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Abstract 

 

Characterizing the Developmental Trajectories for Cerebellar Volumes 

via Penalized Splines and Derivative Analysis 

By Yiheng Li 

 

The human cerebellum has been established an important role in both motor and cognitive functions. 

Many of these functions change across age, especially during childhood and adolescence. A 

representation of cerebellar development is the volume of the cerebellum and of various regions of the 

cerebellum. Past literature has spotted a non-linear trajectory as well as a gender dimorphism of how 

the cerebellar volumes develop across age. Specifically in this paper, the focus is on how total 

cerebellum volume (TCV), cerebellar cortex volume (CCV), cerebellum white-matter volume (CWM) 

and the total intracranial volume (TICV) changes during childhood, adolescence and adulthood in 

different gender groups. Cross-sectional volumetric data both with and without TICV adjustment from 

1608 healthy subjects ranging from 5 to 37 years old is analyzed stratified on sex.  To characterize the 

developmental trajectories of the cerebellar volumes, a flexible penalized cubic spline modeling 

framework is adopted, which combines the reduced knots of a regression spline (computational 

efficiency) and the roughness penalty of a smoothing spline (smoothness control of the fitted splines). 

Derivatives of the fitted trajectories are then approximated by difference quotients and their variances 

are estimated based on the posterior Bayesian covariance matrix of the smoothing coefficients. 

Hypothesis tests of whether the non-zero derivatives are significantly different from 0 are derived, 

through which the age periods of significant increase/decrease of the cerebellar volumes of interest are 

identified. The TCV of males experiences an increase in childhood and adolescence and reaches its 

peak at14 years old with minimal change afterward. The CCV of males follows an inverse-U-shaped 

curve peaking at 13 years. For both female and male CWM, a steady increase is fitted in the studied age 

range. The TICV adjustment does not affect the general trend of the development of male TCV and 

male CCV.  For TCV and CCV of females, the predicted trajectory is in the shape of 2 inverse-U 

connected together with 2 peaks around age 12 and at age 28. However, after adjusting for TICV, age is 

no longer a significant factor affecting TCV and CCV is predicted to show a sustained volume loss.
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1 Introduction

Accumulating evidence recognizes the cerebellum as a prominent contributor to both motor and cog-

nitive functions involving learning, language, working memory and more (Leiner et al. (1993); Chen and

Desmond (2005); Stoodley et al. (2012)). Besides, the cerebellum has also been implicated in several mental

health disorders such as autism (Stanfield et al., 2008) and ADHD (Valera et al., 2007), which makes the

cerebellum a more intriguing structure to study.

Abundant literature has concluded that the cerebellum is affected by age and this effect varies across

different regions of the cerebellum. For instance, Luft et al. (1999) adopt an exponential model and find

that total cerebellum volume loss begins around 50 years old and the degree of loss continues to increase

until age 65, after which the decline becomes slower. Tiemeier et al. (2010) fit a mixed model including

a cubic term of age to quantify the trend of total cerebellar volume and 11 subdivisions. They find that

total cerebellum volume follows an inverse U-shaped trajectory peaking at age 11.8 years in females and

15.6 years in males. The anterior region and total grey matter volume of the cerebellum also reach their

peaks during the early teen years and then begin to slowly decrease. While the cerebellar white matter

volume remains a steady and almost linear increase throughout childhood and adolescence. Bernard et al.

(2015) confirm a quadratic inverse-U pattern for the more posterior part of the cerebellum while the anterior

cerebellum follows a logarithmic pattern so as the total cerebellar gray matter volume.

However, most of these studies handle the non-linearity of age by adopting sophisticated parametric

models such as exponential, quadratic, cubic, or logarithmic. These delicate assumptions require great ex-

pertise to make and are inflexible, especially when parametric models with different levels of complexity

are compared in terms of fit. Therefore, more flexible and effective regression techniques are required and

penalized splines are one of them (Wahba, 1980; Eilers et al., 1996). They combine the reduced knots of

regression splines and the roughness penalty of smoothing splines (Reinsch, 1967; Eilers et al., 1996). For

penalized splines, the user-defined knots given a fair coverage can capture the changes in the underlying

level quite well (Wood, 2017), and the roughness penalty can control the smoothness of the fit, i.e., avoid

overfitting. Penalized splines also enjoy computational efficiency compared with smoothing splines, the

latter of which place a knot at every unique covariate point. Penalized splines are especially beneficial when

nonlinear effects that are difficult to model parametrically are involved, as in the case of modeling the cere-

bellar volume trajectories, since the ground truth of the non-linear effect of age is unknown and varies across
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regions. We will employ the penalized cubic splines to reveal the underlying nonlinear effects of age in the

development of the cerebellum.

Besides the inflexibility of the regression methods, most previous studies of characterizing cerebellar

trajectories focus on finding the best fit and the interpretation of the volumetric development is drawn by

simply looking at the fitted curves, which is heuristic and approximate. A more detailed and statistically

meaningful description is required to assess how the cerebellar volumes change across age, inspiring us to

look into the derivatives of a penalized cubic spline which represent the rate of cerebellar volume change.

It is clear that the analytical derivatives of spline functions can be exactly expressed in terms of lower

order spline functions, as described in De Boor (1972). The asymptotic bias, variance and normality of these

analytical estimators have also been derived in Zhou and Wolfe (2000). However, from the perspective

of computation, numeric approximation of the derivatives is preferred, among which using the difference

quotient is common. For example, Ilyasov (2014) analyzes the growth rate (the first derivative) and growth

acceleration (the second derivative) of the economic indexes through differentiation of cubic spline models,

and detect the latent trends of the economic dynamic. In this paper, we will also adopt difference quotient

to estimate the first derivatives of the fitted penalized cubic spline at a grid of age points, which gives more

details on how fast cerebellar volumes change across age.

Once the first derivative estimates are obtained, we develop further hypothesis tests of whether the

derivatives are significantly different from 0. The variance of the derivative estimate of the fitted penalized

cubic spline is required for this test and the detailed procedure of how to obtain this variance will be given

in Section 3.2. This step helps us to find the statistically significant increasing and decreasing periods of

the cerebellar volume of interest. Similar intuition can be found in an ecological study by Monteith et al.

