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Abstract

Elasticity and Structure of Self-Assembled
Systems with Defects and Inclusions

By Ana West

In this work we study the manner in which topological defects and inclusions

alter the dynamics, the elasticity, and the conformational structure of three

self-assembled molecular systems.

System 1: Protein hydrogels are responsive materials that form upon mixing

natural or engineered peptides known as “junctions” and “linkers”. There

is great interest to employ protein hydrogels in biomedical applications es-

pecially as controlled-release drug delivery agents and as tissue engineering

scaffolds. In this work we designed a simulation model of divalent linkers

and junctions and evaluated how defects such as a stoichiometric mismatch

in mixing components and loops couple with the long-time relaxation of

shear stress and resulting viscosity. Junction multiplicities (ν) from three

to nine are considered. The linker stiffness and the modes of pairs of junc-

tions bonding are also explored. A stoichiometric mismatch as small as 1%

in mixing peptides concentrations showed a sharp decrease in both shear

relaxation time (τshear) and network viscosity. The rate of stress relaxation

per bond re-arrangement event is two to three times increased than assumed

in previous theories. The values of shear plateau moduli, (Go) strongly de-

viates from the Gaussian chain predicting a linear relationship in number

of linkers in the system (NL). A simple phenomenological theory is devel-

oped to connect the findings of various simulation instances. The material

properties such as Go and τshear are related to the lifetime of a bond, τbond.

System 2: Evaluating the lipid membrane elasticity during processes that



require the lipid membrane to stretch, bend, break, or re-organize is essen-

tial to understanding cell membrane function. In this simulation study we

investigate the edge tension of a bilayer edge resulting from having pores in

lipid bilayers. Edge tension values reported from experiments vary greatly

with method of investigation and techniques of edge tension detection are

still being developed. In this study, simulations carried out for dioleoyl

phosphatidylcholine (DOPC) with three different force-field parameter sets

yielded edge line tensions of ∼45 pN, over 50% greater than the most re-

cently reported experimentally determined value for this lipid. Edge ten-

sions obtained from simulations of a series of phosphatidylcholine (PC) lipid

bilayer ribbons with saturated acyl tails of length 12-16 carbons and with

mono-unsaturated acyl tails of length 14-18 carbons is correlated with the

excess area associated with forming the edge, through a two-parameter fit.

System 3: Quantum dots (QDs) are highly sought optical probes in biomed-

ical imaging. Recent experiments showed increased photoluminescence sta-

bility and selective ligand exchange processes when small size CdSe QDs

were embedded in the wall of small unimellar vesicles made of different

phase lipid. The precise molecular details of lipid-ligand interface during

the QD embedding instances are unknown. In this report we implemented

united atom simulations to provide such a characterization. A 2.6 nm di-

ameter QD and a 3.4 nm diameter QD both capped with oleic acid (OA)

ligands are embedded in dilauroyl phosphatidylcholine (DLPC), dioleoyl

phosphatidylcholine (DOPC),dimyristoyl phosphatidylcholine(DMPC), and

distearoyl phosphatidylcholine (DSPC) lipid bilayers. The ligand density at

same size QD and the initial QD embedding orientation is also varied. The

lipid tail conformational disorder is evaluated as a distance dependent deu-

terium order parameter. More ordered lipid tails are observed for smaller

size QDs and at lower employed ligand density. Orientational autocorrela-

tion functions of lipid tails interacting with QD ligands show that the lipid

tail mobility correlates with lipid phase independently of both nanocrystal

size and capping ligand density.
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“One thing I have learned in a long life: that all our science, measured

against reality, is primitive and childlike – and yet it is the most precious

thing we have.” -Albert Einstein
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Summary

In chapter 1 we briefly mention relevant statistical mechanics concepts and

related molecular dynamics (MD) and Monte-Carlo (MC) simulation de-

tails. Chapter 2 provides the experimental and theoretical context to the

peptide biomaterial studies. Work presented in Chapter 3 amounts to de-

scribing a new simulation model of divalent linkers and junctions that eval-

uates how defects such as a stoichiometric mismatch in mixing components

and linker flexibility couples with the long-time relaxation of shear stress

and resulting viscosity. Junction multiplicities (ν) from three to five are

considered. Furthermore, the manner in which defects affect the time-

dependent viscosity during gel aging is modeled as an approach to equi-

librium through diffusion-limited recombination of complementary defects.

In chapter 4 we expand the simulation model to also include networks with

junction functionality six to nine. Loops and multiple bonding between

pairs of junctions are also investigated. A simple model to connect the frac-

tion of linkers involved in multiple junction bonding to network junction va-

lency to number of available sites on neighboring sites is developed. A new

interpretation of shear-relaxation rate is proposed, a theoretical framework

that accounts for the simulation non-linear relationship between plateau

shear modulus (G0) and number of elastic chains (NL). Chapter 5 is a brief

introduction to lipid bilayer work, especially relevant to studies of Chapter

6, simulation work that characterizes both the lipid packing at the edge and

the magnitude of edge tension of bilayers with pores. In Chapter 7 we ex-

plore via molecular dynamics simulation the structure and the dynamics of

ligand-lipid interface from when incorporating different size quantum dots

in lipid bilayers.
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1

Simulation

Modern scientific inquiry strives to understand how nature works from carrying out

lab experiments, from using and developing physical theory, and from conducting

simulation.(1) Measurements made during experiments result in attributing specific

numeric values to a property of interest. Physical theory consists in constructing

greatly simplified mathematical models of the systems investigated in experiments

and then calculating the same property. The solutions proposed from such theoretical

models are often mere approximations and limited to describe idealized cases and

general trends and are not always extremely useful to quantitatively interpret

experimental values. Simulations are “numerical experiments” that aim to bridge the

gap between experiment values and approximations of physical theory(1). Simulations

also complement scientific findings as they can probe resolution of structural detail

not easily available in experiment.

In simulation a model of the system still need be initially constructed and similar

to theory may involve ignoring a great deal of complexity of physical systems. If

sufficient microscopic information is available to input into the designed model, in

many cases existing simulations methodologies today evolved to the point that values

obtained from a particular simulation instance corresponds to a highly specific

experimental investigation.

1
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1.1 Foundational Statistical Mechanics Related Concepts

All macroscopic properties measured in physical chemistry experiments can be

calculated from statistical mechanics related theory, which reports them as ensemble

averages. An ensemble is an exhaustive, unique list of all allowed microstates of the

system paired with their associated probabilities. A microstate of a system refers to

each microscopic variable taking on a specific value. In the context of statistical

mechanics, the system under investigation first need be assigned a microscopic

description. For a classical system, a complete microscopic description means

specifying the configuration phase space Γ of microstates , a vector space over which a

function may be defined constructed from assigning a configurational coordinate and

a momentum coordinate to all N particles in the system (2) :

Γ = (rN , pN ) (1.1)

In this notation, the vector rN represents the position space,also called

configuration space, and the vector pN is the momentum space. The phase space may

contain many constant energy surfaces, which are subspaces of Γ of reduced

dimensionality. The Hamiltonian of the system is denoted H(Γ). Specifying

constraints enforces the allowed microstates in the ensemble, selecting only the states

compatible with a lab measurement. If for a system we impose the total number of

particles (N) to be fixed, if the volume (V ) of the sample cannot change, and if the

total energy (E) is kept constant, the representation is the microcanonical ensemble

(NV E). The classical ensemble probability density for a system in equilibrium can be

written as (3) :

ρensNV E(Γ) =
1

ΩN,V,E
· δ (H(Γ)− E) (1.2)

with δ selecting those phase space configurations having the imposed E energy.

For a classical (N,V,E) indistinguishable, single component system the total number

of microstates in the system’s ensemble is counted via integrals over the phase space:
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ΩNV E =
1

N !h3N
·
∫
E
dΓδ (H (Γ)− E) (1.3)

with h Planck‘s constant.

The density of states in microcanonical ensemble is homogenous over the constant

energy surface . The ensemble probability density of states ρeqNV E for a system in

equilibrium is independent of time (stationary). (3, 4)The ensemble average of A(Γ)

property of a system, is calculated as:

〈A (Γ)〉 =

∫
A (Γ) · ρeqNV E (1.4)

The canonical ensemble (NVT) with fixed total number of particles (N), with

constant volume (V ), and with fixed temperature (T ) is another representation

commonly used in both theoretical and simulation investigations. In this formalism

the phase space probability density of states is proportional to (3):

ρensNV T =
1

Q(N,V, T )
· exp

(
−H (Γ)

kBT

)
(1.5)

where Q(N,V, T ) is the canonical partition function, T is the temperature of the

system and kB is Boltzmann‘s constant.

The Hamiltonian of the system depends on all N particle vector coordinates and

on all N particle vector momenta composing the system, H[pN (t), rN (t)].The

Hamiltonian of a system is composed of a kinetic part K dependent only on

momentum of the particles and a potential part U dependent on particles’ positions

(5):

H(Γ) = K(pN ) + U(rN ) (1.6)

For a one component, indistinguishible N particles system we can write the

Q(N,V,T) partition function as a kinetic part and as a configurational interacting

part(3):
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Q(N,V, T ) =
1

N !h3N

∫
e−βK(pN )dp1dp2...dpN

∫
e−βU(rN )dr1dr2...drN (1.7)

with β = 1/kBT . The kinetic energy term K(pN ) is defined as:

K(pN ) =
1

2m

N∑
i=1

(
p2ix + p2iy + p2iz

)
(1.8)

The integral over momenta can be evaluated analytically:

∫
e−βK(pN )dp1dp2...dpN =

(
2πm

β

)3N/2

(1.9)

And as such equation 1.7 classical canonical partition function (Q(N,V, T ))

becomes:

Q(N,V, T ) =
1

N !

1

Λ(T )3N

∫
e−βU(rN )dr1dr2...drN (1.10)

The term Λ(T ) is the de Broglie thermal wavelength:

Λ(T ) =

(
βh2

2πm

)1/2

(1.11)

Only classical simulations are introduced in this work. A simple test for the

validity of the classical behavior of particle assumption is the temperature de Broglie

Λ(T ) wavelength. According to this criteria, if Λ(T ) is considerably less than particles

near-neighbor inter-separation then the classical approximation holds. From equation

1.11 we see that such is the case for heavier particle systems and at higher

temperatures (T ).

The evolution of the N particle system through phase space follows Hamilton‘s

equation of motion:
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∂H

∂pj
=

pj
mj

= ṙj (1.12)

and

∂H

∂rj
= −ṗj (1.13)

with j referring to the jth particle in the system.

MD simulations evaluate time-averaged physical observables over phase space

probability density functions ρ(rN , pN ). During such investigations, a collection of

microstates are sampled according to their equilibrium probability distribution.

Macroscopic equilibrium properties determined in lab measurements are equated to

simulation-determined values as:

Aexp = 〈A〉ens = 〈A(t)〉eq =
1

tmd

∫ tmd

t=0
dt′A (Γ(t)) ρeqNV E(Γ) (1.14)

Dynamic properties evaluated in MD simulation are determined from constructing

spatial and temporal correlation functions. Example properties evaluated in this

manner include transport coefficients, relaxation rates, and absorption spectra.

(3, 4, 6, 7)

If a system property is defined in terms of a single variable A tracked during

simulation, the non-normalized time correlation function of fluctuations in the system

is an autocorrelation function of the type:

CAA(τ) =
1

tmd

∫ tmd

0
dtA(t)A(τ + t) (1.15)

Time correlation functions are used to calculate transport coefficients. Such

estimations are permitted due to the remarkable linear response theory and the

fluctuation dissipation theorem of time-dependent statistical mechanics.(4, 8) This

formalism shows that under a weak (needed for linear approximation) applied energy

perturbation that couples with a specific property A of a system (can be any system
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property), the timescale of return of property A(t) to equilibrium values 〈A〉eq is

proportional to the timescale determined from equilibrium time correlation function

of fluctuations in A.

1.2 Selected Details of Molecular Dynamics (MD)

Simulation

Molecular dynamics (MD) simulations provide structural features, thermodynamic

equilibrium characterizations, and dynamical properties of various states of matter.(4)

Scientific questions explored in MD simulation include the structure and dynamics of

simple and complex fluids, phase diagrams, and topological defects distributions such

as vacancies and interstitials, small size metal cluster lowest energy characterizations,

and biologically relevant macromolecules and polymers structural and conformation

changes. The first MD simulation evaluated a solid-liquid phase transition of a hard

sphere system and was reported in 1957 by Alder and Wainwright (9). A next classic

pioneer MD simulation paper is Rahman’s paper from 1964 (10). He simulated 864

atom particles of liquid Ar. The analysis consists of determining the diffusion

constant from velocity autocorrelation functions and the simulation liquid Ar

structure. The diffusion constant calculation holds a special historic value, as is the

first simulation autocorrelation function report.

The initial MD configuration of a system rN (0) is chosen to match the resolution

of an X-ray structure. In the context of MD simulation Hamilton’s equation can be

written in Newton’s formulation as (5):

∂H

∂ri
= −mir̈i =

∂U

∂ri
= −fi (1.16)

with fi the total force on particle i, and mi is the mass particle. The propagation

of a system’s coordinate and momentum in phase space by Newtons equation of

motion corresponds to generating ρNV E states in the microcanonical ensemble. Force

calculation in molecular dynamics simulations requires a potential energy function
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that is often approximated as a sum of bonded and non-bonded terms, with the

non-bonded interactions often simplified to a sum of pairwise interactions.

For a system of N particles the force acting on particle i is evaluated as: (1)

fi = mir̈i =

N∑
i=1,i 6=j

fij (1.17)

The force between pairs of particles fij is evaluated as the gradient of the potential

energy functions u(r) describing the physical interaction between particles (equation

1.18).

fij = −5 u(r) (1.18)

From system to system investigated in MD simulation, the potential functions (the

force-field) vary greatly in complexity. For polyatomic molecules with complex

internal structure such as lipid molecules, a complicated functional form potential is

typically required.

The interactions separated into two parts as bonded potentials and non-bonded

potentials can be written as :

u(rN ) = ubonded(r
N ) + unonbonded(r

N ) (1.19)

The bonded potential ubonded(r
N ) typically includes a bonded stretching potential

between pairs of atoms having a chemical bond, a bond angle potential, and a

dihedral angle interaction. If the atoms need be restrained to a specific chiral

conformation or a specific configuration, an improper dihedral potential is also used.

A typical functional form of such a potential is, respectively (5):



1.2 Selected Details of Molecular Dynamics (MD) Simulation 8

ubonded(r
N ) =

Nb∑
n=1

kbn(b−bo)2+
Nθ∑
n=1

kθn(θ−θo)2+
Nφ∑
n=1

kφn [1 + cos(mφ− φo)]+
Nψ∑
n=1

kψn(ψ−ψo)2

(1.20)

The indices of summations N(bθφψ) represent the number of bonds and angles that

need be included and are determined by the size of the system. The set of constants

{kbn , kθn , kφn , kψn , bo, θo, φo, ψo} is the force-field parameter representation employed

in an MD calculation. Typically, these constants are developed to reproduce

experimentally determined structural and energetic properties (e.g. data from X-ray

scattering, NMR order parameter, energy of vibration modes from spectroscopy)

and/or ab initio calculations output.

The non-bonded potential unon−bonded(r
n) is typically the Lennard-Jones (LJ)

potential and a point charge (qi, qj) Coulomb electrostatic interaction:

unon−bonded(r
N ) =

npairs∑
(i,j)

{
4εij

[(
σ

rij

)12

−
(
σ

rij

)6
]

+
qiqj
rij

}
(1.21)

with ε describing the strength of interaction and σ setting the distance at which

the potential between two particles is zero.

In order to match properties evaluated in experiments, improvements to existing

sets of force-fields parameters and modifications of functional forms of potential

functions are implemented. For a discussion on lipid force-field development see

reference 11.

Some equilibrium properties easily accessible in MD simulations include

temperature, energies (kinetic, total, potential), heat capacities, pressures, and

structural densities. Analogous to statistical mechanics calculations all other system

properties can be derived from manipulating the MD basic output in the appropriate

ensemble.

An example of a transport coefficient often evaluated in MD simulation is the

shear viscosity. A shear viscosity coefficient calculation amounts to integrating over
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time autocorrelation functions constructed from trajectory averaged off-diagonal

elements of the pressure tensor, σαβ , with αβ = (xy, xz, yz) the Cartesian

coordinates in the system:

η =
V

kBT

∫ ∞
0
〈σαβ(0)σαβ(t)〉 (1.22)

with V the volume of the system and kBT the thermal energy.

The elements of pressure tensor σαβ in simulation are evaluated as:

σαβ =
1

V

∑
j

mjvjαvjβ +
1

2

∑
i 6=j

rijαfijβ

 (1.23)

with j looping over all particle, mj the mass of the particle, vjα(β) the particle

velocity in the specified direction, rijα is the inter-particle distance along α, and fijβ

the paiwise force acting in a β orthogonal direction.

We also mention that in spite of great progress in recent years in parallelizing the

MD force calculation loop (the most expensive step), molecular dynamics (MD)

simulations suffer from limitations.(12) Cellular processes sustain life in a highly

complex and dynamic manner. It involves specific atom compositions, countless

reactions, macromolecules folded and stored in a very efficient way, highly specialized

organelle machineries, and intricate compartmentalization mechanisms. Bonding

preferences during conformational changes of bio-macromolecules such as proteins and

DNA need be investigated with an atomic level of resolution. The time scale for

significant molecule folding is significantly longer than those routinely samples in

simulations (for atomistic systems, typical computing hardware enables calculations

of low hundreds of ns at best). The size of an organelle is billions of atoms and such a

calculation is too expensive as well. There is also the additional complication of each

molecule type having a large number of variants (precise structures of thousands of

lipids and thousands of membrane proteins are currently known (13, 14) ). This

composition is also dynamic and non-equilibrium like. Only simple models can be

implemented in simulation. In addition the force-field parameter sets of ions and
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charged systems are known to often fail reproduce the physics of such interactions

accurately.

1.3 Metropolis Monte-Carlo (MMC) Sampling

If only equilibrium system properties are needed, a computationally efficient way to

sample the configuration space is the Monte-Carlo (MC) technique introduced by

Metropolis and coworkers in 1953. (15) Monte-Carlo methods implement stochastic

strides in the configuration-space (rN ) according to well-specified rules. The natural

ensemble of Monte-Carlo calculations is the canonical (NVT) ensemble. Each

configuration i corresponding to Ei energy in converged MC ensemble has a

probability proportional to its statistical weight in an NVT equilibrium ensemble(16) :

ρ(i)eq ∝ exp(− Ei
kBT

) (1.24)

A robust MC algorithm must satisfy microscopic reversibility or the detailed

balance condition. For a system in equilibrium, this requirement is fulfilled if the

resulting rate of MC transition from any state i to state j is the same as the rate of

the reverse transition, going from any state j to state i(4). The total probability flux

is then:

πij · ρ(i)eq = πji · ρ(j)eq (1.25)

Here πij refers to the conditional transition probability between states i and j or:

πij = αij × acc(i− j) (1.26)

And equation 1.25 becomes:

ρ(i)× αij × acc(i− j) = ρ(j)× αji × acc(j − i) (1.27)
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with ρ(i) term denotes the probability of state i distributed in a NV T ensemble,

αij the probability that given an original state i an attempt will be made to change

the state to j, and finally acc(i− j), the probability of accepting the move from state

i to state j. Metropolis Monte-Carlo further assumes that the frequency of

attempting to reach state j from state i is the same as the frequency of aiming to

reach state i from state j (4, 17):

αij = αji (1.28)

The acceptance probability of new configurations j from current configurations i

that also satisfies equation 1.28 then reduces to:

acc(i− j)
acc(j − i)

=
ρeqi
ρeqj

= exp(−Ej − Ei
kBT

) (1.29)

The strides in the configurational space according to equation 1.29 must connect

any two points in configurational space through a finite series of steps.

Dynamic system configurations and time dependent events such as diffusion of

defects in solids are often characterized using Kinetic Monte-Carlo algorithms

(KMC)(18, 19).

Processes that can be evaluated via Kinetic Monte-Carlo techniques correspond to

Poisson distributed events where the time dependent rates of transitions between

states of interest are uncorrelated in time. In such an implementation the allowed

transitions between states need be accounted for or defined prior to each Monte-Carlo

move. The actual transition probabilities decisions are per unit time and the time

intervals between attempting to reach states of interest are rigorously tracked. Within

KMC the rates of transitions between dynamic states of the system are also required

to satisfy a detailed balance condition.
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2

An Introduction to

Self-assembled Responsive

Biomaterials

2.1 Protein Networks in Experiments

A peptide hydrogel is a high molecular weight polymer network structure held

together by permanent peptide bonds and physical bonds and it can absorb large

amounts of water.

Synthesis strategies, properties, and typical uses of peptide-based biomaterials

have been explored in several recent review articles and the references therein. (1–5)

The physical bonds are reversible and include interactions of the type electrostatic

interactions due to charged species, directional hydrogen bonding, and Van-der-Waals

interactions. The chemical structural units used in peptide-based materials synthesis

are the 20 natural occurring amino acids. Another physical interaction dictated by

the identity of amino-acid used also include π-stacking due to aromatic amino-acids.

14
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The material properties resulting from 3D peptide self-assembly are interesting as

the reversibility of the bond and thus the strength of the material can be externally

controlled in several ways such as introducing a junction-linker bond competing specie

(6), changing the temperature of the system(7) altering the pH (8) , changing the

ionic strength of the solution (9), changing the solvent polarity, introducing enzyme

cleaving sensitive sequences or oxidative species, and also UV/vis light

exposure.(1, 2, 4) Altering the network properties in an external manner render this

class of biomaterials, responsive materials.

The identity of amino acids used in synthesis of peptide-based materials

determines the type of resulting response(1). The basic amino-acids and the acidic

amino-acids lead to additional Coulombic temporary interactions that can be further

tuned via a change in pH and/or solution ionic strength. Hydrophobic amino-acids

and amino acids capable to hydrogen bond offer the possibility to alter the resulting

material by both changing the temperature and also the solvent polarity.

Typically, each monomer components undergoing self-assembly in a peptide based

biomaterial consist of one or several permanent tandem peptide sequences. Such

sequences may resemble random coil structure or well-defined protein secondary

structure of the type alpha helices, leucine-zipper domains, beta-hairpins, coiled-coil

domains, and beta-sheets.(1)The self-assembly resulting from mixing such

components may take the form of nanometer size fiber like morphologies, tubes,

micelle like structures, and reversible polymer networks.

This thesis models dynamic properties of polypeptide systems with topology

resembling the classical picture of polymer network structure.

There is great interest to employ peptide biomaterials engineered from naturally

occurring peptides in biomedical applications as delivery systems, biosensing units,

and tissue engineering injectable scafolds.(2) Peptide-based materials may also serve

as surface coating modifications or in applications such as nanowire templating
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technologies.(2) Recognition events between ligand and cell receptors and between

enzyme actives sites for cell native ligand binding, drug molecule delivery, and

molecular sensing probes can be easily designed from further decorating the peptide

material monomer components with appropriate functional units(5).

A range of experimental techniques is needed to characterize each newly developed

peptide hydrogel. Monomer folding behavior is determined from dynamic light

scattering experiments (DLS) and reported as hydrodynamic radius (RH) or radius of

gyration (RG). The monomer protein secondary structure is analyzed via techniques

such as circular dichroism (CD) spectrometry. Multi-angle static light scattering

measurements (Zimm plot investigations), electrophoretic gels, and FRET

experiments are employed to show preferred number and modes of alignments of

linker-junction interactions.(2, 8, 9) The kinetic constants and thermodyamic

behavior of linker-junction monomer associations are studied via surface plasmon

resonance (SPR) and isothermal titration calorimetry (ITC) (9–11).

Biological micro environmental factors that typically affect protein folding and

function such as changes in temperature, pH, and ionic strength can also affect

mechanical properties of peptide hydrogels. Assembled peptide based biomaterials

need function in complex environments. While in some applications softer materials

that can easily flow to target sites when injected or can take on the shape of a micro

cavity are required, in other instances such as tissue engineering investigations, more

robust hydrogels are desired, with an ability to support stress.

The strength of the peptide biomaterials is evaluated in rheological measurements

and also in its modern form microrhelogy(12–14) as the plateau storage (elastic)

modulus (G′). The stress relaxation profile is often the Maxwellian viscoelastic

behavior, a simple exponential stress decay. Typically values measured for (G′ of

reversible protein networks from experiments are in the 100 Pa-1000 Pa range (7, 8).

External factors found to affect the elastic modulus of reversible networks include

linker length, temperature, and concentration, with higher equilibrium storage
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modulus for networks implementing longer linkers, higher concentration, and lower

temperatures.(7, 15, 16) The relaxation time (τshear) was also measured during such

investigations and found strongly correlated with the inverse linker-junction kinetic

dissociation constant (koff ).

The physical theory used to describe the elasticity of reversible protein networks is

called “The Transient Network Theory”(22). According to this theory the magnitude

of G′ is directly proportional to the network number density of chains (ρchains)

capable to support stress and to the energy stored in each linker (G′ = kBTρchains).

Chains or linkers involved in binding pairs of junctions each having at least two other

bonds (Scanlan (17) and Case (18) (SC) criterion for defining an elastic effective

chain) are considered to have an ability to support stress. Reversible protein networks

however are responsive to external stimuli of the type mentioned above and these

factors can greatly affect the density of reacted groups that in turn determine the

number of linker-junction bonds. As such the network composition on microscropic

scale can vary significantly.

Even under optimized conditions to have the greatest number of junction-linker

bonds possible, the real peptide networks that result are imperfect systems and not

all linkers added during synthesis are able to support mechanical stress. For rheology

measurements purposes, the re-normalization of chain density in networks with loops

is implemented as to lower the storage modulus of hydrogels by an amount

proportional to the fraction of looped linkers. (8, 16, 19) Linkers with unreacted ends

must similarly be disregarded.

For practical applications such as controlled delivery and release, in addition to

strength of hydrogels, the degradability of peptide networks or the breakdown of a

percolated network is also of interest. In experiments, the rate of degradation of

peptide based hydrogels has been explored by Tirrell et al.(20). A peptide network

begins to loose its mass when simultaneously subsets of junctions/linkers lose all the

bonding to the parent network structure. For this to happen it is required that the
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association kinetic constant (kassoc) is slow and the separated fragments diffuse away

without having a chance to rejoin the parent network.The rate of erosion was found to

correlate with the presence of loops in the system. When loops are present, each

junction on average is attached to the parent network by fewer bonds and network

fragments are able to disengage sooner.

