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Abstract

TIGAR-V2 with nonparametric Bayesian eQTL weights estimated from GTEx V8 &
Leveraging multiple reference panels to improve TWAS power by ensemble machine

learning
By Randy Parrish

Background: Transcriptome-wide association study (TWAS) is a popular technique
for integrating reference transcriptomic data with data from genome-wide association
studies (GWAS) to conduct gene-based association studies. The standard two-stage
TWAS methods train gene expression prediction models on reference data, and then
test the association between the predicted genetically regulated gene expression
(GReX) and phenotype of interest for test data. Limitations of existing TWAS tools
make it difficult for users to train GReX prediction models using their own data and
no methods currently exists for leveraging multiple reference panels to improve
TWAS power.

Methods: In part one, we develop a new version of the Transcriptome-Integrated
Genetic Association Resource (TIGAR-V2), train nonparametric Bayesian DPR gene
expression prediction models for 49 tissues from the Genotype-Tissue Expression
(GTEx) project V8 reference panel, and validate the TIGAR-V2 method using
application TWAS of breast and ovarian cancer. In part two, we develop a novel
Stacked Regression based TWAS (SR-TWAS) method for leveraging multiple
reference panels using ensemble machine learning and validated our method using
simulation studies and real TWAS leveraging two reference panels of brain frontal
cortex tissue.

Results: TIGAR-V2 identified 88 TWAS risk genes for breast cancer, most of which
are known or near previously identified GWAS (84; 95%) or TWAS (35; 40%) risk
genes. TIGAR-V2 identified 37 TWAS risk genes of ovarian cancer, most of which are
known or near previously identified GWAS (35; 95%) or TWAS (13; 35%) risk genes.
TIGAR-V2 identified 1 novel independent risk gene of breast cancer with known
biological functions involved in carcinogenesis and 2 novel independent risk genes of
both breast and ovarian cancer which are near such genes. SR-TWAS models had
higher gene expression prediction accuracy and TWAS power than the models trained
on single cohorts in all simulation scenarios and outperformed both single cohort
models in the real data application GReX prediction.

Conclusions: We believe our improved TIGAR-V2 and SR-TWAS tools will provide
a useful resource for mapping risk genes of complex diseases by TWAS.
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1 Introduction

The majority of genetic risk loci successfully identified by genome-wide association

studies (GWAS) lie within noncoding regions of the genome, and the underlying

mechanisms through which such variants affect complex traits remain mostly

undetermined [1–6]. Recent studies revealed that GWAS signals were enriched with

expression quantitative trait loci (eQTL) [7–12]–regulatory variants which explain a

fraction of the variance in transcript abundance for a target gene [7–12]. Multiple

techniques have been proposed to integrate transcriptomic data, including eQTL

summary statistics, with GWAS data in order to improve the power for identifying

GWAS risk loci and to illustrate the underlying biological mechanism of GWAS

loci [7, 13–18].

Transcriptome-wide association study (TWAS) [13, 16, 18–20] is a popular, widely

used technique for integrating reference transcriptomic data with GWAS data to

conduct gene-based association studies. The standard two-stage TWAS methods [13,

16, 18] first fit gene expression prediction models using reference transcriptomic and

genetic data profiled for the same samples, and then test the association between the

predicted genetically regulated gene expression (GReX) and phenotype of interest for

the test GWAS cohort. Recent application studies show that TWAS is capable of

identifying risk genes whose genetic effects are potentially mediated through gene

expression [21–23]. TWAS has the advantages of using publicly available reference

transcriptomic data such as the Genotype-Tissue Expression (GTEx) project [10, 24]

and summary-level GWAS data and has successfully identified novel candidate risk

genes for age-related macular degeneration [23], rheumatoid arthritis [25],

schizophrenia [26], pancreatic cancer [27], and broad types of complex traits [17].

However, most of the existing tools [13, 16, 20] require specific genotype dosage data
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format per gene, miss the goodness-of-fitting evaluation for trained gene expression

prediction models, and fail to implement parallel computing within the tool. The

use of non-standard formats for genotype input files necessitates additional data

preparation. Failing to evaluate goodness-of-fit can result in invalid follow-up tests

based on models for genes that lack sufficient information for prediction. These

limitations bring difficulties for users who need to train gene expression prediction

models by using their own reference transcriptomic and genetic data.

In part one, we develop a new version of the Transcriptome-Integrated Genetic

Association Resource (referred to as TIGAR-V2) that takes genotype data of the

Variant Call Format (VCF) as input, conducts cross-validation [13, 16, 28] to evaluate

trained gene expression prediction models, and enables parallel computation to make

use of high performance computing clusters. Additionally, TIGAR-V2 implements both

general linear regression with Elastic-Net penalty [13] and nonparametric Bayesian

Dirichlet process (DPR) regression methods [29–31] for training gene expression

prediction models, and tests gene-based association by both Burden type [13, 16, 21]

and Variance-Component statistics [32].

To make the TIGAR-V2 a convenient resource for the public, we trained

nonparametric Bayesian DPR gene expression prediction models for 49 tissues from

the GTEx V8 reference panel [24]. These tissue-specific eQTL weights are provided

along with this TIGAR-V2 tool, which can be conveniently used for follow-up

gene-based association studies using both individual-level and summary-level GWAS

data. In our example application studies, we used eQTL weights obtained from

transcriptomic data of breast mammary tissue and ovary tissue from the GTEX V8

reference panel along with publicly available GWAS summary statistics [33, 34] to

conduct TWAS for studying breast cancer and ovarian cancer.

We identified 88 significant TWAS risk genes for breast cancer, 84 (95%) of which

have either been previously identified by GWAS or are within 1MB of a known GWAS
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locus [33, 35–42], and 35 (40%) of which were identified by previous TWAS [43–48].

Of the 37 significant TWAS risk genes for ovarian cancer, 35 (95%) have either been

previously identified by GWAS or are within 1MB of a known GWAS locus [34, 49,

50], and 13 (35%) have been identified by previous TWAS [22, 47, 51]. Additionally,

we identified 3 novel independent significant risk genes (KLHL25 of breast cancer;

UBE2MP1 and FRG1EP of both breast and ovarian cancer). Gene KLHL25 has

known biological functions involved in carcinogenesis, while genes UBE2MP1 and

FRG1EP are near such a gene [52–56].

The use of a single reference panel for GReX prediction model training is a major

limitation of existing TWAS tools, including TIGAR-V2. There are multiple studies

that generate both transcriptomic and genetic data of the same samples for the same

tissue type. For example, the Religious Orders Study (ROS) [57, 58], Rush Memory

and Aging Project (MAP) [58, 59], Mount Sinai Brain Bank (MSBB) [60], Mayo

Clinic Brain Bank (MCBB) [61], and GTEx [24] studies all profile transcriptomic

data of prefrontal cortex tissue. Leveraging multiple reference panels will increase

the effective training sample size, thus leading to improved accuracy of predicting

genetically regulated gene expression (GReX) and increased power of the follow-up

TWAS. The idea is analogous to the meta-analysis of multiple GWAS cohorts [62, 63],

but relaxes the assumption of same effect-size distribution per genetic variant across

multiple cohorts made by single variant tests.

In part two, we develop a novel TWAS method to leverage multiple reference

panels by ensemble machine learning [64]. We employ the ensemble machine learning

technique of stacked regression [65, 66] to combine gene expression prediction models

trained from multiple reference panels of the same tissue type, in order to improve

the prediction accuracy of GReX and the power of TWAS. We refer this novel TWAS

method as Stacked Regression based TWAS (i.e., SR-TWAS). We validated our SR-

TWAS method by simulation studies using real whole genome sequencing (WGS)
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genotype data from GTEx V8 [24] and ROS/MAP [57–59], as well as real TWAS

leveraging reference panels of the GTEx V8 and ROS/MAP of brain frontal cortex

tissue.

Under all simulation scenarios, SR-TWAS models had higher gene expression

prediction accuracy and TWAS power than either of the models trained on single

cohorts, which performed similarly. SR-TWAS achieves the greatest gains in power

over single cohort models under scenarios in which a gene has a high proportion of

true causal eQTLs with relatively small effect sizes. In the real data application to

GTEx V8 and ROS/MAP, SR-TWAS performance was similar to the ROS model, but

outperformed both single cohort models.

In Chapter 2, we first outline the TIGAR-V2 framework in Section 2.1.1. In the

following sections, we describe the GTEx V8 dataset (Section 2.1.2) and the application

of TIGAR-V2 to train gene expression prediction models with the GTEx V8 reference

data (Section 2.1.3). In Section 2.1.1.2 we conduct an application TWAS of breast

cancer and ovarian cancer from the trained GReX prediction models. Results of

GReX prediction model training and application TWAS are described in Sections 2.2.1

and 2.2.2. We end Chapter 2 with a discussion in Section 2.3.

In Chapter 3, we discuss the stacked regression model (Section 3.1.1) and the

SR-TWAS tool framework and implementation of the (Section 3.1.2). In Section 3.1.4

we describe the design of a simulation study used to asses the SR-TWAS method.

