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Abstract  

  

Metabolome-Wide Association Study of the Relationship Between Insecticide Exposure and 

First Trimester Serum Metabolite Levels in North Thailand Women  

By Jonathan Batross  

  

Intro: Organophosphate (OP) insecticides are a common group of neurotoxic insecticides. Their 

main target is acetylcholinesterase which are in charge of muscle contractions. While OP 

insecticides are made to kill pests and insects, they can also affect humans. Thailand is a country 

highly dependent on agricultural work and thus has a high usage of OP insecticides. Women 

who are pregnant frequently work in these fields, and thus can expose the fetus to these 

insecticides, ultimately causing neurodevelopmental issues among the newborns and children.  

Methods: This study is a subset of the Study of Asian Women and Offspring’s Development 

and Environmental Exposures (SAWASDEE) study which followed 322 women-child pairs 

from pregnancy until three years old. We used high-resolution metabolomics (HRM) to assess 

serum samples collected on 50 of these women at the first trimester. To assess the levels of OP 

insecticide exposure, we measured the stable metabolite 3,5,6-trichloro-2-pyridinol (TCPY) in 

urine samples. Following an untargeted metabolome-wide association study (MWAS) workflow, 

we used liquid chromatography-mass spectroscopy (LCMS) instruments to conduct metabolic 

profiling on our samples, and then we used in house bioinformatics software in Python and R to 

identify significant metabolites and pathways associated with OP exposures. We used 2 multiple 

linear regression models which included recruitment site, age, ethnicity, if their husband 

smoked, the use of medication, and use of fertilizer and pesticides. One model also controlled for 

creatinine adjust TCPY levels.  

Results: We found 37 significant pathways that occurred in at least 2 of our models. Most of 

these metabolic pathways were linked to the production of reactive oxygen species (ROS) which 

indicates cellular damage. These pathways include: Tryptophan metabolism, fatty acid oxidation 

and peroxisome metabolism, drug metabolism using CYP450, Glutathione metabolism, and 

Vitamin B3. 

Discussion: This work is meant to pioneer and further add research of the maternal metabolome 

during pregnancy and OP insecticide exposure. This research is especially important because this 

exposure is occurring when the fetus is most at risk of neural development disruption. It can also 

lead to targeted interventions which would lower the health burden for this large population. 
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Introduction 

Organophosphates (OP) are a group of commonly neurotoxic insecticides that include 

compounds like chlorpyrifos, diazinon, and malathion (Harley et al. 2011). Two of these 

chemicals, chlorpyrifos and diazinon, have been phased out by manufacturers in 2001, but there 

are still approximately 73 million pounds used per year in the US alone (Harley et al. 2011). OP 

insecticides inhibit acetylcholinesterase (AChE) (Jusko et al. 2019) by biding to the site where 

the acetylcholine binds and acts as a non-competitive inhibitor, eventually leading to severe 

reactions such as paralysis or death by exhaustion.(Naksen et al. 2015) Multiple animal studies 

(Spyker and Avery 1977; Srivastava and Raizada 1996) have shown that higher OP insecticide 

exposure has led to reduction in fetal growth in rodents. There have also been findings (Rauch et 

al. 2012; Sagiv et al. 2019; Silver et al. 2018; Srivastava and Raizada 1996) of associations of 

higher OP metabolites found in serum and reduction in prenatal development. Despite these 

epidemiological observations and limited mechanistic studies, there is a gap in current literature 

between the biological pathways and linkages between prenatal exposure to OP insecticides 

through the maternal metabolome. 

 

High-resolution metabolomics (HRM) is a high-throughput analytical method capable of 

quantifying and identifying a large number of metabolites from exogenous and endogenous 

sources(Kim et al. 2016). This method is useful for studying effects of environmental exposures 

on the human metabolome (Rappaport 2011). Other environmental metabolomics studies 

(Bonvallot et al. 2013; Liang et al. 2019) have shown the great potential of HRM as a powerful 

tool to improve internal exposure estimation to complex environmental mixtures. In this study, 

we conducted HRM to examine the association between OP exposures and perturbations in the 

maternal metabolome during pregnancy and its potential effects on prenatal development. 
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To better elucidate this biological link, we used the Study of Asian Women and Offspring’s 

Development and Environmental Exposures (SAWASDEE), a longitudinal birth cohort based in 

the Northern Thailand districts of Fang and Chom Thong. The study followed women through 

pregnancy, collected multiple, time-resolved biological samples, and evaluated neural 

development until 3 years of age. Thailand is considered one of the world’s largest food 

exporters and because of this, there is a lot of agricultural work and insecticide use. Different 

crops require different levels and duration of spraying with OP insecticides. This mix of 

exposures in pregnant women and other factors make this cohort a great candidate for 

environmental HRM application. 