Individual pairs of junctions in percolated networks may be linked a single time or

multiple times. In protein networks, the multiple junctions pairing effect was

hypothesized and assumed negligible.(9) At the same added linker density,

experimental storage modulus values characterizing the strength of materials to

correspond to number of effective linkers in the system, currently do not distinguish

between linkers serving to bind pairs of junctions multiple times. Simulation work can

easily access resulting multiple junction pair fractions with functional form of

interaction protential.

Correlating the dynamic signatures of reversible networks with the microscopic

variation in the modes of junction-linker bonding such as paired vs. linear and/or in

the presence of topological defects such as loops and stoichiometric mismatch is

important in elucidating the equilibrium dynamics of protein network systems.

Although a far less explored area of protein networks dynamics and elasticity, the

behavior of protein hydrogels in non-equilibrium regimes has also been described.

Peptide networks have been previously subjected to creep test measurements(8) and

the magnitude of strains supported with respect to applied external stimuli known to

influence the hydrogel strength have been reported. In a more recent study reversible

peptide networks subjected to high applied strains also uncovered an yielding regime

due to a shear-banding mechanism.(15) Upon hydrogel injection, ∼ three times

storage modulus shear thinning is calculated followed by a nearly full strength

material recovery thus such materials can also have excellent self-healing capabilities.

The high gel recovery rate was explained as due to having the very high strain regions

localized to only pockets of percolated protein network. Shear-thickening behaviors is
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also possible to occur for peptide hydrogels in highly non-equilibrium regimes. Longer

lifetimes with applied force for proteins functioning to create the junction-linker bond

have been previously reported (21).

2.2 Background Elasticity Theory and Simulations

The general features of a reversible polymer network in elasticity theory include

junction points and linkers as well as defects of the type dangling ends, loops, and

other types of topological entanglements (i.e. knots). The majority of mass of such

networks is concentrated in the junction points.

The onset of the efforts to develop a simple theory that shows how molecular

rearrangements relate to the dynamic properties of reversible networks dates back to

1946 to work published by Tobolsky (22). His analysis considered reversible networks,

free of entanglements, at equilibrium. Making use of the recently published kinetic

theory of elasticity (23) as applied to polymers, Tobolsky argued that in a reversible

network, if the stress that results from applying an instantaneous perturbation can be

written as a sum of the stresses associated with each bond in the system, then each

disconnecting bond event will relax the stored stress attributed to that bond. Because

work is done upon the system during the applied perturbation, according to simple

thermodynamic principles, the new bond that replaces the disconnected bond, must

be in a relaxed state. If the number of bonds in the system is kept constant and if the

stress can only relax via the disconnecting events, then the stress relaxation rate

follows a simple exponential. Hence, in Tobolsky’s theory, the bond-disconnecting

event dictates the dynamic behavior of the networks and the viscosity is the constant

that relates the exponential stress decay to the remaining stress in the system.

Throughout the literature Tobolsky’s theory is commonly referred to as the “transient

network theory”. This theory it is often used to explain experimentally found

magnitude of storage modulus (G′) and the relaxation time (τshear) of assembled
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protein networks.

Several assumptions are present in the transient network theory. The network is

homogenous in structure and incompressible, the junction points move affinely with

applied deformation, and the stress is uniformly transmitted across lengthscales. Also,

the linker lengths follow a Gaussian distribution, the fluctuations in junction points

do not contribute to modifying the stress stored in the connecting linkers, and the

linkers connect to the parent network at a single point. Furthermore, the Green and

Tobolsky probability of breaking the linker-junction bond is assumed independent of

the state of the linker stretching. The relaxation of stress stored in a linker occurs

independently of all other chains. Also, once a linker is relaxed due to a disconnecting

event upon re-attaching to the network it does not contribute to the system’s stress.

Other scientists incorporated additional microscopic details and instances into

their models and showed how the dynamic properties of reversible networks changed

compared to this simple model proposed by Green and Tobolsky.

Earlier theories investigated the reversible network relaxation associated with

shear deformation of networks under stationary flows. In terms of microscopic

parameters implemented to affect the observed behaviors, Lodge’s theory (24)

assumes an equal probability of breaking and re-forming chains the junction points

with the stress at any given time dependent on flow history. In Kaye’s work(25) the

bond-disconnecting event is stress dependent. Yammamoto’s theory (26, 27)

considered that the bond breaking event should dependent on both end-to-end linker

elongation and linker contour length. The linkers needn’t be Gaussian chains. The

first reference to attempting to introducing junction multiplicity as a parameter when

discussing the relaxation of reversible networks was given by Lodge (28) when

presenting a modified version of Kaye’s theory.

The study of Wintjes et al. (29), related to the Lodge model relates the dynamic

properties of transient networks to the degree of intermolecular bonding and kinetic
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constants of forming and breaking the bonds. This work is related to our own

investigations in that local network connectivity is explicitly considered.

The network is composed of connected springs (equivalent to linkers having

reacted ends) decorated with up to eight connected or free sticky points (binding

sites) per chain. The total stress in the network is the sum of its Gaussian distributed

connected springs. The chains are categorized into active and inactive chains based

on their ability to support stress. The mechanism of stress relaxation consists of

reptation like relaxation and simultaneous or individual sticky points disconnecting

from their bonding place. The number of active chains is determined from both

integrating over possible spatial configurations of individual chains and from following

the kinetics of formation and annihilations of active chains.

The transition between free states and bound states required an activation energy

that follows an Arrhenius type equation with the rate dependent on an activation

energy barrier of breaking and reforming the bonds, as to reflect the chemistry of

interacting groups. Raising this activation energy corresponded to longer relaxation

times and wider plateau regions. The concentration/fraction of active chains were

also found dependent on the kinetic constant of reversible bond. The stress relaxation

rates are also sensitive to having an energy difference between the energy of breaking

a bond and to the energy of forming a new bond. If there is a high energy barrier to

breaking the bond but a low energy barrier to forming a bond the disconnecting

events are rare events and the stress will not relax for a long time. The plateau

moduli curves have high values and wide plateaus regions.

A single relaxation time corresponding to a single exponential decay is observed

for having low activation energy barriers and as much as two stickers per chain. The

relaxation time of a chain segment should reflect the summation over all rate

constants associated with relaxing its partial domains.

The shear stress plateau in the system is from summing over number of active
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chains in the system. The number N of sticky points per chain influenced both the

magnitude of shear modulus and the number of plateau regions. The number of

plateaus that result is N/2 for a system that has an even number of stickers per chain

and (N-1)/2 plateaus for a system whose chains have an odd number of stickers. A

higher number of stickers lead to higher magnitude shear modulus plateaus values

thus making for stronger materials. The shear relaxation time is also increaded in

these systems.

In a later study (30) for a polymer chains with several sticky points per chain

Jongschaap isolated situations where the disconnecting events do not necessarily

contribute to the overall relaxation of the system. If the sticker where the dissociation

process occurs is tightly neighbored only by stickers that are yet to dissociate, such as

an intramolecular type bonding instance, then these events belongs to a time scale

that does not necessarily contribute to the macroscopic stress relaxation profile of the

system. In the same study two types of stickers with different binding abilities were

also explored.

The microscopic parameters considered in the theory developed by Tanaka and

Edwards (31, 32) the rate at which the bonds disconnect themselves from the bonding

place and the rate at which the bonds successfully recombine to a new place in the

systems with the former dependent on absolute magnitude of end-to-end distance due

to tension in the chain, temperature, and linker molecular weight. The equilibrium

number of active chains also considers a rate of new bond formation that explicitly

includes an energy barrier to forming new chains. The stress relaxation modulus

decrease with temperature is postulated due to the thermal motion increasing the

frequency of bond dissociation events. Only a weak dependence is observed with

increasing the contour linker length. Explicit formula for the complex viscosity

typically determined in rheology experiments is also presented. The Green-Tobolsky

limit of this equation is also shown in the frequency domain, with G′(w) explicitly

dependent on the constant rate of bond dissociation event and the population of
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chains at equilibrium.

Tanaka and Edwards’ work also transitions towards investigating non-equilibrium,

non-linear effects such as shear thinning by considering a end-to-end distance

dependent probability function describing the disconnecting events. In polymer

theory, the resulting elongation of a polymer chain under strong non-linear stretching

and the force needed to exert the elongation is typically explained via the Langevian

function(33, 34). The probability of the disconnecting event explicitly in Tanaka’s

work considers the tension in the chain along with a coupling constant that controls

the magnitude of rate of dissociation at that elongation.(35) The lifetimes of the

bonding points in the network are predicted to monotonically decrease when

increasing the applied shear. In other studies Tanaka and co-workers (35–37)

investigated how junction multiplicity, linker length, and intramolecular

re-arrangements such as loops formation influence the percolation limit. The evolution

of number of linkers capable to support stress in this limit is also investigated.

Cates’ work (38, 39) is related to reptation theory and it is more complex

compared to the transient network theory because it considers reversible self-assembly

with the possibility of chains also entangling.

Dynamics and elasticity of both entangled and unentangled systems were considerd

by Rubinstein and co-workers, both near the percolation regimes and also when the

networks are fully formed. (40–43) We briefly mention developments for unentangled,

reversible, fully formed networks. The reacting groups are ‘sticky points’ and a large

number (up to 20) were considered located on the same chain at equidistant positions.

The polymer mass between the sticky points on the same chain was referred to as

‘strands’. The fraction of recombination events by sticky ends of strands that result in

the dangling end finding the old partner is discounted as means of stress relaxation in

the system. Two time scales are considered to control the material dynamics of the

networks, the relaxation time of the strand and the relaxation time of the chain. Two

plateau moduli are discussed, G0 and G1 with G0 > G1 . The shear modulus plateau
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G0 is linear in density of strands and the energy stored per strand. This modulus

corresponds to the elastic limit of a traditional rubber like network. The magnitude of

G1 on the other hand is linear in number of chains. The shear viscosity of the system

is the product of G1 and the relaxation time of the chain.

Previously the dynamic properties of reversible networks have also been studied in

simulations.(16, 44–46) Please also see references of papers cited end of previous

sentence. Here we briefly explore molecular dynamics/Monte-Carlo hybrid simulation

work published by Hoy and Fredrickson(46) where the microscopic reversible network

structure resembles the classical polymer network picture and it is closest in that

regard to our own investigation. (46) Bond breaking and bond recombination is

achieved via Monte-Carlo moves. The relationship between strength of interaction at

the sticky points was changed from very weak when no network structure percolates

up to four times above the gel transition. Thermodynamic equilibrium constants were

calculated for each magnitude of interaction energy considered. One unique feature of

this simulation study is that the time scales are manipulated in such a manner that

under some instances the bond breaking events and the bond forming events become

correlated. As such the bond recombination event is both kinetically controlled and

diffusion controlled. The lifetimes of the sticky points were separated into a bare

lifetime of a bond that corresponds to kinetics of disassociation and an effective

lifetime of a bond where separated stickers diffuse away by connecting to a new

partner and in doing so the old bond relaxes. For a percolated network, a relationship

is established between these important system relaxation time scales and the

probabilities of bond re-combinations due to kinetic considerations or due to a

diffusion contribution.

Synthesized reversible protein networks need function in highly non-equilibrium

conditions such as they need to flow when injected or need be strong materials that

can support mechanical stress when employed in applications such as scaffolds in

tissue engineering. We conclude this section by mentioning lessons learned from both
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experiment and theory of telechelic reversible networks pertaining to non-equilibrium,

non-linear regime.

This class of reversible networks differs from protein networks that a considerably

higher junction multiplicity is achieved in experiment. Also the microscopic

descriptions of such assembly resemble flower-like micelles with arms capable to

inter-bond reversibly into networks rather than having a rubber like polymer network

structure. Their equilibrium dynamic behavior has been the object of numerous

experimental and theoretical studies and the trends observed were compared to

transient network theory predictions not so unlike the dynamic and elastic behavior of

reversible peptide networks.

Under applied shear stress beyond the linear regime, Jenkins’s work (47) on the

hydrophobic ethoxylated urethane (HEUR) systems observed a shear-thickening

viscosity regime (∼ 70% increase) at lower shearing rates. Three shear-thinning

viscosity regimes were also observed with increasing the non-linear shearing rates.

The shear-thickening viscosity was explained as shear-induced new junction points

formation, as loops to active linkers non-equilibrium prompted rearrangements, and

as an increase in the relaxation times of the system due to the reduction in number of

superbridges. Interestingly, the first two shear-thinning regions had a storage modulus

similar to the shear-thickening region but accelerated, distinct shear relaxation times

that lowered the shearing viscosity. The authors concluded that the topology of the

network is thus mostly unchanged by the applied stress. The junctions’ lifetimes were

however greatly affected by the shear deformation. The sharp change in the viscosity

for the last shear-thinning region is believed characteristic of network fragmentations.

Previously, the non-linear reversible network dynamic behavior was also

interpreted as strictly resulting from shear-induced non-affine extensions of the linkers

that lead to highly strained networks. Berret et al.’s work (48) on the F-HEUR

systems consisted of step-strains experiments with applied strains in the 0.01-3.0

regime. The onset of the non-linear regime was identified for applied step strains
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larger than 0.4 and it was followed by a strain hardening region under conditions of

strain smaller than ∼2. The strain hardening region was characterized by a strong

increase in the storage modulus attributed to stiffening of the linkers themselves due

to a non-linear stretching as well as a decrease in the relaxation time with larger

applied strains.

The strain hardening phenomenon due to non-affine chain deformations was also

studied by Cooper et al. in hydrophobically capped poly-(ethylene oxide) networks

via applied shear experiments similar to those done by Jenkins. In this study it was

also shown that increasing a systems concentration leads to mildly higher non-linear

viscosity as well as lower onsets for the shear-thickening phenomena. Higher

temperatures lowered the non-linear viscosity and delayed the onset of the

shear-thickening viscosity. Roughly tripling the linkers molecular weights resulted in

the absence of the shear-thickening region. This feature was attributed to a shorter

final non-equilibrium linker stretching.

Among the theoretical studies aiming to explain the non-linear behavior of

reversible networks, the Marruci model (49, 50), the Tanaka/Edward theory

mentioned previously, and the van den Brule/Hoogerbrugge simulation work (51) are

the most popular. The framework of Marruci’s model is similar to Tanaka’s work but

conceptually different in that the chains are considered to re-attach to the network in

strained states. His derivations explain the experimentally observed shear-thickening

regions as strongly correlated to the existence of shear-induced chain stretching. The

shear-thickening rate changed with the end-to-end distance independently of the

junction-linker binding statistics. The increase in viscosity is explained by additional

energy stored in the deformed linkers and believed dependent on the binding and the

unbinding events as well as on the applied shear rates (higher initial shear rates

believed to increases stored energy). The probability of formation of the new elastic

chains is linked to the ability of the dangling chains to explore its environment and

end-to-end distance dependent. The probability of a linker disengaging from the
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network is dependent on the chain extension and it has probability 1 when the linker

is fully extended. The spectra of the relaxation times reflects the relationships

between the degree of initial linker stretching, the effect of partial chain relaxation,

and the number of binding/unbinding events. Van Den Brule’s Brownian dynamics

simulations derived theory added an additional dimension to explaining the

shear-thickening behaviors in reversible networks as the simulations indicate that

under non-linear shear flow, the probability of junction point formations tend to be

higher for longer linkers.

Some of the limitations of the Marruci’s model are shown in Mewis’ work (52).

The onset of the non-linearity features is observed at much lower shear rates than

predicted from the Marruci theory and believed to be caused by also changes in the

relaxation times of the linkers.

It is also possible that with nonlinear applied forces, the end-to-end distance

evolution lead to equilibrium similar terminal linker configurations but less gradual

changes in some of the kinetic parameters that dictate the settling of the

non-equilibrium behavior. The effects of varying the strength of associations at the

junction points was further studied by Mckinley et al. (53) Finally, the non-linear

dynamic behavior of systems with free chains and both inter-chain and intra-chain

bonding capabilities was also explored previously and explained to correlate with a

coagulation of linkers (54).

2.3 This Work

The existing simulation work cited above, such as Monte-Carlo (MC) type

investigations, aims to identify likely topological network structures(16). Simulation

work that considers network local connectivity (often lattice models) limits itself to

establish or verify geometric or rigid percolation exponents. Simulation studies such

as Hoy and Fredrickson’ s MC/MD investigation (46) that evaluated the network
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percolation due to energy of interaction and also explored network dynamics are hard

to find in literature.

In this simulation and theory work we conduct a systematic investigation of the

relationship between local network connectivity and resulting rheological

(elastic/dynamic) signatures of fully percolated reversible (protein) due to

pre-imposed degrees of stoichiometric mismatch in mixing components.

Protein hydrogels in experiment most compatible with these studies are two

component systems, more specifically divalent linkers terminated at both ends by

peptide ligand sequences and junction components consisting of several ligand

complimentary binding sites, all sites linked covalently as a single rigid unit. As a

simulation model, a hybrid Monte-Carlo, Molecular Dynamics (MCMD) simulation

model is constructed. The Monte-Carlo move reproduces the bond-rearrangement

move that relaxes the stress in the system. The molecular dynamics (MD) segment of

the trajectory relaxes the stress in the system thus creating uncorrelated bond

breaking and bond forming events. The ensemble thermodynamic observables that

lead to material properties such as viscosity calculations are determined from averages

across the MCMD trajectory.

A fraction of looped linkers and specific modes of junction-junction bonding are

also implemented. A distribution in linker lengths is incorporated. The stiffness of the

linkers is changed. The number of ligand-junction interaction per junction component

determines the valence of the network. The network topology is precisely considered

in each instance and the valence is increased from three to nine. In simulation, the

reversible network structural defects and topological details mentioned above are

investigated separately and then in combination with one or all others.

A simple phenomenological theory is introduced and relates our various simulation

cases findings. Explicit microscopic defect migration rates that lead to stress

relaxation in all instances are presented. The material properties evaluated include
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the rate of stress relaxation and the shear relaxation time (τshear), and the plateau

shear modulus G′ (in this work G or G0) determined in rheology experiments.

Applicability to other regimes and systems such as close to network percolation

threshold limit and telechelic networks respectively are also explored. Furthermore,

the time-dependence of viscosity during gel “aging” is modeled as an approach to

equilibrium through diffusion-limited annihilation of complementary unreacted

groups.
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3

Effects of defects on the shear

stress relaxation in self-assembled

protein networks

3.1 Introduction

Self-assembled networks formed by cross-linking of proteins with specific interactions

are of practical interest for possible applications in drug delivery and other areas of

biomaterials.(1–15) The ability to precisely engineer the length and properties of

connecting segments, combined with the enormous variety of binding groups that are

available in naturally occurring proteins, provides a powerful toolbox to create

hydrogel networks with desired properties. The use of monodisperse components with

high-specificity, high-affinity interactions facilitates a precise connection between

experiment and theory by eliminating uncertainties about the dynamics,

thermodynamics, and stoichiometry of interactions that are typical of traditional

hydrogels. Due to the specificity of the interactions, network rearrangements can be

36
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unambiguously defined in terms of discrete binding and dissociation events with

well-defined stoichiometry, rather than the breaking and forming of ill-characterized

interactions within aggregates of unknown structure. The dissociation rates for

high-affinity protein-protein interactions are slow enough (∼ 0.01− 100s−1) that

relaxation of local network conformation can be assumed to be complete in between

bond-breaking events.

Systems with these features lend themselves to systematic investigation of the

connections between microscopic events and bulk rheological properties, under a

different set of assumptions than has been typically used to treat reversible networks

formed by chains containing multiple weak sticky sites.(16–30) For instance, recent

work has explored the rheology of synthetic peptides interacting via leucine zipper

domains, with particular attention to controlling the tendency of loop formation

through binding of two domains within the same peptide.(4–6) The network organized

from a single component monomer engineered as a triblock protein - two leucine

zipper domains flanking a flexible linker domain. The leucine zipper domains

originating from the same monomer or from a different monomer joined in a tetramer

or a pentamer arrangement. Their binding strength and thus the overall material

properties could be rationally altered via adjustments in the pH of the medium.

Another recent example of an engineered gel was developed and studied by Topp

et al.(7) The architecture in that example relied on the mixing of two components, a

divalent linker segment (terminated by calmodulin-binding peptide domains) and a

tetravalent junction assembly featuring four calmodulin domains, bound together by

leucine zipper interactions. As the calmodulin/CBP attraction is dependent on the

presence of calcium ions, so the gel formation depended sensitively on calcium content.

Aside from the sensitivity to calcium content, the architecture of this system is

intriguing for having distinct junction and linker components. One practical

advantage is that a small number of junction types and linker types can be combined

to form a large variety of gels with different properties. Furthermore, the use of
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two-component gels has the advantage that gel formation may be initiated simply by

mixing the components, rather than relying on external triggers such as changing

solution properties.(31) Another interesting property - which may be a benefit or a

liability for practical applications is the ability to vary the level of network defects

(for instance, dangling linker ends or unfilled junction sites) simply by changing the

mole ratio of junctions and linkers. As equilibrium constants KD for bond

dissociation may be in the nanomolar or picomolar range, the equilibrium ratio of

defects to bonds formed may be as low as 10−3 or 10−4 assuming perfect

stoichiometry. Tuning the ratio of the two components away from a 1:1 matching of

junction and linker sites, however, will lead to a controllable defect fraction that is

not sensitive to KD. In this study, we use mesoscale simulation and theory to explore

some general aspects of long-time dynamics in networks formed from mixtures of

polyvalent junctions with divalent linkers (Figure 3.1).

Figure 3.1: Cartoon representations of “junctions” and “linker” components -

The basis of the analysis is the hypothesis that defects play an essential role in the

dynamics of the network at long timescales. The classical transient network model of

Green and Tobolsky 16 posits that the breaking of a small fraction of the bonds in the

system relaxes, on average, the corresponding fraction of the shear stress in the

system. The rate of relaxation is therefore congruent to the rate of chain breaking,

consistent with experimental observations that the characteristic times measured for
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strand rearrangements correspond to the shear stress relaxation time.(4, 5, 5) As

noted by Rubinstein and Semenov (20) dissociation events in a network are frequently

followed by recombination, as the partners cannot diffuse away from each other. If a

linker dissociates from a junction binding site, three outcomes are probable: the linker

will re-associate with the same site, the linker will associate with a different nearby

unoccupied junction binding site, or a nearby dangling linker will associate with the

junction binding site. The latter two outcomes result in the migration of the defect

(open junction site or dangling linker) to a new site, along with replacement of one

bond with a new bond. Over time this rearrangement of bonds allows the network to

flow, or to relax stress from an initial applied shear strain. In the following we use a

simple simulation model to evaluate the rate of defect migration, and the resulting

rate of relaxation of shear stress, and their dependence on junction multiplicity, defect

concentration, and linker stiffness. The results are used to develop a phenomenological

theory to predict the dependence of shear viscosity on the thermodynamics and

kinetics of linker-junction binding, stoichiometric mismatch, and junction multiplicity.

Finally, the time-dependence of viscosity during gel aging is modeled as an approach

to equilibrium through diffusion-limited recombination of complementary defects.

3.2 Simulation Model

3.2.1 Key Assumptions

We focus on stress relaxation via discrete defect-mediated network rearrangement

events. We assume that these events take place on a timescale (∼ k−1off = 10−3 − 102s,

with koff the first-order linker-junction dissociation rate) that is long compared with

the linker relaxation time (∼ 10−6s) that will mediate the structural fluctuations of

the network at fixed connectivity. Therefore, between defect migration events the

structure equilibrates fully. Molecular dynamics (MD) simulation trajectories of the
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fixed network are performed between bond rearrangements (modelled via a Monte

Carlo (MC) procedure) to sample the equilibrium fluctuations in structure and shear

stress. While the true interval between bond-breaking events would be described by a

Poisson distribution with a mean of (2NLkoff )−1 (with NL the number of linkers in

the system), for our purposes we only aim for MD simulation intervals long enough

that successive bond rearrangement events are uncorrelated and that structural and

thermodynamic averages can converge to equilibrium values.

We assume that the linker-junction bond has a very low dissociation equilibrium

constant KD so the linker-junction dissociation is a rare event. The probabilities that

both ends of the linker dissociate at once, or that two neighbouring linkers dissociate

simultaneously and exchange junctions, are treated as negligible. Therefore, once one

end of the linker dissociates, a linker will always either re-form a bond with the same

junction or with a nearby junction. The fraction of free sites during the simulation is

conserved, and is solely dependent on the stoichiometric mismatch between junctions

and linkers. Furthermore, the dissociation rate is assumed independent of linker

extension.

Once a linker is dissociated at one end, it is assumed to rapidly sample an

equilibrium distribution of linker lengths and to rotate rapidly and isotropically

around the junction to which it remains attached. Its probability of reattachment

either to its original junction or to a new junction is therefore assumed to be

proportional to the equilibrium probability that the linkers extension matches the

distance between the remaining junction and the new or original junction.

These assumptions form the bases of the mixed MD/MC simulations described

below. From the simulation results we seek the factors determining success rate of

defect migrations and the relationship between defect migration events and shear

stress relaxation. Using these relationships we will then consider in general how the

stress relaxation rate will depend, in a linker-junction network, on stoichimetry,

junction valence, kinetic and equilibrium dissociation constants of the linker-junction
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bond (koff and KD), and preparation history of the network.

3.2.2 Model details

The simulation model consists of NJ “junctions”, which interact with all other

junctions via a repulsive short-ranged potential, and NL “linkers” connecting pairs of

junctions, which appear as bonding interactions between pairs of junctions. Bonded

and repulsive potential functions are plotted in figure 3.2. For the bonding interaction,

an anharmonic potential is used that represents the extensibility of the linker:

Ub(r) =
1

4
k∗
(
r2 − r2o

)2
(3.1)

where k∗ is the force constant and ro is the equilibrium length of the linker. This

quartic potential was used instead of a harmonic potential to give a stiffer upper limit

to the maximum distance between linked junctions. Other than their effects in

bridging junctions, linkers positions and configurations are not explicitly defined; they

may cross each other with no topological restrictions. Entanglements, repulsion

between linkers, and orientation effects (i.e. linker-junction-linker angle dependence)

are neglected.