Real data application studies using GTEx V8 and ROS/MAP reference panels are

described in Section 3.1.5. Simulation study results are described in Section 3.2.1.

Results of the application Studies leveraging GTEx V8 and ROS/MAP datasets are

described in Section 3.2.2. The chapter ends with a discussion (Section 3.3). We

provide our final conclusions regarding the work presented in this thesis in Chapter 4.
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2 TIGAR-V2 with nonparametric Bayesian eQTL

weights estimated from GTEx V8

In this chapter, we develop TIGAR-V2, train nonparametric Bayesian DPR GReX

prediction models for 49 tissues from the GTEx V8 reference panel [24], and conduct

an example application TWAS of breast and ovarian cancer.

2.1 Methods

2.1.1 TIGAR-V2

The standard two-stage TWAS [13, 16, 18] first fits gene expression prediction

models by taking genotype data (G) of cis-SNPs (within ±1MB of the target gene g)

as predictors, assuming the following additive genetic model for expression quantitative

traits (Eg) with respect to the target gene g,

Eg = Gw +ε, ε∼N(0,σ2
ε I). (2.1)

The cis-eQTL effect size vector w can be estimated by different regression methods

from the reference training data. For example, PrediXcan estimates w by a general

linear regression model with Elastic-Net penalty [13, 67]; FUSION estimates w by

the Bayesian Sparse Linear Mixed Model (BSLMM) [16, 68]; and the initial TIGAR

tool estimates w by a nonparametric Bayesian DPR model [18].

TIGAR-V2 implements both general linear regression with Elastic-Net penalty as

used by PrediXcan [13] and nonparametric Bayesian DPR methods for estimating

w, where the nonparametric Bayesian DPR method includes both Elastic-Net and

BSLMM as used by FUSION [16] as special cases [18, 31]. Additionally, TIGAR-V2

runs 5-fold cross validation with the reference data by default to provide an average
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prediction R2 per gene across 5 folds of validation data (referred to as 5-fold CV R2).

The 5-fold CV R2 can be used to evaluate if the trained gene expression prediction

model contains enough information for follow-up TWAS (e.g., using the threshold of

5-fold CV R2 > 0.005).

2.1.1.1 Nonparametric Bayesian DPR Model. Given reference genotype

matrix G0 of SNPs within g and within ±1Mb of g and expression data Eg, both

centered at 0, the nonparametric Bayesian Dirichlet process regression model assumes

Eg = G0w +ε, ε∼ N(0,σ2
εI), σ2

ε ∼ IG(aε, bε) (2.2)

where w denotes the cis-eQTL effect-size vector for gene g. Genetically regulated

gene expression of g for test genotype matrix Gt are then imputed by

ĜReXg = Gtŵ (2.3)

Further, the effect-size of each cis-eQTL (wig; i = 1, . . . ,p) in gene g is assumed

to follow a normal prior N(0,σ2
w) with an effect-size variance σ2

w that is assumed to

follow a Dirichlet process (DP) prior D with an inverse gamma (IG) base distribution

and concentration parameter ξ.

wi ∼ N(0,σ2
w), σ2

w ∼D, D ∼DP(IG(a,b), ξ) (2.4)

Effect-size variance σ2
w can be treated as a latent variable that can be integrated

out in order to derive an equivalent non-parametric prior distribution for wig

wi ∼
∞∑
k=1

πkN(0,σ2
k), σ2

k ∼ IG(ak, bk), πk = vk

k−1∏
l=1

(1−vl), vk ∼ Beta(1, ξ) (2.5)

The resulting mixture normal prior is the weighted sum of an infinite number
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of normal distributions N(0,σ2
k) with weights πk determined by vl. The number of

components with non-zero weights in the mixture normal prior is determined by

concentration parameter ξ, which is assumed to follow a Gamma(aξ, bξ) hyper prior.

Non-informative priors for σ2
k, σ2

ε , ξ are induced by setting hyperparameters ak,

bk, aε, bε, bξ = 0.1 and aξ = 1. A data-driven variational Bayesian algorithm, an

approximation for the MCMC with greater computational efficiency, is then used

to adaptively estimate the parameters σ2
k, σ2

ε , ξ and obtain the Bayesian posterior

estimate for w.

The DP normal mixture prior [29–31] used by DPR both covers the Elastic-Net [67]

and BSLMM [68] models as special cases and lacks their shared limitation of assuming

a parametric prior. The DPR model is close to the infinitesimal model, which assumes

that a large number of variants each with small effect size contribute to phenotype [69,

70], and is preferred for modeling genes with many eQTLs of relatively small effect

sizes [18]. The more flexible DPR model can robustly model the underlying complex

genetic architecture of transcriptomes and improve GReX prediction accuracy [18].

2.1.1.2 TWAS. With the estimates of cis-eQTL effect sizes ŵ and individual-level

GWAS data of test samples, the standard two-stage TWAS would test the association

between predicted GReX values given by ĜReXg = Gtŵ and the phenotype of

interest. TIGAR-V2 predicts GReX values by taking estimates of cis-eQTL effect

sizes (outputs from training gene expression prediction model per gene with reference

training data) and genotype data (VCF files) of test samples as inputs. TIGAR-V2

tests the association between ĜReXg and the phenotype of interest (pedigree (PED)

format as used by PLINK [71] and GATK [72]) based on the general linear regression

model, with the phenotype as response variable and predicted GReX as an explanatory

test variable.

With summary-level GWAS data (i.e., Z-score statistic values from single variant

GWAS tests) of test samples, TIGAR-V2 tests the gene-based association by using both
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Burden [73, 74] and Variance-Component [32] test statistics, where cis-eQTL effect size

estimates ŵ are taken as variant weights. The required linkage disequilibrium (LD)

covariance matrix among test cis-SNPs for Burden and Variance-Component tests can

be obtained by TIGAR-V2 from reference genotype data (G0) or genotype data from

other reference panels such as 1000 Genome [75]. For Burden test, FUSION Z-score

statistic [16] as given by Equation 2.6 will be used if ŵ are estimated using standardized

training gene expression and genotype data, and S-PrediXcan test statistic [21] as

given by Equation 2.7 will be used if ŵ are estimated using only centered training

gene expression and genotype data.

Z̃g,FUSION =
∑

i∈Modelg

ŵiZi√
ŵ′Vŵ

, V = Corr(G0) (2.6)

Z̃g,PrediXcan =
∑

i∈Modelg

(ŵiσ̂i)Zi√
ŵ′Vŵ

, σ̂2
i = Var(xi), V = Cov(G0) (2.7)

2.1.1.3 Tool framework. The tool framework of TIGAR-V2 is shown in Figure 2.1,

where all TWAS steps in TIGAR-V2 are enabled using Python and Bash scripts.

Python libraries “pandas” [76, 77], “numpy” [76, 78], “scipy” [79], “sklearn” [80, 81],

and “statsmodels” [82] are used to develop TIGAR-V2. Genotype data in VCF saved

as one file per chromosome can be taken as input files for TIGAR-V2. TABIX tool [83]

is used to extract genotype data per target gene efficiently from VCF genotype files.

Parallel computation is enabled by using the “multiprocessing” Python library, allowing

users to train gene expression prediction models and test gene-based association of

multiple genes in parallel.
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Figure 2.1: TIGAR-V2 framework including TWAS steps of training gene expression
prediction models from reference data, predicting GReX with individual-level GWAS data,
and testing gene-based association.
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2.1.2 GTEx V8 Data

The Genotype-Tissue Expression (GTEx) project was created to further scientific

study the relationship between genetic variation and gene expression by establishing

a comprehensive reference catalog of genotype data linked to genome-wide gene

expression patterns across multiple human tissues [10, 84, 85].

GTEx collects normal biospecimens from postmortem donors identified by partner

organ procurement organizations and low-PMI (post-mortem-interval) autopsy

progams [10, 86]. Donors between the ages of 21-70, who do not meet medical

exclusion criteria are eligible only if biospecimin collection can begin within 24 hours

of death [10, 86].

The version 8 release provides comprehensive profiling of whole genome sequencing

(WGS) genotype data and RNA-sequencing (RNA-seq) transcriptomic data (15,253

normal samples) across 54 tissue types of 838 donors [10, 24, 84, 85]. The GTEx

V8 data set provides ideal reference data for training tissue-specific gene expression

prediction models for a diverse of tissue types on human bodies. Both PrediXcan
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and FUSION tools use GTEx V8 data as the reference data, and provide estimated

cis-eQTL effect sizes per gene with respect to 49 tissue types that have >70 samples

with profiled WGS genotype and RNA-seq transcriptomic data (Figure 2.2A) as a

public resource for TWAS.

WGS data of GTEx V8 donors were obtained through dbGaP with accession

phs000424.v8.p2. Gene expression data of Transcripts Per Million (TPM) per sample

per tissue were downloaded from the GTEx portal (www.gtexportal.org).