(2014). They fit a semi-parametric additive model to the hydro-chemical data from 22 lakes and streams, and

identify the periods along the fitted trend where the first derivative estimates are significantly different from

0. We won’t stop at identifying periods where the cerebellar volume is either increasing or decreasing in a

significant manner: The age(s) at which the cerebellar volume of interest reaches its peak(s) is also assessed

after the identification of the significantly changing periods.

The data we will analyze is obtained from the HCP Development study (Human Connectome Project,

2021) and the HCP Young Adult study (Human Connectome Project, 2018) which cover the cerebellar vol-

ume data from children, adolescents and adults. The volumes of interest will include total cerebellar volume,

cerebellar cortex (i.e. gray matter) volume, cerebellar white matter volume, and the corresponding adjusted
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volumes after considering the total intracranial volume, along with the total intracranial volume itself. To

summarize, this paper aims to characterize the developmental trajectories of the 7 volumes during childhood,

adolescence and adulthood with penalized cubic splines and to estimate the rate of change of the fitted tra-

jectories by difference quotient approximation. The following aim is to identify the statistically significant

increasing or decreasing periods of the volume of interest and to determine the peak(s). To our knowledge,

this study is by far the first to depict how cerebellar volumes change through estimating derivatives of the

fitted trajectories and identifying statistically significant changing periods as well peaks.

2 Dataset and Preliminary Analysis

Combining the data from the HCP Development and HCP Young Adult studies (Human Connectome

Project, 2021, 2018), a total of 1608 healthy subjects from 5 to 37 years old are included, among which

747 are males and 861 are females. The studied age range covers normal individuals during childhood,

adolescence and adulthood. Table 1 lists the mean, standard deviation, median and range of age among

males, females and the whole cohort respectively. We also run preliminary tests to check whether age

is distributed differently among males and females. Both the independent 2-sample t-test and the Mann–

Whitney–Wilcoxon (MWW) test are conducted to test the existence of a significant difference of the mean

age and of the age distribution. The p - values are shown in the last column of Table 1 and we can see that

the mean age across sex is not significantly different (0.1143) while the age distribution is (0.0274).

Table 1: Demographic characteristics of the study sample, stratified by sex

Male
(N = 747, 46.455%)

Female
(N = 861, 53.545%)

Total
(N = 1608)

p -Valuea
(α = 0.05)

Age (years)

Mean (SD) 22.384 (7.738) 23.028 (8.597) 22.729 (8.213) 0.1143b

Median [Range] 24 [5, 37] 25 [6, 36] 25 [5, 37] 0.0274∗cd

a The p -values are derived from testing whether the ages are significantly different in males and females.
b The p -value is derived from the independent 2-sample t-test assuming unequal variance.
c The p -value is derived from the Mann–Whitney–Wilcoxon test.
d p -value < 0.001∗∗∗, p -value < 0.01∗∗, p -value < 0.05∗.

The volumes of interest include total cerebellum volume (TCV), cerebellar cortex volume (CCV), cere-
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bellar white matter volume (CWM), estimated total intracranial volume (TICV) and the TICV-adjusted mea-

surements of TCV, CCV, and CWM (aTCV, aCCV and aCWM). The last 3 volumes are relative volumes

with adjustment for the general head size. All 7 outcomes are completely recorded for the 1608 subjects

along with their age. Table 2 summarizes the mean and standard deviation of the 7 volumes stratified by

sex and in the whole cohort. It’s apparent that all of the 7 mean volumes are larger in males and we perform

an independent 2-sample t-test for each of the 7 volumes to test against the alternative that males have a

larger mean volume than that in females. From the p - values listed in the last column of Table 2, all of the

7 volumes have a significantly larger mean for male subjects than those in female subjects.

Table 2: Average volumes of interest, strstified by sex

Male
Mean (SD)

Female
Mean (SD)

Total
Mean (SD)

p -Valuea
(α = 0.05)

TCVb (cm3)

Absolute 154.758 (13.466) 138.133 (12.001) 145.856 (15.167) < 2.2× 10−16∗∗∗

Adjustedc 148.724 (10.804) 143.368 (9.589) 145.856 (10.514) < 2.2× 10−16∗∗∗

CCVb (cm3)

Absolute 124.611 (10.982) 111.119 (10.184) 117.387 (12.522) < 2.2× 10−16∗∗∗

Adjusted 120.057 (9.206) 115.070 (8.381) 117.387 (9.117) < 2.2× 10−16∗∗∗

CWMb (cm3)

Absolute 30.147 (4.024) 27.014 (3.120) 28.469 (3.895) < 2.2× 10−16∗∗∗

Adjusted 28.667 (3.464) 28.298 (2.799) 28.469 (3.130) 0.010∗∗

TICVb (cm3) 1701.329 (141.516) 1488.715 (144.306) 1587.485 (178.024) < 2.2× 10−16∗∗∗

a The p -values are derived from the independent 2-sample t-test of whether each mean volume is significantly

larger in males than that in females.
b TCV – total cerebellum volume, CCV – cerebellar cortex volume, CWM – cerebellar white matter volume, TICV

– estimated total intracranial volume.
c The corresponding volume after adjusting the estimated total intracranial volume (TICV).

This situation coincides with previous findings on gender dimorphism of cerebellar volumes. Larger

cerebellar volumes in male adults have been reported by several studies, consistent with the overall larger

brain size (Cho et al., 1999; Raz et al., 2001; Szabó et al., 2003). In children, adolescents and young adults, the

model-based total cerebellar volume is 10% to 13% larger in males depending on the age of comparison and
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this dimorphism remains significant after adjusting the total brain volume (Tiemeier et al., 2010). Besides

the volume difference, late peaks of the male cerebellum have also been noted in a cross-sectional case

(Caviness Jr et al., 1996) and a longitudinal case (Tiemeier et al., 2010). Therefore, to investigate a potentially

different time course of cerebellar volumes in both shape and height, the following statistical analysis will

be performed separately for males and females.

3 Statistical Methods

All statistical analyses were performed using R version 4.0.5 (RStudio Team, 2021), with the penalized

cubic splines fitted in package mgcv (Wood (2011), Wood (2017)). A significance level of 0.05 is adopted

for all of the hypothesis tests unless mentioned otherwise.