In the absence of a non-bonded repulsive potential, the network collapses into a

dense cluster of linked junctions after many MC/MD cycles. Therefore, in addition to

the bonded potential, a purely repulsive 1/r12 potential between all pairs of junctions

(whether or not connected by linkers) was used. This repulsive potential is truncated

smoothly to zero through a shift potential at a distance of rc = 0.766r0. The repulsive

potential, which is similar to a hard-sphere potential for spheres of diameter 0.7r0,

represents excluded volume interactions between junctions. Details of this repulsive

potential are given in equation 3.2 and table 3.1.
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Urep(r) =


Crep(r

−12 −D) r ≤ r1

Crep(r
−12 −A(r − r1)3 −B(r − r1)4 −D) r1 < r < rc

0 r ≥ rc

(3.2)

Parameters A, B, and D are chosen to satisfy continuous first and second

derivatives of the potential at the shift function start distance r1 and that the

potential and force reach zero at the cut-off distance rc.

The valency ν of the network is defined as the maximum number of linkers that

may bind to each junction in that network. In a defect-free network with NJ

junctions, the total number of linkers (NLo) would equal NJ · ν/2. In the current

simulations, the properties of the network are defined in terms of linker to junction

mismatch, more specifically in terms of the fraction of missing linkers denoted s,

compared to the total number needed in a perfectly matched network. The

stoichiometric mismatch factor s is related to the actual number of linkers in the

network (NL) and the total number of linkers of a defect free network (NLo) as

s = 1−NL/NLo. Simulations were performed used a range of valencies, fractions of

missing linkers, and spring constants k∗ as indicated in table 3.2. In each case, to

generate a starting configuration, junctions were placed at the vertices of an fcc

lattice with nearest neighbor distance equal to the bond length r0 . Pairs of junctions

to be linked (ν pairs per junction) are chosen randomly among the twelve possibilities

dictated by the fcc-lattice nearest neighbours. The defect sites were created by

randomly cancelling the bonded interactions among an appropriate number of pairs of

bonded junctions, representing a deficit of linkers.

Constant NVE molecular dynamics (MD) simulations were performed using

Gromacs 3.3.(32) The Monte Carlo (MC) moves and the incorporation of the
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Figure 3.2: Form of interaction potential used in simulations - Bonded and repul-
sive potential functions (eq. 3.1 and 3.2), in reduced units; bonded potential shown is for
k∗ = 20 .

Table 3.1: Overview - Simulation Parameters in Reduced Units.

thermal energy (kBT
∗) 1.0

energy-minimized linker length (r0) 1.0
junction mass (m∗) 1.0

force constant (k∗) (unless otherwise noted) 20.0
repulsive potential parameter Crep 6.43 · 10−3

shift function start distance (r1) 0.745
1/r12 cut-off distance (rc) 0.766

A, B, D −2.92 · 106, 9.77 · 107, 28.8
MD time step (t∗) 0.0004

duration of MD relaxation interval 62.0

number density of junctions (n∗)
√

2
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necessary Gromacs utilities were handled with a homemade Perl wrapper script. The

total length of the trajectories collected for each of the systems consists of a minimum

of 3.0 · 105 Monte-Carlo bond rearrangement move attempts, each followed by a

molecular dynamics (MD) relaxation interval. The length of each MD trajectory

(155,000 time steps, or 62 times the reduced time unit of (m∗r20/kBT )1/2), was chosen

to give sufficient time for that relaxation, rather than represent the true (assumed

very long) interval between junction dissociations. The junction velocities were

generated from a Maxwell-Boltzmann distribution appropriate to the system

temperature at the start of each MD trajectory. Periodic boundary conditions were

imposed in the xyz directions of a cubic simulation box.

Table 3.2: Overview - Simulation Networks.

Junctionvalency (ν) fraction of missing linkers (s) linker spring constant (k∗)

3 0.005, 0.025, 0.0375, 0.050 20

4 0.005, 0.025, 0.050 20
0.005, 0.025 40
0.005, 0.025 80
0.005, 0.025 120

5 0.040, 0.080, 0.140 20

3.2.3 Monte Carlo algorithm for bond-rearrangement moves

The equilibrium dissociation constant KD for the linker-junction bond is assumed to

be low enough that linkers remain bonded to at least one junction at all times.

Changes in connectivity proceed through breaking of linker-junction bonds and

reforming new bonds at defective junctions (Figure 3.3). This defect migration move

was attempted after each MD block.

First, randomly, a linker connecting any two junctions of the network is chosen

with equal probability. Next, it is assumed that the selected linker disconnects itself

from either junction with equal probability. At this stage, the dangling end of the

linker will either reconnect itself to the old junction and thus leave the network
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Figure 3.3: Molecular details of a successful Monte-Carlo (MC) move - Initially,
one end of the linker connecting the junctions i and j disconnects due to the transient nature
of the linker-junction interaction. In its vicinity, junction k has an incomplete valency due
to the stoichiometric imbalance. Upon the successful defect migration, the linker connects
junction i with junction k. The junction with an incomplete valency is now junction j.

topology unchanged, or form a new bond by attaching itself to any defect junction in

the system. In either case, the probability of reattachment to some junction (new or

old) is 1, consistent with the assumption of a very low KD. The probability of

forming each possible connection (new or old) is proportional to the Boltzmann factor

exp[−Ub(rij)] associated with the linkers potential energy Ub at the new (or old) bond

length rij . In a system with no defects (s = 0), the probability p of reattachment to a

new junction becomes zero and the network connectivity cannot change. The

simulation model does not permit a linker to attach at both ends to the same junction

(i.e. loop), nor does it permit more than one linker to bridge any pair of junctions

(i.e. double-bond). According to linear response theory, the network viscosity can be

computed from the integral of the autocorrelation function of the off-diagonal

elements σij (where i and j represent x,y, or z and i 6= j) of the stress tensor.(33, 34)

At a given fixed connectivity (i.e., in between defect migration events) the average

shear stress of the network cannot in general relax to zero, but converges to some

non-zero average after a period of local fluctuations in structure. After each

Monte-Carlo move attempt an MD simulation with bonds fixed was performed as

described above. Stress tensor elements were derived from these simulations using the
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following equation:

σ(t/tMC) =

〈
1

V

∑
k 6=l

ri(kl)(f
bonded
j(kl) + f repulsivej(kl) )

〉
(3.3)

where r and f are distance and force respectively, k and l are indices of junctions, i, j

are Cartesian directions, and triangular brackets indicate an average over a single MD

trajectory.

The averages of σij fluctuate around zero over a full trajectory consisting of

300,000 MC defect migration attempts each followed by an MD trajectory (Figure

3.4, top panel). The time correlation function Cσσ of σij , averaged over the three

shear directions, is shown in Figure 3.4 (lower panel) along with a best-fit single

exponential decay curve. All systems yielded good approximations to

single-exponential shear stress time correlation functions:

Cσσ(t) = Co exp(−t/τshear) (3.4)

In the presence of bonds, the shear stress remains strongly correlated over many

MC/MD blocks, confirming that the average values of σij from equation 3.3 are

well-converged. The majority of the shear stress arises directly from the bonded

forces; for instance, at ν = 4, k∗ = 20, s = 0.005, the rms contribution to all σij from

the bonding potential terms accounted for 85% of the total rms value of off-diagonal

stress elements. The constraints imposed by the linkers can lead to persistent steric

repulsions between junctions, which will contribute to the systems response to applied

shear and are appropriate to include in equation 3.3. (A velocity-dependent term is

also included in the calculation of stress tensor elements by Gromacs, but over the

course of a single trajectory its contribution is negligible, < 1% of the

root-mean-square stress for off-diagonal elements σij .) In the absence of bonds, shear

stress correlations decayed within a single MD trajectory, indicating that the
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Figure 3.4: Example trajectory stress tensor element and time-correlation func-
tion - (Top panel)The evolution of one of the off-diagonal elements of the stress tensor
(〈σxy〉) over a full trajectory of 300,000 MC steps in a tetravalent network with k∗ = 20 and
s = 0.025. (Lower panel) The resulting time stress-stress autocorrelation (Cσσ) function
and its exponential fit.
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junctions alone flow freely in the absence of bonds. The exponential fit of the

correlation function to equation 3.4 yields a shear relaxation time in terms of the time

between MC steps, tMC . Based on the model assumptions, this interval corresponds

to (2NLkoff )−1; we use this conversion to express a dimensionless relaxation rate

koff · τshear in the Results and Discussion sections.

3.3 Results

3.3.1 Rate of defect migration

The fraction p of junction-linker dissociation events that lead to defect migration in

simulations increases with the product of stoichiometric mismatch s and junction

valence ν, as shown in figure 3.5. Systems with the same linker extension force

constant but different valence give nearly identical curves. Increasing force constant

with fixed valence and mismatch s yielded decreasing defect migration probabilities

(Figure 3.6).

The dimensionless shear relaxation times koff · τshear decreased with increasing

stoichiometric mismatch, and were generally lower for the trivalent system than for

networks with ν = 4 or 5. (Figure 3.7) . Relaxation times increased with increasing

linker extension force constant. (Figure 3.8)

The shear viscosity η is related to the integral of shear stress autocorrelation

function Cσσ by:

η =
V

kBT

∫ ∞
0

Cσσ(t)dt (3.5)

with V the system volume.(32, 33) With an autocorrelation function following the

simple exponential form of equation 3.4, and using simulation units where kBT = 1,

this yields η = V C0 · τshear. In an equilibrium network system with a single stress
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Figure 3.5: Rate of defect migration - The fraction of successful defect migration
moves (p) vs. the fraction of junctions with available binding sites (sν) from simulations
with k*=20 bonded potential spring constant. The symbols are the simulation values,
while curves are the predicted defect migration probabilities from equations 3.6-3.8.

Figure 3.6: Rate of defect migration in stiffer networks - Simulation and predicted
defect migration probabilities (p) with increasing the spring constant of the bonding po-
tential (k∗). The data shown are for tetravalent networks with s = 0.005 and s = 0.025.
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Figure 3.7: Relaxation time vs. stoichiometric mismatch in simulation - Di-
mensionless network shear relaxation times (τshearkoff ) vs. the fraction of missing linkers
(s) from simulations (symbols) and predictions (solid curves) for k∗ = 20.

Figure 3.8: Relaxation time in stiffer networks - Dimensionless network shear
relaxation times (τshearkoff ) in tetravalent networks as a function of linker extension force
constant (k∗).
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relaxation time τshear , the viscosity can be expressed as the product of τshear with

the shear modulus G of the corresponding fixed network (η = Gτshear).(18–20, 35)

Therefore, G = V C0 . Figure 3.9 shows G, normalized to linker density, for all

networks simulated. The network shear modulus per linker increases with increasing

junction valence. Fixed networks with greater defect fractions can be seen as mixtures

of junctions with different valences, so it is consistent with this trend that increasing s

lowers the modulus per linker for ν = 4 and ν = 5. There furthermore seems to be an

increase in modulus per linker with increased linker stiffness (figure 3.9, lower panel).

In general, the trends suggest that the greater the degree of constraint on the junction

positions (due to higher valence or stiffer linkers), the greater the shear modulus per

linker.

3.4 Discussion

The interpretation of simulation results is conveniently decomposed into two

questions: how does the rate of defect migration depend on system properties, and

how does stress relaxation depend on defect migration?

3.4.1 Rate of defect migration

The rate of successful defect migration per linker-junction association is the product

of the rate of linker-junction dissociation koff and the fraction p of dissociation events

that are not followed by trivial recombination of the original linker-junction pair. The

product koff · p is analogous to the inverse of the renormalized effective bond lifetime

τ∗b in the theory of Semenov and Rubinstein.(20) As we assume high linker-junction

affinity, this recombination is inevitable unless the linker can bind to another open

site. The migration success fraction p is therefore related to the ratio of the number

of open sites to the number of junctions, which (again, in the limit of high
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Figure 3.9: Fixed network shear modulus - Dimensionless fixed-network shear mod-
ulus (G) for networks k∗ = 20 and varying stoichiometric mismatch (s) (top) and for
tetravalent networks at varying linker stiffness k∗ (bottom).
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linker-junction affinity) is proportional to the product of the stoichiometric mismatch

factor s and the junction valency ν.

To understand the dependence of p on s, ν, and k∗ observed in simulations and

plotted in figures 3.5 and 3.6, we seek the probability that a defect-containing

junction is in reach of a linker that has dissociated at one end from its junction site.

We first determine the average total number of junctions Nr within bonding range of

a junction, excluding junctions already linked to that junction (because double

bonding was not permitted in the simulations). To find Nr here we use structural

information from the simulations, specifically the pair radial distribution function

gnb(r) between non-bonded junctions. Figure 3.10 shows gnb(r) at three valencies

obtained from averaging over simulated structures. The structure apparent in the

non-bonded radial distribution function is qualitatively similar to that of a

hard-sphere fluid at a volume fraction of 0.25, (36) except for a depletion of

non-bonded neighbor density near r = 1 (more pronounced with increasing valence ν)

due to the enrichment of bonded neighbors near the bonded potential minimum. To

obtain Nr we integrate numerically over the distribution of junction-junction

separation distances derived from simulations, weighting each distance by the

Boltzmann weight associated with forming a bond of a given length. The effective

mean number Nr of junctions within bonding range, exclusive of those currently

linked to a given junction, can be calculated as:

Nr = ρ

∫ ∞
0

4πr2gnb(r)
exp−(βUb(r))

〈exp−(βUb(r))〉 b
dr (3.6)

with ρ the total junction concentration, gnb(r) the pair distribution function between

junctions that are not connected by a linker, and the bracketed average of Boltzmann

weights in the denominator taken over the distribution of bonded junctions. Table 3.3

shows values of Nr obtained numerically using Eq. 3.6, in which the bonded potential

Ub is taken from Eq. 3.1 and simulation results were used for gnb(r). Because the
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dependence of gnb(r) on stoichiometric mismatch s was negligible (curves at varying s

were identical within the thickness of the lines plotted in figure 3.10), we treat Nr as

independent of s. The decrease in Nr with increasing ν comes from the exclusion of

increasing numbers of bonded neighbors from the potential sites for forming a new

bond, while the decrease with increasing k∗ comes from the narrowing of the range of

stable bond lengths.

Figure 3.10: Non-bonded junctions network structure - Non-bonded radial distri-
bution functions (gnb(r)) vs. r from simulations at varying network valence and Boltzmann
weight associated with the bonded potential exp[−Ub(r)] for k∗ = 20 (two dots-dashed
curve).

Table 3.3: Networks in Simulation -Overview - Nonbonded neighbor junctions (Nr)
from simulations.

Junction valency (ν) Spring Constant (k∗) Nr

3 20 8.3
4 20 7.5
4 40 5.3
4 80 3.8
4 120 3.1
5 20 7.1

At very small sν, the probability of a single available defect within bonding range

is simply Nrsν, the probability of multiple defects within bonding range is negligible,
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and given equal chance of the linker recombining with its current junction or binding

to the defect, the migration success probability p = sνNr/2. When the product sνNr

is comparable to unity, the likelihood of multiple defects within bonding range cannot

be neglected. To estimate p in this regime, we need to consider the probability Pi

that i = 0, 1 . . . Nr of the Nr neighbouring junctions may have a defect site. Assuming

that defects are distributed randomly,

Pi =

(
Nr!

(Nr − 1)!i!

)
(sν)i(1− (sν))Nr−i (3.7)

A linker dissociating from a junction with i defects in binding range will have a

probability of 1/(i+ 1) of returning to its original junction, so the probability of

successful migration of the defect will be i/(i+ 1). Summing over possible numbers of

neighbouring junctions with defects i we can approximate an overall probability of

defect migration:

p =

Nr∑
i=0

(
i

i+ 1

)
Pi (3.8)

Since Nr calculated from equation 3.6 is generally not an integer, we evaluate p as

the weighted sum of values calculated with the two nearest integers. We note that at

low sν, Pi is negligible for i ≥ 2;Pi ∼ Nrsν from Eq. 3.7; and Eq. 3.8 reduces to

p ∼ sνNr/2.

The application of equations 3.7-3.8 and data from Table 3.3 to predict the success

rate of defect migration over a range of valencies, linker stiffnesses, and stoichiometric

mismatches is successful in the limit of low sν(sν < 0.2), as shown in inset of figure

3.5 and figure 3.6. These equations however overpredict the success probability at

higher values of sν. The near collapse of the three curves in figure 3.5 onto one shows

that changing the topology of the networks has a small effect on the resulting defect

migration probabilities at fixed sν and linker stiffness. Increase in linker stiffness

leads to a significant decrease in p (Figure 3.6), as a less flexible linker has a narrower
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bonding range and fewer potential bonding partners (Table 3.3).

In an experimental system where the Ub(r) and g(r) are not known, Nr might be

estimated from linker and junction dimensions. With an estimate rmax for a maximum

probable linker extension, and a minimum approach distance rmin (calculated from

the junction diameter, plus any minimum extension distance for the linker):

Nr ∼
4π

3
ρ(r3max − r3min) (3.9)

This approximation amounts to an assumption of constant gnb(r) = 1 and a

square-well form for the bonding potential Ub(r).

3.4.2 Effect of defect migration on stress relaxation

A range of timescales is typically observed in experimental stress relaxation profiles

for associating networks (see e.g. ref. 26). The present analysis produces simple

exponential relaxation (see fig. 3.4). Here, only relaxation on the timescale of

junction-linker dissociation is included in the calculation, as the rapid fluctuations of

the network at fixed connectivity are averaged out over the MD sampling intervals.

The use of a simple divalent linker (rather than a linker with multiple associative

sites), the exclusion of multiple bonds, and the absence of any entanglement effects

(explicitly excluded, but arguably unimportant in a system with short linkers) remove

other additional relaxation processes that may introduce additional complexity.

From figures 3.5 and 3.7 it is evident that increased stoichiometric mismatch leads

to increasing defect migration rates and decreased stress relaxation times. To pursue

this analysis in more depth we consider the transient network model of Green and

Tobolsky. (16) According to this model, the breaking of one of NL linkers within the

network should on average relax a fraction 1/NL of the shear stress in the system.

The autocorrelation function for the off-diagonal elements of the pressure tensor
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should therefore follow:

Cσσ(t) = C0

(
NL − 1

NL

)t/τmig
≈ C0 exp

(
−t

NL · τmig

)
(3.10)

where τmig is the average time between successful defect migration events, i.e.

(2NLkoffp)
−1. Comparison with equation 3.4 leads directly to

τshear = NLτmig = (2pkoff )−1. However, the shear stress relaxation times obtained

from simulation were between 2 and 4 times faster than predicted by equation 3.10.

We therefore recast equation 3.10 with an additional constant a as:

Cσσ(t) = C0

(
NL − a
NL

)t/τmig
≈ C0 exp

(
−at

NL · τmig

)
(3.11)

with a representing an effective number of linkers relaxed per migration event, yielding

τshear = NLa
−1τmig = (2apkoff )−1 (3.12)

Values of the a parameter determined by equation 3.11 are shown in figure 3.11 for a

range of systems at different valences ν and stoichiometric mismatch fractions s.

To interpret the deviation from the transient network theory prediction that a = 1,

we consider two assumptions of the model that leads to eq. 3.11:

1. defect migration events involve bonds that support an average amount of stress

2. breaking one bond does not influence the stresses supported by any other bonds

If highly-stressed linkers are more likely to migrate (in violation of the first

assumption) the average defect migration event will relax a disproportionate fraction

of the shear stress in the system. By construction in the present simulations, the

probability of an initial bond-breaking event is independent of bond extension.

Nevertheless, high-energy linkers are less likely to re-form, and therefore more likely

to migrate, than linkers near the minimum extension. Indeed, as shown in figure 3.12,

the distribution of bonds broken and reformed during successful bond migrations
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Figure 3.11: Effective number of linkers affected by migration move vs. sto-
ichiometric mismatch - The effective number of linkers (a) relaxed by each defect
migration event, from fits of Cσσ obtained in simulation to Eq. 3.11, versus the fraction of
missing linkers (s) at k∗ = 20 (upper) and for varying k∗ at ν = 4 (lower).
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(new bonds) is broader than the overall bond length distribution (all bonds),

indicating a modest selection bias towards highly stretched or highly compressed (i.e.,

high-stress) linkers. Their disproportionate representation among the bonds breaking

and forming will tend to produce a value of a > 1.

Figure 3.12: Distributions of linker lengths - Normalized length distribution of
newly formed bonds (..) versus all bonds (–) in a tetravalent system(k∗ = 20, s = 0.025).

In the limit of high defect concentration s where the defect migration event success

probability p approaches 100%, the average stress of a migrating linker must equal the

average stress of all linkers, and the first assumption becomes exactly valid;

conversely, when successful defect migration is rare, the bias towards migration of

high-energy, high-stress bonds may become greater. This trend is illustrated in figure

3.13, where a is plotted versus the success probability p for all cases. With the

exception of the trivalent systems, a tends toward larger values at small p. At

p > 0.15, however, a plateaus near 2 (and not 1) for ν = 4 and ν = 5, indicating that

selective migration of highly-stressed bonds is not the primary explanation for a > 1.

Breakdown in the assumption that bond rearrangement involving one linker will

not affect stress in other linkers is likely to account for the finding of a ≈ 2 in tetra-

and penta-valent systems. Such an effect is not at all surprising; the shift in a linkers

connectivity changes the mean force on both new and the old defect junction sites,
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Figure 3.13: Number of linkers affected by migration move - Fractional stress per
defect migration a vs defect migration success probability p for all the simulated systems
(k∗ = 20 : ν = 4 : rectangles, ν = 5 : rhombi, ν = 3 : inverted triangles, ν = 4, s = 0.005,
k-dependence:circles, and ν = 4, s = 0.025, k-dependence:triangles).

resulting in a change in mean position that affects the stresses experienced by all

other linkers attached to those junctions. It appears that in the present simulations,

this indirect effect is roughly equal to the direct effect assumed in transient network

theory, leading to a ∼ 2 (except at low p), and is not strongly sensitive to valence

(above ν = 3) or to linker stiffness.

The anomalous behaviour of trivalent networks (with a consistently greater than 3)

can also be explained through a breakdown in the second assumption. In a trivalent

system, there is a qualitative difference in the freedom of motion of a junction that is

bonded to three other junctions via linkers, and a defect junction, which is bonded to

two. A trivalent junction with one site vacant is no longer a junction in a topological

sense, but simply the midpoint of an extra long and flexible linker consisting of two

regular linkers connected by the defect junction. Transfer of the defect from one

junction to another will have a pronounced effect on the stresses not only of the linker

that migrates, but also of the other linkers on both junctions involved in the transfer.

This could enhance the indirect effect and account for the higher stress relaxation per
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migration event. In summary, the linker-junction bond dissociation rate, the number

of linkers relaxed by each defect migration event, and the shear stress relaxation time

relate as τshear = (2akoffp)
−1. The parameter a here is an empirical factor

determined from simulations; however, this relationship has some predictive power, as

a appears to remain roughly constant over a range of conditions (Fig. 3.11). Fixing

a = 2.3 for all ν = 4 and ν = 5 networks and a = 3.3 for ν = 3 networks, and using

Eq. 3.6-3.8 to calculate p, we can model the dependence of the shear relaxation over a

continuous range of stoichiometric mismatch values and compare our results with

simulation in Fig. 3.7. Deviation is seen at high mismatch, where the numerical

model overpredicts the success rate p of defect migration.

Given the linear relationship between p and mismatch s at small s, we can

generally predict an inverse relationship between τshear and degree of mismatch at low

s (i.e., sν < 0.1),

τshear = (2koffap)
−1 = (akoffNrsν)−1 (3.13)

Simulation and our simple model differ in details at higher s, but both show that p

levels off, and τshear should fall off more slowly with increasing s than indicated by

equation 3.13. Equation 3.13 predicts an unphysical infinite relaxation time in the

limit of perfect stoichiometric matching, s = 0; this problem will be addressed in the

following section.

3.4.3 Relevance to other regimes

The simulations described above represent systems containing defects of only one

type: free junction sites resulting from a stoichiometric deficit of linkers. In the

remainder of the discussion, we consider how insights from these simulations are

applicable to systems with excess linkers and to systems where both defect types are

present at equilibrium. Finally, the rate at which the defect levels approach their
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equilibrium values, following a perturbation or during the initial network

assembly,will be treated.

3.4.3.1 Linker excess vs. linker deficit

In a network formed with a small excess of linkers, the predominant defect type will

be a linker with only one end attached to a junction. The dangling end can migrate

through a rearrangement very similar to the one shown in figure 3.3. A spontaneous

junction-linker dissociation event on a site near a dangling end defect may be followed

either by recombination of the original pair or by formation of a new bond between

the junction and the dangling linker. In the latter case, the initially dissociated linker,

left with no free junction sites, becomes a new dangling end defect. Under the same

assumptions of rapid equilibration of the linkers and neglect of linker-linker

interactions, this migration will proceed at the identical rate and have the identical

impact on stress relaxation as the migration of a vacant junction site. Therefore, we

predict that a linker excess should have a similar effect on the rate of stress relaxation

as a linker deficit of the same magnitude, and that the dependence of viscosity on

mixing ratio should be symmetric around the exact matching condition.