 

We built an initial metabolomics analysis using bioinformatics techniques to identify biological 

perturbations in metabolites and potential biological pathways associated with OP insecticide 

usage on maternal metabolome. We expect to observe signs of oxidative stress due to the 

perturbations caused by OP insecticide exposure. This work is meant to pioneer and further add 

research of the maternal metabolome during pregnancy and OP insecticide exposure. This 

research is especially important because this exposure is occurring when the fetus is most at risk 

of neural development disruption. It can also lead to targeted interventions which would lower 

the health burden for this large population. 

 

Methods. 

Study Population  
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The SAWASDEE study is a collaboration between researchers from Emory (Atlanta, GA, USA), 

Rutgers (Piscataway, NJ), Chiang Mai (Chiang Mai, TH), and Chulalongkorn Universities 

(Bangkok, TH), who are studying neurodevelopmental impacts of prenatal insecticide exposure. 

Estimates show that 98% of pregnant women in Thailand received prenatal care in 2016 (World 

Development Indicators 2017 2017). Because of the strong agricultural workforce of Thailand, 

the generalizability to other low/middle income countries (LMIC), and the study team’s previous 

work in the Chiang Mai Province, this region was chosen. These previous studies in the region 

found elevated insecticide exposure in women and children in this area (Fiedler et al. 2015; 

Naksen et al. 2015, 2017; Onchoi et al. 2020).  

 

Participant Recruitment 

The study population included pregnant women who were agricultural workers or lived within 

50 meters from an agricultural field; had a Thai identification card which allowed them to 

receive antenatal clinic access; resided in their region for at least 5 months and planned to live 

there 3 years after deliver; spoke the Thai language at home; were generally healthy (i.e. no 

major medical conditions like hypertension, diabetes, or HIV); consumed fewer than two 

alcoholic beverages per day and didn’t use illegal drugs; were less than 16 weeks of gestation.; 

singleton pregnancy; and lastly agrees to participate with informed consent. Participant 

enrollment started in July 2017 and was completed in June 2019; 1298 women were screened 

and 322 of those women were enrolled into the study. 50 of those participants had urine and 

serum samples taken for our first trimester analysis. The study was reviewed and approved by 

Emory and Chiang Mai Universities IRB, Rutgers University relied on Emory University’s IRB 

and Chulalongkorn University relied upon Chang Mai University’s IRB. 
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Exposure Assessment 

Urine samples were composited using equal volumes to create early, mid, and late pregnancy 

samples that roughly correspond to trimester. All samples were randomized using a Fisher-Yates 

shuffling algorithm prior to analysis to reduce any potential batch effects (Finney 1948; Knuth 

1960). Samples were analyzed for 3,5,6-trichloro-2-pyridinol (TCPY), a specific metabolite of 

organophosphate insecticides chlorpyrifos and chlorpyrifos methyl using a modification of a 

previously validated method (Olsson et al. 2004). Briefly, samples are spiked with stable isotopic 

analogues of the target analytes then are enzymatically digested using purified β-glucuronidase 

and sulfatase enzymes (derived from H. pomatia) to liberate bound metabolites. The 

hydrolysates are centrifuged and transferred to autosampler vials. To facilitate on-line solid 

phase extraction, samples are injected into a column switching system for concentration of the 

target analytes on a Strata RP on-line SPE column (2.1 x 20 mm). The on-line extraction column 

is washed with the acetonitrile:Milli-Q water (10:90, V/V) solution to remove undesired matrix 

interferences. The target analytes are then eluted from the on-line extraction column to a 

Poroshell 120 EC-C18 analytical column (3.0 x 100 mm, 2.7 um) for chromatographic 

separation. The target analytes are measured using negative mode electrospray ionization (ESI)-

tandem mass spectrometry (MS/MS) with isotope dilution quantification. During mass 

spectrometric analysis, the target analytes are monitored using the multiple reaction monitoring 

