
Distribution Agreement

In presenting this thesis as a partial fulfillment of the requirements for a degree from
Emory University, I hereby grant to Emory University and its agents the non-exclusive
license to archive, make accessible, and display my thesis in whole or in part in all
forms of media, now or hereafter now, including display on the World Wide Web. I
understand that I may select some access restrictions as part of the online submission
of this thesis. I retain all ownership rights to the copyright of the thesis. I also retain
the right to use in future works (such as articles or books) all or part of this thesis.

Signature:

Mai Phuong Pham Huynh April 07, 2022

Image Deblurring using Radial Basis functions for Interpolating Weights of
Spatially Variant Blur

By

Mai Phuong Pham Huynh

James G. Nagy, Ph.D.
Advisor

Department of Mathematics

James G. Nagy, Ph.D.
Advisor

Jeremy Jacobson, Ph.D.
Committee Member

Lars Ruthotto, Ph.D.
Committee Member

2022

Image Deblurring using Radial Basis functions for Interpolating Weights of
Spatially Variant Blur

By

Mai Phuong Pham Huynh

James G. Nagy, Ph.D.
Advisor

An abstract of
a thesis submitted to the Faculty of Emory College of Arts and Sciences of

Emory University in partial fulfillment
of the requirements of the degree of
Bachelor of Science with Honors

Department of Mathematics

2022

Abstract

Image Deblurring using Radial Basis functions for Interpolating Weights of
Spatially Variant Blur

By Mai Phuong Pham Huynh

Even though technology in applications from microscopy to astronomy has been
improving significantly and producing much better pictures, the image deblurring
problem is still relevant as a post-processing technique to improve image quality. A
substantial amount of work has been done for spatially invariant blurs, but relatively
little for the spatially variant case. One approach is to assume the blur is locally
approximately spatially invariant, and use interpolation of the local blurring operators
to obtain a global approximation of the spatially variant blur. By using different types
of functions, piecewise constant, piecewise linear, and radial basis functions (RBF)
for the interpolation, we found that piecewise linear functions and RBF outperform
piecewise constant functions. We then conduct further experiments concerning the
number of regions the image should be partitioned into and the type of interpolated
functions used to represent the variation of the spatially variant blur in the x− and
y−directions.

Image Deblurring using Radial Basis functions for Interpolating Weights of
Spatially Variant Blur

By

Mai Phuong Pham Huynh

James G. Nagy, Ph.D.
Advisor

A thesis submitted to the Faculty of Emory College of Arts and Sciences
of Emory University in partial fulfillment

of the requirements of the degree of
Bachelor of Science with Honors

Department of Mathematics

2022

Acknowledgments

I would like to express my appreciation to my thesis advisor, Dr. James G. Nagy,

for his support since the beginning of my honors research work. I would also like to

acknowledge Dr. Jeremy Jacobson and Dr. Lars Ruthotto for being on my honors

thesis committee. Lastly, I would also like to express my gratitude to my family and

dearest friends, who have been my firmest mental support during this journey.

i

Contents

1 Introduction 1

1.1 Numerating images . 1

1.2 Ax = b problem . 3

2 The Construction of the Blurring Function 4

2.1 The blurring matrix A . 5

2.2 Boundary conditions . 7

2.3 Solving the Ax = b problem . 9

2.4 Sparse matrix-vector multiplication 15

2.5 Spatially invariant and variant Gaussian blur 17

2.6 The interpolation matrix Di . 18

2.6.1 Piecewise constant interpolation weight 18

2.6.2 Piecewise linear interpolation weight 19

3 Radial Basis Function (RBF) 22

3.1 A brief summary of RBF . 22

3.2 Choosing the parameter γ . 23

3.3 Choosing the weight w . 24

3.4 Number of interpolated neighboring regions 25

4 Numerical Experiments 30

4.1 Spatially variant separable Gaussian blur 31

4.1.1 Construction of variant functions 32

4.1.2 Experimenting with images 34

4.2 Number of partitioned image regions and its neighbor regions 41

4.2.1 Number of partitioned image regions with ∆r = 1 41

4.2.2 Number of interpolated neighbor regions 46

5 Concluding Remarks 49

Bibliography 51

iii

List of Figures

1.1 A greyscale image created from arrays of numbers. 2

2.1 (a) True image and (b) Naive solution with noise free A and B. . . . 10

2.2 (a) Noise free B; (b) Noisy B; (c) Naive solution with noise free A and

B; and (d) Naive solution with noise free A and noisy B. 11

2.3 Piecewise constant interpolation weights. 19

2.4 Piecewise linear interpolation weights. 21

3.1 Radial basis functions interpolation weights. 25

3.2 Piecewise linear interpolation over three neighboring regions. 26

3.3 RBF interpolation over three neighboring regions 28

3.4 2-D image partitioned into 4× 4 subregions. 28

4.1 Original image: (a) eight.tiff; (b) cameraman.tiff. 31

4.2 Recorded blurry image from: (a) eight.tiff; (b) cameraman.tiff. . 31

4.3 Spatially variant Gaussian blur simulation using quadratic polynomial. 32

4.4 Spatially variant Gaussian blur simulation using linear function. . . . 33

4.5 Spatially variant Gaussian blur simulation using quadratic and linear

functions on the (a) x− and y−directions; (b) y− and x−directions,

respectively. 34

4.6 The solution image for eight.tiff with quadratic interpolation of

α1, α2 and (a) True A; (b) Interpolated A using piecewise constant

weights; (c) Interpolated A using piecewise linear weights; and (d)

Interpolated A using RBF weights. 35

4.7 Errors for deblurring eight.tiff when using quadratic interpolations

of α1 and α2: (a) relative error and (b) error norm. 36

4.8 The solution image for eight.tiff with linear interpolation of α1, α2

and interpolated matrix A with (a) piecewise constant weights; (b)

piecewise linear weights; and (c) RBF weights. 37

4.9 Errors for deblurring eight.tiff when using linear interpolations for

α1 and α2: (a) relative error and (b) error norm. 37

4.10 The solution image for cameraman.tiff with quadratic interpolations

of α1, α2 and (a) True A; (b) Interpolated A using piecewise constant;

(c) Interpolated A using piecewise linear; and (d) Interpolated A using

RBF weights. 39

4.11 Errors for deblurring cameraman.tiff when using quadratic interpo-

lations for α1 and α2: (a) relative error and (b) error norm. 39

4.12 The solution image for cameraman.tiff with linear interpolations for

α1, α2 and interpolated A with (a) piecewise constant weights; (b)

piecewise linear weights; and (c) RBF weights weights. 40

4.13 Errors for deblurring cameraman.tiff with linear interpolations for α1

and α2: (a) relative error and (b) error norm. 40

4.14 Solutions with different number of partitioned image regions: (a) Us-

ing piecewise constant weights; (b) Using piecewise linear weights; (c)

Using RBF weights; and (d) Error norm. 42

4.15 Solutions with different number of partitioned image regions: (a) Us-

ing piecewise constant weights; (b) Using piecewise linear weights; (c)

Using RBF weights; and (d) Error norm. 45

4.16 Visual comparison between (a) True image; (b) Restored image using

true matrix A; (c) Restored image with 32 regions, ∆r = 1; and (c) -

(e) Restored images with different ∆r. 46

4.17 Error norm with different methods on deblurring cameraman.tiff. . 47

vi

List of Tables

3.1 Coordinates of the interpolation linear weights. 27

4.1 Comparison of the lowest error norm for different number of image

regions partitioned on eight.tiff with ∆r = 1. 43

4.2 Comparison of running time (in seconds) for different number of image

regions partitioned on eight.tiff. 44

4.3 Comparison of the lowest error norm for different number of image

regions partitioned on cameraman.tiff. 45

4.4 Comparison of running time (in seconds) for different number of image

regions partitioned on cameraman.tiff. 45

4.5 Comparison of the lowest error norm and running time (in second) for

different values of ∆r. 48

1

Chapter 1

Introduction

With the recent advancements in photography technology, images have become more

realistic representations of captured objects. For example, the current iPhone 13 Pro

has a telephoto feature [1], which means that its lens has a focal length of 60mm

or longer. This feature could only be found in professional camera gear 5 year ago.