2.1.3 Training gene expression prediction models with GTEx V8

In TIGAR-V2, we fitted nonparametric Bayesian DPR models per gene with respect

to the 49 tissue types described in Section 2.1.2. The cis-eQTL effect size estimates

by nonparametric Bayesian DPR method can be used to test TWAS association and

are shared with the public along with the tool.

Genotype data was filtered such that only variants with missing rate < 20%,

minor allele frequency > 0.01, and Hardy-Weinberg equilibrium p-value > 10−5 were

considered for fitting the gene expression prediction models. Genes with > 0.1 TPM in

≥ 10 samples were considered. Raw gene expression data (TPM) were then adjusted

for age, body mass index (BMI), top five genotype principal components, and top

probabilistic estimation of expression residuals (PEER) factors [87]. The raw gene

expression data of Breast mammary tissue were further adjusted for ESR1 expression

following previous TWAS of breast cancer [47]. WGS genotype data of cis-SNPs

within ±1MB around gene transcription start sites (TSS) of the target gene were used

as predictors. Five-fold cross validation was conducted by default to obtain 5-fold

CV R2 (the average GReX prediction R2 of the 5-folds) per gene per tissue. Only

significant gene expression prediction models with 5-fold CV R2 > 0.005 were retained

in the output files.

https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/variable.cgi?study_id=phs000424.v8.p2
www.gtexportal.org
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2.1.4 Application TWAS of Breast and Ovarian Cancer

We conducted application TWAS of breast cancer and ovarian cancer by using cis-

eQTL effect sizes estimated from GTEx V8 [24] of breast mammary tissue and ovary

tissue and summary-level GWAS data [33, 34]. The GWAS summary data of breast

and ovarian cancer were obtained from the Breast Cancer Association Consortium

(BCAC) with 122,977 cases and 105,974 controls of European ancestry [33] and the

Ovarian Cancer Association Consortium (OCAC) with 22,406 cases and 40,941 controls

of European ancestry [34], respectively.

We further compared TWAS results by using the S-PrediXcan [21] Burden-type test

statistic (Equation 2.7) with variant weights given by cis-eQTL effect sizes estimated

by DPR (i.e., TIGAR-V2) and Elastic-Net (i.e., PrediXcan) methods.

2.2 Results

2.2.1 Model Training Results

From the application studies with GTEx V8 reference data as described in

Section 2.1.3, a total of 1,104,305 significant gene expression prediction models with

5-fold CV R2 > 0.005 were successfully trained by TIGAR-V2 (using the

nonparametric Bayesian DPR method) for transcripts on the autosomal chromosomes

of 49 tissue types. On average, ∼22K gene expression prediction models were

obtained per tissue type. The median of 5-fold CV R2 and the median of training R2

per tissue type were respectively presented in Figure 2.2(B, C). As expected,

nonparametric Bayesian DPR method over-fitted gene expression prediction models

with training data [18], resulting in inflated training R2 as shown in Figure 2.2C.

Whereas, 5-fold CV R2 as shown in Figure 2.2B demonstrates the gene expression

prediction performance with independent test data.

As shown in Figure 2.2(B, C), top median 5-fold CV R2 across genome-wide

transcripts were obtained for kidney cortex tissue (cyan bar), various brain tissues
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(yellow bars), and uterus tissue (hot pink bar), which all have sample sizes ∼ 100.

Whereas, muscle skeletal, skin, and whole blood tissues that have relatively large sample

sizes 400∼ 600 have median 5-fold CV R2 ≈ 0.02. Multiple factors might contribute

to this: i) overfitting; ii) increased sample size may result in more successfully trained

models for relatively low-heritability genes; iii) tissue types with small sample sizes

are generally of limited accessibility in human donors which might have an overall

higher heritability for gene expression quantitative traits. We trained both PrediXcan

and TIGAR models on breast tissue data downsampled to N = 140 in order to assess

the influence of sample size and cross validation threshold on model training results.

Model training results for the downsampled breast data compared to model training

results with breast (N = 337) and ovary (N = 140) tissue data (Figures A.1 and A.2)

suggest that increased sample size mainly influences results for genes with relatively

low heritability and shows potential overfitting issues for tissues with smaller sample

sizes. The DPR method gives a higher prediction R2 for low heritability genes but is

likely subject to more overfitting.

The training computation costs in CPU hours per chromosome per tissue type

with GTEx V8 reference data by TIGAR-V2 (using the nonparametric Bayesian DPR

method) were shown in Figure 2.3. The computation cost per chromosome ranged

from 5 CPU hours to over 474, with a median of 50.6 and mean of 69.1, which is

mainly due to various numbers of transcripts (or genes) per chromosome and various

sample sizes per tissue type. That is, with sample size ∼ 300, the average computation

time for training a nonparametric Bayesian DPR gene expression prediction model

per transcript (or gene) with 5-fold cross-validation is ∼ 4 minutes by TIGAR-V2.

The computation complexity is linear with respect to training sample size.
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Figure 2.2: Results of training gene expression prediction models with GTEx V8 reference
data of 49 tissue types, by TIGAR-V2 using the nonparametric Bayesian DPR method. A)
Number of subjects (i.e., sample size), B) Median 5-Fold CV R2, and C) Median Training
R2, per tissue type.



14

Figure 2.3: Computation costs in CPU Hours per chromosome per tissue type for training
gene expression prediction models by TIGAR-V2 (using the nonparametric Bayesian DPR
method). The same color codes with respect to different tissue types as used in Figure 2.2
were used here.

2.2.2 Application TWAS Results

From the model training results in the above Section 2.2.1 by TIGAR-V2, we

obtained 22,781 and 22,823 significant gene expression prediction models by using

the nonparametric Bayesian DPR method for breast (Ntraining = 337) and ovarian

(Ntraining = 140) tissue types, respectively. Using GWAS summary statistics of breast

cancer and ovarian cancer [33, 34] and cis-eQTL effect sizes estimated with respect

to the corresponding tissue type, TIGAR-V2 detected 88 significant TWAS genes

(p-values < 2.5× 10−6) for breast cancer and 37 significant TWAS genes (p-values

< 2.5×10−6) for ovarian cancer (Figure 2.4).

Out of these 88 significant TWAS genes for breast cancer by TIGAR-V2, 20

are known GWAS risk genes of breast cancer [33, 35–42] and 64 are located within

1MB region of a previously identified GWAS risk gene of breast cancer [33, 35–42].

Furthermore, 35 of these TWAS significant genes have been identified by previous
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TWAS using PrediXcan and FUSION [43–48]. Similarly, out of these 37 significant

TWAS genes for ovarian cancer by TIGAR-V2, 35 are located on chromosome 17

including two known GWAS risk genes (NSF and PLEKHM1 ) [34, 49, 50] and 33 genes

within 1MB of these two known GWAS risk genes. Of these significant TWAS risk

genes of ovarian cancer by TIGAR-V2, 13 (including NSF [51]) have been identified

by previous TWAS using PrediXcan [22, 47, 51].

Since TWAS is conducted using genotype data within ±1MB region of the test

gene (i.e., test region), genes with overlapped test regions often have highly correlated

GReX values. Thus, these nearby significant TWAS genes are often not representing

independent associations. In Tables 2.1 and 2.2, we listed the most significant genes

among genes that have shared test regions, which represent the number of significant

and potentially independent TWAS risk genes for breast cancer and ovarian cancer.

All independent TWAS risk genes of breast cancer except KLHL25, UBE2MP1,

and FRG1EP (31 significant genes; Table 2.1) were either identified by previous

GWAS/TWAS or are within 1MB region of previously identified risk genes of breast

cancer. For example, TIGAR-V2 identified L3MBTL3 (previously identified by

GWAS [33] and TWAS [44–46, 48]) and an additional 6 significant genes within the

1MB region of L3MBTL3. Of the independent TWAS genes of breast cancer, 17 (54%)

have been identified by previous TWAS using PrediXcan and FUSION [43–48].

Similarly, as shown in Tables 2.2 and B.1, TIGAR-V2 identified 4 independent

significant TWAS genes for ovarian cancer. In particular, TWAS risk gene RP11-

798G7.8 on chromosome 17 was identified by previous TWAS [47] and lies within 1MB

of known GWAS risk gene PLEKHM1 [34, 49]. Moreover, all independent TWAS risk

genes of ovarian cancer by TIGAR-V2 (PRC1-AS1, UBE2MP1, RP11-798G7.8, and

FRG1EP) are also TWAS risk genes of breast cancer [33, 47, 88], which demonstrates

likely pleiotropy effect for these TWAS risk genes.