3.1 Building Developmental Trajectories of the Cerebellar Volumes

For a given scatter plot of each volume outcome, the model we apply is penalized cubic splines, which

is a compromise between cubic regression splines and smoothing splines. We will gradually build our way

to the form of a penalized cubic spline from the basis of spline modeling.

The form of a truncated power basis of degree p is given in (1) with K knots at k1, k2, ..., kK , where

(x − k)p+ equals (x − k)p when x > k and 0 otherwise. The linear combination of the truncated power

basis is called a spline, which is the f(x) in formula (2). f(x) is a piecewise degree-p polynomial and has a

continuous (p− 1)th derivative. If the knots are selected to cover the observations well, splines are flexible

to fit a wide variety of shapes. Higher values of p lead to smoother functions, but generally p = 3 gives a

curve smooth enough that human eyes cannot tell compared to higher order splines (Ruppert et al., 2003).

1, x, x2, ..., xp, (x− k1)
p
+, (x− k2)

p
+, ..., (x− kK)p+ (1)

f(x) = α0 + α1x+ α2x
2 + ...+ αpx

p +

K∑
m=1

αpm(x− km)p+ (2)

One problem with the basic splines is that they tend to have high variance at the boundaries of the

observations, especially when p is large. A remedy is to force the piecewise polynomial function to have

a lower degree to the left of the leftmost knot, and to the right of the rightmost knot, which is how natural
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splines work. The definition of a natural spline is as follows (given the same set of knots at k1, k2, ..., kK):

1. f(x) is a polynomial of degree p on each of the intervals [k1, k2], [k2, k3], ..., [kK−1, kK ].

2. f(x) has continuous (p− 1)th derivatives at knots k1, k2, ..., kK .

3. f(x) is a polynomial of degree (p−1)
2 on (−∞, k1] and [kK ,∞).

The first 2 components agree with the basic splines in formula (2) while the last requirement of a lower

order outside the range of observations distinguishes natural splines. We will be using natural cubic splines

(natural splines with p = 3) which are linear beyond the boundary knots. An appealing feature of a natural

cubic spline is that it arises as the solution of an optimization problem described in equation (3), where

(xi, yi), i = 1, ..., n are a set of observations and f(x) includes all that have continuous second derivatives.

m
f
in{

n∑
i=1

(yi − f(xi))
2 + λ

∫
(f

′′
(x))2dx} (3)

It turns out that the unique solution to equation (3) is a natural cubic spline with knots at every unique

observation x1, ..., xn. The resulting f(x) is called a smoothing spline (Reinsch, 1967). The objective

function in equation (3) trades off the squared error of f over (xi, yi) and a penalty term that grows larger as

the second derivatives of f become more wiggly. λ > 0 is a smoothing parameter that controls the trade-off

between fidelity to the data and roughness of the function estimate (Wikipedia contributors, 2020). If f(x)

is restricted to a natural spline but with user-defined knots, and the penalty term in equation (3) is removed,

the solution reduces to a least squared estimator, which is a regression spline. Regression splines have the

potential to be over-fitted or over-wiggly and this problem is eased by the regularization of the integrated

square second derivative of smoothing splines.

Although smoothing splines enjoy nice theoretical properties, the only substantial problem is that they

have as many free parameters as there are data to be smoothed since the knots are placed at every unique

observation. Actually, due to the existence of λ, the resulting smoothing spline is always much smoother

than n degrees of freedom would suggest (Wood, 2017). This inspires the combination of the freely chosen

degree of freedom (i.e., number of knots) of a regression spline and the roughness penalty of a smoothing

spline, which gives penalized splines (Wahba, 1980). Specifically, penalized cubic splines are defined as the

solution to the optimization problem in equation (4), where the number and positions of the knots are freely

chosen in advance by the user andK is usually much smaller than n:
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
m
f
in{

∑n
i=1(yi − f(xi))

2 + λ
∫
(f

′′
(x))2dx}

f is a natural cubic spline with pre-defined knots at k1, ..., kK

(4)

We can see that the only difference between a penalized cubic spline and a smoothing spline defined by

equation (3) is that penalized splines place more constraints on the form of f to be a simpler natural cubic

spline with a reduced number of knots. The pre-defined and reduced knot selection resembles a regression

spline and the penalty term regulates the roughness as in a smoothing spline. To guarantee a satisfying fit,

the covariate values in the knot set should be arranged to nicely cover the distribution of covariate values in

the original data set (Wood, 2017).

Up to this point, it’s time to write the penalized cubic spline models we use to characterize the devel-

opmental trajectories of the cerebellar volumes of interest. Separately for males and females, and for TCV,

CCV, CWM, aTCV, aCCV, aCWM, and TICV, denote yi as the corresponding volume of the ith subject.

We assume that yi is represented by a function of the subject’s age plus a Gaussian random error with mean

0, as expressed in formula (5). f(Agei) is a natural cubic spline representing the conditional mean of yi

given the subject’s age and it’s estimated following the optimization framework of a penalized cubic spline

described in (4). The number of knots is chosen to be 10 and they evenly cover the quantiles of the age

distribution, i.e., the knots are placed at the 0%, 11.111%, 22.222%, 33.33%, 44.444%, 55.556%, 66.667%,

77.778%, 88.889%, and 100% quantiles of age. Note that the penalized cubic splines are fitted separately

for males and females, so the positions of the 10 knots are different. The smoothing parameter λ is selected

using the restricted maximum likelihood (REML) method (Wood, 2011).

yi = f(Agei) + ϵi, ϵi
iid∼ N(0, σ2) (5)

In fact, it’s possible to write out the explicit solution of the penalized cubic splines defined in (4) if

we write out an equivalent form of the objective function. For a 10th order natural splines with the knots

fixed as in the last paragraph, the corresponding basis functions are noted as g1, ..., g10. Then f(xi) =∑10
m=1 βmgm(xi) and the design matrix X ∈ Rn×10 can be written as Xij = gj(xi). The first term of the

objective function now becomes
∑n

i=1(yi − f(xi))
2 = ||Y − Xβ||2, where Y = (y1, ..., yn)

T ,β =

(β1, ..., β10)
T . Then we define a matrix S ∈ R10×10 where Sij =

∫
g
′′
i (x)g

′′
j (x)dx. S is called the

roughness penalty coefficient matrix and it can be proved that the optimization problem in (4) is equiva-
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lent to finding β to minimize the objective function in (6) (Wood, 2017), which has an explicit solution

shown in equation (7). Now the estimated mean curves of each volume of interest can be expressed as

(f̂(Age1), ..., f̂(Agen))
T = Xβ̂, corresponding to the estimated developmental trajectories of the 7 vol-

umes that will appear in the figures of the fitted splines as black solid lines.

||Y −Xβ||2 + βTSβ (6)

β̂ = (XTX + λS)−1XTY (7)

The effective degree of freedom (edf) and the significance of the smooth term f̂(Age)will also be given.