At the exact matching condition (s = 0), there remains at equilibrium a low level

of both types of defect, analogous to the intrinsic concentration of free electrons and

holes in an undoped semiconductor or to the concentration of hydronium and

hydroxide ions in pH-neutral water. In the above simulations, the intrinsic defect

concentration was assumed to be negligible compared with the defects arising from

the deficit of linkers. The actual equilibrium concentrations of linker-junction bonds

formed (ρLJ = number of linker-junction bonds per unit volume) resulting from

mixing pre-defined densities of junction sites (ρJ = νNJ/V ) and linker sites

(ρL = 2NL/V ) can be calculated through the law of mass action. Using an

equilibrium constant KD for the reaction in which a linker dissociates from a junction
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site yields the following:

ρLJ =
1

2

 (KD + ρL + ρJ)

±
(
ρ2J + ρ2L +K2

D − 2ρLJ + 2ρLKD + 2ρJKD

)1/2 (3.14)

The fraction meq of junction sites that contain a defect of either type at equilibrium is

obtained by adding the free linker site concentration (ρL − ρLJ) and the free junction

site concentration (ρJ − ρLJ) and dividing by ρJ :

meq = (ρL + ρJ2ρLJ)/ρJ (3.15)

In a stoichiometrically balanced mixture, with ρJ = ρL , and in the limit of low KD,

equations 3,14 and 3.15 simplify to

meq = 2(KD/ρJ)1/2 (3.16)

If we assume that the contributions from migration of both types of defect are

additive (and neglect any contributions from events where defect pairs are created or

annihilated), we can use Eq. 3.16 and the approximate relation p = Nrmeqν/2 (valid

for low meq) to estimate the shear stress relaxation time at the stoichiometric

matching conditions at equilibrium:

τshear,eq =
1

2koffap
=

1

koffaνmeqNr
=

1

2koffaνNr

√
KD
ρJ

(3.17)

Figure 3.14 shows theoretical total equilibrium defect concentrations as a function of

linker/junction ratio, and the resulting dependence of relaxation time on composition,

for a system with properties modelled on a Cm/CBP interaction with 1 nM KD. The

notable result is that even a 0.5% deviation from perfect stoichiometric matching of

linkers and junctions changes the relaxation time several-fold. Farther from perfect
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Figure 3.14: Predicted relaxation time vs. stoichiometric mismatch - The
equilibrium fraction (m) of junction sites containing a defect (dashed curve) and the di-
mensionless shear relaxation time τshearkoff (solid curve) vs. the degree of linker mismatch
(NL/NLo = νNJ/2), calculated according to equations 3.13-3.16 for a tetravalent system
with dissociation constant KD = 10−9 M and ρJ = 1.0 × 10−3M . The value a = 2.3 was
used based on simulation results.

matching, dependence of relaxation time on mixing ratio is less sensitive as the

probability of successful defect migration p reaches a plateau region. In fact, the

relationship τshear ∼ k
−1/2
off is roughly obeyed as p ∼ 1/2 and a ∼ 2.

Contrary to intuition, following Eq. 3.17, the shear stress relaxation time τshear at

perfect stoichiometric matching is predicted to decrease when the junction valency is

increased and the junction concentration NJ/V kept constant (assuming no change to

other kinetic and structural properties). This prediction arises because the

probability that a bond breaking event will lead to a defect migration is proportional

(in this limit) to the fraction of junctions that have a defect, which is in turn

proportional to the square root of the junction valence.
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3.4.3.2 Time-dependent defect levels during approach to equilibrium

As the model predicts a strong dependence of shear stress relaxation time on the

defect concentration, the material properties of the network should evolve as defect

concentrations approach their equilibrium levels during the initial formation of a gel

or following a perturbation. Here we assume starting conditions in which most

junctions and linkers are fully saturated, but with moderate, equal concentrations of

both dangling linkers and open junction sites. The same defect diffusion process that

provides a mechanism for stress relaxation also provides the means for defects of

different types to find and cancel each other out. When a dangling linker is close

(within a linker distance r0) to an open junction site, this defect annihilation will

proceed very quickly; therefore, we treat this process as a diffusion-controlled reaction

where the diffusing reactants are the defects. The second-order rate constant (kdcr)

for defect annihilation is estimated in formula 18 based on the standard formula

kdcr = 4πR∗(DA +DB).(37) The diffusion coefficients D for both types of defect

should be equal and can be estimated by considering the rate of defect migration per

defect (≈ νNrkoff/2) and the mean migration distance (∼ ro
√

2) to give

D = νNrkoffr
2
0/6 for three dimensions. Assuming a reaction distance R∗ of ro yields:

kdcr = (4π/3)νNrkoffr
3
o (3.18)

The rate of defect annihilation is proportional to the product of the concentrations of

the two defect types, each of which accounts for half the defect density (mρJ). This

rate is balanced at equilibrium by the rate of formation of new defect pairs, which (in

a nearly perfect network) can be considered a constant. The net rate of change in

defect concentration is therefore:

dmρJ
dt

= −2kdcr

(m
2
ρJ

)2
+ 2KDkdcrρJ (3.19)
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We note that substituting the equilibrium defect level meq from Eq. 3.16 into Eq.

3.19 leads to a net rate of zero, as appropriate for the equilibrium state. Solving

equation 3.19 and dividing through by ρJ gives the evolution of defect fraction:

m (t) = meq
(1 + C exp(−kdcrρJmeqt))

(1− C exp(−kdcrρJmeqt))

with:

C =
m(0)−meq

m(0) +meq
(3.20)

which describes a non-exponential decay to meq from a network with initial defect

fraction m(0). For reasonable values of m(0), defect levels approach equilibrium on a

timescale

τage = [kdcrρJmeq]
−1 (3.21)

The timescale τage of the approach to equilibrium will generally be faster than the

stress relaxation time at equilibrium; the ratio between the two reduces (through eq.

3.17, 3.18) to:
τage

τshear,eq
=

3a

4πρJr3o
(3.22)

Applying Eqs. 3.17 and 3.20 yields the following expression for the linear shear stress

response to a step-strain initiated at t = 0 when the system is in a non-equilibrium

state (m(0) > meq):

σ(t) = σ(0) exp

(
−t

τshear,eq

)
· exp

1− C exp
(
− t
τage

)
1− C


(
−2 τage

τshear,eq

)
(3.23)

with C defined as in Eq. 3.20. As shown in 3.15, this equation describes a relaxation

with a rate that is initially faster than the equilibrium exponential relaxation rate but

rapidly reduces to the equilibrium exponential decay function over a time

τage = 0.70k−1off in the example plotted.
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Figure 3.15: Step strain experiment: how stoichiometric mismatch sffects stress
relaxation - Time-dependent relaxation of shear stress σ(t) from eq. 3.23 for following a
step strain imposed at t = 0 on network with non-equilibrium defect level m(0) = 10meq =
0.02 (solid line). System properties are as described for Figure 3.14, with NL/NLo =
1. Dashed line shows the exponential stress relaxation for an equivalent system with
equilibrium defect level meq = 0.002 at t = 0.

3.4.4 Relevance to single-component networks

The above analysis of time-dependent aging behavior (eq. 3.18-3.23, figure 3.15) under

conditions of matched linker and junction concentrations is perfectly transferable to

single-component networks formed from junctions with v sticky sites attached to

flexible chains (maintaining the assumptions of high affinity, high specificity, rapid

conformational relaxation of chains, and no loops or double bonds). Similarly, the

equilibrium defect fraction and relaxation time of such a single-component

self-assembled network are available from eq. 3.14-3.17, setting ρL = ρJ . The concept

of defect migration as a means of shear stress relaxation is therefore a general one.

The junction/linker type of network is special primarily in that the defect

concentration can be controlled simply by changing mixture composition.
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3.5 Conclusions

In this report we have explored a simple simulation model to offer predictions for how

stress relaxation rates in high-affinity, high-specificity junction/linker reversible

networks will depend on the properties of the components and on their relative

concentrations. Although the model relies on several assumptions, we hope that the

predictions will be experimentally testable and lead to a deeper understanding of how

specific network rearrangement events manifest in the rheology of reversible networks.

The simulation model allowed the decomposition of the stress relaxation rate into the

rate of discrete bond rearrangement events (defect migrations) in the network and the

mean stress relaxation per defect migration. The mean stress relaxation per defect

migration is greater than predicted by the classic theory of Green and Tobolsky(16)

by a factor a ∼ 2− 3, with the factor a representing an effective number of linkers

relaxed per migration event. The a factor is not strongly sensitive to changes in

junction valence, linker properties, or stoichiometric mismatch; the greatest factor in

stress relaxation is therefore the rate of bond rearrangements. We find a strong

dependence of shear relaxation time τshear on the fraction mv of network junction

sites bearing defects, which enable bond rearrangement processes as depicted in figure

3.3. Below mν ∼ 0.1, this relationship to a good approximation

τshear = (akoffNrmν)−1 (3.24)

with Nr the effective number of neighboring junctions in bonding range that might

contain defects. Nr is sensitive to linker properties; in systems with flexible linkers, a

linker detached at one end is more likely to find a defect site at an appropriate

distance, leading to a greater rate of bond rearrangement and faster relaxation. The

defect level m in a stoichiometrically matched network is governed by the equilibrium



3.5 Conclusions 69

between bonds forming and breaking

meq = 2(KDV/νNJ)1/2 (3.25)

Adding or removing linkers to or from a stoichiometrically matched network

introduces additional defects to an extent proportional to the degree of mismatch s

(fraction of missing or extra linkers ) for s > meq. Assuming junction-linker

interactions with a nanomolar dissociation constant KD and millimolar junction

concentration NJ/V , equation 3.25 yields values of the order meq ∼ 10−3. In such a

system, we predict that the shear relaxation rate (and therefore the shear viscosity)

will vary over an order of magnitude or so with only a few percent change in linker

concentration around the stoichiometric matching condition. At defect levels

mν > 0.1, where most junctions will be close to at least one defect, further increases

in defect level will cause a weaker decrease in shear relaxation time than given by eq.

3.24.

The approach to equilibrium through annealing of defects in a stoichiometrically

matched system has also been examined. Since the annealing process proceeds

through the same defect migration process as stress relaxation, we predict that τshear

approaches its equilibrium value (from a system that has been perturbed, or during

the initial network formation) on a timescale τage that will generally be faster than

the equilibrium shear relaxation time, with the ratio between these two times given in

eq. 3.22.
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4

Simulation study of stress

relaxation rates in transient

network

4.1 Introduction

The rheology of supramolecular networks formed from transient interactions of chains

has been an area of intense study through theory, experiment, and computation.(1)

The diversity of this class of materials enables a wide range of applications,(2) but

resists description based on simple universal principles. For various specific systems

under various regimes, a comprehensive theoretical description of network rheology

may involve elements of percolation theory, rubber elasticity theory, statistical

theories of the distributions of defects, single-chain polymer dynamics, entangled

polymer dynamics, and microscopic kinetics of association and dissociation.(3–26)

Protein engineering allows the high-affinity, high-specificity non-covalent lock and

key interactions encoded in protein and peptide structures to be used in network

75
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building blocks in various ways.(27, 28) Two-component networks in which one

component contains only lock sites and the other only key domains are useful in a

practical sense because they allow gel formation to be initiated by mixing.(29)

Furthermore, such networks are interesting because the ratio between linker and

junction concentrations can be tuned to influence network properties.

In a recent simulation study on a simplified model junction-linker network system,

where junctions contained ν ≥ 3 binding sites and linkers consisted of an elastic chain

with binding domains at either end (depicted schematically in Fig. 4.1) we monitored

the rate of bond breaking and reforming (defect migration) events, and fraction of

shear stress relaxed per event.(22) The product of these two factors corresponds to

the shear stress relaxation time in Maxwellian cases where shear stress relaxes with a

single exponential time dependence. We found that the shear stress relaxation rate

was two or more times faster than the defect migration rate, indicating that each

linker that detached in a system with NL linkers released more than twice its

proportional share (G0/NL) of the stress in the system, even when all linkers were

active in the sense that each connected a unique pair of multivalent junctions within

the network. This multiplier effect was attributed to the secondary effect of releasing

one bond from a junction on the stress supported by other linkers attached to that

junction.

In the previous work it was also found that the plateau shear stress modulus G0,

or equivalently the high-frequency modulus of the corresponding fixed network

structure, increased faster than linearly as linkers were added, in contrast to

assumptions of classical rubber theory.

In the present study, extending the previous model calculations to linker-junction

networks with higher junction multiplicity, and relaxing the prohibitions on linkers

connecting sites on the same junction and on multiple linkers connecting the same

pair of junctions, offers a broader perspective that allows us to make connections

between these two results. A small fraction of loops was also allowed to form. The

data appear qualitatively consistent with the following general relationship between
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the shear stress relaxation time and the bond rearrangement time:

τshear =
G0

cL

(
∂G0

∂cL

)
cJ

τbond
2

(4.1)

where cL and cJ are linker and junction concentrations. Equation 4.1 can be

justified by considering ensembles of network topologies. In this report we present the

new simulation data and discuss factors that influence the bond rearrangement rate,

the stress relaxation rate, and the plateau shear modulus. We will conclude with an

argument for the applicability of eq. 4.1 in the case of linker-junction networks, and a

discussion of whether and how it may apply to associating networks in general.

4.2 Methods

Mixed molecular dynamics/Monte Carlo (MD/MC) simulations of network

rearrangement and stress relaxation were performed as in ref. 30, with additional

methods to account for loop formation and multiple bonding as specified below.

Briefly, junctions are represented by particles that interact with other junctions via a

purely repulsive isotropic potential, independent of bonding state. Linkers are

represented via a bonding interaction between pairs of junction particles, representing

the free energy of linker extension, with no explicit linker-linker interaction or

linker-junction-linker angle potential energy. The number of binding sites per junction

(valency ν) is fixed for each system, with the current work covering the range from

ν = 3 to ν = 9. Where loops are permitted, both ends of a linker may occupy

different sites on the same junction. The total number of linkers is less than NJν/2,

leaving a fraction s of junction sites open. States with a single dangling linker end are

considered only as transient intermediates for network rearrangements; these are

presumed to have a vanishingly short lifetime relative to the time between

dissociation events (though still long relative to the internal relaxation of the danging
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linker), and so are not included in the calculation of the systems shear stress. In the

same spirit, rearrangements involving the simultaneous breaking of more than one

linker-junction bond were not considered.

Dissociation and reattachment are treated using a Monte Carlo procedure

attempted between MD segments. The rate of dissociation is presumed to be

independent of the bond extension. The relative probabilities of re-attachment of the

linker end to all open junction sites i (including the linkers previous attachment site)

are made proportional to exp[−βU(rij)], where rij is the distance between site i and

the attachment site of the other end of the linker.

It is assumed that the affinity of linker ends for junction sites is very high, so that

upon dissociation, the linker reattaches either to its original junction site or to a

nearby open junction site before the MD simulation is resumed; the rearrangement of

the network thus depends on a detached linker end reassociating with an open

junction site defect, leaving the defect at its original attachement site. An MD

trajectory at constant NVT in a cubic box is then used to generate an equilibrium

thermal ensemble of junction configurations under the influence of the new linker

network topology and to calculate the mean values of the pressure tensor. The

duration of the MD simulation was 62 in reduced units of (junction mass ×r20/kBT )1/2

for all simulations. However, the interval tMC between MC steps represents the mean

duration between junction-linker dissociation events, i.e. (2NLkdissoc)
−1.

In the previous work, no more than one linker could connect any pair of junctions

(multiple bonds were prohibited) and a linker could not loop back to a different site of

the same junction. In the present simulations, for certain trajectories, multiple bonds

and/or loops were permitted. A loop could be formed if, upon dissociation of one end

of a linker, an empty site exists on the junction to which the linker remains attached.

The Boltzmann weight for forming a loop was assigned to be w = 0.5 corresponding

to an energy penalty for forming the looped state of 0.7kBT relative to the energy at

its most stable extension. A looped linker does not exert any force on any junctions.

The formation and breaking of multiple bonds, where allowed, was treated with the
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same statistics as for single bonds; no energy preference or penalty was assigned.

During molecular dynamics trajectories, forces from all linkers were treated

additively, so that the force between a pair of junctions at given distance was

proportional to the number of linkers that connect them.

The description of bonded and non-bonded interactions between junctions was

introduced previously (22). For the bonding interaction, an anharmonic potential is

used that represents the extensibility of the linker:

U (r) =
1

4
k

(
r2

r20
− 1

)2

(4.2)

where k is the force constant (set to 20kBT ) and r0 is the equilibrium extension of the

linker. A purely repulsive 1/r12 potential between all pairs of junctions (whether or

not connected by linkers) was used. This repulsive potential is truncated smoothly to

zero through a shift potential at a distance of 0.766r0. Details of this repulsive

potential are given in ref. 22. In all simulations, 500 junctions were contained in a

volume of 353.55r30, yielding a junction number density of 21/2.

The original network topology is created by adding random linkers across nearest

neighbor pairs in an fcc lattice of junctions, up to the limit of NJν(1− s)/2, with no

more than ν linkers attached per junction and no more than one linker per pair of

junctions. ∼ 300, 000− 400, 000 cycles of one MD trajectory followed by one MC

move attempt were performed for each system. The larger number of cycles was

implemented for simulations with ν > 6 networks. Following ∼ 10, 000 cycles of

equilibration, the averages of the three off-diagonal pressure tensor components ij are

recorded for each MD trajectory and used to calculate a time-correlation function

across the trajectories:

Ct/tMC
=
〈
〈σij〉t′/tMC

〈σij〉(t′+t)/tMC

〉
(4.3)
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where the inner brackets represent averages within individual MD trajectories and

the outer brackets represent an average over the three directions and across MD/MC

steps throughout the trajectory.

The shear relaxation time (τshear) is determined by a fit to a single exponential for

the decay in time correlation function:

Ct/tMC
= C0exp

(
− t/tMC

τshear

)
(4.4)

From equation (4.4) the plateau shear modulus, G0 corresponding to the fixed

network is calculated as G0 = V C0/kBT .

The topologies of the newly simulated systems along with the type of topological

defects investigated are enumerated in table 4.1.

For each system modeled, the probability p that a linker-junction dissociation

event would result in a new bond, and the statistics of loop formation and multiple

bonding were also determined and tabulated in table 4.2. Values of p predicted using

a previously derived formula (reference 22, equations 4.6-4.8) in all newly simulated

systems are also given. This formula depends on determining the variable NR, the

mean number of neighbouring junctions (each carrying an average of sν empty

junction sites) available within bonding distance for a disconnected linker. The

incorporation of multiple bonding and looping requires that the formula for

calculating NR be adapted, as the definition of an available junction site is expanded.

NR =
1

〈exp(−βUb(r))〉 bonds
cJ

∫ ∞
0

4πr2gavail(r)exp(−βUb(r))dr + wloop (4.5)

Here, gavail(r) represents the pairwise junction radial distribution function

calculated over only non-connected junctions (for single-bonding systems) or over all

junctions (for multiply-bonding systems). This definition reduces to that given in ref.
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Table 4.1: Overview of newly simulated systems

Bonding Type Valency (ν) Defect Concentration (s)
SBa only 5 0.025

6 0.0047
6 0.0253
7 0.0051
7 0.0251
8 0.0250
9 0.0248

SB and MBb 3 0.0227
3 0.0507
4 0.005
4 0.025
4 0.035
4 0.050
5 0.0248
5 0.040
6 0.0047
6 0.0253
7 0.0051
7 0.0251
8 0.0250
9 0.0248

SB and Qc 4 0.005
5 0.0096
5 0.0248
5 0.040
6 0.0047
6 0.0253
7 0.0051
7 0.0251

SB, MB, and Q 4 0.005
5 0.0096
5 0.0248
5 0.040
6 0.0047
6 0.0253
7 0.0051
7 0.0251

a=single bonds between pairs of junctions
b=multiple bonds also allowed, c=loops
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22 for systems where only single bonds are permitted and loops may not occur

(wloop = 0).

In networks with multiple bonding, the number of connections between pairs of

junctions are described using the variable bn or more precisely its average, 〈bn〉,

defined as average fraction of linkers involved in a specific mode of junction bonding

across the entire MC/MD trajectory (i.e. n = 1 means single bonds, n = 2, double

bonds, etc.).

Fractions of junctions containing two or more linkers bridging to the same junction

(i.e. multiple bonds) increased when the junction valence increased (fig. 4.1, top

panel). Across the trajectories, the final 〈bn〉 values were reached after ∼ 10, 000

MC/MD cycles and remained constant. Across the trajectories the average fractions

of loops take ∼ 40, 000 MC/MD cycles to reach the final values.

To better understand how different components of the interaction potential

contribute to the shear modulus, network structures selected at random from the

MD/MC simulations were simulated under applied shear stress. For each junction

valence, three network topologies generated during the initial simulations (without

multiple bonds or loops) were simulated under constant shear stress σij (without

defect migration) to calculate G = dσij/dγ in the low strain (γ < 0.05) linear regime.

G was calculated from the average strain response of these topologies each sheared

along three directions. Variability of G among different shear directions for the same

topology, or among different topologies at the same ν, was of the order of 10% in

most cases. These simulations were performed using the original forcefield parameters

and with three variations: with bonding force constant increased by a factor of 2,

with junction-junction non-bonded interactions eliminated, and with both

non-bonded interactions eliminated and the anharmonic linker extension potential

replaced by a harmonic potential with the same effective force constant.



4.3 Results 83

4.3 Results

4.3.1 Network structure: multiple bonds and loops

In networks that allow multiple bonding, the statistics of multiple bonding can be

predicted statistically from a model based on random assignment of the ν bonds of a

central junction to the ν ×NR sites available on neighboring junctions. The average

fractions of linkers involved in a specific mode of junction binding, 〈bn〉, with n = 1

for single bonding, n = 2 for double bonding etc., is:

〈bn〉 = Cν−1n−1
NR · CνNR−νν−n

CνNRν

(4.6)

where the denomiator CνNRν is the total number of ways ν bonds can be

distributed among νNR sites. As mentioned previously in simulations NR can take on

non-integer values. In using equation 4.6, the reported 〈bn〉 values are a weighted

average between the two nearest integer neighbors bounding the NR values calculated

in simulation. Figure 4.1 shows that the predictions of eq. 4.6 yield excellent

agreement with simulation results.

In figure 4.2 we show the resulting average fractions of loops 〈q〉 with changing the

networks topology. Across the MC/MD trajectories the average fractions of loops

fluctuate on the order of shown error bars. We observe that the loop fraction

increases with valence when only single bonds can be formed, but otherwise remains

constant independently of degree of stoichiometric mismatch, s.

4.3.2 Defect migration probability

The probability p in figure 4.3 refers to the probability of a linker end forming a new

bond as opposed to returning to its original junction site. This probability is
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Figure 4.1: Structure of networks with multiple bonding: simulations and
predictions - Average fractions of linkers 〈bn〉 linking pairs of junctions vs. junction
multiplicity (ν) from simulations and agreement with equation 4.6. The dark symbols are
simulation values ; clear symbols correspond to predictions. The simulation data presented
corresponds to s ∼ 0.025 degree of stoichiometric mismatch. In all networks among the
bn > 1 modes of junction binding, the b2 type of junction binding (double bonds) is
dominant.

Figure 4.2: Structure of networks with loops - Mean fraction of looped linkers
〈q〉 (those with both ends attached to same junction) versus network junction multiplicity,
ν. Linkers with ability to loop were introduced in networks having only single bonds
between pairs of junctions or also multiple bonds in networks with similar concentrations
of stoichiometric mismatch in mixing components.
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determined irrespective of the initial or final linker topology (single bond, multiple

bond, or loop.)

Figure 4.3: Rate of defect migration - Simulation probability of defect migration
(p) vs (ν) for networks with single junction pairing, for systems with single bonding and
loops, for networks with single bonds (sb) and multiple bonds (mb), and for the networks
with sb, mb and loops (solid symbols and curves) at defect ratio s ∼ 0.025. The clear
symbols correspond to predictions using formula derived previously(22) (Eq. 3.8).

As shown in figure 4.3, the migration probability p at fixed defect fraction s

increased with valence ν when multiple bonds were permitted. With only single

bonds permitted, the defect migration probability reached a maximum and then

decreased with higher ν. Sample agreement with predictions is shown for networks

with single bonding and multiple bonding and networks with single bonding and

loops. Predictions for the probability of defect migration in all other systems and for

all degrees of stoichiometric mismatch are listed in table 4.2.

4.3.3 Plateau Storage Modulus G0

Figure 4.4 shows the plateau shear modulus G0 obtained from the variance in shear

stress (see eq. 4.3 and 4.4) during MC/MD simulations for networks with different

topologies as a function of the linker/junction ratio. Lower G0 shear modulus values

were obtained for networks allowing pairs of junctions to be bonded more than once
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Table 4.2: Summary data analysis for all newly simulated networks

Bonding Type ν s NR ppred psim a τshear C0 G/NLV
−1 G/NelasticV

−1

sb only 5 0.025 7.0 0.34 0.31 2.2 0.66 5.0 1.46 1.46
6 0.0047 5.3 0.083 0.088 3.2 1.80 9.3 2.20 2.20
6 0.0253 5.7 0.38 0.31 1.9 0.84 6.8 1.65 1.65
7 0.0051 4.5 0.095 0.094 2.0 2.68 11.3 2.31 2.31
7 0.0251 4.4 0.37 0.29 2.6 0.66 11.1 2.31 2.31
8 0.0250 3.5 0.36 0.27 2.0 0.94 15.9 2.90 2.90
9 0.0248 2.9 0.35 0.23 2.1 1.03 19.1 3.09 3.09

sb and mb 3 0.0227 10.2 0.31 0.30 3.8 0.47 0.68 0.33 0.35
3 0.0507 10.5 0.53 0.53 3.3 0.30 0.59 0.30 0.32
4 0.005 10.7 0.11 0.10 1.7 3.03 1.84 0.66 0.73
4 0.025 10.4 0.42 0.41 3.0 0.44 1.78 0.65 0.72
4 0.035 10.3 0.51 0.50 2.5 0.43 1.64 0.60 0.67
4 0.050 10.2 0.62 0.60 2.3 0.40 1.66 0.62 0.69
5 0.0248 10.5 0.48 0.46 2.0 0.57 2.84 0.83 0.94
5 0.040 10.3 0.62 0.60 1.8 0.49 2.64 0.78 0.90
6 0.0047 10.7 0.15 0.15 2.4 1.53 4.73 1.12 1.37
6 0.0253 10.5 0.54 0.52 1.8 0.56 4.47 1.08 1.33
7 0.0051 10.8 0.19 0.18 1.4 2.00 6.31 1.28 1.64
7 0.0251 10.5 0.58 0.57 2.0 0.47 5.75 1.19 1.51
8 0.0250 10.4 0.62 0.60 1.9 0.46 8.1 1.46 1.93
9 0.0248 10.3 0.65 0.64 1.2 0.68 10.5 1.70 2.34

sb and loops 4 0.005 8.3 0.083 0.087 2.0 2.83 1.98 0.70 0.74
4 0.025 8.2 0.35 0.32 2.2 0.70 2.18 0.79 0.83
5 0.0096 7.4 0.17 0.18 2.6 1.13 4.18 1.20 1.27
5 0.0248 7.3 0.36 0.33 2.4 0.61 4.31 1.25 1.33
5 0.040 7.2 0.51 0.43 2.4 0.49 3.60 1.06 1.13
6 0.0047 6.8 0.085 0.098 2.4 2.08 6.00 1.42 1.51
6 0.0253 6.7 0.37 0.34 2.5 0.59 6.68 1.61 1.73
7 0.0051 6.1 0.12 0.11 3.0 1.48 10.30 2.10 2.25
7 0.0251 5.8 0.36 0.33 2.3 0.66 9.60 2.00 2.15

sb, mb, and loops 4 0.005 11.8 0.12 0.11 2.6 1.89 1.64 0.58 0.70
4 0.025 11.5 0.44 0.42 2.5 0.52 1.54 0.56 0.69
5 0.0096 11.9 0.26 0.24 2.4 0.90 2.62 0.75 0.96
5 0.0248 11.5 0.51 0.48 2.1 0.53 2.53 0.74 0.95
5 0.040 11.4 0.65 0.62 2.2 0.39 2.65 0.78 1.00
6 0.0047 11.9 0.16 0.16 2.0 1.74 4.69 1.11 1.46
6 0.0253 11.6 0.57 0.54 1.8 0.54 4.38 1.06 1.40
7 0.0051 11.8 0.20 0.19 2.6 1.07 6.52 1.33 1.86
7 0.0251 11.6 0.62 0.58 1.9 0.47 4.72 0.98 1.30
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thus compelling us to explore the amount of stress arising from multiple bonds vs.

single bonds. We define the number of effective elastic bonds, Nelastic, as the mean

total number of pairs of junctions that are connected by one or more bonds, which can

be related to the mean fractions 〈bn〉 of linkers involved in different bonding modes as:

Nelastic = NL

∑
n

bn
n

(4.7)

Figure 4.4: Plateau storage modulus from linear response theory simulations
- Variations in shear modulus G0 vs. mean network connectivity (2NL/NJ) with defect
type from simulations (symbols) and fits to the points.

