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Abstract

Improving Interactive Search with User Feedback
By Jianghong Zhou

Capturing search users’ feedback can improve the interactive search. In search tasks,
users typically generate feedback while browsing the search results. That feedback
may include clicking the items, reading important text content, query reformulation,
and other interactions. This feedback can reveal users’ latent intents and additional
information needs, providing essential information to improve users’ search experi-
ence.

Unlike traditional search, the interactive search is enriched by more interactions
and comprises three significant steps: 1) Users browse the initial retrieval contents and
generate feedback. 2) The feedback is received and analyzed by the search system. 3)
The search system presents new search results based on users’ feedback. However, the
complexity of human interactions challenges these three crucial steps when building
an efficient interactive search engine.

The first challenge is obtaining informative and valuable feedback from the users.
This thesis introduces a new approach that can diversify the initial search results,
allow users to explore multiple aspects of their original queries, and generate instruc-
tive feedback. The approach is the first to use Simpson’s Diversity Index and Binary
quadratic optimization in search diversification problems. Compared to the previous
research, this method is more efficient.

Another key challenge is reducing the biased noise in the received feedback. In
this thesis, we propose a novel de-biased method to decrease the feedback’s high bias
caused by users’ observations. The approach uses a new observation mechanism to
simulate the users’ observation process and train a neural network model to detect
the observation bias. This new model outperforms the previous click models in both
click simulation and document ranking.

The last challenge is effectively extracting different interaction information and
using them to improve the search. In this thesis, we focus on document-level and
sentence-level interactions. We propose two different approaches with reinforcement
learning frameworks. These methodologies introduce new techniques to reformulate
the query and rank the items. Both methods significantly improve the search perfor-
mance in the interactive search process.

Together these techniques provide imperative solutions to the challenges in the
three critical steps of the interactive search systems and enable the users to obtain a
better search experience.
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1

Chapter 1

Introduction

With the rapid development of the Web, the number of websites will be well over 1

billion in 2022 [54]. Therefore, it is almost impossible for ordinary users to locate

their required information by simply browsing the Web. Consequently, search en-

gines, efficient information retrieval systems, have become one of the most critical

infrastructures in the information age [82]. Traditionally, search systems rank the

documents based on the relationship between the items and the query, which can be

relevance, preference, or significance. However, those search results are static and

ignore users’ feedback, which may lead to a poor user search experience. Due to

the vast number of user interactions and the emergence of artificial intelligence, a

search system that can serve users with more satisfactory results based on the users’

interaction patterns is feasible and desired. In this thesis, I discuss this kind of novel

search system, which is interactive search.

1.1 Interactive Search

Interactive search methods are the search systems that address the problem of finding

the correct information based on an interactive dialog with the search system [130].

In the traditional search system, users submit their search queries to the search
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Figure 1.1: A traditional search system with static search results

systems, and the systems find their required information and present the search results

to the users. This process is generally one direction. The search system does not

consider the afterward feedback from the users and adjusts the search results. Those

search systems are largely static: When the users’ profiles are standard, their search

results are identical no matter how the users interact with the search systems. Figure

1.1 shows a normal search system. A click of a less relevant result does not change

the ranking result of the following search. This shows that traditional search systems

could be more user-oriented. The optimization goal is primarily the relevance between

the query and the documents, which may result in lower user satisfaction.

Besides, user interactions are common in many search tasks and rich in useful

auxiliary information. For instance, in an e-commerce search, users may click on

their interested items, browse reviews, or read product descriptions. That feedback

is essential to discover users’ preferences for the products. Additionally, users are

likely only to give simple queries containing their primary intents without necessary

details. Users’ feedback can reflect that latent information and provide more accurate

search results in limited presenting space. In summary, interactions provide extra

information to improve the search results for the afterward or similar users’ search.

Therefore, capturing users’ feedback to improve the search is significant.

Unlike traditional search systems, interactive search is rich in more interactions
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Figure 1.2: An interactive search system with dynamic search results

and has three major steps:

• The users submit an initial request to the search engine. The search engine

retrieves relevant search results and presents the results to the users.

• The users browse the search results and passively evaluate the search results,

which means the users do not necessarily process every document or all the

information in the document. They generate feedback by clicking the items,

copying the sentences, and other interactive behaviors.

• The search engine receives the feedback and adjusts the search results for the

next or similar search session. Therefore, the search results of the interactive

search are dynamic. Figure 1.2 is an example of an interactive search system.

With these three steps, the search systems can obtain additional information from

the users and further satisfy their information needs. However, this process contains

some critical research questions.

First, how do we present the search results so that the users are more likely to

generate more informative feedback in the first step? The ways to present the search

results are various, but we usually can only present a limited number of items to

the users. If we only consider relevance, it is highly possible that the search systems

only present similar results because the most relevant results typically share similar
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essential information. For example, when the users search the term ’Apple’, if we

only present the most relevant results, it is highly likely that the search systems

only present results related to Apple company, such as the products of Apple or

the locations of their stores and introduction of this company. Those results only

show one aspect of the search term and generate a filter bubble that limits the users

from exploring other possibilities [101], so the users cannot generate any informative

feedback. Therefore, it is essential to present diverse search results that provide

different perspectives of the search query to explore users’ information needs.

Second, how do we extract useful information from the feedback when the users

browse the search results and passively evaluate the search results, which means

the users do not necessarily process every document or all the information in the

document. Due to this passive way, the most feedback we obtain in the search system

is implicit [68]. The implicit dataset is not intentionally annotated by the users,

which means the users do not observe some of the results, so the actual attitude to the

searching items is uncertain. For example, the click logs are essential implicit feedback

from the users. If the items are clicked, these search results are positive. However,

if the search results are not clicked, they can be negative or just not observed. This

kind of bias can lead to the mistaken label of disruptive noise. To effectively utilize

the users’ feedback, de-biasing the feedback is necessary. Therefore, reducing bias is

the key to extracting useful information from the users’ feedback.

Third, how can we integrate the feedback with the search system so that we

can satisfy the users? Unlike traditional search systems, interactive search has more

complicated information transmissions. The model patterning the interactive pro-

cess should allow multi-directional information transmissions. A possible solution is

accommodating the search process to a relatively dynamic system, such as reinforce-

ment learning. Reinforcement learning can model a rather complex learning process

and effectively reflect the interactions. Besides, different forms of feedback also bring
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some challenges to the systems. The feedback of the users can be document-level,

like clicking items. It can also be sentence-level, like selecting sentences. Different

feedback may require different designs of reward functions, value functions, or policies.

Those challenges are essential to building an interactive search system. In this

thesis, I contribute to building advanced interactive search systems by proposing novel

and state-of-the-art solutions to those challenges, which I delineate in Section 1.6.

In summary, the interactive search can serve the users with dynamic results by

collaborating users’ engagements, resulting in three additional steps and extra chal-

lenges. All those challenges require practical and novel solutions.

1.2 Search Diversification

Diversifying search results is vital in many search systems due to the ambiguity of

search queries and the complexity of users’ intents. In multi-aspect search, a diverse

set of search results are more likely to satisfy the users’ needs and improve the online

shopping experience. Therefore, many approaches for diversifying results in informa-

tion retrieval and recommender systems have been proposed [154], among which the

algorithms based on DPPs (Determinantal Point Processes) are considered to be state

of the art methods. DPPs aim to balance diversity and relevance and are based on the

geometric properties of vectors associated with a set of items [79]. DPPs define the

diversity of a set by the volume of a parallelepiped spanned by the vectors of this set.

The volume is determined by the vectors’ length and their cosine similarity, which can

represent the relevance and similarity, respectively. Specifically, DPPs compute the

determinant of the product of the selected items’ matrix and its transpose to identify

a diverse subset of results.

Diversity is characterised by two aspects 1) richness and 2) evenness [121].

Richness quantifies the number of different class elements in a set, while evenness
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considers the uniformity of the distribution of these classes. However, DPPs only

consider the richness aspect [143]. It narrows the definition of diversity, which may

degrade actual diverse search results. Besides, evenness can affect richness; especially

if the item has multiple aspects [124].

In addition to not considering “evenness”, DPPs also suffer from high computation

complexity, which is NP-hard. In its greedy formulation, the computation complexity

is O(N4), in which N is the scale of search space. Therefore, many variations are

developed to improve its computational efficiency [27][28][78].

Due to the difficulties mentioned above, we consider another model to measure

diversity, which is Simpson’s diversity index [121]. It measures the probability that

two items are chosen at random and independently from a set that is the same.

Both Shannon entropy and Simpson’s diversity index measure richness and evenness.

Notwithstanding, Simpson’s diversity index is a pairwise approach. Through some

transformations and improvements, we develop it into a binary quadratic program

with predicable approximation bounds.

We evaluate our approach on a standard benchmark dataset from Kaggle shoes’

price competition (https://www.kaggle.com/datafiniti/womens-shoes-prices,

https://www.kaggle.com/datafiniti/mens-shoe-prices). The experimental re-

sults show that the proposed method outperforms state-of-the-art DPP algorithms

and extensions. In summary, our contributions are threefold:

1. Introducing Simpson’s diversity index (SDI) to search result diversification

domain.

2. We operationalize SDI computation as a quadratic program, which can be

solved efficiently.

3. We show that the proposed method outperforms state-of-the-art methods on

a standard e-commerce search benchmark.

Next, we motivate our method and place it in the context of related prior work.

https://www.kaggle.com/datafiniti/womens-shoes-prices
https://www.kaggle.com/datafiniti/mens-shoe-prices
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1.3 User Feedback Modeling

To improve web search, it is essential to understand how the users interact with web

search engines. Clicking on search results is one of the most critical interaction data,

which forms the basis of many essential user behaviors, like reformulating or switching

queries, clicking on different items, and browsing the search results. One powerful way

to utilize these click logs is to construct a click model to measure and predict clicks on

existing or future results[13]. A click model can predict future clicks of other users,

help train a learning-to-rank (LTR) model, and allow us to automatically evaluate

search result quality. However, modeling users’ clicks is a challenging task because

the click logs are observational data, collected in-situ with a live search engine, and

exhibits multiple biases[69]. Previous research on click modeling and prediction did

not directly address this issue or address the biases using heuristics, resulting in poor

model performance on live (unseen) query traffic[69].

In summary, previous research focused on two directions. The first direction is

the Probabilistic Graphical Model Framework Based Methods (PGM) [75]. Those

methods model the search process as a sequence of events, predicting the click based

on some probability models and assumptions. They are flexible and interpreted. The

second direction considers a different representation of the events [13]. The search

process is represented by some vectors. This form allows the users to consider a variety

of features easily and to feed them to some relatively stronger learning models, such

as neural networks [21]. However, the drawbacks of these two directions are obvious.

The PGM methods are limited by a weak learning model and fewer features. The

second direction cannot consider the bias issue in an interpreted way.

To overcome the aforementioned issues, we propose our new model, DRLC, for

training unbiased (or less biased) click models, which is introduced in Chapter 4.

DRLC is also a PGM-based method. Therefore, DRLC can be organized flexibly

for different ranking scenarios and generate an interpretive model to reduce various
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biases. However, in comparison to the previous PGM method, DRLC is constructed

by a more dynamic system, which is reinforcement learning [127, 154, 156]. This

allows DRLC to use stronger learning models (neural networks).

Another contribution of this work is that we propose a posteriori method to learn

the observation bias. Previous approaches typically apply prior probability models

to estimate the observation probability or reduce the bias [41, 3]. Those methods

highly rely on the selected prior models, which is hard to be general. In this chapter,

we concentrate on posterior knowledge. When users are browsing the SERP (search

engine result page), the latter part is naturally unobserved. Therefore, if we use an

observation window to augment the dataset, we can have some data with more bias

and some data with less bias. This separation helps capture the bias. DRLC uses

this method to reduce bias.

1.4 Dynamic Ranking

In complex search tasks, such as prior art patent searches, users require high relevance

of the documents returned and the coverage of multiple perspectives on the topics.

Therefore, users may continue interacting with the search engine. Simultaneously,

the search engine should be able to mine the latent intents of the users from the

interactions [146]. This is the basic scenario of dynamic search.

Figure 1 illustrates the dynamic search process. A dynamic search includes a

search session containing many search iterations, whose results are a list of documents.

Each search iteration includes many search units. The returned result of each search

unit is a document. During the whole search session, users provide one query to the

search engine and provide feedback after each iteration [73].

We formulate our approach based on the TREC Dynamic Domain setting [146].

In this setting, when a search session begins, a user searches for a query with several
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Figure 1.3: Flow of Dynamic Search with user feedback. The returned results are
dynamically re-ranked based on the user’s feedback.

The TREC domain Search Process.

subtopics which are not exposed to the search engine. This is the first search iteration.

After that, the search engine analyzes the query and the documents’ passages to rank

the documents. Then, the search results are returned to the user, which is simulated

in the TREC dataset. This simulator sends feedback to the search engine, indicating

the relevance scores of each subtopic with the query. However, the feedback does not

contain any information about the content or the number of subtopics. Based on

the feedback, the search engine computes a score to evaluate this search iteration’s

quality, such as α-DCG [33]. After receiving the feedback, if the search session is not

suspended, the search engine returns the new results based on the feedback. When

reaching the stop conditions, the search session stops.

Based on this setting, extensive prior research studied the dynamic ranking mech-

anisms. In the 2016 TREC Dynamic Domain track, [7] introduced four models. The
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highest performing model was rmit-lm, built by the language modeling approach

from Apache Solr [48]. Another noteworthy model is rmit-lm-oracle-1000, which

operates by retrieving the first 1000 documents, removing the irrelevant documents

from the list using the ground truth, and returning the top 5 documents. This model

was state of the art in the 2016 TREC Dynamic Domain track. However, this model

uses ground truth labels to filter out documents that are usually unavailable in realis-

tic tasks. Based on 2016 TREC Dynamic Domain, [145] applies the contextual bandit

approach to dynamic search. However, the method does not outperform state of the

art method in the 2016 TREC Dynamic Domain and lacks essential document ranking

metrics in the experiments. In the 2017 TREC Dynamic Domain track, more models

were proposed to improve the overall quality of the search session. Among those

methods, ictnet-params2-ns is state of the art. Although those models present

encouraging progress in dynamic search, they suffer some common flaws. Most of

the aforementioned methods largely depend on some language models and traditional

supervised Learning to Rank (LTR) models. The reported models were trained by

pointwise, pairwise, or listwise methods. However, these approaches fail to capture

all the ranked documents’ information to improve the overall quality of the search

session.

To address those problems, we propose a new method – RLIrank: Learning to

Rank with Reinforcement Learning for Dynamic Search. RLIrank applies a reinforce-

ment learning paradigm to conduct each search session of the dynamic search [127].

For each search iteration, we apply a step-wise training method to tune a stacked re-

current neural network, which explores and returns the search results [126]. We also

apply an embedding-oriented Rocchio algorithm to digest the feedback [67]. The ex-

periments on TREC 2016 Dynamic Domain and TREC 2017 Dynamic Domain show

the RLIrank is a compelling dynamic search model, which outperforms the previous

methods by up to 6.2%.
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In summary, our contributions include the following:

• An effective implementation of the deep reinforcement learning paradigm adapted

to the dynamic search problem, which captures the relationship between the user

feedback and the document content.

• An effective deep value network model architecture, which incorporates a stacked

LSTM and the associated new step-wise method to train the RLIRank model.

• Adaption of the classical Rocchio feedback algorithm to the deep RL framework,

which extends the classic Rocchio algorithm to use dense word embeddings for

relevance feedback in the neural ranking setting.

• Evaluation of the RLIRank method on the 2016&2017 TREC Dynamic Domain

datasets, showing that RLIrank outperforms all previously published methods

in these two tracks after as few as five search iterations.

1.5 Interactive Search with Sentence-level Feed-

back

Search with interactive settings can improve the performance of an information re-

trieval system [111]. Users’ interaction not only supplements the information of the

query but also conveys users’ latent intents. Users’ feedback involves item-level feed-

back (e.g., item clicking, purchasing, and adding to cart) and sentence-level feedback

(e.g., sentence clicking, copying, or reading). Sentence-level feedback can provide

more details than item-level feedback. For example, in Figure 1.4, User 1 searched

’How did people survive from the 2011 Fukushima earthquake’ and selected (e.g.,

reading, clicking, or copying) a sentence from the 3rd document as a piece of es-

sential information. This interaction revealed that User 1 was looking for stories of
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Figure 1.4: A use case of interactive search

survivors, helping User 2, who searched a similar query and obtained new results

containing those stories based on User 1’s feedback. When considering many people’s

interactions, the search results can approach the human’s expected results. This sce-

nario is common in question-answering systems (QA), e-commerce product reviews,

and other complex search tasks [87, 156].

To build an interactive search environment, reinforcement learning (RL) approaches

are the most common choices in the previous works [153]. However, these studies suf-

fer from two imperative challenges relating to (1) the amount of data needed to train

the RL model and (2) the computational power needed to search the ample ranking

space. We propose DQrank, a deep Q learning (DQ) based ranking system, to address
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these limitations.

First, obtaining data to train an interactive search model is strenuous due to the

dynamic search environment. Directly depending on online users’ interaction is costly

and time-consuming, as users need to interact multiple times with the system to yield

even semi-reasonable ranking results. On the other hand, solely relying on offline,

static interaction records with only a limited set of all possible ranking results restricts

the exploration of interactive search [112]. Expanding the static interaction logs

and combining these two learning ways are necessary. Previous research used strong

assumptions to connect new ranking results to existing ones. [140] discounted or

boosted the relevance between the query and document based on the position distance

between the document and the clicked one. However, this approach can only relieve

the effect of position bias but fail to reduce other bias, such as observation bias [157].

[5] estimated the propensity to approximate the real relevance between the document

and query, but still required encoding of the heuristic knowledge and can yield other

biases. Furthermore, these methods focus on expanding the item-level connection,

which cannot work on sentence-level feedback directly. In this thesis, we reduce the

need for annotated data by adopting a BERT model [89] pre-trained using tasks

with explicit feedback to simulate user interactions. This user simulation function

can then re-rank the items to obtain more satisfactory results. We also propose a

novel state retrieval approach that combines both offline and online learning. By

using similar queries as the starting point for RL, DQrank can obtain a better initial

ranking performance.

The second challenge, different from most RL tasks, lies in the notoriously gigantic

action space of the ranking, so optimal exploration is infeasible. Previous research

proposes different methods to approximate the optimal action that maximizes the tar-

get score. For example, RLIrank greedily ranks the documents with a neural-based

agent [154]. SlateQ decomposes the ranking to build their item choice model with
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mild assumptions [61]. These methods can only obtain sub-optimal actions based on

their choice mechanisms. Besides, they reformulate the ranking problems to point-

wise problems without considering the effect of the surrounding items, which loses

essential auxiliary information for the ranking evaluation and ignores widespread bias

in real-life search tasks. To address the problem, we introduce a sliding window rank-

ing method and rearrangement learning to explore the optimal actions. The sliding

window prioritizes the top-ranking documents by focusing on a small range and push-

ing the significant items to the top position. Additionally, rearrangement learning can

adaptively learn the preferred order and continually improve the subsequent rankings.

In summary, DQrank’s contributions are three-fold:

• DQrank contributes new methods, including self-supervised learning, BERT-

based users’ simulation, and state retrieval, to train the interactive search mod-

els, which expands the static search logs for the dynamic search environment

and integrates offline and online learning.

• DQrank introduces novel sliding window ranking and rearrangement learning

to efficiently explore the ranking results that can maximize the long-term value

in DQ without losing the list-wise information of the ranking systems.

• Additionally, we demonstrate our methods in open standard datasets and study

the insights in a detailed ablation study.

1.6 Research questions and Contributions

Based on the above introduction, three fundamental research challenges are identified

as follows:

• RQ1: How can we effectively diversify the search results for more informative

feedback?
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• RQ2: How to de-bias the feedback information to better extract useful informa-

tion?

• RQ3: How can we model the interactive search process so that we can use feedback

to improve the search?

The first two steps are the necessary infrastructure for interactive search. The

RQ3 provides methodologies to build interactive search systems.

In this thesis, I present new algorithms and techniques to address these challenges

in four chapters. In Chapter 3, we will introduce an SDI-based search diversification

method, which can efficiently improve the diversity of the initial search. In Chapter 4,

I propose a novel user simulation to reduce the bias in user feedback. In Chapter 5, I

introduce my solution to use the document level to build the interactive search system.

This reinforcement learning-based approach outperforms the previous research. In

Chapter 6, a deep Q learning-based interactive search system is presented to effectively

process sentence-level feedback, which achieves SOTA performance.

1.6.1 An Efficient Approach to Diversify the Initial Search

for More Informative Feedback

As we mentioned, diversifying search results helps obtain informative feedback. The

first step is to measure the diversity of the ranking results to achieve this. An inter-

preted metric of diversity can help us observe the diversity of the ranking results and

also path a way to optimize the ranking results. We decompose this challenge into

two sub-problems:

• 1. Modeling the diversity of the ranking results.