Edf of the smooth is defined as the trace of the influencematrixF whereF = (XTX+λS)−1XTX , which

represents the complexity of the estimated developmental trajectories. edf = 1 is equivalent to a straight

line, edf = 2 is equivalent to a quadratic curve, etc., with higher edfs describing more wiggly patterns of

how the volumes of interest change across age (Wood and Wood, 2015). The significance of the smooth

terms of age will be reported by p - values of the tests that f̂(Age) = 0. The p - values are approximate

in the sense that the components of the test statistic are weighted by the iterative fitting weights (Wood and

Wood, 2015). How to obtain the theoretical p - values is described in Wood (2013).

3.2 Estimating Rate of Volume Change

Once the mean volumes conditioned on age are obtained from the penalized cubic spline models, we

move on to estimate the first derivatives of the fitted penalized cubic splines. The definition of the first

derivative of a smooth function g at a point x is g′
(x) = limh→0

g(x+h)−g(x)
h , which indicates estimating

g
′
(x) using g(x+h)−g(x)

h with a sufficiently small h. g(x+h)− g(x) is a finite difference and g(x+h)−g(x)
h is

known as the difference quotient. It can be proved that the error between the difference quotient estimator

and the true derivative is O(h) if g has continuous second derivatives around x (Iserles, 2009). This means

the error will converge to 0 as h tends to 0, which validates the approximation. We will refer to h as step

size afterwards. Since the penalized cubic splines possess continuous second derivatives within the range of

the observations, it’s natural to consider estimating the first derivatives of our fitted splines using quotients.

We divide the age range into a uniform grid with 1000 grid points, on which the first derivatives with

respect to age will be estimated. The number of grid points is chosen to be large since we want to draw a
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detailed picture of the derivatives, even though ages are integers in the data with around 30 unique values.

This will help the detection of significantly changing periods in the next subsection. Denote the 1000 grid

points of age as a1, ..., a1000 and the step size is set to be h = 10−7. We estimate the volume derivatives

to age as follows, where d̂(x) refers to the estimated derivative at age x. This process is repeated for each

fitted penalized cubic spline of the 7 outcomes separately for males and females:

1. Predict the mean volumes at a1, ..., a1000 from the fitted penalized cubic splines:

(f̂(a1), ..., f̂(a1000))
T = Xaβ̂ (8)

whereXa ∈ R1000×10 is the design matrix under the supplied value of covariates {a1, ..., a1000}, and

β̂ is given in equation (7).

2. Predict the mean volumes at a1 + h, ..., a1000 + h from the fitted penalized cubic splines, i.e., move

the grid points forward with a step size of h and obtain new predictions:

(f̂(a1 + h), .., f̂(a1000 + h))T = Xa+hβ̂ (9)

whereXa+h ∈ R1000×10 is the design matrix under the age set {a1 + h, ..., a1000 + h}.

3. The derivative of the volume at age ai is estimated to be d̂(ai) = f̂(ai+h)−f̂(ai)
h , i = 1, ..., 1000. Write

the derivative estimates in matrix form:

d̂ = (d̂(a1), ..., d̂(a1000))
T =

(Xa+h −Xa)

h
β̂ (10)

The matrix notation of the derivative estimates facilitates calculating its covariance matrix since d̂ is

essentially a linear transformation of the coefficient estimates. Marra and Wood (2012) derive a posterior

Bayesian covariance matrix for β̂ which roots from Nychka (1988). This covariance matrix results from

adopting a particular Bayesian model of the smoothing process (Wood and Wood, 2015) and we note it as

VB . An estimate of VB is shown in equation (11) where σ̂2 is the residual sum of squares for the fitted

model, divided by the effective residual degrees of freedom (Wood, 2017).

V̂β = (XTX + λS)−1σ̂2 (11)
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Naturally, we can estimate the covariance matrix of d̂ as shown in equation (12), the diagonal of which gives

the variance estimates of the fist derivatives.

ˆCov(d̂) =
(Xa+h −Xa)(Xa+h −Xa)

T

h2
V̂β (12)

From the estimated Bayesian covariance matrix of the coefficient estimates in (11), we can also obtain

the point-wise Bayesian confidence intervals of f(Age) according to Marra and Wood (2012) and we will

plot those confidence bands in the figures of the fitted splines. It turns out that these point-wise Bayesian

confidence intervals have surprisingly good coverage by a frequentist criterion, provided that coverage is

measured as an average across the observation points (Marra and Wood, 2012). From simulations by Wahba

(1983) and the theoretical proof by Nychka (1988), the average coverage probability (ACP):

ACP =
1

n

n∑
i=1

P (f(Agei) ∈ BIα(Agei))

is close to the nominal level 1−α, whereBIα(Age) indicates the (1−α)100%Bayesian interval for f(Age)

(Marra and Wood, 2012).

3.3 Detection of Significantly Changing Periods and Peaks

The rate of change estimates in d̂ yield positive/negative (increasing/decreasing) trend at some age

points and the estimated variance of those difference quotients give the uncertainty measurement of the rate

of change. For those derivative estimates that are not 0, we want to include the uncertainty information to

test the hypothesis that whether each of them is significantly different from 0, which helps detect statistically

valid increasing or decreasing periods of the volumes.

