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Abstract

Cell type identification in single-cell genomics and its applications
By Wenjing Ma

Advances in techniques for measuring genomics in cell-level resolution provide great
opportunities to uncover cellular heterogeneity in genomic features of interest at the
level of individual cells. Initiated by the introduction of single-cell RNA-sequencing
(scRNA-seq), which measure transcriptomics information, single-cell techniques have
been expanded to encompass other epigenomic modalities as well. Among all scientific
goals in single-cell genomics studies, precise cell type identification (celltyping) is a
fundamental and crucial step in analyzing single-cell genomics data. Supervised cell
typing methods have become increasingly popular due to their superior accuracy,
robustness, and efficiency. In our dissertation, we primarily focus on the development
and application of supervised cell typing methods.

The dissertation starts with evaluating key factors for supervised celltyping meth-
ods developed for scRNA-seq data. After performing extensive real data analyses, we
suggest combining all individuals from available datasets to construct the reference
dataset and using the multi-layer perceptron (MLP) as the classifier, along with F-
test as the feature selection method. This benchmark study not only offers valuable
insights and suggestions for method developers but also lays the groundwork for our
subsequent research endeavors.

We then developed a novel computational method with open-source software called
Cellcano, which is specifically designed for the single-cell technique that profiles chro-
matin accessibility (scATAC-seq). Cellcano is based on a two-round supervised learn-
ing algorithm and provides significantly improved accuracy, robustness, and compu-
tational efficiency compared to existing tools. We have also explored the possibilities
of using scRNA-seq data as references to perform a supervised manner of celltyping
and data integration for scATAC-seq.

Upon accurate identification of distinct cell types, specific markers unique to each
cell type can be extracted to enable diverse applications and downstream analyses.
Based on cell-type-specific marker genes, we developed a method named LRcell to
identify cellular activities associated with psychiatric disorders.

The computational and statistical methods employed in this dissertation are de-
signed to provide a comprehensive understanding of cell-type-specificity. We antici-
pate that this research will contribute to the understanding of cellular functions in
biological mechanisms and disease progression, potentially providing valuable insights
for biomedical researchers.
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Chapter 1

Introduction

1.1 Single-cell genomics

Recent years have witnessed the rapid growth of techniques in measuring genomics

in a single-cell resolution, which has greatly enhanced the understanding of biologi-

cal mechanisms in complex tissues [64] [29]. The advent of single-cell genomics was

initiated by the introduction of single-cell RNA-sequencing (scRNA-seq), which en-

ables the measurement of transcriptomic information from individual cells. To gain

a more holistic understanding of gene regulation and cellular function, this approach

has been expanded to encompass other epigenomic modalities, including chromatin

accessibility [14], DNA methylation [71], histone modifications [9], and more. This

broader application of single-cell techniques has provided researchers with a compre-

hensive perspective on the molecular landscape of individual cells, shedding light on

their regulatory mechanisms and functional diversity. Unlike bulk experiments that

measure the average genomics profile from a collection of cells, single-cell genomics

offers a higher-resolution approach by profiling genomic features of interest for each

individual cell. This provides richer and more detailed information that cannot be ob-

tained from bulk data alone. Single-cell genomics allows for studying the composition
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of cell types in complex tissues, uncovering cell-to-cell heterogeneity, and exploring

the dynamics of biological processes such as development, differentiation, and disease

progression. The ability to capture data at the level of individual cells opens up new

possibilities for addressing important research questions and gaining deeper insights

into complex biological systems.

Single-cell genomics studies aim to achieve several scientific goals. The most fun-

damental and critical one is to unravel the cellular composition of complex tissues,

which involves identifying the various cell types and subtypes (referred to as ”cell-

typing” hereafter) present in a tissue sample, as well as determining their relative

proportions. Understanding the cellular composition of tissues can have significant

implications in biological and clinical practices. For instance, in the context of tumor

research, analyzing the composition of tumor-infiltrating immune cells can provide

valuable insights into anti-tumor immune responses and inform treatment strategies

[59]. After revealing cell types, cell-type-specific genomic features can be obtained

and are also of great interest as they enhance the understanding of cell signatures

[79].

1.2 Supervised celltyping in single-cell genomics

There are two commonly used approaches for performing celltyping in single-cell ge-

nomics studies: experimental procedures and computational methods. Experimental

procedures typically involve the use of fluorescence-activated cell sorting (FACS),

which targets specific antigens on the cell surface to sort cells into different popu-

lations. While FACS can sort multiple cell populations simultaneously, it can be

expensive and requires sophisticated instruments and careful experimental design,

making it impractical for large-scale studies [26].

On the other hand, computational methods offer a more practical and efficient
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approach to celltyping. Traditional approaches for celltyping typically rely on unsu-

pervised clustering methods [49] [35]. These methods group cells into clusters based

on their molecular profiles, such as gene expression or epigenetic marks. Subsequently,

domain knowledge, such as marker genes or cell-type-specific chromatin openness, is

employed to iteratively refine and curate the clusters and their labels. However, this

whole process can be labor-intensive and time-consuming, requiring manual curation

and high expertise to accurately assign cell types. Moreover, the unsupervised meth-

ods often do not scale up well computationally with cell numbers [51]. Given the

significant efforts invested in annotating single-cell genomics data, a natural thought

would be whether we can leverage the high-quality and well-annotated datasets to

better perform celltyping. This motivates the development of supervised celltyping

methods, making it a highly active and evolving research area in recent years [106]

[86]. These methods first construct a classifier from a reference dataset with known

cell types. Then, for a given target dataset, they assign cell types for every single cell

based on the trained classifier. Additionally, there also exist a few “semi-supervised”

methods [48] [20], where they still perform unsupervised clustering but obtain initial

values of the parameters from a reference dataset.

Supervised celltyping methods offer several advantages. Firstly, they often yield

superior performance compared to unsupervised methods. Secondly, they are not

influenced by the sample size (number of cells) of the target data, as they predict cell

types for each cell individually. In contrast, unsupervised clustering methods may

require larger datasets and their performance may be affected by the number of cells.

Additionally, supervised methods are more effective in handling data with imbalanced

cell type proportions compared to unsupervised methods, which can struggle with

accuracy when dealing with highly imbalanced cluster sizes [62].

Despite the advantages of supervised celltyping in single-cell genomics, there are

also challenges to overcome. Supervised methods heavily rely on various factors, such
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as the selection of predictive features, the construction of the prediction model, and

the choice of the reference dataset. Additionally, when performing cross-modality

prediction, the feature space may not be unified, as different single-cell genomics pro-

files may have distinct data distributions. For example, scATAC-seq data can be

summarized into genome-wide fixed-size bins, peaks representing accessible regions,

or genes [19]. Even when summarizing scATAC-seq data into a common gene-level

feature space, the data distribution may differ among different single-cell genomics

profiles. These challenges have motivated the work in this dissertation, which fo-

cuses on evaluating the factors involved in supervised celltyping for scRNA-seq and

developing supervised celltyping methods for scATAC-seq.

1.3 Applications after accurate celltyping

Once accurate cell typing has been achieved, it allows for obtaining cell-type-specific

information, which in turn enables downstream analyses to be performed. Several

methods have been developed to extract cell-type-specific genomic features [89] [91]

and investigate cell dynamics [17][100]. The valuable cell-type-specific information

can be extensively utilized in tasks such as single-cell genomics data integration and

deciphering bulk experiments.

On one hand, current approaches for integrating single-cell genomics data involve

projecting the datasets into a shared embedding space and then performing cell label

transfer to integrate the cell type information across different datasets [70] [40] [63].

However, without the incorporation of cell-type-specificity information as guidance,

these methods may inadvertently mix cell types, leading to inaccurate downstream

analysis results. On the other hand, cell-type-specificity can also be utilized to uncover

previously unseen information from bulk experiments. For instance, deconvolution,

which involves inferring the cell type composition from bulk experiments using a cell-
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type-specific marker gene panel, can provide insights into cell population differences

and potential therapeutic targets for disease treatment [6]. This dissertation employs

cell-type-specificity to aid in the integration of multiple scRNA-seq and scATAC-seq

datasets. In addition, we utilize it to uncover the potential cellular activity associated

with differentially expressed genes in bulk studies.

1.4 Outline

This dissertation presents computational techniques for identifying and exploiting

cell-type-specificity. Chapters 2 and 3 concentrate on evaluating and developing su-

pervised celltyping approaches for single-cell genomics data. In Chapter 2, we assess

important components of supervised celltyping in scRNA-seq, which serves as the

groundwork for our novel supervised celltyping method, Cellcano, presented in Chap-

ter 3. Cellcano is specifically designed for scATAC-seq data and utilizes a two-round

supervised learning algorithm, providing superior accuracy, robustness, and computa-

tional efficiency in comparison to existing tools. In Chapter 4, we focus on applications

of utilizing cell-type-specificity. In the first half, we describe our methodology named

CellAMA for integrating multiple single-cell genomics datasets. Then, in the second

half, we introduce our method named LRcell, which uses cell-type-specific marker

genes to detect potential cellular activities in bulk differential expression studies. Fi-

nally, in the last chapter, we discuss current challenges and future research plans in

celltyping and its applications.
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Chapter 2

Evaluating key factors of

supervised celltyping for

scRNA-seq data

2.1 Introduction

As outlined in the Introduction, celltyping is a crucial and fundamental component

of single-cell genomics analysis and it has been established that supervised celltyping

methods outperform unsupervised approaches in terms of accuracy, robustness, and

efficiency. Nevertheless, several challenges persist in identifying the key factors neces-

sary to achieve superior prediction performance in supervised celltyping for scRNA-

seq. Important questions include the selection of predictive features, the construction

of the prediction model, and the choice of the reference dataset. Investigating these

issues is crucial for researchers utilizing supervised methods for cell type prediction in

practice. While existing publications often showcase their results by selecting a sin-

gle dataset [1] [45] or combining multiple datasets after removing batch effects [101],

these approaches have limitations. A single dataset may introduce bias and with the
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increasing number of scRNA-seq datasets being generated, there is an urgent need

for proper guidance on how to maximize the utility of existing datasets to construct

reference datasets.

In this work, we perform extensive and comprehensive real data analyses to sys-

tematically evaluate the strategies in supervised celltyping in terms of feature selec-

tion, prediction model, and choice of reference datasets [73]. We have also discussed

the impact of data preprocessing including batch effect removal and data imputa-

tion. Although there are a few benchmark papers for comparing the performances

of supervised celltyping methods [1] [45] [101] [86], they only compare “off-the-shelf”

available tools, while we take a step further to evaluate the combinations of different

strategies. More importantly, we evaluate the impact of the reference data and poten-

tial strategies for processing the reference data, which have never been investigated

before to the best of our knowledge. Based on our analyses, we provide a guideline

and rule of thumb for using the supervised celltyping methods.

2.2 Factors under evaluation

2.2.1 The choice of prediction model

We include the following nine supervised celltyping methods in the comparison, which

cover a wide range of different strategies for supervised celltyping:

• Three off-the-shelf supervised learning methods: random forest [87], SVM with

linear kernel, and SVM with radial basis function kernel [87]

• Two supervised celltyping methods specifically designed for scRNA-seq data

based on the correlation between target data and reference data: scmap [50]

and CHETAH [27]
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• Two supervised deep learning methods: multi-layer perceptron (MLP) [92] and

graph-embedded deep neural network (GEDFN) [52]

• Two semi-supervised deep learning method: ItClust [43] based on transfer learn-

ing and MARS with meta-learning concepts [12]

There are several other supervised celltyping methods available for scRNA-seq.

For example, scSorter [37] borrows information from lowly expressed marker genes to

assign cells; scPred [2] adopts a principal component analysis (PCA)-based feature

selection; SingleCellNet [108] uses top-pair transformation on gene space and selects

informative paired genes as features; CellAssign [120] builds a probabilistic model

with some prior knowledge of cell markers, etc. But according to a recent comparison

[1], SVM with rejection, scmap, and CHEAH are among the best performers, so we

decide not to include more such methods. GEDFN is a method designed for predicting

phenotype from bulk expression but can be directly applied to scRNA-seq celltyping.

We include it because we want to understand whether incorporating protein-protein

interaction network information can improve the results. ItClust is a semi-supervised

method that uses the reference data to obtain initial values for unsupervised cluster-

ing in target data. MARS uses a meta-learning concept to construct cell-type-specific

landmarks by jointly embedding both annotated and unannotated data without re-

moving the batch effects and then assigning cell types based on the learned embedding

space. We want to evaluate the performances of these semi-supervised methods under

different scenarios.

2.2.2 Choice of predictive features

It is known that feature selection plays an important role in many high-throughput

data analyses, including scRNA-seq cell clustering and supervised celltyping. Since

most genes are not cell-type-specific, including them in the prediction model will dilute
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the signal and impair the prediction accuracy. Most celltyping methods have a feature

selection step. When one evaluates the performance of a method, it is unclear whether

the performance gain/loss comes from the feature selection or the method itself. We

want to merely investigate the impact of feature selection, so we decouple this step

from the prediction. We include two unsupervised feature selection methods: one is

Seurat V2.0 [15], which is based on marginal gene expression and variation, and the

other is FEAST [103], which is based on unsupervised consensus clustering followed

by F-test for ranking features. Briefly speaking, FEAST first performs unsupervised

consensus clustering (similar to that in SC3 [49]) and then performs F-test on the

clusters to calculate the feature significance and rank features. We also include one

supervised method using F-test to select features from the reference dataset where

the cell types are known.

Another aspect of the problem is whether to select features from the reference or

target datasets. It is obviously more desirable to select features from the reference

data since one only needs to perform feature selection and prediction model construc-

tion once for each reference dataset. On the other hand, selecting features from the

target data might be able to capture the target data characteristics more accurately

and improve the prediction accuracy. In fact, ItClust suggests selecting features from

the target data. In such a case, re-training the prediction model for each target data

might be worth the extra computational burden. Thus, we evaluate the Seurat and

FEAST feature selection in both reference and target datasets. Note that we have

investigated the impact of feature number and decided to pick the top 1000 features

for downstream analysis (Appendix A Section 4) in all feature selection procedures.

As a baseline, we also include results from not selecting features at all. Altogether,

we test 6 feature selection procedures.
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2.2.3 Datasets

All datasets used in this study are listed in Appendix Tables A.1, A.2, and A.3.

Briefly, we include multiple datasets from human peripheral blood mononuclear cells

(PBMCs), human pancreas, and mouse brain. For human PBMCs datasets, we in-

clude studies from lupus patients [47] using 10X Chromium (denoted as “Human

PBMCs lupus”) and frozen (PBMCs1) and fresh (PBMCs2) samples [28] processed

by three protocols including 10X Chromium, Smart-seq2, and CEL-seq2. For human

pancreas datasets, we include three human pancreas datasets [81] [97] [116]. In mouse

brains, the cell type composition is more complex and has variations among the brain

regions. To simplify, we focus on the frontal cortex and hippocampus regions from

adult mouse whole brain study [96] using Drop-seq (denoted as “Mouse brain FC” and

“Mouse brain HC”), prefrontal cortex region from adolescence and addiction study

[10] using 10X Chromium (denoted as “Mouse brain pFC”), cortex samples from [28]

processed by DroNc-seq (denoted as “Mouse brain cortex”), and samples with frontal

cortex regions extracted from [117] processed by 10X Chromium (denoted as “Mouse

brain Allen”). The cell types from the above datasets are annotated in the literature

by unsupervised clustering and known marker gene expression. To ascertain the com-

putationally derived annotations do not bias toward certain computational prediction

methods, we also include human PBMCs datasets with 10 cell subpopulations from

a healthy donor, where the cell types were identified by FACS sorting [123].