The ratio of G0 to the concentration of elastic bonds is plotted against that

concentration (Nelastic/V ) in figure 4.5. The data collapse approximately to a line,

indicating that networks with single and multiple bonds with the same total number

of bonds have similar G0.

Simulations of three randomly selected network topologies (with only single bonds

and no loops) from the MD/MC simulations were subject to applied shear stress to

determine their storage modulus (figure 4.6). These simulations were repeated with

identical topologies, but changing bonded and non-bonded interaction parameters as

described in Methods. The averages over three network structures, sheared in three
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Figure 4.5: Plateau storage modulus from effective elastic bonds - Storage
modulus G0 normalized to the concentration of elastic linkers and as a function of the
mean junction connectivity ν (twice the ratio of the number of junction-junction bonding
interactions, with multiple bonds counted as one and intrajunction loops not counted, to
the number of junctions). The data collapse approximately to a line.

directions each, were in good agreement with the results obtained from the full

MD/MC trajectories via linear response theory, as represented by the agreement with

the fitting curve reproduced from figure 4.4 (dotted line vs. circles). For the trivalent

junction system, changes to the bond stiffness or the non-bonded interactions had a

negligible influence on G0 . These influences generally grew with increasing junction

valence.

4.3.4 Stress relaxation rate

The ratio of the shear stress relaxation rate to the defect migration rate was

expressed in the previous study using the quantity a. This relationship can be cast in

the expression:

Cσσ(t) = C0

[
NL − a
NL

]p·t/tMC

= C0e
−t/τshear (4.8)
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Figure 4.6: Magnitude of plateau storage modulus with form of interaction
potential and from other considerations - Evolution of plateau shear modulus (G0)
vs. junction multiplicity (ν) with functional form of interacting potential and type of
bonding/nonbonding contributions from simulations and predictions.

Equation 4.8 then is equivalent to a = NLtMC/(pτshear). NLtMC/p is the average

residence time of a linker connecting two junctions in units of the MC attempt time,

or half the average residence time τbond of a specific linker-junction bond. So, we can

simply express a as half the ratio τbond/τshear. For singly bonded systems, we find a

values somewhat greater than 3 for ν = 3 and a ∼ 2 up to ν = 9.

4.4 Discussion

4.4.1 Network structure

The fraction of multiple bonds present in the system matched the prediction of a

statistical formula based on random assignment of the ν bonds of a central junction

to the ν ×NR neighbors (figure 4.1). Trends in the percent of linkers that loop back

to the same junction depended on whether multiple bonding was permitted (figure

4.2). With increasing valence, both the number of intramolecular junction sites and

the number of intermolecular junction sites increase. When multiple bonding is
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allowed, these both increase linearly with ν and the loop fraction remains unaffected.

When only single bonding is possible, each linker connected to a different junction

eliminates the other sites on that junction, and so the number of possible

inter-junction sites increases less steeply than the number of intra-junction sites,

explaining the steady rise in the fraction of loops in this case.

4.4.2 Defect migration rate

In previous work,(22) we found that the probability p that a linker-junction

dissociation event will be successful in producing a defect migration is proportional to

the stoichiometric mismatch s at low s:

p =
1

2
sνNR (4.9)

where ν is the valency of the junctions and NR is a measure of the mean number

of neighboring junctions that are potential reattachment sites for the free linker site.

The defect migration success probability p then levels off at higher s, where on

average every junction is near one or more defect sites. The success probability

increased with valence ν at fixed s, because the total number of available sites

increase and the number of available sites in bonding range will also increase.

Extending this analysis to ν = 9, we see that above ν = 6, when only single bonds are

permitted, the increase with valence plateaus and is reversed (figure 4.3). The

decrease comes from the fact that NR decreases by 1 for each increase by 1 in ν. As v

approaches the total number of neighbors, the fraction of those neighbors that are not

already bonded to the original junction, and that are potential sites for a new bond,

becomes small. On the other hand, when multiple bonds are permitted between any

pair of junctions, empty sites on all neighbors are potential targets for a new bond,

and p increases with valence. The possibility of loop formation opens up available

defect sites on the same junction as potential targets for a new bond, and so also
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increases the defect migration success probability.

4.4.3 Trends in plateau modulus G0

From MC/MD trajectory simulations, we have determined the plateau shear modulus

(G0) from the product of system volume with mean square of the average shear stress,

averaged over fluctuations within the MD simulation time between defect migration

attempts (eq. 4.3, 4.4). This shear stress reflects asymmetries in the fluctuating

network topology, and corresponds to the ratio between stress and strain over time

periods between local relaxation times and topological relaxation times. When local

relaxation occurs much faster than changes in network topology, there is a plateau in

the frequency-dependent storage modulus over intermediate frequencies, so the

modulus of the fixed network (G0) corresponds to the plateau modulus over this

frequency range. (We do not treat the highest-frequency relaxation rate of these

systems, as the model is not designed to treat these realistically.) We remind the

reader that the plateau shear modulus is independent of the dynamics of bond

rearrangement, and should represent an average static shear modulus for the network

in the absence of bond dissociations or rearrangements.

Classical rubber theory (CRT) based on an assumption of independently extending

Gaussian chains, predicts that:

G0 = (NL/V )kBT (4.10)

with NL the number of linkers (exclusive of loops). Given that the linkers in the

present simulation do not follow Gaussian chain statistics in their equilibrium

extension distribution, there is no reason to expect adherence to the predictions of

CRT or to the related phantom network (PN) model (30, 31) . In fact, for affine

deformations of a set of linkers that follow a harmonic extension potential
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U(r) = (1/2)k(r − r0)2, one can predict:

G0 = (NL/V )kr20/15 (4.11)

(see Appendix).The arguments used to derive the prefactor of (1− 2v−1) within

the PN model (32) (which depends on the effective spring constants of springs in

parallel and in series (33) are independent of the specifics of the spring constant, so

one might expect to find:

G0 = (1− 2v−1)(NL/V )kr20/15 (4.12)

which would give a linear increase starting from ν = 2 = 2NL/NJ . The increase in

G0 with NL shown in figure 4.4 is plainly non-linear, even for the simplest case where

no loops or multiple bonds are allowed.

The system parameters used for MD/MC calculations included non-bonded

junction-junction interactions and non-linear linker extension potential. To

investigate the effects of these interactions on G0, we performed brief simulations of

networks under shear strain using different sets of bonded and non-bonded

interactions. Replacing the anharmonic potential with a harmonic potential of the

same spring constant and minimum-energy bond length decreases G0 (Fig.4.6,

rhombi). The effect of the nonbonded repulsions is more subtle. By themselves they

are not directly responsible for a large proportion of the shear stress; however, their

presence shifts the bond length distribution away from r0, adding stress to the linkers

on average as the system is forced to satisfy packing and bond constraints

simultaneously. Even with pure harmonic bonded interactions, there was a non-linear

increase in G0 with linker concentrations, and eq. 4.12 overpredicted the shear

modulus over most of the range in valence.

As discussed by Plischke et al.(34) , simulated defective lattice networks linked by
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harmonic bonds that follow equation U = (1/2)k(r − r0)2 and have no

angle-dependent potential exhibit a finite shear modulus that, near the percolation

transition, is primarily entropic in origin. They find G0 ∝ (ν − νperc)2 over the range

of mean valence v from the percolation limit νperc ∼ 1.86 to the defect-free lattice

with ν = 6. In contrast, defect lattice networks simulated by Nishi et al.(35) on a

diamond lattice with a worm-like chain model bonds (similar to the Gaussian chain

model at low extensions, but with finite extensibility) yielded good agreement with

the PN model from ν = 2.4 to the defect-free structure at ν = 4, with G0 ∝ (ν − 2).

There appears to be a qualitative difference in the relationship between the number of

linkers and the elasticity for networks containing Gaussian chains and those

containing linkers with a preference for a particular, non-zero extension. In the latter

case, using the simple approximation G0/kBT for the concentration of effective chains

may be misleading.

In the cubic network topologies studied in ref. 35, the contribution to linear shear

modulus from bond stretching can be shown to equal zero exactly, even in the absence

of defects (ν = 6).(36) . In contrast, bond stretching does play a role in shear stiffness

in the present simulations, even at a junction valence of ν = 4 where there is a

noticeable effect of linker spring force constant on G0. Junction positions are

sufficiently constrained within the disordered topologies formed during MCMD that

bond lengths must be distorted to accommodate shear strain. The network shear

modulus then becomes increasingly sensitive both to the stiffness of the bonded

potential and to the presence of nonbonded junction-junction repulsions as valence

increases (Fig. 4.6 upper triangles, squares).

The potential and the effective force constant associated with the

junction-junction interaction scales proportionally to the number of bridging linkers,

meaning that a double bond is twice as stiff as a single bond. For the trivalent

junction system, changes to the bond stiffness or the non-bonded interactions had a

negligible influence on G0. At ν = 4 and above, increasing the spring constant of the
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anharmonic potential increases G0 to an increasing extent, reflecting the growing

contribution of bond stretching to the shear response. These influences generally grew

with increasing junction valence, as shown in figure 4.6 (upper triangles).

Figure 4.5 shows that networks simulated using MD/MC with single and multiple

bonds with the same total number of bonds have similar G0 ; this seems to imply that

the contribution of each bond to the shear modulus is independent of its stiffness. We

should point out that even though the fraction of linkers that are in multiple bonds

rises as high as 50% (for ν = 9) the fraction of Nelastic that consists of multiple bonds

is not above 25%. The effective valence of this system is about 6. In figure 4.6, it can

be seen that doubling the stiffness of all the bonds in a system at ν = 6 only increases

G0 by 50%. A simple prediction would be then that the ν = 9 system with multiple

bonds would have a shear stiffness that is about (0.75× 1 + 0.25× 1.5) = 1.125 time

the value of G0 for a system with ν = 6 and all single bonds; this predicted difference

of 12% is within the scatter of figure 4.5. So, we can conclude only that a double

bond contributes significantly less to the shear stress than two single bonds in this

type of linker-junction network, not that the contributions of double and single bonds

are precisely equivalent.

4.4.4 Trends in shear stress relaxation time

The shear stress relaxation rate in the present model has an obvious connection to the

defect migration rate, whose dependence on various factors was treated in depth in

ref. 22, and appears to be predictable from the statistics of the defect sites available.

The amount of stress relaxed per defect migration event, was also considered in the

same reference, which (for single-bonded systems with ν = 3− 5 ) found that the

TNT prediction stemming from classical rubber theory underpredicted this amount

by a factor of more than 3 for ν = 3 and a factor of more than 2 for ν = 4, 5. The

extension to ν = 9 and the incorporation of multiple bonds and loops do not change
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the picture much, except to show that this factor remains near 2 at high valence

(figure 4.7). The high value of a at ν = 4 in the presence of multiple bonds might

reflect that the presence of a double bond shifts the effective valence of a tetravalent

junction from 4 towards 3.

Figure 4.7: Apparent number of linkers relaxed per dissociation event - a vs.
2NL/NJ from simulations (symbols) and predictions of equation 4.17 (solid curves)

Deviations from TNT are well documented in the literature. Modifications of TNT

that incorporate the statistics of loop formation and super-bridges (junctions with

only two connections to the network), along with the statistics of equilibrium

self-assembly, have been used successfully to model linker concentration dependence

of both shear relaxation time and plateau modulus. (8, 37) The current results,

however, call for a different explanation, given that the findings hold even in the

absence of loops and (at least for ν > 3) in cases where super-bridges are negligible.

The non-linear dependence of the plateau modulus on linker concentration calls into

question the assumption that each linker carries on average a fraction 1/NL of the

stress. Here we propose that the observed trends in a, and the finding that a > 2 in

these system, can be understood at least qualitatively by considering the dependence

of the plateau modulus on the number of linkers.
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Figure 4.8: The equivalence of sub-networks ensemble assumption - Cartoon
representation to explain equivalency of a (NL−1, NJ) topology with missing linker due to
pre-imposed stoichiometric mismatch and a (NL, NJ) topology at the time of a first linker
disconnecting from a perfectly matched reversible network

The cartoons in figure 4.8 are useful to explain this relationship. Consider a

material containing NJ junctions with NL linkers, originally under zero shear stress,

subject at time t = 0 to an instantaneous shear strain step γ. Assuming that the

intra-chain relaxation time is instantaneous, the stress σ(0) at time t = 0 then equals

G0γ where G0 represents the plateau modulus. The linker-junction bond dissociation

process is assumed to be stochastic and first-order with a characteristic bond lifetime

τbond that is independent of applied strain; after a time ∆t = τbond/(2NL), one linker

on average will have dissociated. In the current simulations, we have ensured that the

dangling end reattaches to a new junction site immediately, but in the general case

the dissociated end may instead remain unattached, as in the cartoon. After its initial

dissociation, the linker is assumed to relax at the current strain state, and will no

longer contribute (on average) to the current shear stress whether it reattaches or not.

Therefore, the shear stress at time ∆t can be attributed to the stress from the

sub-network of NL − 1 linkers that persist in their original connections from before
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the strain was applied. It is evident that the stress from this sub-network corresponds

to the initial stress (before any linkers dissociate) upon a shear strain of the same

magnitude in a network having the same network topology, but missing one linker at

the point of the dissociation event. That is,

σNL,NJ (∆t) = σ(0)NL−1,NJ (4.13)

The change in shear stress over time in the transient network can thus be related to

the change in stress of a fixed network associated with a change in network structure:

σNL,NJ (t = τB/(2NL))− σNL,NJ (t = 0) = σ(0)NL−1,NJ − σ(0)NL,NJ (4.14)

Converting the differences into differentials gives:

(
∂σ

∂t

)
NL,NJ ,γ

× τB
2NL

=

(
∂σ(t = 0)

∂NL

)
NJ ,γ

(4.15)

Then, assuming a single exponential decay in stress with time constant τshear,

dividing both sides by strain γ = σ(0)/G0, yields

− G0

τshear

τB
2NL

= −
(
∂G0

∂NL

)
NJ ,γ

(4.16)

(Dividing through by volume yields eq. 4.1.) This equation is rigorous for the

shear moduli G0 of the specific pair of network topologies that differ by the presence

or absence of one particular linker (as, for instance, the pair in figure 4.8). To make a

useful comparison with experiment or simulation, we must substitute the thermal

ensemble averages of G0 over all topologies with NL or NL − 1 linkers; the nature of

this approximation introduced in so doing will be considered below.
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To cast this relation in terms of the system properties determined in the present

simulations, we substitute the mean valence ν = 2NL/NJ and a = (τbond/τshear) and

find:

a =
ν

G0

(
∂G0

∂NL

)
NJ ,V

(4.17)

Predicted values of a using equation 4.17 and simulation values for a with

increasing n are shown in figure 4.7. In simulation, across all systems a ∼ 2 with

slightly higher a values in networks having loops or lower degree of stoichiometric

mismatch. The scatter data points with highest values in a for ν > 3 correspond to

cases of very low stoichiometric mismatch and very low defect migration success

probability; as discussed previously,(22) in such systems there is a strong selection

bias for the most highly stressed linkers to participate in defect migration events.

Systems with multiple bonding tend to give lower values of a.

Using the empirical fits for G0 shown in figure 4.4, we have used eq. 4.17 to

calculate a vs. ν for three systems and see qualitative agreement with the simulation

data. The poor ability of the simple polynomial fits to reproduce the derivative of G0

with respect to ν may account for some of the deviation, especially near ν = 3 and

ν = 9. Equation 4.17 overpredicts the rate of stress relaxation, but still gives a better

approximation than the TNT theory result a = 1. The cases where it underpredicts

the rate of stress relaxation are for singly-bonded networks at the lowest defect

fractions, where the probability of linker end reattachment to its original junction is

very high and p is very low. As discussed previously,(22) at low p the most

high-energy, highly-stressed linkers are disproportionately likely to undergo successful

bond reassignment, and thus each defect migration event carries a disproportionate

amount of stress.
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4.4.5 Implications of equation 4.1

Note that in a defect-free network where CRT holds, G0 = cLkBT , and the TNT is

recovered: τshear = τb/2 and a = 1. In a defect-free linker-junction network where

shear modulus obeys the PN relationship, i.e. G0 = (cL − cJ)kBT , eq.4. 1 yields:

τshear = (1− cJ/cL)τb/2 (4.18)

More generally, if the plateau modulus follows a power law G0 ∝ (cL − cperc)α near

the percolation threshold cperc ,τshear is predicted to follow:

τshear = τb(1− cperc/cL)/2α (4.19)

Viscosity would then scale as (cL − cperc)α+1/cL. This functional form is at least

grossly consistent with the sharp rise and plateau typically observed in τshear near the

percolation transition. The proposed relationship, eq. 4.1, is potentially useful in that

it provides a means to estimate a microscopic relaxation time τb from knowledge of

the concentration dependence of G0 and τshear, even close to percolation where τshear

changes rapidly.

4.4.6 Assumptions underlying eq. 4.1

First, we have assumed that the presence of a dangling linker does not contribute to

the shear stress. The junction-linker bond energy is presumed to be independent of

the number of other linkers attached to the junction. We have assumed that removing

one linker from the system and allowing the system to reach equilibrium will reduce

the mean number of bridging linkers by one, which would seem to be inconsistent

with any structure that has an appreciable fraction of defects. The relationship 4.17

will, in fact, hold under a less stringent approximation, that
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∂NL,bridge

∂NL
=
NL, bridge

NL
(4.20)

If eq. 4.20 holds, then cL(∂G0/∂cL) = cL,bridge(∂G
0/∂cL,bridge). Eq. 4.20 will be

approximately true over much of the linker concentration range, so long as the defect

proportions do not change too rapidly with concentration. This approximation will

break down when linkers and junctions are near stoichiometric balance, and adding a

linker to the system will decrease the number of open junction sites while increasing

the number of dangling linkers, leading to no net change in cL,bridge.

The most subtle approximation is that the ensemble of network topologies created

by the disconnection of one end of a linker-junction bond has the same shear modulus

as the equilibrium ensemble of network topologies formed upon the removal of a

bridging linker while keeping the number of junctions fixed. One can define the set of

topologies of the system characterized by a certain NL and NJ as a set of lists of

bonding pairs (i, j) where i and j are the linker and junction indices respectively, and

where a given i can appear no more than 2 times in the list and a given j can appear

no more than ν times in the list. Any (NL, NJ) topology from which the appearance

of i = NL is eliminated is a valid (NL − 1, NJ) topology. The approximation is that

the set of these topologies (with probability weightings reflecting the free energies of

their parent (NL, NJ) topologies) has the same average shear modulus as the thermal

ensemble of (NL − 1, NJ) topologies. These two ensembles will be similar in terms of

the numbers of bridging linkers and defects (loops, vacancies, and dangling ends) of

various sorts; they will differ primarily in that the pairs of vacant sites formed from

the removal of one end of a linker from the NL-linker system are spatially correlated

while in the ensemble of NL − 1 topologies the vacant site defects are distributed

randomly.

Note that a mapping between the ensemble of transiently disjoined NL-linker

networks and the ensemble of (NL − 1)-linker topologies has been discussed so far
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only in the context of linker-junction systems, because every linker that is removed

leaves junction site defects that have no way of recombining. It is worth considering

to what extent eq. 4.1 may apply to single-component end-linking telechelic

associating polymer networks. In such systems, the junction is a self-assembled

aggregate or micelle of linker ends. The number of junctions is determined by a

dynamic equilibrium. Decreasing the number of linkers in such a network may or may

not produce topologies that resemble the transiently dissociated network, because the

number of nodes can adapt. For instance, in case of a strong structural preference for

a certain number of linkers per node, the system could maintain constant multiplicity

of all junctions over a wide linker concentration range. In such a case, changing the

linker concentration would produce a system with fewer junctions but the same

multiplicity, whereas the stress remaining after a series of transient dissociation and

reattachment events would be determined by the properties of a sub-network with the

same number of junctions and fewer linkers per junction. To the extent that the shear

modulus depends on the distribution of valence multiplicities, and not just the

number of bridging linkers, such a system would show deviations from eq. 4.1.

4.5 Conclusions

In this report we expanded our previous analysis of stress relaxation in protein

networks with defects to include higher valency networks with junction multiplicity

(ν) in the range six to nine. We have considered systems in which linkers may loop

and/or in which multiple linkers can bridge the same pair of junctions. The fraction

of multiple junction pairings can be predicted from a simple probability model by

considering the number of junction sites available for each mode of bonding between

pairs of junctions. Higher loop fraction with valence was observed in networks with

only single bonding from crowding effect. We also explored the changes in rate of

defect migration with changing the network structures. The defect migration success
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probability (p) increases with valency at fixed degree of stoichiometric mismatch when

only single bonding between pairs of junctions is allowed. The values of p decrease

with valence in absence of multiple bonding at same defect ratio as most first shell

junction neighbors are already bonded (crowding effect). The migration rate (p) is

increased by the presence of loops and multiple bonding as there are more sites

accessible for the disconnected linker to connect to upon its dissociation.

The dependence of plateau modulus on junction valence strongly deviates from the

Gaussian chain and phantom network model predictions of a linear relationship of G0

in concentration of linkers, or from a new formula for G0 that is based on affine

deformations of independent linkers. The roughly quadratic dependence observed is

consistent with previous simulations of a similar system, a defective cubic lattice

whose vertices are linked by tethers with a preferred bonding distance.11 Where

multiple bonding was investigated, it was seen that each linker involved in multiple

bonding contributes significantly less to G0 compared to a lone linker connecting a

pair of junctions.

In this set of simulations, the shear relaxation time, τshear is still dependent on

defect fraction and reduced by loops and multiple bonding due to an increase in

defect migration rates. The proportional share of stress relieved by each defect

migration event, denoted a, was seen to maintain a value near 2 even as junction

valence climbed to 9. A formula to relate τshear to the dependence of G0 on valence is

derived from considering the equivalence between a network that has undergone a

linker dissociation event after shear strain and a network in which that linker was

never present. The proposed relationship is however expected to fail in nearly

stoichiometrically matched networks due to a high likelihood of forming dangling

bonds rather than adding NL elastic linkers capable to support stress. The general

material properties such as plateau modulus G0, its non-linear observed dependence

in number of linkers (NL), and the relaxation time τshear were related to the

microscopic timescale τbond. In simulation a, the apparent number of linkers relaxed
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by the defect migration move remains 2 as valence increases.

4.6 Appendix

4.6.1 Affine deformation approximation for shear modulus of

center-force Hookean network

We derive a bulk shear modulus for a network consisting of springs with potential:

U(r) =
1

2
k(r − r0)2 (A1)

which is an approximation to the quartic potential defined in Eq. 4.2. Each linker

end-to-end vector in the unstrained system is represented as:

r = (rx, ry, rz) = (rosinθcosφ, rosinθsinφ, rocosθ) (A2)

Under an affine shear deformation γ in the x− y plane, ∆rx = γry and each linker

vector is distorted to:

r = (rx, ry, rz) = (rosinθcosφ+ γrosinθsinφ, rosinθsinφ, rocosθ) (A3)

To first order in γ, the change in linker distance is:

∆ |r| = 1

2
roγsin

2θsin(2φ) (A4)

Approximating the linker length distribution around r as a delta function at r0,
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plugging Eq. (A4) into (A1) and averaging over orientations yields:

〈U〉γ =
1

2
kr20

γ2

4

1

4π

∫ π

0
sin5θ

∫ 2π

0
sin2(2φ)dθdφ =

kr20γ
2

30
(A5)

Taking a volume element with dimensions Lx ×Ly ×Lz, containing NL linkers, the

shear modulus can be obtaines as the ratio of shear stress (force per area) to shear

strain:

G =
σxy
γxy

=
NL

Aγxy
·
d < U >γxy

d∆x
=

NL

LXLZ
·
d < U >γxy

dγxy
·dγxy
d∆x

=
NL

LXLZLY
·
d < U >γxy

dγxy
=
NLkr

2
o

15V

(A6)
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5

Introduction to elasticity of lipid

bilayer edge work

5.1 Background

A lipid membrane creates a selective diffusion barrier between the interior and the

exterior of a cell. The first description of this thin interface as a lipid bilayer assembly

dates back to 1925 to work by Gorter and Grendal. (1) A new picture for the

structure of cell membrane was introduced in 1972 by Singer and Nicholson (2) known

as the fluid-mosaic model and also shows the embedded proteins. Our understanding

of lipid bilayers and lipid self-assembly evolved significantly since this simple picture

was postulated. The lipid bilayers and lipid structures found in cells are very dynamic

systems. As facilitators of vital cellular processes such as fusion, fission, endocytosis,

and exocytosis, lipid membranes must stretch, compress, bend, break, self-repair, or

re-pack in smaller size structures of unusual and ill-defined shapes. Describing both

the elastic behavior of lipid structures undergoing such processes and the lipid

conformations that individual molecules must adopt during such instances via

109



5.1 Background 110

simulations and theory methods is thoroughly fascinating.