However, despite the increasing accuracy of capturing technologies, it is almost im-

possible to produce a completely truthful image of objects due to external factors such

as light sources, out-of-focus lens, etc. These problems can cause “spill over” effects

from a pixel to its neighboring ones. Image deblurring algorithms using mathemati-

cal models seek to recover the original image that has been affected by such external

factors. Nevertheless, this is not always a simple task as the blurring information is

usually hidden. In this chapter, we will go through the basic mathematical set-up of

the image deblurring problem.

1.1 Numerating images

In order to apply a mathematical model to an image deblurring problem, it is impor-

tant to find a way to represent an image using arrays of numbers.

A small image has 2562 = 65536 pixels while a high-resolution one can have from

2

5 to 10 million pixels, each of which represents the color of a small rectangular or

square fragment of the image (i.e, a pixel). In this thesis, since we mostly work with

greyscale images, we only need a single matrix to represent our image. For example,

consider the following matrix:



0 0 0 0 0 0 0 0 0 0 0

0 2 0 0 0 9 0 9 0 7 0

0 2 0 0 0 9 0 9 0 7 0

0 2 0 0 0 9 9 9 0 7 0

0 2 0 0 0 9 0 9 0 0 0

0 2 2 2 0 9 0 9 0 7 0

0 0 0 0 0 0 0 0 0 0 0


Using the greyscale color map, the above matrix will produce the following figure:

Figure 1.1: A greyscale image created from arrays of numbers.

The largest (9) and smallest (0) numbers in the array are assigned to white and

black, respectively. Other values are assigned correspondingly to different shades of

grey.

The mathematical representation of a colored image is quite similar; however, we

3

need 3 matrices for an RGB image, each of which contains information on the shades of

red, green, and blue colors. It is convenient to transform a colored image to a greyscale

image using the MATLAB function rgb2gray. Further details on the mathematical

construction of colored images and MATLAB implementation can be found in [9].

1.2 Ax = b problem

In this thesis, we want to deblur a greyscale image of size m × n. As discussed

previously, this image has mn pixels, each of which represents the light intensity

information of the captured scenery or object. The image can be written in the matrix

form B of size m× n or with the vector representation of size mn: b = vec(B). For

later reference, we call this the “blurred image.” Our main goal is to find the “true

image” X of the same size as B. Similar to B, X can also be written as a vector

x = vec(X).

In a linear model, there exists a large matrix A of size N × N , where N = mn,

containing the blurring information of the problem. In a linear model, the problem

can be set up as

Ax = b

Intuitively, matrix A represents the process of transforming a “true image” x to a

blurred image b. However, in reality, the blurring information is usually unknown

to us, the “photo editor,” causing difficulties in constructing the matrix A. Another

problem is that we usually do not know the image vector b exactly, but instead we

can only know

Ax+ e = b

where e is unknown noise, or other errors in the measured data.

The detail on how to construct the matrix A is discussed further in Chapter 3.

4

Chapter 2

The Construction of the Blurring

Function

As aforementioned, the accuracy of our algorithm heavily depends on how accurate

our blurring function is; the construction of which is difficult, as usually the blurring

information is not provided to us. In the context of a linear model, we can consider

the standard linear image formation model [3]:

b(g, h) =

∫
ℜ2

a(g, h, s, t)x(s, t)dsdt (2.1)

where x is the true image and b is the observed image (i.e the blurred image). The

kernel function a is the blurring operation and is called the point spread function

(PSF). Using discretization techniques, such as quadrature rules to approximate the

integration, equation (2.1) can be written in the form b = Ax, or equivalently Ax =

b. This will be discussed in more detail in the next section. In this chapter, we

focus on the construction of an image deblurring problem, as well as how to solve it

efficiently.

5

2.1 The blurring matrix A

In the case of simple spatially invariant blurs, the kernel has the form a(g− s, h− t),

and the matrix A has a Toeplitz structure. For general spatially variant blurs, matrix

A does not have such a nice structure. However, as was studied in previous literature

if the blur is assumed locally spatially variant, the matrix A can written as [5][6][8]

A =

p∑
i=1

AiDi (2.2)

where Ai are associated with a local spatially invariant blur (and hence, have a

Toeplitz structure), p is the number of image regions, and Dis are interpolation

matrices, whose construction will be discussed in Section 2.6 and Chapter 3.

The main focus of this section is to construct such a matrix A by using the

composite Midpoint rule on equation (2.1), using a specific example for the kernel a.

Using the composite Midpoint rule with N × N equally spaced points, the inte-

gration in equation (2.1) can be approximated by

b(x, y) ≈ 1

N2

N∑
i=1

N∑
j=1

a(g, h, s̄i, t̄j)x(s̄i, t̄j) (2.3)

where

s̄i =
2i− 1

2N
t̄j =

2j − 1

2N
.

Note that here, we use the integration in the domain [0, 1]× [0, 1] as we hypothesize

that the image construction process captures all light.

Now, if we choose the PSF function, a, to be Gaussian function, we can partition

6

the function a into two functions a1 and a2 as follows:

a(g, h, s, t) = e−ρg(g−s)2−ρh(h−t)2

= e−ρg(g−s)2e−ρh(h−t)2

= a1(g, s)a2(h, t) .

Then, equation (2.3) becomes

b(g, h) =
1

N2

N∑
i=1

N∑
j=1

a1(g, s̄i)a2(h, t̄j)x(s̄i, t̄j)

=
1

N2

[
a2(h, t̄1) · · · a2(h, t̄N)

]
x(s̄i, t̄1) · · · x(s̄N , t̄1)

...
. . .

...

x(s̄1, t̄N) · · · x(s̄N , t̄N)


[
a1(g, s̄1) · · · a1(g, s̄N)

]
.

Similarly, if we continue applying the Midpoint rule to g and h, such that

ḡi =
2i− 1

2N
h̄j =

2j − 1

2N

we get

B = A2XA1 .

Or, equivalently, using properties of the Kronecker product and denoting Ar = AT
1

and Ac = A2, where Ar and Ac are the one-dimensional convolutions on the rows

and columns of the matrix A respectively, we obtain

b = (Ar ⊗Ac)x . (2.4)

7

with

X =


x(s̄i, t̄1) · · · x(s̄N , t̄1)

...
. . .

...

x(s̄1, t̄N) · · · x(s̄N , t̄N)



A1 =
1

N


a1(ḡ1, s̄1) · · · a1(ḡN , s̄1)

...
. . .

...

a1(ḡ1, s̄N) · · · a1(ḡN , s̄N)



A2 =
1

N


a2(h̄1, t̄1) · · · a2(h̄N , t̄1)

...
. . .

...

a2(h̄1, t̄N) · · · a2(h̄N , t̄N)


and ⊗ is the Kronecker product, defined as,

Ar ⊗Ac =



ar11Ac ar12Ac · · · ar1nAc

ar21Ac ar22Ac · · · ar2nAc

...
...

...

arm1Ac arm2Ac · · · armnAc


is the pm× qn block matrix for matrix Ar of size m× n and matrix Ac of size p× q.