The chosen datasets enable us to investigate different scenarios in terms of refer-

ence data selection. We conduct many tests with different scenarios for the reference

and target data discrepancies, including the following:

• Individual difference: when reference and target data are from different indi-

viduals. In this case, the discrepancy only comes from biological variations.

• Condition difference: when reference and target data are from different condi-
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tions, including protocol difference (10X Chromium vs. Smart-Seq2), sample

collection difference (e.g., frozen and fresh tissues), lab effect (data generated by

different laboratories), biological difference (e.g., different brain regions), and

clinical difference (e.g., different disease status). These tests cover a wide range

of biological, clinical, and technical discrepancies between reference and target

datasets.

In addition to the discrepancies between reference and target, we also investigate

the strategy of using a “pooled” reference: to combine data from many individu-

als with the same or different conditions together. Such a strategy can increase the

reference data size and potentially average out the individual or condition variation

(“pooling effect”). In order to distinguish whether the performance gain/loss comes

from the increased reference data size or the pooling effect, we also perform down-

sampling on the reference data to make a fair comparison. Meanwhile, we are also

curious about whether purifying the reference dataset can improve prediction perfor-

mance. We adopt two strategies to remove “noisy cells” (cells that are not tightly

clustered) in the reference and investigate the prediction performance with the puri-

fied reference.

2.2.4 Evaluation metrics

We use three metrics to evaluate the prediction results and benchmark the computa-

tional performance of all methods:

• Accuracy (Acc), which is the proportion of correct cell type assignments among

all cells, directly evaluates the overall final celltyping accuracy.

• Adjusted Rand Index (ARI), which evaluates the clustering similarity between

ground truth and prediction, without considering the accuracy of the assignment

of cell types for clusters.
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• Macro F1, which is a harmonized factor weighing precision and recall rate while

considering all classes having equal contributions. It is a suitable metric when

the cell type proportions are highly imbalanced.

More detailed information can be found in our published paper if interested [73].

2.3 Results

We evaluate all the combinations of the aforementioned factors in the supervised cell-

typing: different prediction methods, feature selection methods, and choices of refer-

ence data. Overall, we obtain results for 29 predictions, 6 feature selection strategies,

9 prediction methods, and 4 metrics (including running time as an additional metric),

which produce a total of over 5000 results.

2.3.1 F-test on reference datasets along with MLP achieves

the best overall performance

We first evaluate the overall impact of different feature selection and prediction meth-

ods across all experiments. Since each experiment has a different baseline perfor-

mance, i.e., the prediction accuracies are higher in some experiments than others, we

remove such baselines to compute the performance gains or losses merely induced by

feature selection and prediction methods. By doing so, the results from all experi-

ments can be summarized altogether. More details about the procedure are provided

in Appendix A Section 1.

We summarize the performance gains/losses of all combinations of feature selec-

tion methods and classifiers in Figure 2.1. The heatmap shows the results for the

combinations, and the boxplots on the sides show the marginal gains/losses from

each feature selection and classifier alone. The heatmaps are sorted by the average

values of the rows and the columns so that the entry in the top left corner represents
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the best overall performer. For example, the vertical boxplots in Figure 2.1A show

that the median gain in the accuracy of using MLP as the predictor is 0.053, and

the horizontal boxplots in Figure 2.1A show that the median gain for using F-test

on reference data to selection feature is 0.013. The heatmap shows that combining

F-test on reference and MLP, which is the best combination, provides a gain of the

accuracy of 0.09. Overall, we observe that using F-test on reference data as a feature

selection method is the best, whereas using Seurat on reference data, Seurat on target

data, and no feature selection are among the worst performers. The results also reveal

that FEAST produces better feature selection than Seurat not only in unsupervised

clustering tasks [103] but also in supervised celltyping. In terms of classifiers, MLP

is the best overall, but SVM with both linear and RBF kernels provides comparable

results. These results are consistent with the ones reported in [1], where the SVM

with rejection has the best performance. These conclusions in general hold for other

metrics (ARI and Macro F1), only that the SVM with linear kernel has a slight edge

over MLP in Macro F1. Among the two semi-supervised methods, ItClust performs

reasonably well and ranks 3rd when using ARI as measurement, only slightly be-

hind MLP and SVM. MARS has poor performances based on our tests: it ranks last

on average accuracy and ARI, and the results are highly variable, indicating poor

robustness.

2.3.2 Impact of data preprocessing

To alleviate the noises in scRNA-seq data, a number of methods have been developed

for scRNA-seq data preprocessing, including batch effect removal and missing data

imputation. We perform a series of analyses to evaluate whether the preprocessing

helps supervised cell type identification.

We first evaluate the impact of missing data imputation. In a recent study [42],

several imputation methods were evaluated to assess the accuracy and the usability
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Figure 2.1: Prediction performance gains/losses with different combinations of classi-
fiers and feature selection strategies on all experiments. Accuracy. B ARI. C Macro
F1. The performance gains/losses for all combinations are illustrated by the heatmap.
The heatmaps are sorted by the average values of the rows and the columns, and
thus, the entry at the top left corner represents the most performance gain combina-
tion. The boxplots on the right and bottom sides illustrate the marginal performance
gains/losses from classifiers and feature selection methods. The red dotted lines in
the boxplots are reference lines at 0 (no gain nor loss).

of downstream analysis. We choose three outperforming methods MAGIC (smooth-

based) [113], SAVER (model-based) [44], and scVI (data reconstruction based on deep

learning) [68] to impute both reference and target datasets and then train a classifier

for cell type prediction. Since we observe that the MLP classifier with F-test feature

selection produces the best prediction, we only evaluate the impact of imputation on

this combination. Our results (Appendix Figure A.1) indicate that no imputation

method steadily outperforms the one without imputation under all scenarios. Thus,

we believe that imputation may not be a necessary preprocessing step for supervised

celltyping.

We next evaluate the impact of batch effect removal. There are several methods

specifically designed for scRNA-seq to remove the batch effect, and they are com-

prehensively compared in [109]. Here, we apply two popular batch effect removal

methods: Harmony [53] and fastMNN [38] on the data, and again compare the pre-

diction performance to the original ones without removal. The same as in imputation,
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we only perform such comparison on the MLP with F-test combination. Our results

(Appendix Figure A.2) show that there are no significant differences with or without

removing the batch effect. In fact, the ones without batch effect removal have slightly

better performances in most cases. Therefore, we conclude that batch effect does not

affect the prediction performance and the correction may not be required, and we

directly concatenate the datasets to perform the following analyses.

2.3.3 Condition effect

Next, we want to know how the difference between the reference and target datasets

will affect the prediction. As stated in the previous “Datasets” section, we categorize

the discrepancies between the reference and target datasets into individual effects and

condition effects. In our definition, the individual effect describes individuals from

the same dataset under the same technical and clinical conditions, so the difference

between reference and target data only comes from biological variations. The con-

dition effect is broader, including technical artifacts such as batch effect as well as

other biological and clinical condition differences. Thus, the impact of the individual

effect should be considerably smaller than the condition effect. In our design, we

use individual effects as a baseline and benchmark different types of condition effects

toward it. Within this section, we only present the results from using F-test on the

reference dataset for feature selection and using MLP as the classifier, since they are

proven to have the best results in previous sections.

Our analysis and results from mouse brain and human PBMCs datasets reveal

several important points. First, the individual effects (caused by biological variance)

are small, evidenced by the best performance from using subjects from the same

dataset under the same condition as a reference. Secondly, the biological effect is

also not significant for predicting major cell types, e.g., using the hippocampus from

the same dataset as a reference can accurately predict major cell types in the frontal
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cortex. This indicates the similarities in the gene expression profiles of major cell

types between the frontal cortex and hippocampus and that the major cell type dif-

ferences are much stronger than the brain region differences. However, despite the

individual effect and the region effect both achieving high performances, these two

cases are impractical in real data scenarios since most of the prediction will hap-

pen across datasets in practice. When predicting across datasets, the performance

becomes worse. This is reasonable since the dataset effect contains both technical

and biological/clinical effects. However, our results indicate that the performance

reduction in predicting major cell types across datasets is not severe: the accuracy

only drops by less than 0.02 in both datasets. When reference and target data have

significant clinical differences, there will be some but not dramatic performance re-

ductions. In general, we conclude that the dataset difference, when there is no strong

clinical difference, does not have a significant impact on predicting major cell types.

With clinical differences, one should expect some performance reductions. However,

in those cases when investigators cannot find the reference data with a matching clin-

ical condition, using data from normal control as the reference is not a terribly bad

idea.

2.3.4 Pooling references improves the prediction results

After obtaining a better understanding of how the discrepancies between reference

and target datasets affect the prediction, a natural thought is to combine reference

datasets to reduce bias. To validate this, we perform reference dataset “pooling” to

investigate whether it can improve the prediction. We fix the target dataset as one

subject and pool data from multiple individuals and different conditions to create a

larger reference for prediction. In order to understand whether the prediction im-

provement is from the increased reference data size or data pooling effect, we also

down-sample the pooled reference to eliminate the reference size effect. We choose the
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results from individual effects as baselines in these comparisons. Reference pooling

is conducted under both intra-dataset and inter-dataset scenarios. We choose indi-

viduals or subjects from “Human PBMCs lupus,” “Mouse brain FC” with major cell

types, and “Mouse brain FC” with sub-cell types to perform intra-dataset prediction.

For inter-dataset prediction, we use mice from “Mouse brain FC” to predict mice

in “Mouse brain pFC.” More details about the dataset selection and processing are

provided in Appendix A Section 2.

Individual effect, pooling effect, and downsampled pooling effect

As shown in Figure 2.2A–C, under intra-dataset setting, combining individuals to-

gether (black line) achieves significantly higher overall accuracy compared to the other

two strategies in all datasets. The same trends can be observed in ARI and Macro

F1 (Appendix Figure A.3). As for the down-sampling strategy, we can also observe a

slight increase in the mean performance with lower variance, indicating that the ben-

efit of pooling is not only from the increased reference data size. Another finding from

the figures is the significant increase in performance when predicting sub-cell types

in the mouse brain dataset (Figure 2.2C). This indicates that, for a large number of

sub-cell types, an increased sample size is particularly beneficial. Figure 2.2D and

Appendix Figure A.3D show the comparison under the inter-dataset setting, where

“pooling” brings slightly better performances, similar to that in the intra-dataset

experiments.

Pooling reference from different conditions can improve the prediction

results

Next, we wonder how “pooling” subjects with different conditions will impact the

prediction performance. We combine subjects from different brain regions and differ-

ent datasets in mouse brain data, as well as individuals from different batches and
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(A) (B)

(D)(C)

Figure 2.2: Impact of “pooling” on individual effect under intra-dataset and inter-
dataset scenarios. Accuracy comparisons among individual effect (red box), down-
sampling strategy (blue box), and “pooling” all individuals (black line for intra-
dataset, black box for inter-dataset). A “Human PBMCs lupus”: 8 lupus patients
from batch 1 under the same condition. B “Mouse brain FC” major cell types: 7
mouse subjects from the same frontal cortex region under the same condition. C
“Mouse brain FC” sub-cell types: 7 mouse subjects from the same frontal cortex
region under the same condition. Down-sample boxes in A–C each contains 30 results.
D “Mouse brain FC” to predict “Mouse brain pFC” on major cell types: use 7
mouse subjects respectively from “Mouse brain FC” as a reference to predict 6 mouse
subjects from “Mouse brain pFC”. Individual effect box contains 42 results; down-
sample box contains 60 results, and “pooling” box contains 6 results.
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clinical conditions in human PBMCs. For the dataset effect, we first try to combine

individuals in each dataset respectively and then merge the two datasets together to

predict.

All accuracy and Macro F1 metrics are improved by combining individuals to-

gether (Table 2.1), although some experiments have slight drops in ARI. These re-

sults indicate that by “pooling” individuals together, some noises caused by individual

variations can be averaged out. We also find when combining “Mouse brain pFC”

and “Mouse brain cortex” to predict the target in “Mouse brain FC,” we can achieve

a better result in Macro F1 than combining individuals from “Mouse brain pFC” and

“Mouse brain cortex,” respectively. We further visualize the cell type annotations

after combining the “Mouse brain pFC” and “Mouse brain cortex” using tSNE [112].

We observe the two cortex datasets actually do not blend well; instead, a cluster of

interneurons and neurons from “Mouse brain cortex” is mixed together (Appendix

Figure A.4). Even though there is a clear separation between datasets as shown in

these tSNE plots, our results show that combining datasets can still improve the

prediction performance.

After showing that pooling reference data can improve prediction performance, we

wonder if there is a saturation point when we keep enlarging the reference datasets.

We conduct three analyses in mouse brain data to investigate the pooling saturation

point on three perspectives: (1) predict major cell type within the same dataset,

(2) predict major cell type across different datasets, and (3) predict sub-cell type

within the same dataset. The saturation analyses are done in two ways. We first

combine cells from different numbers of individuals as a reference. Furthermore, we

pool the cells from all individuals and randomly sample different numbers of cells

as a reference. The second averages out the individual effects and only investigates

whether there will be saturation with more cells in the reference. More details about

datasets used in this analysis are provided in Appendix A Section 2, and analysis
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Table 2.1: Before and after “pooling”

Before
(mean
Acc)

After
(Acc)

Before
(mean
ARI)

After
(ARI)

Before
(mean
Macro
F1)

After
(Macro
F1)

Mouse brain region effect 0.993 0.996 0.995 0.997 0.915 0.959
Mouse brain dataset effect (pFC) 0.971 0.988 0.947 0.967 0.892 0.904
Mouse brain dataset effect (cor-
tex)

0.977 0.982 0.955 0.965 0.918 0.927

Mouse brain dataset effect (com-
bine pFC and cortex)

- 0.986 - 0.963 - 0.933

Human PBMC lupus batch effect 0.872 0.893 0.779 0.789 0.717 0.790
Human PBMC lupus clinical dif-
ference

0.838 0.850 0.724 0.716 0.673 0.701

Human PBMC lupus (combine
batch effect and clinical differ-
ence)

- 0.896 - 0.782 - 0.790

Performance comparisons between before and after “pooling” individuals with
condition effect. “–” indicates the data is unavailable. The bold data indicates a
performance improvement.

details are provided in Appendix A Section 3.