The research introduced here investigates the magnitude of force acting at the

lipid bilayer edge to close macroscopic size pores (∼ µm in diameter). This force is

tangent to the edge, has a pN magnitude, and it is called edge tension (Λ). The

conformational change in lipids packed at the bilayer edge compared to intact bilayers

is also investigated.

Very many types of lipid molecules have been identified across living systems.

Lipid composition affects both the structure and the elastic properties of

self-assembled lipid structure. For example in mammalian cells the composition of

lipid bilayers consists of various lengths fatty acids (a.k.a lipid tails) attached via a

glycerol backbone to a hydrophilic head group molecule of the type

phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI),

and phosphatidylserine (PS) (3). Sphyngolipids such as sphyngomyelin and

glycosphingolipids along with sterol molecules such as cholesterol are also present.

Various classes of interfacial and integral proteins proteins are included within the

lipid bilayers. Proteins allow the passing of small molecules; proteins serve as

receptors during recognition events; proteins host important reactions. The

incorporation of proteins modifies the local lipid bilayer properties such as increase its

curvature and disrupts the ordering of lipid tail packing. Other cell non-native

inclusions such as incorporated quantum dots are also expected to affect the structure

and modify the local lipid bilayer conformation.

The size of lipid headgroup is an important consideration in lipid bilayer studies

when investigating configurational properties of self-assembled structures. A guiding

principle in predicting the geometric shape of the resulting self-assembled structures

is the packing parameter (4) (p) , a simple geometric criteria defined as ratio of

volume (v) of one lipid to length of hydrocarbon lipid tail length (l) and optimum

head group area (ao) : p = v/(lao). A packing parameter of ∼ 1 corresponds to

forming a planar bilayer and p ∼ 1/3 corresponds to forming spherical micelles.

A strength of simulation as method of scientific investigation is the ability to



5.1 Background 111

precisely control a system’s composition. Models of lipid bilayers implemented in

simulation typically consist of a single component lipid. In all systems investigated in

this work, the PC headgroup is used and lipid tail lengths ranging from 12-18 carbons

with at most one double bond per tail. The self-assembled structure that results is

the lipid bilayer configuration (p ∼ 1).

The elastic properties of macroscropic pores have been previously studied in single

PC lipid component giant unimellar vesicles (GUVs) structure (5–9). Typical

experiments consist in assembling the lipid of interest into a GUV structure, instilling

a pore into the lipid bilayer by a method such as an electric pulse, or the action of a

laser beam, and then following the dynamics of re-sealing the bilayer via (fluorescence)

microscopy techniques. The theoretical frameworks that accompany many of these

experiments was developed by Brochard and Wyart6. The evolution of such a pore is

controlled by the action of two forces, the surface tension (γ) defined as force per edge

unit length acting to expand the pore and the edge tension force mentioned

previously attempting to eliminate the pore. We mention that the ratio of surface

tension (γ) to edge tension (Λ), Λ/γ corresponds to an important length scale (R) in

lipid bilayer edge elasticity-pores with size larger than this value grow indefinitively

and those with smaller size than R can re-seal leading to an intact bilayer.

In experiments the magnitude of edge tension was found affected by both the

length of lipid tail used to form the GUV and by the presence of non-lipid molecules

at the edge. The edge tension of a PC lipid with twelve carbons connected as

saturated tails was recently reported as 2.5 pN. (7) The edge tension of a PC lipid

with eighteen carbons and one double bond per tail was 27.7 pN. (8) For the same

and other PC lipid systems the edge tension values tend to depend significantly on

the experimental method used to investigate edge tension.(5, 10, 11) Molecules with

negative spontaneous curvature such as cholesterol raise edge tension values and

detergent molecules with large headgroups lower the edge tension. (5)

The edge tension and lipid conformation at the edge was characterized in theory
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and simulation. Molecular elasticity theories consider the geometry of the lipid bilayer

with macroscopic pores to correspond to a hemi cylindrical geometric shape assembly.

(12–14) The starting point in understanding the nature of self-assembly of lipids in

these theories is the opposing force-model (OFM) of Israelachvilli (4). When a lipid

structure changes its geometric shape such as it bends or stretches in response to an

applied perturbation (such as forming an edge), a new headgroup area (a)

characterizes the new assembly. The lipid tails might also contort to new

configurations. The value of a is determined by two competing forces acting at the

level of hydrocarbon-hydrophilic interfacial region, an attractive interfacial

hydrophobic force and a headgroup repulsion force.

According to the OFM formalism the resulting molecular free energy per molecule

in a lipid assembly or aggregate is given by :

f = γ · a+K/a (5.1)

The first term is an attractive energy term with γ surface tension at the

hydrocarbon-water interfacial region and the second term is a repulsive energy due to

steric/electrostatic head-group repulsions. The constant K is lipid molecule specific

as to allow variations in the headgroup size and shape.

Within the OFM model, assuming a second order Taylor expansion of free energy

around the planar bilayer headgroup area ao:

df(a0) =
1

2
f ′′ (a0) (aedge − a0)2 (5.2)

Also considering that a0 = (K/γ)1/2 and Ka ∼ 2γ for a monolayer, as well as a

hemicylinder edge lipid packing geometry (aedge = 2a0), leads to the edge tension
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quantity having the formula:

Λ = df · ρedge =
πhKa

16
(5.3)

with f the molecular free energy, ρedge the edge lipid density, h is the intact

monolayer thickness, Ka the area compressibility modulus, and aedge the edge area

per lipid. The optimum area per headgroup ao and the bilayer thicknesses (h) of PC

lipids of tail lengths investigated in this work have been previously presented from

experiment and simulation. (15–24) Area compressibility moduli Ka have also been

studied in simulation and experiments. (25–28)

The lipid density at edge is given by:

ρedge =
π (h/2)2

2v
=
πh

4ao
(5.4)

with v the lipid tail volume.

Other theoretical work for example one of May’s studies referenced above(13)

includes an additional term in the free energy per molecule due to assuming changes

in conformations of lipid tails. We also point out that equation 5.3 only considers a

lipid structure stretching contribution to resulting edge tension. The formation of

bilayer edge from monolayer bending elasticity is considered to also play a role in edge

formation and the magnitude of edge tension from such considerations has also been

presented (29) .

The edge tension and pore formation in lipid bilayers has also been studied in

simulations. One class of such investigations focused on calculating the edge tension

of nm size circular pores of lipid bilayers during their earliest formation stage.

Example studies from this category include investigating the minimum stable pore

radius, the corresponding bilayer surface tension, and characterization of pore

shape(30), the free energy profile as function of pore radius(29), and the free energy
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barrier associated with initiating a pore (31).

Recent experiments of Smith and co-workers (32) attempted to characterize the

behavior of edge pore lipids in experiment. The presence of edge is believed to affect

the lipid molecule diffusion constants near the edge, and to also affect the onset of

lipid tail phase transition. Lipid simulations methodologies have been previously

developed to study both the magnitude of edge tension and also the packing of lipids

at the edge at a nm length scale resolution (11, 33).

Kindt and co-workers using the ribbon geometry implementation investigated the

edge tension associated with m size pore in simulation. The process of edge formation

in ribbon geometry and the edge tension from atomistic resolution ribbon simulations

(5-20 ns long) were also reported (11). While the ∼ pN order of magnitude of edge

tension was also confirmed in this set of simulations, longer simulations were

recommended to use in order to attain well converged values with changing the lipid

type. Other coarse-grain and atomistic related studies included investigating the

effect of lipid composition on edge structure and magnitude of edge tension as well as

the role of thermal fluctuations in affecting the edge tension. (34–36)
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6

Simulation Studies of Structure

and Edge Tension of Lipid

Bilayer Edges: Effects of Tail

Structure and Force-Field

6.1 Introduction

Because the lipid bilayer is the foundation of biological membranes, its mechanical

properties influence the stability and flexibility of living cells. A key property of the

lipid bilayer is the reversible work per unit length required to form an edge defect,

which is equivalent to the line tension (Λ) of the edge, hereafter edge tension. This

tension drives small isolated bilayer patches to curve into closed vesicles (1) and causes

pores in extended bilayer sheets to close spontaneously. (2, 3) Conditions of very low

edge tension lead to the thermally-induced proliferation of pores and membrane

fragments, while very high edge tension may impede bilayer fusion and fission.
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Quantifying edge tension experimentally is challenging. A range of strategies have

been developed. (2–11) The most recent efforts in this area (10, 11) have used

variations on a strategy first employed (8) by Brochard-Wyart and co-workers, based

on a measuring the dynamics of closure of a transient pore induced in a giant

unilamellar vesicle. Computer simulation is a valuable complement to experimental

studies of lipid bilayer edge tension for several reasons. The ability to investigate the

structure of the edge is one. Another is the ability to control composition and

maintain an impurity-free system; the observation by Karatekin et al. (8) of a large

difference in edge tension between vesicles formed with DOPC obtained from two

different sources indicates that trace quantities can affect the edge line tension. Two

main computational strategies have been used for the analysis of edge tension in

bilayer simulations. Edge tension in a single pore in a finite patch, maintained at

fixed area, can be inferred from the surface tension that resists pore closing and the

radius of the pore. (12, 13) One drawback of this method is that due to the hourglass

shape of the pore it relies on an arbitrary definition of the pore radius. Furthermore,

a bilayer under surface tension will have properties different from a stress-free bilayer,

which may influence the edge properties. The other strategy is the use of a ribbon

geometry, (14–16) with the edge of the ribbon directed along one axis of the

simulation box. The reduction in mean pressure along the edge axis, multiplied by

the simulation box area perpendicular to the edge, yields a force that can be

attributed to the sum of the tensions of the two edges:

2Λ = LXLZ

((
PXXPZZ

2

)
− PY Y

)
(6.1)

where the edge is located along the Y axis of the simulation box with dimensions

LX × LY × LZ , with PXX , PY Y , and PZZ representing the diagonal elements of the

pressure tensor. In previous studies aimed at determining edge line tensions from

atomistic simulation models, it has been confirmed that Λ matches experimental
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values in order of magnitude (∼ 10− 11 N), but large uncertainties in pressure tension

elements prevented calculation of Λ at sufficient precision to study variations in Λ

among lipids. Wohlert et al.(15) found that pore-based and ribbon-based methods

yielded 40 pN and 50 pN respectively for the edge tension of DPPC, but based on our

error analysis in the current and previous (16) studies we estimate an uncertainty of

±10 pN for the ribbon calculation from the short trajectory duration of 5 ns. In the

present study, edge tensions have been calculated from simulations of bilayer ribbons

composed of seven different lipids that share a common phosphatidylcholine

headgroup structure but differ in the length and degree of saturation of their tails

(figure 6.1). Simulations on one lipid type were performed with three forcefields to

assess whether different parameters sets yield important differences in this property.

Figure 6.1: Snapshots of ribbons cross-sections in the XZ plane - at the 100ns
of the trajectories. The red spheres show the phosphorus (P) headgroup atom positions.

Simulation trajectories >200 ns were used to reduce statistical uncertainty in the

mean pressure tensor elements and lower estimated statistical uncertainties below ± 3

pN. Correlations between edge line tension and other properties of the bilayer have

been studied to determine how best to represent the origin of edge line tension in
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terms of the elastic properties of the membrane.

6.2 Methods

6.2.1 Intact Bilayer Simulations

To obtain reference data on lipid properties in an edge-free environment, 128-lipid

bilayer patches, continuous in two dimensions under periodic boundary conditions,

were modeled via MD using Gromacs 4.5.4 (17) with a time step of 2 fs. The lipids

studied shared a common phosphatidylcholine (PC) headgroup and glycerol

backbone. A series of di-saturated-tail lipids with 12-, 14-, or 16-carbon fatty acyl

tails (dilauroyl, dimyristoyl, and dipalmitoyl phosphatidylcholine, henceforth DLPC,

DMPC and DPPC); a series of di-cis-∆-9 monounsaturated-tail lipids with 14-, 16- or

18-carbon fatty acyl tails (dimyristoleoyl, dipalmitoleoyl, and dioleoyl PC, henceforth

D(14,1)PC, D(16,1)PC, and DOPC); and the mixed-tail lipid POPC were studied.

All lipids were simulated using the Berger united atom forcefield (18) (incorporating

tail torsional parameters for unsaturated-tail sites as used previously in our group

(19) ). Additional trajectories for DOPC bilayers were performed with the 43A1-S3

united atom forcefield of Chiu et al. (20) and with the atomistic CHARMM C36 lipid

parameter set. (21, 22) The water models used in conjunction with the Berger

force-field, the 43A1-S3 parameter set, and the C36 forcefield were SPC (23), SPC/E,

(24) and TIP3P (25) respectively. The number of waters per lipid and the box

dimensions for intact bilayers are detailed in table 6.1.

The temperature was maintained at 300 K using the Berendsen thermostat with a

0.4 ps time constant. (26) Pressure was maintained at 1 bar in both the Pxx/Pyy

lateral dimensions and in the Pzz normal direction using the Berendsen semiisotropic

pressure coupling scheme with a constant of 1.0 ps and 4.5× 10−5 bar−1

compressibility. Lipid covalent bonds and water geometry were constrained via
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Table 6.1: Simulations performed and structural description

Num. Lipids Water/Lipid Ratio Force-Field Cumulative Time(ns) Box(nm)
Ribbons

DOPC 256 84.3 CHARMM-C36 230 19.5, 7.0, 8.0
256 64.6 43A1-S3 200 20.0,7.0, 8.0
256 64.6 Berger 300 20.0, 6.7, 6.2

D(16,1)-PC 256 42.8 Berger 230 15.4, 6.5, 6.5
D(14,1)-PC 256 42.8 Berger 250 15.4, 6.5. 6.5

POPC 256 69.7 Berger 272 19.5, 7.0, 7.0
DPPC-Fluid 256 42.8 Berger 210 19.3, 6.5, 6.5
DPPC-Gel 256 42.8 Berger 210 17.0, 5.7, 9.0
DMPC 256 42.8 Berger 215 19.3, 6.5, 6.5
DLPC 256 42.8 Berger 210 15.2, 6.5, 6.3

256 75.6 Berger 250 18.0, 7.0, 7.0
Intact Bilayers

DOPC 128 53.3 CHARMM C36 41 8.3, 8.3, 5.1
128 28.6 43A1-S3 80 6.5, 6.6, 6.6
128 28.6 Berger 78 6.5, 6.6, 6.6

D(16,1)-PC 128 28.6 Berger 80 6.6, 6.6, 6.0
D(14,1)-PC 128 28.6 Berger 80 6.5, 6.5, 6.0

POPC 128 28.6 Berger 80 6.2, 6.2, 6.8
DPPC-323K 128 28.6 Berger 100 6.5, 6.5, 6.6
DPPC-300K 128 28.6 Berger 77 6.5, 6.5, 6.5

DMPC 128 28.6 Berger 80 6.2, 6.3, 6.3
DLPC 128 28.6 Berger 80 6.2, 6.2, 6.1

Bilayers with pores
DOPC 256 65.5 Berger 212 11.0, 11.0, 7.0
DOPC 256 112.5 Berger 215 11.5, 11.5, 9.2
DMPC 256 42.8 Berger 211 10.4, 10.4, 5.8
POPC 256 69.5 Berger 220 10.7, 10.7, 7.6

LINCS (27) and SETTLE (28) algorithms respectively. Coulombic interactions were

evaluated using the PME technique with 0.12 nm grid spacing and cubic

interpolation. (29) A cut-off of 1.0 nm was used for Van der Waals interactions.

6.2.2 Ribbon simulations

To initiate structures for ribbon trajectories for all lipids except D(16,-1)PC and

D(14,1)PC, a fully equilibrated and solvated continuous 128-lipid bilayers was

replicated 2-fold in the X direction and centered in a simulation box 3× 1× 1 times

the dimensions of the original box, leaving two discontinuous edges parallel to the Y

dimension. The newly created space was solvated using the genbox utility of Gromacs

4.5.4, with waters in the lipid tail region removed, yielding total numbers of water

molecules indicated in table 6.1. A brief minimization using the steepest descents

method was applied where necessary to remove unfavorable water contacts. The

D(16,-1)PC and D(14,1)PC ribbons were produced by removing two and four carbons

respectively from the tails of a lipid at the endpoint of the DOPC ribbon simulation;

the empty space created was rapidly filled by constriction of the simulation box under
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the applied pressure. Details of the simulation and force-field parameters were

identical to the reference bilayer simulations, except that in the ribbon production

runs the pressure was maintained at 1 bar using Berendsen anisotropic pressure

coupling with 5.0 ps time constant and 4.5e−5 bar−1 xx/zz compressibilities, and

with the box dimension along the Y -axis (parallel to the ribbon edge) fixed.

In the case of DPPC, the simulation temperature (300 K) is below the gel-fluid

transition temperature (314 K according to experiment, (30) and near 308 K for the

Berger forcefield.(31)) Because the phase transition rate is generally slow on the

simulation timescale, ribbon structures were prepared both from bilayers started in

the tiled gel (L′β) and the fluid (Lα) phase; these will be referred to as ”DPPC-gel”

and ”DPPC-fluid” systems, even though neither equilibrated ribbon structure can be

identified definitively with one phase or the other. Ordered, tilted gel-phase bilayers

were prepared following the procedure in reference 30 ; the initial tail tilt azimuthal

angle was directed approximately 30 away from the Y -axis. Finally, two independent

trajectories, with different box dimensions, were carried out for DLPC to investigate

the role of finite-size artifacts on structure and line edge tension in the ribbons.

The first 10 ns of all trajectories were excluded for the purposes of analysis. The

edge tensions were obtained using eq 6.1, with reported uncertainties calculated using

the blocking method.(32) The 10 ns duration necessary for initial system equilibration

is decided as initial simulation period not affecting the converged values of edge

tension. For structural analysis, the set of lipid coordinates for each frame to be

analyzed was first translated to bring the center-of-mass of the lipid ribbon to the

origin of a Cartesian coordinate system and rotated (using the Gromacs editconf

utility) so that its principle axes of inertia lay along the coordinate axes. Phosphorus

site P-density profiles were constructed from sampling phosphorus atom X and Z

coordinates from MD trajectories at 250 ps resolution. Binning and averaging the

phosphorous Z-coordinates of all P-sites in 0.05 nm increments along the x direction

identified the contour line of each leaflet of the ribbon, resulting in two functions

zupper(x) and zlower(x), whose difference defines a local ribbon thickness. The contour
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lines showed a minimum thickness near the midpoint along x. The x-position near

each edge where local thickness reached a maximum, xt, was considered the onset of

the lipid bilayer edge region; the edge contour was hemi-elliptical to a reasonable

approximation. The semi-major elliptical axis was calculated as xmax− xt where xmax

is the highest occupied bin along x, while the minor elliptical axis was the local

thickness at xt (figure 6.2). The edge area per lipid (AEDGE) was determined from

multiplying the perimeter of the ellipse by the LY dimension of the box and dividing

the result by the average number of P-sites in the edge region. The area per lipid in

the bilayer-like middle region (AMIDDLE) and the ribbon interior thickness h were

retrieved from sculpting a 2.0 nm × 2.0 nm xy block near the center of the ribbon

and counting the local area density and average local thickness.

Figure 6.2: Structural parameters associated with bilayer edge geometry -

A qualitative measure of the degree and direction of local tail tilt alignment was

visualized by first calculating the displacement vector dC,C+2 and midpoint in the XZ

plane between each tail CH2 site and the site 2 carbons farther down the tail. The

vectors were binned in two dimensions according to the position of the midpoint in X

and Z (with a resolution of 0.2 nm). The vector sum of all vectors with midpoints in

that bin (summing over the length of the ribbon) was taken for each frame and
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divided by the bin volume (0.2 nm ×0.2 nm ×LY ); an average of that vector density

was taken over all production trajectory frames. The segments plotted represent the

mean of the product of the displacement vectors (in nm) with the density (in

sites/nm3), scaled to 4% of their value to improve visibility, and are oriented in the

direction of the vector sum of all dC,C+2 vectors in that X,Z region.

6.2.3 Bilayers with Pores in Constant Area Simulations

The pore simulations at constant area consist of 256 lipids and levels of hydration

specified in table 6.1. To create the unit cell, a 344 lipid bilayer patch was equilibrated

for 10ns using the simulation parameters outlined in the ‘Intact Bilayer Simulations’,

section 6.2.1. The pore was instituted by removing the remainder number of lipids

from the center of the equilibrated bilayer. The constant xy area of the subsequent

production runs was maintained by setting the xx/yy compressibilities to zero.

The pore in the DOPC bilayer hydration level 112.5 was instilled by removing 256

lipids from the center of a 512 lipids patch, hydrating the systems further to avoid

interactions between periodic images along the LZ direction, and closing the pore

further in 85 ps of standard molecular dynamics simulation.

The radius of pores in simulation was determined in the following manner. The

x, y, z vector components of the phosphorus atoms were sampled across >200 ns

trajectories at 150 ps resolution and subsequently centered at [0, 0, 0]. From this data

set the x and y components within 1 nm of the center of mass along the orthogonal

bilayer normal direction were selected and binned at 1 ns subtrajectory resolution.

This choice corresponds to only counting the lipids from the most circular section of

the hourglass shaped pore. The radius of the circle (RPORE) was determined using

the circfit function of Matlab. The surface tension in simulations has the formula:

γ = Lz × (Pzz − (Pxx + Pyy)/2) (6.2)
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The edge tension and surface tension are related via:

Λ = RPORE × γ (6.3)

6.3 Results AND Discussion

6.3.1 General observations on ribbon structures

Edge tensions, ribbon interior and edge dimensions and areas per lipid observed for

all systems are shown in Table 6.2.

Table 6.2: Simulation edge tensions, edge dimensions, and lipid packing char-
acterization.

Ribbons
Edge tension h major axis thickness at edge NLIPIDS/LEDGE AMIDDLE AEDGE

(pN) (nm) (nm) (nm) (nm−1) (nm2) (nm2)
DOPC 46.1± 1.65 3.69 2.68 4.18 6.9 0.686 1.10

DOPC-C36 44.3± 2.1 3.87 3.17 4.25 8.1 0.668 1.04
DOPC-43A1-S3 44.6± 3.1 3.85 3.25 4.25 8.9 0.652 0.964

D(16,1)-PC 44.0± 2.2 3.41 2.91 3.75 7.6 0.683 1.00
D(14,1)-PC 30.4± 1.8 3.14 2.23 3.54 6.1 0.686 1.04

POPC 32.4± 2.0 3.79 3.10 4.32 8.8 0.642 0.942
DPPC-Fluid 27.5± 2.9 4.12 3.24 4.48 10.4 0.594 0.836
DPPC-Gel 16.3± 3.7 4.16 3.01 4.50 10.6 0.572 0.797
DMPC 19.2± 2.8 3.39 3.01 3.96 9.1 0.619 0.866

DLPC-42.8 10.0± 2.7 2.95 2.24 3.48 6.6 0.634 0.945
DLPC-75.6 14.2± 2.1 3.01 2.81 3.42 8.5 0.628 0.845

Intact Bilayers
t ABILAY ER

(nm) (nm2)
DOPC 3.69 0.698

DOPC-C36 3.80 0.678
DOPC-43A1-S3 3.79 0.680

D(16,1)-PC 3.39 0.693
D(14,1)-PC 3.13 0.680

POPC 3.73 0.652
DPPC 3.76 0.620
DMPC 3.37 0.631
DLPC 2.99 0.638

Bilayers with Pores
RPORE Surface Tension Edge tension
(nm) (mN/m) (pN)

DMPC 2.7 8.5 23.3± 0.6
POPC 2.7 13.1 35.5± 0.5

DOPC-65.5 2.7 13.5 36.4± 0.5
DOPC-112.5 3.3 12.8 41.9± 0.5

All systems showed a distinctly reduced density of headgroup sites at the edges

(Figure 6.3) indicating an expansion in area per headgroup, and some tendency

toward local thickening near the edges.

The P-P thicknesses h and areas of the middle section of the ribbons were
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Figure 6.3: 3D-Phosphorous (P) density plots - to show differences in ribbon shape
and outline variations in lipid density. The plots were constructed fromXZ vector positions
sampled across the >200ns trajectories at a resolution of 250 ps.
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consistent with the continuous bilayer thicknesses to within 2% (excepting the case of

DPPC, for which the gel/fluid transition prevents a direct comparison.) Lipid areas

calculated for the ribbon interior were similarly consistent with the mean area per

headgroup of the intact bilayers. These results would suggest that the ribbons are

wide enough (at least well above Tm) that the lipids at the ribbon midsection are not

strongly perturbed by the proximity to the edge, which is a necessary condition to

avoid artifacts from the finite ribbon width. On the other hand, the shapes of the

DLPC ribbons simulated under different box dimensions showed some variation - in

particular, in the system with a greater box size, the local maximum in thickness is

farther away from the far extent of the edge, and the entire edge region (whose onset

is defined here by a local maximum in thickness) is larger. Nonetheless, the edge

tensions calculated in these two systems are in agreement within the estimated

statistical uncertainty.

6.3.2 Edge tension of DOPC: dependence on force-field

Comparisons of the results obtained from different lipid forcefields are useful for

guiding user forcefield selection and future forcefield development.(33) The edge

tension predicted by a given forcefield for a bare bilayer edge is very likely relevant to

its prediction of the relative stabilities of various proposed structures of proteinaceous

pores.(34) DOPC, the most commonly studied lipid in experimental determinations of

edge tension, was chosen for a comparative study across three force-fields. The Berger

united atom forcefield (18) (incorporating tail torsional parameters as used previously

in our group(19)) and the 43A1-S3 united atom forcefield of Chiu et al.(20) were

compared with the atomistic CHARMM C36 lipid parameter set. (21, 22) The three

characterizations yielded remarkably similar edge tensions of 46, 45, and 44 pN

respectively. As all these parameter sets have been validated against the same

experimental structural and elastic properties (areas, thicknesses, area

compressibilities, and bending moduli), it is possible that some combination of these
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properties uniquely determines (or strongly constrains) the edge tension.