2.2 Boundary conditions

When dealing with an image deblurring problem, the existence of the “spill over”

effect among pixels can significantly reduce the accuracy of our result, specially at

the boundaries of the image. To overcome that effect, recall that in equation (2.2), we

claim that a pixel in the blurred image, bij, can be represented by the weighted sum

of the pixel xij and its neighbors. However, if bij is near the edge of the image, this

task may be impossible since we do not have the information of its neighbors, which

8

are outside of the captured image. Therefore, it is important to make assumptions

regarding the boundary conditions of the image.

There are several common boundary conditions used in image processing problems.

The first and also the simplest one is the zero boundary condition, where we assume

the true image is surrounded by black color. Mathematically, it can be represented

as

Xexact =


0 0 0

0 X 0

0 0 0


where 0 submatrices represent a border of zero elements.

However, realistically, it is rarely the case that the outside region of the image

is only black. Instead, this region is a continuation of the colors and features of

the image’s boundaries. In most image processing problems, the periodic boundary

condition is assumed, where we assume the outside region is just a replica of the

image X. Mathematically, it can be represented as

Xexact =


X X X

X X X

X X X

 .

Another approach is to use the reflexive boundary condition, that is we assume

the outside region is the mirror of the image itself. The construction of Xexact now

becomes more complex. Denote Xlr where xT
i = xT

lrn+1−i
, where n is the column (or

row) number of matrix X and the subscript j denotes the j-th row of any matrix.

In other words, Xlr is the matrix X being flipped left to right. Similarly, we denote

matrix Xud as the matrix X being flipped upside down, i.e xi = xn+1−i. And lastly,

Xlu is the matrix Xud being flipped left to right.

9

For example, if

X =


a b c

d e f

g h i


then

Xlr =


c b a

f e d

i h g

 Xud =


g h i

d e f

a b c

 Xlu =


i h g

f e d

c b a


With these notations, matrix Xexact can be written as

Xexact =


Xlu Xud Xlu

Xlr X Xlr

Xlu Xud Xlu

 .

This thesis only works with zero boundary conditions. Further details on how

to construct the blurring matrices for the case of periodic and reflexive boundary

conditions can be found in [9].

2.3 Solving the Ax = b problem

As aforementioned in Section 1.2, the image deblurring problem is an Ax = b prob-

lem, where, based on the assumption used throughout this thesis, A = Ar ⊗ Ac is

the blurring operator constructed in Section 2.1, while x and b are the vector rep-

resentations of the true and blurred images respectively. A naive approach to solve

this linear system is simply solving the linear algebraic system using properties of the

10

Kronecker products, for example

x = A−1b = (Ar ⊗Ac)
−1b

= (A−1
r ⊗A−1

c)b

= vec(A−1
c BA−T

r) .

(2.5)

Or, equivalently:

X = A−1
c BA−T

r (2.6)

where X,Y ∈ Rm×n are respectively the matrix representations of the exact and

blurred images, such that vec(X) = x and vec(B) = b. More details about this can

be found in Section 1.2.

Using equation (2.6), we get the following result, which is far from the true image,

even though we have the exact information of matrices A and B.

(a) (b)

Figure 2.1: (a) True image and (b) Naive solution with noise free A and B.

The reason is that both Ar and Ac are large and ill-conditioned matrices and that

the image X is dominated by the influence from rounding errors. Additionally, as

aforementioned, in more practical situations, the information for the observed blurry

11

image B we have is not quite accurate as it contains several types of noise and errors,

which are excluded in the model [9]. These errors eventually add up and may give us

an even worse solution as shown in this figure below:

(a) (b)

(c) (d)

Figure 2.2: (a) Noise free B; (b) Noisy B; (c) Naive solution with noise free A and
B; and (d) Naive solution with noise free A and noisy B.

Hence, the result of naively calculating X using equation (2.6) always consists of

12

some forms of errors, such that

Xnaive = A−1
c (B+ E)A−T

r = A−1
c BA−T

r +A−1
c EA−T

r

where E, which has the same dimension as X and B, is the noise image representing

both the noise and the other errors in the observed image B.

Hence,

Xnaive = X+A−1
c EA−T

r (2.7)

The termA−1
c EA−T

r denotes the inverted noise, which can dominate the solution if its

elements are larger than that of X. Unfortunately, this is usually the case, requiring

us to come up with more complicated methods so as to retrieve the original image.

Performing the same analysis with the general model in equation (2.5), we also

obtain

xnaive = x+A−1e = x+A−1e (2.8)

where e = vec(E).

From these two analyses, it is clear that the deblurred image, i.e x, always contains

two parts: the exact solution and the inverted noise. Our main task is to minimize

the inverted noise term in order to get the most deblurred image for our model. To

do so, we first need to gain some insights regarding this term through the use of the

Singular Value Decomposition (SVD).

Recall that our blurring operator matrix A is a square matrix of size N = mn,

whose SVD is

A = UΣVT

where U,V ∈ RN×N are orthogonal matrices (UTU = VTV = I) and Σ = diag(σi)

13

is a diagonal matrix of size N whose diagonal entries σi satisfy

σ1 ≥ σ2 ≥ · · · ≥ σN ≥ 0

These σi values are called singular values.

Another representation of the SVD factorization of A is

A =
N∑
i=1

σiuiv
T
i

where ui and vi are the i-th column of the matrixU andV, respectively. The columns

ui of U and vi of V are called the left and right singular vectors, respectively. As

UTU = VTV = I, it is implied that uT
i uj = vT

i vj, which are equal to 0 when i ̸= j

and equal to 1 when i = j.

Assuming that all these singular values are strictly positive, the matrix A is

invertible. We also note that U and V are orthogonal matrices so UT = U−1 and

VT = V−1. The inverse matrix of A can then be written as

A−1 =
(
UΣVT

)−1

= VΣ−1UT =
N∑
i=1

1

σi

viu
T
i

where the diagonal entries of Σ−1 are 1/σi.

The inverted noise now becomes

A−1e =
N∑
i=1

1

σi

viu
T
i e =

N∑
i=1

uT
i e

σi

vi .

From this SVD representation, we can see that the main problem with the naive

solution is that the noise is being magnified by the inversion term of very small

singular values as these values decay to a value very close to zero [9].

Therefore, our main goal is to minimize the error to obtain the best solution for

14

our image deblurring problem. We can begin rewriting the problem in least squares

form

min
x
||Ax− b||22 (2.9)

or its regularized version

min
x
||Ax− b||22 + λ||x||22 . (2.10)

Additionally, it is easy to solve the problem in equation (2.4) using the properties

of the Kronecker products. However, when we use interpolation to approximate a

general spatially variant blur, matrix A will be a sum of multiple Kronecker products

(see Section 2.5). In this case, it is crucial to use iterative methods, where the main

cost is matrix-vetor multiplications, which can be done efficiently.

In this project, we utilize the IRcgls function in the IRtools MATLAB package

developed by Gazzola, Nagy, and Hansen [4], which uses the iterative version of the

Conjugate Gradient algorithm to solve Least Squares problems and return a regu-

larized solution. The software package IRTools provides implementations of a range

of iterative solvers for large-scale ill-conditioned linear systems where regularization

is needed to stabilize computations. These solvers include iterative regularization

methods where the regularization is due to the semi-convergence of the iterations,

Tikhonov-type formulations where the regularization is explicitly formulated in the

form of a regularization term, and methods that can impose bound constraints on

computed solutions. The package also contains “hybrid” methods that use iterative

Krylov subspace methods combined with SVD-based direct regularization methods

on small subproblems in each iteration. The advantage of the hybrid approach is that

regularization parameters can be estimated at each iteration. The software package

also contains a set of test problems that represent realistic large-scale problems found

in image reconstruction and several other applications. The solvers in the toolbox

use the naming convention IRxxxx, where IR denotes “Iterative Regularization”, and

15

xxxx refers to a specific method. In this thesis we make use of the IRcgls solver,

which applies the conjugate gradient method for least squares problems (implicitly)

to the problem ATAx = ATb. Regularization can be enforced by terminating the

iteration at an “optimal” stopping iteration. The discussion of iterative methods

and regularization by early termination is beyond the scope of this thesis; for further

details, see [4].