Since the estimated variance of the difference quotients are readily available in equation (12) and the

random errors of the penalized cubic splines in formula (5) are assumed to be Gaussian, the 95% confidence

interval of f ′
(ai) can be reasonably estimated to be:

d̂(ai)± Z0.975 × diag{ ˆCov(d̂)}i, i = 1, ..., 1000 (13)

where Z0.975 is the 97.5% quantile of a standard normal distribution and diag{ ˆCov(d̂)}i is the ith diagonal

element of ˆCov(d̂), which is the estimated variance of d̂(ai). This confidence interval is calculated for
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each difference quotient d̂(a1), ..., d̂(a1000). For any difference quotient that is positive (negative), if its 95%

confidence interval does not contain 0, wewill reject the null and claim a significantly increasing (decreasing)

trend at its corresponding age. Consecutive age points in {a1, ..., a1000}, at which a significantly increasing

(decreasing) trend is claimed, form an increasing (decreasing) age period of the volume of interest.

d̂ will be plotted along with the confidence intervals described in (13), and the derivative estimates at

the significantly increasing (decreasing) age period(s) will be marked in red (blue). The identified significant

increasing or decreasing periods of the cerebellar volumes will also be marked in the same manner in the

figures of the fitted splines.

Note that the confidence intervals in (13) are point-wise rather than simultaneous, similarly to the con-

fidence intervals of f(Age) mentioned above. Since they are also derived based on the posterior Bayesian

covariance matrix estimate (V̂B) in (11), those confidence intervals of the derivatives are Bayesian con-

fidence intervals as well. The point-wise nature of the confidence intervals only allow for a point-wise

inspection of the hypothesis tests of the derivatives. Multiple testing of the rate of volume change can be

achieved only if the confidence intervals of the derivatives are simultaneous.

After detecting the significantly changing age periods for each of the 7 outcomes, we seek to find the

age at which the estimated developmental trajectory is at its peak. In this paper, a peak is defined as the

local maximum of the estimated developmental trajectory sandwiched between a significantly increasing

age period before and a significantly decreasing age period after. Conceptually, any local maximum of the

inverse-U in the trajectory will be classified as a peak, given that there exists a significant increasing period

on the left and a significant decreasing period on the right part of the inverse-U. Each peak represents a

significant ”bump” in the development of the cerebellar volume of interest. If no peak is identified, the

global maximum of the estimated mean volume will be reported. We will mark the peak(s) or maximum,

along with the corresponding peak or maximum volume(s) in the figures of the fitted splines.

To evaluate the robustness of the identified significantly changing period(s) and the peak(s)/maximum,

1000 times of stratified resampling is performed separately for males and females: such robustness analysis

can be very useful when dealing with noisy and complex data sets. Each time, we randomly select 80% of

the samples within each age group. The reason for treating age as a stratifier is to retain the age distributions

shown in Figure A.1 (males) and Figure A.1 (females). The process of characterizing the developmental

trajectories as penalized cubic splines, estimating the rate of volume change, detecting significant changing

period(s) of age and peak(s)/maximum is repeated for each resample. The number of peaks identified in the
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1000 resamples will be summarized in proportions. The proportions of the original increasing/decreasing

period(s) and peak(s)/maximum re-identified in the 1000 resamples will also be reported. To allow for an

acceptable amount of bias, we also check the proportions of the fluctuated increasing/decreasing period(s)

and peak(s)/maximum identified in the original data. For example, if [7,10] is identified as a significantly

increasing period in the original data, we also check the proportion of any ranges contained by [6,11] being

identified as a significantly increasing period in the 1000 resamples. If 12 years old is identified as a peak

originally, we also check the proportion of 11, 12, or 13 years being identified as a peak in the 1000 resamples.

4 Results

To facilitate reading, abbreviations of the volume outcomes are restated: TCV – total cerebellum vol-

ume, CCV – cerebellar cortex volume, CWM – cerebellar white matter volume, TICV – estimated total

intracranial volume; aTCV – TICV-adjusted total cerebellum volume, aCCV – TICV-adjusted cerebellar

cortex volume, aCWM – TICV-adjusted cerebellar white matter volume.

4.1 Developmental Trajectories of the Cerebellar Volumes and Trend Assessment

The effective degrees of freedom (edf) of the fitted penalized cubic splines are listed in Table 3 separately

for male and female subjects and for each of the volume outcomes. We can see that except for the TICV-

adjusted TCV of females, all fitted trajectories behave more sophisticated patterns than linear (edf larger than

1), indicating the non-linear effect of age on the total cerebellum volume (only the unadjusted), cerebellar

cortex volume, cerebellar white matter volume and total intracranial volume. We notice that adjusting TICV

seems to explain some non-linearity of the cerebellar volume growth for females. For example, the edf of the

TICV-adjusted CCV trajectory is 1.719 (close to quadratic), which is largely reduced compared with that of

the absolute CCV trajectory (6.141, close to a 6-degree polynomial). But this reduction of the non-linearity

due to TICV adjustment is not as obvious in males.

From the p - values displayed in the same table, the smooth term of age is significant for all but the

TICV-adjusted TCV for both males and females. This reflects that after adjusting for the total intracranial

volume, age is no longer a significant factor affecting the volumetric development of the cerebellum which is

intuitive: The total intracranial volume is closely related to the general head size with which the cerebellum

scales. Under the current data, regressing out the head size seems to eliminate the age effect on the volume of
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the cerebellum as a whole, while age maintains a significant contribution to the volume growth for cerebellar

gray matter and white matter even after adjusting for the head size. Due to the large p - value of 0.363, we

will not include the TICV-adjusted TCV for females in the following trend assessment.

Table 3: Edf and significance of the smooth term, stratified by sex.

Effective Degree
of Freedom

p -Valuea
(α = 0.05)

Male Female Male Female

TCV (cm3)

Absolute 4.997 6.071 0.0015∗∗ 4.44× 10−6∗∗∗

Adjusted 4.063 1.002 0.0786 0.363

CCV (cm3)

Absolute 5.101 6.141 0.0001∗∗∗ < 2× 10−16∗∗∗

Adjusted 4.394 1.719 1.02× 10−6∗∗∗ 2.48× 10−7∗∗∗

CWM (cm3)

Absolute 4.044 4.334 < 2× 10−16∗∗∗ < 2× 10−16∗∗∗

Adjusted 3.602 2.599 < 2× 10−16∗∗∗ < 2× 10−16∗∗∗

TICV (cm3) 3.042 5.201 0.0057∗∗ < 2× 10−16∗∗∗

a The p - values are derived from an approximate F-test of whether the smooth term of

age is significant (or equivalently, whether is 0) in the penalized cubic spline model for

each volume of interest in each sex.