6.3.3 Edge tension of DOPC: comparison with experiment

Although consistent with each other, values near 45 pN obtained from simulation are

significantly greater than experimentally determined values for the edge tension of

DOPC bilayers, which have ranged from 7 pN to 28 pN.(6, 8, 11) Several explanations

can be considered for this discrepancy. A systematic error in the simulation methods -

e.g. some error in the interaction potential feature common to all three forcefields, or

an effect artifact of the finite size of the ribbon system, or a slow (> 200 ns timescale)

transition to a more stable edge structure that is not captured in the current

trajectories - could produce an excessively high edge tension in simulation.

As an additional check on the robustness of the simulated edge tensions, edge

tensions of three lipid types were also obtained through the effect of a pore on bilayer

surface tension, following Eq. 6.3. Edge tensions of DMPC and POPC obtained for

pores of radius 2.7 nm were 3 to 4 pN greater than for ribbons, while for DOPC,

pores of size 2.7 nm and 3.3 nm yielded line tensions 10 pN and 5 pN lower than the

ribbon state. The pore size dependence could reflect the uncertainty in the proper

definition of pore radius or an effect of the in-plane curvature on the edge stability;

both of these factors would produce edge tensions that should approach the value

obtained from a flat ribbon as the pore size is increased. It should be noted that the

giant unilamellar vesicle pores from which the experimental edge tensions were

obtained in ref. 11 have radii of order 1 µm, and therefore have negligible in-plane

curvature. On the experimental side, the effect of impurities on edge tension may be a

factor. The potential for contaminants to influence experimental measurements of

edge tension has been documented. Comparison of DOPC obtained from two vendors

using the same protocol yielded edge tensions differing by 14 pN. (8) As in the case of

the surface tension of bulk water, which can be completely eliminated by a small mole
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fraction of surfactant but can only be raised modestly by high concentrations of

inorganic salts,(35) low levels of impurities are much more likely to reduce edge

tension rather than raise it. “Edge-active” impurities(1) can be very effective at

reducing edge tension because they will strongly partition to the edge and change its

properties dramatically, even if they represent a small fraction of lipids present in the

bilayer away from the edge. In one case where a systematic study was made of the

effect of an edge-active molecule, (36) the threshold level at which the short-tail lipid

DHPC stabilizes the DMPC edge (eliminating the edge tension completely) was

estimated to be as low as 1-2% at 25◦ C. In contrast, molecules that would tend to

raise the free energy of the edge will simply stay mixed in the main bilayer, and at

low levels are expected to contribute to the edge tension only slightly, through the

entropy loss associated with excluding them from the edge. (One important case

where an increase in edge tension has been observed upon addition of a new

membrane component is cholesterol;(8, 11) such effects have only been reported,

however, at cholesterol levels of 10% or greater, where cholesterol is known to cause

changes in lipid ordering through the bulk of the bilayer.)

6.3.4 Lipid tail dependence of edge tension

Using Berger force-field parameters, the effects of tail length and degree of saturation

on edge tension were compared after ribbon simulations of a series of saturated-tail

lipids with tail lengths 12, 14, and 16; cis- mono-unsaturated lipids with tail lengths

14, 16, and 18; and a single mixed saturated C16/mono-unsaturated C18-tail lipid

(POPC). As evident in figure 6.4, edge tension was positively correlated with tail

length, while lipids with two cis mono-unsaturated fatty acyl chains displayed greater

edge tensions than fully saturated lipids at the same tail length. A correlation with

tail length would seem to imply a correlation with bilayer thickness; however,

comparing DMPC and D(16,1)-PC, which have nearly the same thickness but very

different edge tensions, shows that other bilayer properties must be taken into
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account.

Figure 6.4: Edge tensions (Λsim) from ribbon simulation vs. number of carbons
(Cn) in lipid tails - from simulation of saturated lipids: DLPC-42.8, DMPC, DPPC-Fluid
(filled circles), from simulation of unsaturated lipids (open circles), and from simulation of
mixed-tail lipid POPC (grey circle).

6.3.5 Effects of the edge environment on lipid conformation and

packing

The structural origin of edge tension arises from the deformation of the lipids that

occupy the edge. We have investigated structural changes to the tails and to the

headgroups. As an indicator of tail disorder, tail dihedral statistics (specifically,

fraction of tail C-C bonds dihedrals angles that are in the range associated with the

gauche conformer) were compared for lipids at the ribbon edges and lipids in the flat

bilayer interior. For DLPC and DMPC, the fractions are nearly identical. For DPPC,

edge lipid dihedrals had a slightly greater probability (10.7%) to be found in the

higher-energy gauche conformer than ribbon interior lipid dihedrals (9.5%),
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independent of the initial phase (gel or fluid phase) used in ribbon construction (table

6.3).

Table 6.3: Percentage (%) tail dihedrals

Ribbon
Middle Edge

DLPC-42.8 11.1 11.4
DLPC-75.6 11.1 11.4

DMPC 10.9 11.2
DPPC-Fluid 9.5 10.7
DPPC-Gel 9.0 10.5

Bilayer
DLPC 11.1
DMPC 11.0
DPPC 10.6

As an indicator of headgroup environment, we have assessed the area per lipid at

the edge and compared it with the ribbon interior. From the simulated ribbons we

have found the area per lipid at the edge by fitting the surface of the curved edge to

an ellipse and using the perimeter of the ellipse. The standard definition for the

surface of a phospholipid bilayer is the surface of maximum electron density, which

tends to coincide with the peak in the phosphorus atom distribution, which was used

for the analysis of edge shape and area per lipid as described in Methods. Area per

headgroup was always greater at the edge, consistent with a simple geometric

treatment of the edge shape as a hemicylinder.(37) The degree of the expansion (see

table 6.2) was lower than the factor of 2 predicted from the simplest model of an

incompressible bilayer with an edge cross-section shaped like a semicircle with

diameter equal to the bilayer thickness. There are several reasons the simple ratio is

not applicable: the edge shape is not exactly a semicircle, the bilayer can display local

thickening near the edge, and the bilayer is not strictly incompressible (especially in

the hydrophilic region where volume per lipid depends on the degree of hydration.)

Area expansion at the edge was greater for unsaturated-tail lipids.
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6.3.6 Correlation between structure and edge tension

To better understand the factors determining edge tension, we seek an appropriate

quantitative description of this deformation and the associated elastic energy cost.

Previous phenomenological treatments of line tension have focused on the curvature

of the edge; (38) for instance, an empirical correlation between Λ and the bilayer

curvature modulus κc has been identified. (9) Wohlert et al. have previously

compared the line tension obtained both through pore and ribbon methods with

predictions of a simple curvature elasticity formula based on the bending modulus of

the bilayer.(15) In generating this formula, the edge is assumed to be a hemicylinder

whose curvature is a constant 1/r (with r the thickness of a monolayer) and whose

area per unit length of the edge is πr. The corresponding elastic energy (neglecting

spontaneous curvature) per unit length, within a Helfrich-type framework for

curvature elasticity, is:

Λ =
κmonolayer

2

(
1

r

)2

(πr) =
κmonolayerπ

2r
=
κbilayerπ

2t
(6.4)

In ref. 15, the predicted value of Λ =20 pN for DPPC at 323 K obtained based on eq.

6.4 (using kbilayer determined in previous simulations of the same model (39) ) was

significantly smaller than the values of Λ = 40 or 50 pN obtained using pore and

ribbon methods respectively. Equation 6.4 relies on several questionable assumptions:

that monolayer spontaneous curvature is negligible, that the elastic energy is harmonic

in curvature even at the extreme curvatures of the edge, that κmonolayer is simply half

of the bilayer curvature modulus κc, and that the radius at which the curvature

should be evaluated can be assigned is well-defined. Inserting bending modulus and

thickness data from the recent experimental literature (all obtained through X-ray

diffraction at a temperature of 303 K) for DOPC,(40) (κbilayer = 7.6× 10−20 J,

t =3.67 nm) DMPC, (41) (κbilayer = 6.9× 10−20 J , t =3.53 nm) and DLPC (41)

(κbilayer = 5.5× 10−20 J, t = 3.08 nm) into eq. 6.4 yields nearly identical edge
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tensions (33 pN, 31 pN, and 28 pN respectively), in contrast to the wide range (44-46

pN, 20 pN, 10-14 pN) obtained from simulation. A systematic correlation of the

simulated edge tensions with predictions of eq. 6.4 and related formulas would be of

interest, ideally assessed using consistent conditions of forcefield and temperature. At

present we have not performed the extensive simulations necessary to assess bending

elasticity (39) and spontaneous curvature (42) for each of the lipids considered.

Instead, following the framework of Israelachvili et al.,(43) we note that (assuming

incompressible tails) the lipid headgroups at the edge must be spaced more widely

than in the bilayer, where the area per headgroup is determined as an optimal balance

between headgroup and tail packing influences. This increased spacing is evident in

the reduced phosphorus site density around the rims in Figure 6.3. The expansion of

headgroups increases the surface energy associated with contact between the solvent

and lipid tails. We hypothesized that the edge tension is proportional to the product

of the increase in area (per unit length of the edge) and a surface tension associated

with the solvent-hydrophobic interface, and that the headgroup-expansion effect

dominates any other effects of molecular packing in contributing to the edge tension:

Λpred =
AEXCESS
LEDGE

γ =
NLIPIDS

LEDGE
(AEDGE (∆r)−AMIDDLE) γ (6.5)

Equation 6.5 has two adjustable parameters: the surface tension mentioned above,

and a surface offset ∆r that defines the contour of the curved surface. It can be seen

as a radical simplification of more complete free energy expressions used in previous

theory (44) for the thermodynamics of the edge. From the simulated ribbons we have

found the area per lipid at the edge, by fitting the surface of the curved edge to an

ellipse and using the perimeter of the ellipse. However, the area of a curved surface

will depend on the definition of the surface’s position. Whereas the most common

definition for the surface of a phospholipid bilayer is based on phosphorus atom sites,

as was used for the analysis of edge shape and area per lipid as described in Methods,

lateral pressure profiles calculated from previously published simulations (45–48)
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reveal that the plane of minimal lateral pressure (greatest surface tension) coincide

roughly with the region populated by glycerol and acyl ester sites, 0.19-0.25 nm below

(towards the midplane of) the phosphorus site peak. Here we treat the offset ∆r

between the standard phosphorus site surface and the surface at which the tension

should be evaluated as an adjustable parameter. To correct the area for the offset ∆r,

we have recalculated the area of the hemi-elliptical edge AEDGE(∆r) by reducing the

semi-major and semi-minor axis lengths of the ellipse from Table 6.2 by ∆r, and

determined the parameters of γ and ∆r that minimize the least-square deviation

between Λpred from Eq. 6.5 and the edge tension obtained from simulation using Eq.

6.1. (Only systems simulated using the Berger force-field parameters were included in

this fit.) The results from the area expansion model (Eq. 6.5) are compared to

simulation results in Figure 6.5.

Figure 6.5: Edge tension from area expansion model - (Λpred (pN) equation 6.2) vs.
edge tension from simulations (Λsim(pN) ). Filled, grey, and open circles are edge tensions
of saturated-tail lipids, mixed-tail lipid POPC, and unsaturated-tail lipids respectively. A
line with slope 1 is used to guide the eye.
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The saturated-tail lipids, plus POPC and DOPC, give good agreement with model

predictions; the correlation between predicted and simulated values is worst for

D(14,1)-PC and D(16,1)-PC. The best-fit choices of γ and ∆r were 36.0 mN/m and

-0.54 nm respectively. The surface tension is within a factor of two of experimental

values for water/alkane surface tension (50-55 mN/m).(49) (The model neglects

headgroup-headgroup repulsions, which will contribute a negative term to the free

energy as the spacing increases, and would reduce the apparent surface tension.) The

offset distance ∆r is rather greater than expected for the location of the plane of

greatest surface tension. Nonetheless, the results suggest that a measure of area

expansion is sufficient to rationalize the observed trends in edge tension to a first

approximation.

Although tail effects are not explicitly included in Eq. 6.5, they are obviously

important in determining how the lipids can be packed at the edge such that area

expansion can be minimized. Tail packing effects can explain the effect of tail

saturation on the edge tension. Bilayer thickening near the edge produces a rim with

a larger radius of curvature and a lower area/volume ratio. The saturated-tail lipids

showed lower degrees of area expansion at the edge and also showed a greater

tendency for local thickening near the edge. The greater accommodation through

local thickening can be attributed to the greater extensibility of the saturated-tail

chains. In contrast to the saturated-tail chains, which have an energetic minimum in a

fully extended state, the energetic minimum for tails with a single cis double bond has

a kinked conformation due to the torsional potentials of C-C single bonds neighboring

the double bond.(50) The under-prediction of the edge tension by Eq. 6.5 for the 14-

and 16-carbon unsaturated-tail lipids may indicate that unfavorable tail packing at

the curved edge per se, as opposed to the ability of a packing arrangement to reduce

headgroup expansion, contributes to the instability of the edge in these cases.

The most striking example of how tail packing is coupled to the curvature at the

edge is found in a DPPC bilayer ribbon initiated in a tilted gel-phase (L′β) state, with

tail groups highly ordered and extended. Over the course of 25 ns simulation at 300 K
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(below the phase transition temperature of 308 K estimated for this DPPC model

(31)) the lipids reoriented from having a uniform tilt alignment in both leaflets

(originally pointing partially along the edge direction and partially toward the left

edge) to having a “herringbone” mirror-image tilt at both sides, with a disordered

region in between. A ribbon initiated with lipids in a disordered, fluid (Lα)

arrangement and equilibrated at the same temperature developed the same pattern.

Although this structure can be discerned from individual snapshots (figure 6.3), it is

even more apparent from a plot of the tail orientation field vector within the

cross-sectional plane of the ribbon (figure 6.6). In contrast to the other lipids

modeled, where the tails were untilted (aligned along Z on average) except at the

highly curved rims, DPPC tails tended to tilt with their ends towards the center of

the ribbon except in a narrow zone near the center of the ribbon (x = 0).

A reduction of diffusion rates near bilayer edge defects (51) at temperatures near

Tm has been reported in the literature, which may be associated with the ability of

the edge to induce such a gel-like herringbone arrangement within the bilayer even

when the temperature is above the bulk Tm. The observation of a uniform

mirror-image tilt arrangement across the leaflets in previous low-temperature

simulations of intact bilayers of DSPC (52) suggests that such an ordered structure

may be energetically close to the common tilted-gel structure with tails in the two

leaflets co-aligned. In the ribbon simulations, the geometry imposes a transition in

the direction of tail vectors in each leaflet between the left and right ribbon edges; the

change in direction in the flat part of the ribbon is accompanied by considerable

disorder. In an extended system as studied experimentally in reference 51, the edges

are far from each other and the herringbone pattern could potentially persist into the

bilayer interior on a micrometer scale.
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Figure 6.6: Tail orientation plots - for four lipid ribbons, averaged over centered,
aligned frames taken at 250 ps increments over MD trajectories. Segment lengths are
proportional to the product of tail site density and degree of alignment as described in
Methods.
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6.4 Conclusions

The edge tensions of bilayers have been determined for a series of PC lipids using

atomistic and united-atom molecular dynamics simulations of bilayer ribbons. In the

case of DOPC, the values obtained using three different forcefields coincided closely

near 45 pN, a value that is over 50% higher than the upper limit of the broad range of

experimentally determined values. Besides the real possibility that finite-size effects

or shortcomings common to all three forcefields are responsible for this discrepancy,

another plausible explanation for the discrepancy is the ability of low-level impurities

to reduce edge tension in the experimental systems. Edge tensions decreased with

increasing tail length, with the exception of the DPPC system near its transition

temperature. Edge tensions were greater for mono-unsaturated tail lipids than for

saturated tail lipids with the same number of tail carbons. Edge tension could be

correlated roughly with the degree of area expansion associated with forming the

edge, although the definition of the area expansion involved an unknown parameter

related to the surface at which the area was measured. Tail properties influenced edge

tension both through setting the overall thickness and through influences on packing

at the edge; in general, saturated tail lipids were better able to adapt the local bilayer

thickness near the edge to reduce the area expansion per headgroup. The DPPC lipid

near its transition temperature showed a distinct herringbone tilt pattern near the

edge; this mode of accommodation may help explain the apparent ordering that

occurs near edges in supported bilayers.
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7

Oleic acid (OA) capped CdSe

quantum dots embedded in the

lipid bilayer- A united-atom

simulation description

7.1 Introduction

Several recent reviews explore the motivation and the common uses of quantum dots

(QDs) and metal nanoparticles (NPs) in biological applications. (1–5) The class of

materials commonly referred to as nanocrystals or “quantum dots” (QD) consist of a

semiconductor core coated by an organic surfactant layer. In literature the

passivating surfactant layer is also referred to as “ligands” or “capping agents”. The

semiconductor component, typically composed of group II-VI or III-V elements, has

size dependent, unique optical properties. (6–12) These properties include broad

absorption spectra, narrow emission bands whose frequency depends on QD size.

149
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Relative to molecular dyes, they are more photostable and have longer fluorescence

excitation lifetimes. The fluorescence properties of quantum dots have been exploited

in several ways. In FRET experiments quantum dots were able to track changes in

distances between interacting molecules. In molecule targeting experiments, the

surface of the quantum dot was engineered as to bind specific DNA/mRNA sequences,

to label specific proteins or fibers during key reactions and interactions, to initiate

antigen to antibody recognition events, and to adhere to specific surface cell receptors.

Often quantum dots and nanoparticles must interact or cross the enclosing cell

membrane in order to reach specific targets. Size, shape, and the charge/polar

character of the passivating surfactant layer, all affect the manner in which quantum

dots or nanoparticle interact with lipid membranes . (13–17) The charges of the lipid

headgroups themselves and the elastic properties of the lipid membranes also play a

role. Rod-like structure cannot cross the lipid membranes as well as spherically

shaped nanoparticles. (18) Charged nanocrystals, especially positively charged

nanocrystals, favor lipid bilayer translocation. Typical translocation mechanisms

consist in inducing localized pores in the lipid bilayers or in thinning and subsequent

breaking of the membrane (19). Neutral nanoparticles prefer the hydrophilic phase

and may be used during instances where no membrane interaction is preferred. (17)

Nanoparticles capped with both hydrophilic and hydrophilic character ligands reside

at the interfacial region.

Quantum dots and metal NPs can be transported across cell membranes inside the

lumen of large unimellar vesicles (LUVs) or liposomes, structures commonly used as

molecular delivery systems. Several experimental reports from the past decade

showed that both metal NPs and QDs structures passivated by hydrophobic ligands

may also be embedded inside the hydrophobic acyl chain wall of the liposome.

Successful QD incorporation requires employing hydrophobic capping ligands and also

small nanoparticle size (<6-7 nm total size (20) ), the later needed to minimize

hydrophobic mismatch between the two monolayer leaflets.

The first report on incorporating nanoparticles inside the liposome wall was from
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English and co-workers.(21) They employed octanol covered silicon NPs in the 2.5-3.5

nm range. The nanoparticles were found to reside either completely buried inside the

hydrophobic layer or partially exposed to the surface. Small hydrophobic-coated

quantum dots have also been successfully embedded inside the hydrophobic wall of

the liposome. In one example a ∼ 3 nm CdSe QD, TOPO coated was successfully

embedded in the wall of large unimellar vesicles (LUVs) (22). The surface of the

liposome was further engineered as to either fuse with the plasma membrane, and

direct the quantum dot fluorescent probes to reside inside the native plasma

membrane, or as to have the intact QD carrying liposome translocate inside the

cellular cytoplasm. In the latter case, the LUV system can be engineered to also

transport a molecule of interest (such as a drug molecule) across the lipid bilayer.

The incorporation of the quantum dots inside the lipid bilayer is believed to disrupt

both the lipid headgroup packing and neighboring lipid tail monolayer structure. In

some cases may lead to unzipping of the two monolayers, an event that in turn

furthers nanoparticle aggregation.(23, 24)

From theoretical models (20) wrapping of the two monolayers around QDs is

enabled by both monolayer ability to bend and also its ability to stretch. Elastic

material constants such as bending moduli (k) and area stretching moduli (Ka), along

with monolayer spontaneous curvature (co), and monolayer thicknesses (t) are

expected to play a role with respect to size of QDs that are possible to embed.

Several simulation studies characterizing the interactions of lipid bilayers with metal

nanoparticles have been reported. (17, 25–27) These studies show how the presence of

nanoparticles affect the lipid tail configuration state such as the gel-fluid transition of

dipalmitoyl phosphatidylcholine (DPPC) bilayers, and also how the nature of

electrostatic charges or hydrophobic character of the ligands modulate the

membrane-nanoparticles interfacial interaction as well as the nanoparticle

translocation. For quantum dots systems in lipid bilayers, all published studies so far

have used coarse-grained force-fields to describe the interactions of both lipids and

ligands.
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In a recent study Zheng and co-workers (28) investigated the photo-oxidation of

3.0 nm diameter CdSe QDs passivated by oleic acid when embedded in the wall of

small unilamellar vesicles ( 170 nm SUVs) of different phase lipids. Their study found

increased stability to photoxidation when the QDs were embedded in gel lipid

distearoyl phosphatidylcholine (DSPC) compared to fluid phase distearoyl

phosphatidylcholine (DOPC) (or near-phase transition dimyristoyl

phosphatidylcholine (DMPC)). The observed phenomenon was explained as DSPC

lipid/ligand interface confining the oxides to the surface of the quantum dot. Their

study also showed selective ligand exchange with SUVs lipid type. When QDs were

embedded in fluid lipid DOPC, several longer length SH-(PEG)82-Cy5 molecule

successfully replaced the QD native ligands. At the same added new ligand

concentration, no successful native ligand exchange process was observed in the

QD/DSPC case.

The structural conformation of lipids interacting with ligands of quantum dot and

that of ligands passivating the nanocrystals can be characterized in simulations. To

date understanding the ligand/lipid interface associated with quantum dots (QDs)

positioned inside the lipid bilayers from simulation work with an united atom (UA) or

all atom (AA) level description proved challenging. Tens of thousands of water

molecules are needed in order to properly hydrate the bilayer embedded QD system.

The advent of efficient, scalable parallel codes made it possible to attempt such an

implementation. In this work we present findings from incorporating two different size

QDs, 2.6 nm and 3.4 nm diameter wurtzite CdSe quantum dots capped with oleic

acid ( (9Z)-octadec-9-enoic acid ot OA) in dilauroyl phosphatidylcholine (DLPC),

DMPC, DOPC, and DSPC lipid bilayers from simulations using a united atom (UA))

description of all components involved. The choice of embedding lipids allows

understanding of how bilayer thicknesses and phase of lipid tail couple with size and

degree of passivation of embedding nanoparticle. The thicknesses of the chosen

monolayers embedding the QD should also influence the manner of accommodating

the passivating ligands.
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We are interested to understand the static and the dynamic conformational

changes in lipid tails that occurs in order to accommodate the QD nanocrystals.

Characterizing the spatial distribution of oleic acids ligands is also useful to better

understand the access to QD surface during ligand exchange processes. At the same

QD size, two different capping ligand densities are employed. Changes in lipid bilayer

properties with varying the quantum dots initial embedding orientation with respect

to the LZ bilayer normal are also examined.

Figure 7.1: Snapshots of quantum dots embedded in DSPC, DMPC(V-state),
DOPC, and DLPC - The simulation instances at t=100 ns are displayed ; - XZ plane
view
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Figure 7.2: Snapshots of quantum dots incorporated in DMPC, T-state ori-
entation - The simulation configurations at t=100 ns instance are shown ; -XZ plane
view
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7.2 Methods

7.2.1 Oleic acid capped -nanocrystal preparation-

The initial coordinates of ∼ 1.2 aspect ratio prolate shaped, Cd rich CdSe quantum

dots were generated from sculpting into an wurtzite lattice with constants a = 0.43

nm and c=0.701 nm (29). The 100 nanocrystal facet (for a full description of CdSe

nanocrystal surface notation see Rosenthal et. all (30) ) was left as Cd and Se

terminated with Se atom having a single dangling bond. All other nanocrystal

surfaces are terminated in Cd atoms. The 2.6 nm diameter quantum dot has a 462

total number of atoms and a 1.25 Cd:Se stoichiometric ratio. The ∼ 3.4 nm QD has a

total of 918 atoms and a 1.21 Cd:Se ratio.(29) The Cd atom interacts with the Se

atom via both pairwise long-range electrostatic interactions and short-range LJ

interactions as described in the Rabani force-field (29). The total numbers of ligands

capping the 2.6 nm nanocrystal is 121 oleic acid (OA) molecules, number that results

from coordinating each surface Cd atom in a divalent manner to the oxygen atoms on

the ligands. Two ligand capping densities were implemented to cover the 3.4 nm

nanocrystal surface, more specifically 185 OA ligand molecules and 226 OA ligands.

The Berger united atom (UA) force-field parameter description (31, 32) was enforced

for the OA ligand, the typical representation used for the 18:1(9Z) tail of POPC lipid.

The Cd-O bond is implemented as a harmonic bond with an equilibrium

inter-separation of 0.24 nm. Increasing the negative partial charges on the oleic acid

oxygen atoms counterbalanced the extra charge due to excess Cd surface atoms

present in the system.

The ligands were combined with the bare CdSe nanocrystal in the following

manner. First the tail of an oleic acid was stretched out to a linear configuration

preserving the cis-kink found at the C9-C10 position. The extended ligands were

placed with the carboxyl group oxygen atoms at a 0.24 nm distance from a quantum

dot surface Cd bonding partner using an in-house developed perl script. The ligand
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shell of fully capped quantum dot was next relaxed in vacuum during a 1 ns

molecular dynamics (MD), NVT ensemble simulation while keeping the nanocrystal

structure frozen. The MD simulation runs were done using the Gromacs-4.5.4

simulation software. (33) This package implements the leap-frog scheme for

integrating Newton’s equations of motion. The temperature was maintained at 300 K

using the Berendsen thermostat and a 0.1 ps time constant. (34) Periodic boundary

conditions (pbc) were implemented in all three Cartesian directions. A 2 fs time step

was used in simulation. The electrostatic interactions were treated via the PME

algorithm with a 0.12 grid spacing and cubic interpolation. (35) A cut-off of 1.0 nm

was used for the van-der-Waals interactions. At the end of the simulation run, the

initial ligand orientation appeared completely melted and the nanocrystal displayed

homogenous monolayer coverage.