We notice that for major cell type prediction (Appendix Figure A.5A, B), perfor-

mance saturation clearly exists with larger reference data. For sub-cell type prediction

(Appendix Figure A.5C), we do not observe a clear saturation point, and it is likely

that the performance can further improve with a larger reference. The low signal-to-

noise ratio among the subtypes requires an even larger reference for us to observe the

saturation. Another finding from this analysis is that pooling individuals can poten-

tially lead to faster saturation. This is very pronounced in sub-cell type prediction

(Appendix Figure A.5B). The right panel shows that the performance is saturated

from the start (3000 cells) when cells are sampled from a pool of individuals. When

adding each individual at a time (left panel), it requires 4 individuals (around 40,000

cells) to reach saturation. These results are consistent with our findings that pooling

individuals can achieve better prediction performance.
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2.3.5 Purifying references does not improve the prediction

results

Furthermore, we investigate whether purifying the reference dataset can achieve bet-

ter predictions. Intuitively, cells on the edge of the cluster can be easily misclas-

sified, and including them in the reference can contaminate the signals. We adopt

two strategies for purifying the reference data: (1) Euclidean distance-based and (2)

probability-based. The distance-based purification first computes the centroids for

each cell cluster and then removes the 10% of cells with the largest distance to the

centroid. For probability-based purification, we first adopt an SVM classifier with

RBF kernel to fit the reference data and then generate probability scores of each cell

belonging to cell types. For each cell type, 10% of cells with the lowest probability

scores are removed. We conduct both purifica- tions in four designed analyses. More

details can be found in Appendix A Section 2.

We first visualize those cells removed from the reference dataset (Appendix Fig-

ure A.6) and find that distance-based purification evenly removes cells on the edge of

the clusters while probability-based purification removes more cells lying in between

different clusters. Table 2.2 presents the overall accuracies of the four comparisons

before and after purification. The results vary in different analyses. In predicting

mouse brain sub-cell types, both purifications only lead to slightly improved perfor-

mances. The reason might be that the purification removes wrongly labeled cells

and increases the separations among cell clusters. Overall, cell purification does not

improve the performance when predicting major cell types because the outliers of cell

clusters do not have a large impact on assigning labels. However, when there exist

sub-cell types, outliers among cell clusters act as noises, and by removing those, the

prediction can be slightly improved.
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Table 2.2: Before and after “purification”

Original
performance

After distance-
based purification

After probability-
based purification

Human PBMC lupus: one in-
dividual predicts another in-
dividual

0.797 0.748 0.799

Human PBMC lupus: one
batch predicts another batch

0.924 0.920 0.921

Human PBMC lupus: one
status predicts another status

0.931 0.932 0.934

Mouse brain FC: one subject
predicts another subject (sub-
cell types)

0.783 0.813 0.802

Performance comparisons before and after purifications on reference dataset. Here,
we only demonstrate the performance of overall accuracy. There are in total four
experiments: (1) “Human PBMC lupus” one individual predicts another individual:
uses one lupus patient from batch 1 to predict another from the same batch under
the same condition; (2) “Human PBMC lupus” one batch predicts another batch:
uses samples from batch 1 to predict samples from batch 2 under the same
condition; (3) “Human PBMC lupus” one status predicts another status: uses lupus
samples from batch 2 to predict IFN-β stimulated samples from the same batch;
and (4) “Mouse brain FC” one subject predicts another subject: uses one mouse
subject to predict sub-cell types of another subject from the same region and the
same dataset. The bold data indicates a performance improvement
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2.3.6 Computational performance
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Figure 2.3: Computation performance of each method. The horizontal dotted red
line denotes 1 and indicates a linear relation. The star denotes the p-value of the
estimates (**p-value < 0.01; ***p-value < 0.001). A Regression coefficients of each
method describe the relationship between training time and reference data size. As
shown in the figure, the training time of SVM and the random forest grows faster than
the increase of reference data size, and all others are slower. Among all classifiers,
the coefficient estimation of GEDFN is not significant. B Regression coefficients of
each method describe the relationship between training time and the number of cell
types. The training time of GEDFN and SVM with linear kernel grows faster than
the increase in the number of cell types. Coefficient estimations of scmap and MARS
are not significant.

Besides prediction performances, we also keep records of the training time for

each experiment. The training time can be affected by both reference size and the

number of cell types, which are moderately positively correlated with the Pearson

correlation coefficient being 0.44. To fully evaluate how training time is affected

by each classifier, we construct a linear regression model using the log-transformed

training time t as a response and the log-transformed reference size s along with

the log-transformed number of cell types c as explanatory variables. This regression

model can be further denoted as log(t) ∼ β1log(s) + β2log(c). We estimate β for

each classifier. If β is greater than 1, the training time grows faster than linear and
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vice versa. Regression coefficients are summarized in Figure 2.3. It shows that RF

and SVM with both kernels have the worst computational performances in terms of

training data size, and GEDFN and SVM (linear kernel) are the worst in terms of

the number of cell types. Overall, ItClust and MLP show the best scalability with

the coefficients of both reference size and the number of cell types being less than 1.

This might be caused by the design of the loss function which directly takes all classes

into account. Compared to scmap, another correlation-based method, CHETAH, is

largely affected by the number of cell types because it adopts a hierarchical structure

and needs to derive gene profiles for each branch until discovering all cell types.

With these observations, we again promote the usage of MLP with its comparably

better performance and high scalability. When “pooling” all cells together, training

an MLP classifier will not consume too much training time. Once the classifier is

trained, parameters can be stored and directly used for predicting cells in the newly

generated scRNA-seq datasets. Prediction can be done in a very short time period.

2.4 Discussion

Supervised celltyping for scRNA-seq has gained tremendous interest in recent years,

and we believe it is the direction to go for identifying cell types in scRNA-seq data.

In this paper, we comprehensively evaluate several important aspects of supervised

celltyping: feature selection, prediction method, data preprocessing, and the impact

of discrepancies between reference and target dataset, which are important choices

to make for investigators. Even though there are a number of methods and several

comparison studies, no one has investigated the combined effects of these procedures,

in particular, the choice of reference datasets. Moreover, we also investigate the

strategies for processing reference data, including reference pooling and purification.

Based on our results, we make the following main recommendations. First, apply-
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ing F-test on the reference dataset to select features and using MLP as a classifier is

the best performer overall when the reference data is reasonably large (e.g., > 5000

cells). In fact, MLP can be replaced by SVM with either linear or RBF kernel, which

produces comparable results. However, due to the computational burden of training

SVM, especially in large datasets or having many cell types, we recommend using

MLP. When the reference data is small, using a correlation-based method such as

scmap is a better strategy. We consider certain pre-processing (e.g., imputation and

batch effect correction) steps unnecessary because we do not observe a significant

performance increase by doing so. Secondly, it is always desirable to pick reference

data with matching biological and clinical conditions with the target data. However,

the discrepancy between the reference and target data only has a slight impact on

predicting major cell types. Thus, it is not terribly bad to use a reference dataset

with slight condition differences, even though significant clinical differences could

lead to non-trivial performance reductions. Thirdly, pooling references from different

datasets improves the prediction results. This is not only because of the increased

reference data size but also because that pooling can average out some biological and

technical variations (evidenced by our downsampling prediction results and pooling

saturation analysis). In the pooling saturation analyses, we sometimes observe that

adding certain cells or individuals may result in worse performance (Appendix Figure

A.5C). This leads to an important question on how to assess and select high-quality

references. This is beyond the scope of this work, but we will explore it in the near

future. Moreover, we find that purifying the reference data does not significantly

improve the results, so we recommend against such a procedure.

From our investigations, the major cell type prediction is a relatively easier task

as all analyses achieve satisfying results. However, supervised prediction for sub-cell

types is much more difficult mainly due to the inconsistent subtype definition from

different datasets. In fact, it is highly possible that the sub-cell types are indeed
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different under distinct biological and clinical conditions. Due to these reasons, we

recommend against supervised prediction for sub-cell types and suggest a two-step

hybrid approach: first applying a supervised prediction for major cell types and then

using unsupervised approaches for subtypes. This might require further development

and evaluation of the unsupervised clustering methods for similar sub-cell types since

most current methods focus on clustering major cell types. When the goal of an un-

supervised method is to distinguish many very similar cell subtypes, we might need

new algorithms for feature selection, cell clustering, and new/rare subtype identifica-

tion. It is worth mentioning that even though the two semi-supervised methods we

test (ItClust and MARS) do not perform as well as the supervised ones in predicting

known cell types, they have the potential advantage to discover new cell types, which

could be useful in subtype prediction.

With the increased application of scRNA-seq, especially in large-scale, population-

level studies, cell type identification continues to be one of the most important ques-

tions in scRNA-seq data analysis, for which we believe the supervised celltyping

method will be a better answer. We perform extensive evaluations on several im-

portant factors in such an approach and provide some recommendations. More im-

portantly, we evaluate the impact of the reference data and potential strategies for

processing reference data, which have never been done before. Our study not only

provides performance evaluation and recommendations but also points out potential

research directions in this field.
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Chapter 3

Cellcano: a supervised celltyping

method for scATAC-seq

3.1 Introduction

Gene expression can be regulated by several factors. Among them, chromatin acces-

sibility is essential for the interaction between DNA and regulatory elements and pro-

vides important information for understanding the transcriptional regulatory mech-

anism [110]. Recent years have also witnessed the shift from measuring chromatin

accessibility in bulk samples to single-cell level by single-cell sequencing assay for

transposase-accessible chromatin (scATAC-seq) [14]. Like in scRNA-seq, celltyping is

also an important question in scATAC-seq data analysis. However, scATAC-seq data

have certain characteristics that make celltyping more difficult. First of all, scATAC-

seq data are much sparser due to low read counts [7], which results in weaker signals for

distinguishing cell types. Secondly, unlike scRNA-seq, feature space is not well-defined

in scATAC-seq data, which poses difficulties in extracting useful information. The

raw scATAC-seq data can be summarized to counts on genome-wide fixed-size bins,

peaks representing the accessible regions, or genes [19]. The determination of feature
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space is an additional important step in scATAC-seq celltyping. Although it is possi-

ble to do celltyping through experimental procedures such as Fluorescence-activated

cell sorting (FACS) [26] or leveraging information from multi-omics sequencing tech-

niques such as SNARE-seq [21], these datasets are expensive and limited. Therefore,

methods specifically developed for scATAC-seq celltyping are in urgent need.

Most existing computational celltyping methods are unsupervised and based on

prior knowledge [11] [119] [8] [101]. As of now, a lot of methods have been devel-

oped for single-cell omics integration 1 while limited methods have been specifically

developed for scATAC-seq celltyping. Seurat V3 [101] and scJoint [63] use scRNA-

seq datasets as references to transfer cell labels to scATAC-seq. Due to the strong

data distributional shift between different measurements, the two methods can signif-

icantly underperform. Although SnapATAC [30] performs analysis with scATAC-seq

datasets as references, the functionality is not implemented in the pipeline. Only re-

cently, EpiAnno was published to perform supervised celltyping in scATAC-seq using

scATAC-seq as reference using peaks as input [22]. A major problem is that the peaks

are not well-defined and are highly data-dependent. Due to technical and biological

artifacts, concordance of peaks can be low between reference and target [31], which

would result in a loss of information and undesirable celltyping results. Additionally,

EpiAnno is not scalable for large datasets.

In this work, we develop a novel computational celltyping method for scATAC-seq,

named Cellcano. Cellcano implements a two-round supervised learning algorithm. It

first trains a multi-layer perceptron (MLP) on the reference dataset and predicts cell

types in target data. From the prediction results, we can acquire the prediction prob-

abilities where we can further compute entropy. We select cells with lower entropy as

anchors to form a new training set. Next, Cellcano trains a self-Knowledge Distiller

model (KD model) [66] on anchors using the predicted pseudo labels and predict cell

types in remaining non-anchors. The KD model alleviates noises in anchors by soft-
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ening the label distribution. Through extensive real data analyses, we demonstrate

that Cellcano is significantly more accurate, computationally efficient, and scalable

compared to existing methods. Cellcano is well-documented and freely available at

https://marvinquiet.github.io/Cellcano/.

3.2 Methods

3.2.1 Cellcano model

Cellcano takes scATAC-seq raw data (fragment files or bam files) as inputs and calls

ArchR to generate the gene score matrices (details in Appendix B Section 1). Assume

there are G genes and N cells in the reference, and M cells in the target data, we

define the gene score matrices in reference and target data as Xref ∈ RG×N and

Xtgt ∈ RG×M , respectively. In the reference gene scores, we first perform a feature

selection step to select representative features. The features are selected by F-test

with known cell type labels, represented as Cref ∈ RN×1. We have previously shown

that features selected by F-test in reference data can provide the best results in

supervised scRNA-seq celltyping [73]. By default, we select the top 3,000 genes with

the largest F-statistics. We obtain the reference and target gene scores for the selected

features and perform data normalization. To be specific, we normalize the cell-wise

gene scores so that the total gene scores sum to 10,000 for each cell. We then take

log-transformation on the normalized gene scores plus 1. After that, we perform gene-

wise standardization on the log normalized gene scores so that each gene will have

a zero-mean and unit-variance charateristic. The standardization is a recommended

procedure for performing efficient backpropagation in neural networks [58].

In Cellcano’s first-round prediction, we first train an MLP model with a ReLU

activation function to capture the non-linear mapping between the Xref and Cref .

For a multi-class classification with K cell types, the cell type label Cref is one-hot

https://marvinquiet.github.io/Cellcano/
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encoded to a binary matrix with dimension N × K. The one-hot encoding labels

the corresponding class as 1 and all others as 0 for each cell. The last layer of MLP

is connected to a softmax function to convert the outputs from the last layer of the

MLP to probabilities. The softmax function is represented by

σ(Zi) =
exp(Zi

T
)∑K

k=1 exp(
Zk

T
)
.

Here, Zi represents the outputs from the last layer of the MLP, and T is a hyper-

parameter representing the temperature of the softmax function. The larger the T is,

the smoother the σ(Zi) will be. We set T = 1 in the first-round MLP model. Dur-

ing training, we use cross-entropy as the loss function to minimize the distributional

difference between the one-hot encoded cell type label p and the predicted cell type

probabilities σ(Z):

H(p, σ(Z)) = −
N∑
i=1

K∑
k=1

piklog(σ(Zi)k).

After training the MLP model, we apply the trained MLP model to the target

data to obtain the probabilities for each cell being in each cell type.

When the target data size is small, Cellcano takes the class with the largest

probability as the final predicted cell type for each cell and stops. When the target

size is large (over 1,000 cells by default), we perform a second-round prediction. We

first select anchors from the target, and we aim at selecting accurate anchors which can

also capture the full scope of target distribution to guide the second-round prediction.

With the first-round predicted probabilities, denoted as qik for cell i being in cell type

k, we calculate the entropy EM×1 for all M cells as:

Ei = −
K∑
k=1

qiklog(qik).