(MRM) mode. One quantitation ion and one confirmation ion are monitored for the native 

analytes, and one quantitation ion is monitored for the labeled analogues. Concentrations of the 

target analytes are determined from the relative response (per volume of sample injected) of 

native to labeled standards in the samples, using an equation derived from a matrix-matched 
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standard calibration curve. For each analytical run of 44 unknown samples, 2 blank samples 

(negative control) and four positive quality control samples at 2 different levels were analyzed 

concurrently. Successful participation in the German External Quality Assessment Scheme 

(GEQUAS) served as an additional quality assurance parameter of the method. The limits of 

detection (LOD) were 0.31 ng/mL (TCPY, 3PBA) and 125 ng/mL (cDCCA, tDCCA) and the 

relative recoveries ranged from 90-99%. For statistical analysis, the LOD divided by the square 

root 2 was imputed for all values below the LOD.  

 

Creatinine was measured by diluting urine samples 1000-fold with water after spiking with its 

isotopically labeled analogue. Diluted samples were analyzed by liquid chromatography 

electrospray ionization coupled with tandem mass spectrometry.  For creatinine, two ion 

transition were monitored (m/z 113.9 -> m/z 44.2 and m/z 113.9 ->86) and only one ion 

transition was monitored for labeled creatinine (m/z 116.9 -> m/z 47.2) (Kwon et al. 2012). 

Quantification was achieved using an isotope calibration. Quality control/assurance included the 

concurrent measurement of calibrants, blanks and quality control materials and semi-annual 

certification by the GEQUAS program. The LOD was 5 mg/dL with a relative standard deviation 

of 5%. Specific gravity was measured using an automated refractometer using water for 

standardization. 

Equation 1: Creatinine corrected values 

𝐶𝑟𝑒𝑎𝑡𝑖𝑛𝑖𝑛𝑒 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 (
𝜇𝑔

𝑔
𝑐𝑟𝑒𝑎𝑡) = (

𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 (
𝑛𝑔
𝑚𝐿)

𝑐𝑟𝑒𝑎𝑡𝑖𝑛𝑖𝑛𝑒 (
𝑚𝑔
𝑑𝐿 )

) ∗ 100 

High Resolution Metabolomics 
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HRM analyses were conducted on the serum samples using established protocols (Go et al. 2015; 

Liang et al. 2018). Each sample was treated with two volumes of acetonitrile and analyzed in 

triplicate using liquid chromatography-high-resolution mass spectrometry (LC–HRMS) 

techniques (Dionex Ultimate 3000; ThermoScientific QExactive). Two technical columns, 

hydrophilic interaction liquid chromatography (HILIC) with positive ESI and C18 hydrophobic 

reversed-phase chromatography with negative ESI, were used to enhance the coverage of 

metabolic feature detection. Two quality control pooled reference plasma samples, including 

NIST 1950 (Simón-Manso et al. 2013) and pooled human plasma purchased from Equitech Bio 

were included at the beginning and end of each analytical batch for normalization, control for 

background noise, batch evaluation, and post hoc quantification. Following instrument analyses 

of all samples, raw data files were converted to .mzML files using ProteoWizard (Chambers et 

al. 2012) and extracted using apLCMS with modifications by xMSanalyzer (Uppal et al. 2013; 

Yu et al. 2009). Detected signals (referred to as metabolic features) were uniquely defined by 

their mass-to-charge ratio (m/z), retention time, and ion intensity. Only metabolic features 

detected in >10% of the serum samples with median coefficient of variation (CV) among 

technical replicates <30% and Pearson correlation >0.7 were included in further analyses. 

Following quality assessment, the median intensity was taken across replicate samples and these 

intensities were natural log transformed for analysis. 

 

Statistical Analysis.  

We analyzed the associations between TCPY levels and metabolic features using multivariable 

linear regression models adjusted for creatinine adjusted TCPY levels (one model with this 

variable and one model without), recruitment site, age, ethnicity, husband smoking status, use of 
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medications other than prenatal multivitamins, and use of fertilizer and insecticides at work since 

pregnancy using R (Version 4.0.4). The models used the equations of: 

Equation 2a: Multilinear Regression Model without Creatinine Adjusted TCPY Levels. 