2.4 Sparse matrix-vector multiplication

Even though MATLAB is very fast and reliable for decently large matrices, matrices in

imaging problems usually far exceed MATLAB’s ability, resulting in poor results and

long running times. However, fortunately, our matrix structures are quite special, al-

lowing us to use specific algorithms to help speed up the running time of the problem.

When using iterative methods to solve the Least Squares problem (2.10), if matrix

A can be written as a sum of multiple Kronecker products then this structure can

be exploited to efficiently compute matrix-vector products with matrix A. This task

is implemented in the MATLAB Package Restore Tools by Nagy, Palmer, and Perrone

[8]. Specifically, the package defines a kronMatrix object and overloads the mtimes

function.

Note that our matrix A is very large and sparse. Hence, applying iterative meth-

ods to solve large linear systems without taking into consideration the sparseness

of matrix A can be very inefficient as those methods may require hundreds or even

thousands of matrix-vector products to converge. Specifically, the number of floating

point operations (FLOPs) for a sparse matrix-vector multiplication (SpVM) is always

twice the number of nonzeros in the matrix as for each nonzero entry in the matrix,

the matrix-vector multiplication requires one multiplication and one addition opera-

tion [2]. This FLOP calculation is independent of the matrix dimension; therefore, if

16

matrix A is very sparse, we can come up with a more efficient way to compute SpVM.

In this project, we utilize the class kronMatrix in the IRtools package (originally

developed for the restore tool project to overcome this problem), along with MATLAB’s

built-in sparse matrix capabilities.

A Kronecker product can be generalized as

A = Ar ⊗Ac =


ar11Ac ar12Ac · · · ar1nAc

...
...

...

arn1Ac arn2Ac · · · arnnAc


where arij is the entry on the i-th row and j-th column of matrix Ar. Storing this

Kronecker product explicitly requires space of an n2 × n2 matrix. Additionally, cal-

culating the matrix-vector multiplication of an explicitly formed Kronecker product

with a vector is also very costly. Specifically, we can write

Ax =

[
aT
1 x aT

2 x · · · aT
nx

]T

where aT
i is the i-th row of matrix A.

Calculating this matrix-vector multiplication requires 3n4 FLOPs in total (n4 to

explicitly form the Kronecker product and 2n4 to perform the matrix-vector multipli-

cation Ax). However, if we take advantage of the properties of Kronecker products,

we can write

b = vec(AcXAT
r) .

This representation is both FLOP-efficient and storage-efficient as it only requires at

most 4n3 FLOPs and the storage size of an n × n matrix. In our situation, Ar and

Ac are very sparse, so we only need to store their nonzero entries and the SpVMs will

require fewer than 4n3 FLOPs, depending on the level of sparsity. The kronMatrix

object utilizes these properties to more efficiently compute and store matrix-vector

17

multiplications. More details on this package can be found in [8].

2.5 Spatially invariant and variant Gaussian blur

We can sometimes further speed up these matrix-vector multiplications using the fast

Fourier transform [7]. Without loss of generosity, assume that A = Ar ⊗ Ac, i.e.

only one term in the sum of Kronecker products. If the blur is spatially invariant

and assuming zero boundary condition, then matrices Ar and Ac are Toeplitz (or

diagonal-constant) matrices. For example, a Toeplitz matrix of size 5 × 5 has the

following form: 

a b c d e

f a b c d

g h a b c

i g h a b

j i g h a


.

These matrices can be constructed from a point spread function. A single point spread

function (i.e. an image of a point source) provides everything we need to know to

construct Ar and Ac. More details on this construction can be found in [9].

However, if the blur is spatially variant, then to construct matrices Ar and Ac,

we need to have a point spread function centered at each pixel location in the image,

which is computationally infeasible for large images. The approach of Nagy and

O’Leary is to obtain a sample of point spread functions distributed throughout the

image domain, assume the blur is locally spatially invariant, then use interpolation

to construct the point spread functions. This can be formally written as

A = A1D1 +A2D2 + · · ·+ApDp

where each Ai = Ari ⊗ Aci represents a spatially invariant blur corresponding to

18

region i in the image, while p is the number of image regions the image is partitioned

into, and Di are interpolation matrices that satisfy

D1 +D2 + · · ·+Dp = I .

In their paper, Nagy and O’Leary discuss piecewise constant interpolation and men-

tion piecewise linear, but they do not perform extensive testing. The implementation

in Restore Tools uses only piecewise constant interpolation. However, this can cause

boundary artifacts in neighboring regions. In this thesis, we look more deeply into

piecewise linear and radial basis function interpolation methods. We conclude that

both of these methods generally outperform constant interpolation.

2.6 The interpolation matrix Di

This section focuses on how to construct the weight interpolation matrices Di of size

n × n, where n is the number of columns of the image, through the simple constant

approach and the piecewise linear approach. Assuming that the PSF captures all

light, we want each row sum of matrix Di to be 1. As aforementioned, the main

focus of this thesis is on using the radial basis function for the matrices Di, which is

discussed later in Chapter 3. The resulting image using these interpolation weights

is presented in Chapter 4.

2.6.1 Piecewise constant interpolation weight

The constant approach sets an equal weight of 1 for the center of each region and 0

for everywhere else. In the case that the image of size 512 × 1 is partitioned into 4

image regions, the representation of the piecewise constant interpolation weight is as

follows:

19

Figure 2.3: Piecewise constant interpolation weights.

The values shown in Figure 2.3 are of diagonal entries of matrix Di.

In this case, matrix Di has size 512 × 512, i = 1, 2, 3, 4,... and is guaranteed to

have D1 +D2 +D3 +D4 = I, satisfying our above assumption.

2.6.2 Piecewise linear interpolation weight

Similar to the computation of interpolation weights using the piecewise constant

approach, the piecewise linear approach also assigns the weight value 1 to the center

of each region. However, instead of having the whole considered image region to be

1, only the center of the considered region is 1. Then, we interpolate a straight line,

either with negative or positive slope, depending on whether it is a boundary or an

interior region, passing through the center of the considered image region.

Specifically, if it is the first region, we set its value to constant 1 until its center,

i.e if we define di = diag(Di), then [di]1:I1 = 1 where Ii is the i-th index of the

20

i-th region’s center. Then we interpolate a straight downward line from the value 1

assigned for the center of the first region down to the value 0 assigned for the center

of the second region. The slope of this line is calculated as

s =
1

I1 − I2
.

Then the weight corresponding to this region, or in other words, the weight corre-

sponding to each point from the center of the first region to the center of the second

region is

[d1]k = s(k − I2)

where k ∈
{
I1 + 1; I1 + 2; · · · ; I2

}
and [di]k denotes the k-th entry of vector di.

For the interior regions, assuming that it is the i-th region (1 < i < p ≤ n), we

want a line upward passing through the value 0 assigned for the center of the (i−1)-th

region and the value 1 assigned for the center of the i-th region, whose slope can be

calculated as

s =
1

Ii − Ii−1

and its associated weights are

[di]k = s(k − Ii−1)

where k ∈
{
Ii−1; Ij−1 + 1; · · · ; Ij

}
.

