 1) to aligned;
22 j ← j − 1;

23 end
24 else
25 Append (i− 1, j − 1) to aligned;
26 i← i− 1, j ← j − 1;

27 end

28 end
29 Reverse aligned;
30 return aligned;

AMI Trauma Interview
WDER/TDER WDER/TDER

baseline 10.52/65.81 3.04/25.78
finetuned whisper
w/o sliding window 18.02/74.94 11.01/61.52
with sliding window 14.4/89.68 9.37/77.25

Table 5.1: Evaluation Results of Modified Whisper Model on AMI dataset.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis, we have analyzed different types of errors produced by audio-based speaker

diarization models, and explored how language models can help improve speaker diarization

results. By leveraging LLMs like GPT-4o, we demonstrated their capability of fixing nearly

half of speaker label errors. Besides, we also propose two novel multi-modal SD models that

utilize both text and audio: speech segment clustering and ASR model fine-tuning, which

have the potential to outperform current state-of-the-art models.

6.2 Future Directions

6.2.1 Speaker Diarization on Short Utterances

We conclude in Section 3.4 that incorrect speaker labels on short utterances are a common

issue across various speaker diarization models, while this problem has received relatively

little attention in prior research. We plan to focus our future research on addressing this

specific challenge.

First, we need to create a dataset with a significant portion of short utterances. We will
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select audio chunks along with their corresponding speaker diarization annotations and tran-

scripts from publicly available datasets. Unlike the training process for EEND models, we

will not generate data by merging different speech segments, as such synthetic conversations

lack semantic meaning and are unsuitable for research involving language models.

Next, we will evaluate various open-source state-of-the-art models on our dataset, includ-

ing both SD-only models and joint ASR and SD models. For audio-based SD models, we

will post-process the results into transcripts with speaker labels using sentence-level align-

ment, as described in Chapter 3. We will evaluate these transcripts with text-based speaker

diarization metrics such as WDER, TDER, and Diarization F1 score. We will also examine

if the performance of these models can be improved by fine-tuning. These experiments aim

to provide an overview of different models’ ability to handle this specific case.

Finally, we will develop our new model on this dataset. The model can be a speech

segment clustering method, as described in Chapter 4, or a fine-tuned Whisper model, as

described in Chapter 5, or other methods. We expect our model to outperform existing

open-source models.

6.2.2 Whisper Finetuning for General Speaker Diarization Error

Correction

TheWhisper fine-tuning method has not achieved a desirable performance so far. Despite the

refinement methods proposed in Chapther 5, another significant issue remains unresolved.

Since the model is trained to generate transcripts with speaker labels derived from Pyannote

Powerset speaker diarization results, there is no guarantee that it will function effectively

with alternative speaker diarization models.

To handle this limitation, it may be necessary to fine-tune the model on speaker diariza-

tion results from different models. Alternatively, we could generate hypothetical speaker

diarization data by adding noise to ground truth speaker diarization annotations, which

would then serve as input to the modified Whisper model. The noise contains: temporal jit-
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tering, which means adding random offsets to utterance start and end; deletions or insertions

at the utterance level; and speaker label substitutions.

The evaluation experiments for this modified Whisper model will be conducted using

speaker diarization results from various SD models. For each speaker diarization model, the

baseline approach consists of mapping to Whisper transcripts with sentence timelines. We

will compare the output of the modified Whisper model with the corresponding baseline for

each model. The desirable outcome would be that the modified Whisper model outperforms

the baseline across most, if not all, of the tested SD models.

6.2.3 Experiment of Whisper Finetuning on 2-Speaker Conversa-

tion

When a human expert annotates speaker labels of a transcript without audio, usually a

2-speaker conversation is relatively manageable, while a multi-speaker meeting is more con-

fusing. We assume that language models face similar challenges. Therefore, we plan to

fine-tune and evaluate the Whisper model on two-speaker conversation datasets, such as

DailyTalk and Callhome1, to determine whether this approach can achieve superior perfor-

mance in this more constrained scenario.

1https://ca.talkbank.org/access/CallHome/eng.html
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Encoder-decoder based attractors for end-to-end neural diarization. IEEE/ACM

Transactions on Audio, Speech, and Language Processing, 30:1493–1507, 2022. doi:

10.1109/TASLP.2022.3162080.

[11] Yiling Huang, Weiran Wang, Guanlong Zhao, Hank Liao, Wei Xia, and Quan Wang.

On the success and limitations of auxiliary network based word-level end-to-end neural

https://aclanthology.org/2023.findings-acl.884/
https://aclanthology.org/2023.findings-acl.884/
https://arxiv.org/abs/2406.04927
https://arxiv.org/abs/2406.04927
https://doi.ieeecomputersociety.org/10.1109/ICTAI59109.2023.00119
https://doi.ieeecomputersociety.org/10.1109/ICTAI59109.2023.00119


43

speaker diarization. In Interspeech 2024, pages 32–36, 2024. doi: 10.21437/Interspeech.

2024-561.

[12] Andrew Jaegle, Felix Gimeno, Andrew Brock, Andrew Zisserman, Oriol Vinyals,

and João Carreira. Perceiver: General perception with iterative attention.

ArXiv, abs/2103.03206, 2021. URL https://api.semanticscholar.org/CorpusID:

232110866.

[13] Federico Landini, Mireia Diez, Alicia Lozano-Diez, and Lukáš Burget. Multi-speaker and
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