 

𝒀𝒊𝒋 = 𝜷𝟏𝒋𝑻𝑪𝑷𝒀𝒊 + 𝜷𝟐𝒋𝑺𝒊𝒕𝒆𝒊 + 𝜷𝟑𝒋𝑨𝒈𝒆𝒊 + 𝜷𝟒𝒋𝑬𝒕𝒉𝒏𝒊𝒄𝒊𝒕𝒚𝒊 + 𝜷𝟓𝒋𝑯𝒖𝒔_𝒔𝒎𝒐𝒌𝒆𝒊 + 𝜷𝟔𝒋𝑴𝒆𝒅𝒔𝒊

+ 𝜷𝟕𝒋𝑼𝒔𝒆𝑭𝑷𝒊 

Equation 2b: Multilinear Regression Model with Creatinine Adjusted TCPY Levels. 

 

𝒀𝒊𝒋 = 𝜷𝟏𝒋𝑻𝑪𝑷𝒀𝒊 + 𝜷𝟐𝒋𝑪𝒓𝒆𝒂𝒕𝒊 + 𝜷𝟑𝒋𝑺𝒊𝒕𝒆𝒊 + 𝜷𝟒𝒋𝑨𝒈𝒆𝒊 + 𝜷𝟓𝒋𝑬𝒕𝒉𝒏𝒊𝒄𝒊𝒕𝒚𝒊 + 𝜷𝟔𝒋𝑯𝒖𝒔_𝒔𝒎𝒐𝒌𝒆𝒊

+ 𝜷𝟕𝒋𝑴𝒆𝒅𝒔𝒊 + 𝜷𝟖𝒋𝑼𝒔𝒆𝑭𝑷𝒊 

where Yij refers to the intensity (i.e., relative concentration) of metabolic feature j for participate 

i. Separate models were conducted for each metabolic feature, from each ionization mode (urine 

C18 negative ESI, and urine HILIC positive ESI). Multiple comparison correction was 

conducted using the Benjamini-Hochberg false discovery rate (FDRB-H) procedure, a widely used 

procedure in Metabolome Wide Association Studies (MWAS) study, at a 5% false positive 

threshold.  

 

Metabolic pathway enrichment analysis and metabolite annotation 

We conducted pathway enrichment analysis utilizing mummichog (Version 1.0.10, Python 

Version 3.39), a novel bioinformatics platform that infers and categorizes functional biological 

activity directly from mass spectrometry output, without prior metabolite validation (Li et al. 

2013). An adjusted p-value for each pathway was calculated from resampling the reference input 

file in mummichog using a gamma distribution, which penalizes pathways with fewer reference 
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hits, and assigning greater significance to pathways with more reference hits (Li et al. 2013). We 

applied two strategies to select eligible metabolic features for pathway analysis: (i) at raw p-

values < 0.05 (less conservative); (ii) at raw p-values <0.005 (more conservative). For the both 

approaches, to compensate for false discoveries, we excluded pathways identified by 

mummichog with a p-value higher than 0.05 and those containing less than 4 significant 

metabolic features that were matched with known compounds by m/z. We conducted pathway 

analysis separately for each of the model, one with and without log adjusted creatinine levels, 

and by ionization mode.  

 

Next, we identified overlapping significant metabolic features and pathways between models. 

These overlapped metabolic features were then annotated by matching the m/z value for 

commonly formed adducts to the METLIN, ChemSpider, Human Metabolome Database, and 

Kyoto Encyclopedia of Genes and Genomes databases, using a mass error threshold of 10 ppm 

(Uppal et al. 2017). Finally, we confirmed a select number of annotated metabolites by 

comparison of m/z, retention time and ion dissociation patterns to authentic chemical reference 

standards analyzed in our lab using the identical method and instrument parameters via tandem 

mass spectrometry. 

 

Results 

The characteristics of these woman can be found more in depth in Table 1. The median age was 

24.8 (SD = 5.73) years. There were 22 (44%) women from Chom Thong and 28 (56%) women 

from Fang. Chom Thong had a higher percentage of Thai people (68.2% vs 14.3%) where Fang 

had a higher percentage of hill tribes (4.5% vs 53.6%). The majority of the women didn’t use 
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other medications (18%) and weren’t exposed to their husband’s smoking (38%). However, most 

women did use fertilizer and insecticides (52%).  