TIGAR-V2 identified 3 novel independent TWAS risk genes (KLHL25, UBE2MP1,
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and FRG1EP) for breast cancer. Interestingly, genes UBE2MP1 and FRG1EP were

also identified for ovarian cancer by TIGAR-V2 (Table B.7), and all three genes are

involved with biological functions in carcinogenesis, either directly or indirectly. The

protein encoded by KLHL25 was reported acting as an adaptor protein for a suspected

lung cancer tumor-suppressing protein CUL3 to form an enzyme complex that targets

ACLY, a protein often over-expressed in cancers, for degradation [54]. Pseudogene

UBE2MP1 was found to have a significant expression-methylation-correlation difference

between normal and cancerous breast tissue [52]. UBE2MP1 was also found to be

amplified in gastric cancers with amplified copy number variations in the 16p11.2

region, a mutation found to be associated with shorter overall survival [56], and was

predicted to be a driver of lung adenocarcinoma [55]. The test region of FRG1EP

overlaps with the test region of pseudogene ANKRD20A21P, another TWAS risk

gene identified by TIGAR-V2, which has been implicated as a potentially important

lncRNA regulator of endometrial carcinogenesis [53].

Additionally, we compared our TWAS results by TIGAR-V2 with the ones obtained

by PrediXcan that used cis-eQTL effect sizes estimated by Elastic-Net method (see

Figures B.1, B.2 and Tables B.2-B.6). Quantile-quantile (QQ) plots of TWAS p-value

results (Figure B.3) show similar inflation for TIGAR and PrediXcan models, which

may be due to correlations with strongly associated genes, as many significant genes

share test regions and are not independently significant. We showed that 37.5%

independent significant TWAS genes by PrediXcan were also identified by TIGAR-V2.

Whereas, only TIGAR-V2 identified TWAS genes UBE2MP1 on chromosome 16

and FRG1EP on chromosome 20 of ovarian cancer, and known GWAS risk genes

FGF10 [33, 89] and TOX3 [37, 39] of breast cancer. Other exclusive independent

TWAS genes identified by TIGAR-V2 include lncRNA RP11-758M4.4 which was

shown to be a potential biomarker of breast cancer [90], RPS23 which was found to

be overexpressed in advanced colorectal adenocarcinomas [91], and ZNF404 whose
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dysregulation was linked to breast cancer pathogenesis by eQTL analyses [92, 93].

Interestingly, TWAS risk genes PRC1-AS1 and LRRC37A4P were identified by

both PrediXcan and TIGAR-V2 for both breast cancer and ovarian cancer. Gene

PRC1-AS1 on chromosome 15 is a long non-coding RNA (lncRNA) gene previously

identified as being associated with breast carcinoma [33, 88]. Regulation of PRC1-AS1

is known to differ with respect to different types of breast cancers [94] and increased

expression of PRC1-AS1 lncRNA is associated with hepatocellular carcinoma [95].

Pseudogene LRRC37A4P on chromosome 17 lies within 1MB downstream from the

known risk gene PLEKHM1 of breast cancer and ovarian cancer [34, 49].

Overall, these TWAS results not only validated our TIGAR-V2 tool with findings

consistent with previous GWAS and TWAS of breast cancer and ovarian cancer, but

also identified novel risk genes that were shown to be possibly involved in the biological

mechanisms of oncogenesis.
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Figure 2.4: Manhattan plots of TWAS results by TIGAR-V2 for studying breast cancer with
88 significant risk genes (A) and ovarian cancer with 37 significant risk genes (B). Significant
gene FCGR1B of breast cancer (p-value: 4.12e-63) was removed from (A) to reduce the
upper limit of the y-axis.
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Table 2.1: Independent TWAS risk genes of breast cancer identified by TIGAR-V2.

Gene Chrom Start End Zscore Pvalue

FCGR1Bb 1 121087345 121096310 -16.77 4.12e-63
KLHDC7Aa 1 18480982 18486126 -6.04 1.56e-09
MTX1P1b 1 155230975 155234325 5.21 1.92e-07
AC010136.2b 2 217978707 217992615 -6.52 6.80e-11
CASP8a 2 201233443 201287711 -6.51 7.56e-11
EOMESb 3 27715949 27722711 6.07 1.28e-09
PSMD6-AS2b 3 64004022 64012148 -5.38 7.50e-08
FAM114A1b 4 38867677 38945739 -4.82 1.41e-06
FGF10a 5 44303544 44389706 6.60 4.13e-11
SLC22A5b 5 132369752 132395614 6.53 6.63e-11
ANKRD55b 5 56099678 56233359 -5.63 1.85e-08
RPS23b 5 82273358 82278577 4.77 1.86e-06
L3MBTL3a 6 130013699 130141451 6.37 1.93e-10
RP11-758M4.4b 8 74798784 74866939 5.06 4.17e-07
PIDD1a 11 799191 809646 -6.64 3.04e-11
CCDC91a 12 28133249 28581511 -7.77 7.76e-15
RP11-116D17.4b 12 115318657 115320405 -5.36 8.40e-08
CTD-2325P2.4b 14 68627166 68628445 -5.09 3.65e-07
RCCD1a 15 90955796 90963125 -6.29 3.26e-10
MAN2C1b 15 75358201 75368154 -4.85 1.25e-06
KLHL25 15 85759323 85795030 -4.73 2.22e-06
TOX3a 16 52438005 52547802 10.98 4.82e-28
UBE2MP1 16 35169692 35170241 -5.31 1.13e-07
LRRC37A4Pb 17 45506741 45550335 6.08 1.20e-09
CBX8a 17 79792132 79801683 5.76 8.46e-09
TOM1L1b 17 54899387 54960627 4.77 1.84e-06
SSBP4a 19 18418864 18434387 8.53 1.47e-17
ZNF404b 19 43872363 43884051 5.41 6.31e-08
FRG1EP 20 29480147 29497179 5.39 6.95e-08
DNAJB7b 22 40859549 40861617 -9.22 2.89e-20
TMEM184Bb 22 38219291 38273034 4.92 8.72e-07

a known GWAS risk genes of breast cancer.
b genes within 1MB of known GWAS risk genes of breast cancer.
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Table 2.2: Independent TWAS risk genes of ovarian cancer identified by TIGAR-V2.

Gene Chrom Start End Zscore Pvalue

PRC1-AS1a 15 90972860 90988624 4.95 7.56e-07
UBE2MP1 16 35169692 35170241 5.77 7.88e-09
RP11-798G7.8a 17 45531577 45533838 -7.21 5.77e-13
FRG1EP 20 29480147 29497179 -4.99 6.19e-07

a genes within 1MB of known GWAS risk genes of ovarian cancer.

2.3 Discussion
In this chapter, we develop a new version of the TIGAR tool with improved

computation efficiency [18], referred to as TIGAR-V2. This new version uses fewer

Python library dependencies for easier set up, speeds up computation by using functions

from the “numpy” Python library, reduces required memory usage by loading genotype

data from VCF files in small block increments with pre-specified genotype data format,

and adds the function to conduct the recently published Variance-Component gene-

based association test [32]. For example, for DPR model training using the example

data provided with the tool (129 samples, 4 genes, 1800-1891 SNPs per gene) and a

single core, the computation time is reduced by up to 90% and memory usage by up

to 50%, compared to the original TIGAR version. Gene expression prediction model

training for the GTEx V8 data require less than 8GB of memory per transcript/gene.

TIGAR-V2 can efficiently train gene expression prediction models by using both

Elastic-Net and nonparametric Bayesian DPR methods, as well as test gene-based

association by using both Burden (FUSION [16] and S-PrediXcan [21] Z-score test

statistics) and Variance-Component TWAS test statistics with both individual-level

and summary-level GWAS data.

In addition, we trained gene expression prediction models with the reference GTEx

V8 data by using the nonparametric Bayesian DPR method. We demonstrated the

usefulness of these trained models along with estimated cis-eQTL effect sizes in an
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application TWAS of breast and ovarian cancer by using GWAS summary statistics.

Our TWAS application studies by TIGAR-V2 identified 88 significant risk genes

for breast cancer and 37 significant risk genes (four independent risk genes) for ovarian

cancer, where the majority significant TWAS genes are either known GWAS risk

genes or within 1MB region of known GWAS risk genes. In particular, these four

independent risk genes of ovarian cancer were also identified as risk genes of breast

cancer. These findings demonstrate potential pleiotropy effects shared with breast

cancer is likely exist for the risk genes of ovarian cancer. Moreover, three novel risk

genes were identified by TIGAR-V2 for breast cancer and two of these were also

identified as novel risk genes for ovarian cancer.
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3 Leveraging multiple reference panels to improve

TWAS power by ensemble machine learning

In this chapter, we develop a novel TWAS method that can leverage multiple

reference panels and thus improve TWAS power, by using the ensemble machine

learning technique of stacked regression [65, 66] (referred to as SR-TWAS). The

stacked regression learns linear combinations of gene expression predictors trained

from different reference panels of the same tissue type to improve GReX prediction

accuracy. We evaluated the SR-TWAS methods by both simulation and real studies.

3.1 Methods

3.1.1 Stacked Regression

Stacked regression is a machine learning method for forming linear combinations of

different predictors to improve prediction accuracy [66]. The theoretical background for

combining predictors rather than selecting a single best predictor is well-established

and has been developed since the 1970s [66, 96, 97]. The ”stacking” method of

combining predictors originated in a 1991 paper by Wolpert, who described the

concept as any scheme for feeding information from a set of cross-validated models to

another before forming the final prediction in order to reduce prediction error [65].