Then, we want a downward line, similar to what we did to the first region, from

the value 1 assigned for the center of the i-th region to the value 0 assigned for the

center of the (i + 1)-th region. The slope of this line and its corresponding weights

can be calculated as

s =
1

Ii − Ii+1

, [di]k = s(k − Ii+1)

21

with k ∈
{
Ii + 1; Ii + 2; · · · ; Ii+1

}
.

Finally, for the last region, we want an upward line from the value 0 assigned for

the center of the (p−1)-th region up to the value 1 assigned for the center of the p-th

region. The slope and its corresponding weights are

s =
1

Ip − Ip−1

, [dp]k = s(k − Ip−1)

where k ∈
{
Ip−1; Ip−1 + 1; · · · ; Ip

}
.

Then the remaining values from the center of the last region until the end point of

the last region will be constant at 1, i.e [dp]k = 1 where k ∈
{
Ip + 1; Ip + 2; · · · ;n

}
.

Continuing with the example of a 1-D 512×1 image being partitioned into 4 image

regions in Section 2.6.1, we have the following interpolation weights shown in Figure

2.4. Again, these values are of diagonal entries of the interpolation matrix Di.

Figure 2.4: Piecewise linear interpolation weights.

22

Chapter 3

Radial Basis Function (RBF)

To calculate the interpolation matrices Di in each image region, previous literature

uses piecewise constant and linear approaches. In this chapter, we consider Radial

Basis Function interpolation. Using the same idea as in the piecewise constant and

linear approaches, our goal is to ensure that the RBF interpolation matrices sum to

the identity matrix I.

3.1 A brief summary of RBF

Radial Basis function (RBF) is a real-valued function, which takes in a vector and

returns a scalar. The value of the RBF is solely based on the distance, usually

Euclidean distance, between the input and a fixed point. There are many ways to set

up an RBF depending on the choice of the basis function, such as multiquadric and

polyharmonic spline. In this thesis, to ensure smoothness between regions, we work

with the standard form of RBF using the Gaussian function as follows:

R(x) =
n∑

i=1

wi exp
(
−γ||x− xi||2

)

23

where:

wi: the weight of the RBF

γ: a parameter

x: the input data

xi: the known data already in the model

To apply this function in interpolating the blurring function, we need to find suitable

weights wi of the RBF and the parameter γ of the basis function, which are discussed

more specifically later on.

3.2 Choosing the parameter γ

To choose a suitable parameter γ for the radial function, we utilize the idea of the

Full Width at Half Maximum coefficient (FWHM). Such coefficient corresponding to

the Gaussian function is

FWHM = 2
√

ln(2) .

Additionally, the spread of the Gaussian function, determined by the parameter γ, is

defined independently in each image region as each region is independent of each other.

Therefore, the FWHM is slightly different among regions. Hence, the γ parameter is

calculated as

γ =
Iend − Istart

FWHM

24

where

Iend: the index of the last point in the region

Istart: the index of the first point in the region

FWHM = 2
√
ln(2)

3.3 Choosing the weight w

To help with notation, as in previous sections, let di = diag(Di), i = 1, 2, · · · , p

where p is the number of regions being interpolated. Here we also define D̂ =[
d1 d2 · · ·dp

]
∈ Rn×p.

The light intensity of the PSF is a local phenomenon as it is confined in a certain

radius around the point source and 0 everywhere else. Additionally, another assump-

tion is that the imaging process captures all light; hence, we want the sum of all the

pixel values in the PSF to be 1. In this case, we want the sum of the RBF values

corresponding to each row of D̂ to be 1.

After calculating the RBF value for each pixel, we have a matrix D̂ ∈ Rn×p where

n is the number of pixels in the image and p is the number of regions the image is

partitioned into. As aforementioned, the goal is for all the row sums of this matrix D̂

to be 1. In the case of constant and linear interpolation, this occurs by default, but

in the case of RBF, the sums may be slightly different from 1. We therefore perform

the following normalization.

1. Construct a diagonal matrix with the reciprocals of the current matrix D̂’s row

sums

S = diag(1/(row sum of matrix D̂))

25

2. Normalize and update D̂ so its row sums are 1.

D̂← SD̂

Continuing with the example used in Sections 2.6.1 and 2.6.2, we have the following

RBF interpolation weights on a 512×1 image that is partitioned into 4 image regions:

Figure 3.1: Radial basis functions interpolation weights.

3.4 Number of interpolated neighboring regions

When we partition the image into many regions, it is possible that we would get worse

results as the region sizes become very small, and the PSF overlaps more than one

region. In the previous sections, 2.6.1, 2.6.2, and 3.3, we only interpolate the nearest

neighbor regions. One way to overcome this is to interpolate across more regions, for

example the three nearest neighbors. Considering the following image, which is the

example of piecewise linear interpolation over three neighboring regions

26

Figure 3.2: Piecewise linear interpolation over three neighboring regions.

Here, the blue dashes and the red dots denote the region boundaries and centers,

respectively, and the green line is the diagonal entries of the interpolation matrix Dj,

where j denotes the j-th region.

However, we also need to be careful with regions near the image boundaries. That

is, suppose we want to traverse through j = 1, 2, 3, · · · , p, to construct weights. Let

c denote an array that contains the index of every image regions’ center; that is

c =

[
c1 c2 · · · cp

]

where cj is the index of the j-th region’s center and p is the number of image regions.

We also define ∆r to be the number of regions over which interpolating will occur

(e.g. ∆r = 3).

In the beginning, if

j −∆r < 0

the nonzero weights begin at index 1 and continue until cj+∆r, after which the weights

are zero. Otherwise, we begin at cj−∆r and end at cj+∆r. To make implementations

simpler, we could append 0 on the left of the array c, then the left part will always

start at

cmax(1, j−∆r).

Applying the same method for the other boundary, we can now write the general co-

27

ordinates of nonzero weights for any j-th region for its left and right part, respectively,

as

cmax(1, j−∆r) : cj and cj : cmin(j+∆r, p) (3.1)

With such rules stated in equation (3.1), we can explicitly state the coordinates of

our interpolation linear lines for the example in Figure 3.2 as follows

Region Left part Right part
1 1 : c1 c1 : c1+∆r

2 1 : c2 c2 : c2+∆r

3 1 : c3 c3 : c3+∆r

4 c1 : c4 c4 : c4+∆r

Table 3.1: Coordinates of the interpolation linear weights.

The above explanation is for piecewise linear weights. However, in this thesis,

we only implement such method for the RBF weights but a similar approach can be

done for linear interpolation when we partition the image into many regions. Note

that, for the weights to interpolate over ∆r neighbor regions, our γ also needs to be

readjusted as

γ = ∆r
Iend − Istart

FWHM

The following image is when we partition a 512×1 image into 4 regions with ∆r = 3.

We also notice here that the curve of the RBF weights is much smoother with this

approach compared to the result shown in Figure 3.1.

28

Figure 3.3: RBF interpolation over three neighboring regions

Until now we have illustrated the interpolation using 1-D images. The idea nat-

ually extends to 2-D using Kronecker products. That is, suppose we have 2-D image

partitioned in 4× 4 subregions, e.g.

Figure 3.4: 2-D image partitioned into 4× 4 subregions.

29

Then, we create a diagonal interpolation matrix for each region having the form

Dij = Di ⊗Dj

where matrices Di and Dj are the same as already discussed for 1-D problems, and

i = 1, 2, 3, 4, j = 1, 2, 3, 4.