When a cell label is more confidently assigned, its entropy over the predicted
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probabilities is lower, and the prediction is in general more accurate. Once we have

entropies for all cells, we select 40% cells with the lowest entropies as anchors for each

cell type to form the new reference dataset for second-round training. This can assure

the existence of every cell type in the anchors, as well as keep the cell type proportion

consistent between anchors and non-anchors in the target data. Since some anchors

will be mistakenly predicted, we apply the KD model in the second-round training to

deal with the issue, detailed in next section. The model trained in the second round

will be used to predict cell types for non-anchors. Finally, we combine the cell types

predicted for the anchors (from the first round) and non-anchors (from the second

round) as our final cell type calls.

3.2.2 The Knowledge Distiller model

Although the anchors cannot be perfectly predicted from the first round, they are

important complementary training data for improving prediction, since these cells

are from the exact same target domain where we previously lack supervision. To deal

with training data with noisy labels, we implement a self-Knowledge Distiller (KD)

model in the second-round training. The KD technique was originally proposed to

transfer the knowledge learned from a sophisticated teacher model to a light-weighted

student model, by treating the prediction results produced from the teacher model

as the “soft labels” for training the student model [41]. Inspired by this and several

recent works [66] [118], we propose to use the teacher-student interaction to alleviate

the noisy label problem. Specifically, the teacher model distills knowledge from both

clean supervision and noisy supervision by producing “soft labels” as the training

targets of the student model. Compared to the “hard labels” that only contain over-

confident 1’s and 0’s, “soft labels” are smoothed and thus more noise-tolerated [80].

Also, there are cell types sharing similar profiles during celltyping which fits the

fine-grained classification setting in the KD model. In Cellcano, we apply a “self-KD
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model” where we have the exact same structure for the teacher model and the student

model. We set them to be vanilla MLPs of two hidden layers with 64 and 16 nodes

respectively. To let the model be more generalizable, we put the dropout layer right

after the input layer. We use ReLU as the activation function.

We first train the teacher model with the anchors as input. To make the label

“softer”, we set the temperature T of the softmax function to be larger. We use

the cross-entropy loss for the teacher model, then train the student model with the

teacher’s “soft labels” as well as the one-hot encoded “hard labels”. The idea is to

learn a label smoothing regularization so that the label distribution can be better

captured. The KD loss function for the student model is a weighted average of two

losses, which is shown in the equation below:

LKD = αH(p, qT1
s ) + (1− α)KL(qT2

t , qT2
s ).

Here, T1 and T2 are temperatures in the softmax functions, and α is a hyperpa-

rameter for balancing the two losses. The first part of the KD loss is a cross-entropy

loss where the student prediction qs is guided by “hard labels” (anchor cell types

from first-round prediction), and we set the T1 as 1. The second part represents the

Kullback-Leibler (KL) divergence loss which measures the probability distribution

distances between the soft teacher prediction qt and the soft student prediction qs,

where T2 can be adjusted. We set T2 = 3 for the second part to soften the label

distribution. Overall, we set α as 0.1 to value more on the teacher model’s “soft

labels”. The KD model is trained for 30 epochs.

More detailed information about the overall scheme of data processing and anal-

ysis, methods that have been benchmarked and evaluation metrics can be found in

the Cellcano publication [75].
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3.3 Results

3.3.1 The Cellcano framework

Cellcano uses gene-level summaries of the raw scATAC-seq data as inputs. Given

the raw data, Cellcano incorporates ArchR [35] pipeline to process the raw data

and obtain gene scores for both reference and target datasets. The choice of input

is carefully investigated, and the results show that using gene scores provides good

prediction accuracy and computational efficiency (details in a later section). Then

Cellcano applies F-test on reference gene scores to select cell-type-specific genes as

features for model construction [103]. After obtaining the reference and target gene

scores for the selected features, Cellcano adopts a two-round supervised celltyping

strategy, shown in Figure 3.1. In the first round, Cellcano trains an MLP model with

reference gene scores and predicts cell types in target data. If the target size is too

small, Cellcano stops and returns the prediction results. When the target size is large

enough (e.g., over 1,000 cells), Cellcano performs another round of model training to

improve the prediction results. The second round starts with selecting anchor cells.

For that, we first calculate entropy for each cell based on the prediction probabilities

from the first-round prediction and then select cells with lower entropies as anchors.

The assumption is that the cells with lower prediction entropies are more likely to

be accurately predicted. We carefully investigate the anchor cell properties and their

impact on the prediction results (details in a later section) and demonstrate that the

assumption holds well in real data. We then use the anchors with their predicted

cell types as new reference data to train another classifier to predict the non-anchor

cells. Here, we use a KD model as the classifier since it works better when reference

data have imperfect labels. The assumption in the second round is that the classifier

trained on anchors (which are from the target data) can better capture the data

distribution in the target dataset compared to the classifier trained on the reference
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dataset, thus improving the prediction performance.
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Figure 3.1: Cellcano adopts a two-round prediction strategy. In the first round, Cell-
cano trains an MLP model on reference gene scores with known cell labels. Then,
Cellcano uses the trained MLP to predict cell types on target gene scores. When the
target size is sufficiently large, Cellcano starts the second round by selecting anchors.
With the predicted probability matrix obtained from the first-round prediction, en-
tropies are calculated for each cell. Cells with relatively low entropies are selected as
anchors to train a knowledge distillation (KD) model. The trained KD model is used
to predict cell types in remaining non-anchors.
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3.3.2 The choice of using gene score as input

As mentioned before, scATAC-seq data can be represented in three different feature

spaces: genome-wide fixed-size bins, peaks, and genes. Genome-wide fixed-size bins

have a very large feature space, which poses a heavy computational burden. The

peaks are not pre-defined and require additional steps in calling and unifying peaks.

More importantly, since the peaks will be different for each dataset, one cannot reuse

a pre-trained prediction model for new target data. In this work, we choose gene

scores as input because they are well-defined and have a small feature space. Also, it

is possible to further connect the model trained on gene scores to scRNA-seq models,

and vice versa. There are different ways of summarizing gene scores [19] [35] and our

first question is how to utilize these gene score models. In total, ArchR provides 54

variations of gene score models (details in Appendix B Section 2 and Section 3), and its

recommended one is shown to be the most accurate to infer gene expression in matched

scATAC-seq and scRNA-seq data. From the real data analysis, we show that using the

ArchR-recommended gene score model achieves good celltyping performances from

Cellcano.

We next evaluate Cellcano with the recommended gene score or fixed-size 500-

bp bin counts as input in both human PBMCs and mouse brain celltyping tasks.

The comparison of prediction performances from human PBMCs is shown in Figure

3.2a and Appendix Figure B.1a-b. The two types of inputs produce comparable

prediction accuracies in most celltyping tasks, while results in ARI and macroF1

show that using gene scores is significantly better. In mouse brain celltyping tasks,

Cellcano with gene scores as input is better than using fixed-size bins in 62 out of

63 prediction results (Figure 3.2b, Appendix Figure B.1c-d), except one in mouse

brain celltyping task using ARI as measurement. Overall, these results demonstrate

that using gene scores as inputs works better than using bin counts. In addition,

the computational time for using gene scores as input is much shorter (Figure 3.2c).
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Considering both computational and prediction performances, we decide to use the

ArchR-recommended gene scores as Cellcano’s default input.
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Figure 3.2: Focus on exploring performances between using different inputs for Cell-
cano. a, b Accuracies comparison on Cellcano using genome-wide fixed-size bins and
gene scores as input from (a) n = 29 human PBMCs celltyping tasks and (b) n = 21
mouse brain celltyping tasks. The red dotted lines are identity lines. c Model train-
ing time comparison using the two different inputs on all n = 50 celltyping tasks.
d, e demonstrate the selection of the appropriate number of anchors. d, e Accuracy
gains/losses using different entropy cutoffs on (d) n = 29 human PBMCs celltyping
tasks and (e) n = 21 mouse brain celltyping tasks.

3.3.3 Properties of Cellcano anchors

Cellcano selects anchor cells from the target dataset based on the prediction entropy

from the first round (details in the Methods section) and uses them as reference to

predict cell types for non-anchors in the second round. The number of anchors is

specified by user as a cutoff for the quantiles of entropies. For example, when using
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0.3 entropy quantile cutoff, 30% of the cells in the target dataset will be selected as

anchor cells. As an exploration, we first compare the performance between anchors

and non-anchors under different quantile cutoffs (0.1 to 0.6 with step size 0.1) in

human PBMCs celltyping tasks and mouse brain celltyping tasks. Results show that

the final prediction performance depends on a balance between anchor numbers and

anchor accuracy.

We then summarize the final prediction performances using different entropy quan-

tiles in human PBMCs celltyping tasks (Figure 3.2d, Appendix Figure B.2a-b) and

mouse brain celltyping tasks (Figure 3.22, Appendix Figure B.2c-d). Each celltyping

task has a prediction baseline which is calculated as the average performance by us-

ing different quantile cutoffs. We calculate the gains/losses using each quantile cutoff

against the average performance. Overall, the performances are stable when using 0.2

or above as quantile cutoffs (the median Acc varies within -0.4% +0.9% in human

PBMCs celltyping tasks and -0.9% +1.4% in mouse brain celltyping tasks). The

worst performance occurs when using 0.1 as the quantile cutoff. This can be explained

by the small training size in the second round and the failure of capturing the tar-

get data distribution. In conclusion, when using a moderate number of anchor cells,

Cellcano can produce comparable prediction results. By default, we use 0.4 as the

entropy quantile cutoff in our software implementation. Moreover, since Seurat also

has an anchor selection step, we perform comparisons and show that Cellcano anchors

are more accurate and can better capture the full scope of target data distribution.

Similar to Seurat, Cellcano selects anchors from the target dataset and uses them

as references to predict cell types for non-anchors in the second round. However,

the procedure for anchor selection in Cellcano is very different. Seurat uses Mu-

tual Nearest Neighbors (MNN) in a low-dimensional space determined by canonical

component analysis (CCA) to select anchors, which relies on the linear relationship

between reference and target. The number of anchors selected is further determined
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by the parameter of how many neighbors are examined. Differently, Cellcano obtains

predicted probabilities for cells in target data from the first-round MLP and then

selects anchors based on the prediction entropies. The number of anchors in Cellcano

is determined by the quantiles of entropies in each cell type.

3.3.4 Cellcano outperforms existing supervised scATAC-seq

celltyping methods

We collect four human peripheral blood mononuclear cells (PBMCs) datasets and

two mouse brain datasets (Appendix Table B.1) to benchmark the Cellcano. Among

four human PBMCs datasets, one is cell-sorted by FACS and can be considered the

“gold standard”. The cell types in the other three datasets are annotated based on

computational methods and prior biological knowledge, which are “silver standard”

[49]. For the six datasets, we design 50 experiments, which comprehensively cover

different real application scenarios (details in Appendix B Section 4).

After deciding the input data and the anchor numbers for Cellcano, we compare

Cellcano with other supervised scATAC-seq celltyping methods. We benchmark Cell-

cano against six competing supervised celltyping methods: Seurat [101], scJoint [63],

Signac [102], EpiAnno [22], ACTINN [72], and SingleR [3]. Even though Seurat and

scJoint are not specifically designed for scATAC-seq celltyping using scATAC-seq data

as reference, they can take gene scores as input for cell type prediction. For Signac,

we follow its recently published scATAC-seq integration vignettes to first process raw

scATAC-seq data into peak counts and then perform data integration along with la-

bel transfer. For EpiAnno, we use ArchR to call peaks and count reads overlapping

the peak regions to generate peak-by-cell matrices as its input. ACTINN is a deep

learning-based method that is very similar to the first-round prediction of Cellcano.

SingleR is a correlation-based supervised scRNA-seq celltyping method. According to

a recent survey study, SingleR is the second-best performer behind Seurat in scRNA-
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seq celltyping [45]. Even though ACTINN and SingleR are designed for scRNA-seq

celltyping, they do not make any scRNA-seq-specific assumptions on the input data

and thus can take the gene scores as input for scATAC-seq celltyping. We include

them because we want to explore whether existing scRNA-seq supervised celltyping

methods can be directly applied to scATAC-seq with gene scores as input. In addi-

tion, we also include another set of comparisons by first removing the batch effect

between reference and target datasets and then using an MLP to transfer cell labels

(details in the next section). We put all the results together to make direct compar-

isons of prediction performances. We evaluate the prediction performances from all

methods by different metrics, including overall accuracy (Acc), adjusted rand index

(ARI), macro F1 score (macroF1), Cohen’s kappa (κ), median F1 score (medianF1),

median precision, and median recall.

We first focus on the celltyping methods and compare the performances where

we have one fixed gold standard target data (Figure 3.3a, Appendix Figure B.3). In

total, there are seven celltyping tasks using different references. We order the boxplot

according to the average performance. The results show that Cellcano achieves the

highest average accuracy at 0.852 in the seven celltyping tasks, while scJoint is a

close second with average accuracy of 0.837 and the third performer ACTINN has an

average accuracy of 0.782. The accuracies from all other methods are significantly

lower. For all other metrics (Appendix Figure B.3), Cellcano and scJoint in general

have the highest performances compared to all other methods, consistent with the

results in prediction accuracy. Overall, the third best performer is ACTINN which is

a variation of Cellcano first-round prediction. The performance differences between

Cellcano and ACTINN indicate the performance improvements by introducing our

second-round prediction.

We then evaluate the performances in all other 22 human PBMCs celltyping tasks

(Figure 3.3b, Appendix Figure B.4). Since the celltyping tasks involve different target
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Figure 3.3: a–c Accuracy comparisons between Cellcano, Seurat, scJoint, Signac,
SingleR, ACTINN, and EpiAnno along with other integration with label transfer
methods on (a) n = 7 celltyping tasks using one human PBMCs FACS-sorted dataset
as target, (b) n = 22 more human PBMCs celltyping tasks and (c) n = 21 mouse
brain celltyping tasks. The boxplots are ordered to have the leftmost method with
the highest average performance. d–f t-SNE plots from one of the celltyping tasks
using FACS-sorted dataset as target that contains n = 21, 214 cells. The cells are
colored with (d) ground truth labels; (e) Cellcano first-round predicted labels; and (f)
Cellcano second-round predicted labels. The highlighted areas illustrate Cellcano’s
ability to correct wrongly assigned cells predicted from the first round.

datasets, the baseline performance for each celltyping task can vary. We eliminate

such baseline effects by computing the performance gains/losses for each method

against the average. To be specific, we take the average of the prediction perfor-

mances from all seven methods for each celltyping task, and then subtract the av-

erage from the performances for each method. From these experimental scenarios,

Cellcano ranks first in average accuracy gain and average ARI gain whereas Signac

ranks second. Signac slightly outperforms Cellcano in average macroF1 gain. Over-

all, ACTINN ranks third. Similarly, we evaluate the performances in 21 mouse brain

celltyping tasks (Figure 3.3c, Appendix Figure B.5) and observe that Cellcano again



41

outperforms all other methods with the most accuracy gain as 0.144. In the mean-

time, Signac acts as the second-best performer with an accuracy gain of 0.134 and

ACTINN acts as the third-best performer with an accuracy gain of 0.120. Note that

EpiAnno fails to generate results for two relatively larger (over 32k cells) celltyping

tasks due to memory limit. Taking all 50 celltyping tasks together, we perform a

paired t-test on Accuracy, ARI, and macroF1 in three comparisons: (1) Cellcano and

ACTINN, (2) Cellcano and scJoint, and (3) Cellcano and Signac. The test statistics

show that Cellcano performs significantly better than ACTINN (p-value: 4.857e-3),

scJoint (p-value: 1.645e-3), and Signac (p-value: 0.023) in Accuracy. Results hold

for all comparisons in ARI. For macroF1, Cellcano slightly outperforms ACTINN

while largely outperforming scJoint and Signac. In summary, Cellcano outperforms

all other methods considering all scenarios: two systems (human PBMCs and mouse

brain), 50 celltyping tasks, and seven metrics.