Figure 1 illustrates the estimated growth curve of the 6 cerebellar volumes for male subjects estimated

from the penalized cubic spline models. Figure 2 gives the cerebellar growth curves for females. Absolute

volumes and their corresponding TICV-adjusted volumes are displayed side-by-side. The fitted volumetric

developmental trajectories are presented in the Appendix after adjusting the scale of the y-axis to include all

the data points in the plot. Please refer to Figure A.3 and A.4.

For male subjects, we can roughly tell that TCV, aTCV, CCV and aCCV increase until some point during

adolescence and begin to fluctuate or decrease afterward. While for CWM and aCWM, the increase seems

consistent during the whole studied age range (5 to 37 years). Further analysis of the rate of change produces

the derivative estimates of the cerebellar trajectories in Figure 3. They measure how fast the cerebellar
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volumes are changing at specified ages. Following the test procedure described in Section 3.3, the positive

(negative) derivative estimates claimed to be significantly different from 0 are marked in red (blue) with

the corresponding age periods labeled on the x-axis. According to the information provided in Figure 3, the

significantly changing periods of age are also marked on the estimated trajectories in Figure 1.

For male TCV, the penalized cubic spline predicts an increase from 5 to 14 years old, and the derivative

analysis determines the increase from 5 to 12 years to be significant. Maximum TCV is reached at 14 years

old, followed by insignificant volume fluctuation to 37 years. Male aTCV develops in a similar pattern

with the only difference of increasing significantly from 5 to 11 years old. For both CCV and aCCV, an

inverse-U-shaped trajectory along with a single peak is detected. CCV rises significantly from 5 to 12 years

and experiences a significant drop from 15 to 16 years with a peak at 13 years old. The significant increase

of aCCV happens during [7,9], peaking at the age of 12, followed by a continuous volume loss afterward

in which [15,20] is the significantly decreasing age period. While for cerebellar white matter volumes, the

time-course is much simpler with a steady increase throughout the whole age range (5 to 37 years). The

increase is significant during [5,24] and the maximum value is reached at 27 years old.

For females, results from a similar derivative analysis are given in Figure 4 and the periods of significant

changes are also marked in the predicted developmental trajectories in Figure 2. The TICV-adjusted TCV is

not presented since age does not affect aTCV significantly. For female TCV, the predicted trajectory exhibits

2 inverse-U shapes connected together (i.e., increase-decrease-increase-decrease). The significant increase

happens from 6 to 10 years as well as from 25 to 26 years. The significant decrease also appears in 2 periods

which are [19,20] and [29,33]. The local maximum of the 2 inverse Us are the identified 2 peaks at age

12 and age 28 respectively. The growth of the female cerebellar cortex follows a similar trend as the total

cerebellum with 2 inverse Us connected together. The 2 significant increasing periods remain as [6,10] and

[25,26], and CCV decreases significantly on a longer period of [15,17]-[18,20]. The second significantly

decreasing period is still [29,33]. The peaks of CCV are identified as age 11 and 28 years old. However,

after adjusting for TICV, aCCV is predicted to show a sustained volume loss across the age range of 6 to

36 years (with the decrease in [8,27] being significant). For female cerebellar white matter volumes, the

trend of the time-courses resembles that of male CWMs, which increases steadily throughout the whole age

range (6 to 36 years). For the absolute CWM, the increase is significant during [6,15] and [22,24] and the

maximum value is reached at 28 years old. After TICV adjustment, a significant increase is detected in the

age period of 6 to 33 years and reaches its maximum at 36 years old.
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Figure 1: Estimated developmental trajectories for the cerebellar volumes in male subjects. Black solid
lines: mean volumes estimated by penalized cubic splines; Dashed bands: point-wise Bayesian confidence
intervals; Grey hollow dots: original data samples; Red triangles: peaks/maximum.
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Figure 2: Estimated developmental trajectories for the cerebellar volumes in female subjects.
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Figure 3: Derivative estimates of the developmental trajectories for the cerebellar volumes in male subjects.
Black solid lines: estimated rate of change by difference quotients; Dashed bands: point-wise Bayesian
confidence intervals; Grey horizontal line: derivative = 0; Derivative estimates marked in red (blue): of
which the confidence intervals do not contain 0, indicating a significantly increasing (decreasing) period of
the volume of interest on the corresponding age range.
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Figure 4: Derivative estimates of the developmental trajectories for the cerebellar volumes in female subjects.



19

The estimated mean volumetric trajectories of TICV and the analysis of its rate of change are performed

for TICV as well with the results shown in Figure 5 and 6. Male TICV increases significantly during 6 to

14 years old and experiences minimal change afterward with the maximum volume attained at age 27. The

trend of female TICV growth looks like 2 inverse-U connected together as for female TCV and CCV, but the

derivative analysis determines [8,11] as the only significantly increasing period and 2 periods of significant

decrease which is [15,19] and [29,33]. That’s why only 1 peak at age 13 is identified by the definition of a

peak mentioned in Section 3.3.

Based on the current data and the penalized cubic spline modeling, we spot an obvious gender dimor-

phism of how the cerebellum and its grey matter grow during the age range covered in this study (5-37 years).

For TCV, the connected inverse-U pattern in female subjects seems different from how male TCV grows:

Male TCV exhibits a single period of significant increase from childhood to adolescence without any other

significant volume change. For CCV, a similar difference exists between genders. It’s also interesting how

different the adjustment of TICV is in explaining the change of TCV and CCV in different gender groups. In

male subjects, the general patterns of the trend of TCV and CCV are not changed after adjusting for TICV.

While for female subjects, the age effect on TCV is eliminated after adjusting for TICV; and the age effect

on aCCV follows a steady decrease instead of a connected inverse-U before TICV adjustment. Although

further robustness check of the several ”bump”s for female TCV and CCV is required (provided later), we

can sense the gender dimorphism of cerebellar development.
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Figure 5: Estimated developmental trajectories for the total intracranial volume (TICV). Left: male subjects;
Right: female subjects.
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Figure 6: Derivative estimates of the developmental trajectories for total intracranial volume (TICV). Left:
male subjects; Right: female subjects.

4.2 Resampling Results: Robustness Check

The proportions of identifying 2 peaks, 1 peak and the maximum in 1000 resamples are shown in Table

4, which gives us a rough idea of whether the shapes of the developmental trajectories presented in Figure 1

and 2 are robust. Cerebellar white volumes are not included since the interest is mainly on situations more

complicated than a steady increase.