• 2. Optimizing this model to improve the diversity of the ranking.
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In previous research, Determinantal Point Processes (DPPs) are proposed to mea-

sure the diversity and diversify results. DPPs use the volume of a parallelepiped

spanned by the vectors of the items’ attributes to measure the diversity. The volume

is determined by the vectors’ length (relevance) and cosine similarity (similarity). By

selecting a subset to maximize this volume, we can maximize both the diversity and

relevance of the ranking results. Although DPPs are effective in many applications,

they are suffered from high time complexity, uncertain optimum of the approximate

methods, and instability. To overcome those difficulties, we consider other simpler

models with concrete mathematical solutions. A highly competitive is Simpson’s

diversity index (SDI). Simpson’s Diversity Index (SDI) was initially introduced in

biology to measure the evenness and richness of a habitat [121] and aims to esti-

mate the probability that two randomly selected individuals from a sample will be

the same. SDI can be reorganized as a binary quadratic optimization problem with

concrete solutions and promises sub-optimum. To verify the proposed method, we

will use a Kaggle shoes challenge dataset and some important metrics, such as cover-

age, α-NDCG, and time complexity, to demonstrate the effectiveness of the proposed

method. We can compare the proposed method with the previous research with those

experiments, validating its effectiveness. In this research, our contributions include:

• We introduce an effective diversification model SDI to measure diversity in the

search problem from biology.

• We use the binary quadratic optimization method to optimize this model effi-

ciently.

The details of this contribution are described in Chapter 3.
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1.6.2 A New De-biased Method for modeling search Feed-

back

In terms of the second research challenge, we first analyze how the search bias gener-

ates and then build the models to reduce bias.

Initially, the users send the query to the search engine. Then the search engine

presents the search results. After that, the users read some of the results and send

back feedback. In the third part, the information flow is, in fact, incomplete and may

lead to unpredictable data issues because the users only receive a small part of the

search results, and the pattern of how the users select the information is uncertain.

The users passively receive the search results. Therefore, when users select valuable

information as feedback, they do not select the information from all the search results

but from their observed results. Therefore, the feedback is unavoidably biased. To

extract the helpful information from the feedback better, we need to de-biased the

feedback. If we ignore the unobserved positive feedback or consider it negative, it will

lead to incorrect annotations and massive noise.

Therefore, it is imperative to develop a method to reduce those biases. A straight-

forward method is to detect those bias. When the bias is detected, we can choose to

remove them or reduce its effect. However, since the bias is passive data, it is difficult

to directly evaluate the accuracy of the detection or measure the improvement of the

de-biased feedback.

In summary, we have two major questions that need to be answered:

• Developing a method to detect the bias.

• Validating the model can be used to reduce the bias and improve the feedback

quality.

To de-biased the feedback, two significant courses can be considered. We can use
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statistical methods to balance the bias. Second, we can model the users’ observation

patterns to discover the bias from the dataset.

The first kind of method typically still considers specific patterns of the users’

observation—for example, the distance between the positive items and negative ones.

For the second course, validating that the model can effectively reduce the bias is

hard theoretically. Considering the drawbacks of these two courses, we propose a

mixed approach.

We use reinforcement learning and convolution neural networks to simulate the

users’ behaviors and learn the bias patterns. The proposed method can generate both

de-biased feedback and biased feedback. Therefore, we can compare the ranking per-

formance by training the ranking models with additional feedback in our experiment.

Simultaneously, we also calculate the recall of the unbiased results to demonstrate

that the proposed model can effectively simulate the users.

We further design experiments to demonstrate that the proposed method can

improve the quality of the feedback by improving the ranking results. In terms of

experiments, we use two public datasets: ORCAS dataset [37] and Yandex click

dataset [117] and a real interactive dataset from a large e-commerce website (https:

//www.homedepot.com/) to validate the effectiveness of the model.

The experiment mentioned above can answer the research question in two as-

pects. First, the feedback is biased, and de-biasing the feedback can improve the

performance of ranking models. Second, the patterns of the bias can be learned and

simulated. De-biasing the feedback can avoid possible mistaken annotations and mas-

sive noise, enhancing the afterward search performance. Therefore, this research has

three significant contributions:

• We can theoretically and practically demonstrate that the passive bias in feedback

data can degrade the performance of the ranking models. It is vital to de-bias

the feedback in interactive search systems.

https://www.homedepot.com/
https://www.homedepot.com/
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• We propose a possible solution to de-bias the feedback data. The proposed model

simulates the users’ bias patterns, which can de-bias the feedback data and be

used to select learning to-rank models.

• In the future, we may extend the model to analyze users’ bias patterns and extract

the intent information further.

We demonstrate this contribution in Chapter 4.

1.6.3 Novel effective reinforcement learning approaches for

interactive search with different level feedback

After solving the last two key challenges, we can effectively use the feedback informa-

tion to improve the subsequent search performance. We propose new reinforcement

learning methods to integrate feedback information into the interactive search systems

in this part.

First of all, interactive search systems are dynamic. The search system needs to

adjust the search results based on the reaction of the users when they receive the

previous search results. Figure 1.5 is the diagram of interactive search.

This scenario can be modeled by reinforcement learning. In this thesis, we model

interactive search systems with reinforcement learning. However, different interac-

tions have different commuting mechanisms, resulting in different environments, poli-

cies, and reward settings. The methods of reinforcement learning methods also can

be various. Therefore, the feedback forms must be carefully considered when building

reinforcement learning-based interactive search systems.

Generally, we need to consider two forms of interaction. First, the feedback is

document-based. In this situation, the users’ feedback only contains information

about their attitudes to some documents. Some of the documents are positive, some

of them are negative, and the rest of them are neutral. Under this circumstance, the
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Figure 1.5: Interactive Search Diagram

feedback information is straightforward: some documents should be ranked ahead,

and some should be moved back. Therefore, document-level feedback is position

information.

The second form of feedback is sentence-based or text-based. The users select

some of the sentences in some documents as feedback. In contrast to document-level

feedback, sentence-level information is more specific. They may provide clues about

users’ latent intent or give more details to expand the original query. In summary,

sentence-level feedback is supplementary material for the query.

Considering these two basic forms of feedback, we have two subtopics to discuss

in this Section:

• 1. Building a reinforcement learning-based interactive search system whose feed-

back is document-based.

• 2. Building a reinforcement learning-based interactive search system whose feed-

back is sentence-based.

We consider deep reinforcement learning as the framework to model the interaction

process in both situations. However, their embedding models, the value network, and

the updating methods are different.
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A Novel Document-based Interactive Search System

Regarding document-based interactions, the critical feedback information is that

the documents are misplaced. Some documents should be placed ahead, and some

should be placed back. Therefore, adjusting the ranking scores is the key task in the

document-based interactive search system. We utilize a policy gradient reinforcement

learning framework to optimize the estimated ranking scores for the documents, which

is the first attempt to build the interactive search system with the policy gradient

methods [102]. In this framework, we can encourage the search agent to increase the

probability of high-score ranking results and discourage low-ranking results.

Additionally, we adapt the Rocchio algorithm to cooperate the feedback informa-

tion with the query in the search session and propose a step-wise learning framework

to optimize the list-wise search metrics [67][119]. All those efforts enable us to effi-

ciently extract the position information from the document-level feedback.

Moreover, we use four public ranking datasets to validate the proposed search

systems. Two standard-ranking datasets, MQ2007 and MQ2008 [105]. These two

datasets are used to demonstrate the performance of the initial ranking. The other

two are dynamic search datasets: TREC Dynamic Domain 2017 and TREC Dynamic

Domain 2018 [150]. We use these two datasets to show that the proposed system can

improve search performance based on users’ document-level feedback. The experi-

ments on those datasets demonstrate the efficiency of the proposed search system.

We further delineate the system in Chapter 5.

A State-of-the-art Sentence-level Feedback Interactive Search System

In the sentence-based system, since the feedback is text content, it shares a similar

information form as the query. Therefore, we can integrate the feedback information

into the query and directly optimize the ranking orders of the documents.

Based on the above consideration, we build a deep Q learning-based interactive
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search system to utilize the sentence-level feedback to improve the search performance

[42]. In this system, we build a BERT-based Q function to evaluate the actions, which

are different ranking results given the query and the sentence-level feedback.

However, we still have other challenges in this framework. One is the document

selecting model. Because the number of document ranking results exceeds the prac-

tical scope, we design a new selecting method to estimate the ranking results with

the highest Q value. Besides, we also introduce text content augmentation techniques

to stabilize the training process. Together, all those innovations allow the proposed

system to achieve state-of-the-art performance in sentence-level interaction search

systems.

In the experimental part, we use different datasets to fine-tune the pre-trained

BERT model and validate the systems with the TREC CAST dataset, the MS-

MARCO dataset, and the BETTER dataset. Compared to the previous approaches,

the proposed system is state-of-the-art.

We present details of the proposed system in Chapter 6.

In summary, this part demonstrates using reinforcement learning and different

embedding methods to improve the search with different feedback forms. We can

demonstrate that reinforcement learning is a practical framework to model the in-

teractive search process. We provide two effective models for two different basic

situations of interactive search. In the future, these two situations can be mixed and

considered another kind of feedback information organized as a knowledge graph.

This thesis proposal presents three critical questions and their solutions for im-

proving the search with feedback. First, we diversify the search results to help the

users generate helpful feedback. Second, we de-bias the feedback data to extract

useful information better. Third, we apply deep reinforcement learning and different

embedding methods to utilize different feedback information.

Before introducing the new algorithms and techniques, I first review related work
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about user feedback and search in Chapter 2.
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Chapter 2

Background

This work of this thesis focuses on building efficient interactive search systems, and

we have three major goals:

• to diversify the search results so that the users can generate useful feedback.

• to reduce the bias caused by users’ behavior patterns in the feedback.

• to use the feedback information to improve the search performance.

Those goals rely on analyzing basic learning to rank models, search bias model-

ing, and interactive search systems. In this chapter, I review related work on these

previous research:

• Interactive search (Section 2.1),

• Learning to rank (Section 2.2)

• Search diversification (Section 2.3),

• User feedback modeling (Section 2.4).
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2.1 Interactive Search

With the immense amount of data on the web, it is significant to develop efficient

search services to retrieve users’ desired information. An efficient way to understand

users’ information needs is by analyzing users’ interactions like clicking, observing,

attention, query reformulation, category selecting, reviewing, and other behaviors.

Those engagements can reflect users’ satisfaction with the search results and convey

users’ latent intents. Undoubtedly that information helps improve the subsequent

search. A better subsequent search can further boost the next search. This is the

basic intuition of interactive search. We can summarize the interactive search as the

following equations:

S0 = f(q, 0) (2.1)

Sn+1 = f(q, u(Sn)) (2.2)

where S is the search results, f is the search engines and u is the users’ feedback

and q is the initial search query.

We can observe that 2.4 is the traditional one-time search system. In the inter-

active search, we assume the search results are dynamic, and the users’ feedback can

improve the next search:

T (Sn) ≤ T (Sn+1) (2.3)

Where T is a function to evaluate the search results, which can be Normalized

Discounted Cumulative Gain (NDCG), Mean reciprocal rank (MRR), click-through

rate (CTR), revenue, and other metrics [8, 137].

In this case, we assume interactive search is a positive feedback mechanism [86].

We may consider a convergence like:
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Figure 2.1: The framework of the interactive search. The figure is from [59].

T (Sn+1) − T (Sn) ≤ ϵ (2.4)

Where ϵ is a threshold of the convergence, however, this can be only the short-

term optimization. The evaluation of the search results can be dynamic at different

times. For instance, ’Christmas Tree’ can be a good search result during winter for

the query ’tree’; in Autumn, ’Maple tree’ is a better result.

Therefore, interactive can not only capture users’ intents in a search session but

also can automatically adjust the search results and follow the trend based on users’

up-to-date feedback.

Additionally, the interactive search can be applied to many services, like key-

word search engines, semantic search engines, question-answering systems, dialogue

systems, and chatbots [4], because they are abundant with interaction signals. An

example of interactive search is presented in 2.1. Users’ clicking behavior helps the

keyword search engine generate better search results. Interactive search is a universal

framework that can be applied to most search systems.

In summary, the advantages of interactive search are three-fold:

1. Interactive search is a positive feedback system which promises improved sub-

sequent search.

2. Interactive search can satisfy the users in short-term and long-term engagement.
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3. Interactive search is a universal mechanism that can be applied to most search

services.

2.2 Learning to Rank

Learning to rank (LTR) is the foundation of all search tasks, including interactive

search. It is a technique to construct a ranking model that can sort items based on

their relevance, preference, and importance [88]. It is crucial to many information

retrieval tasks, such as search, recommendation systems, and chatbot [92] [40] [63].

Learning about LTR’s basic concepts and evaluation methods is imperative to

understand this thesis. In this section, I introduce the basic ranking methods, the

evaluation approaches of LTR, and three basic styles of LTR: the point-wise, pair-

wise, and listwise approaches.

In ranking tasks, different approaches may rank documents based on different

criteria. When focusing on the relationship between the query and the documents,

they are query-dependent models. The other methods rank the documents based on

the importance of the items, which are categorized as query-independent models.

2.2.1 Conventional ranking models

Sorting the documents based on the frequency of the query terms in the documents

is one of the simplest methods for learning to rank. However, the occurrences of the

terms cannot fully measure the relevance. A better idea is building a representation

of the documents and queries, which can reveal their more profound connection.

With this primary thought, some models based on vector space are proposed [9].

In those methods, the text content of both queries and documents is encoded as

vectors. They can further use the inner product, Euclidean distance, and Manhattan

distance to measure the relevance between the vectors of the document and query
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[30].

One of the most common methods to represent the terms is TF-IDF weighting

[6]. The TF of term t in a vector is the normalized number of its occurrences in the

document, and the IDF can be defined as:

IDF (t) = log
N

n(t)
(2.5)

Where N is the number of documents. n(t) is the number of the documents

containing term t.

While TF-IDF can represent the terms better than their frequency, it assumes that

all the terms are independent, which is not necessarily correct. Some approaches, like

Singular Value Decomposition, are used to linearly transform the vector space, which

can reduce the dependency of the terms.

Except for calculating similarity, other approaches are developed to measure the

relevance, such as BM25 and language models. BM25, or Okapi BM25, is a probabilistic-

based model which estimates the probability that the documents should be ranked

ahead [110]. The score of BM25 is defined as:

BM25(d, q) =
M∑
i=1

IDF (tu)TF (ti, d)(k1 + 1)

TF (ti, d) + k1(1 − b+ b l(d)
a

)
(2.6)

Where q is the query, containing terms t1, t2, ..., tM , d is the document. TF (t, d)

is the term frequency of t in document d. l(d) is the number of words of document

d. a is the average document length of all documents. k1 and b are two parameters.

IDF (t) is Equation 2.5.

BM25 is a classical method to rank documents. In this thesis, we use BM25 to

retrieve candidate documents and then use our method to re-rank the document.

BM25 can rank documents efficiently but are weak in ranking long documents [131].

Except Equation 2.6, BM25 also has many other variations [72].
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The language model is another branch of learning to rank based on statistical

methods. In language models, documents are ranked based on the probability that

the terms appear in the query giving the document (i.e., P (q|d)), where q is the query

and d is the document. If we assume the terms in the query are independent, then

we have the following:

P (q|d) =
M∏
i=1

P (ti|d) (2.7)

where query q consists of terms t1, ..., tM .

The maximum likelihood method is further applied to estimate the language mod-

els. Previous research of language models discovered that a background language

model is required for smoothing the estimation [103], which further constructs the

model as:

p(ti|d) = (1 − λ)
TF (ti, d)

len(d)
+ λp(ti|C) (2.8)

where the background language for term ti is defined as p(ti|C) and λ ∈ [0, 1] is the

smoothing factor.

Those methods are essential foundations for search. They are usually swift and

widely used in retrieving candidate documents for the next round of re-ranking, which

will re-rank the candidates to consider additional criteria or constraints from an initial

pool of candidates.

2.2.2 Point-wise, pair-wise and list-wise models

The learning-to-rank methods can be categorized into point-wise, pair-wise, and list-

wise methods based on different hypotheses and loss functions.

The point-wise models

The point-wise method assumes that the documents in the rank list are independent.

The point-wise models estimate the relevance degree of every single document with
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the query and then rank them based on the scores. The input features are extracted

from the query, a single document, and their cross relationship.

Therefore, the task of point-wise ranking methods is training a score function,

which is straightforward and highly connected to the traditional machine learning

approaches. Generally, the point-wise loss function examines the prediction of some

ground truth label, such as click-through rate, review score, or clicking. Consequently,

regression loss and classification loss can be used as loss functions. Those machine-

learning approaches have developed mature solutions. For example, XGboost is a

widely used point-wise method in the industry [29].

However, limited by its assumption that the documents are independent, the

position information is invisible to the point-wise method. At the same time, it also

ignores the bias effect of the ranking, which means the users have different relevance

evaluations when the documents appear in different positions [69].

The pair-wise models

The pair-wise models compare the relevance between the two documents. By com-

paring every two documents in the candidate lists, those documents can be ordered.

Unlike point-wise approaches, the input of the pair-wise documents contains a pair

of query-document features. The output is {1,−1}, demonstrating the preference of

these two documents.

Therefore, the loss functions of these methods focus on the inconsistency between

the estimated score and the ground truth label. For example, considering the click-

through rate as the ground truth label, we may need to set a threshold ϵ to generate

a label for every pair of documents. For example, let us assume the click-through rate

of document i is Ci and the click-through rate of document j is Cj. The new label

D(i, j) will be:
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D(i, j) =

 1, C1 − C2 ≤ ϵ

−1, C1 − C2 > ϵ

Therefore, the pair-wise models can be simplified as a classification problem. The

pair-wise approach helps prioritize the relevant documents by effectively distinguish-

ing the irrelevant results and putting them in the latter positions.

Although pair-wise models consider the relative relation between every two docu-

ments, some drawbacks are still apparent. First, the pair-wise models cannot reflect

the position information fully. It only reveals the relationship between every two

items. Second, the relevance is not singular, which means the query and the docu-

ments can be relevant in different aspects. For example, we may have D(i, j) = 1 and

D(j, k) = 1, but we cannot directly have D(i, k) = 1. We can have D(i, k) = −1. This

contradiction is led by the inconsistency of the relevance and may need additional

mechanisms to justify the correct order [56].

The list-wise models

The list-wise models evaluate the ranking performance of the ranking results. The

input is the entire group of the ordered documents associated with the query.

The output of the list-wise models can be a list of scores, which demonstrates the

relevancy of every document in the ranking list, or a score representing the relevance

degree of the whole list with the query.

Unlike point-wise and pair-wise models, list-wise models consider the positions

and the inter-dependency among all documents, which can capture more information

in the search tasks. However, most search tasks do not evaluate the whole ranking

list directly because this can cause the loss of essential annotations. For example,

evaluating the ranking results by only considering whether the click happened but

not capturing which document is clicked may make our annotations less specific. To
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resolve this problem, we can use some metrics to evaluate the ranking and consider

them as the loss function. For example, we can use Normalized Discounted Cumula-

tive Gain (NDCG) to calculate the performance of the ranking results [132].

NDCG measures the quality of a set of search results and has the following form:

DCG@k =
k∑

i=1

Di

ln i+ 1
(2.9)

NDCG@k =
DCG@k

iDCG@k
(2.10)

Where k is the number of documents in the search results. iDCG@k is the

DCG@k of the best ranking. Di is the relevance score of the document i.

These three learning-to-rank models are the basic frameworks of most search tasks.

We will introduce some work closely related to interactive search in Section 2.2.3.

2.2.3 Learning-to-Rank (LTR) methods

In previous research summarized in [88], most of the methods to solve Learning-

to-Rank problems are point-wise, pair-wise, or listwise approaches. The point-wise

approaches use a single document as its input in learning and define the loss functions

by the relevance of each document. In contrast, pair-wise approaches take document

pairs as instances, while listwise approaches consider the whole list of documents

[84][82][81][15][144][16].

More recent research on learning-to-rank paid more attention to the extra in-

formation provided by multiple documents and thus is majorly pair-wise methods

or listwise methods. For example, by formalizing the learning-to-rank problem as

a problem of binary classification on document pairs and applying a Support Vec-

tor Machine (SVM) to solve this classification problem, Joachims et al. proposed a

pair-wise method–RankSVM [81]. By using the classification model as a Neural Net-
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work instead, Burges et al. proposed another pair-wise method, which is RankNet

[15]. In terms of the listwise method, the most noticeable example algorithms include

AdaRank based on NDCG and ListNet. AdaRank-NDCG is a method that repeat-

edly constructs weak rankers based on re-weighted training queries and finally linearly

combines the weak rankers for predicting the rank, in which the weaker ranker is mea-

sured by NDCG [144]. ListNet is based on a probability distribution on permutations

[16]. Specifically, for a document list, ListNet applies the Luce model to generate a

permutation probability distribution based on the scores outputted by the ranking

function. Then, it uses the same method to generate another distribution based on

the ground truth labels. After that, two distributions’ cross-entropy construct the

loss function.

Although those approaches greatly model different essential features of LTR, those

methods are still restricted to a specific data structure. In fact, during the search

process, the length of the rank is increasing. None of the aforementioned methods

models this important dynamic process. Inspired by this, we further extend the

listwise method to the stepwise method.