To further demonstrate how the two-round procedure in Cellcano outperforms, we

use one celltyping task (one FACS-sorted human PBMCs dataset as target, a combi-

nation of four individuals from Satpathy et al. [95] PBMCs dataset as reference) as

an example to visualize the prediction results after each round by tSNE. Figure 3.3d

labels the ground truth cell types provided by FACS. After the first-round predic-

tion, some cells in B cell and natural killer (NK) are wrongly predicted as Monocytes

(Figure 3.3e, red boxes). After the second round, the wrong predictions are cor-

rected (Figure 3.3f, red boxes). Another observation is that many CD8 T cells on the

boundary between CD4 T cell and CD8 T cell clusters (black dotted line area) are not

correctly predicted. After the second round, most of these cells are correctly assigned

back to CD8 T cells. Similarly in an example mouse brain celltyping task (Appendix

Figure B.6), some inhibitory neurons are wrongly predicted as Astrocytes and Mi-

croglias are wrongly predicted as Oligodendrocytes after the first-round prediction

and those are corrected after the second-round prediction (Supplementary Fig. 8,
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red boxes). These visualization examples demonstrate the advantage of having our

second-round prediction with the KD model.

3.3.5 Cellcano works better than prediction with batch effect

removed

A key advantage of the two-round approach in Cellcano is that training a model

using anchors in target data alleviates the distributional shift problem between the

reference and target data. The distributional shift is often caused by batch effect in

high-throughput data. This leads to a question whether our two-round strategy is

better than the one where we first remove batch effect and then apply a direct predic-

tion. According to a recent benchmark study [70], LIGER [115] and ComBat [16] are

the top performers when integrating scATAC-seq datasets. Although we have proven

that using gene scores as input is the best choice for Cellcano, in this benchmarking

study, genome-wide bins or peaks are suggested as inputs for the integration tasks.

We therefore follow the suggestions and include four top-performing integration com-

binations into our comparison: LIGER with genome-wide bins as input, LIGER with

peaks as input, ComBat with genome-wide bins as input, and ComBat with peaks

as input as integration methods. We are also interested in knowing how batch-effect

removed methods work with gene scores as input. Therefore, we added Harmony

[53], which was demonstrated to have the best performance and shortest running

time in previous batch-effect removal benchmark study in scRNA-seq data [109]. In

the meantime, we also included Portal [122], a recently published integration method

that has not been benchmarked and can take gene scores as input. After performing

the integration between reference and target datasets, we apply MLP as the classifier

to transfer cell labels according to the integrated output. We evaluate the prediction

performances by Acc, ARI, and macroF1.

As mentioned earlier, we put all prediction results from celltyping and integra-
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tion with label transfer into boxplots (Figure 3.3a-c, Appendix Figure B.3a-b, Ap-

pendix Figure B.4a-b, Appendix Figure B.5a-b) for a direct comparison. Since box-

plots provide marginal distributions which represent the overall performances, we add

heatmaps (Appendix Figure B.7, B.8) with original prediction performances to show

a full-scope comparison. We categorize the heatmaps by different types of celltyping

tasks and make the leftmost column have the highest average performance. When fo-

cusing on all integration with label transfer methods, ComBat with peaks as input and

ComBat with genome-wide bins as input rank top, however, they do not outperform

the top celltyping performers and thus are inferior to Cellcano. We generate a low-

dimensional visualization before (Appendix Figure B.9a) and after the batch effect

removal (Appendix Figure B.9b-e) on one example where one FACS-sorted PBMCs

data is taken as target and four individuals from Satpathy et al. are combined as ref-

erence. We can observe that even when the batch effect removal methods work well on

integrating reference and target datasets or integrating individuals (Appendix Figure

B.9c, d using LIGER and Portal), the celltyping results are not necessarily better.

In conclusion, these comparisons demonstrate that Cellcano can handle data from

different individuals and batches in both reference and target data. Cellcano does

not need to remove the batch effect and steadily outperforms other integration with

label transfer methods. This provides the possibility of training prediction models

using a large compendium of datasets.

3.3.6 Cellcano is computationally efficient and scalable

We evaluate the computational performance of Cellcano and show all celltyping meth-

ods’ runtime for all celltyping tasks (Figure 3.4a-b). For fair comparisons, we combine

the training time and prediction time into an overall runtime for Cellcano and Epi-

Anno. This is because all other methods need both reference and target datasets as

input to do prediction. Here, we do not consider the data pre-processing time (such
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as the time used for generating peak counts or gene scores from the raw data). We

sort the celltyping tasks by the total number of cells in reference and target datasets.

The results indicate that when the cell number is low, Cellcano, Seurat, and scJoint

use about the same runtime. However, when the cell number starts increasing, Seu-

rat and scJoint can be three times slower than Cellcano. Signac is 2 3 slower than

Cellcano when predicting cell types for human PBMCs tasks while its running time

is comparable to Cellcano in mouse brain celltyping tasks. All other methods are 5

100 times slower than Cellcano. The reason why ACTINN as a one-round prediction

is slower than Cellcano is that ACTINN uses all genes for training while Cellcano se-

lects 3000 genes as features. An additional advantage is that Cellcano is a supervised

celltyping method, the pre-trained models can be re-used in future predictions, which

means the runtime can be further reduced with the first-round pre-trained model as

input.
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Figure 3.4: a, b Run time comparisons among Cellcano, Seurat, scJoint, Signac,
SingleR, ACTINN, and EpiAnno on (a) n = 29 human PBMCs celltyping tasks and
(b) n = 21 mouse brain celltyping tasks. The x-axis indicates each celltyping task
and is ordered by the total number of cells in the reference and target datasets. Note
that EpiAnno fails to generate results for two mouse brain celltyping tasks where the
cell numbers are large.
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3.4 Discussion

Computational celltyping for single cell omics data is an important problem. Such

methods are under-developed for scATAC-seq data. In this work, we develop Cell-

cano, a two-round supervised scATAC-seq celltyping method. Due to distributional

shift, the first-round prediction can be inaccurate, and the anchors can be noisy. The

KD model in the second round is thus used to distill the knowledge from a noisily

labeled input. We have shown in 50 celltyping tasks with data from two systems

(human PBMCs and mouse brain) that Cellcano significantly outperforms other cell-

typing methods and integration with label transfer methods both in prediction and

computational performances. Cellcano is also robust against the anchor selection

procedure and batch effects in the data.

Cellcano has several advantages and methodological features. First, Cellcano uses

gene scores as input, which has many advantages compared to using bin or peak

counts: (1) genes have a much smaller feature space, which significantly improve the

computational performance; (2) genes are shared among datasets, which provides

potential to be further connected to other modalities, such as gene expression data.

We show that using gene scores works as equally well or even better than using

bin counts as input. Secondly, Cellcano implements strategies in selecting and using

anchors. The MLP in Cellcano can better capture the non-linear relationship between

the gene scores and the corresponding cell types. In addition, the KD model is robust

to anchors with noisy labels. Moreover, Cellcano does not need to jointly operate

on the reference and target datasets, like Seurat, Signac, and scJoint does. This

allows Cellcano to be trained on a compendium of reference datasets and provide a

pre-trained model.

There are some further developments for Cellcano we plan to work on. First,

Cellcano can be adapted to other celltyping scenarios, for example, cross-modality

predictions (using scRNA-seq as reference for scATAC-seq celltyping), celltyping in
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single-cell DNA methylation, etc. Another interesting question is to use multimodal

reference data, for example, to jointly use scRNA- and scATAC-seq data as refer-

ence to improve celltyping results for either scRNA- and scATAC-seq data. Such an

approach can potentially further improve prediction performance.
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Chapter 4

Applications of cell-type-specificity

4.1 Integration of single-cell RNA-seq and ATAC-

seq data

4.1.1 Introduction

Gene expression or chromatin accessibility by itself provides limited information on

biological processes. Multimodal sequencing technologies have been developed to

obtain a more comprehensive view of cellular processes by measuring two or more

types of information in the same cell [99] [23]. However, these technologies come with

increased technical complexity, costs, and data noise, resulting in limited available

datasets. To address this issue, computational integration strategies have gained

popularity for jointly analyzing multiple single assays to reveal more refined cell-type-

specificity and provide potential insights into cell-type-specific regulatory mechanisms

[5] [40]. Several methods have been developed for the data integration purpose [63]

[101] [98] [122]. Seurat V3 uses canonical correlation analysis (CCA) to capture the

joint reduced dimension and then transfer cell labels based on anchor cells selected

from the target dataset. The scJoint method involves initial semi-supervised transfer
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learning to obtain a common embedding space, followed by cell label transfer using

K-nearest neighbors (KNN), and then retraining the model to refine the embedding

space. scGCN employs a graph convolutional network (GCN) to model the cell-to-

cell relationship topology and projects them into a shared embedding space for future

label transfer. Portal differs from the previously mentioned methods as it does not

include the cell label transfer function. Instead, it mainly focuses on data integration

and utilizes adversarial domain translation techniques. However, all these methods

require all single-cell modalities as input and cannot directly leverage information

from existing high-quality scRNA-seq datasets, limiting the use of existing supervised

learning methods. In the meantime, they do not prioritize cell-type-specificity in their

integration approach and instead, view cell type information as a byproduct of the

integration results.

Our prior work utilized Cellcano to identify cell types in scATAC-seq datasets

using another scATAC-seq as a reference and take gene scores as input. As genes

is a common feature shared by both scRNA-seq and scATAC-seq datasets, we can

leverage the Cellcano method we developed in the previous Chapter to identify cell

types in the cross-modality scenario by using scRNA-seq as the reference dataset to

predict cell types in scATAC-seq data. In addition, we wonder whether scRNA-seq

embeddings can be reused to maximize their utility in the integration of multimodal

data, therefore, we propose CellAMA, an adversarial domain translation method that

aims to project scATAC-seq data onto the pre-trained scRNA-seq embeddings space

while preserving cell-type-specificity, where the cell types are from Cellcano’s predic-

tion. Our real data analyses demonstrate the high accuracy of Cellcano in identifying

cell types across modalities, as well as the excellent performance of CellAMA in inte-

grating multiple single-cell modalities.
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4.1.2 Methods

Adversarial learning.

In recent years, there has been a surge of interest in unsupervised domain adaptation

methods, with domain alignment being the most widely used approach [65]. The goal

of domain alignment is to minimize differences between the source and target domains,

which can be accomplished by reducing the discrepancy either in the original data

space or in the feature space. Several methods have been developed to align the fea-

ture space, including adversarial learning, statistical divergence alignment, generative

domain mapping, and low-density target boundary, among others. After conducting

thorough research, we have chosen to use the adversarial learning framework in com-

bination with a statistic called maximum mean discrepancy (MMD) [36] to align a

pre-trained scRNA-seq embedding with a projected scATAC-seq embedding. The

MMD statistic serves as a statistical metric that enables feature alignment, accurate

prediction performance, and a stable training process, all at once.

Pre-trained scRNA-seq embeddings.

Our previous work has shown that combining a multi-layer perceptron (MLP) with

F-test results in the best performance for supervised celltyping in scRNA-seq data.

We take a further step and investigated the representation layer of MLP (the last

hidden layer), and upon performing dimension reduction, we discover that it contains

significant information regarding cell-type specificity. However, when using multiple

scRNA-seq datasets as input, the representation layer does not eliminate the batch

effect and still retains batch-specific information. In this scenario, we use a single

high-quality scRNA-seq dataset as a reference and apply CellAMA to map other

datasets to it based on their respective cell label information. We subsequently use

the mapped embeddings as the pre-trained scRNA-seq embeddings.
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CellAMA model.

Since there is a significant domain shift between scRNA-seq and scATAC-seq datasets,

using the pre-trained scRNA-seq model directly on scATAC-seq data can lead to sub-

optimal performance. To address this issue, we propose CellAMA, which learns a non-

linear transformation function to map scATAC-seq data onto a pre-trained scRNA-seq

embedding that is shown to have high cell-type-specificity. Overall CellAMA can be

divided into two steps:

1. Obtain scRNA-seq pre-trained embeddings and predict cell types in scATAC-

seq. We denote the scRNA-seq reference dataset with G genes and N cells as XGE ∈

RN×G, and the corresponding cell type labels as CGE ∈ 1, ..., k indicating K cell

types. To select highly variable genes, we use the F-test on the known cell groups and

choose the top 3,000 genes. Then, we obtain a subset of the gene expression matrix

containing the selected genes and perform a standard data normalization procedure.

This procedure includes cell-wise normalization (total gene counts sum to 10,000), log

plus 1 transformation, and gene-wise standardization (zero-mean and unit-variance).

In the first round of Cellcano, we train an MLP on the scRNA-seq reference dataset

and extract the last hidden layer as the representation layer ZGE. As part of this

procedure, we also obtain a cell type classifier denoted as CLSGE. After selecting

confidently predicted cells in the target dataset as anchor cells, we proceed to the

second round of Cellcano, which trains another supervised classifier to predict cell

types in scATAC-seq data. Here, we summarize scATAC-seq data into gene scores

with G genes and M cells, denoted as XCA ∈ RG×M , the true cell labels as CCA and

the predicted cell labels as C ′
CA.

2. Train an adversarial learning framework to project scATAC-seq data onto the

pre-trained scRNA-seq embeddings. The adversarial training consists of an encoder

E and a discriminator D. The role of E is to learn the non-linear transformation,

while D is responsible for determining whether the data comes from scRNA-seq or
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scATAC-seq. We aim to learn a latent space representation ZCA that is well-mixed

with the scRNA-seq representation ZGE at the cell-type level. To achieve this, we

utilize the label information from original scRNA-seq CGE and predicted scATAC-seq

C ′
CA as guidance along with MMD loss with a Gaussian radial basis function (RBF)

kernel (details in the later section).

The first step can be performed separately from the second step, offering the

possibility of providing a pre-trained embedding space and classifier from scRNA-seq

datasets for projecting other single-cell modalities. In the case of multiple scRNA-seq

datasets being used as references, we select one scRNA-seq dataset as the reference

and perform step 2 with another scRNA-seq dataset using the ground truth label to

perform the projection.

Enhancing cell-type-specificity.

We adopt the approach of CDAN [67] and incorporate the outer product of the

embedding space with one-hot encoded cell label information to enhance cell-type-

specificity. Additionally, we include an MMD loss for encoder E to enhance feature

alignment and stable training. Our modified Minimax loss function becomes:

EXGE
[log(D(ZGE ⊗ CGE))] + EXCA

[log(1−D(ZCA ⊗ C ′
CA))]+

MMD(ZGE ⊗ CGE, ZCA ⊗ C ′
CA).