30

Chapter 4

Numerical Experiments

In this section, we present several experiments for the image deblurring problem. For

each experiment, if not specified, the number of regions is set at n/16 by default

where n is the number of columns of the original image (all images are of size n×n).

Additionally, throughout this section, the two images that are used are eight.tiff

and cameraman.tiff as shown in Figure 4.1, which are in the MATLAB image pro-

cessing toolbox. An example of the recorded blurry images are also shown in Figure

4.2. The reason of choosing these two images is that the first one, eight.tiff, has

a large white space with objects scattered around the image while the second one,

cameraman.tiff, has more features in the center region. By using these two images,

we want to illustrate that our three methods (constant, linear, and RBF) for interpo-

lating matrix A work on both scattered and dense images. The size of both images

used in this section is 512× 512.

31

(a) (b)

Figure 4.1: Original image: (a) eight.tiff; (b) cameraman.tiff.

(a) (b)

Figure 4.2: Recorded blurry image from: (a) eight.tiff; (b) cameraman.tiff.

4.1 Spatially variant separable Gaussian blur

We use the spatially variant Gaussian blur function introduced in Section 2.1, using

a variety of values for α1 and α2.

32

4.1.1 Construction of variant functions

In our first example, to construct the blurring operator, i.e matrix A, we set the

default values for α1 and α2 such that we have more blurring in the middle. Specif-

ically, let α1 and α2 be quadratic functions describing how the Gaussian function

varies along the x− and y−directions respectively. Numerically, assume that the

image is discretized on the [0, 1] × [0, 1] grid, then the center point of the image is

(x, y) = (0.5, 0.5). We then set

α1(0) = 0.001 α1(0.5) = 0.02 α1(1) = 0.001 (4.1)

and then construct a quadratic polynomial for α1 through these points.

Note that the greater the α1 value, the more severe the blur is, making the image

more blurry in the middle region and less blurry near the edge.

For simplicity, we set the two functions α1 and α2 to be identical. This is the

default setting for all numerical experiments, unless otherwise specified.

In this section, we perform several experiments with α1 and α2 values to show how

the blur behaves with respective to these values. To illustrate, we use a true image

of a grid of point sources and display the corresponding blurred images.

(a) (b) (c)

Figure 4.3: Spatially variant Gaussian blur simulation using quadratic polynomial.

Figure 4.3(a), (b), and (c) use quadratic functions α1 and α2 to represent the vari-

33

ation of the Gaussian function along the x− and y−directions respectively. The first

one, Figure 4.3(a), is the default setting of our algorithm, where most blurring con-

centrates in the middle region of the image, then tapering off slowly and quadratically

to the boundaries. We use a Lagrange form of the quadratic interpolating polynomial

through points mentioned in equation (4.1). Figure 4.3(b) and (c) are similar to (a)

but in (b), the quadratic polynomial tapers off more quickly to the boundaries as we

decrease α’s values at the boundaries to 0.001. In Figure 4.3(c), we both decrease the

boundary values and increase the value of the α functions at the center point to 0.05

to increase the blur level in the middle region of the image. It can be easily observed

that the blur is most severe in Figure 4.3(c).

(a) (b) (c)

Figure 4.4: Spatially variant Gaussian blur simulation using linear function.

With a slightly different approach, Figure 4.4(a), (b), and (c) apply linear func-

tions α1 and α2 to represent the variation of the Gaussian function. In Figure 4.4(a),

we only change the blur variation along the x−direction by keeping the values of α2

constant while setting α1(0) = 0.02 and α1(1) = 0.001. Similarly, in Figure 4.4(b), we

change the blur variation only along the y−direction while that in the x−direction

remains constant. Figure 4.4(c) is the combination of the two examples above, with

most severe blurring concentrated in the upper left corner of the image and then

tapering off linearly along the diagonal towards the lower right corner.

Lastly, it is interesting to combine both quadratic and linear functions to represent

34

the Gaussian blur variation like in Figure 4.5, where we apply different types of

functions to α1 and α2. Specifically, for Figure 4.5(a), we use a quadratic function

for α1 (x−direction) and a linear function for α2 (y−direction). The blurring now

mainly concentrates in the upper part of the image, then tapers off linearly along the

y−direction. Figure 4.5(b) is the transpose of the case in Figure 4.5(a). The blurring

here concentrates mostly on the left side of the image, then tapers off linearly along

the x−direction.

(a) (b)

Figure 4.5: Spatially variant Gaussian blur simulation using quadratic and linear
functions on the (a) x− and y−directions; (b) y− and x−directions, respectively.

4.1.2 Experimenting with images

In this section, we present the results from experiments with different α values and

functions applied to the images eight.tiff and cameraman.tiff. Specifically, we

examine the result of using the same α values as in the case of Figure 4.3(a) (only

using quadratic interpolation for α1 and α2), and Figure 4.4(c) (only using linear

interpolation for α1 and α2).

Firstly, when using quadratic functions for both α1 and α2 similar to the case of

Figure 4.3(a), we obtain the following results:

35

(a) (b)

(c) (d)

Figure 4.6: The solution image for eight.tiff with quadratic interpolation of α1, α2

and (a) True A; (b) Interpolated A using piecewise constant weights; (c) Interpolated
A using piecewise linear weights; and (d) Interpolated A using RBF weights.

The solution in Figure 4.6(a), which uses the true matrix A, is for reference to

compare with other solutions using the interpolated matrix A. It is clear from Figure

4.6 that the solution using piecewise linear interpolation weights produces the best

image, followed closely by the one using RBF weights. Meanwhile, the image solution

using piecewise constant weights is very blurry and cannot show us the coins’ faces.

The performance of these approaches to assign interpolation weights can be compared

36

more easily through the plots of the relative residual norms and the error norm of the

solutions in Figure 4.7. The relative residual measures how well the solution at each

iteration fits the data, that is

||b−Axk||2
||b||2

where xk denotes the solution at the k-th iteration. The error norm is also calculated

at each iteration as the difference between the solution of the current iteration and the

true solution. These calculations are only possible because we have the information

of the true image eight.tiff and cameraman.tiff.

(a) (b)

Figure 4.7: Errors for deblurring eight.tiff when using quadratic interpolations of
α1 and α2: (a) relative error and (b) error norm.

Even though the relative residual norm plot (Figure 4.7(a)) cannot show the differ-

ence in accuracy between different approaches, the error norm plot in Figure 4.7(b)

shows that piecewise linear weights and RBF weights perform well, both strongly

outperforming piecewise constant weights.

A similar phenomenon happens when we apply linear functions to both α1 and α2

as in the case of Figure 4.4(c).

37

(a) (b) (c)

Figure 4.8: The solution image for eight.tiff with linear interpolation of α1, α2

and interpolated matrix A with (a) piecewise constant weights; (b) piecewise linear
weights; and (c) RBF weights.

However, we note that in the case of the eight.tiff image, our interpolation

weights fail to restore the white background surrounding the coins in the original

image. Specifically, instead of a brighter background like in Figure 4.6(a) (where we

have the true information of matrix A), the background we obtain is a brighter shade

of grey. This might be improved if we use better boundary conditions.

(a) (b)

Figure 4.9: Errors for deblurring eight.tiff when using linear interpolations for α1

and α2: (a) relative error and (b) error norm.

Comparing the two results from using quadratic and linear functions for α1 and

38

α2, we conclude that for the case of images with scattered layouts like eight.tiff,

using quadratic functions for α1 and α2 result in better image solutions.