7.2.2 Combining the capped nanocrystals with lipid bilayers, MD

Parameters

In most cases (table 7.1) a 128 lipid bilayer was replicated by 2 x 2 x 1 using the

genconf utility of Gromacs to yield a total 512 lipids assembled into a 12 x 12 nm

patch. The coordinates of the solvated upper lipid monolayer were translated in the

Z-direction by 7 nm. The quantum dot was placed between the two leaflets having

the orientation T-state or V-state described in table 7.1. The embedding orientations

refer to placing the QDs between the two lipid monolayers with its prolate major axis

parallel to bilayer normal, the V state or perpendicular to bilayer normal, the T state.

The monolayers were next closed to form the bilayer structure via an applied pressure

in the Z-direction, while keeping a fixed Lx × Ly area. The leaflets closed thus

embedding the quantum dot in 20-50 ps simulation time. The resulting lipid

bilayer-QD structures were sampled in ∼ 150 ns NPT molecular dynamics

simulations. The CdSe nanocrystal structure was no longer kept frozen during the

MD runs. We also observed the previously reported, two outermost nanocrystal



7.2 Methods 157

surface layers reconstructions (29). The Berger force-field (31) described the lipid

interactions and the SPC water model was implemented for the water solvent. The

temperature was kept fixed at 300 K using the Berendsen thermostat and a 0.1 ps

time constant. For all lipid systems (except DSPC) the pressure was kept fixed at 1.0

bar using the Berendsen barostat (τp =1.0 ps, 4.5e−5 bar −1 compressibility values)

and the semiisotropic pressure coupling scheme. The electrostatic interactions were

computed via the PME scheme using a 0.12 nm grid spacing. The cut-off for the Van

der Waals interaction was 0.9 nm. The covalent bonds of lipids and those of OA

molecule were constrained via the LINCS algorithm. (36) The SETTLE algorithm

(37) was utilized in constraining the bonds of water molecules.

The initial DSPC bilayer gel configuration was previously realized and

characterized in our own group. (38) The production MD simulation conditions differ

for the DSPC bilayer in that the Berendsen anisotropic coupling scheme was

implemented (τp =2.0 ps) that allowed for changes of box/angle dimensions in all

three Cartesian directions. For the data analysis purposes, in order to insure QD-lipid

bilayer equilibration, the first 100 ns of MD simulation were excluded for all systems

composed of 512 lipids. The frames used during the analysis (50ns in all cases) were

sampled across the trajectory at a 15-40 ps resolution.

7.2.3 Analysis Method

For data analysis purposes, in order to insure QD-lipid bilayer equilibration, the first

100 ns of MD simulation were excluded fo all systems. The tilting of the quantum dot

(table 7.1 last column and figure 7.7) was determined using the g bundle utility of

Gromacs software package in the following manner. First the top Se layer atom

coordinates and the lowest Se layer atom coordinates of the Cd terminated quantum

dot are selected. The xz-center of mass of each of the two layers is calculated and an

axis/vector is constructed from the newly calculated center of mass points. The

tilting angle reported in table 7.1 is the angle between the newly inter-layer created



7.2 Methods 158

Table 7.1: Overview of simulated systems

Water/Lipid Ratio QD Size Time Embedding QD orientation
(nm) (ns) State ΦZ (◦)

DLPC 63.1 2.6 150 V 37.5± 4.4
DLPC 108.9b 3.4 150 V 15.6± 2.5
DLPC 107.5c 3.4 150 V 29.3± 2.4
DMPC 61.1 2.6 150 V 42.4± 3.1
DMPC 61.1 2.6 150 T 120.0± 4.0
DMPC 62.9a 2.6 150 T 100.0± 3.5
DMPC 108.7b 3.4 150 V 32.6± 4.0
DMPC 86.0a,b 3.4 130 T 66.5± 2.0
DMPC 104.5c 3.4 150 V 27.0± 2.9
DMPC 85.8c 3.4 120 T 84.2± 2.0
DOPC 54.4 2.6 150 V 38.9± 4.0
DOPC 89.6b 3.4 150 V 27.2± 2.4
DOPC 100.1c 3.4 150 V 62.8± 3.0
DSPC 60.6 2.6 150 V 24.9± 1.3
DSPC 60.6b 3.4 150 V 18.4± 1.4
DSPC 104.4b 3.4 150 V 22.5± 1.4
DSPC 103.7c 3.4 150 V 37.2± 2.5

a=768 lipids unit cell, b= 226 OA, c= 185 OA

vector and the z-axis bilayer normal.

The phosphorus (P) atom number density from figure 7.3 corresponds to selecting

all lipids from near QD outward to the extent of bilayer-like thickness recovery, in a

cylinder geometry. The number of cylindrical slices along LZ direction was 100. To

center the calculated density at zero, the center of mass along the Z direction of the

CdSe/OA assembly was subtracted and averaged over the last 50 ns of the

trajectories.

The distance dependent deuterium order parameters reported in figures 7.4-7.5

were constructed by selecting circular concentric shells outward from the embedding

location of the QDs. Saturated lipid tails order reported values were determined via

the g order program of Gromacs. The values corresponding to DOPC unsaturated

carbons were calculated using a different version of g order that was modified further

(39) to correctly calculate the order parameters corresponding to these atoms.The

center of mass of CdSe nanocrystal and that of its passivating OA ligands,

(xcom, ycom) in the xy plane were determined for each frame sampled across
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trajectories at a 15-40 ps resolution. The (xcom, ycom) point is used as a center point

when counting the lipids as concentric shells. The (x, y) coordinates of the

phosphorous (P) atoms of each frame were also selected and used to determine which

lipids belong to a specific concentric shell. A typical lipid bilayer shell used in order

parameter calculations is shown in figure 7.8.

The calculations were conducted for the sn− 1 tail and sn− 2 tail separately and

then the final values were averaged over the last 50 ns trajectory sections. The

formulas for order parameter of a fluid phase lipid bilayer that can be related to

deuterium order parameter found in experiments is (40):

−SCD = (
2

3
Sxx +

1

3
Syy) (7.1)

Sxx(yy) =
2

3

〈(
eix(y) · eix(y)

)2〉− 1

2

eix(y) =
ri+1,x(y) − ri−1,x(y)∣∣ri+1,x(y) − ri−1,x(y)

∣∣
ri is the position vector connecting Ci+1Ci−1 when determining the order

parameter for carbon position number i on lipid tail.

Order parameters of intact bilayers were obtained from the simulations of bilayers

described in previous chapter in an analogous manner to when calculating the order

parameter of a single QD concentric lipid shell. Lipid tail orientational time

autocorrelation functions were obtained by first finding the unit vector rj directed

from carbon 4 to carbon 9 on the sn− 2 lipid tail of each lipid j, then calculating the

average autocorrelation function:

Cj(t) = 〈rj (τ) · rj(τ + t)〉 (7.2)
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over the trajectory segment from τ = 100 ns to τ = 150 ns for t up to 25 ns. The

averages of Cj(t) were taken over lipids j classified as either bulk-like (far from the

QD) or perturbed (near to the QD). Lipids were classified as near or far from the QD

based on their radial distance in the xy plane from the QD center-of-mass. The

cut-off radius was determined for each structure as the distance at which the lipid

bilayer recovered its unperturbed thickness. In the case of DSPC, a subset of lipids

within the cut-off radius had gel-like properties; in these, the orientational

autocorrelation function persisted above 0.92 over the 25 ns analysis range. These

20-30% of lipids were excluded from the average plotted in figure 7.6.

The first step in determining the water number density introduced in figure 7.8

consists in computing the radial distribution function g(r) between the Cd atom

found at the QD center point and the oxygen atom of water molecules. The g(r)

function is next multiplied by the bulk water density used to solvate the lipid/QD

systems (ρbulk).

7.3 Results

The positioning of the embedded quantum dot (CdSe/OA) within the lipid bilayer is

quantified across all lipid types as number densities vs. LZ box dimensions in a

cylindrical geometry (out to intact bilayer like conformation recovery) and observed

asymmetric. Sample data of monolayer embedding preference is presented in figure

7.3. The QD’s slight preference for one monolayer leaflet is most pronounced for lipid

DSPC at higher ligand capping density or smaller size QD. The bare nanocrystal

tilting angles with respect to bilayer normal are summarized in table 7.1 for both

initial embedding states, the V-state and the T-state. Across lipid types,when

averaging over the last 50 ns of the trajectories, several systems adopt nanocrystal

core tilting angle of ∼ 30◦ when larger size nanorcrystals were embedded(figure

7.7:a,d). About ten degrees higher tilting angle were calculated for cases embedding a
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2.6 nm diameter core quantum dot (figure 7.7:c).

Figure 7.3: Preferred positioning of embedded QDs inside lipid monolayers -
Phosphorous (P) density vs. LZ box dimension of QD embedded in lipid bilayers from
sculpting a cylinder of radius (rcut−off ) around the quantum dot to the point of bilayer
like thickness recovery.

At the start of this investigation, we set out to discern the manner in which

distortions in lipid tail configurations are influenced by the size of the quantum dot

and by the ligand density. Embedded QD distance dependent order parameters are

shown in figure 7.4. Each column corresponds to a single lipid type, DOPC, DMPC,

and DSPC respectively. The first row is the instance of embedding a 3.4 nm diameter

nanocrystal passivated by 185 oleic acid ligands, the second row corresponds to a 3.4

nm diameter QD capped with 226 oleic acid molecules, and the third row shows the

order parameter data for the 2.6 nm diameter CdSe QD/121 OA system. This

analysis shows that a smaller nanocrystal size and a lower ligand density leads to
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more ordered lipid tails. The order parameter curves constructed from including the

embedded QDs further away lipids show less variability with nanocrystal size.

Differences among concentric shells however persist.

Figure 7.4: Lipid tail ordering with QD size and degree of ligand passivation
- Distance dependent order parameter vs. number of tail carbon for QD free lipid bilayer
and for QDs embedded in lipid bilayers. Each column correspond to a single lipid type:
DOPC left, DMPC center , and DSPC right ; The data across rows refers to changing the
QD oleic acid ligand density from 185 OA to 226 OA at same 3.4nm QD size (row 1 vs.
row 2) and diameter size from 3.4 nm, 226 OA to 2.6 nm, 121 OA (row 2 vs. row 3).

We also investigated if the manner of initially positioning the nanocrystal between

the two monolayers affects the resulting trends in order parameters. Figure 7.5

displays distance dependent order parameters of lipid tails from regions closest to the

quantum dot (rcut−off < 4nm ) at same size embedded QD (2.6 nm) in lipid DMPC.
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Less ordered lipid tails are observed in QDs embedded as T-state. The curves are

superimposable at distances larger than rcut−off > 4nm. Comparable size differences

were determined between state V and state T of embedded 3.4nm QD/226 OA and

3.4 nm/185 OA systems with rcut−off >∼ 6 nm (data not shown).

Figure 7.5: Lipid tail ordering with QD embedding orientation - Distance de-
pendent order parameter vs. carbon position in lipid tail - with QD embedding orientation
and number of lipids in unit cell. The QD embedding orientation refers to initially (t=0
ns) placing the QD between DMPC monolayers with its prolate major axis either parallel
(black filled symbols, V state) to bilayer normal or perpendicular (red or blue clear symbols,
T state) to bilayer normal

Qualitative differences in lipid tail mobility with lipid phase are presented by

calculating the decays in the orientational autocorrelation functions of a unit vector

constructed between position of carbons four and position of carbon nine (figure 7.6).

The left side panel of the figure displays data at same size quantum dot (3.4nm/226

OA) across different phase lipids. Relative to QD free lipid monolayer regions, the

presence of the embedded QD in the bilayer enhances the oleic acids nearby DSPC

lipid tail mobility, hinders the motion of neighboring DMPC tails, and it is not

impairing the movement ability of DOPC tails. The time scales of the autocorrelation
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decays are found unaffected by both size of embedded quantum dot and degree of

nanocrystal passivation. (figure 7.6, right panel).

Figure 7.6: Orientational autocorrelation function - Left Panel: Decays in lipid
tail unit vector (rC4,C9) autocorrelation functions constructed from the last 50 ns trajectory
sections. Red color, lipid DOPC: 3. 4 nm size QD/226 OA, solid line corresponds to lipids
far away from the embedded QD, and dashed line constructed from lipids near QD. Blue
color, lipid DMPC: 3.4nm QD/226 OA system, dashed line from QD far away lipids, and
dotted line from near QD lipids. Black color, lipid DSPC: 3.4nm QD /226 OA molecules
system, solid line from gel like lipids and the dashed line line from melted lipids. Right
Panel: Autocorrelation function decay variability with size of nanocrystal and ligand
density from lipids that interact with QD passivating ligands: 2.6 nm QD/121 OA solid
line, 3.4 nm QD/226 OA dotted line , and 3.4 nm QD/185 OA dashed line.

7.4 Discussion

7.4.1 Embedded Nanocrystal Trajectory Descriptions

As shown in figures 7.1-7.2, in most cases the ligand shell around the 2.6 nm

nanocrystals is concentrated laterally (almost bunched) and depleted, disordered, and

density wise asymmetric at the two QD poles. A similar oleic acid ligand preference is

observed when embedding a 3.4 nm diameter QD but with a higher density of ligand

molecules pointing towards the PC headgroups. For larger nanocrystals, a greater

fraction of ligands are depleted at the poles and packed laterally when DOPC or

DSPC lipid is used compared to DMPC or DLPC lipid. Previous simulations of QD
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free DMPC, DLPC, DOPC, and DSPC lipid bilayers in similar simulation conditions

employed in this investigation or in experiment determined thicknesses values as 3.37

nm, 2.99 nm, 3.69 nm (41) , and 4.7 nm (42) respectively. The more pronounced pole

ligand depletion when embedding the larger nanocrystals in DOPC and DSPC can be

related to lipid monolayers having larger thicknesses and thus an improved ability to

accommodate a higher number of ligands laterally.

Simulations at different initial QD embedding orientation (T-state vs. V-state,

figure 7.2) show similar ligand pole bunching thus further confirming that the

distribution of ligand is determined mostly by the embedding bilayers and not by the

shape of the quantum dot as ligands corresponding to other nanocrystal facets are in

direct contact with the DMPC tails.

Simulations at different initial embedding orientation (DMPC, T-state vs. V-state,

figure 7.2) further confirm that the distribution of ligand pole bunching is determined

mostly by the bilayers and not by the shape of the quantum dot. For smallest size

T-state embedded QDs (figure 7.2), the ligand bunching appears similar to when the

nanocrystal was prepared in an initial V-state although ligands corresponding to

other nanocrystal facets are in direct contact with the DMPC tails.

The average tilting of the quantum dot in each simulation instance across the 50ns

analysis trajectory section is summarized in table 7.1. Sample evolutions over the

entire trajectories are shown in figure 7.7. Across lipid types the largest tilting angles

with respect to bilayer normal are determined in systems incorporating a 2.6 nm

diameter nanocrystal, with lowest values recorded in lipid DSPC. The standard

deviation of the tilt angle over the 50 ns trajectory segment is also largest for this size

QD alluding to the smallest size syste’s ability to rotate faster and thus expose ligands

to be replaced during ligand exchange processes at a faster rate (figure 7.7c). In all

simulation cases, the trajectories of QDs incorporated in DSPC show little variations

in tilt angles, thus in gel lipids the embedded QDs are locked in place (fig 7.7: a,c,d).

The DSPC QD/185 OA has a symmetric embedding (figure 7.3) compared to the
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Figure 7.7: Nanocrystal tilt angle vs. time - Evolution of tilt angle with trajectory
time across different QDs/lipid systems
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other DSPC cases due to more even ligand density populations at the two QD poles.

The tilting angle is also the largest for this system suggesting that the ligand

populations at the two QD poles and not just the lateral ligand densities versus those

facing the PC headgroup can affect the final nanocrystal embedding orientation. The

higher valuer in tilt angle of 3.4nm/185 in lipid DOPC (figure 7.7a) corresponds to a

tilt angle of ∼ 30 degrees with respect to −LZ and perpendicular to the orientation of

the other embedded QDs under similar conditions (3.4 nm CdSe/185 OA in DLPC,

DMPC, DOPC).

In addition to ligand population distributions effects mentioned above and

nanocrystal size, incomplete equilibration might slightly affect the recorded final

angles values and longer simulations should be conducted to investigate further such

effects (figure 7.7). Longer simulations would also allow us to quantify fractions of

QD pole ligands interacting with wrapping lipids.

QDs incorporated in DSPC gel phase lipid show some unique features. To

accommodate OA configurations pointing towards the PC headgroups, several DSPC

lipid tails from the region of the quantum dot of this lipid type, take on

unconventional conformations, oriented almost perpendicular to the bilayer normal. A

percentage of DSPC tails that interact with laterally-oriented OA ligands manage to

maintain a gel like structure, but are displaced toward the solvent (figure 7.8).

While a slight embedding asymmetry (figure 7.3) is also observed in DSPC with

larger nanocrystal, a more pronounced asymmetry is observed for the ∼ 2.6 nm QD.

At simulation trajectory time τ = 0, however, the 2.6 nm QD embedded perfectly

symmetric. At ∼ 10 ns trajectory time, the DSPC monolayers incorporating a 2.6 nm

QD already displays significant asymmetry, with the QD exhibiting a preference for

one of the leaflets. Also, there are other segments of the 150ns trajectory where more

symmetric embedding is observed relative to the average curves displayed in figure

7.3. We also mention that at later trajectory time, ∼ 125 ns, the 2.6 nm QD

incorporated in DSPC, displayed a topological defect site in that two lipid molecules
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Figure 7.8: DSPC lipid tail reorientation - Simulation snapshots of concentric shell
at τ = 100 ns trajectory instance for DSPC lipid with 3.4nm/226 OA embedded QD to
show manner of lipid tails reorientation to accommodate passivating oleic acid ligands.
The lipid concentric shell 3nm < rcut−off < 4nm is shown apart from the embedded QD
(left bottom) and together with the nanocrystal (center, right top) in XZ plane (bilayer
normal along Z) and as top view or XY plane (lower panels).
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diffused close to the surface of the quantum dot and their headgroups proceeded to

passivate one of the QD poles. Along with the two lipids, several water molecules were

also able to reach the surface of the quantum dot. At ∼ 140 ns trajectory time the

two lipids left the surface of the quantum dot and rejoined the wrapping DSPC lipids.

From snapshots of figure 7.1, the regions of the embedded QDs show lower bilayer

bending curvature when DSPC lipid is used compared to DOPC, DMPC, and DLPC.

Longer simulations could quantify the preferred embedding orientation with ligand

density distribution. Output of such longer simulations (300-400 ns) can be used as

basis in constructing a molecular model that can then further describe the elasticity

of the wrapping monolayers. Input parameters of such a model would also consider

ligand spatial distributions and the nanocrystal preferred tilt angles with factors that

affect its geometric orientation.

7.4.2 Lipid Tail Disorder

All size diameter embedded nanocrystals lead to a lower lipid order parameter

compared to a QD free bilayer patch even at distances far away from embedded QD

(figure 7.4 and figure 7.5). A larger number of lipids are recommended be used in the

unit cell to insure sufficient relaxation between XZ -QD periodic repeats.

For the 2.6nm QDs systems, the distance dependent order parameters of DOPC

lipids selected from a circular patch of 2.0 nm radius relative to center of mass of

CdSe/OA appear most disordered. These lipids are in direct contact with QD pole

OAs pointing towards the PC headgroups. The ordered parameters constructed with

tails from all other concentric shells nearly collapse unto a master curve (figure 7.4,

left column). For larger nanocrystal cases, 3.4nm in diameter, a somewhat similar

order parameter curve to that of the 2.0 nm radius patch of embedded 2.6nm QD is

observed when lipids are amassed together to form a 4 nm radius lipid patch. The

order parameter for 3.4 nm CdSe/QD with 226 ligands is similar in shape with 3.4
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nm/185 OA, slightly ordered but less so compared to order parameter of lipids

embedding the smallest 2.6 nm nanocrystal. This trend is not surprising considering

that fewer ligands are available to interact with the DOPC molecule in the smallest

nanocrystal and in doing can alter the preferred lipid tail ordering.

For 2.6 nm QDs in DMPC lipid, the order parameter of lipids organized as QD

concentric shells display the following trend. The shape of the curve constructed from

DMPC tails from a circular patch with rcut−off < 2− 3 nm is different from that a

QD free bilayer. The second carbon (C2) displays a considerably lower order

parameter. Visually the two monolayers wrapped around the QD resemble a bilayer

structure for a cut-off radius larger than 4-5 nm. The decrease in order parameter

observed for the adjacent bilayer like regions that correspond to further out from

location of embedded QD, corresponds to the bending monolayers changing the sign

of bending curvature ( rcut−off ∼ 5− 7 nm ). Beyond this region, rcut−off ∼ 7− 8 nm

,the ordering increases for lipids from planar bilayer like conformation; free QD bilayer

lipid tail ordering however is not recovered. A similar trend is observed for 3.4 nm

QDs passivated with 185 OA or 226 OA (figure 7.4, middle column, row 1 vs. row 2).

The findings for QD/DMPC systems where the order parameters were investigated

to record differences with QD initial embedding orientation (T vs. V state, figure 7.5)

are reasonable considering different nanocrystal facet ligand populations are

interacting with the tails of the embedding lipids. The near collapse of order

parameter curves for 2.6 nm QD in 512 DMPC, even for lipids in close proximity of

QD can be attributed to the nanocrystal re-orienting itself upwards towards the

V-state at later trajectory times (figure 7.7,b) . Simulation snapshots shown in figure

7.1 along with tail order parameter (figure 7.4) calculations suggest that the

incorporation of the QD in the gel-phase DSPC causes significant local disruption to

the lipid tail order. One limitation of using circular shells to determine the order

parameter for DSPC is that each circular lipid selection includes both lipid bilayer

like lipid molecules and also lipids interacting with oleic acid molecules. The former

lipids no longer resemble a gel structure (figure 7.7). As such the resulting order
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parameter curves consist of contribution from both gel like lipids and also disrupted

or melted lipids. Also, the gel phase structure of DSPC corresponds to lipid tails

having a tilt of ∼ 32◦ relative to bilayer normal. The decrease in order parameter

with distance from embedded nanocrystal is due to this tilting effect and corresponds

to higher fractions of DSPC lipid tails recovering the gel phase conformation.

7.4.3 Lipid Tail Mobility

The phase of the lipids affects the dynamic behavior of lipids/ligand interface. In

experiments the melting temperatures (Tm) of lipids used in this study, DMPC,

DOPC, DLPC, DSPC are 23◦C ,−20◦C, −1◦C, and 54.5◦C respectively (43). The

degree of structural disorder of lipids quantified via order parameters need not be an

indication of the dynamic fluidity; the behavior of a glassy system is a good analogy.

While the structure of a glassy material is amorphous in nature, its molecular

movement is considerably slowed down. To address the range and timescale of tail

dynamics, we also calculated lipid tail orientational autocorrelation times.

More specifically, as a qualitative indicator of a larger barrier to any major

disruption, like ligand exchange processes (28), we calculated the time autocorrelation

functions decay in the unit vector (rC4,C9) constructed from C4 to C9, sn− 2 tail

coordinates. DSPC shows a limited range of motion on the simulation timescale

relative to DOPC, with DMPC intermediate, for the locally disordered region,

independent of nanocrystal size and ligand density (figure 7.6). The motion of DMPC

lipid tail is hindered by the presence of the quantum dot relative to lipids not

interacting with the ligands covering the quantum dot. Such occurrence is not

observed in lipid DOPC cases most likely due to the presence of the double bond in

the DOPC tail imparting additional flexibility.
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7.4.4 Other Findings

We also attempted to confirm through simulation QD surface small molecule

accessibility and escape with lipid type. Water molecules seem to reach the surface of

the quantum dot (figure 7.8). The actual number however corresponds to just several

water molecules. The exchange between solvent bulk region and the surface of the

quantum dot however is very slow (tens of ns). As such this set of simulations cannot

be used to claim an agreement with experimental findings of Salaita et all. regarding

small molecule escape originating from presence/absence of nanocrystal oxide shells.

Free energy umbrella sampling calculations where water molecules are transferred

from the surface of QDs to bulk region could show the free energy differences

associated with water/small molecule exchange with different lipid types.

Figure 7.9: Small molecule access through the lipid/ligand interface - Number
density function (g(r)ρbulk) vs. distance (r) . The zero point corresponds to the center
of quantum dot. The x-axis interval between 2 nm and 3 nm where the number density
function vanishes for all lipid systems except DLPC (right panel) corresponds to the region
of the OA molecules.

The positioning of embedded quantum dot within the lipid bilayer was presented in

figure 7.3 and observed asymmetric. Selective ligand exchange was determined in the
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work of Zheng et al. The manner in which QD passivated with several large ligands

affects the QD embedding ability is unknown. Furthermore, the LUV systems that

embed the QDs are circular structures and currently it is also unknown if the curved

geometry of the bilayer couples with ligand type used to passivate the bilayer, ligand

density, and QD size. Such features can also be evaluated in standard MD simulations

of the type introduced here and other advanced free energy simulations methods.

7.5 Conclusions

In simulation the QDs capped with oleic acids remain embedded in all lipid bilayers

as predicted in experiments. A slight embedding asymmetry is observed, a slight QD

preference for one of the monolayers. This character is more pronounced in DSPC

lipid bilayer with a smaller size embedded QD or larger size QD and lower ligand

density. When incorporating a 2.6 nm diameter size quantum dot, the ligands are

bunched laterally with just a few sticking out towards the lipid headgroups. While a

greater number of ligands point towards the PC groups in the cases of 3.4nm QD dot

capped with either 226 OA or 185 OA, two populations of ligands are still observed -

a set that sticks out in the bilayer midplane and a group that points toward the

headgroups. With ligands self-organizing in this manner, it is easy to hypothesize an

anisotropic ligand exchange process. The lipid tail disorder in the region of the QD

with lipid type was analyzed in two ways. The nanocrystal distance dependent

deuterium order parameter (−SCD) gives a static measure of likely lipid tail disorder

due to the presence of passivating ligands. Smaller size nanocrystal and lower ligand

densities induced a lower lipid tail disorder. Free QD bilayer tail ordering is not

achieved at distances far away from embedded QD. Lipid tail orientational time

autocorrelation functions show that even among DSPC tails that are disordered,

reorientational is slower and more limited on the simulation timescale than for

DOPC, with DMPC intermediate thus correlating with the melting temperature (Tm)
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of lipids.
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