Breiman further expanded the idea with stacked regression, a specific framework for

combining the initial predictors by weighted average with coefficient constraints to

control for multicolinearity [66].

Here, the eQTL results obtained per cohort can each be viewed as a trained

predictor. Let ŵk be the kth set of estimated eQTL effect sizes of gene g (e.g.,

posterior Bayesian estimates) from K different multi-omics datasets (k = 1, . . . ,K).

Consider an independent multi-omics validation dataset with profiled gene expression
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Evg of gene g and genotype matrix Gv. Then the predicted GReX of the validation

samples is given by Gvŵk. We will solve for a set of optimal weights ζ1, . . . , ζK such

that the R2 between the profiled gene expression Evg and the weighted average of

multiple trained predictors is maximized (ie 1−R2 is minimized). Then the loss

function can be written

minimize
(ζk;k=1,...,K)

∥∥∥∥∥∥Evg−
K∑
k=1

ζkGvŵk

∥∥∥∥∥∥
2

∥∥∥Evg− Ēvg
∥∥∥2 , s.t.

K∑
k=1

ζk = 1, ζk ∈ [0,1] (3.1)

As a result, we will obtain a set of weights ζk for k = 1, . . . ,K and a final GReX

prediction model w̃ for gene g given by the weighted average of the eQTL effect sizes

of K trained models

w̃ =
K∑
k=1

ζkŵk (3.2)

Then the final predicted GReX for test genotype data Gt is given by

ĜReXg = Gtw̃ (3.3)

This stacked regression technique has been shown to almost always obtain better

prediction than a single prediction model [66].

3.1.2 SR-TWAS Tool Framework

SR-TWAS was designed to be compatible with the TIGAR-V2 tool framework as

described in Section 2.1.1.3; it accepts models trained by TIGAR-V2 as input, imports

utility functions from TIGAR-V2, and outputs model files which can be used as input

for TIGAR-V2 GReX prediction and summary-level TWAS. Much of the structure

of the SR-TWAS code was derived from existing TIGAR-V2 scriptsand it shares

dependencies on TABIX [83] and the Python numpy [76, 78], pandas [76], scipy [79],

and statsmodels [82] libraries. However, it was written in Python 3.6 (rather than
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Python 3.5) in order to employ features offered in later releases of scikit-learn [80, 81],

previously used by TIGAR-V2 only for cross validation and elastic-net training.

The SR-TWAS script utilizes scikit-learn’s consistent, extensible interfaces for

defining estimators and predictors and for initializing objects [81]. The script trains a

stacked regression model using a modified version of scikit-learn’s StackingRegressor

class, which trains a final estimator from cross-validated predictions from base

estimators fitted on the full design matrix. The script defines two custom classes to

be used as input for the stacking regressor object: a base estimator class

(WeightEstimator) which converts trained GReX prediction models into

scikit-learn-compatible estimator objects and a final estimator class (ZetaEstimator)

which obtains the values of ζ1, . . . , ζK that minimize the loss function (Equation 3.1)

under the constraints ζk ≥ 0 and ∑K
k=1 ζk = 1 [66].

During the stacked regression, SNP minor allele frequencies and effect sizes for the

specified target are first read from each of the K user-specified weight files. The SNPs

are then matched to SNPs in the validation genotype data and filtered to exclude effect

sizes of SNPs for which the difference between the MAF of the genotype data and

the MAF from the corresponding weight file exceeds a user-specified MAF difference

threshold. The effect sizes from each weight file are used to initialize K separate

instances of the WeightEstimator class. These K WeightEstimator objects are used

as base estimators and fit on genotype and expression data from the validation data.

Only SR-TWAS models trained from K = 2 base models are presented in the

following sections. The code was designed to accept any K ≥ 2, and while the stacked

regression script has been primarily tested using K = 2 base models, preliminary

testing with dummy weight files confirms it can train stacked regression models from

K = 3,4,5 base models.
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3.1.3 ROS/MAP Data

The Religious Orders Study (ROS) and Rush Memory and Aging Project (MAP)

are two ongoing longitudinal, epidemiologic clinical-pathologic cohort studies of aging

and Alzheimer’s disease [57–59] collectively referred to as ROS/MAP [58]. ROS enrolls

Catholic nuns, priests, and brothers from religious groups across the United States,

primarily from communal living settings [57]. While the similar adult lifestyle of

participants allows for more control of potential confounders such as education and

socioeconomic status, it simultaneously limits the ability to study such variables [57,

59].

MAP was designed to complement and extend studies like ROS by including

subjects from a wider range of life experiences, socioeconomic status, and educational

attainment [57, 98] and recruits participants primarily from retirement communities

in the Chicago area, but also subsidized housing, retirement homes, and through

organizations serving minorities and low-income elderly [57, 98]. All participants in

both studies are without known dementia and agree to annual clinical evaluations

and brain donation upon death [57, 59, 98]. Similarity in study design and data

collection procedures allows the ROS and MAP datasets to be merged for use in joint

analyses [57, 99].

Quality-controlled ROS/MAP genotype data for European subjects [100] was used

for both the real data application and simulation studies. The real data application

used imputed dosage genotype data while the simulation study used WGS data of

ROS/MAP samples to avoid possible heterogeneity due to different genotype assay

technology. ROS/MAP data for both the application and simulation studies was lifted

from human reference genome GRCh37 to GRCh38 in order to be compatible with

GTEx V8 data.
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3.1.4 Simulation Study Design

In this section, we describe in depth simulation studies under four different scenarios

to assess the performance of weighted eQTL effect-sizes obtained from model ensemble

compared to the constituent eQTL effect-sizes trained from single cohorts. Performance

was assessed with respect to prediction imputation R2 in the test data and the power

of TWASs.

Simulations were conducted using real WGS genotype data for gene ABCA7 on

chromosome 19 from 1665 (465 training, 400 validation, 800 testing) ROS/MAP

participants and 465 GTEx participants. Genotype data for each cohort was filtered

to include 2,202 SNPs which had minor allele frequency (MAF) > 5% and Hardy-

Weinberg p-value > 10−5 for both cohorts.

Under each scenario, the proportion of true causal SNPs is varied among values

pcausal = (0.001, 0.01, 0.05, 0.1) while the expression heritability (ie the proportion of

expression variation attributable to genetic variation [69]) is held constant at h2
e = 0.2

and the phenotype heritability (ie the proportion of phenotype variation attributable

to genetic variation [70]) h2
p is varied to ensure the follow-up TWAS power within a

range of 25% to 90%.

For each scenario, the expression of ABCA7 is simulated 1,000 using a genotype

matrix G∗ of Ncausal randomly chosen causal SNPs constructed from genotype data for

all samplesand a matrix of effect sizes for those causal SNPs βNcausal×1000 generated

such that each column β•i ∼N(0,1). The gene expression Ei for the ith simulation is

given by

Ei = γiG∗β•i+εi, γi =

√√√√ h2
e

Var(G∗β•i)
, εi ∼ N

(
0,
√

1−h2
e

)
(3.4)

where γi is a scale factor to ensure the targeted h2
e value.

Per-cohort gene expression prediction models are then trained using the non-
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parametric Bayesian model described in Section 2.1.1.1 and the genotype and simulated

expression data of 465 ROS/MAP and 465 GTEx subjects. The SR-TWAS model for

K = 2 predictors was then applied to the trained GTEx and ROS/MAP models using

a validation cohort of 400 ROS/MAP subjects.

Once trained, each of the GTEx, ROS/MAP, and SR-TWAS models were used

to obtain predicted gene expression values ĜReXi from the genotype data of 800

ROS/MAP test samples. The true expression data for these samples was used to

simulate phenotype values for the follow up TWAS. The phenotype vector Yi for the

ith target was simulated using the true simulated expression Ei of the using

Yi = ϕiEi+εi, ϕi =

√√√√ h2
p

Var(Ei)
, εi ∼ N

(
0,
√

1−h2
p

)
(3.5)

where ϕi is a scale factor to ensure the targeted h2
p value.

Finally, the GTEx, ROS/MAP, and SR-TWAS models were evaluated by expression

prediction accuracy and TWAS power. The predicted gene expression ĜReXi from

each model GTEx, ROS/MAP, and SR-TWAS, was used to calculate expression

prediction R2 and phenotype prediction R2 for the ith target

R2
Ei

= Cor
(
Ei, ĜReXi

)2
(3.6)

Phenotype prediction R2, and phenotype prediction p-value (ie TWAS power) was

obtained from a simple linear regression of Yi onto ĜReXi.

3.1.5 Application Studies Leveraging GTEx V8 and ROS/MAP Reference

Panels

From the model training results described in above Section 2.2.1, we obtained 21,901

significant gene transcript expression prediction models by using the nonparametric

Bayesian DPR method for brain frontal cortex BA9 (Ntraining = 157) tissue type.
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Transcriptomic data for ROS samples (Ntraining = 256) were similarly used to train

14,957 significant nonparametric Bayesian gene expression prediction models from

variants with minor allele frequency > 0.01 and Hardy-Weinberg equilibrium p-value

> 10−5.