Inspired by the Bellman function in Q learning and the structure of LSTM, we pro-

pose a stepwise method – sLSTM, which is a new and better LTR model [138][49][10].

sLSTM utilizes every ranking results from a search iteration. For example, when the

sLSTM ranks the first document, the training process considers this is a document

list with one document. Based on the ranked document, sLSTM ranks the second

document, and the training process considers it a new document list with two doc-

uments. In the discussion part, we reveal that the document lists with the different

numbers of documents enrich the training dataset. The shorter document lists are not

just part of the longer document lists; they present some different information, lead

the model to avoid useless aspects of ranking, and are helpful in avoiding over-fitting,

which has a similar effect to data augmentation in digital image processing.
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Figure 2.2: The framework of the dynamic search model.

2.2.4 Reinforcement Learning-based Methods

Reinforcement learning (RL) optimizes an agent policy to interact with the environ-

ment.

The application of RL in search needs to consider the search as an interactive

process. One crucial consideration is relevance. Relevance is not an objective label.

Users’ behaviors during searching, like query formulation, document clicks, document

examination, eye movement, mouse movement, etc., typically expose their natural

preferences, which may differ for each user. Therefore, the information from users

during the search can be valuable to guide the rest of the search process, which

could lead to better overall performance. This kind of ranking can be considered

partially interactive. Although this ranking considers the users’ preference, it does not

consider the effect of previously seen ranked documents and the overall performance

of the whole ranking. Compared with partial interaction ranking, dynamic ranking

considers both interaction and long-term gain.

The basic strategy of dynamic ranking is determining the importance of differ-

ent information while helping the users explore the information space. Therefore,

dynamic ranking contains four major characteristics [147]. First, dynamic ranking

optimizes all interactions. Second, it considers long-term gain. Third, it can predict
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future users’ preferences. Four, it affects the beginning of the interaction.

Recently, many approaches to LTR have been proposed based on reinforcement

learning. The early research on applying reinforcement learning in the ranking is [95],

which uses Partially Observable Markov Decision Processes (POMDPs). In 2013,

Guan et al. further developed it into a session search algorithm, which improves

the performance of the MDP by attaching different importance to different time

documents in the reward function [50]. Expanding on these two methods, Glowaka

et al. designed a reinforcement system supporting the active engagement of users

during search [47].

Most recently, and closest to our work, is a recently introduced method that uses

Reinforcement Learning to Rank with Markov Decision Process (MDP) [139]. One of

the central ideas of this method is treating the document list as a sample instead of

evaluating documents one by one. This allows MDP to optimize performance evalu-

ation metrics, like NDCG score directly. To generate a document rank, the authors

apply the Markov Decision Process to rank the documents first and then further train

the model by the whole ranked documents list. As a result, the MDP method was

demonstrated to be the new state-of-the-art on the MQ2007 and MQ2008 bench-

marks. In follow-up work, [44][85] successfully applied MDP to search diversification

problems. Those results are essential for dynamic search problems. Dynamic search

has a complex learning process, so it usually requires constructing an environment

and modeling the interaction between the users and the search engine. Those pro-

cesses can be modeled by different roles in reinforcement learning-based algorithms.

Therefore, reinforcement learning is also a suitable framework for dynamic search.

Specifically for the dynamic search setting, most prior research focuses on the

framework design, such as win-win search and Partially Observable Markov Deci-

sion Processes (POMDP) [90][148]. To compare different frameworks’ effects, [129]

explores different reinforcement learning-based frameworks in dynamic search, in-
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cluding Markov Decision Process, Q learning, and Deep Q learning network. Those

results are included in the 2017 TREC Dynamic Domain track. In the deep Q learn-

ing network method, LSTM is used as a data processor, and the Bellman function

as the reward function. They also utilize a naive method to update the query by

adding or removing some words based on feedback scores on each result. Although

the framework is important to improve performance, the reward function and the way

to update the query are also significant. In Chapter 5, we design a deep value network

to estimate the reward function, which discounts the search results of previous search

sessions by adjusting the learning rate. We also develop a novel embedding-based

Rocchio algorithm to update the queries, which together form an effective solution to

the dynamic search problem.

[44] adapts method of [120] (Alpha Zero) to the diverse ranking problem. In this

model, they construct a policy-network neural network to generate a policy for Monte

Carlo tree search (MCTS) and evaluate the ranking result. The major features of this

method include two points. First, it is a listwise method. The system cannot gather

the feedback of the users while searching. This method evaluates the whole search

and learns from the whole rank generated by MCTS. Second, this model is a self-play

model. The LSTM is a strong learner, but MCTS is a weaker one. However, after

each ranking, LSTM updates its policy and forwards this to MCTS so that MCTS

generates a better result for LSTM to learn. Even though [44] also uses LSTM as

an evaluation function in the reinforcement learning framework, they do not utilize

some interesting settings of LSTM and augment the dataset like sLSTM. LSTM in

[44] is a traditional listwise method, but sLSTM is a stepwise method.

Since most search logs are static in search tasks, building offline interactive search

systems is also vital. Previous research used different RL frameworks to model the

interactive search process. In cooperation with premium embedding models, RL

methods can outperform traditional learning-to-rank (LTR) models [97]. For example,
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RLIrank is a policy gradient method with a universal sentence encoder [154, 20]. It

outperforms important traditional LTR models like Adarank, ListNet, and RankSVM

[144, 142, 22]. Similarly, SlateQ, a Q learning-based method, is proposed to solve the

ranking problem in recommendation systems. SlateQ achieves the best performance

on RL-based recommendation approaches, outperforming other non-RL approaches,

including BERT-based models, demonstrating that DQ has the flexibility to learn a

more complex state-action function without worrying about the unstability associated

with training a nonlinear function approximator.

For three reasons, reinforcement learning methods are significant in building in-

teractive search systems.

First, reinforcement learning can efficiently model the interactions between users

and search agents, allowing feedback to improve search performance.

Second, reinforcement learning can optimize the search performance of the whole

search session, reflecting the effect of users’ long-term engagement.

Third, reinforcement learning can utilize static logs to train the interactive search

models offline, expanding the scope of the data source.

2.2.5 Neural Information Retrieval: Deep Learning for Rank-

ing

Typical neural networks (NN) are constructed by multiple stacked fully connected

layers. The features are fed forward and generate output results. In search tasks, the

output can be some predicted scores or a vector representing the input. Each layer of

the neural network contains a linear transformation of the vector from the previous

layer and it is followed by a non-linear activation function. In training process, a loss

function measuring deviation of the prediction and the ground truth is minimized by

classic back-propagation algorithm [76]. Figure 2.3 shows the architects of NN.

The basic neural networks are further developed with new training mechanisms,
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Figure 2.3: Artificial neural networks architecture, from [76]. X1, .., X7 are the input
features.

new sampling approaches and new structures and those models that allows NN struc-

tures to be deeper and manage to learn tasks’ patterns are called deep learning [76].

Some deep learning models are highly related to search tasks:

• Auto-encoder: An auto-encoder is an unsupervised model learning a data rep-

resentation. It is trained to construct a lower dimensional representation by

setting the input and output the same [136].

• Convolutional neural network (CNN): Unlike densely-connected neural net-

works, CNN is a partially connected neural network. It involves convolution

with kernels to capture local patterns and is followed by a pooling layer to ex-

tract important features and reduce dimension [11]. CNN can be used to predict

relevance scores.

• Recurrent neural network: A recurrent neural network (RNN) is a sequential

model. The input can be some sequential features like sentences. In the search

task, sequential features are common. They have different inputs in different

time stamps. For example, the list-wise ranking results have different documents

in different positions. During the feed-forward process of RNN, the features are

extracted and transferred to the next time stamp in each time stamp. With

previous features and current input, RNN can generate new features for the next

time stamp until the end. Therefore, the final output of the model is associated
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with all features at different times [94]. However, during back-propagation of the

model, the ”vanishing gradient problem” makes the convergence of the models

notoriously difficult [58]. To mitigate the issue, LSTM is proposed.

• Long Short Term Memory (LSTM): LSTM is introduced to resolve the gradient

vanish problem [123]. In addition to the hidden state vector, LSTM consists

of memory cells, including an input gate controlling the influence of new input,

a forget gate controlling the influence of previous information, and an output

gate controlling the influence of the current hidden state. Those variants allow

LSTM to control the gradients better and archive better performance, especially

when the input is very long.

Deep learning is one of the most active research areas in recent years [116]. The

great success of deep learning in image recognition and natural language processing

(NLP) attracts many researchers to explore the possible utilization of deep learning

methods in other applications [80][35].

Regarding deep learning in search, recent research focuses on several techniques to

improve ranking accuracy, including representing the text content with advanced em-

bedding approaches [38], learning the relevance pattern with large capacity networks

[53] and the approaches we discuss in this thesis: capturing users’ intent from the

interactive search process. Those methods show promising performance on various

search benchmarks [66, 157, 154, 156, 155].

More specially, many models of using deep learning for the learning-to-rank prob-

lem are proposed. For example, [118] uses a convolution neural network (CNN) to

rank short text pairs. [134] proposes a CNN-based method to rank image files. Ad-

ditionally, [115] applies a neural network to discover the relation for ranking.

Although those methods solve the problem effectively, they do not fit the structure

of the interactive search. The experiments in this thesis (Chapter 5 and Chapter 6)
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demonstrate that those methods cannot model the interactive search as well as the

models with list-wise and interactive structures.

Therefore, some researchers consider some sentence-to-sentence models to model

the search. Most of the methods in ranking problems select LSTM or RNN as the

’input gate’ of the documents list since they naturally have a sequence structure. This

is also the reason we use LSTM. In our work in Chapter 5, we improve the LSTM

model to a deep value network by exploring a new learning method.

.

2.2.6 BERT-based ranking systems

Bidirectional Encoder Representations from Transformers BERT is one of the most

crucial text content embedding methods [133]. As a pre-trained deep bidirectional

transformer, BERT can capture the surrounding contextual signals and provide em-

bedding results based on semantic understanding. In many sequence-to-sequence

natural language processing tasks, BERT archives outstanding performance [107].

BERT-based models are an essential part of the models we proposed in this thesis,

and some of them are the baselines in the experiments.

In addition to the BERT model, other transformer models are proposed. We

briefly introduce some of the important models:

• Transformers: Transformers is an attention-based NN model which can effi-

ciently extract key information from a sequence of data. It consists of encoder

and decoder blocks with a softmax activation function. Figure 2.4 shows the

structure of the transformer model.

The input of the model is a sequence of data, for example, a sentence. They are

embedded and sent to the positional encoders, which will assign vectors to the

data unit, for example, words based on their position. The multi-head attention



41

and a feed-forward network in the encoder blocks receive the embedding results.

The multi-head attention layers generate vectors representing the relationship

between each word and others. The feed-forward network transfers those vectors

to the decoder block.

The decoder block consists of positional encoders and masked multi-head at-

tention layers. The multi-head attention block takes the attention vectors from

the masked multi-head attention layers and encoder block and generates new

vectors. Those vectors can represent the meaning of the word in the entire doc-

ument better. The vectors are further sent to the feed-forward neural network

and softmax activation function.

The transformer model is significant in natural language processing (NLP),

especially in tasks like machine translation, text classification, and question

answering [141].

• Robustly Optimized BERT pre-training Approach (RoBERTa): RoBERTa is

a BERT variant with more thorough training. [89]. The training process of

RoBERTa uses larger datasets and more delicate hyper-parameters tuning

• DistilBERT: DistillBERT is intended to simplify the structure of BERT with

neural network distillation, which can accelerate the algorithm [114]. The distil-

lation learns the complex structure of BERT with a simpler transformer model.

The parameter of the new model reduces by 40%. The speed is 60% faster while

97% performance is retrained.

In search, most BERT-based ranking systems are point-wise methods, which

means the items are ranked by the similarity scores between the embedding results

of the query and the document [104, 99]. Although these methods can utilize the

query and document information, they do not learn the users’ feedback from the in-

teraction and ignore the ranking bias led by positions, observation, and other reasons
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Figure 2.4: Transformer model architecture, from [133].

[46]. Those drawbacks may cause weaker ranking performance than list-wise and

interaction-based ranking systems.

2.3 Search Diversification

In this part, we emphasize the importance of evenness, brief the primary baseline

method −− Determinantal Point Processes (DPPs), and introduce Simpson’s diver-

sity index (SDI) as a diversity model in multi-aspect search problems.

2.3.1 Richness and Evenness

Richness and evenness are essential concepts for understanding diversity. They first

develop in biology to measure the diversity of communities. Figure 2.5 is an example

of two communities with similar richness but different evenness. Richness reflects the
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Figure 2.5: Community 1 and Community 2 have similar richness, but Community 2
has higher evenness than Community 2. The figure is from [12].

number of different species, and evenness measures their distribution.

Prior research on search diversification focused on the richness of the results [121].

Richness quantifies the number of different types the dataset of interest contains,

while evenness considers the uniformity of the distribution of these types.

However, evenness is also vital for search diversification. Significantly for the

e-commerce setting, it can affect users’ online shopping experience. For example,

consider a product catalog with 1000 A items, 500 B items, and 500 C items. Suppose

we attempt to retrieve 12 results as diverse as possible to fit on the first page of the

results. Without considering evenness, the expected search results might be 6 A items,

3 B items, and 3 C items. While considering evenness, the expected results are all 4.

The richness of the two versions of the results is identical. However, the information

entropy of the second set of results is higher, meaning that higher evenness could

increase the information that the users receive in a limited space. In a multi-aspect

search, evenness is even more important. In multi-aspect search, the search results

combine many independent single-aspect searches. To support this conclusion, we

can consider a simple two aspects problem. Given two sets A and B, both have Z

items. Some of the items belong to a similar class. They have m and n classes. The
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number of classes i in A is ai. The number of classes j in B is bj. We randomly choose

one item from A and B respectively, which can be represented by (x1, y1). Then we

choose an item from A and B respectively again, which can be presented by (x2, y2).

We keep doing this operation Z times. We want to know the expected value of the

classes of (xi, yi). This problem can inspect how evenness influences the richness of a

new set combined with two sets their richness is known.

To solve this problem, we can only consider a minor problem. When we se-

lect (x, y) and then select (x′, y′), what is the probability of (x, y) = (x′, y′). We

can iteratively solve the original problem by keeping solving this minor problem.

Therefore, to evaluate the expected value of the new set’s richness, we can consider

P ((x, y) = (x′, y′)).

P ((x, y) = (x′, y′)) =
∑

i≤m,j≤n (ai(ai−1)bi(bi−1))

Z2(Z−1)2

By Jensen’s inequality, we shows that P ((x, y) = (x′, y′)) has minimal only when

ai = Z
m

and bi = Z
n

. This result implies that the high evenness of every aspect

can promise a high richness of the set with these aspects. [121] further prove that

the combinations of the even results are the most diverse in more general situations.

Therefore, evenness can affect the richness of multi-aspect searches as well.

The above discussion shows that evenness is significant for diversity analysis.

However, the vast majority of the diversity models for search do not consider re-

sult evenness. Therefore, we propose to use a model considering evenness to enrich

the diversity model for search. We propose to adopt the Simpson’s diversity index

(SDI) method from biology for this task [121]. We further introduce the DPP-based

algorithms for result diversification and then introduce the SDI method.
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2.3.2 Determinantal Point Processes for Search Diversifica-

tion

Determinantal Point Processes (DPPs) are useful in domains where repulsive effects

or diversity are important aspects to model. In recommender systems and information

retrieval domains, where the discovery of documents and items is significant, DPPs

can be used to diversify results.

In search problems, DPPs are a subset selection problem. We define the search

space as a set S, whose size is N , and the search results are a subset S ′, whose size

is k. BS′ represents the selected items in S ′. DPPs can be formulated as follows:

X = argmax
S′⊆S

det(BT
S′BS′))

X is the volume of a parallelepiped spanned by the vectors of B. It is determined

by the vectors’ length (relevance) and their cosine similarity (similarity). Figure 2.6

demonstrates how the length of the vector (relevance) and the angles among the

vector (similarity) affect the volume X. By maximizing X, we can obtain the best

subset of S, considering both diversity and relevance.

However, DPPs are a richness-greedy diversification method because X does not

change when we apply linear transformations to revise the evenness of B. Therefore,

the evenness of the obtained subset of each aspect is not promised. In a multi-aspect

search, the results are a combination of every aspect. As we mentioned in Section

2.3.1, this can lead to weaker diversity of the combination.

2.3.3 Simpson’s diversity index

Simpson’s Diversity Index (SDI) was originally introduced in biology to measure the

evenness and richness of a habitat [121], and aims to estimate the probability of

two randomly selected individuals from a sample will be the same. Apparently, this

probability is smaller if the habitat has more species (Diversity). Based on Jensen’s
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Figure 2.6: A geometry view of DPPs: from (a) to (b), as the magnitude of a relevance
vector increases, X also increases. From (a) to (c), as the similarity increases, X
decreases. The figure is from [77].

inequality, if the total number of animals in the habitat is constant, this probability

is also smaller when the numbers of each species are the same (Evenness).

More formally, SDI is defined as the probability that two items are chosen at

random and independently from a set the same:

D =

∑R
i=1 (ni(ni − 1))

N(N − 1)
(2.11)

Where R is the number of classes. ni is the number of items of the ith class. N

is the total number of all items. Smaller D means higher diversity.

In Chapter 3, we adapt SDI to the initial search. Compared to the DPPs ap-

proaches, the proposed method is faster and more diverse.
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2.4 User feedback modeling

Modeling users’ feedback is essential for interactive search. The user model digests

static user interaction logs and provides users’ interest in the search results dynam-

ically, which is a crucial step to dynamically extract the feedback information when

various search results are generated by the search system in the interactive search [65]

Users’ feedback consists of implicit and explicit feedback. The explicit feedback

means labels can directly represent users’ interest in the search item. For example,

users’ ratings, reviews, and ’thumb-up’ are explicit feedback. In contrast, implicit

feedback is more common in search tasks. For example, users’ click, add to the cart,

or attention can happen in most search scenarios. However, implicit feedback is more

accessible and impacted by some biases, such as observation bias. The observation

bias means that the users usually passively browse the search results, so many search

items are not observed by the users. Those items can be relevant to the query but are

considered irrelevant because they are not observed. Those biases bring much noise

to the labels, which can profoundly affect the search tasks.

Previous research extracts that implicit feedback by modeling user behaviors and

biases. In this section, we will introduce those methods.

2.4.1 Probabilistic Graphical Models

Most of the traditional click models are based on the PGM framework [75]. In PGM,

user interactions are organized as a sequence of events, such as document examina-

tions, skips, and clicks. The most frequent events that those models consider are

document examinations and clicks. Since it is instinctively correct that a user’s clicks

should be led by a document examination, these two events are highly interdepen-

dent. Based on this assumption, some important click models, including CCM, DCM,

DBN, and UBM, are proposed [41, 51, 24].
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2.4.2 Neural Click Models

The neural click model (NCM) is a method based on artificial neural networks. The

input data of the artificial neural network is generally one or many vectors, even

high dimensional tensor. Therefore, different from the PGM-based method, NCM

represents the clicking process with vectors [13]. [13] attempts to use many different

neural networks to construct the click models, including Long Short-Term Memory

(LSTM) [60] and recurrent neural networks (RNN) [149]. Their empirical evaluations

showed that the LSTM version has better performance.

Additionally, NCM also expands to some complicated click models. For example,

[26] develops a session search click model (CACM), which leverages the signals from

previous search iterations to predict the next search iteration of the search session.

2.4.3 User Bias Modeling

In search, users’ click behavior is significant to capture their intent and determine

their purchase. An effective click simulator can evaluate and improve the search

ranker with less effort than actual users. To support the click simulator design, many

techniques are proposed and developed. In this section, we introduce and comment

on some important and recent techniques for designing a click model, which include

Counterfactual Learning (CL), the user browsing model (UBM), and Reinforcement

Learning to Rank (RLIRank). In applications like recommender systems and inter-

active searching, ranking involves a more complicated information flow. Compared

to end-to-end structures, reinforcement learning can organize the information flow

better. Additionally, reinforcement learning can incorporate partially observed set-

tings of the click dataset, which may reduce noise from the not observed data. For

reinforcement learning, the most crucial issue is how we fit searching settings into



49

reinforcement structures. We use an example to explain how reinforcement learning

to rank works.

A user click model is a set of rules simulating user click behavior on a search

engine result page [32]. Some rules are commonly aligned with most of the users.

For instance, search engine users pay more attention to the top-ranking document,

which is called the position bias effect [25]. Another example is novelty bias. Some

research shows that unseen documents easily attract users [151]. Those rules can

still roughly capture users’ click patterns by ignoring users’ personalities or session

behaviors. However, the click model built by those rules cannot provide targeted

services based on users’ preferences. It can be further improved in the e-commerce

search scenario, rich with users’ click history and interaction. For e-commerce search

users, it is common for them to have a profile depicting their purchasing habits.

Besides, their search session behaviors, such as queries’ revision, can provide some

clues about the user’s intent. Those patterns help predict their possible click or

purchase. Consequently, an effective users’ click model in e-commerce should consider

general and personal patterns.

Unlike learning to rank, a click simulator does not generate a list of ranked doc-

uments. Instead, a click simulator simulates users’ reactions to the search results,

including click, browse, leave and purchase. To describe the possibility of those re-

actions, many metrics are developed. For instance, many researchers consider that

users are more likely to click more relevant documents, so they use a relevant metric

– NDCG, to evaluate the quality of the search results [137]. However, the connection

between the reactions and the metrics is indirect. They usually cannot be explained

by a particular metric. Many reasons may lead to a user’s reaction. For instance, the

user clicks the document, maybe because it is relevant or novel. Therefore, optimizing

the learning-to-rank model should consider many goals at the same time [17].