 

In the model containing TCPY only, there were 651 total metabolites found significantly 

associated with our exposure (275 in the C18 column and 376 in the HILIC). In the model 

adjusting for creatinine adjust TCPY levels, the number of total significant metabolites is 691 

(324 in the C18 column, 367 in the HILIC column). Overall, for the respective columns, there 

were 31,995 metabolic features detected after data filtering in the C18 column and 38,210 

metabolic features detected in the HILIC column. Manhattan plots (Figs 6-9) show the 

distribution of significant features above FDR corrected levels of 0.2 (black), 0.1 (blue), and 0.05 

(red), respectively.  

 

When performing pathway analysis, there were 37 pathways found significantly associated with 

OP exposures in either model (Figure 5). For our analysis, we focused on a subset of 24 

pathways which appeared in more than one column or model. Notably, Lysine metabolism, 

purine metabolism, and aspartate and asparagine metabolism were found significant over all 

models and columns (N=3). Along with those three pathways there were an addition 18 that 

appeared in both models which include: Vitamin B9 (folate) metabolism; Urea cycle/amino 

group metabolism; Carbon fixation; Keratan sulfate degradation; Pyruvate Metabolism; Fatty 

acid oxidation, peroxisome; Alanine and Aspartate Metabolism; Fructose and mannose 

metabolism; Drug metabolism; Vitamin B3 (nicotinate and nicotinamide) metabolism; Ascorbate 

(Vitamin C) and Aldarate Metabolism; Arginine and Proline Metabolism; Cytochrome P450 

metabolism; Pentose phosphate pathway; Pyrimidine metabolism; Glycine, serine, alanine and 
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threonine metabolism; Tryptophan metabolism; Tyrosine metabolism (N=18). The remaining 3 

were only found in a single model. 

 

We found, for these pathways, 5 distinct metabolites for glutathione metabolism; 6 distinct 

metabolites for fatty acid oxidation, peroxisome metabolism; 11 distinct metabolites for drug 

metabolism – cytochrome P450; and 22 distinct metabolites for tryptophan metabolism (Table 

2). We then matched the samples with authentic reference standards, verified by tandem mass 

spectrometry, to confirm the chemical identity of metabolic features that were both associated 

with the TCPY levels and enriched within OP exposure-relevant metabolic pathways. In total, 

we identified 32 metabolites with level 1 evidence, including arachidic acid, glutathione, and 

itaconate.  

 

Lastly, we performed a sensitivity analysis using a cut-off p-value of 0.005 for a more 

conservative pathway list. We found 3 pathways: Leukotriene metabolism, sialic acid 

metabolism, and carnitine shuttle for the HILIC column; we also found 6 pathways: Tyrosine 

metabolism, Drug metabolism – cytochrome P450, tryptophan metabolism, purine metabolism, 

pentose phosphate metabolism, and aspartate and asparagine metabolism, in the C18 column.  

 

Discussion 

Through this untargeted MWAS, we have elucidated some of the important or significant 

pathways that are connected with OP insecticide exposure and the disruption of the maternal 

metabolome. These pathways can provide important insight and help improve the gaps in the 

literature about the impacts of OP insecticide exposure, in low dose long-term exposure and high 
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dose short-term exposure, to pregnant woman in LMICs. OP insecticide exposure during this 

crucial period can have everlasting developmental impacts on the fetus and infants.  

 

The following pathways will be the focus for the paper, however, there are other pathways that 

could also be interesting to look at. Fatty acid oxidation and peroxisome metabolism is linked to 

OP insecticide exposure as it has been found to cause abnormal lipid metabolism (Howell III et 

al. 2016). The same paper found that this exposure caused increased lipid accumulation as well. 

This can lead to oxidative stress in the breaking down of fatty acids in the mitochondrial to make 

energy as this energy generation process had been found to be a generator of reactive oxygen 

species (ROS) (Howell III et al. 2016). More commonly, people with more fatty acids also 

contain other toxins stored in those fat cells leading to more ROS and stress. Tryptophan 

metabolism is an essential amino acid which has been shown in previous studies to have 

decreased when exposed to OP insecticides (Du et al. 2014; Hasanoğlu Özkan et al. 2021). This 

exemplifies that OP insecticide exposure disturbs amino acid structure and metabolism. Other 

amino acids such as Urea cycle/amino group, lysine, and purine show up in our MWAS output 

showing that multiple amino acid groups could be affected by the OP insecticide exposure. 