(4.1)

Evaluation metrics.

We use Accuracy, macroF1, kohen’s kappa, median precision, and median recall to

measure the cell type prediction for Cellcano. As for measuring integration per-

formance, we utilize integration metrics including Normalized Mutual Information

(NMI), Adjusted Rand Index (ARI), cell-type-level Average Silhouette Width (ASW),

and cell-type-level Local Inverse Simpson’s Index (LISI) that evaluate biological con-

servation [70]. As ASW and LISI can be calculated based on different feature spaces,
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we evaluate these metrics using the embedding space, the top 10 principal components

of the embedding space, and t-distributed stochastic neighbor embedding (t-SNE) as

inputs.

4.1.3 Results

Overview of CellAMA.

CellAMA aims to project scATAC-seq data onto a pre-trained scRNA-seq embedding

with predicted cell types from Cellcano [75], as shown in Figure 4.1a. The scRNA-seq

embeddings are obtained from the last hidden layer of the MLP in the first round of

Cellcano. We use this pre-trained scRNA-seq embedding along with known cell labels

in the scRNA-seq data directly as input for CellAMA. We follow the same procedure

to obtain gene-level summaries from scATAC-seq data as we have demonstrated in

Cellcano. Our previous work has shown that using gene activity scores can not only

achieve superior performance compared to using other feature spaces as input but

also facilitate easy integration with scRNA-seq data. We utilize the second round of

Cellcano to predict the cell types for scATAC-seq data. Given that we already have

the pre-trained scRNA-seq embeddings and their associated cell labels, as well as the

predicted cell types for scATAC-seq data obtained from the second round of Cellcano,

our objective is to learn scATAC-seq embeddings that exhibit cell-type-specificity and

can be projected onto the pre-trained scRNA-seq embeddings. We approach this as

a feature alignment task and utilize an adversarial learning framework that contains

an encoder and a discriminator. To ensure that the cell-type-specificity is preserved

during the projection process, we incorporate the outer product of the corresponding

embeddings with the cell types from scRNA-seq or the predicted cell types from

scATAC-seq as guidance (as shown in Figure 4.1b) and also add an MMD loss when

training the encoder to further enhance feature alignment.
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Figure 4.1: (a) CellAMA utilizes adversarial learning to project scATAC-seq data
onto a pre-trained scRNA-seq embedding. The use of cell type predictions from
Cellcano and outer product enable the projection to be specific to each cell type. The
notation XGE refers to scRNA-seq data, which captures gene expression, while XCA

refers to scATAC-seq data, which captures chromatin accessibility. The area marked
by the dotted line indicates the models that require training procedures. The red
lines delineate cell-type-specificity through the use of outer products and we employ
a simple cartoon to illustrate this principle in (b).

Cellcano outperforms existing cross-modality integration methods.

To evaluate Cellcano’s performance in a cross-modality scenario, we compared it with

Seurat V3 and scJoint, both providing celltyping function. Seurat V3 and scJoint take

scRNA-seq gene expression and scATAC-seq gene scores as input. Seurat V3 employs

canonical correlation analysis (CCA) to identify canonical correlation vectors, which

are then used to project both scRNA-seq and scATAC-seq datasets into a common

correlated embedding space. Then, following dimension reduction, Seurat identifies

the K-nearest neighbors (KNN) for each cell within its paired dataset and uses mutual

nearest neighbors (MNN) to identify corresponding anchor cells for the label transfer

purpose. scJoint adopts a transfer learning technique to achieve the same goal by

first projecting scRNA-seq and scATAC-seq datasets into a joint embedding space

and then transferring labels based on the KNN algorithm. In this section, we eval-

uate celltyping performances from all methods using three metrics including overall
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accuracy (Acc), macro F1 score (macroF1) and Cohen’s kappa (κ).

We design a total of 16 celltyping prediction tasks using two scRNA-seq datasets

and four scATAC-seq datasets from human PBMCs and the results are summarized in

Figure 4.2. To eliminate the baseline effect caused by the use of different reference or

target datasets in each prediction task, we compute the performance gains/losses for

each method against the average. Cellcano achieves superior performance compared

to scJoint and Seurat in all evaluation metrics. Detailed prediction results can be

found in Appendix Figure C.1, where we observe that Cellcano outperforms the other

two methods in most of the prediction tasks.

a b c

Figure 4.2: (a) Accuracy, (b) macroF1, and (c) Cohen’s kappa comparisons between
Cellcano, scJoint, and Seurat. Each box contains 16 human PBMCs celltyping tasks.
The red dots within each box represent the mean of the performance metric, and the
boxes are sorted based on their mean value.

CellAMA provides a better mixture embedding.

Following accurate cell type prediction from Cellcano, we evaluate the performance of

CellAMA against Seurat V3 and scJoint, which provide co-embedding latent spaces.

We conduct benchmarking using the same 16 celltyping tasks in human PBMCs and

evaluate the performance of CellAMA against Seurat V3 and scJoint using NMI, ARI,

cell-type-specific LISI (cLISI), and cell-type-specific ASW (cASW) metrics. NMI and

ARI use both the ground truth and predicted cell type labels to evaluate clustering

agreements. In contrast, cLISI measures the heterogeneity of the data points within
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each cluster for each cell type, and cASW measures the separation of clusters and

how well each data point fits in each cluster for each cell type. While NMI and ARI

evaluate the overall performance of assigning data points to clusters, cLISI and cASW

focus more on cell-type-specificity.

a b

c

d

Figure 4.3: (a) NMI, (b) ARI, (c) cLISI, and (d) cASW comparisons between
Cellcano, scJoint, and Seurat. cLISI and cASW take latent space as input. In (a)
and (b), each box corresponds to 16 human PBMCs celltyping tasks. The red dots
within each box indicate the mean of the performance metric, and the boxes are
sorted based on their mean value. In (c) and (d), each box contains the number of
cell types in each celltyping task, and the metrics are evaluated using the latent space
as input.

According to the results, CellAMA exhibits better performance than the other

two methods in both NMI and ARI (Figure 4.3a-b). Upon evaluating the cell-type-

specificity using cLISI and cASW using latent space as input, CellAMA and scJoint
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both outperform Seurat V3. Additionally, CellAMA exhibits overall lower variations

among cell types compared to scJoint and Seurat V3. When comparing CellAMA

and scJoint in detail, we observe that CellAMA outperforms scJoint in 11 out of 16

prediction tasks based on median cLISI and in 10 out of 16 prediction tasks based

on median cASW (Figure 4.3c-d). The similar results of cLISI and cASW using top

10 PCs and t-SNE as input are shown in Appendix Figure C.2. Additionally, we

provided one prediction example using 10X human PBMCs scRNA-seq data as a

reference and FACS-sorted human PBMCs scATAC-seq data as a target to visualize

the data integration. The t-SNE visualization in Appendix Figure C.3 displays the

integration of scRNA-seq and scATAC-seq data using CellAMA, scJoint, and Seurat

V3. In the left panel, the datasets (either scRNA-seq data or scATAC-seq data) are

indicated, while the middle panel shows the ground truth cell label information and

the right panel shows the predicted cell types. The results show that CellAMA has

a better integration in terms of batch integration and cell type integration compared

to scJoint and Seurat V3 because CellAMA has a more scattered, generalized, and

accurate cell-type-specific projection.

4.1.4 Discussion

The computational integration of single-cell data across different modalities is an im-

portant research question. Although several methods have been developed for this

purpose, they rely on scRNA-seq data as the reference input for training new target

scATAC-seq datasets. This requirement implies that the reference embedding changes

every time a new target dataset is introduced, which appears unreasonable. Another

current limitation of existing methods is the lack of utilization of cell-type-specific

information for integration, which can lead to cell-type misalignment, particularly for

small cell populations. Our work aims to tackle both these problems simultaneously.

We first perform accurate celltyping with Cellcano and then utilize an adversarial
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learning framework to perform cell-type-specific projection towards the pre-trained

reference embeddings with CellAMA. Based on our preliminary results, Cellcano out-

performs two popular methods, scJoint and Seurat V3, in terms of celltyping accuracy.

Moreover, the cell-type-specific integration achieved by CellAMA is superior to the

other methods based on the accurate celltyping results.

As our work is still in the exploratory stage, there are some limitations that should

be acknowledged. First, we have only compared our method to a limited number of

existing methods. However, we plan to address this limitation by adding more state-

of-the-art batch integration methods such as scGCN [98], Portal [122], GLUE [18]

along with other methods into our integration and celltyping comparisons to achieve

a more comprehensive evaluation. Second, the combined runtime of Cellcano for cell-

typing and CellAMA for integration can be slower compared to scJoint. However, one

advantage of using supervised methods is that we can train a model on the reference

data that can be used later without the need for retraining. Therefore, the procedure

can possibly be accelerated by training the reference data with MLP in the first round

only. Then with the pre-trained MLP, we can obtain the input for the second round

prediction in Cellcano and pre-trained reference embeddings for CellAMA to perform

the integration. The third limitation pertains to the interpretation of the trained

embedding. In our integration example, we observe that Natural Killer (NK) cells

are divided into two clusters. Previous research has shown that NK cells consist of

two sub-states, namely CD56 bright NK cells and CD56 dim NK cells. Hence, fur-

ther analysis is required to evaluate whether our proposed projection can distinguish

between these sub-cell types.

Future work involves exploring the scenario of having multiple reference datasets.

Existing methods only utilize one reference dataset for integration or celltyping, with-

out investigating the possibility of using multiple references. Our previous research

has shown that combining multiple reference datasets can lead to better celltyping



58

performance [73], and similar analysis in the cross-modality scenario has also shown

promising results. However, when it comes to integration, the harmonization of em-

beddings from different datasets is essential for the effective projection of the target

dataset. While our previous research has shown that combining reference datasets

can improve celltyping performance, the same approach may not necessarily work

for integration. Currently, our solution is to use multiple reference datasets for Cell-

cano to perform celltyping to achieve more accurate results. Then, we use one of the

reference datasets to obtain the pre-trained embeddings and project other reference

datasets onto it with CellAMA to remove batch effects. We are currently working on

this approach and plan to provide more details and results in our future paper.
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4.2 LRcell: detecting the source of differential ex-

pression at the sub-cell-type level from bulk

RNA-seq data

4.2.1 Introduction

Finding differentially expressed genes (DEGs) between experimental conditions is

a powerful approach to understanding the molecular basis of phenotypic variation.

However, most tissues consist of tens or even hundreds of diverse sub-cell types and

DEGs may only occur in a small subset of these sub-cell types, which are relevant

to the experimental condition. Bulk RNA-seq data alone are unable to reveal the

sub-cell types that drive the DEGs.

The rapid development and proliferation of single-cell technologies resulted in mas-

sive accumulation of single-cell transcriptomics data (scRNA-seq) from diverse tissue

types. These data reveal substantial variations in transcriptional regulation among

different cell types and offer an unprecedented close-up view of the modifications

underlying important biological processes, especially for disease pathology, including

which cell types drive DEGs [84]. As an example, in a recent single-cell resolution

analysis of Alzheimer’s disease (AD), Mathys et al. [78] identified glial–neuronal in-

teractions in response to AD pathology. In another single-cell study, Ruzicka et al.

[93] found that neurons are the most affected cell type for schizophrenia. However,

steep costs and complicated protocols prevent the widespread adoption of scRNA-seq.

Over the past 10 years, many computational cell-type deconvolution methods

have been developed to infer the proportions of different sub-cell types from bulk

transcriptomic data [84] [83] [33] [114] [111] [32] [60] [124]. Benchmark studies have

also been conducted to compare their performance [46] [6].

In this chapter, we propose a novel computational tool named LRcell. Given the
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result from a bulk RNA-seq differential expression (DE) study, the goal of LRcell is to

delineate which sub-cell type(s) of the tissue underwent substantial changes between

the two experimental conditions. LRcell is developed under the assumption that ex-

pression change occurred at one or few sub-cell type(s) between the two experimental

conditions and is the major contributor to the DEGs observed at the bulk tissue level.

Cell-type deconvolution methods are not designed to infer such changes. Exploiting

cell-type-specific marker genes identified from generic scRNA-seq available from pub-

licly available data repositories, LRcell achieves the goal by surveying the enrichment

of marker genes across all sub-cell types in the tissue (Figure 4.4). Thus, no scRNA-

seq experiment matching the bulk RNA-seq experimental condition is needed. When

applying LRcell to a diverse panel of bulk RNA-seq DE experiments, we successfully

identify known sub-cell types involved in the pathogenesis of psychiatric disorders as

well as produce testable new hypotheses that have the potential to produce fresh new

biological insights.

4.2.2 Methods

Basic assumptions

The goal of LRcell is to identify the most affected sub-cell type(s) during the tran-

sition of experimental conditions using only bulk transcriptomic data. Based on the

assumptions that cell-type-specific marker genes of key cell types tend to be over-

represented among the significant DEGs in bulk transcriptomic studies, LRcell can

discover which cell type(s) is involved in certain disease or condition change. In re-

cent years, computational methods have been developed to deconvolve bulk RNA-seq

data to delineate cell-type proportion changes, which could be borrowed to answer

the same question. However, whenever there are more sub-cell types, the results from

deconvolution methods become unreliable. In contrast, LRcell enables comparison

across many more cell types which is important for complex tissues such as brain.
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Figure 4.4: Overview of LRcell workflow. As input, LRcell takes in the result from a
case-control bulk RNA-seq experiment conducted on specific tissue. For illustration
purpose, assuming there are three sub-cell types within the tissue, and the marker
genes derived from (unrelated) scRNA-seq experiment on the three sub-cell types are
available and taken into account by LRcell. Here, we use the blue color to indicate
cell type A, the yellow color to indicate cell type B and the green color to indicate cell
type C. We map the marker genes to the entire gene list sorted by DE P -values from
the most significant DE to non-DE. Next, for each tissue type, we apply a regression
analysis. When using the binary indicator of marker gene as the response variable,
we run a logistic regression (LR); when using the enrichment score of the marker gene
produced by the Marques et al.’s method as the response variable, we run a linear
regression (LiR). In both cases, the explanatory variable is the −log transformed DE
P -value. Next, the significance of the regression analysis is calculated and converted
to −log transformed FDR and plotted. In this illustrating example, LRcell result
indicates cell type A is the most significant, which suggests that cell type A is likely
to play a significant role in the case-control experiment.

The development of LRcell is inspired by LRpath [94], which is designed for linking

experimental changes to biological pathways or a predefined gene set. In LRcell, we

treat cell-type-specific marker genes as gene sets and calculate the enrichment of

each cell type when comparing two biological conditions. We believe that the most

enriched sub-cell type(s) is highly likely to play an important role in the experimental

condition change.
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Marker gene selection

After obtaining the log-normalized gene expression matrix along with high-quality

sub-cell-type clusters, we calculate the enrichment scores for each sub-cell type using

the marker gene selection method described in Marques et al. [77]. The cluster-

specific gene enrichment is defined as the average gene expression levels of cells in

that cluster divided by the average gene expression levels in all cells. The enrichment

score is adjusted by introducing a penalty representing the fraction of cells in that

cluster expressing the marker gene. Combined, this score allows the identification of

genes with cluster-specific high expression values to be selected as marker genes. The

description below is adapted from the original publication.