The stacked regression model for K = 2 predictors (denoted SR-TWAS) was then

applied to the trained GTEx and ROS models using a validation cohort of 121 MAP

subjects. Trained models for each cohort GTEx, ROS, and SR-TWAS were then used

to predict gene expression for 122 MAP test samples.

3.2 Results

3.2.1 Simulation Study Results

Density plots of the ROS/MAP ζ weight used to obtain the final SR-TWAS model

from the the GTEx and ROS/MAP models are shown in Figure 3.2. Under a sparse

cis-eQTL causality model with pcausal = 0.001, the majority of SR-TWAS models

were derived from only one of the underlying base models and there was a slight

preference for ROS/MAP-only SR-TWAS models. As the causal proportion increased,

the less extreme weights were chosen and for the majority of SR-TWAS models, the

contribution of each base model to the SR-TWAS model was equal or approximately

equal.

As shown in the plot of average expression prediction R2 by proportion of causal

SNPs (Figure 3.3), the SR-TWAS models out-performed both of the single cohort

models in predicting genetically regulated gene expression. Prediction accuracy for all

models decreased as pcausal was increased. However, the magnitude of the difference

in performance between the SR-TWAS and single cohort models was much greater in

scenarios with pcausal > 0.001.

TWAS power results for each scenario are shown in Figure 3.4. In every scenario,

the TWAS with SR-TWAS models had achieved higher TWAS power than either of
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the single cohort models, which performed similarly. The difference in performance

between the SR-TWAS and single cohort models was minimal under a sparse cis-eQTL

causality model with pcausal = 0.001. The power improvement of the SR-TWAS models

over the single cohort models is greatest when the proportion of causal SNPs is high

and the phenotype heritability is low. The TWAS power results complement the

prediction R2 results and are consistent with previous findings that better imputation

R2 results in higher TWAS power [18].

Effect-sizes were assumed to be constant across training cohorts. The performance

of SR-TWAS when effect-sizes are heterogeneous between training cohorts is an

anticipated area of follow up analysis. However, homogeneity in base models is

expected to minimize improvement by stacked regression [66]. In the analyses presented

in the original stacked regression paper, the largest gains in performance occurred

when dissimilar base models were used [66]. Furthermore, stacking never resulted in a

worse prediction performance than selecting the single best predictor [66]. Stacking

minimizes prediction error on the validation data [65, 66], so we expect the method to

be robust to effect-size heterogeneity when validation and test cohorts are similar.
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Figure 3.1: Plots of average CV R2 and training R2 for simulations under four different
scenarios with varying proportion of true causal SNPs pcausal = (0.001, 0.01, 0.05, 0.1) and
true expression heritability h2

e = 0.2. Dotted lines denote the R2 density of single cohort
base models validation data during the SR-TWAS training.
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Figure 3.2: Plots of ROS/MAP ζ density for simulations under four different scenarios with
varying proportion of true causal SNPs pcausal = (0.001, 0.01, 0.05, 0.1) and true expression
heritability h2

e = 0.2.
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Figure 3.3: Plots of average expression prediction R2 for simulations under four different
scenarios with varying proportion of true causal SNPs pcausal = (0.001, 0.01, 0.05, 0.1) and
true expression heritability h2

e = 0.2.
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Figure 3.4: Plots of TWAS power for simulations under four different scenarios with varying
proportion of true causal SNPs pcausal = (0.001, 0.01, 0.05, 0.1), true expression heritability
h2

e = 0.2, and phenotype heritability h2
p chosen for power in range of approximately 25% to

90%.

3.2.2 Application Studies Leveraging GTEx V8 and ROS/MAP Reference

Panels

The training computation costs in CPU hours per chromosome with GTEx V8

and ROS base models by SR-TWAS were shown in Figure 3.5. The computation cost

per chromosome ranged from 2 to 26.5 CPU hours, with a median of 8.9 and mean of

10.9, which is mainly due to various numbers of transcripts (or genes) per chromosome.

With 121 validation samples, the average computation time for training a SR-TWAS

gene expression prediction model per transcript (or gene) with 5-fold cross-validation

is ∼ 35 seconds.
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Density plots of the ROS ζ weight used to obtain the final SR-TWAS model from

the the GTEx and ROS models are shown in Figure 3.6. The majority of SR-TWAS

models were derived from only one of the underlying base models, more frequently

ROS than GTEx. The shape is similar to that of the ζ density curve for the sparse

cis-eQTL causality model simulation scenario in the first panel of Figure 3.2.

As shown in Figure 3.7, SR-TWAS and ROS models show similar performance

in gene expression prediction results and both outperformed the GTEx models. SR-

TWAS performance is comparable, but slightly better than the ROS models. Results

from Table 3.1 of median and mean prediction R2 values are similar with SR-TWAS

showing the highest (median 0.86%; mean 3.74%) R2 values comparable to ROS

results (median 0.78%; mean 3.49%), with both greatly outperforming the GTEx

model (median 0.33%; mean 1.71%).

Comparisons of the SR-TWAS models with each of the two single cohort models

gene expression predictionR2 results are given in Figure 3.8 and Table 3.2. In Figure 3.8

prediction R2 values for SR-TWAS are plotted against single cohort prediction R2

for each gene. SR-TWAS performs noticeably better than GTEx, with the majority

of genes plotted above the diagonal. SR-TWAS performance is again comparable

with ROS model performance. Table 3.2 numerically describes the results plotted

in Figure 3.8; when prediction R2 > 0.005 for both models, SR-TWAS R2 is greater

than the single cohort model R2 for the majority of genes. Pairwise comparisons of

R2 values for genes with R2 > 0.005 for both models are shown in Table 3.3.

The similar performance of the SR-TWAS and ROS models compared to GTEx

may be due to features of the training and prediction datasets. The GTEx models

were trained from 157 brain frontal cortex BA9 samples while ROS models were

trained from 256. Study demographics and tissue collection procedures are dissimilar

for ROS/MAP compared to GTEx. The GTEx Project was established to study the

effect of genetic variation on gene expression in normal human tissues [10, 86] while
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ROS and MAP were designed to study aging and dementia [57–59]. The difference in

objectives between the studies is reflected in the donor demographics. The mean age of

ROS/MAP donors with RNA-Seq data is 86.7 [99], but GTEx does not enroll donors

over the age of 70 [86]. ROS/MAP data may also be more heterogeneous than GTEx

data. The ROS/MAP studies include data from specimens with neuropathology [99],

while GTEx medically excludes some donors to avoid collecting diseased tissue [10,

86] and conducts pathology reviews of all collected biospecimens to ensure they are

non-diseased [86].

Figure 3.5: Computation costs in CPU Hours per chromosome for training gene expression
prediction models by SR-TWAS with ROS and GTEx V8 base models.

Figure 3.6: Plot of ROS ζ density for SR-TWAS of real data.



36

Figure 3.7: Plot of scaled prediction R2 density for SR-TWAS of real data for 8337 genes
where prediction R2 > 0.005 for SR-TWAS and either single cohort model.

Table 3.1: Prediction R2 results for SR-TWAS vs single cohort models.

Median R2 Mean R2

GTEx 0.33% 1.71%
ROS 0.78% 3.49%
SR-TWAS 0.86% 3.73%
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Figure 3.8: Gene expression prediction R2 results for SR-TWAS vs single cohort models.

Table 3.2: Number of genes with prediction R2 > 0.005 for both models that are above/below
the diagonal in Figure 3.8.

GTEx ROS

above diagonal 3149 (64%) 4087 (56%)
below diagonal 1734 (36%) 3204 (44%)

Table 3.3: Pairwise comparison of model prediction R2 by number of genes with R2
row ≥R2

col
and R2 > 0.005 for both models. The diagonal shows the total number of genes with
prediction R2 > 0.005 for that model.

R2
row ≥R2

col SR-TWAS GTEx ROS

SR-TWAS 8979 1734 3204
GTEx 3149 6579 2669

ROS 4087 1639 8722

3.3 Discussion
In this chapter, we present SR-TWAS–a novel tool for leveraging multiple

transcriptomic reference panels of the same tissue type by ensemble machine learning
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technique of stacked regression [64–66]. The power advantage of SR-TWAS model

over single cohort models was demonstrated in both simulation studies and

application to real data. SR-TWAS models had higher gene expression prediction

accuracy and TWAS power under all simulations scenarios. In the application studies

leveraging GTEx V8 and ROS/MAP reference panels, SR-TWAS achieved higher

prediction R2 than the underlying base models.
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4 Conclusion

In this work we present and validate the TIGAR-V2 and SR-TWAS software tools

for mapping TWAS risk genes of complex diseases.