Glutathione metabolism is an important marker of toxicity through glutathione S transferase 

(GST) and reduced glutathione (GSH). Glutathione also protects against free radical damage. 

Higher levels of GSH indicates that there are xenobiotics in the body and assist in their excretion 

(Chatterjee et al. 2021; Tang et al. 2021). Glutathione metabolism also shows that there is the 

presence of ROS in the body due to extracellular GSH consumption and an increase in oxidized 

glutathione levels (Ledda et al. 2021). Drug metabolism – cytochrome p450 AChE is 

metabolized by enzymes like cytochrome P450 (CYP450). AChE is the main target for these OP 
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insecticides and CYP450 has been found to have its activity inhibited by exposure as well. 

(Christen et al. 2019; Hernández-Toledano et al. 2020) This pathway being identified as 

significant corresponds to previous studies of OP insecticide exposure and could also indicate 

DNA damage of certain cells. (Vega et al. 2009). AChE inhibition has been found in honey bees 

which are not the main targets for these insecticides (Williamson et al. 2013).  

 

OP insecticides mainly target AChE receptors mainly found in the central and peripheral nervous 

system, neuromuscular junctions, and red blood cells (Alejo-González et al. 2018). The liver, 

which is involved in human detoxification, comes up frequently in our pathway analysis. Some 

examples would be fatty-acid, peroxisome metabolism, tryptophan metabolism, glutathione 

metabolism, and cytochrome P450 drug metabolism. As mentioned previously, fatty acid 

oxidation and peroxisome metabolism are linked to generating ROS. Peroxisomes contain large 

number of ROS-producing enzymes such as acyl-CoA oxidases (Wanders et al. 2016). Some of 

the overlapping features that showed up included hexadecanoyl-CoA, stearoyl-CoA, 

cluponadonyl CoA, and octadecenoyl-CoA which are part of β-oxidation of fatty acid chains. 

However, the peroxisomes also have a large network of antioxidants that protect organelles from 

oxidative damage. Tryptophan metabolism has been shown to be disturbed by OP insecticide 

exposure mainly in the liver. Tryptophan fluorescence is used to monitor changes in amino acids 

in the presence or absence of foreign molecules. A previous study looking at TCPY shows that 

there are significant changes in tryptophan and tyrosine (another pathway which showed up in 

our analysis) with the presence of TCPY which is a metabolite of OP insecticide exposure 

(Dahiya et al. 2017). It was also found that in baby chicks, the inhibition of tryptophan cause by 

OP insecticides reduced the nicotinamide adenine dinucleotide (NAD/NAD+) levels of the baby 
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chicks (Henderson and Kitos 1982). Lowering the availability of energy products to the embryo 

cause complications such as congenital malformations and miscarriages. In coordination with 

this, vitamin B3 which includes nicotinamide, a part of NAD, was a significant pathway 

identified by our analysis. In mice, it was found that a lack of dietary vitamin B3 and tryptophan 

increase a frequency of multiple birth defects as well (Cuny et al. 2020).  

 

Other pathways show a significance connected to oxidative stress by increased of xenobiotic 

compounds. In the case of this study that xenobiotic compound would be in the form of OP 

insecticide exposure. Glutathione metabolism showed a positive association with exposure to OP 

insecticides. During pathway analysis reduced glutathione (GSH) showed to positively 

associated with an increased of TCPY. Meaning that as the level of TCPY increased, there was a 

higher level of GSH (β= 0.016). Impairment of these antioxidant enzymes can lead to elevated 

levels of oxidative stress (Chatterjee et al. 2021). Based on Chatterjee et al. and Tang et al. it 

seems that there is a dose response to GSH with an early spike in GSH and then a decrease in 

GSH levels. Because these samples were taken in early pregnancy, there might be a decrease in 

GSH levels showing an increase in ROS overtime that isn’t contained by GSH. Lastly, drug 

metabolism through cytochrome p450 is another pathway that is connected to the liver. A 

previous study looking at different types of OP insecticides exposure shows that they all 

inhibited CYP450’s enzymatic ability (Abdou et al. 2020). They also showed that the OP 

insecticides inhibited the CYP450s in a non-competitive manner.   