Repeating these experiments for the cameraman.tiff image yield three similar

main results. Firstly, piecewise linear and RBF interpolation weights consistently

outperform piecewise constant weights, regardless of the type of functions used for

α1 and α2; meanwhile, piecewise linear weights do a slightly better job than RBF

weights in deblurring the image. Secondly, piecewise linear and RBF interpolation

weights behave similarly in terms of error norms. Lastly, using quadratic functions

for α1 and α2 give us better image solutions.

Indeed, we first apply quadratic functions to α1 and α2 and obtain the following

results in Figure 4.10(b)-(d):

(a) (b)

39

(c) (d)

Figure 4.10: The solution image for cameraman.tiff with quadratic interpolations of
α1, α2 and (a) True A; (b) Interpolated A using piecewise constant; (c) Interpolated
A using piecewise linear; and (d) Interpolated A using RBF weights.

(a) (b)

Figure 4.11: Errors for deblurring cameraman.tiff when using quadratic interpola-
tions for α1 and α2: (a) relative error and (b) error norm.

We then repeat the experiments by applying linear functions to α1 and α2 and

obtain results consistent with those shown above.

40

(a) (b) (c)

Figure 4.12: The solution image for cameraman.tiff with linear interpolations for
α1, α2 and interpolated A with (a) piecewise constant weights; (b) piecewise linear
weights; and (c) RBF weights weights.

The corresponding error plots are presented in Figure 4.13. We notice here that

for a denser image like cameraman.tiff, using piecewise linear and RBF interpolation

weights can give us almost the same solutions visually as the one using the true matrix

A. However, we also notice from Figure 4.7, 4.9, 4.11, and 4.13 that the error norm

for denser images is higher than that of more scattered images like eight.tiff.

(a) (b)

Figure 4.13: Errors for deblurring cameraman.tiff with linear interpolations for α1

and α2: (a) relative error and (b) error norm.

41

4.2 Number of partitioned image regions and its

neighbor regions

An image can be partitioned into different regions for faster computation. However, it

is important to pick the right number of regions as having too few regions would lead

to bad approximations of matrix A, resulting in a poor result. On the other hand,

if we partition the image into many regions and only interpolate few of its nearest

neighbor regions, the results may also be bad because the region size becomes too

small, as discussed in Section 3.4. In this thesis, we set the default number of regions

that the image is partitioned into as n/16 and the number of interpolated neighbor

regions, ∆r, as 1. For example, if the image is of size 512×512, the number of regions

it is partitioned into is 32, and we interpolate over its two nearest neighbor regions,

one on the left and one on the right part.

We will apply different number of regions (8, 32, and 64) to both eight.tiff

and cameraman.tiff of size 512 × 512. Additionally, we also experiment with dif-

ferent numbers of interpolated neighboring regions, ∆r, on the case of the image

cameraman.tiff being partitioned into 64 image regions. We expect that being par-

titioned into 32 regions is enough to get a good approximation of the true image and

partitioned into 64 regions with ∆r = 1 would lead to bad result. However, with

more neighboring regions being interpolated, the restored image would get better. It

is also expected if the number of regions is equal to the size of the image with larger

∆r, the solution will be the best one; however, this defeats the purpose of partitioning

and computationally costly.

4.2.1 Number of partitioned image regions with ∆r = 1

First, we look at the results with different cases of number of image regions (8, 32,

and 64) applying to the eight.tiff.

42

(a.1) 8 image regions (a.2) 32 image regions (a.3) 64 image regions

(b.1) 8 image regions (b.2) 32 image regions (b.3) 64 image regions

(c.1) 8 image regions (c.2) 32 image regions (c.3) 64 image regions

(d.1) 8 image regions (d.2) 32 image regions (d.3) 64 image regions

Figure 4.14: Solutions with different number of partitioned image regions: (a) Using
piecewise constant weights; (b) Using piecewise linear weights; (c) Using RBF weights;
and (d) Error norm.

43

Consistent with previous experiments in Section 4.1.2, we observed that using

the piecewise linear weights produces the best result, which is followed closely by

the result from using RBF weights. Meanwhile, solutions resulting from using the

piecewise constant weights are significantly worse than the other two interpolated

weights. Matching with our expectation that partitioning the image into more regions

is not equivalent to getting a better image, Figure 4.14 shows that the result from

having 64 regions is slightly worse than that of having 32 regions when ∆r = 1.

Interpolation weights 8 image regions 32 image regions 64 image regions
Constant 0.0918 0.0737 0.0714
Linear 0.0695 0.0635 0.0699
RBF 0.0695 0.0674 0.0700

Table 4.1: Comparison of the lowest error norm for different number of image regions
partitioned on eight.tiff with ∆r = 1.

Except for the case of piecewise constant weights, Table 4.1 suggests that for

the other two weights, even though increasing from 8 to 32 image regions lessens

the error in our solution, increasing from 32 to 64 regions may worsen the image

quality. Additionally, looking at the running time for IRcgls to solve our least squares

problem in Table 4.2, it takes significantly longer time when the image is partitioned

into more number of regions since the size of our interpolated matrices will be much

larger. Specifically, increasing the number of image regions from 8 to 32 and from 32

to 64 will increase the running time by 5−6 and 3−5, respectively. Hence, from these

error and running time information, partitioning a 512 × 512 image into 32 regions

can give a good result within a decent time. Additionally, Table 4.4 also suggests

that using piecewise linear and RBF weights to solve the problem consistently takes

about 1.5 − 2 times longer than using piecewise constant weights, regardless of the

number of image regions.

44

Interpolation weights 8 image regions 32 image regions 64 image regions
Constant 86.9151 502.2849 1264.1
Linear 150.7443 800.8729 2427.7
RBF 149.9406 800.3547 2149.5

Table 4.2: Comparison of running time (in seconds) for different number of image
regions partitioned on eight.tiff.

We, again, repeat the above experiment on a denser image, cameraman.tiff, and

obtain the following results.

(a.1) 8 image regions (a.2) 32 image regions (a.3) 64 image regions

(b.1) 8 image regions (b.2) 32 image regions (b.3) 64 image regions

(c.1) 8 image regions (c.2) 32 image regions (c.3) 64 image regions

45

(d.1) 8 image regions (d.2) 32 image regions (d.3) 64 image regions

Figure 4.15: Solutions with different number of partitioned image regions: (a) Using
piecewise constant weights; (b) Using piecewise linear weights; (c) Using RBF weights;
and (d) Error norm.

Similar to the result from the previous experiment on eight.tiff, piecewise lin-

ear weights consistently produces the best result, following closely by RBF weights,

and outperforms result from piecewise constant weights. Additionally, the same phe-

nomenon happens such that error norm reduces when we increase the number of

regions from 8 to 32 but that number increase when we further increase the number

of regions to 64 as shown in Table 4.3.

Interpolation weights 8 image regions 32 image regions 64 image regions
Constant 0.1790 0.1664 0.1722
Linear 0.1556 0.1470 0.1702
RBF 0.1554 0.1486 0.1712

Table 4.3: Comparison of the lowest error norm for different number of image regions
partitioned on cameraman.tiff.

The running time result is also consistent with that result of our previous experi-

ment on the eight.tiff image as presented in Table 4.4.

Interpolation weights 8 image regions 32 image regions 64 image regions
Constant 86.2316 500.4533 1259.8
Linear 151.2962 788.3943 2121.5
RBF 151.5769 795.4533 2118.8

Table 4.4: Comparison of running time (in seconds) for different number of image
regions partitioned on cameraman.tiff.