Suppose there are a total of M genes, L different clusters each with Nj cells and

the total number of cells are N . Let E = Eijk represent the gene by cell read count

matrix. Here i = 1, ...,M, j = 1, ..., L, k = 1, ..., Nj and N =
∑L

j=1Nj. The overall

average expression of the ith gene across all cells is defined as

Ei.. =
1

N

L∑
j=1

Nj∑
k=1

Eijk.

the ith gene across all cells is defined as

Ei.. =
1

N

L∑
j=1

Nj∑
k=1

Eijk.

The average expression of gene i in the jth cluster is defined as

Eij. =
1

Nj

Nj∑
k=1

Eijk.
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The enrichment for gene i in the jth cluster as

Enrichmenti,j =
Eij.

Ei.
.

Next, we consider the proportion expressing the gene i in the jth cluster as

Propi,j =
1

Nj

Nj∑
k=1

I(Eijk > 0).

The I(•) is an indicator function.

The enrichment score for gene i in the jth cluster is computed as

Scorei,j = Enrichmenti,j × (Propi,j)
power,

where “power” is a hyper-parameter to be tuned manually to control the penalization

for the cell cluster proportion term. The power parameter is set to 1 throughout this

study. After calculating the weighed gene enrichment scores in each cluster, we ranked

genes based on the scores and selected the top 100 genes as the marker genes for each

cluster.

LRcell analysis

LRcell is inspired by LRpath, which was designed for identifying sets of predefined

gene sets that show enrichment with differentially expressed transcripts in microarray

experiments. LRcell uses logistic regression (LR) or linear regression to assess whether

marker genes (as defined in the Marker Gene Selection subsection above) of a specific

cell type are more likely to be DEGs in a particular bulk RNA-seq study. The linear

regression option is added to handle the continuous enrichment scores of marker genes.

Users can choose accordingly. To facilitate our analysis, we assume that the major

sub-cell types of the tissue their marker genes are known a priori.
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We apply LRcell to each cell type independently. The required input includes a

list of DEGs ranked by the level of significance and a set of marker genes for each cell

type. Then, LRcell runs a LR as

log
θ

1− θ
= α + βx

and

θ = P (Y = 1).

In which Y = 1 denotes that gene is a marker gene and Y = 0 otherwise. Hence, θ

represents the chance that the gene is a marker gene. We use −log(P − value) as the

explanatory variable x. Whether a specific cell type is involved in the experimental

condition change is evaluated by testing the null hypothesis that β = 0 against the

alternative that β ̸= 0 using the Wald test. Typically, we run LRcell on all sub-cell

types found in the tissue to see which sub-cell type(s) drives the changes.

Similar to LR, linear regression directly performs

Y = α + βx,

where Y indicates the enrichment scores of genes. Same as LR, the P -value can

be obtained from testing the null hypothesis that β = 0 against the alternative that

β ̸= 0 using the t-test. Once the P -values are obtained, we calculate false discover rate

(FDR) using P adjust() function in R to adjust P -values with Benjamini–Hochberg

method.

Input and output

LRcell requires two inputs: (i) a ranked list of genes with DE P -values in a bulk RNA-

seq experiment and (ii) sets of marker genes from all sub-cell types of the bulk tissue
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acquired from scRNA-seq datasets a priori or from MSigDB C8-cell-type signature

gene sets. For those cell markers derived from scRNA-seq datasets, we offer choices

for users to choose between species as human or mouse and the region indicates the

specific brain region or PBMCs. For MSigDB cell markers, we store the marker

genes into the LRcellTypeMarkers packages which can be easily downloaded. When

running LRcell() function, the LR option is set as the default, while users can also

set the method option as LiR if linear regression is desired. For linear regression, an

enrichment score is needed as input for each gene whereas gene sets are sufficient for

LR. For MSigDB cell-type signature gene set, LR option is recommended as there

is no enrichment score information available. For customized input, i.e. a scRNA-

seq data, we offer a LRcell gene enriched scores function which takes the read counts

matrix and cell annotation as input to generate enrichment scores for genes in each

cell type. For further subsetting, get markergenes can be used for generating marker

genes for more specific sub-cell types. More details on data preprocessing can be

found in Appendix C Section 1-3.

The output is a list of significance P -value (or FDR), one for each sub-cell type.

For visualization, LRcell produces Manhattan plot, which can be drawn through

plot manhattan enrich function. We also provided a plot (plot marker dist function)

indicating where certain cell-type-specific marker genes locate on the bulk DEGs. The

bulk DEGs are sorted using log10(P − value)× sign(log2FoldChange) which could

potentially give information on both up/downregulated directions. LRcell requires

an R version beyond 4.1 and a prerequisite installation of BiocManager.

Simulation strategy

Simulated scRNA-seq data are generated using scDesign2 [105], which is capable of

generating synthetic scRNA-seq data using intrinsic statistical parameters learned

from real scRNA-seq datasets. We generate three synthetic scRNA-seq dataset as
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control samples using parameters learned from the adult mouse FC scRNA-seq data.

For the three case samples, we use the same statistical model but either alter the

expression level of selected genes or the proportion of one sub-cell type. We then

sum up corresponding read counts to obtain the bulk RNA-seq data and use them

to detect DEGs between case and control samples. For LRcell analysis, we use the

marker genes computed from the original scRNA-seq dataset as input. For MuSiC

analysis, we use the three control replicates as the reference scRNA-seq dataset.

For implementing the scenario where only DEGs occur, we first generate three

control replicates and randomly select 1000, 2000 and 3000 out of 29,653 genes. We

then either double or halve the gene expressions of those genes in the specific sub-cell

type being tested. To add certain noises, we use a normal distribution with standard

deviation as 0.1 to generate random fold change which fluctuates around 2 or 0.5.

As for the scenario where only proportion changes, we directly use the parameter

named cell type prop from the function simulate count scDesign2() to change the

simulated proportions. We decide two different proportion distributions when there

are five sub-cell types: one is evenly distributed with all sub-cell types having 20%

proportion and the other one is unevenly distributed with 40, 30, 10, 10 and 10%.

When testing for the robustness of LRcell under more sub-cell types, we only use

even distribution on cell-type proportions for illustration purpose.

More detailed information is available in the online publication [74].

4.2.3 Results

In this work, we collect and curate a compendium of marker genes from multiple

published scRNA-seq datasets. We then conduct LRcell analysis on multiple bulk

RNA-seq DE experiments to demonstrate its utility.
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Marker gene collection and sources

Genes that show substantial expression difference between one sub-cell type and oth-

ers in their native state are regarded as marker genes [49]. Similar to a collection

of gene set for Gene Set Enrichment Analysis (GSEA) [104], LRcell requires a com-

pendium of high-quality cell-type marker genes. Currently, LRcell package provides

users with multiple preloaded marker gene sets from human blood, human brain and

mouse brain (Figure 4.5A), computed from scRNA-seq datasets using method intro-

duced in Marques et al.’s [77] study. Additionally, LRcell package offers external

cell markers collected by Molecular Signatures Database (MSigDB) [61] with cer-

tain criteria (Appendix C Section 4). The external makers all originate from human

species including midbrain, cord blood, ovary and skeletal muscle. We store all cell-

type-specific marker gene sets into another R Bioconductor ExperimentHub package

named LRcellTypeMarkers. Additional marker gene sets are being tested and will be

added to the collection.

Simulation settings

Because the ground truth of changes in DEGs and cell-type proportion is difficult to

monitor and track, we conduct simulation studies to demonstrate the effectiveness of

LRcell.

In this simulation study, we consider experiments between cases and controls

involving DEGs and proportion changes. We simulate both single-cell and bulk RNA-

seq data. Both types of data are generated by scDesign2 [105] using the adult mouse

frontal cortex (FC) scRNA-seq dataset [96] as a reference and we use the marker genes

previously derived from the dataset to conduct our LRcell analysis. More details can

be found in the Methods section.

For simplicity, we consider two scenarios in our simulation study: (1) the propor-

tions for all sub-cell types remain the same during the condition change and DEGs
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Figure 4.5: LRcell datasets and marker genes overlap between different brain regions.
(A) summary of the all tissue-types in which marker genes have been pre-embedded
in LRcell. In (B–D), top 100 marker genes are selected for each cell type, and thus,
the maximum overlap in these figures is 100. (B) Heatmap illustrating the overlap
of marker genes among cell types within the FC region derived from mouse whole
brain scRNA-seq dataset. The highlighted area describes the overlap between FC 11-
3.unknown, FC 11-4.unknwon and FC 11-1.Microglia as an illustration for the sim-
ilarity between these three sub-cell types. (C) Heatmap illustrating the overlap of
marker genes among cell types within the FC and cell types within the cerebellum
CB. (D) Heatmap illustrating the overlap of marker genes among cell types within
the FC and cell types within the hippocampus.

are found in one specific cell type; (2) sub-cell type proportions are different between

case and control and no DEG is found in any sub-cell type. Under each scenario, we
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try to simulate different combinations.

Under the first scenario, we consider the following settings: (a) cell-type propor-

tion distribution (evenly or unevenly distributed); (b) the total number of cells (1000;

5000 or 10 000 cells); (c) the number of DEGs occurred in that specific sub-cell type

(1000; 2000 or 3000 DEGs out of 29,653 in the whole genome); and (d) fold change

direction of DEGs (2 or 0.5 times of the original gene expression).

Under the second scenario, we consider the following combinations: (a) cell-type

proportion distribution (evenly or unevenly distributed); (b) the total number of cells

(1000; 5000 or 10 000 cells); and (c) proportion change in that specific sub-cell type

(50; 80; 120 or 150% of the original proportion).

Additionally, to push the boundary of LRcell performance when there are many

more sub-cell types, we simulate cases where there are 5, 10 and 15 sub-cell types

and altering the baseline proportions which are evenly distributed in various ways.

Simulation results

For the simulation study, we take turns to alter each individual sub-cell type, then run

LRcell or MuSiC [114] and track the rank of the altered sub-cell type as an indicator

of the performance.

Because under the first scenario, there is no proportion change hence we do not

test the performance of MuSiC. The ranking results are summarized in Appendix

Figure C.4A and B, and LRcell is able to correctly identify most of the sub-cell type

changes. The cases in which incorrect identification made are those with the smallest

number of DEGs (in other word, where 1000 DEGs are simulated).

For the second scenario, we compare LRcell, MuSiC and GSEA (using marker

genes as gene set). The results are summarized in Appendix Figure C.4C–E. We

observe that MuSiC performs steadily well under all settings while LRcell produces

a few errors. This is fully expected since the scenario matches the assumption of
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MuSiC but not LRcell because it is not a cell-type proportion deconvolution method.

We also compare LRcell, MuSiC and GSEA under the scenario when there are

more sub-cell types. The results are summarized in Appendix Figure C.4F–K. We

notice that when there are 10 sub-cell types, LRcell and MuSiC work equally well

and when there are 15 sub-cell types, LRcell performs slightly better than MuSiC

when adding up the ranks. In particular, for the setting of 1000 cells with 20%

increase of proportion, both LRcell and MuSiC detect an incorrect but similar sub-

cell type. A specific showcase has been presented in Appendix Figure C.5, to show

an overall performance regarding all sub-cell types. Under all settings, LRcell and

MuSiC outperform GSEA.

Microglia highly enriched in neurodegenerative dementia

After the simulation study, we conduct LRcell in real data analysis. In a recent

neurodegenerative dementia study, Swarup and colleagues contrasted TPR50 mice

expressing tau mutant with wild type mice using bulk RNA-seq in order to identify

gene networks mediating dementia [107] (‘the mouse AD study’ afterward). To iden-

tify the cell type(s) most involved in the condition, we apply LRcell to the DEG list

using pre-embedded marker genes from adult mouse FC region [96]. From LRcell

result, we observe that Microglia show up as highly significant (Figure 4.6A) which

is concordant with previous studies [88]. Additionally, the FC 11-3.unknown and

FC 11–4.unknown sub-cell types also show high level of significance. No annotation

is available for these two cell clusters in the original publication. However, pairwise

comparison of marker genes among all cell clusters reveal that these two unknown

cell clusters have considerable overlaps with the FC 11-1, which is also a Microglia

cell type (Figure 4.5B), which explains the pattern we observe.
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Figure 4.6: Applying LRcell to real cases. (A) LRcell result of mapping the bulk
neurodegenerative dementia DEGs to the mouse brain FC region. (B) GSEA result
of mapping the bulk neurodegenerative dementia DEGs using the same marker genes
used in LRcell (mouse brain FC) as input. (C) Cell-type proportions for control and
disease samples calculated by MuSiC. Each box contains 17 individuals. The x-axis
is ordered by the t-test significance between the two conditions. (D) LRcell result
of mapping bulk PTSD DEGs to human PBMC. CD16+ monocytes is shown as the
most significant cell type. (E) GSEA result of mapping bulk PTSD DEGs to human
PBMC using the same marker genes used in LRcell (human PBMC) as input. (F)
Cell-type proportions for control and disease samples calculated by MuSiC. The x-
axis is ordered by the t-test significance between two conditions.

CD16+ monocytes highly enriched in posttraumatic stress disorder

In a recent study, Breen and colleagues conducted a bulk whole-transcriptome study

using peripheral blood leukocytes collected from U.S. Marines, among which some
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developed posttraumatic stress disorder (PTSD) postdeployment [13] (‘the human

PTSD study’ afterward). Using this dataset, we generate a list of DEGs that show

significant difference between the PTSD group and the control group at the pre-

deployment time point.

Using human marker genes derived from a single-cell transcriptomic study on

peripheral blood mononuclear cells (PBMCs) [39], LRcell analysis finds that cells

annotated as CD16+ nonclassical monocytes shows up as the most significant among

all cell types in PBMC (Figure 4.6D). Our finding makes biological sense because

as stated in previous studies [85], heterogeneity exists in monocytes distinguished by

CD16 surface proteins and nonclassical monocytes have been validated to regulate

immune responses in trauma [54] [55].

Specificity, robustness and running time of LRcell

It is of interest to evaluate whether LRcell shows good specificity, i.e. low false positive

rate. To do this, we simulated null scenario where there is no significant DEG in any

of the sub-cell type. When apply LRcell to such null bulk RNA-seq data, we found

that LRcell produce either no or much fewer and weaker significant result, illustrating

good sensitivity of LRcell.

To analyze the robustness of LRcell analysis, we run experiments from two per-

spectives: (i) whether the number of marker genes strongly affects LRcell results and

(ii) whether a different DEGs detection method affects LRcell results.

We first conduct LRcell using different marker gene number derived from PBMC

scRNA-seq dataset on the human PTSD study and we get similar enrichment perfor-

mances (Appendix Figure C.6). This indicates the robustness of the LRcell analysis.