Notwithstanding, a click simulator can avoid the aforementioned challenge. As-
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suming the click simulator can effectively simulate users’ reactions, we can set the

optimization goal as a particular reaction, such as purchasing. It would be easier to

train learning to rank model for a particular purpose or many of them.

Another advantage of a click simulator is that it allows the training process of

learning to rank (LTR) to be more data-driven. It is notorious that the LTR problem

is hard to utilize the data directly. While training the LTR, the model generates

typically a new list of documents which does not exist in the data set. It is impossible

to evaluate such search results accurately based on the data set. To resolve such an

issue, we have to apply Hamming distance or interleave technologies to approximately

evaluate the search results [31]. Another possible resolution is assuming a score is

helpful to improve the performance of the LTR, such as BM25 [110]. Then, based on

the data set, we can calculate a score for each pair of queries and document and rank

them based on the score. However, those indirect methods cannot evaluate the search

results in a list-wise way. The interleaving results are a new list of search results. The

BM25 is a point-wise score, which ignores the position of the document in the search

results. In real-life applications, users may react differently when the same document

is in different positions.

The third challenge of modeling click is the dataset itself. The click dataset is the

implicit dataset [100]. In most LTR datasets, the relationship between the labels and

the features is explicit. We usually have a score to describe the relevance, diversity,

and other properties, so we assume every item in the dataset is observed. However,

in click, we only know that some results are clicked. If the items are clicked, it is

observed. Regarding the item not clicking, we do not know whether they are observed.

Therefore, those data are more like noise for the training.

To cope with the aforementioned challenges, many models are proposed to simu-

late the click. Basically, we can conclude them as three types:

• Feature-based click simulator.
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• Counterfactual learning to rank.

• Reinforcement learning to rank.

Featured-based click simulators predict the users’ click behaviors based on the

features of the query and the documents. [36] proposes a cascade model (CM), which

assumes the user scans documents on a page from top to bottom until a relevant

document is found. This can only work for the most straightforward situation where

the user keeps browsing the search results and only clicks once. However, users

sometimes may click on many documents. To handle this kind of situation, [52]

[51] extends CM to the dependent click model (DCM) and click chain model (CCM),

which can predict the next click based on a session of previous clicks in a query session.

With similar assumptions, [23] also proposes the dynamic Bayesian network model

(DBN). All those methods assume the users’ click is only affected by the actions

in a query session. [32] concludes them as the basic click models. Advanced click

models may consider more complex scenarios, such as searching with multiple queries

or incorporating users. For the task with multiple queries, [152] proposes the task-

centric click model (TCM). TCM is a general model considering query and duplicate

bias, which can be built on top of any basic click model. Additionally, [152] further

adds user-based parameters into a click model to capture users’ information. Those

models consider two points [100]:

• Estimating the attractiveness of the documents (relevance).

• Considering other factors that cause or prevent clicks (biases).

Therefore, those methods generally are feature-based evaluations. We use a classic

feature-based model, the user browsing model (UBM), as an example to analyze this

type of method.

Except for feature-based evaluation, the click of the search results can also be sim-

ulated by frequency-based methods. [1] proposes a frequency-based evaluation, which
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is counterfactual learning to rank (CLTR). Unlike the feature-based approach, CLTR

does not directly predict the user’s reaction. Instead, it tries to give an unbiased

estimation of the click dataset. When the LTR model generates a new list of results,

CLTR simulates the click by analyzing the frequencies of those query-document pairs

in the dataset. Although those pairs may be in different positions or appear with

other documents, the unbiased estimation can ease the influence of those biased fac-

tors. CLTR cannot directly predict users’ clicks but provides an unbiased dataset to

the LTR model. The experiments of [1] reveal that it can improve the performance

of SVM or end-to-end neural networks based on some addictive metrics, like NDCG.

The last method simulating the click is reinforcement learning to rank [154]. The

basic idea of this type of method is modeling the whole search process and considering

the user’s click as the Reward. The goodness of this method is flexibility. Since we

can design every step of search in reinforcement learning, it can be adapted to fit a

variety of searching, like online search, dynamic search, and session search. Since the

user’s clicks are considered the Reward, we avoid the influence of various biases and

focus on the actions that can improve the click.

In the following sections, I demonstrate three important methods of modeling click

for the learning to rank, which is the user browsing model (UBM), counterfactual

learning to rank (CLTR), and reinforcement learning to rank (RLR).

2.4.4 User Browsing Model

The user browsing method is a Bernoulli-based model. It predicts user clicks by

modeling related factors, such as distance, ranking, and examination. Those factors

can be estimated by the likelihood maximization model.

The naive version of the UBM is based on the following situation: A user issues a

query and obtains a list of documents from the search engine. The user browses the

results from the first one to the last one. For each document, the user first decides to
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read the brief or not. If the brief is attractive enough, they click on the document.

After that, they continue browsing the following brief.

Let us denote the position of the document as r. We use a binary random variable

e to represent whether the user examines the brief. The authors assume that the

probability of the examination is dependent on the distance d from the last click

(Assuming position 0 as the first click) and the document’s position r, because the

users tend to abandon the search after a long sequence of unattractive documents.

The conditional probability can be further described by Bernoulli distribution:

P (a|u, q) = αa
uq(1 − αuq)

1−a (2.12)

P (e|r, d) = γerd(1 − γrd)
1−e (2.13)

Where αuq is the probability of attractiveness of the brief u when the query is q.

γrd is the probability of examination when the distance is d and position is r. a is the

attractiveness, which is a binary parameter. e is whether the document is examined.

The full model is a joint distribution of Equation 2.12 and Equation 2.13:

P (c, a, e|u, q, d, r) = P (c|a, e)P (e|d, r)P (a|u, q) = P (c|a, e)γerd(1−γrd)1−eαa
uq(1−αuq)

1−a

(2.14)

Where c is whether the document is clicked. To compute this, different situations

should be considered. If we observe a click (c = 1), it is obvious that the brief is

attractive and the document is examined, which means a = 1 and e = 1. Therefore,

Equation 2.14 can be simplified as:

P (c = 1|u, q, r, d) = γrdαuq (2.15)
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Let us marginalize over a and e in Equation 2.15 when c = 0:

P (c = 0|u, q, r, d) = 1 − γrdαuq (2.16)

To estimate the parameters α and γ, the likelihood maximization method is con-

ducted. It is assumed that each click observation is independent. We can separate

the whole set as S1 and S0. In S1, the clicks are observed, while S0 is its complement.

The probability of the observation can be written as:

P (Obs|α, γ) =
R∏

r=1

D∏
d=1

∏
(u,q)∈S1

rd

γrdαuq

∏
(u,q)∈S0

rd

(1 − γrdαuq) (2.17)

The parameters α and γ can be estimated by maximizing Equation 2.17.

Overall, UBM is a Bernoulli-based method and uses the likelihood maximization

method to estimate the parameters that the authors consider important to determine

the click.

2.4.5 Counterfactual Learning to Rank

Predicting users’ click behavior suffers from many biases, such as position, ranking,

and diversity. CLTR is proposed to give an unbiased estimation of users’ click behav-

ior and predict the users’ future clicks.

The key technique of counterfactual learning is to incorporate the propensity of

obtaining a specific example into an Empirical Risk Minimization (ERM) object,

which is unbiased. In CLTR, this technique is applied to build the nonlinear model

with additive IR metrics, such as NDCG and Precision@k.

Unbiased Estimation of Rank-based IR Metrics

To illustrate how counterfactual learning generates an ERM, we first consider the

classic structure of the additive ranking performance metrics:
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∆(Y |xi, ri) =
∑
y∈Y

λ(rank(y|Y ))ri(y) (2.18)

Where Y is a ranking of results, xi is a query instance. λ() can be any weighting

function that reflects the discount of the ranking position. rank(y|Y ) is the ranking

position of y in Y . ri(y) denotes the user-specific relevance of instance xi.

Apparently, different λ() functions can result in different metrics. For instance,

when λ(rank) = rank, it gives the sum of relevant ranks metric. However, when

λ(rank) = −1
log(1+rank)

, it gives the DCG metric.

To estimate the performance of a system when a ranking list Y is given without

biases, we can go through all the probabilities of every document and their relevance

score.

R(S) =

∫
∆(S(x)|x, r)dP (x, r). (2.19)

Where S is a ranking system that returns the ranking Y when the user gives a

query xi. P (x, r) is the frequency of x with relevance score r.

To apply Equation 2.19 to the actual dataset, we need to point out an important

difficulty. When dealing with implicit feedback data like clicks, it is impossible to

observe all relevance ri. Particularly, a click can be noise and indicate the positive

relevance of the presented documents. At the same time, a missing click may be led

by the ignorance of the users, which does not necessarily indicate weak relevance.

Consequently, R(x) can only be estimated under a partial-information setting. We

can use a 0/1 vector oi ∼ P (o, xi, Ȳi, ri) to indicate which relevance values are revealed.

In particular, we can define the distribution of oi as Q(oi(y)|xi, Ȳi, ri), given a

query instance xi and presented ranking Ȳ . With this counterfactual setting, we can

further estimate ∆(Y |xi, ri):

∆̂IPS(Y |xi, Ȳi, oi) =
∑

y:oi(y)=1
∧

ri(y)=1
∧

y∈Y

λ(rank(y|Y ))

Q(oi(y) = 1|xi, Ȳi, ri) (2.20)
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Equation 2.20 is unbiased, because,

Eoi [∆̂IPS(Y |xi, Ȳi, oi)]

= Eoi

[∑
y:oi(y)=1

∧
y∈Y

λ(rank(y|Y ))ri(y)

Q(oi(y)=1|xi,Ȳi,ri)

]
=

∑
y∈Y Eoi

[
oi(y)λ(rank(y|Y ))ri(y)

Q(oi(y)=1|xi,Ȳi,ri)

]
=

∑
y∈Y λ(rank(y|Y ))ri(y)

= ∆(Y |xi, ri).

We assume Q(oi(y) = 1|xi, Ȳi, ri) > 0 when all y are relevant. Equation 9 shows

that the IPS can be estimated without relevance or missing observation.

Based on Equation 2.20 [128], we can use IPS weighting to give an unbiased

estimation of R(S).

R̂IPS(S) =
1

N

N∑
i=1

∑
y:oi(y)=1i(y)=1

λ(rank(y|S(xi)))

Q(oi(y) = 1|xi, ȳi, ri)
. (2.21)

Equation 2.21 is also called the risk of a ranking system S. What is important,

the propensities Q(oi(y) = 1|xi, ȳi, ri) are unknown. Normally, we should apply some

methods to estimate this distribution. For example, [3] designs a distance model.

Except for this, many practical models are also proposed [43][69][135].

In summary, counterfactual evaluation models click on the users’ propensity and

estimate the system’s performance with an unbiased setting. Therefore, even though

the ranker may generalize results that do not exist in the log, CL can still evaluate the

quality of the ranker and model the click results. For missing data, the CL has the

same effect as ”pooling” in machine learning, which can estimate the missing points

based on the existing neighborhood points.

2.4.6 User Modeling Evaluation

When modeling the click, three aspects are of vital importance, which are scalability,

unbiasedness, and flexibility. This part discusses the aforementioned methods based
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on these three aspects.

Scalability

Scalability is crucial for a click model because the volume of click logs is generally

huge. For example, the number of click logs of a popular e-commerce website, like

The Home Depot, can reach millions a day. To analyze those data and generate

helpful feedback in time, a click simulator must process them in a reasonable time.

The scalability of UBM is extraordinary because its computation complexity is

O(N), N is the number of click items. Estimating two critical parameters α and γ is

essential. However, with the likelihood maximization method, the estimation cost as

much as Bayesian inference.

In terms of CLTR, to reduce the bias of a pair of queries and items, we have to

search for all these kinds of pairs in the click logs first. Therefore, if we have M

different pairs, N click logs, the complexity of the search is O(MN). After we find

all the relevant logs, it only costs O(n2) to compute the IPS score, n is the number

of this kind of pair. This reveals that the scalability of CLTR is worse than UBM.

For RLR, the click model must go through the search logs, whose time complexity

is only O(N). However, the selection of the reward function is essential, because

the model has to train the reward function after each search session. If the reward

function is a neural network, the algorithm can be very time costly.

Therefore, the scalability of UBM is the best among these three methods. CLTR

is weaker but predictable. The scalability of RLR depends on its reward function.

Unbiasedness

The click logs dataset is an implicit dataset. The bias of the click can lead to many

noises, degrading the training models’ performance. Therefore, it is necessary to

consider unbiasedness when modeling the click.
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UBM assumes that the bias of the click or the possibility of the item being ob-

served is related to the distance between the clicked item and the item to estimate.

It is unclear whether the assumption is fundamentally correct, but adjusting some

parameters can somehow reduce the bias of the items. The experiment also supports

that UBM performs better than the model without considering the bias issue.

CLTR constructs a counterfactual model to estimate the bias of the click. Given

a metric we want to optimize, CLTR can construct an unbiased, theoretically correct

estimation. Therefore, CLTR promises the minimum of the model’s bias.

The unbiasedness of RLR depends on how you construct the model. If we consider

the observation step and assign a reward function to this part, we can reduce the bias

well. It does not promise that the bias is minimal, but we can consider more metrics

in this process instead of only considering one in CLTR. Therefore, RLR can have

some mechanisms to promise unbiasedness.

Flexibility

Flexibility is essential because the click scenarios are varied. In real life, different

search engines generate different search logs. For example, in dynamic searching, we

may have an interaction process. Therefore, the click model should be flexible.

UBM needs to be more flexible. The basic assumption of UBM is that the items

are on pages, and each item has a brief. To utilize UBM, the click logs should be

organized in this form, which is difficult or impossible for some search scenarios.

CLTR is a method to restrict bias, so it does not have an optimizer. Therefore,

the selection of CLTR is flexible. However, CLTR can not purely be defined by the

click. It requires some scores to compute the IPS. For example, when you select

NDCG as λ(), your dataset should have the relevance score between the query and

the document. Therefore, CLTR has to select a proper λ() based on the dataset.

RLR is the most flexible method. Reinforcement learning improves the Agent by
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processing the feedback. In click logs, the users’ clicks are the feedback. Therefore,

when modeling the click, RLR can always properly define its components, such as

Reward, Agent State, and Action. Additionally, RLR can be reconstructed in different

ways based on your search scenarios. Therefore, RLR is the most flexible method.

Conclusions

In this section, we discuss the essential background of click modeling and three com-

monly used and important methods, which are UBM, CLTR, and RLR. We consider

the three most important aspects when we discuss these three methods, including

scalability, unbiasedness, and flexibility. It reveals that the drawbacks and advan-

tages of those methods are apparent. UBM’s scalability is the best, but its flexibility

is weak. It also has some mechanisms to handle bias based on naive assumptions.

CLTR can theoretically erase the bias, but its scalability is weaker than UBM and is

less flexible than RLR. RLR is the most flexible method, but many aspects of RLR

have to be defined based on the search scenario. It is also essential to consider the

scalability issue when using RLR.

In the future, click simulators will still be an important topic in learning to rank

and search. The cooperation of all those three methods can generate some fascinating

methods. For example, the IPS of CLTR can be the heuristic function for UBM. This

survey is useful for future studies.
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Chapter 3

An Efficient Approach to Search

Diversification

Initial search results are the base of interactive search. In this section, I extend my

previous work [156] that published in SIGIR to introduce an efficient approach for

search diversification.

In search and recommendation, diversifying the multi-aspect search results could

help with reducing redundancy, and promoting results that might not be shown oth-

erwise. Many previous methods have been proposed for this task. However, previous

methods do not explicitly consider the uniformity of the number of the items’ classes,

or evenness, which could degrade the search and recommendation quality. To address

this problem, we introduce a novel method by adapting the Simpson’s Diversity Index

from biology, which enables a more effective and efficient quadratic search result di-

versification algorithm. We also extend the method to balance the diversity between

multiple aspects through weighted factors and further improve computational com-

plexity by developing a fast approximation algorithm. We demonstrate the feasibility

of the proposed method using the openly available Kaggle shoes competition dataset.

Our experimental results show that our approach outperforms previous state of the
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art diversification methods, while reducing computational complexity.

3.1 Diversifying Multi-aspect Search Results Us-

ing SDI

In this section, we present a method that diversifies multi-aspect search results using

Simpson’s diversity index. We first present an important variation of Simpson’s diver-

sity index and then explain how we apply it to search. We conclude by constructing

a quadratic program to compute SDI more efficiently.

3.1.1 Diversifying Multi-aspect Search Results using Simp-

son’s diversity index

In multi-aspect search, items are labeled by many aspects. We first consider the SDI

of an aspect. In addition to Equation 2.11 in Section 2.3, which is:

D =

∑R
i=1 (ni(ni − 1))

N(N − 1)
(3.1)

We have another way to calculate SDI.

In a set, we denote the number of items in this set as N . R is the number of

items’ classes. ni is the number of items of the ith class.

When we randomly select two items as a pair, there are 1
2
N(N − 1) pairs. For

each pair, they belong to the same class or not. The total number of pairs belonging

to the same class is
∑

i<j≤N (ai&aj). Where ai is the Item i. If two items are the

same (ai&aj) = 1, else (ai&aj) = 0. If we also count the item itself, we have:

D(p, S ′) =
2
∑

i,j∈S′,i≤j (ap,i&ap,j)

|S ′|(|S ′| + 1)
(3.2)
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Where p is the aspect, P is the aspect set, S ′ is the selected set, S is the whole set,

|S| is the size of S. ap,i is the Aspect p of Item i.

If we consider all the aspects at the same time, we have:

H(S ′) =
∑

p∈P ωp
D(p,S′)
D(p,S)

In this equation, we first normalize each aspect’s SDI, because different aspects’

SDI may have different scales. Then, we weigh every aspect with ωp. If we only

consider diversification, ωp = 1. However, in the search problem, relevance is also very

important. When the item is highly relevant to some aspects. For example, when

users search ’blue shoe’, it is not necessary to present other colors’ shoes anymore.

Therefore, the ’color’ aspect should be penalized. We let ωp = 1− kp−1

|S′|−1
, Where kp is

the number of the most common aspect of Aspect p in top |S ′| relevant results. For

convenience, we let ϕp = ωp

D(p,S)
.

This transformation of SDI helps us organize it to a more efficient form to be

optimized −− the binary quadratic program (BQP).

3.1.2 The Binary Quadratic Program

In this section, we transfer the SDI optimization to a BQP problem, which has thor-

ough previous research to systematically be approximated and optimized [91][34][122].

Since H(S ′) is pairwise, it can be computed in an easy way. Let’s expand H(S ′).

H(S ′) =
∑

i,j∈S′,i≤j
2

|S′|(|S′|+1)

∑
p∈P ϕp(ap,i&ap,j)

Let Qi,j = 2
|S′|(|S′|+1)

∑
p∈P ϕp(ap,i&ap,j), we can reformulate H(S ′) as H(S ′) =

1
2
xTQx, x is a vector representing S ′. The length of x equals to |S|. Each entry is

an item of S. The entry of the chosen item is 1, or it is 0. If we further consider the

relevance, we have:

min
x
T (S ′) = min

x
H(S ′) +R(S ′) = min

x

1

2
xTQx+ bTx (3.3)



63

Where b is the relevance vector. Consequently, it becomes a binary quadratic program

problem, whose constraints are: s.t. xi ∈ {0, 1},
∑|S|

k=1 xk = |S ′|, where xi is the entry

of x.

Equation 3.3 is a classical BQP problem. In this work, we first relax it to a convex

optimization problem [91]. Then we use the Frank–Wolfe algorithm to optimize it [34].

Finally, we use Goemans and Williamson procedure for the approximate solutions

[122]. Such a procedure guarantees that the solution is a close approximation that

T ∈ [Tmin,
π
2
Tmin].

3.2 Experimental Setting and Results

We first introduce the experimental datasets, including the queries generation and

items’ collection. Then, we describe the evaluation methods, initial relevance ranking,

and the baseline methods used to report the experimental results.

3.2.1 Datasets

We experiment with two datasets: a publicly available Kaggle benchmark for the

searching items dataset, and a complementary dataset constructed using publicly

available Amazon Web Search engine interface for the queries dataset.

Kaggle Shoes Price Competition Dataset (Kaggle): Kaggle shoe price

dataset is a list of shoes and their associated information, containing 19046 women

shoes and 19387 men shoes. However, the items of this dataset also contain clothes,

gloves, jewelry, and so on. Some items do not have features. To focus on the diversity

problem, we remove items without features, clothes items, jewelry items, gloves items,

trousers items, and toys items. At last, we have 14609 items. Besides, even though

the items have many aspects, they do not have the values of many aspects. Therefore,

we only choose 21 most commonly used features: ’Season’, ’Material’, ’Gender’, ’Shoe
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Size’, ’Color’, ’Brand’, ’Age Group’, ’Heel Height’, ’Fabric Material’, ’Shoe Width’,

’Occasion’, ’Shoe Category’, ’Casual Dress Shoe Style’, ’Shoe Closure’, ’Assembled

Product Dimensions (L x W x H)’, ’Fabric Content’, ’Shipping Weight (in pounds)’,

’prices.offer’, ’prices.amountMin’, ’prices.amountMax’ and ’prices.isSale’.