For Male TCV, aTCV and TICV, the trend of no peaks detected (i.e., only the maximum is reported)

is retained well with 0.951, 0.953 and 1 re-identification probabilities. 95% of the resamples do not yield a

peak for female aCCV, which supports the steady decreasing trend we have identified.

Compared with trends we haven’t identified any peaks, those with peak(s) identified are less robust,

especially when more than 1 peak is identified. The single inverse-U (i.e., 1 peak) shape of male CCV, male

aCCV, and female TICV is re-identified in 54.1%, 46.5%, and 64.9% of the 1000 resamples. The trend of a

connected inverse-U with 2 peaks for female TCV and CCV is only identified for 21.6% and 19.1% of the

time. Since peaks are closely related to the identified periods of significant increase and decrease, we also

check the detection of significantly changing periods as summarized in Table 5 (male) and Table 6 (female).

For male TCV, the significant increase on [5,12] is pretty robust with 87.8% of the resamples detecting

it as a significantly increasing period. The probability of detecting any significant increase of male TCV

within the limits of [5,13] even reaches 1. Half of the time, [5,11] is detected as a significantly increasing
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period of male aTCV and this probability rises to 0.772 when loosening the limits. In 44.3% and 24% of the

time, age 14 is identified as a peak/maximum for male TCV and aTCV. And the proportion of detecting any

peak/maximum at age 13, 14, or 15 is 87.2% and 77.2% for male TCV and aTCV respectively. Generally,

we conclude that the total cerebellum volume (with or without TICV adjustment) for males is highly likely

to experience a significant increase within the age range of 5 to 12 and reaches its peak at around 13-15

years old. Following a similar analysis, the cerebellar cortex volume of males seems to be significantly

increased in some age range within [5,13] but the significant decrease identified afterward is not very robust.

For the TICV-adjusted cerebellar cortex volume of males, it’s the significant increase before adolescence

that is not robust, but it’s likely to be decreasing significantly at some point between [14,21]. Generally, a

peak/maximum arises for male cerebellar cortex volume at around 11-13 years old. For the total intracranial

volume in males, a significant increase in some range within [5,15] is likely to appear with a stable level

afterward (no significant peak/maximum).

For female TCV, the first significantly increasing period [6,10] is more robust than the second one

identified [25,26]. While the significant decrease in [29,33] is more robust than that in [19,20] with a high

proportion of 97.4% resamples detecting a significant decrease within the limits of [28, 34]. For the 2 peaks

detected, the first one at 12 years old is more robust than the second (28 years). Therefore, we conclude that

the total cerebellum volume for females experiences a robust and significant increase between 6 and 11 years

old and a decrease within the range of [28,34], with a robust peak/maximum at around 12 years. For female

CCV, the only significant period of change with a re-identification probability higher than 0.5 is [29,33]

(loosening the limits gives a higher probability of 0.979). And the first peak of 11 years possesses higher

robustness compared with the second one (28 years). For female TICV, it exhibits a significant increase that

is fairly robust within the range of 7 to 12 years, and decreases significantly around ranges of [14,20] and

[28,34] that are pretty robust, with the peak/maximum attained robustly at 13 years old.
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Table 4: Stratified resampling results – shape of curve, stratified by sex.

Male Female

2 Peaks 1 Peak Maximum 2 Peaks 1 Peak Maximum

TCV

Absolute 0 0.049a 0.951 0.216 0.592 0.192

Adjusted 0 0.047 0.953

CCV

Absolute 0 0.541 0.459 0.191 0.350 0.459

Adjusted 0 0.465 0.535 0.014 0.036 0.950

TICV 0 0 1 0.029 0.649 0.322

a Proportion out of the 1000 stratified resamples.

Table 5: Stratified resampling results – significantly increasing or decreasing periods, male.

Increasing Decreasing Peaks/Maximum

Originala Fluctuateda Original Fluctuated Original Fluctuated

TCV

Absolute [5,12] (0.878) [5,13]b (1) \ \ 14 (0.443) 13-15c (0.872)

Adjusted [5,11] (0.545) [5,12]b (0.722) \ \ 14 (0.240) 13-15 (0.722)

CCV

Absolute [5,12] (0.384) [5,13]b (0.999) [15,16] (0.244) [14,17] (0.395) 13 (0.800) 12-14 (0.999)

Adjusted [7,9] (0.053) [6,10] (0.292) [15,20] (0.191) [14,21] (0.993) 12 (0.721) 11-13 (0.833)

TICV [6,14] (0.081) [5,15] (0.839) \ \ 27 (0.16) 26-28 (0.477)

a ”Original” refers to the significantly increasing(decreasing) period(s), or the peak(s)/maximum identified in the original data.

”Fluctuated” refers to the interval with both limits expanded 1 from the original interval (for the ”Increasing” and ”Decreasing”

columns), or expanded from the original value ∓ 1 (for the ”Peaks/Maximum” column). The fluctuated interval refers to de-

tecting any significantly changing period(s) within the limits of this interval, not that the fluctuated interval itself is detected as

a significantly changing period.
b The fluctuated lower limit remains 5 since the youngest male subject is of age 5.
c 13-15 represents that the peak or maximum is identified at age 13, 14, or 15.
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Table 6: Stratified resampling results – significantly increasing or decreasing periods, female.

Increasing Decreasing Peaks/Maximum

Originala Fluctuateda Original Fluctuated Original Fluctuated

TCV

Absolute
[6,10] (0.542)
[25,26] (0.157)

[6,11]b (0.794)
[24,27] (0.262)

[19,20] (0.137)
[29,33] (0.539)

[18,21] (0.305)
[28,34] (0.974)

12 (0.607)
28 (0.249)

11-13 (0.899)
27-29 (0.297)

CCV

Absolute
[6,10] (0.260)
[25,26] (0.130)

[6,11]b (0.493)
[24,27] (0.226)

[15,17] (0.144)
[18,20] (0.141)
[29,33](0.730)

[14,18] (0.305)
[17,21] (0.354)
[28,34](0.979)

11 (0.738)
28 (0.171)

10-12 (0.936)
27-29 (0.239)

Adjusted \ \ [8,27] (0.029) [7,28] (0.314) \ \

TICV [8,11] (0.157) [7,12] (0.674)
[15,19] (0.209)
[29,33] (0.479)

[14,20] (0.922)
[28,34] (0.956) 13 (0.939) 12-14 (0.996)

a ”Original” refers to the significantly increasing(decreasing) period(s), or the peak(s)/maximum identified in the original data.