TIGAR-V2 tool has its limitations such as using only cis-eQTL data, assuming

a two-stage model for TWAS, and only testing a single phenotype. SR-TWAS

shares the TIGAR-V2 limitations of using only cis-eQTL data in model training and

assuming a two-stage model TWAS and requires an additional validation dataset

independent of those used for base model training. Due to heterogeneity in genetic

and transcriptomic data between populations of different ancestry, TIGAR-V2 and

SR-TWAS model performance may be reduced when the test data is not derived from

the same population used in model training or SR-TWAS validation [101].

There are many other useful TWAS tools available. For example, BGW-TWAS [19]

uses both cis- and trans- genotype data to train gene expression prediction model

of the target gene, CoMM [102] and PMR-Egger [20] assume a joint model with

reference and test data that can achieve higher power when both data sets are

homogeneous, and moPMR-Egger [103] tests the gene-based association with respect

to multiple phenotypes. Overall, recent TWAS of complex diseases using these tools

show promising results such as finding an increasing number of risk genes and revealing

potential mediation effects through transcriptome and pleiotropy effects of these TWAS

risk genes [23, 25, 46, 47].

TIGAR-V2 tool along with cis-eQTL effect sizes estimated by nonparametric

Bayesian DPR methods with the GTEx V8 reference data are shared with the public

on GitHub, https://github.com/yanglab-emory/TIGAR. We will also share LD

reference covariance data files obtained from Europeans with WGS genotype data in

the GTEx V8 data set, which are required for conducting TWAS using cis-eQTL effect

https://github.com/yanglab-emory/TIGAR
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size estimates and GWAS summary-level data. The SR-TWAS tool is also publicly

available on GitHub, https://github.com/yanglab-emory/SR-TWAS.

TIGAR-V2 and SR-TWAS tools implement user-friendly features, including

accepting standard VCF-format genotype data as input, enabling parallel

computation, and using efficient computation strategies to reduce time and memory

usage. The tools are flexible; TIGAR-V2 provides users with options for using

different training models and TWAS test statistics. While only SR-TWAS models

with K = 2 base models are presented here, the SR-TWAS tool allows users to input

additional trained base models. We believe our improved TIGAR-V2 and SR-TWAS

tools will provide a useful resource for mapping risk genes of complex diseases by

TWAS.

https://github.com/yanglab-emory/SR-TWAS
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Appendix A: Downsampled Study Results

Figure A.1: Density plots of average 5-fold CV R2 for TIGAR and PrediXcan model training
for Ovary (N = 140), Breast (N = 337), and downsampled Breast (N = 140) tissues with
varying CV R2 threshold values: (0.005, 0.01, 0.05, 0.1, 0.2).
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Figure A.2: Density plots of training R2 for TIGAR and PrediXcan model training for
Ovary (N = 140), Breast (N = 337), and downsampled Breast (N = 140) tissues with varying
average 5-fold CV R2 threshold values: (0.005, 0.01, 0.05, 0.1, 0.2).
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Appendix B: Application Breast and Ovarian

Cancer TWAS Results

B.1 TIGAR Results

Table B.1: TWAS risk genes of both breast and ovarian cancer identified by TIGAR-V2.

Breast Ovary

Gene Chrom Start End Zscore Pvalue Zscore Pvalue

PRC1-AS1a,c 15 90972860 90988624 5.70 1.17e-08 4.95 7.56e-07
UBE2MP1 16 35169692 35170241 -5.31 1.13e-07 5.77 7.88e-09
ARHGAP27a,c 17 45393902 45434421 -5.27 1.33e-07 6.24 4.32e-10
AC091132.1b,c 17 45452844 45464065 -5.31 1.10e-07 -6.36 2.04e-10
LRRC37A4Pb,c 17 45506741 45550335 6.08 1.20e-09 6.90 5.07e-12
DND1P1b,c 17 45585871 45586929 -5.81 6.11e-09 -6.90 5.31e-12
RP11-707O23.1b,c 17 45592621 45593369 -5.63 1.81e-08 -6.66 2.68e-11
MAPK8IP1P2b,c 17 45600869 45602340 -5.78 7.48e-09 -6.71 1.91e-11
LINC02210b,c 17 45620328 45655156 -5.48 4.23e-08 -6.50 8.23e-11
CRHR1b,c 17 45784280 45835828 -5.63 1.75e-08 -6.71 1.93e-11
MAPTa,c 17 45894382 46028334 -5.16 2.51e-07 6.24 4.45e-10
KANSL1-AS1b,c 17 46193576 46196723 -4.90 9.57e-07 -6.07 1.32e-09
RP11-259G18.3b,c 17 46259551 46260606 -4.99 6.03e-07 -6.09 1.11e-09
RP11-259G18.1b,c 17 46267037 46268694 -5.42 5.99e-08 -6.41 1.49e-10
LRRC37A2b,c 17 46511511 46553449 -5.11 3.24e-07 -6.12 9.08e-10
FAM215Bb,c 17 46558830 46562795 -4.75 2.01e-06 -5.99 2.09e-09
FRG1EP 20 29480147 29497179 5.39 6.95e-08 -4.99 6.19e-07

a gene identified in previous breast cancer GWAS
b within 1MB of gene identified in previous breast cancer GWAS
c within 1MB of gene identified in previous ovarian cancer GWAS
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B.2 PrediXcan Results

Figure B.1: Manhattan plots of TWAS results by PrediXcan for studying breast cancer with
56 significant genes (A) and ovarian cancer with 4 significant genes (B).
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Table B.2: Independent TWAS risk genes of breast cancer identified by PrediXcan.

Gene Chrom Start End Zscore Pvalue

CH17-437K3.1b 1 121396754 121463129 12.49 8.75e-36
ASH1La 1 155335268 155562807 -6.35 2.16e-10
NSUN4b 1 46340177 46365152 5.77 7.81e-09
KLHDC7Aa 1 18480982 18486126 -5.20 2.01e-07
ALS2CR12b 2 201288271 201357398 6.40 1.52e-10
RP11-337N6.3 2 177317715 177318471 5.46 4.82e-08
SLC4A7a 3 27372721 27484420 -14.30 2.34e-46
ZBTB38a 3 141324213 141449792 -7.68 1.54e-14
LINC00886a 3 156747346 156817062 5.89 3.96e-09
CMSS1a 3 99817834 100181732 5.44 5.31e-08
PSMD6-AS2b 3 64004022 64012148 -5.42 5.99e-08
EFCC1 3 129001629 129040742 4.84 1.32e-06
GLRA3b 4 174636914 174829314 6.92 4.66e-12
PPM1Kb 4 88257620 88284769 -5.19 2.11e-07
SLC22A5b 5 132369752 132395614 9.09 9.64e-20
ANKRD55b 5 56099678 56233359 -6.29 3.09e-10
L3MBTL3a 6 130013699 130141451 6.32 2.67e-10
TOB2P1b 6 28217643 28218634 5.31 1.09e-07
ZNF703b 8 37695751 37700021 5.45 5.11e-08
PRR33b 11 1888577 1891772 -10.05 8.84e-24
EFEMP2b 11 65866441 65873592 6.03 1.60e-09
SPTY2D1a 11 18606401 18634791 4.80 1.57e-06
NTN4b 12 95657807 95791152 -12.37 3.75e-35
RP11-967K21.1b 12 28163298 28190738 6.83 8.68e-12
RPL12P7b 14 68693090 68693583 9.60 8.11e-22
RCCD1a 15 90955796 90963125 -5.98 2.18e-09
RP11-212I21.2b 16 55426797 55462297 5.31 1.11e-07
CBX8a 17 79792132 79801683 5.87 4.35e-09
LRRC37A4Pb 17 45506741 45550335 5.58 2.43e-08
COX11b 17 54951902 54968764 4.79 1.63e-06
LRRC25b 19 18391144 18397617 9.31 1.32e-20
APOBEC3Bb 22 38982347 38992804 6.83 8.25e-12

a gene identified in previous breast cancer GWAS
b within 1MB of gene identified in previous breast cancer GWAS
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Table B.3: Independent TWAS risk genes of ovarian cancer identified by PrediXcan.

Gene Chrom Start End Zscore Pvalue

PRC1-AS1a 15 90972860 90988624 5.21 1.85e-07
LINC02210a 17 45620328 45655156 -5.77 7.76e-09

a within 1MB of gene identified in previous ovarian cancer GWAS

Table B.4: TWAS risk genes of both breast and ovarian cancer identified by PrediXcan.

Breast Ovary

Gene Chrom Start End Zscore Pvalue Zscore Pvalue

PRC1-AS1a,c 15 90972860 90988624 5.92 3.19e-09 5.21 1.85e-07
LRRC37A4Pb,c 17 45506741 45550335 5.58 2.43e-08 5.36 8.13e-08

a gene identified in previous breast cancer GWAS
b within 1MB of gene identified in previous breast cancer GWAS
c within 1MB of gene identified in previous ovarian cancer GWAS

B.3 Genes Significant in Multiple TWAS Results

Table B.5: Total number of TWAS risk genes identified by model and cancer type.