Amazon Queries Suggestions Dataset (AQS): To complement the Kaggle

queries dataset, we created a new dataset automatically constructed for the “shoes”

category using the query suggestions provided by the Amazon Web Search engine.

Specifically, we collected the queries suggestions for the top-level category ’shoes’.

This process resulted in 373 queries, such as ’fur lined winter coat women’ and ’leather

boots for men’. The AQS dataset is available at the URL https://docs.google.

com/spreadsheets/d/17DMU5pMSiNxi05yu5pdEvrUf3b0mIAF1rYn2ypruS7A/edit#gid=

0.

3.2.2 Baselines and Experimental Setting

Setting

In the experiments, we search for queries and every model returns the top 10 results.

We used the averaged results of all queries as the data points.

All the diversification methods considered, and our proposed method, require the

relevance vectors and the similarity matrices. In this work, BM25[110] score of each

item with respect to the query. For the item-item similarity matrix, the number of

identical aspects between the items is used, which could be improved in future work.

To trade off the relevance and diversity, we introduce a parameter θ. θ adjusts the

relation between diversity and relevance in the following way:(1 − θ)H(S ′) + θR(S ′).

For the proposed method, the approximate rate ϵ is 0.0001.

https://docs.google.com/spreadsheets/d/17DMU5pMSiNxi05yu5pdEvrUf3b0mIAF1rYn2ypruS7A/edit#gid=0
https://docs.google.com/spreadsheets/d/17DMU5pMSiNxi05yu5pdEvrUf3b0mIAF1rYn2ypruS7A/edit#gid=0
https://docs.google.com/spreadsheets/d/17DMU5pMSiNxi05yu5pdEvrUf3b0mIAF1rYn2ypruS7A/edit#gid=0
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Baselines

We use three baselines, including Greedy version DPPs and two recent and influential

variations. 1) DPPs Greedy: Greedily selecting items to maximize the determinant

[14]. 2) k-DPPs: It is a sample-based DPPs, which can accelerate the Greedy DPPs.

However, since it localizes the optimization, the performance may be unstable [78].

3) Fast MAP DPPs: A novel approach improves the computation complexity of

the maximum a posteriori (MAP) inference DPPs, which is the state of art DPPs

algorithm [28].

3.2.3 Evaluation Metrics

We now summarize the metrics used to compare the methods.

• Coverage Rate(CR): The coverage rate measures the diversity of the subset

[19]. For each aspect of the item, they have at most 10 features or the number

of this aspect’s features in this set. The coverage rate is a diversity metric.

CR(S ′) = 1
|P |

∑
p∈P

|A′
p|

min(|S′|,|Ap|)

Where S ′ is the selected set, P is the set of all aspects, A′
p is the features of

Aspect p in the selected set and Ap is the features of Aspect p .

• NDCG@10: We use normalized discounted cumulative gain (NDCG) to mea-

sure ranking results of the relevance. Since both results of DPPs and the pro-

posed method do not have the order, we rank the selected subset based on the

items’ relevance before computing the NDCG@10 [19].

• α-NDCG: A variations of NDCG, which can measure both relevance and

diversity [19].

• Variance: We use averaged variance of every aspect’s number of features to

measure the evenness [109].
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V (S ′) = 1
|P |

∑
p∈P

√∑
a∈p (|a|−µp)2

|p|

Where µp is the averaged same features number of Aspect p in subset S ′. a is

the feature of Aspect p. |a| is the number of this feature in the subset.

3.2.4 Results

The results of diversity, evenness, and relevance are presented in Figure 3.1, 3.2, 3.3,

3.4. The result of the computing time is illustrated in Table 1. In 3.1, 3.2, 3.3, 3.4

the trade-off parameter θ ranges from 0 to 1, whose step size is 0.1. For CR(3.1),

NDCG@10(3.2), and α-NDCG(3.3), the larger their value, the better the performance

of the model is. For variance(3.4), a lower line means the model is evener. In Table

1, less computing time means the model is faster. Generally, the proposed method

outperforms the baselines in terms of relevance, diversity, and evenness, especially

when θ ranges from 0.3 to 0.7. The improvement is up to more than 15%. In terms

of computing time, the proposed method spends less time than most of the baselines.

We use CR to measure the richness of the multi-aspect results in Figure 3.1, which

shows the proposed method outperforms the baselines when θ ranges from 0.2 to 0.8.

In terms of relevance, the NDCG@10 scores from Figure 3.2 show that the proposed

method has closed performances. We further use α-NDCG to measure the relevance

and diversity at the same time in Figure 3.3, which demonstrates that the proposed

approach has the best performance while θ ranges from 0.4 to 0.7. Figure 3.4 further

applies the Variance to measure the evenness of the returned results. In this figure,

we find that when the model emphasizes diversity (θ closes to 0), the variance of SDI

is smaller than all the baselines. We further test the computing time of the proposed

method and summarize the results in Table 1, revealing that the proposed method is

slower than k-DPPs but faster than other baselines.
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Figure 3.1: Comparison of trade-off coverage rate performance between relevance
and diversity under different choices of trade-off parameters θ on Amazon Queries
Suggestions dataset and Kaggle Shoes Price Competition Dataset.

Figure 3.2: Comparison of trade-off ndcg performance between relevance and diversity
under different choices of trade-off parameters θ on Amazon Queries Suggestions
dataset and Kaggle Shoes Price Competition Dataset.

Figure 3.3: Comparison of α-NDCG performance between relevance and diversity
under different choices of trade-off parameters θ on Amazon Queries Suggestions
dataset and Kaggle Shoes Price Competition Dataset.
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Figure 3.4: Comparison of trade-off variance performance between relevance and
diversity under different choices of trade-off parameters θ on Amazon Queries Sug-
gestions dataset and Kaggle Shoes Price Competition Dataset.

Table 3.1: Comparison of average running time (in milliseconds)

Model SDI DPPs-Greedy k-DPPs Fast-MAP-DPPs

Computing Time 45.32 1093.48 17.86 98.45

3.3 Analysis & Discussion

We now discuss the proposed method’s advantages and drawbacks based on the exper-

imental results above. Figure 3.1, 3.2, 3.3 show that our SDI method outperforms all

the baselines while we consider diversity and relevance with similar or closed weights.

Simultaneously, Figure 3.4 shows that the evenness of SDI is substantially higher than

the baselines’, supporting the analysis in Section 2.

Table 1 reports the computation time of 4 methods, which aligns with their com-

putation complexity. Greedy DPPs’ is O(N4). Fast-MAP-DPPs’ is closed to O(N3).

k-DPPs’ is O(Nk2). The proposed method has O(1/ϵ) iterations, and each iteration

is just linear programming. Although the proposed method is slower than k-DPPs,

k-DPPs have the worst general performance in Figure 3.1, 3.2, 3.3, 3.4, which still

supports the conclusion that SDI is a competitive diversity model.
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Chapter 4

De-biased Modeling of User

Feedback

Modeling users’ feedback is a key step toward interactive search. In this section, I

extend my previous work [157] that published in CIKM to demonstrate a de-bias

method for the users’ click, which is one of the most important feedback we receive

from the search.

Users’ clicks on Web search results are one of the key signals for evaluating and

improving web search quality, and have been widely used as part of current state-of-

the-art Learning-To-Rank(LTR) models. With a large volume of search logs available

for major search engines, effective models of searcher click behavior have emerged to

evaluate and train LTR models. However, when modeling the users’ click behavior,

considering the bias of the behavior is imperative. In particular, when a search result

is not clicked, it is not necessarily chosen as not relevant by the user, but instead

could have been simply missed, especially for lower-ranked results. These kinds of

biases in the click log data can be incorporated into the click models, propagating

the errors to the resulting LTR ranking models or evaluation metrics. In this work,

we propose the De-biased Reinforcement Learning Click model (DRLC). The DRLC



70

model relaxes previously made assumptions about the users’ examination behavior

and resulting latent states. To implement the DRLC model, convolutional neural

networks are used as the value networks for reinforcement learning, trained to learn

a policy to reduce bias in the click logs. To demonstrate the effectiveness of the

DRLC model, we first compare performance with the previous state-of-art approaches

using established click prediction metrics, including log-likelihood and perplexity. We

further show that DRLC also leads to improvements in ranking performance. Our

experiments demonstrate the effectiveness of the DRLC model in learning to reduce

bias in click logs, leading to improved modeling performance and showing the potential

for using DRLC for improving Web search quality.

4.1 De-Biased Modeling of Search Click Behavior

with Reinforcement Learning

In this part, we introduce the proposed DRLC model. We first introduce the imple-

mentation of the DRLC’s components, namely the value networks, which include a

bias network, and a de-biased network. Then, we overview the proposed reinforcement

learning (RL) approach to training a de-biased click model.

4.1.1 Value Network Implementation

We chose to use Convolutional Neural Networks (CNNs) as our value networks. The

first CNN C1 is a bias network, which means this network considers the observation

bias: Some documents are not clicked because they are not observed. The input

features are bias features B and the document features D. B is a vector with 1 or 0.

B represents the observation situation of the search results. If the item is observed,

the value is 1 or it is 0. We use an observation window to observe the SERP. We first

assume the documents browsed by the window are observed. Then, by comparing the
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Figure 4.1: The structure of the DRLC value networks.

predictions from two value networks, we further update B. D is a vector, representing

the features of a document. Those features are related to both the query and the

document, such as the frequency of the query appearing in the document. The output

of C1 is the click estimation with bias or the possibility of clicking this document. The

second CNN C2 is a de-biased network, whose output is the de-biased click estimation

or the possibility of clicking the item under the de-biased setting. The input of C2 is

just D. ‘ The structure of the value networks is summarized in Figure 4.1.

Pre-training: Since two networks focus on two aspects of the dataset, we pre-train

them in different ways. We pre-train C1 with the whole training dataset, which is

a highly biased dataset. For the observation features B, we assume that the users

observe the documents sequentially with an observation window. If the documents

appeared in the window before, they are denoted as observed. If not, they are not
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Figure 4.2: Illustration of the DRLC Reinforcement Learning process.
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observed. Only when all the documents in the observation window are examined, the

window moves to the next position, the process is presented in Figure 4.2. The size

of the observation window is decided by the empirical estimation (In this research,

the size of the window is 3.). C2 is trained by a de-biased dataset. We assume the

documents before the last clicked document is more likely to be observed. Therefore,

we only pre-train C2 with the documents before the last clicked document.

CNN architecture The input of the C1 is an 100 × 1 vector (Bias features B)

and a 56 × 1 vector (Document features D). The bias features are demonstrated in

Pre-train part. The document features are generated from the URL provided in the

dataset. The features we selected are identical to the ones listed in [106]. Firstly, we

apply two filter layers to join the features from D and B. For each CNNs, they have

three convolutional blocks. Each convolutional block contains 16 filters of kernel 3×1

with stride 1, a batch normalization layer, and a ReLU layer. The output layer is a

fully connected network. The loss function is a softmax function. The structures of

CNNs cannot be too deep, considering the scalability of the click model.

After pre-training, the networks are initialized to be trained by the RL method.

4.1.2 Reinforcement Learning (RL) Framework

The RL framework of DRLC is illustrated in Figure 4.2. The components of the RL

are defined as follows:

State s is the click and observation state of the documents. We assume a user’s

attention can be modeled by an observation window, where users observe items in

the observation window with a higher possibility.

Action a is selecting the state of a document at the position. Those states include:

(Observed, Click), (Observed, Not click), and (Unobserved, Not click).

Transition T changes the document state in S based on a.

Reward R is how well the estimated click probabilities match the empirical distri-
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bution observed in the click logs.

Rt = (Ct − Ct,1)
2 + βOt(Ct − Ct,2)

2 (4.1)

Where t is the position of the document. Ct is the click of the click logs. Ct,1 is

the click prediction from C1. Ct,2 is the click prediction from C2. β weighs the

importance of the de-biased prediction The value is set to 0.7 based on the validation

part of the experiment. Ot shows that whether this document is observed. We have

two assumptions of the observation. First, if the document is clicked in the click

logs, it is observed. Second, if Ct,1/Ct,2 < θ, the document is unobserved. The

first assumption is understandable. The second assumption is based on the bias

effect, which is P (Ot)Ct,2 = Ct,1. If P (Ot) is small, it means the possibility of the

observation is low. In this work, we empirically set θ as 0.3.

The goal of the RL is to learn a policy π∗ to maximize R =
∑
γtRt. In turn that

means learning the value of each state, corresponding to click probability.

Update: The C1 are further trained by the results of the final state ST , where T

is the total number of the documents in the click log. The C2 is updated by the

observed documents.

4.2 Experiments and Discussion

In this section, we introduce the datasets, metrics, and baselines.

Datasets: We demonstrate the effectiveness of the proposed model in two open-

sourced dataset and one private dataset: ORCAS dataset [37], Yandex click dataset

[117] and the real interactive dataset from a large e-commerce website (https://

www.homedepot.com/). ORCAS is a click-based dataset associated with the TREC

Deep Learning Track. It covers 1.4 million of the TREC DL documents, providing

18 million connections to 10 million distinct queries. The Yandex click dataset comes

https://www.homedepot.com/
https://www.homedepot.com/
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Table 4.1: The search sessions information of the Home Depot website’s Interactive
data.

visitor ID session id date time searchterm
1000 1000-mobile-1 6/1/2020 6:30 pm everbilt dropcloth
1000 1000-mobile-1 6/1/2020 6:34 pm pull down shades
1001 1001-mobile-1 6/1/2020 6:36pm fence panel
1001 1001-mobile-2 6/1/2020 6:36pm fince dog ears

Table 4.2: The interaction information of the Home Depot website’s Interactive data.
visitor ID click sku atc sku order sku product impression
1000 2034 3072—2034—2037—2036
1000 3022 3022 3022 3022—2051—3042—2071
1001 2030—1003—2029—1000
1001 2053 2055—2034—3034—2053

from the Yandex search engine, containing more than 30 million search sessions. Each

session contains at least one search query together with 10 ranked items. The private

Interactive Dataset (RID) is a 3-month search log. In this dataset, the users normally

search for several queries. For each query, the search engine returns a list of products

and then the user can interact with the results by clicking, adding the items to the

cart and ordering. Table 4.1 and Table 4.2 shows a sample of the data. Additionally,

with the products’ ID, we can further find the page of the products and extract the

text features. The features list can be found in [105].

Metrics We evaluate the model from two aspects. The first aspect is based on

the click prediction. The second aspect is based on relevance. In terms of the click

prediction, we use Log-likelihood and perplexity as the evaluation methodology. In

terms of the relevance analysis, if the item is clicked, its relevance score is 1, or it is

0. Then, we consider the scores calculated to predict the click as the relevance score.

We rank these scores and calculate the NDCG as our relevance prediction metric [13].

Baselines We use DBN, DCM, CCM, UBM and NCM as our baselines [23, 31,

41, 52, 13]. Those methods are the state-of-art click models based on PGM and

neural networks. The parameter settings are based on the Pyclick package (https:

https://github.com/markovi/PyClick
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Table 4.3: The click simulation performance of DBN, DCM, CCM, UBM, NCM,
URCM on ORCAS dataset, Yandex click dataset and the https://www.homedepot.

com/ e-commerce website interactive dataset (RID). The best performance results are
highlighted in bold font. All improvements are significant with p < 0.05.

Dataset Model Perplexity Log-likelihood
ORCAS Dataset DBN 1.4628 -0.2273

DCM 1.4647 -0.2894
CCM 1.4664 -0.2778
UBM 1.4593 -0.2203
NCM 1.4545 -0.2186
DRLC 1.4326 -0.2037

Yandex Click Dataset DBN 1.3562 -0.2789
DCM 1.3605 -0.3594
CCM 1.3688 -0.3522
UBM 1.3422 -0.2667
NCM 1.3406 -0.2522
DRLC 1.3283 -0.2393

RID dataset DBN 1.3777 -0.2267
DCM 1.3764 -0.2873
CCM 1.3872 -0.2983
UBM 1.3899 -0.2637
NCM 1.3937 -0.2433
DRLC 1.3554 -0.2232

//github.com/markovi/PyClick). (We did not use CACM as our baseline, because

it is a session search click model, not a single search click model [26]. )

Results and Discussion The results of the experiment are summarized in Table

4.3 and Table 4.4. The empirical results show that DRLC outperforms all baselines in

terms of clicking prediction by 3.4% to 5.2%. Based on the T-test, this improvement

is substantial. For the ranking prediction, DRLC outperforms the other baselines

mostly.

Based on the empirical results, DRLC can predict the click, both in accuracy and

relevance, better than the previous methods. We attribute the improvement of the

click prediction to our assumptions of observation. In past, the unobserved data is

hard to train, because it is almost impossible to manually label the data as observed

documents or unobserved ones. However, in our RL framework, the users browse the

https://github.com/markovi/PyClick
https://www.homedepot.com/
https://www.homedepot.com/
https://github.com/markovi/PyClick
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Table 4.4: The ranking performance of DBN, DCM, CCM, UBM, NCM, URCM
on ORCAS dataset, Yandex click dataset and the https://www.homedepot.com/ e-
commerce website interactive dataset (RID). The best performance results are high-
lighted in bold font. All improvements are significant with p < 0.05.

Dataset Model NDCG@1 NDCG@3 NDCG@5 NDCG@10
ORCAS Dataset DBN 0.596 0.606 0.623 0.655

DCM 0.609 0.618 0.639 0.662
CCM 0.615 0.626 0.637 0.671
UBM 0.599 0.608 0.628 0.656
NCM 0.617 0.625 0.639 0.677
DRLC 0.610 0.624 0.645 0.686

Yandex Click Dataset DBN 0.702 0.724 0.766 0.841
DCM 0.729 0.744 0.775 0.845
CCM 0.746 0.757 0.779 0.848
UBM 0.729 0.739 0.769 0.841
NCM 0.756 0.763 0.788 0.846
DRLC 0.729 0.754 0.776 0.848

RID dataset DBN 0.543 0.578 0.598 0.605
DCM 0.566 0.587 0.603 0.611
CCM 0.511 0.601 0.608 0.621
UBM 0.538 0.612 0.618 0.632
NCM 0.556 0.617 0.623 0.638
DRLC 0.616 0.624 0.645 0.648

https://www.homedepot.com/
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results sequentially. It is reasonable to assume that the documents are unobserved

when the users are still observing the top documents. In this way, we can train the

networks to classify whether the documents are observed. Besides, when the de-biased

prediction and the biased prediction have a huge difference, it also indicates that the

document is highly possible to be unobserved.

Additionally, in the RL framework, the initial State is updated during the training

process to further improve the value networks.
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Chapter 5

A Document-level Interactive

Search System

Document-level interactive search, or dynamic search is a fundamental type of inter-

active search. In this chapter, I expand my previous work [154] that published in

the Web Conference to present an efficient document-level interactive system that we

contribute to this direction.

To support complex search tasks, where the initial information requirements are

complex or may change during the search, a search engine must adapt the informa-

tion delivery as the user’s information requirements evolve. To support this dynamic

ranking paradigm effectively, search result ranking must incorporate both the user

feedback received, and the information displayed so far. To address this problem,

we introduce a novel reinforcement learning-based approach, RLIrank. We first build

an adapted reinforcement learning framework to integrate the key components of the

dynamic search. Then, we implement a new Learning to Rank (LTR) model for each

iteration of the dynamic search, using a recurrent Long Short Term Memory neu-

ral network (LSTM), which estimates the gain for each next result, learning from

each previously ranked document. To incorporate the user’s feedback, we develop a
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word-embedding variation of the classic Rocchio Algorithm, to help guide the ranking

towards the high-value documents. Those innovations enable RLIrank to outperform

the previously reported methods from the TREC Dynamic Domain Tracks 2017 and

exceed all the methods in 2016 TREC Dynamic Domain after multiple search itera-

tions, advancing the state of the art for dynamic search.

5.1 The RLIrank Framework

In this section, we apply reinforcement learning to model the important steps of

dynamic search. As Figure 2.2 illustrates, the search system is Agent. The ranking

process is an Action. The feedback from the users is the Reward. The details of the

framework are summarized as follows:

Agent : The Agent is the search system. The Agent ranks the documents based on

the following policy:

π(a|S, ϕ) =

 π1 if p < ϵ

π2 if p ≥ ϵ
(5.1)

Where p decides the policy. ϵ is the threshold of the greedy strategy. When the Agent

chooses π1, the Action returns a random document. If the Agent chooses π2, then

the Agent returns a document based on the probability calculated by Equation 5.2.

Pr(a|S, ϕ) =
Vϕ(f(S, a))∑

ai∈A Vϕ(f(S, ai))
(5.2)

Where ϕ represents all the parameters of the deep value network Vϕ, which is intro-

duced in Section 4.2. S is the current State, a is the current action. f(S, a) is the

transition function that updates State S based on the action a.

State : State S represents the current system’s search context, which includes two

parts:

S = [R, q] (5.3)



81

Where R is a list of ranking documents and q is the query. Since State contains both

R and q, two kinds of actions are required to update State.

Actions : The first action, which we note it as ar, is the intermediate action. In

Figure 5.1, to generate a list of ranking documents in a search iteration, we first rank

each document. ar represents this ranking process. Based on the Policy 5.1, with

Action ar, if we choose a document, we denote it as dr.