”Fluctuated” refers to the interval with both limits expanded 1 from the original interval (for the ”Increasing” and ”Decreasing”

columns), or expanded from the original value∓ 1 (for the ”Peaks/Maximum” column). The fluctuated interval refers to detect-

ing any significantly changing period(s) within the limits of this interval, not that the fluctuated interval itself is detected as a

significantly changing period.
b The fluctuated lower limit remains 6 since the youngest female subject is of age 6.

5 Conclusions and Discussion

This paper adopts a flexible penalized cubic spline modeling framework to characterize the volumetric

developmental trajectories of the cerebellum, cerebellar cortex and cerebellar white matter in healthy people,

both with and without adjustment for total intracranial volume. The targeted cohort covers an age range of

5 to 37 years old across childhood, adolescence and adulthood. Compared with the traditional parametric

modeling framework, a penalized spline fits for a wide variety of trends with different degrees of freedom

under 1 general model, free of rigid parametric assumptions of the model form, which makes it a perfect tool

to reveal the underlying growth curve of cerebellar volumes. A derivative analysis is followed which uses

different quotients approximation to estimate the rate of change of the volume of interest. Variances of the

derivatives are derived and further hypothesis tests are proposed to detect age periods of significant volume

change. The downstream derivative analysis distinguishes our study, for it provides the significance of

the increases and decreases that have appeared in the predicted trajectories, which helps detect statistically
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significant age periods of volume change besides simply interpreting the general trend of growth out of

the estimated trajectories. Based on the significantly increasing and decreasing periods of age identified,

peak(s)/maximum of the volume of interest are given as well. Stratified resampling is performed to check

the robustness of the periods of significant change and the peak(s)/maximum.

To summarize, the total cerebellum volume of males is highly likely to experience a significant increase

within the age range of 5 to 12 and reaches its peak at around 13-15 years old with minimal change afterward.

The cerebellar cortex volume of males seems to be significantly increased in some age range within [5,13],

followed by a gradual decrease (i.e., an inverse-U shape) which is not very robust indicated by the resampling

result. For the TICV-adjusted cerebellar cortex volume of males, an inverse-U shape is followed as well

with a peak at 12 years old, and a significant and robust decrease within the range of [14,21]. For the total

intracranial volume in males, a significant increase in some range within [5,15] is likely to appear followed

by a stable level afterward (no significant peak/maximum). For the total cerebellum volume and cerebellar

cortex volume (both unadjusted) of females, the predicted trajectory is in the shape of 2 inverse-U connected

together (i.e., increase-decrease-increase-decrease). This kind of cerebellar developmental curve is rarely

seen in previous literature. For the absolute total cerebellum volume, the significant increase happens from

6 to 10 years old as well as from 25 to 26 years. The significant decrease also appears in 2 periods which are

[19,20] and [29,33]. The local maximum of the 2 inverse Us are the identified 2 peaks at age 12 and age 28

respectively. Resampling results indicate that the significant change in [6,10], [29,33] and the first peak of

12 years are relatively more robust. For the absolute cerebellar cortex volume, the 2 significant increasing

periods remain as [6,10] and [25,26], and it decreases significantly on a longer period of [15,17]-[18,20].

The second significantly decreasing period is still [29,33], which is the only robust period of change. The

identified peaks are reached at age 11 and 28 years old between which the peak at 11 years is more robust.

However, after adjusting for TICV, aCCV is predicted to show a sustained volume loss across the age range

of 6 to 36 years. The total intracranial volume in females exhibits a significant increase that is fairly robust

within the range of 7 to 12 years, and decreases significantly around robust ranges of [14,20] and [28,34],

with the peak/maximum attained robustly at 13 years old. The cerebellar white matter volumes for bothmales

and females act differently in the growth pattern with a steady increase throughout the age range covered.

Based on the current data, besides the difference of the mean level of cerebellar volumes (refer to Table

2), an obvious gender dimorphism of the shape of the developmental trajectories for the cerebellum and its

grey matter exist (refer to the trajectories shown in Figure 1 and 2 to see how different the predicted trends are
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for male and female subjects). This dimorphism coincides with past literature on sex differences in cerebellar

volume trajectories (Tiemeier et al., 2010; Bernard et al., 2015; Sussman et al., 2016).

Penalized cubic splines aided by derivative analysis for the studied cohort provide an accurate char-

acterization of the growth of cerebellar volumes, which can help understand normal development among

children, adolescents and adults. Therefore, an exciting future work can be using this accurate character-

ization as a reference for detecting atypical cerebellar developmental patterns among patients with certain

neurodevelopmental disorders. Several other future directions are also suggested by this paper. Since the

confidence intervals of the rate of change are given point-wisely, a possible improvement is to derive a si-

multaneous confidence interval for the first derivatives, which requires further theoretical inspection. Also

if it’s possible to acquire measurements of other covariates besides age such as nutrient intake, a generalized

additive model (Hastie and Tibshirani, 1987) can be considered to model the effects from various factors

on cerebellar volumetric development. One limitation of the study is related to merging the data from the

HCP Development and HCP Young Adult studies. The age range covered in the HCP Development study

is 5 to 21 years old and 22 to 37 years old for the HCP Young Adult study. It happens that the saddle points

of the connected inverse-Us from female TCV and female CCV locate around the age (21 and 22 years) at

which the 2 HCP studies overlap. Therefore, it’s possible that merging the 2 large-scale studies partially

explains the saddles of the connected inverse-Us from the developmental trajectories of female TCV and

female CCV.
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Figure A.1: Age distribution in males
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Figure A.3: Estimated developmental trajectories for the cerebellar volumes in male subjects. Black solid
lines: mean volumes estimated by penalized cubic splines; Light-blue bands: point-wise Bayesian confi-
dence intervals; Black hollow dots: original data samples.
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Figure A.4: Estimated developmental trajectories for the cerebellar volumes in female subjects.
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Figure A.5: Estimated developmental trajectories for the total intracranial volume (TICV). Left: male sub-
jects; Right: female subjects.
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