TWAS

Model Breast Ovary

TIGAR 88 37
PrediXcan 56 4
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Table B.6: TWAS risk genes identified by multiple models or for multiple cancer types.

TIGAR PrediXcan

Gene Chrom Start End Breast Ovary Breast Ovary

PRC1-AS1a,d 15 90972860 90988624 X X X X
LRRC37A4Pb,d 17 45506741 45550335 X X X X
DND1P1b,d 17 45585871 45586929 X X X
LINC02210b,d 17 45620328 45655156 X X X
KLHDC7Aa 1 18480982 18486126 X X
CH17-437K3.1b 1 121396754 121463129 X X
ASH1La,d 1 155335268 155562807 X X
CASP8a 2 201233443 201287711 X X
ALS2CR12b 2 201288271 201357398 X X
SLC4A7a,d 3 27372721 27484420 X X
PSMD6-AS2b 3 64004022 64012148 X X
SLC22A5b 5 132369752 132395614 X X
PDLIM4b 5 132257671 132273454 X X
ANKRD55b,d 5 56099678 56233359 X X
C5orf56b 5 132410636 132488702 X X
L3MBTL3a 6 130013699 130141451 X X
PIDD1a 11 799191 809646 X X
AP006621.5b 11 777578 784297 X X
CCDC91a 12 28133249 28581511 X X
RCCD1a,c 15 90955796 90963125 X X
CBX8a 17 79792132 79801683 X X
LRRC25b 19 18391144 18397617 X X
UBE2MP1 16 35169692 35170241 X X
MAPK8IP1P2b,d 17 45600869 45602340 X X
CRHR1b,d 17 45784280 45835828 X X
RP11-707O23.1b,d 17 45592621 45593369 X X
RP11-259G18.1b,d 17 46267037 46268694 X X
AC091132.1b,d 17 45452844 45464065 X X
ARHGAP27a,d 17 45393902 45434421 X X
MAPTa,d 17 45894382 46028334 X X
LRRC37A2b,d 17 46511511 46553449 X X
RP11-259G18.3b,d 17 46259551 46260606 X X
KANSL1-AS1b,d 17 46193576 46196723 X X
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TIGAR PrediXcan

Gene Chrom Start End Breast Ovary Breast Ovary

FAM215Bb,d 17 46558830 46562795 X X
FRG1EP 20 29480147 29497179 X X
NSFb,c 17 46590669 46757464 X X

a gene identified in previous breast cancer GWAS
b within 1MB of gene identified in previous breast cancer GWAS
c gene identified in previous ovarian cancer GWAS
d within 1MB of gene identified in previous ovarian cancer GWAS

Table B.7: TWAS risk genes not previously identified in breast or ovarian cancer GWAS.

Model TWAS Gene Chrom Start End Zscore Pvalue

DPR Breast KLHL25 15 85759323 85795030 -4.73 2.22e-06
DPR Breast UBE2MP1 16 35169692 35170241 -5.31 1.13e-07
DPR Ovary UBE2MP1 16 35169692 35170241 5.77 7.88e-09
DPR Breast ANKRD20A21P 20 30656033 30723932 -5.22 1.83e-07
DPR Breast FRG1EP 20 29480147 29497179 5.39 6.95e-08
DPR Ovary FRG1EP 20 29480147 29497179 -4.99 6.19e-07
EN Breast RP11-337N6.3 2 177317715 177318471 5.46 4.82e-08
EN Breast EFCC1 3 129001629 129040742 4.84 1.32e-06
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Figure B.2: Venn diagram of number of TWAS risk genes identified by model and cancer
type.



50

Figure B.3: QQ-Plots for TWAS results by TIGAR for studying breast cancer (A) and
ovarian cancer (B) and TWAS results by PrediXcan for studying breast cancer (C) and
ovarian cancer (D).
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Appendix C: SR-TWAS Code

# return Rˆ2
def get_r2 (y, predY , pval=False):

lm = sm.OLS(y, sm. add_constant (predY)).fit ()
if pval:

return lm.rsquared , lm. f_pvalue
return lm. rsquared

# flatten a nested list
def flatten ( nested_list ):

return [j for i in nested_list for j in i]

# formats list [W0_N_SNP , W0_CVR2 , W0_R2 , W0_PVAL , ...,
# ..., WK_N_SNP , WK_CVR2 , WK_R2 , WK_PVAL ] for output even when

one or more of the W_ks lacks data for a target
def format_final_est_out_vals ( target_k_outvals , target_ks , K):

target_k_ind = { target_ks [j]: j for j in range(len( target_ks ))}
out_list = [ target_k_outvals [ target_k_ind [k]] if k in target_ks

else (0, 0, 0, 1) for k in range(K)]
return flatten ( out_list )

# estimator for individual trained models
class WeightEstimator ( BaseEstimator ):

_estimator_type = ’regressor ’

def __init__ (self , raw_weights ):
self. raw_weights = raw_weights

def fit(self , X=None , y=None):
self.coef_ = self. raw_weights . dropna ()
self.snpID = self.coef_.index. values
self. n_features_in_ = self.coef_.size
return self

def predict (self , X):
return np.dot(X[self.snpID], self.coef_)

def score(self , X, y):
return get_r2 (y, self. predict (X))

def r2_pval (self , X, y):
return get_r2 (y, self. predict (X), pval=True)

def avg_r2_cv (self , X, y):
return sum( cross_val_score (self , X, y)) / 5

def est_out_vals (self , X, y):
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return [(self. n_features_in_ , self. avg_r2_cv (X, y), *self.
r2_pval (X, y))]

def final_est_out_vals (self , X, y, ks , K):
return format_final_est_out_vals (( self. est_out_vals (X, y)), ks ,

K)

# final estimator for stacking regressor
class ZetasEstimator ( BaseEstimator ):

_estimator_type = ’regressor ’

def __init__ (self , min_method =None , tol=None):
super (). __init__ ()
self. min_method = min_method
self.tol = tol

def _loss_func (self , zeta , X, y):
if (len(zeta) == 1):

Zeta = np.array([*zeta , 1 - np.sum(zeta)])
else:

Zeta = np.array(zeta)
predY = np.dot(X, Zeta)
R2 = get_r2 (y, predY)
return 1 - R2

def fit(self , X, y, sample_weights =None):
K = np.shape(X)[1]
# if only one valid model set zeta = 1
if (K == 1):

self.coef_ = np.array([1])
return self

elif (K == 2):
# initialize zeta list; all models weighted equally
zeta_0 = np.full(K-1, 1/K)
bnds = tuple([(0, 1)] * (K-1))
# minimize loss function
self. fit_res_ = minimize (

self._loss_func ,
zeta_0 ,
args=(X, y),
bounds =bnds ,
tol=self.tol ,
method =self. min_method )

zeta = self. fit_res_ .x
self.coef_ = np.array([*zeta , 1 - np.sum(zeta)])

else:
zeta_0 = np.full(K, 1/K)
bnds = tuple([(0, 1)] * K)
cons = ({’type ’: ’eq’, ’fun ’: lambda x: 1 - sum(x)})
# minimize loss function
self. fit_res_ = minimize (

self._loss_func ,
zeta_0 ,
args=(X, y),
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bounds =bnds ,
tol=self.tol ,
method =self.min_method ,
constraints = cons)

zeta = self. fit_res_ .x
self.coef_ = np.array(zeta)

return self

def predict (self , X):
return np.dot(X, self.coef_)

def score(self , X, y):
return get_r2 (y, self. predict (X))

# stacking regressor
class WeightStackingRegressor ( StackingRegressor ):

def __init__ (self , estimators , final_estimator = ZetasEstimator (),
*, cv=None , n_jobs =None , passthrough =False , verbose =0):
super (). __init__ (

estimators =estimators ,
final_estimator = final_estimator ,
cv=cv ,
n_jobs =n_jobs ,
passthrough = passthrough ,
verbose = verbose )

def fit(self , X, y, sample_weights =None):
self = super ().fit(X, y, sample_weights )
self. zetas_ = self. final_estimator_ .coef_
return self

def score(self , X, y):
return get_r2 (y, self. predict (X))

def r2_pval (self , X, y):
return get_r2 (y, self. predict (X), pval=True)

def avg_r2_cv (self , X, y):
return sum( cross_val_score (self , X, y)) / 5

def est_avg_cv_scores (self , X, y):
return [est[1]. avg_r2_cv (X, y) for est in self. estimators ]

def est_r2_pvals (self , X, y):
return list(zip(*[est[1].fit(X,y). r2_pval (X,y) for est in self.

estimators ]))

def est_out_vals (self , X, y):
est_n_snps = [est[1].fit (). n_features_in_ for est in self.

estimators ]
est_avg_cv_score = self. est_avg_cv_scores (X, y)
est_r2_pvals = self. est_r2_pvals (X, y)
return list(zip(est_n_snps , est_avg_cv_score , * est_r2_pvals ))
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def final_est_out_vals (self , X, y, ks , K):
return format_final_est_out_vals (self. est_out_vals (X, y), ks , K)
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