The other action updates the query after each search iteration, which is noted as

at. With the Action ar, we denote the new query as:

qt = T (q, F ) (5.4)

Where T is the feedback function to reformulate a new query based on the original

query q and the user feedback F , which is further illustrated in Section 4.3.

Transition Function : Transition Function f defines how the search system is

transited to a new State. For different actions, the transition function works in

different ways. Basically, the transition function pairs the documents and the queries

and update State. We define the transition function f as:

f(S, ar) = {(d1, q), (d2, q), (d3, q), ..., (dk, q), (dr, q)} (5.5)

f(S, at) = {(d1, qt), (d2, qt), (d3, qt), ..., (dk, qt)} (5.6)

In Equation 5.5, State is updated by appending the new document to the ranked list.

In Equation 5.6, State is updated by replacing the query with the new formulated

query. The result of f(S, a) is an ordered set of the document and query pairs, which

is the input for the ranker.

Rewards : In different steps of the dynamic search, the Rewards from the search

system are varied. Although the most obvious Reward is the feedback from the user,
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the relevance scores available in the training process should not be ignored. During

the training process, the relevance scores between the query and the document are

available. The feedback, which is the relevance scores among different subtopics of

the query and the documents are only accessible after a list of ranked documents

is given. However, such a Reward is evaluated by pairing the new query and the

document. Therefore, after ranking a document, we evaluate the action based on the

given relevance score in the training process. We evaluate the action with different

metrics, such as NDCG, α-NDCG and et al. We denote the Reward R as:

R = V∗(f(S, a)) (5.7)

To utilize intermediate Rewards to rank the next document better after, we minimize

the following loss function after each action:

L(S, a|ϕ) = min
ϕ

(Vϕ(f(S, a)) − V∗(f(S, a)))2 (5.8)

Where ϕ is the parameters of the deep value network Vϕ. This loss function

evaluates the distance between the real metric and the estimated metric. The real

metric requires the relevance scores between the query and the document, yet the

estimated metric or deep value network does not require the scores, which is important

for the testing process or the unsupervised situation.

5.2 RLIRank: Learning to Rank with Reinforce-

ment Learning for Dynamic Search

The RLIrank implementation includes three parts. First, we introduce a stepwise

learning framework, which is designed to train the value network Vϕ. In Section 4.2,

we describe the configuration of RLIrank deep value network Vϕ. Finally, we introduce
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our definition of feedback function T . This approach incorporate user feedback and

the last search iteration query to formulate a new one, which derives from the classic

Rocchio algorithm.

5.2.1 The Stepwise Learning Framework

In this section, we create a new approach – the stepwise learning framework to train

the deep value network Vϕ.

The details of this learning framework are illustrated in Figure 5.1. First, a

document is chosen from the candidate list. When the document is chosen, it is also

removed from the candidate list. The document choosing process depends on a score

from Vϕ and the ϵ-greedy strategy. The Vϕ is a model with multiple entries, such as

RNN, LSTM, and et al. The number of their activated entries is determined by the

number of the chosen documents.

Figure 5.1: Illustration of the stepwise learning framework.

For instance, when selecting the first document, only one entry is activated. Thus
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Figure 5.2: The structure of the stacked LSTM.

the input session is a list with one document. However, when we select the next

input unit, the second entry is activated. The input session now is a list with two

documents. Therefore, even though Vϕ has many input entries, they are activated

step by step.

Such a training approach can capture more information of the ranking than the

traditional listwise method. For instance, 3 documents A, B, and C are given, whose

relevance scores are 3,2,1. We consider the V∗ is NDCG. Therefore, for this case, the

learning goal is 3 + 2
log2(3)

+ 1
log2(4)

= 4.7619. However, if the relevance score of A is

4.2619 and B is 0. The list’s score is still 4.7619. From this case, we can find that

the full list of documents does not fully utilize all the information of every document
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because based on a score of the list, it is impossible to recover every score for each

document. However, with a pool of stepwise lists of documents, we can recover the

scores for every document in any position.

5.2.2 Implementation of Vϕ Network

In this work, we configure the Vϕ with a stacked LSTM, which is introduced with

three key parts: Input, Stacked LSTM Model Architecture and Loss Function.

Input: The input of the proposed stacked LSTM is dynamic because we apply a

stepwise learning framework to train the stacked LSTM. We further justify the input

as follows: Selecting the position: X = X ′ ∪{xt}. X ′ is an order set of ranked items,

xt is the ranking item, ∪ means appending xt to X ′. From Figure 5.2, we find that

the xt is considered as the most recent input item of the LSTM. In the list of the

ranked document, the nearer to the position t the item is, the more recent it is. The

input of each cell x is an integration of a document and a query. For instance, if we

use a vector d to represent the document, and use a vector q to represent the query,

then x = [d, q]. Therefore, x is a query and document pair.

Stacked LSTM Model Architecture: The construction of this stacked LSTM is

based on the demand of the experiment. The selection of the depth of the model

is a trade-off between computation and performance. Based on the experiment and

analysis in Section 6, we build a three-layer stacked LSTM as shown in Figure 5.2.

The stacked LSTM contains some gate functions, allowing the cells to transfer the

long term information or forget unnecessary information. The forget gate of jth layer,

kth input jjk, the input gate i, the output gate o, the cell state c and the hidden state

h of Vϕ is computed as follows:

f j
k = σ(W j

fh
j−1
k + U j

fh
j
k−1 + bjf ),
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ijk = σ(W j
i h

j−1
k + U j

i h
j
k−1 + bji ),

ojk = σ(W j
oh

j−1
k + U j

oh
j
k−1 + bjo),

cjk = f j
k ◦ c

j
k−1 + ijk ◦ tanh(W j

c h
j−1
k + U j

ch
j
k−1 + bjc),

hjk = ojk ◦ tanh(cjk),

in which, σ(x) = 1
1+e−x and applies to every entry. h0k = xk, the operator ◦ denotes

the element wise product. The values of cj0 and hj0 are assigned by the Glorot Uniform

Initializer in this work. The weight metrics and the bias vectors: W j
f , W j

i , W j
o , W j

c ,

bjf , bji , b
j
o, and bjc are also assigned by the same initializer.

The output of the LSTM part is LSTM(X ′, xt) = hJK , K is the ranking position,

and J is the top layer’s label.

Even with a list of documents, it is noteworthy that evaluating the current ranking

document is still the most important, which means the effect of the ranked documents

should be discounted by their positions. The earlier the document is ranked, the more

the effect is discounted. Because we intentionally choose a one-directional model as

our stacked LSTM, the information flow is sure to be discounted by the forget gates.

Loss Function: In terms of the loss function of the stacked LSTM, it can be defined

as:

L(S, a|ϕ) = min
ϕ

(Vϕ(X) − V∗(X))2 (5.9)

Vϕ is trained to minimize this loss function, in which V∗ is a metric selected to evaluate

the quality of the ranking results. We can define that X = f(S, a).

5.2.3 An embedding Rocchio algorithm

We now introduce our new query reformulation method – the embedding Rocchio

algorithm, which is the feedback function T in RLIrank.

To incorporate with Vϕ, we need to embed the text contents to the numeric domain.



87

The embedding methods are determined by many aspects. For RLIrank, an important

aspect to consider is the users’ feedback.

In RLIrank, to digest the feedback from the users and make it observable for the

Agent, we reformulate the query after each search iteration. The new query further

optimizes the Vϕ.

However, the query reformulation leads to an important issue. If we directly

add words from relevant documents or remove them from the query, like the classic

Rocchio algorithm, the variation is discrete, which easily results in unexpected results.

Besides, the action of removing the words may be useless, because the query is so

short that possibly does not contain the words.

To resolve the aforementioned problem, we further improve the classic Rocchio

algorithm to an embedding Rocchio algorithm. This algorithm generates a new query

based on the list of the ranked documents and the feedback. It is summarized as

follows:

qn+1 = (1 − γn(b− c))qn + γn(
b
∑

dj∈Dn
r
dj

|Dn
r |

−
c
∑

dk∈Dn
nr
dk

|Dn
nr|

) (5.10)

Where qn is the encoded query for the search iteration n. Dn
r is the documents receiv-

ing positive feedback from the users in the search iteration n. Dn
nr is the documents

not receiving feedback or receiving negative feedback from the users in the search

iteration n. d is the encoded documents. γ is the discount rate of different search

iteration. b and c are the weights of the positive feedback and negative feedback

respectively.

The query reformulation process of Equation 5.10 works in the following way.

After a search iteration, we have search results, containing relevant documents and

irrelevant documents. We calculate the mean of the relevant documents and irrelevant

documents. Then, we weight them with b and c. With this operation, the query

point in the encoded space moves close to the center of relevant documents by adding

the mean of them and move away from the center of the irrelevant documents by
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subtracting the mean of them. The moving process is discounted by γ, which weights

the search iterations in the search session. It is noteworthy that the whole process

is continuous. As a result, the embedding method of text content in RLIrank also

requires to consider this continuity. Embedding space is normally discrete. However,

when the embedding space is dense and large, it can be approximate to a continuous

space. A possible option is using a universal sentence encoder.

5.3 Experimental Setting

In this section, we first introduce the basic experimental settings and datasets, then we

experimentally compare RLIrank with different methods to report the main results.

The input of the stacked LSTM can be varied based on different tasks. For

example, for the MQ2007&MQ2008, the input is a vector of 46 handcrafted features.

For 2016&2017 TREC dynamic domain, it is an integration of the query’s vector and

document vector. The vector is encoded by an embedding method. For convenience,

we denote them as input units. Each unit corresponds to a document.

5.3.1 Benchmark Datasets

There are two main datasets we consider: 2016 TREC Dynamic Domain (DD), 2017

TREC DD. They share similar datasets’ settings. 2016 TREC DD contains Polar

domain and Ebola domain. The Polar domain contains 26 queries and 1741530 doc-

uments. The Ebola domain contains 27 queries and 682157 documents. 2017 TREC

DD dataset is the archives of the New York Times in 20 years, which has 60 queries

and 1855658 documents [113]. Each query has several subtopics, and the documents

have a relevant score for some subtopics provided by a Jig user simulator. The relevant

score of a document to a query is the summation of all the scores of the subtopics. For

the search engine, passages contents of the documents and the queries contents are
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available. However, the relevance scores of the documents for each subtopic are given

by a jig users simulator. The input of the simulator is a query’s ID and 5 documents’

ID. The output is whether your documents are relevant to the query and the scores of

each document for the relevant subtopics ID. Therefore, during the search, the search

engine does not know how many subtopics under the query and the contents of the

subtopics. The scores of each subtopic can be used to calculate α-NDCG. Although

the datasets have a similar setting, the 2016 DD track is α-DCG as the primary

metric, and the 2017 uses nSDCG [55][33].

RLIRank settings: The implementation of the proposed models is based on

Tensorflow’s basic models, and the parameters not mentioned are mostly the default

settings. The stacked LSTM is constructed by 3 layers LSTM, 5 iterations, and a

dense neural network. The dense neural network consists of 5 hidden layers and 1

softmax function. The neurons’ numbers for LSTM cells or hidden layers are varied

based on the experiments. The hidden neurons’ number for each hidden layer is 1024,

512, 256, 16, 8, and the input size of the LSTM cell is 1024. The V∗ of LSTM is α-

DCG for 2016 TREC DD, and DCG for 2017 TREC DD. We apply the default Google

Universal Sentence Encoder to transfer the words to the vectors. We encode both the

query and document passage’s content into a 512 vector and then integrate them into

an input unit – a 1024 vector. The reason to use the universal encoder is that the

value space of the encoded vectors is dense, which is suitable to apply the embedding

Rocchio algorithm. Through little sample dataset test, we set γ of the embedding

Rocchio algorithm is 0.9, b is 0.75, and c is 0.25. During the training process, ϵ = 0.5.

After each 1000 epochs, ϵnew = ϵold × 0.9. In testing process, ϵ = 0. The drop-off rate

of the neural network is 0.5, and all the activate functions in the neural network are

ReLU. The model’s training is stopped when the training improvement is less 0.01%.
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5.3.2 Baselines

The baselines methods include the high-performing models appearing in the 2016

TREC Dynamic domain and 2017 TREC Dynamic Domain.

• rmit-oracle-lm-1000: The model firstly retrieves 1000 documents using Solr

with the content language model. Then they use the ground truth to remove

irrelevant documents from the initial list of documents. For each iteration, it

returns the next 5 relevant documents from the initial list [7].

• rmit-lm-nqe: This method uses the Language modeling approach as imple-

mented in Apache Solr using Dirichlet smoothing and default parameters. No

query expansion (nqe) was applied [7].

• ufmgHS2: Hierarchical diversification with single-source subtopics and cumu-

lative stopping condition [96].

• ufmgHM3: Hierarchical diversification with multi-source subtopics and win-

dow based stopping condition [96].

• ictnet-emulti: The model uses xQuAD and query expansion [150].

• ictnet-params2-ns: The model is the same as ictnet emulti, but changes

parameters of other solutions. Not use stop strategy [150].

• dqn-5-actions: Use DQN to choose 5 possible search actions [83].

• galago-baseline: The first 50 results returned by galago [18].

• RLIrank: RLIrank Our method described above.

The five-fold validation method is applied to all the experiments. All baseline

models are the most recent models or high-performance models. To confirm the

significance of the improvements, we applied statistical significance testing (two-tailed

Student’s t-test) which reports p-values of < 0.05 for significant improvements.
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Table 5.1: α-NDCG of baselines, and RLIrank on 2016 TREC Dynamic Domain
dataset. The best performance results are highlighted in bold font. Results marked
with * indicate significant improvements with p < 0.05.

α-NDCG of 2016 TREC Dynamic Domain

Iteration RLIrank rmit-oracle.lm.1000 ufmgHM3 ufmgHS2 rmit-lm-nqe

1 0.4947 0.6874 0.3516 0.3516 0.3581
2 0.6055 0.7116 0.4055 0.4079 0.3908
3 0.6500 0.7251 0.4306 0.4256 0.4073
4 0.7224 0.7346 0.4377 0.4335 0.4250
5 0.7396 0.7387 0.4417 0.4360 0.4322
6 0.7445 0.7406 0.4439 0.4366 0.4419
7 *0.7657 0.7438 0.4446 0.4367 0.4461
8 *0.7685 0.7448 0.4458 0.4367 0.4515
9 *0.7871 0.7452 0.4468 0.4367 0.4555
10 *0.7927 0.7468 0.4481 0.4368 0.4584

5.4 Results and discussion

Table 5.1 and Table 5.2 show that the improvement in the proposed RLIrank is

substantial. Compared to the current state of art model, RLIrank improves up to

6.1% on the TREC 2016, and by over 20% on the TREC 2017.

We observe, on the TREC 2017 Dynamic domain, that RLIrank has a high first

iteration performance. Since the performance of the other search iterations depends

on the first iteration, the first iteration results are significant. The first iteration

search is a pure LTR problem. Therefore, the improvement of the first search iteration

results from the proposed deep value network.

We first explore the effect of the numbers of the stacked LSTM’s layers. The results

are presented in Figure 4. We find that as layers of the stacked LSTM increases, the

performance improves. However, the improvement of the model decreases drastically

when the number of layers is bigger than 3. To compromise the computation and

the performance, we choose a 3-layer stacked LSTM as our deep value network. We

further compare our proposed deep value network Vϕ with the traditional listwise

methods and an MDP method on the standard LTR benchmarks. This MDP method
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Table 5.2: nSDCG of ictnet-params2-ns, ictne-emulti, galago-baseline, dqn-5-actions,
clip-baseline, and RLIrank on 2017 TREC Dynamic Domain dataset. The best perfor-
mance results are highlighted in bold font. Results marked with * indicate significant
improvements with p < 0.05.

nSDCG of 2017 TREC Dynamic Domain

Iteration RLIrank ictnet-params2-ns galago-baseline dqn-5-actions

1 *0.6517 0.4545 0.4337 0.4457
2 *0.6517 0.4902 0.4590 0.4761
3 *0.6497 0.4971 0.4594 0.4805
4 *0.6483 0.4943 0.4526 0.4819
5 *0.6477 0.4982 0.4506 0.4837
6 *0.6488 0.4954 0.4519 0.4841
7 *0.6491 0.4932 0.4548 0.4837
8 *0.6492 0.4943 0.4564 0.4857
9 *0.6497 0.5003 0.4592 0.4853
10 *0.6499 0.5033 0.4581 0.4850

Table 5.3: NDCG of RankSVM, ListNet, AdaRank-NDCG, MDP, and RLIrank on
MQ2007. The best performance results are highlighted in bold font. The results
marked with * indicate significant improvements with p < 0.05.

MQ2007

Method NDCG@1 NDCG@2 NDCG@3 NDCG@4 NDCG@5

RankSVM 0.410 0.407 0.406 0.408 0.414
ListNet 0.400 0.406 0.409 0.414 0.417

AdaRank 0.388 0.397 0.404 0.407 0.410
MDP 0.404 0.408 0.408 0.416 0.419

RLIrank *0.434 *0.440 *0.444 *0.446 *0.451

was the state of art of this benchmark. Table 5.3 and Table 5.4 shows that the

improvements in RLIrank over other methods are substantial. Compared to the

current reinforcement state of the art, MDP, RLIrank improves between 5.9% and

8.4% on the MQ2007 benchmark, and by 15%-19% on the MQ2008 benchmark.

The results prove that ranking model of RLIrank solves the traditional LTR prob-

lems well and thus promises the high performance of RLIrank in dynamic search

problems. We attribute the improvements of it to the fact that while most of the

baseline algorithms compared are list-based, the stacked LSTM is trained by more
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Table 5.4: NDCG of RankSVM, ListNet, AdaRank-NDCG, MDP, and RLIrank on
MQ2008 dataset. The best performance results are highlighted in bold font. The
results marked with * indicate significant improvements with p < 0.05.

MQ2008

Method NDCG@1 NDCG@2 NDCG@3 NDCG@4 NDCG@5

RankSVM 0.363 0.399 0.429 0.451 0.470
ListNet 0.375 0.411 0.432 0.457 0.475

AdaRank 0.383 0.421 0.442 0.465 0.482
MDP 0.409 0.435 0.463 0.481 0.510

RLIrank *0.487 *0.520 *0.547 *0.568 *0.587

completed information because of the stepwise training. Moreover, the structure of

LSTM is also helpful for the deep value network to utilize the examined documents.

Thus, a deep value network exploits the document feature similarity to promote or

demote documents similar or diverse to the previously retrieved and rated documents.

To further justify the effect of the feedback method and the ranking model, we

design 2 groups of experiments. We replace RLIrank’s ranking model by MDP, which

we call it RLIrank-MDP. Besides, we replace RLIrank’s feedback organizer by the

traditional Rocchio algorithm and a navie query expansion method. We denote them

as RLIrank-Rocchio and RLIrank-nqe. We test them in the Ebola dataset’s first 10

queries. The results are shown in Figure 5.3 and 5.4.

Figure 4(b) shows that RLIrank-MDP has a weaker performance, but improves

faster, compared with RLIrank-Rocchio and RLIrank-nqe. At the last iteration, the

performance of RLIrank-MDP is competitive. However, RLIrank outperforms all

other variations. These results imply that the proposed deep value network and the

embedding Rocchio algorithm can work separately, however, the combination of them

can further boost each other.
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Figure 5.3: The improvement from the increment of the stacked layers of RLIrank’s
LSTM on Ebola 10.
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Figure 5.4: α-NDCG5 of RLIrank, RLIrank-MDP, RLIrank-Rocchio and RLIrank-
nqe on Ebola 10.
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Chapter 6

A Sentence-level Feedback

Interactive Search System

Except document-level feedback interactive search system, sentence-level feedback

is the other important type of interactive search. In this chapter, I will present a

SOTA sentence-level interactive search system. This work is under review in the Web

Conference 2023.

Interactive search can provide a better experience by incorporating interaction

feedback from the users. This can significantly improve search accuracy as it helps

avoid irrelevant information and captures the users’ search intents. Existing state-of-

the-art (SOTA) systems use reinforcement learning (RL) models to incorporate the

interactions but focus on item-level feedback, ignoring the fine-grained information

found in sentence-level feedback. Yet such feedback requires extensive RL action

space exploration and large amounts of annotated data. This work addresses these

challenges by proposing a new deep Q-learning (DQ) approach, DQrank. DQrank

adapts BERT-based models, the SOTA in natural language processing, to select cru-

cial sentences based on users’ engagement and rank the items to obtain more satis-

factory responses.We also propose two mechanisms to better explore optimal actions.
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DQrank further utilizes the experience replay mechanism in DQ to store the feedback

sentences to obtain a better initial ranking performance. We validate the effective-

ness of DQRank on three search datasets. The results show that DQRank performs

at least 12% better than the previous SOTA RL approaches. We also conduct de-

tailed ablation studies. The ablation results demonstrate that each model component

can efficiently extract and accumulate long-term engagement effects from the users’

sentence-level feedback. This structure offers new technologies with promised perfor-

mance to construct a search system with sentence-level interaction.

6.1 Methodology

This section proposes DQrank, a DQ model for sentence-based interactive search.

In the interactive search setting, users search with a query and return sentence-level

feedback like clicking or copying one or more sentences. In this section, we first

introduce the DQ framework and how to apply it to interactive search. We then

propose our sliding window ranking approach to explore the search space. Next,

we present a method for identifying similar queries to avoid the cold-start problem.