46

4.2.2 Number of interpolated neighbor regions

As aforementioned in Section 3.4, when the image is partitioned into too many re-

gions, the result may get worse as the region sizes are small and the PSF overlaps

over multiple image regions. In this section, we experiment different number of in-

terpolated neighbor regions (∆r ∈ {1, 3, 5}) on the 512× 512 cameraman.tiff image

being partitioned into 64 regions. Additionally, as previously stated in Section 3.4,

we only conduct experiments with different number of ∆r on the interpolated RBF

weights.

We expect that as we increase the number of interpolated neighbor regions, ∆r,

the quality of the restored image also increases and gets closer to the image that we

get from using the true matrix A.

(a) True image (b) Solution with true A (c) 32 regions, ∆r = 1

(d) 64 regions, ∆r = 1 (e) 64 regions, ∆r = 3 (f) 64 regions, ∆r = 5

Figure 4.16: Visual comparison between (a) True image; (b) Restored image using
true matrix A; (c) Restored image with 32 regions, ∆r = 1; and (c) - (e) Restored
images with different ∆r.

47

Matching with our expectations, Figure 4.16 shows that the image quality is im-

proved as the ∆r is increased. However, the difference is much clearer when we look

at Figure 4.17 and Table 4.5, which show that the error norm of the restored image

gets significantly smaller with larger ∆r. More significantly, as we increase ∆r, the

error norm can get very close to the error norm of applying IRcgls on the true ma-

trix A and partitioning the image into 32 regions. As shown in Figure 4.17, the error

norm curve of partitioning the image into 32 regions with ∆r = 1 and of partitioning

the image into 64 regions with ∆r = 5 is almost identical.

Figure 4.17: Error norm with different methods on deblurring cameraman.tiff.

48

Number of regions ∆r Error norm Running time
IRcgls on true A 0.1419 5.6066

32 1 0.1486 795.4533
64 1 0.1712 2118.8
64 3 0.1567 14,594
64 5 0.1496 21,981

Table 4.5: Comparison of the lowest error norm and running time (in second) for
different values of ∆r.

However, we also notice from Table 4.5 that the error norm for when partitioning

the image into 64 regions with ∆r = 5 is still higher than when partitioning the image

into 32 regions with ∆r = 1. Meanwhile, the running time for 64 image regions cases

are all much larger than that for 32 image regions case. Therefore, we need to be

careful when considering to increase the number of image regions and ∆r as it can

make the result worse andz be very computationally costly.

49

Chapter 5

Concluding Remarks

In this thesis, we use different types of functions to interpolate the weights of the blur-

ring function: piecewise constant, piecewise linear, and radial basis functions. Even

though previous literature [7] has done a successful job in using piecewise constant and

linear functions to interpolate the weight matrices, they have not performed intensive

tests on these two approaches. Through several numerical experiments presented in

Chapter 4, we obtain the following findings:

1. Firstly, using piecewise linear functions to interpolate the weights of the blurring

function consistently produces the best result, followed closely by the result from

using RBF interpolation weights. Additionally, both piecewise linear and RBF

weights outperform piecewise constant weights. This result is independent of

the number of regions the image is partitioned into or the type of functions

applied to α1 and α2, which dictates the variation of the Gaussian blur in the

x− and y−directions respectively. Hence, from these analyses, we suggest that

when dealing with image deblurring problems, one should use piecewise linear

functions to interpolate the weights of the blurring function.

2. Secondly, the choice of interpolation functions for the variation of the spatial

blurs along the x− and y−directions also affects our final result. In this thesis,

50

we found that when using quadratic functions to represent the variation of the

blur, we are able to obtain better image restorations.

3. Thirdly, when deblurring an image, partitioning images into more regions may

not lead to better final results as shown in Section 4.2. To better find a rea-

sonable number of regions the image should be partitioned into, we should also

balance the trade-off between accuracy and running time. As shown in Section

4.2, partitioning a 512 × 512 image into 64 image regions can be very compu-

tationally expensive and takes 2 − 3 times longer than when we partition the

image to 32 regions.

4. Fourthly, when we partition the image into too many regions, the region sizes

get smaller, leading to the PSF being overlapped over multiple regions. This

could lead to worse result as stated in point (3). To overcome this, we could

choose to increase the number of interpolated neighbor regions, ∆r; however,

we need to be careful as even though the error norm is reduced, it still may not

be as good as having smaller number of image regions and ∆r as shown in our

numerical experiments. Additionally, with larger ∆r, the problem also becomes

significantly more computationally costly.

5. Lastly, using piecewise linear and RBF weights consistently takes 1.5− 2 times

longer than using piecewise constant weights, regardless of the number of par-

titioned image regions.

For the next step of the project, we plan to look into further implementation of differ-

ent and more practical boundary conditions such as reflexive and periodic, which we

do not touch on in this thesis. Another future direction is to find other interpolating

functions that can produce better results than piecewise linear and RBF weights.

Finally, in this thesis, we only perform experiments on greyscale images, hence, for

future extensions, we also hope to expand our model to colored images.

51

Bibliography

[1] Apple. Apple unveils iPhone 13 pro and iPhone 13 pro max - more pro than ever

before, 2022.

[2] N. Bell and M. Garland. Implementing sparse matrix-vector multiplication on

throughput-oriented processors. In Proceedings of the Conference on High Per-

formance Computing Networking, Storage and Analysis, pages 1–11, 2009.

[3] S. Berisha and J. G. Nagy. Chapter 7 - Iterative methods for image restoration.

In Joel Trussell, Anuj Srivastava, Amit K. Roy-Chowdhury, Ankur Srivastava,

Patrick A. Naylor, Rama Chellappa, and Sergios Theodoridis, editors, Academic

Press Library in Signal Processing: Volume 4, volume 4 of Academic Press Library

in Signal Processing, pages 193–247. Elsevier, 2014.

[4] S. Gazzola, P. C. Hansen, and J. G. Nagy. IR Tools: a MATLAB package of iter-

ative regularization methods and large-scale test problems. Numer Algor, 81:773–

811, 2019.

[5] J. Kamm and J. G. Nagy. Kronecker product and SVD approximations in image

restoration. Linear Algebra and its Applications, 284(1):177–192, 1998.

[6] J. Kamm and J. G. Nagy. Optimal Kronecker product approximation of block

Toeplitz matrices. SIAM Journal on Matrix Analysis and Applications, 22(1):155–

172, 2000.

52

[7] J. G. Nagy and D. P. O’Leary. Restoring images degraded by spatially variant

blur. SIAM Journal on Scientific Computing, 19(4):1063–1082, 1998.

[8] J. G. Nagy, K. Palmer, and L. Perrone. Iterative methods for image deblurring:

A matlab object-oriented approach. Numerical Algorithms, 36(1):73–93, 2004.

[9] P. C. Hansen J. G. Nagy and D. P. O’Leary. Deblurring Images: Matrices, Spectra,

and Filtering. Fundamentals of Algorithms. Society for Industrial and Applied

Mathematics, 2006.

	Introduction
	Numerating images
	Ax = b problem

	The Construction of the Blurring Function
	The blurring matrix A
	Boundary conditions
	Solving the Ax=b problem
	Sparse matrix-vector multiplication
	Spatially invariant and variant Gaussian blur
	The interpolation matrix Di
	Piecewise constant interpolation weight
	Piecewise linear interpolation weight

	Radial Basis Function (RBF)
	A brief summary of RBF
	Choosing the parameter
	Choosing the weight w
	Number of interpolated neighboring regions

	Numerical Experiments
	Spatially variant separable Gaussian blur
	Construction of variant functions
	Experimenting with images

	Number of partitioned image regions and its neighbor regions
	Number of partitioned image regions with r =1
	Number of interpolated neighbor regions

	Concluding Remarks
	Bibliography