 

To date, there are no reported studies which focus on metabolomics analysis on the 

prenatal/maternal metabolome in relation to exposure to OP insecticides. This group of people 
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are highly exposed to OP insecticides uses due to living in a highly agricultural reliant country 

such as Thailand, and because of this there needs to be more studies done in this area. OP 

insecticides are the largest group of insecticides used across the world and with emerging omics-

based and metabolomics-based research being recognized and done, further research is needed. It 

is known that OP insecticides have effects of neural development in mammals such as mice and 

many of those papers have been used in this paper; however, there is still a lack of human data or 

field data to elucidate this relationship further. 

 

Despite these promising findings, there are several potential limitations in this study that 

warrants attention. First, this was a pilot analysis among a subset of 50 participants from the 

SWASDEES birth cohort. Because of the relatively small sample size, we were unable to control 

for several potential confounding factors in the MWAS statistical modeling, including education, 

frequency of crop used, and poverty level. We plan to conduct follow-up analysis using a larger 

sample size in this cohort to validate our findings in this pilot analysis. Secondly, we were 

examining serum samples collected during the first trimester serum samples and thus the results 

may not be representative of metabolic patterns across different time periods through the 

pregnancy. Future analysis shall compare perturbations in maternal metabolome using 

longitudinal samples collected from different pregnancy periods. The models used to look at both 

TCPY levels and creatinine adjusted TCPY levels many similar pathways. Using creatinine as an 

adjustment for urine dilution is a common practice (Barr et al. 2005). However, because of the 

variation in pregnant women physiology and fluctuations during pregnancy, this creatinine 

adjusted TCPY levels might be skewed.   However, as this is preliminary or pilot data, this 
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shows the merit for further and more extensive research in the field of OP insecticides exposure 

and pregnant women metabolome. 

  

Conclusions 

The SAWASDEE birth cohort study provides information essential for risk assessment 

paradigms addressing the risk of prenatal insecticide exposure and neurodevelopment. This 

MWAS provides crucial information on potentially impactful metabolic pathways and biological 

clues to the effects of OP insecticides on the maternal metabolome and fetus. This pilot study 

will hopefully begin the elucidation of these pathways and bridge the current gap in knowledge. 
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Table 1. Demographics 

 Chom Thong 

(N=22) 

Fang 

(N=28) 

Total 

(N=50) 

Age    

Mean (SD) 26.7 (5.73) 23.4 (5.26) 24.8 (5.67) 

Median [Min, Max] 26.5 [18.0, 38.0] 22.5 [18.0, 38.0] 24.5 [18.0, 38.0] 

Ethnicity    

Karen 3 (13.6%) 1 (3.6%) 4 (8.0%) 

Thai 15 (68.2%) 4 (14.3%) 19 (38.0%) 

Hill Tribes**  1 (4.5%) 15 (53.6%) 16 (32%) 

Other 3 (13.6%) 8 (28.6%) 11 (22%) 

Husband Smoke*    

Yes 7 (31.8%) 12 (42.9%) 19 (38.0%) 

No 15 (68.2%) 15 (53.6%) 30 (60.0%) 

Use Medications    

Yes 5 (22.7%) 4 (14.3%) 9 (18.0%) 

No 17 (77.3%) 24 (85.7%) 41 (82.0%) 

TCPY levels (ng/ml)    

Median [Min, Max] 9.44 [0.220, 65.2] 1.43 [0.475, 50.0] 2.39 [0.220, 65.2] 

Missing    0 (0%) 1 (3.6%) 1 (2.0%) 

TCPY adjusted Creatnine 

(ug/gcreat) 
   

Median [Min, Max] 6.57 [0.52, 186.65] 4.21 [2.22, 69.55] 4.36 [2.81, 5.76] 

Missing    0 (0%) 1 (3.6%) 1 (2.0%) 

Use Fert/Pest    

Yes 12 (54.5%) 14 (50.0%) 26 (52.0%) 

No 6 (27.3%) 10 (35.7%) 16 (32.0%) 