Finally, we introduce self-supervised learning and data augmentation techniques to

improve the generalizability and robustness of DQrank.

The symbols used in this chapter are summarized in Table 6.1 and 6.2.
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Symbol Remarks

S; sj States; a state at iteration j

A; aj Actions; an action at iteration j

q A query

f A sentence in a document or feedback

f j
i The ith sentence in the feedback at iteration j

Dk; D The kth ranking document; A document

x The embedding result

X The concatenation result

r;R(a, q) Reward; The reward of action a given query q

dk; d The sentence representing document Dk; A sentence

U(q, f) The user simulation function, given q and f

u(q,D) The user simulation function, given q and D

V (s, d) The discounted feedback function, given s and d

Q(s, a) The Q value of s and a

K(X) The weighted function of X

i(s) The ith augmentation of s

ξ The approximate factor of the reward function

Table 6.1: The important symbols of this chapter
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Symbol Remarks

ω The neural networks weights of U

θ The neural networks weights of Q

L(θ) A Loss function

π A policy

γ The Discount factor

N Number of ranking results

E Number of the feedback sentence

ψ Similarity Threshold

c Replay step

I The initial ranking results (Candidate documents)

M The number of sentences considered in a document

Tq Candidate results for query q

Z The replay memory

Wq The existing ranking results in the dataset given q

P The feedback pool

Table 6.2: The important symbols of this chapter.

6.1.1 Deep Q Learning Framework

In RL, intelligent agents take actions in an environment to maximize the notion of

cumulative reward [71]. In particular, DQ is an RL method that uses a deep neural

network to approximate the action gain Q [42]. Deep Q learning uses temporal

difference (TD) learning to estimate the values Q with previous actions sampled by

an experience replay approach. The objective of temporal difference learning is to

minimize the distance between the TD-Target and Q(s, a), suggesting a convergence

of Q(s, a) toward its actual values in the given environment.
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In DQrank, we use DQ to model the interactive process for two reasons. First,

DQrank has an experience replay mechanism, which is suitable for storing context

information like feedback sentences and incorporating offline and online learning in

interactive search. Second, the deep learning model in DQ can help better simulate the

users’ interaction, which can be used to expand the static search records. Therefore,

DQ is appropriate for constructing our proposed model.

The DQ model consists of a set of states S, actions A, and a reward function R.

In the context of the interactive search, the states S reflect the query state. This

includes both query features and feedback sentences. We define the state s as:

st = (q, f t
1, f

t
2, ..., f

t
E), (6.1)

where st is the state at iteration t, q is the query and f t
e is the eth feedback sentence

at iteration t. E is the number of (stored) feedback sentences. The query part will

remain unchanged throughout the process, but the feedback part can be updated. s

The action space A is the set of all possible ranking results. The initial retrieval

will have some candidate items, I, and typically uses fast and straightforward methods

to select these items from all possible items. Thus, the actions are the ordered subsets

A ⊆ I such that |A| = N , where N is the number of items DQrank presents to the

users.

To select the action and compute the Q value, we design a user simulation function

U for document ranking. The input of U is a query q and a sentence f from the

document. U(q, f) measure the relevance of q and f . While ranking, we calculate the

U of the first M sentences of a document and select the highest score as the score for

this document.

Finally, the reward R(s, a, s′) is the reward of a list of ranking results, measuring

user engagement or other metrics related to the ranking quality. s′ is the state before
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action a and a ∈ A.

Our task is to find a policy π for the optimal ranking results. To achieve this, we

organize the interactive search process as a DQ framework. We use a BERT-based

model Q(s, a; θi) to estimate the Q function in Q learning. θi can be obtained from

the experience replay.

The details of those parts are delineated in the following sections.

6.1.2 Training

We initialize a replay memory Z for the experience replay in RL training and the

feedback pool P for the online serving system. All the transitions (st+1, at, rt, st)

are stored in Z and are randomly sampled as mini-batches to train the action-value

function Q. The final states of each query are stored in the feedback pool P after

every episode. In each episode, we process one query. The feedback pool P is used

to accelerate and improve online learning.

The training of DQrank can be separated into two parts: (1) the offline training

that can be done with a pre-trained users’ simulation function, U , and (2) the online

training to dynamically adjust to new search queries.

Offline Training. The goal of the offline training is to learn the policy π for

the optimal ranking results based on the training dataset Wq. We first initialize the

action-value function Q, the target action-value function Q̂, and the state s1. Any

fast and straightforward method can be used to conduct the initial ranking to obtain

the initial ranking results Iq for query q. In this work, we use BM25 [110]. However,

since the size of Iq is still immense, we use U to re-rank and obtain a smaller candidate

set Tq.

At the beginning of an iteration, the agent selects an action a based on the ϵ-greedy
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policy π :

π =

 π1 with probability ϵ

π2 with probability 1 − ϵ
(6.2)

ϵ is a parameter to balance exploration and exploitation [108]. When the agent

chooses π1, we select a ranking result from Wq if Wq is not empty and then delete

it from Wq. If Wq is empty, we generate a random ranking result by selecting items

from Tq. If the agent chooses π2, we generate a ranking result from Tq and try to

maximize the Q value by re-ranking the results. In DQrank, we propose the sliding

window ranking method see Section 6.1.6, an efficient approach to explore the RL

action space.

After that, we can sample the transitions from Z and obtain their data augmenta-

tions for the experience replay. The data augmentations can improve the robustness

of the model and will be demonstrated in Section 6.1.10. We minimize the difference

between the TD-target and Q value (Equation 6.5) in the experience replay and up-

date the target function Q̂ every c step. After finishing T steps training, we store the

best State of the query to the feedback pool P for the online serving system.

We then obtain the reward and store the transitions in Z. We later extract the

samples from Z for the experience replay. The approach is summarized in Algorithm

1.

Online Training. Online training aims to obtain the state s for the new search

queries. We first initiate the state s0 with state retrieval, which can retrieve similar

queries’ states from the feedback pool P and will be discussed in Section 6.1.8. Then

we go through the offline learning process without exploitation and model training.

The feedback sentences f in state s are updated based on the users’ feedback or

interaction records. The transitions and final states are stored for the model refresh.

Online training is more practical in industrious search tasks and much faster than

offline training.
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Algorithm 1 The Deep Q Learning Training Framework

1: Initialize the replay memory Z
2: Initialize the feedback pool P
3: Load users’ simulation function U with pre-trained weights ω
4: Initialize action-value function Q with pre-trained weights θ (If the weights are

not pre-trained, then generate them randomly)
5: Initialize target action-value function Q̂ with weights θ− = θ
6: for episode=1:N do
7: Initialize State s1 = (q, 0, 0, 0)
8: Initial ranking: Obtain candidate documents Iq with a weak ranker
9: Re-ranking: Obtain candidate documents Tq from Iq with U(q,D), D ∈ Iq
10: Loading the training dataset Wq

11: for t=1:T do
12: With policy π in Section 6.1.2 select an action at: Select a ranking result

from Wq and delete it from Wq

13: Or generate a random ranking result from Tq
14: Or select an action at: Generate a ranking result from Tq to maximize

Q(s, at; θ) based on the sliding window ranking introduced in Section 6.1.6
15: Execute action at and obtain reward rt and feedback sentences

f t+1
1 , f t+1

2 , f t+1
3

16: Update the State st+1 = (q, f t+1
1 , f t+1

2 , f t+1
3 )

17: Store transition (st+1, at, rt, st) in Z
18: Sample random mini-batch of transitions (sj+1, aj, rj, sj) from Z, expand

the samples with data augmentation in Section 6.1.10.

19: Set yj =

{
rj, if sj+1 is terminal

rj + γmaxa′ Q̂(sj+1, a
′; θ−), otherwise

20: Perform the gradient descent to (yi − Q(sj, aj; θ))
2 with respect to the

weight θ.
21: Update U with rearrangement learning in Section 6.1.7
22: Let Q̂ = Q every c steps
23: end for
24: Store sT+1 to P
25: end for
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6.1.3 The Users’ Simulation Model

The users’ simulation function, U , mimics a user by determining whether the sentences

in the document should be selected as the feedback sentence. In our model, U is

a BERT-based classification function. Formally, the input of U(q, f) is a pair of

sentences. The first sentence q can be the query or the selected feedback sentence. The

second sentence, f , is a sentence from a document D. Since the feedback sentences

can reflect the users’ satisfaction with the search results, the maximum probability

scores of all the sentences in the document can be considered a metric to rank the

documents. Therefore, the relevance between the q and a document D can be modeled

as u(q,D) = maxf∈D(U(q, f)).

For the input, q and f are separated by three tags, [CLS], [SEP], and [EOS], which

represent the beginning, separator, and end of the sentence. The sentence embeddings

are then encoded based on the tokens, segments, and positions as discussed in [133].

The embedding results from BERT, x, then represents the dependency between the

f and d. We feed x to a fully connected neural network and calculate the selecting

probability with the Softmax function, so U = Softmax(WT × tanh(x) + BT ). The

U is further pre-trained by some question-answering and point-wise label datasets,

which we introduce in Section 6.1.9.

6.1.4 The Q Function

The Q function learns the value of the partial action (Figure 6.1), a for a particular

state, s. For ease, we denote f0 as the query. The state is then s = (f0, f1, f2, ..., fE).

The action a is the list of ranked documents, (D1, D2, ..., DN). For document Dk, we

select the sentence dk = argmaxd∈Dk
V (s, d) where V is a discounted function based

on the ranking metric as follows in Equation (6.3):
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Figure 6.1: The Structure of Q function. f0 is the query. fe is the eth feedback sen-
tence. E is the number of feedback sentences for the query f0. dk is the sentence rep-
resenting the kth document in the ranking results, such that dk = argmaxd∈Dk

V (s, d),
s = (f0, f1, ..., fE). k <= N , N is the number of documents in the ranking results.

V (st, d) =
1∑E+1

e=1
1

ln(e+1)

E+1∑
e=1

[
1

ln(e+ 1)
U(f t

e−1, d)], (6.3)

where d is a sentence of a document from the ranking result, dji represents the jth

sentence of the document ranking at position i in the searching results, and E is the

number of feedback sentences.

Then we calculate the BERT embedding results,xk,e, for every pair of fe and dk.

Consequently, for every document k, we have Xk = [xk,0, xk,1..., xk,E]. We further

weigh those embedding results:

x′k = K(Xk) =
1∑E+1

e=1
1

ln(e+1)

E+1∑
e=1

1

ln(e+ 1)
xk,e−1 (6.4)

The weighted functionK is based on Normalized Discounted Cumulative Gain (NDCG),

a popular approach to measure the quality of a list of ranking results [64]. The pro-

posed weighted function can re-balance the effect of the query and the feedback
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sentences when E is of varying length. It also discounts the less important feedback

sentences.

After the weighted embedding results are obtained, we concatenate them as the

input to a 2-layer dense neural network used to estimate the Q value. The weights of

the Q function can be obtained by minimizing the following loss function:

Li(θi) = E(s,a,r,s′)∼ρ(Z)[(yi −Q(s, a; θi))
2], (6.5)

where samples come from the replay memory Z based on the random mini-batch

sampling, ρ, and θi are all the neural weights at iteration i.

For every sample (sj+1, aj, rj, sj), if sj+1 is terminal, yj = rj, otherwise

yj = rj + γmax
a′

Q̂(sj+1, a
′; θ−), (6.6)

and weights of target action-value function Q̂, θ− is updated to θ every c steps. Since

the BERT model is optimized multiple times in one step, we calculate the average

values as the weights for the next step.

6.1.5 The Reward Function

The reward r evaluates the searching result a given the query q. Therefore, r =

R(s, a, s′) = R(a, q). For some search results, we can find them in the dataset, Wq,

and are already labeled. However, the agent generates many search results, and not

all the labels exist in the dataset. To calculate the reward, we propose a reward

transition method.

To estimate the reward r̂ of an action a, first we extract a existed ranking result

a′i from the dataset Wq. We can calculate its DCG score with its query-document

relevance scores. If the scores are not provided, we can use the user simulation

function U(q,D), D ∈ a′i. We assume the reward is a position-discounted score like
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NDCG, then we have

R̂(a, q) = ξiR(a′i, q),

ξi =
R̂(a, q)

R(a′i, q)
≈ NDCG(a, q)

NDCG(a′i, q)
=

DCG(a, q)

DCG(a′i, q)

=

∑
Dk∈a

u(q,Dk)
ln(k+1)∑

Dk∈a′i
u(q,Dk)
ln(k+1)

(6.7)

We can use the average estimation over Wq as our reward:

R̂(a, q) = Ea′i∼Wq(ξiR(a′i, q)), (6.8)

where Wq is the ranking dataset without deleting any element.

6.1.6 Sliding Window Ranking

Selecting an action to maximize the Q value is notoriously difficult for the ranking

tasks [62]. To maximize the Q-value, we have to check every combination of the

candidate documents. This colossal search space cannot be deployed to meet the

latency requirements in most ranking systems. To effectively explore the searching

space, we develop the sliding window approach by considering both users’ simulation

U and the Q functions. As introduced in Section 6.1.3, U can reflect the users’

satisfaction with the item but cannot demonstrate the overall ranking performance.

However, it is still helpful to generate approximate ranking results. Therefore, the

first step is ranking the candidate documents with U .

Given the users’ ranking, we design a sliding window of m, a parameter that

reflects the users’ attention. We start the window at the last item and move it back-

ward, item by item, until we encounter the first item. Within each sliding window, we

evaluate every combination to obtain the maximal Q value within the window. We

replace the original order with this optimal order and proceed to the next window.
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Figure 6.2: The Sliding Window Ranking Workflow

The workflow of the sliding window ranking is presented in Figure 6.2.

The advantages of this proposed method are three-fold:

1. This approach models the attention of the users. Users’ attention is typically

limited to a few items, so the position and observation bias is commonly gen-

erated within an attention window. Since we rank the items with the users’

simulation function U first, it is reasonable to reflect the effect of ignored bi-

ases.

2. In most ranking tasks, the top-ranking items are usually the most important

because users only browse the first serving page. This approach prioritizes

the top-ranking items by ensuring items mistakenly ranked in the back can be

moved forward.

3. Moreover, this approach is efficient enough to be deployed in the actual training

process. If we assume that we have G items to rank and the number of our

presenting items is N , we, in theory, would need to evaluate C(G,m), where

C denotes the number of combinations. However, under our approach, we only

need to try it (G−m+ 1)m times, which is 1
G−m+1

C(G,m) times faster. Since

m is usually relatively small, the computation time of this ranking method can
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be controlled in a reasonable scope.

To accelerate the computation, we calculate the embedding results and then apply

this sliding window ranking method in the concatenation part to obtain different x′.

By comparing the Q value, we can find the approximate optimal action.

6.1.7 Rearrangement Learning

Since users’ feedback is mainly implicit, as the ranking results are usually passively

digested [2], there can be discrepancies between the ranking using the users’ simula-

tion function, aU , and the ranking results that maximize the Q value, because some

relevant documents ignored by the users can be annotated as irrelevant. This in-

consistency can introduce noise to the training and cause slow convergence and poor

performance. Since we use U to estimate the optimal action and rank the documents,

it is crucial to make aU conform to aQ. To achieve this, we train the function U by

minimizing the loss function:

L(ω) = EdQ,j∼aQ,dU,j∼aU ,f∼S[(U(f, dQ,j;ω) − yU,j)
2], (6.9)

where dQ,j, dU,j are the the sentences selected to represent documents DQ,j, DU,j re-

spectively; DQ,j, DU,j are the jth documents in the ranking aQ and aU respectively;

f is the query or the feedback sentences from state s, and yU,j = U(f, dU,j).

The rearrangement of U proposed in Equation (6.9) can be seen as a self-inference

method to estimate the difference between simulated score U and the optimal score

Û that can rank the items to maximize the Q value. U is an auxiliary Q function to

help us rank the items because directly using the Q function to rank the document

is computationally impossible. Since U cannot incorporate some of the features from

the other items, it cannot accurately estimate the Q value. However, rearrangement

learning helps us model a probability distribution δ = Û − U that can close the gap
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between U and Û . Noticeably, E(δ) = 0, because EdQ,j∼aQ,dU,j∼aU ,f∼S[U(f, dQ,j) −

U(f, dU,j)] = 0.

6.1.8 State Retrieval

The current framework assumes that users provide feedback throughout the entire

reinforcement process, which in our experiments requires at least 15 iterations to

converge. A user’s search can be considered the first iteration of the RL with ϵ = 0.

In real-life search tasks, it is hard for the users to interact with the search engine for

more than a handful of iterations. Thus, we propose to use state retrieval to identify

similar queries to serve as the starting point for s0.

Formally, let us denote the final state for query q as sT . We store the BERT-

encoded search query, x(q), and sT in our feedback pool P . When a new query

is provided, q′, we use BERT to encode the query, x(q′), and calculate the cosine

similarity between this and all queries stored in P . If the highest cosine similarity is

higher than our setting threshold ψ, we can retrieve this state as the initial state of

the query. Consequently, the feedback sentences generated before can help improve

the search.

6.1.9 Self-supervised Learning

Providing sentence feedback is essential in our users’ simulation and relevance anal-

ysis. However, it is costly and challenging to collect sufficient annotations where

sentences are labeled that help the search. Therefore, we use self-supervised learning

to solve this issue.

Self-supervised learning is a method that can reduce the data labeling cost and

leverage the unlabelled data pool [57]. In this work, we pre-train the users’ simulation

function U with the data of Question-answering (QA) systems. QA systems are

sentence-based search systems. Only a few sentences in a document are considered
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the critical answer to the question. In this work, we train the model by estimating

the importance of the sentences in the document. Those sentences are labeled as

’Selected’ or ’Not Selected.’ After being pre-trained by the QA systems, the function

U can be used to label the sentences crucial to the search, which are essential to

training the DQ model further.

6.1.10 Data Augmentation

During the training process, DQrank is only exposed to a static set of queries (i.e.,

Wq). However, in practical settings, the search terms can be slightly different yet

should still yield similar results. Therefore, to enhance the model’s ability of general-

ization and robustness, we propose local exploration with data augmentations. This

is done by reorganizing the search process of different sessions as an offline RL process

to utilize the long-term benefit of the feedback sentences.

We design a new transformation Ŝt = (st), where Ŝt is the data augmentations of

st, and the reward is smooth, that is r(st) ≈ r(ŝt). Note that the data augmentation

cannot be too aggressive. Otherwise, it may hurt the performance of the model,

because the reward for the original state does not coincide with the reward of the

augmented state (i.e., r(st, at) ̸= r(ŝt, at), ŝt ∈ Ŝt). Therefore, the choice of needs to

consider the connection between the reward and the state.

Since we cannot change the semantics of the original text and need to main-

tain the reward function remains smooth, we choose to paraphrase the sentences.

“Paraphrase” expresses the meaning of a sentence using different words. We use the

paraphrase technique to generate many queries with similar meanings to the query

that goes through the RL framework. Those queries are used in the pre-training

process of the users’ simulation function U and the experience replay. We choose an

advanced paraphrase toolbox Parrot as our paraphrasing model [39].

To reduce some noises and stabilize the training, we average the state-action values
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and target values over different data augmentations of the state. We let

Qt(st, at) =
1

|Ŝt| + 1

|Ŝt|∑
i=0

Q(i(st), at)), (6.10)

where |Ŝt| is the number of the data augmentations, 0(st) = st, and i(st), i ̸= 0 is

the data augmentation of st. Since we assume the reward is locally smooth, rt in

Equation (6.5) remains the same.

6.2 The Experimental Setting and Results

In this section, we design experiments to demonstrate that DQrank can achieve better

ranking performance in search tasks.

6.2.1 Datasets

We evaluate our model’s ranking performance with three datasets. Those datasets

evaluate the ranking results in different ways. The details are delineated as follows:

MS-MARCO: MS-MARCO datasets are large datasets designed for different infor-

mation retrieval tasks [98]. We select the document retrieval dataset to evaluate the

proposed model. This dataset contains 3.2 million documents and provides relevance

scores for every pair of queries and documents. Therefore, we can calculate the over-

all performance of a ranking result with the normalized discounted cumulative gain

(NDCG) score. At the same time, we use the passage retrieval dataset to fine-tune the

users’ simulation function U . The passage retrieval dataset has 8.8 million passages.

ORCAS: ORCAS is a click-log based dataset [37]. This dataset uses Indri [125]

to retrieve 100 documents for every search. The clicks are used to evaluate these

ranking results. The collection contains 20 million clicks, 1.4 million documents, and

10 million queries.
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HITL1: The human-in-the-loop (HITL) dataset is an interactive search dataset from

a CLIR (Cross-linguistics Information Retrieval) project. In this dataset, there are

eight topics and eight queries per topic. For each query, volunteers are asked to

select some relevant sentences from the top 10 documents as feedback. The number

of documents is 30000, and 1053 sentences are selected as feedback sentences. The

dataset belongs to a multi-university collaborative project in the USA and will be

released soon.

We also use two additional datasets to fine-tune the users’ simulation function

U : ASNQ and ciQA. ASNQ is a high-quality natural language dataset for answer

sentence selection, which consists of 59914 questions [45]. ciQA is a web-based dataset

for training interactive question answering [74]. It contains 30 topics.

6.2.2 Experimental Settings

We use mean reciprocal rank (MRR) and NDCG of the top 10 items (nDCG@10)

to measure the ranking performance. We use two point-wise ranking approaches and

two state-of-the-art (SOTA) RL methods in search or recommendation systems as the

baselines. Additionally, we evaluate the performance of three versions of our proposed

model with different BERT models. The baselines include:

• BM25 [110]: Baselines of the experiments .

• BERT-U: The proposed BERT-based user simulation model ranks the docu-

ments directly.

• RLIrank [154]: RLIrank is a policy gradient-based RL method, which is SOTA

RL-based interactive search models.

• SlateQ [61]: SlateQ is a Q learning method with decomposition settings, which

is SOTA RL-based recommendation systems.

1anonymous.com

anonymous.com
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• DQrank (BERT): The DQrank model with U pre-trained using BERT [133].

• DQRank (DistilBERT): The DQrank model with U pre-trained using Dis-

tilBERT, a smaller transformer version trained by distilling BERT [114].

• DQrank: The DQrank model with U pre-trained using RoBERTa, a BERT

model trained with a larger dataset [89]. It is also our proposed implementation

of DQrank.

The input embedding and structure settings are based on the [141].

We use 5-fold validation to examine our approach [70]. The data augmentations

are only applied to the training part. The hyperparameters are determined by grid

search [93]. We use the elbow method to determine the sliding window size, m = 4,

from Figure 6.3. We use the Adam optimizer to train the model and the learning

rate of 0.001. More details of other hyperparameters can be found in Table 6.3.

Figure 6.3: We sample 10% of the MS-MARCO dataset to explore the effect of the

sliding window size on the ranking performance. Considering the trade-off between

the ranking performance and the time complexity, we set the sliding window size as

4.
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Hyperparameter Value

Number of feedback sentences E 3

Two-layer Neural Network of Q 3072×56

Similarity Threshold ψ 0.85

Sliding window size 5

Replay step c 10

Size of action a 50

The maximum number of the sentences considered M 50

Experience replay batch size 32

The number of data augmentations 10

The policy selection probability ϵ 0.05 + 0.85e−
T
200

Table 6.3: The Setting of Hyperparameters

6.2.3 Results

The ranking performance of the various models is presented in Table 6.4 and 6.5.

We can observe that DQrank has more than 12% improvements over the previous

SOTA RL approaches. Additionally, we found that the basic BERT-U model only

has limited improvement from the benchmark BM25 (+2.6%), while the DQ frame-

work brings more significant gains in ranking performance (+15.6% when compar-

ing DQrank (BERT) with BERT-U). This observation indicates that the proposed

learning framework and feedback sentence information are crucial for a better search

system.

In terms of RLIrank and SlateQ, they outperform BM25 and BERT-U. However,

they only have limited improvement (7.26%), demonstrating that the policy gradient

approach and the DQ method without DQrank settings cannot utilize the interaction

records sufficiently enough to drastically improve the interactive ranking performance.
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Table 6.4: The comparisons on nDCG@10. The best results are in bold. Results
marked with * indicate significant improvements with p < 0.05 than others.

Model MS-MARCO ORCAS HITL

BM25 0.5246 0.5726 0.3424
BERT-U 0.5382 0.5897 0.3623

RLIrank 0.5627 0.6146 0.3829
SlateQ 0.5573 0.6068 0.3971

DQrank(BERT) 0.6221 0.6424 0.4422
DQrank(DistilBERT) 0.6154 0.6336 0.4402

DQrank 0.6313* 0.6517* 0.4458*

Table 6.5: The comparisons on MRR. The best results are in bold. Results marked
with * indicate significant improvements with p < 0.05 than others.

Model MS-MARCO ORCAS HITL

BM25 0.2704 0.2844 0.2133
BERT-U 0.2871 0.2974 0.2245

RLIrank 0.3004 0.3116 0.2363
SlateQ 0.2987 0.3104 0.2411

DQrank(BERT) 0.3145 0.3287 0.2754
DQrank(DistilBERT) 0.3127 0.3265 0.2733

DQrank 0.3224* 0.3349* 0.2773*

Both SlateQ and DQrank use deep Q learning to optimize the search, but SlateQ’s

decomposition method degrades the list-wise search results into point-wise ones. This

prevents SlateQ from optimizing the search as a whole and can easily be affected by

the search bias we introduced in Chapter 2.

Additionally, we compare the performance of the DQrank with different trans-

formers. We can find that DQrank (our proposed implementation with RoBERTa)

achieves the best performance. However, it only yields a 2.5% improvement over the

other transformers. These results shows that a relatively lightweight BERT model,

like distilBERT, can potentially replace RoBERTa without hurting the ranking perfor-

mance. This can further accelerate DQrank and make it more practical and efficient

in industrial search tasks.
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6.2.4 Ablation Study

In this subsection, we investigate the effects of four essential components of DQrank:

data augmentations (DA), state retrieval (SR), rearrangement learning (ARL), and

self-supervised learning (SS). The models are listed as follows:

• DQrank: The RoBERTa-based DQrank model.

• DQrank-SR: The DQrank without the state retrieval mechanism (SR) intro-

duced in Section 6.1.8.

• DQrank-DA: The DQrank without data augmentation training (DA) proposed

in Section 6.1.10.

• DQrank-DA-SR: The DQrank without both SR and DA.

• DQrank-SS: The DQrank without self-supervised learning (SS) discussed in

Section 6.1.9.

• DQrank-SS-DA: The DQrank without both SS and DA.

The results with and without rearrangement learning (see Section 6.1.7) are presented

in Table 6.6. With rearrangement learning, DQrank-SR, which only uses data aug-

mentations, provides an increase of 5.21% in nDCG@10 and 2.65% in MRR. When

only using state retrieval (DQrank-DA), we increase 2.73% in nNDCG@10 and 1.32%

in MRR.

We found that both state retrieval and data augmentation can improve search

performance, and the latter is more helpful. However, when incorporating both ap-

proaches, we increase 9.58% in nDCG@10 and 4.64% in MRR, which is a significant

improvement. This analysis reveals that data augmentations and state retrieval have

substantial joint effects. The state retrieval can help us re-use those proper feedback

sentences, and the local exploration from the data augmentations can connect those

sentences to relevant documents.
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Table 6.6: The ranking performance of DQrank with different components in the
MS-MARCO dataset. ARL is rearrangement learning. All the results have significant
improvements with p < 0.05 than DQrank-DA-SR without ARL.

Model
Without ARL

nDCG@10 MRR

DQrank-DA-SR 0.5406 0.2745

DQrank-DA 0.5554 (+2.73%) 0.2822(+2.80%)

DQrank-SR 0.5567 (+2.98%) 0.2831 (+3.13%)

DQrank 0.5597 (+3.53%) 0.2865 (+4.37%)

Model
With ARL

nDCG@10 MRR

DQrank-DA-SR 0.5677 (+5.01%) 0.2977 (+8.45%)

DQrank-DA 0.5832 (+7.88%) 0.3017 (+9.90%)

DQrank-SR 0.5973(+10.49%) 0.3056 (+11.32%)

DQrank 0.6221 (+15.08%) 0.3145 (+14.57%)

We also observe that all the scores decrease an average of 8% when we train the

models without rearrangement learning. This observation shows that it is necessary

to align the user simulation function ranking to maximize the Q value, as the gap can

cause discrepancies to arise between the ranking results and yield suboptimal ranking

results. Thus, rearrangement learning is significant for the users’ simulation function

U to support the documents’ ranking.

Additionally, we explore the effect of state retrieval on the ranking performance

during the online search sessions. As shown in Figure 6.4, in the initial search, both

nDCG and MRR increase quickly from 0 to 5 iterations. However, DQrank has

higher initial scores than DQrank-SR, which are +5.7% in nDCG@10 and +5.2% in

MRR. After 30 search sessions, both models converge to relatively stable states, but

DQrank is still around 1% better than DQrank-SR. This ablation study reveals that

the feedback sentences collected from the offline search logs can help DQrank obtain

better final states.
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Lastly, we study the effect of self-supervised learning and data augmentations

as a function of the number of search iterations t. The results are presented in

Figure 6.5. We observe that data augmentations and self-supervised pre-training can

improve the initial and final ranking performance by an average of 4%. At the same

time, they have a combined effect of increasing both NDCG@10 and MRR by 6%.

This ablation study shows that data augmentation and self-supervised learning can

effectively boost the initial search performance while supporting the improved final

search performance.
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Figure 6.4: The ranking performance of DQrank with (red) or without state retrieval
(blue) during the search session in the MS-MARCO dataset.
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Figure 6.5: The ranking performance of DQrank with different components, DQrank
(red), DQrank-DA (blue), DQrank-SS (purple), and DQrank-SS-DA (black), in the
MS-MARCO dataset.
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Chapter 7

Conclusion

This thesis presents my work on building efficient search systems with novel search

diversification, search bias modeling, and interactive search approaches. The details

of the contributions are listed as follows:

7.1 A new adapted mechanism to diversify search

In chapter 3, I adapt a mechanism for multi-aspect search results diversification from

the Simpson’s Diversity Index (SDI) in biology. This thesis uses theoretical analysis

and experimental evaluation to demonstrate that the proposed method can diversify

multi-aspect search faster and more effectively than some significant previous SOTA

approaches. In contrast to the essential previous SOTA family of methods for diver-

sification, the method optimizes both evenness and richness, which is the first time

a search diversification approach considers these. The approach can significantly in-

crease the amount of information in the search results, enabling users to provide more

informative feedback in interactive search.

In this paper, we presented a novel approach to multi-aspect search results di-

versification, by adapting the Simpson’s Diversity Index (SDI) from biology for this

task. Unlike important previous SOTA family of methods for diversification, our
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proposed method considers both evenness and richness. Based on theoretical analy-

sis and experimental evaluation, we show that the evenness is significant for multi-

aspect search, which is common in e-commercial product search. By defining the

relevance and diversity in different ways, SDI can be further applied to other search

and recommendation methods based on learning-to-rank or neural search and rec-

ommendation algorithms [158]. In the future, we plan to explore incorporating our

SDI-based approach directly into learning-to-rank models, to further improve search

and recommendation performance for e-commerce search and recommendation.

7.2 Search Bias Modeling

In this paper, we propose DRLC, which is a de-biased click model based on reinforce-

ment learning. The model aggregates the advantages of the previous PGM methods

and neural network methods, modeled by some novel assumptions of users’ clicking

and the observation bias. The empirical evaluation shows that DRLC is the state-

of-art method in terms of click prediction, indicating that the RL, CNNs, and the

proposed assumptions in this paper are helpful to improve the performance of the

click models.

In the future, we can further consider other methods to de-bias the dataset. For

example, we can apply counterfactual learning to train the de-bias network, which is

theoretically unbiased [3]. DRLC can also be a trainer of some novel LTR models,

providing a de-biased dataset.

7.2.1 An approach to reduce search bias

I delineate DRLC, a de-biased click model based on reinforcement learning in Chapter

4. The model incorporates the techniques of the previous PGM and neural network

methods, modeling users’ browsing patterns and detecting the observation bias. The
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empirical evaluation shows that the approach can significantly reduce the observa-

tion bias and improve the ranking performance of the models using that de-biased

feedback. Compared to the previous research, this technique can better reduce the

feedback information bias, making this vital interactive search step more solid.

7.3 A document-level interactive search system

In Chapter 5, I described a new interactive search system, RLIrank. The approach is

a reinforcement-learning-based ranking algorithm utilizing document-level feedback.

It is specifically designed for the dynamic search where a user provides feedback for

some documents after each search iteration. This approach can improve the search

performance of the following search after receiving the document-level feedback of the

last search more significantly than in the previous SOTA research.

Since interactive search is a relatively complex system, we further conduct the

ablation study on RLIrank and analyze the key components, which reveals that the

T function and S function are the keys to connecting the feedback and the ranking.

We proposed a new dynamic reinforcement-learning based ranking algorithm, RLI-

rank, specifically designed for dynamic search where a user provides feedback after

each search iteration. We analyze the performance of the RLIrank reinforcement

learning framework, and analyze the dynamic search setting, revealing the impor-

tance of T function and S function, showing the insights of the relationship between

the feedback and the ranking. These two functions and the framework are helpful to

direct future research in the dynamic search domain.

In this research, we only consider the performance of ranking, but some dynamic

search tasks also consider the time to search or the length of the document, which

should measure the model with other metrics, like Cube Test and Expected Utility.

In summary, our RLIrank algorithm provides a significant step towards dynamic
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and contextualized interactive retrieval while opening up promising directions for

future work. Additionally, RLIrank has two important contributions to improving

the document-level interactive search:

7.3.1 A stacked LSTM trained by a stepwise learning frame-

work

A stacked LSTM trained by a stepwise learning framework, which is the first attempt

to incorporate the content (features) of the previously retrieved document into the

ranking process. While the evaluation function ranks the documents and learns from

the contents of the previously retrieved documents, the deep value network continuous

to learn to continuously improve the ranking performance. We show that the deep

value network significantly outperforms previous baselines, including a closely related

previous state-of-the-art neural network-based method.

It is the first attempt to incorporate the content (features) of the previously re-

trieved document into the ranking process. In this framework, the deep value network

continuously learns to improve the ranking performance while the evaluation function

ranks the documents and learns from the contents of the previously retrieved docu-

ments. We demonstrate that the deep value network significantly outperforms pre-

vious baselines, including a closely related previous state-of-the-art neural network-

based method.

7.3.2 An effective embedding Rocchio algorithm

This method allows RLIRank to outperform prior state-of-the-art methods for dy-

namic search significantly. Moreover, the experiments also imply that the embedding

methods can significantly influence the performance of RLIrank. While the Rocchio

algorithm is an efficient approach to reformulating the query, it is not appropriate to
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extract document-level feedback information because it may also change the query

and lead to instability. After our adaptation, we contribute a new Rocchio algorithm,

which can generate more stable and continuous reformulated embedding queries.

An effective embedding Rocchio algorithm, which allows RLIRank to significantly

outperform prior state of the art methods for dynamic search. Moreover, the ex-

periments also imply that the embedding methods can significantly influence the

performance of RLIrank. We apply a GCGAN to transform the document vectors to

queries vector, which obtains striking improvement. In the GCGAN, we do not use

labels information. However, during the training, the relevance scores between the

documents and the queries are available. If this information is used in the GAN, it

is possible to generate a better query transformer.

7.4 A sentence-level interactive search system

In Chapter 6, I introduced a new reinforcement learning approach for the search

systems with sentence-level feedback, DQrank. This approach aggregates similar

search sessions as an interactive process and optimizes the search results with deep

Q learning by considering the feedback sentences.

This paper proposes a new reinforcement learning approach for the search sys-

tems with sentence-level feedback, DQrank. This method aggregates similar search

sessions as an interactive process and optimizes the searching results with deep Q

learning by considering the feedback sentences. Additionally, we provide three sig-

nificant contributions to improving this RL framework: (1) We first introduce query

reformulation as data augmentation to help the RL agent explore locally, making the

search process stable and robust. (2) We propose sliding window ranking to estimate

the optimal action efficiently. (3) We propose state retrieval to re-use the feedback

sentences from the search history. In summary, our DQrank algorithm provides a cru-
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cial step toward applying RL algorithms in search tasks while opening up promising

directions for future work.

To resolve the notorious item selecting and queries robustness issues, we provide

three significant contributions to improving this deep Q learning framework:

1. We introduce query reformulation as data augmentation to help the RL agent

explore locally, making the search process stable and robust. Besides, this

method helps us aggregate similar searches in an RL framework, which is crucial

for reward estimation and actions selection.

2. We propose sliding window ranking to estimate the optimal action efficiently.

This method can move the relevant items forward, securing the accuracy of the

top-ranking documents while accelerating the ranking process.

3. We propose state retrieval to re-use the feedback sentences from the previous

search. This method promises that the DQrank can serve users quickly and be

practical in real-life search systems.

In summary, I proposes a new RL approach for the search systems with sentence-

level feedback, DQrank. This method aggregates similar search sessions as an inter-

active process and optimizes the search results with DQ by considering the feedback

sentences. Additionally, we provide three significant contributions to improving this

RL framework: (1) We propose sliding window ranking to estimate the optimal action

efficiently. (2) We introduce state retrieval to re-use the feedback sentences from the

search history. (3) We reformulate the query using data augmentation to help the RL

agent explore locally, making the search process stable and robust. Our experimental

results demonstrate the performance of our model on three datasets. In summary,

DQrank provides a crucial step toward applying RL algorithms in search tasks while

opening up promising directions for future work.
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7.5 Limitations

Although the proposed methods show strength in solving the key issues in the inter-

active search, they still have some limitations:

1. Simpson’s diversity index method in Chapter 3 can only obtain the sub-optimal

result of the binary quadratic problem. To archive better performance, the time

complexity of the algorithm will increase drastically. A deep learning approach

to explore the optimal may improve the sub-optimal with relatively lower effort.

2. DRLC approach in Chapter 4 focuses on solving observation bias. However,

users’ feedback may also be affected by position bias and other issues.

3. The experiments of RLIrank in Chapter 5 highly depend on the users’ simulator

from the dataset. However, most real-life search tasks do not contain such a

simulator.

4. DQrank in Chapter 6 shows strengths in extracting interaction information

better than the previous approaches. However, sentence-level feedback is still

hard to obtain in most online search scenarios. Two solutions may overcome

this limitation. First, joining more attention-detecting mechanisms into the

search engines can help obtain sentence-level feedback efficiently, such as mouse

tracking and eye tracking. Second, mixing with document-level feedback can

help update the model when sentence-level feedback is absent.

7.6 Future Work

The work in this thesis demonstrates the tremendous potential of using users feedback

to improve the search systems, which opens up promising direction for future work.

To extend my contributions, some work can be done in the future:
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Diversifying the search results: In terms of the SDI model, the SDI score

can be an efficient loss function in the search and recommendation methods based

on learning-to-rank or neural search and recommendation algorithms [158]. To reach

toward this goal, we will conduct more research on the binary quadratic optimization.

We have two major directions:

• We can design a better representation of the diversity and relevance, so that

the final loss function can be reorganized as SDI.

• We can deep learning model to fit the SDI function, which may achieve a better

approximation.

De-bias the feedback: The de-bias network is not directly trained by some de-

biased metrics, because those metrics are restricted by some incomplete assumptions

[3]. However, we can consider a group of those approaches and use boosting methods

to ensemble those algorithms and obtain a robust estimation of the bias.

The document-level interactive search: In this research, we only consider

the performance of ranking, but some dynamic search tasks also consider the time to

search or the length of the document, which should measure the model with other

metrics, like Cube Test and Expected Utility.

The sentence-level interactive search summary, our RLIrank algorithm pro-

vides a significant step towards dynamic and contextualized interactive retrieval while

opening up promising directions for future work.

All in all, this thesis contributes to the interactive search by proposing new meth-

ods to resolve the critical challenges in each component.



130

Bibliography

[1] Aman Agarwal, Ivan Zaitsev, and Thorsten Joachims. Counterfactual learning-

to-rank for additive metrics and deep models. arXiv preprint arXiv:1805.00065,

2018.

[2] Aman Agarwal, Kenta Takatsu, Ivan Zaitsev, and Thorsten Joachims. A gen-

eral framework for counterfactual learning-to-rank. In Proceedings of the 42nd

International ACM SIGIR Conference on Research and Development in Infor-

mation Retrieval, pages 5–14, 2019.

[3] Aman Agarwal, Ivan Zaitsev, Xuanhui Wang, Cheng Li, Marc Najork, and

Thorsten Joachims. Estimating position bias without intrusive interventions.

In Proceedings of the Twelfth ACM International Conference on Web Search

and Data Mining, pages 474–482, 2019.

[4] Sareh Aghaei, Kevin Angele, Elwin Huaman, Geni Bushati, Mathias Schiestl,

and Anna Fensel. Interactive search on the web: The story so far. Information,

13(7):324, 2022.

[5] Qingyao Ai, Keping Bi, Cheng Luo, Jiafeng Guo, and W Bruce Croft. Unbiased

learning to rank with unbiased propensity estimation. In The 41st International

ACM SIGIR Conference on Research & Development in Information Retrieval,

pages 385–394, 2018.



131

[6] Akiko Aizawa. An information-theoretic perspective of tf–idf measures. Infor-

mation Processing & Management, 39(1):45–65, 2003.

[7] Ameer Albahem, Damiano Spina, Lawrence Cavedon, and Falk Scholer. Rmit@

trec 2016 dynamic domain track: Exploiting passage representation for retrieval

and relevance feedback. In TREC, 2016.

[8] Grigor Aslanyan, Aritra Mandal, Prathyusha Senthil Kumar, Amit Jaiswal,

and Manojkumar Rangasamy Kannadasan. Personalized ranking in ecommerce

search. In Companion Proceedings of the Web Conference 2020, pages 96–97,

2020.

[9] Bing Bai, Jason Weston, David Grangier, Ronan Collobert, Kunihiko

Sadamasa, Yanjun Qi, Olivier Chapelle, and Kilian Weinberger. Learning to

rank with (a lot of) word features. Information retrieval, 13(3):291–314, 2010.

[10] Martino Bardi and Italo Capuzzo-Dolcetta. Optimal control and viscosity so-

lutions of Hamilton-Jacobi-Bellman equations. Springer Science & Business

Media, 2008.
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