Missing   4 (18.2%) 4 (14.3%) 8 (16.0%) 

 
*None of the woman in the study reported smoking 

** includes Thai Yai, Lahu, and Pa Long 

  



 
 

23 

Table 2. Confirmed Metabolites 

M/z RT (s) Validated Metabolite 

Adduct 

Form beta Columns 

134.047 25.6 ADENINE M-H 0.010 C18 

145.014 21.0 ALPHA-KETOGLUTARIC ACID M-H 0.017 C18 

311.295 292.2 ARACHIDIC ACID M-H -0.026 C18 

239.016 27.9 CYSTINE M-H -0.027 C18 

377.086 20.4 LACTOSE M+Cl 0.020 C18 

377.086 20.4 SUCROSE M+Cl 0.020 C18 

377.086 20.4 MELIBIOSE M+Cl 0.020 C18 

377.086 20.4 MALTOSE M+Cl 0.020 C18 

377.086 20.4 CELLOBIOSE M+Cl 0.020 C18 

377.086 20.4 PALATINOSE M+Cl 0.020 C18 

129.019 21.6 2-METHYLMALEATE M-H -0.012 C18 

129.019 22.2 ITACONATE M-H -0.012 C18 

178.087 36.6 

1-METHYL-6,7-DIHYDROXY-
1,2,3,4-

TETRAHYDROISOQUINOLINE M-H -0.014 C18 

114.019 22.2 MALEAMATE M-H -0.014 C18 

137.071 44.0 1-METHYLNICOTINAMIDE M+ -0.046 HILIC 

152.057 49.8 GUANINE M+H 0.027 HILIC 

664.117 293.2 NAD M+H -0.040 HILIC 

117.092 30.5 

TRANS-CYCLOHEXANE-1,2-

DIOL M+H 0.001 HILIC 

583.256 27.7 BILIVERDIN M+H 0.047 HILIC 

244.080 59.2 ACETYL-GALACTOSAMINE M+Na -0.001 HILIC 

208.097 30.3 ACETYL-PHENYLALANINE M+H -0.006 HILIC 

186.017 278 PHOSPHO-SERINE M+H -0.019 HILIC 

189.160 107.4 

NEPSILON, NEPSILON-

TRIMETHYLLYSINE M+H 0.012 HILIC 

178.054 33.6 
FORMYL-METHIONYL 
PEPTIDE M+H 0.090 HILIC 

219.113 29.9 ACETYLSEROTONIN M+H -0.008 HILIC 

284.099 54.7 GUANOSINE M+H 0.025 HILIC 

308.092 252 GLUTATHIONE M+H 0.013 HILIC 

217.069 47.5 METHYL BETA-GALACTOSIDE M+Na 0.066 HILIC 

189.124 76.0 NALPHA-ACETYL-LYSINE M+H -0.019 HILIC 

332.076 122.2 DAMP M+H -0.020 HILIC 

147.092 28.8 DIMETHYLBENZIMIDAZOLE M+H -0.007 HILIC 

377.146 44.7 RIBOFLAVIN M+H 0.021 HILIC 
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Figure 1: TCPY Model HILIC Significant Pathways 
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Figure 2: TCPY Model C18 Significant Pathways 
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Figure 3: TCPY + Creatinine adjusted TCPY Model HILIC+ Significant Pathways 
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Figure 4: TCPY + Creatinine adjusted TCPY Model C18 Significant Pathways 
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Figure 5: Heat Map of Significant Pathways Across All Models 
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Arginine and Proline Metabolism 10 42 2
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Figure 6: Manhattan Plot of TCPY Model HILIC Metabolites 
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Figure 7: Manhattan Plot of TCPY Model C18 Metabolites 

 

Where P-value FDR Corrected: 

Red = 0.05 

Blue = 0.1 

Black = 0.2 
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Figure 8: Manhattan Plot of TCPY + Creatinine adjusted TCPY levels Model HILIC Metabolites 

 

Where P-value FDR Corrected: 

Red = 0.05 

Blue = 0.1 

Black = 0.2  
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Figure 9: Manhattan Plot of TCPY + Creatinine adjusted TCPY levels Model C18 Metabolites 

 

Where P-value FDR Corrected: 

Red = 0.05 

Blue = 0.1 

Black = 0.2 