In addition to DESeq2, we use Voom [57] with Limma [90] to perform DEGs

analysis on the mouse AD study and the human PTSD study. Details of the usage

can be found in the Appendix C Section 5. With the same marker genes set, we notice
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that the enrichment patterns are similar as FC 11-1. Microglia is highly enriched

along with other sub-cell types (Appendix Figure C.7).

In addition, we analyze the execution time among LRcell, GSEA and MuSiC

under different simulation scenarios (Appendix Figure C.8). We observe that LRcell

and GSEA are steadily fast, while the execution time of MuSiC increases when the

number of reference cells increases. LRcell takes about 3–4 s on average for each run

on a typical laptop computer.

4.2.4 Discussion

Detecting transcriptional activity changes at the individual cell type level, especially

their modifications in disease samples, is crucial for understanding the mechanisms

of diseases development. In this study, we propose a novel strategy named LRcell

which conducts enrichment analysis of cell-type-specific marker genes among the top

(or bottom) DEGs identified by bulk transcriptome studies. Cell types that show

the most enrichment are likely to play an important role in the condition alteration.

When applying to real datasets, we found that LRcell can successfully identify the

involvement of the Microglia and Astrocytes in the mouse AD study and rare mono-

cytes in the human PTSD study.

Many computational methods have been developed to infer the proportions of

different sub-cell types from bulk transcriptomic data. LRcell is not designed for

estimating cell-type proportions. We assume that different proportion of sub-cell

types in cases and control samples is not the major source of the DEGs observed at

the bulk tissue level. Rather, expression changes occur at one or few sub-cell type(s)

between case and control samples is the major contributor to the DEGs observed at

the bulk tissue level. Recent studies showed support for our assumption. For example,

Segerstolpe et al. [97] showed no significant shift of cell-type proportions in pancreatic

islet between type 2 diabetes patient samples and control samples, but the amount of
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DEGs vary substantially across sub-cell types. Based on this assumption, we designed

LRcell to identify which sub-cell types may be involved in the experimental condition

change and thus follow up experiments can be designed to explore the mechanisms

of the involvement of the specific sub-cell type(s) in the experimental condition.

Although based on different assumptions, out of curiosity and also in order to put

LRcell results in context, we apply MuSiC, a well-established deconvolution method

to the mouse AD study data. Because some layers of neurons are predicted to have

almost zero proportion (Figure 4.6C) when using all 81 sub-cell types, we merge the

original sub-clusters into 15 major cell types in order to achieve a better represen-

tation. Despite this, MuSiC does not detect significant difference in Microglia or

Astrocyte in terms of their proportions between the two conditions. When applied

to the human PTSD study data, using the original cell cluster annotations, MuSiC

shows that most of the T sub-cell types have zero proportion and the proportion of

CD14+ monocytes is up to 60% (Figure 4.6F). In contrast, LRcell produces more

sensible results because it is not limited by the number of cell types as it can detect

the subtle differences among sub-cell types.

Interestingly, from our simulation studies, LRcell is also capable of detecting sub-

cell types that undergo proportion changes, albeit with slightly lower accuracy com-

paring to state-of-the-art deconvolution methods.

A key advantage of LRcell lies in its ability to handle a large number of sub-cell

types. This is because LRcell analyzes sub-cell types one-by-one, whereas deconvo-

lution methods have to do the analysis jointly which leads to higher computation

burden and poorer performance.

In spirit, LRcell operates similarly as GSEA, but LRcell is much more sensitive

to minor differences in marker genes of sub-cell types, similar to the advantage of

LRpath showed when comparing to GSEA. This indicates LRcell’s potential to detect

changes in sub-cell types caused by disease conditions. Simulation studies comparing
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LRcell with GSEA suggest very similar patterns as observed from real data analysis.

Additionally, when compared to existing bulk deconvolution methods, LRcell is more

stable in its ability to handle the similarities among sub-cell types. Thus, LRcell

enables researchers to glean new biological insights from the bulk transcriptomics

experiments with no need of redoing the experiment using single-cell technology. We

are currently applying LRcell to a diverse set of clinical studies (Sharma, personal

communication) to generate more biological insights.

How to select marker genes representing sub-cell types is an important research

question. Plenty of methods have been developed to optimize the selection process

[77] [89] [89]. However, due to the dramatic diversity among sub-cell types and tis-

sues, there is no consensus universal criteria on the selection criteria that can make

the marker gene set representative and complete, which is also dependent on the

goal of the study including cell clustering, cell-type calling and cell-type deconvo-

lution, among others. For LRcell, our experience leads us to adopt the method

introduced in Marques et al. for its simplicity and computation efficiency. We have

performed empirical studies to illustrate the effectiveness of the marker genes selected

by the adopted method. Alternatively, precompiled marker gene sets from emerging

databases [121] cover more and more tissue types which are great resources.

To enable straightforward comparison, currently, we select a fix number of 100

marker genes from each sub-cell type. Understandably, the number of marker genes

for different cell types varies; it is desirable to allow flexibility in choosing the number

of marker genes based on the transcriptomic patterns across cell types. However,

different numbers of marker genes post challenge for conducting enrichment analyses

fairly across all cell types. This will be investigated in our future studies.

LRcell currently provides embedded marker genes from human blood, human brain

and mouse brain calculated from scRNA-seq experiments along with markers from 66

cell types in four tissues (midbrain, cord blood, ovary and skeletal muscle) adopted
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from MSigDB. We are working to include more tissue types in the future releases of

LRcell which will make it more widely applicable.

In summary, we develop LRcell, an R Bioconductor package for identifying sub-cell

type(s) that drive the changes observed in bulk comparative transcriptomic studies,

taking advantages of newly emerged scRNA-seq data. The rationale of LRcell is that

we believe marker genes of the modifying cell types tend to be enriched toward the

top (or bottom) of the DEG lists. We conduct comprehensive surveys applying LRcell

across various experimental conditions and successfully identify cell types that play

important roles in the mouse AD study and the human PTSD study. Hence, we

believe that LRcell can provide researchers important and new biological insights in

terms of the source of the biological changes at the sub-cell-type level, without the

need of conducting costly and laborious scRNA-seq experiments.

Our findings from both simulated data as well as real data suggest that LRcell

is complementary to cell-type deconvolution methods. Therefore, we recommend

including LRcell to bulk RNA-seq analysis to gain a holistic understanding of changes

occur at the sub-cell-type level inside complex tissues.
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Chapter 5

Discussion

5.1 Conclusions

The rapid evolution of single-cell sequencing techniques has revealed cell-type-specificity

from various perspectives and provided a wealth of high-quality single-cell genomics

data. This, in turn, has stimulated the development of novel statistical and deep

learning techniques to better understand biological mechanisms at a cellular level.

This dissertation focuses on evaluating and developing supervised celltyping methods

in Chapters 2 and 3. Chapter 2 provides a comprehensive overview of important

factors involved in supervised celltyping methods for scRNA-seq data. Building upon

this, Chapter 3 introduces a new method called Cellcano, which is a two-round super-

vised celltyping approach specifically designed for scATAC-seq data. Having success-

fully performed celltyping, we obtain cell-type-specific information. In Chapter 4, we

investigate the feasibility of using predicted cell types as guidance to integrate single-

cell genomics data. Moreover, we introduce a method called LRcell that leverages

cell-type-specific markers to detect cellular activity in bulk experiments.

The primary innovation of this dissertation lies in its approach to uncovering cell-

type-specificity and utilizing it to explore potential applications. Additionally, we
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provide valuable insights and recommendations based on our experiences. We inves-

tigate the feasibility of utilizing the simplest neural network model - MLP, as the

supervised classifier and combining it with different popular feature selection strate-

gies in this field. In contrast to more complex models, this simple network does not

require a graphics processing unit (GPU) but yields comparable results and incurs

similar training or prediction time. Using the cell labels of reference datasets, we

employ an F-test statistical test to select variable genes among cell type groups. The

combination of MLP and F-test yields improved performance, and we utilize this com-

bination when developing our method, Cellcano. Cellcano accounts for the stronger

batch effect that exists between reference and target data by employing a two-round

strategy that leverages partial data from the target dataset to build a knowledge

distiller model. The KD model trained on the target dataset has a better under-

standing of the target data distribution and therefore yields superior performance

compared to other existing methods. The KD model is a simple model that mini-

mizes system requirements and provides computational efficiency by utilizing shadow

layers and only a few nodes. Furthermore, Cellcano provides clear and detailed doc-

umentation, which is user-friendly for biomedical researchers. Accurate identification

of cell types enables the possibility of conducting downstream analyses with cell-

type-specificity information. We provide two examples of such analyses: integration

of single-cell genomics data and interpretation of signals in bulk experiments. To

achieve a cell-type-specific projection, we recommend performing accurate celltyping

prior to integration. Additionally, we investigate the feasibility of using cell-type-

specific marker genes as indicators to identify cell types that are specifically enriched

in bulk differential expression studies.

Despite the promising prediction results, several challenges still exist in super-

vised celltyping. The first challenge is that supervised methods usually heavily rely

on labels from reference datasets. However, each dataset may contain varying levels
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of granularity in cell labeling, leading to inconsistencies among different datasets. As

a result, current practices are based on major cell types that are either shared among

datasets or aggregated from multiple sub-cell types. In Chapter 2, We tested the

prediction of sub-cell types in mouse brain datasets that contained different sub-cell

types in various neuronal layers. The performance was lower, at around 70% to 80%,

as opposed to the 97% to 99% achieved when predicting major brain cell types. There-

fore, our proposed solution would be to first classify major cell types and then in each

classified cell type, we utilize unsupervised clustering with known markers to identify

sub-cell types. This approach is expected to yield more accurate results compared

to purely unsupervised methods. Another challenge associated with having labeled

reference datasets is that certain cell types present in the target dataset may not

exist in the reference dataset. While we proposed a solution in Chapter 2 to capture

uncertain cell types using predicted probabilities from the prediction model, it does

not provide information on the potential identity of these cell types. One potential

solution could be to utilize the Human Cell Atlas or Mouse Cell Atlas as a reference

since they encompass all cell types from various tissues. However, same as the first

challenge, these references do not contain sub-cell types, and distinguishing the same

cell types across different tissues can be difficult. The third challenge pertains to

identifying cell dynamics, which involves continuous changes in cell states. Catego-

rizing cell states into specific labels is challenging due to the dynamic nature of the

process. Utilizing supervised celltyping methods can provide a general idea of which

cell states a cell may belong to. However, it is anticipated that the prediction results

may be noisy. Therefore, traditional unsupervised methods utilizing graph-based or

tree-based trajectory generation algorithms are more appropriate for this scenario.

Moreover, there exist certain limitations that present opportunities for further

improvement and research. In Cellcano, we currently set the entropy threshold at

0.4 to select confident cells. However, the optimal threshold may vary for different
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cell types based on the signal-to-noise ratio. Certain cell types may be more readily

identifiable due to their distinct data characteristics, while others may be challenging

to be distinguished due to similar profiles, for example, CD4+ T cells and CD8+ T

cells in human PBMCs. To address this issue, an appropriate cutoff for the predicted

probability distribution can be established for each cell type. This approach can

enhance the confidence of the anchors while capturing the target data distribution.

Similarly, in LRcell, we currently use an arbitrary cutoff, which includes 100 marker

genes for each cell type as the marker gene set. However, cell-type-specific marker

genes may vary across different cell types, necessitating the selection of a more rigorous

cutoff. Additionally, LRcell only offers marker genes for a limited number of tissues.

Currently, we are in the process of collecting additional scRNA-seq datasets to derive

more marker genes for a broader range of tissues.

Based on our exploration of single-cell data integration, it is evident that em-

phasizing cell-type-specificity can improve the integration of cell types with a small

population. However, accurately integrating cell types with similar profiles remains

challenging and can lead to misalignments. One additional question is about the

application and interpretation of the joint embeddings learned from the models. In

single-cell genomics, the primary research focus is often on extracting cell-type-specific

marker genes or conducting differential expression analyses to identify gene expres-

sion changes between different conditions. Although joint embeddings learned from

different single-cell modalities have shown promising results in data integration, it is

challenging to directly map the embedding space back to the gene expression space.

Therefore, it is still unclear whether the embeddings derived from single-cell genomics

data are meaningful, especially in the absence of ground truth or human-interpretable

information. Further investigations are required to explore the generation and uti-

lization of embeddings produced by these models.

A final question that remains is regarding the interpretability of the model. As



81

famously stated by the statistician George Box, ”All models are wrong, but some

are useful.” Deep learning models have been shown to achieve better performance

and can capture non-linear transformations between input data and prediction re-

sults. However, the lack of transparency in their functioning makes them difficult to

interpret as they behave like black boxes. The field of interpretable deep learning

aims to address this issue by developing methods that make the prediction process

more transparent. We anticipate that the development of interpretable deep learning

methods will provide greater interpretability in the single-cell genomics field and offer

valuable insights to address fundamental biological questions.

These unresolved questions and challenges present exciting prospects for future

research. In this study, we have established a solid foundation for precise celltyping

and proposed potential applications of cell-type specificity. Our aim in this disserta-

tion is to provide valuable insights and contribute to the field of single-cell genomics

research. We hope that our work will inspire and guide other researchers in this area

and facilitate a deeper understanding of biological mechanisms and disease treatments

at the cellular level.

5.2 Future research plan

I have several projects in mind for my future research. One of my plans is to expand

my experience in deep learning and supervised celltyping to other single-cell modal-

ities such as single-cell DNA methylation (scDNAm), single-cell three-dimensional

genomic interaction measurements (scHi-C), and spatial genomics. This will allow

me to accurately identify cell types for these different single-cell genomics data and

gain a deeper understanding of cellular characteristics. By diving deeper into the

intricacies of cell-type-specificity, I aim to explore the potential of leveraging it for

achieving more accurate integrative analysis in single-cell genomics. This could in-
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volve developing novel methods and algorithms. For instance, while our current

supervised integration method CellAMA is effective in projecting other modalities to

the reference embedding, it is limited by summarizing all modalities into a shared

common space. By leveraging single-cell multi-omics techniques, we could potentially

explore the use of mosaic integration to achieve even more accurate celltyping and

better integration performances.

Another research question that I am interested in is understanding the sequencing

data generated by single-cell techniques. As we explored the best input for scATAC-

seq celltyping, we observed the presence of discordant peaks called from different

scATAC-seq datasets. This makes me wonder if the discordance in peak calling re-

sults is influenced by specific characteristics of single-cell data, such as the presence

of excessive zeros and lower counts, or whether it is indicative of true dataset-specific

information. Building on this idea, I am also interested in exploring the potential

application of stable diffusion to perform quality control and data imputation in spa-

tial transcriptomics data. I choose the diffusion model over other generative models

because it can preserve the original dimensionality of the data, rather than projecting

it into a lower-dimensional embedding space, which makes the downstream analysis

convenient to be performed. By examining the results of downstream analysis at each

step, I can determine whether the current dataset requires data imputation or has

good quality.

In addition to method development for deciphering cell and genomics character-

istics, I also plan to address biological questions in my future research. One of the

most intriguing biological questions I aim to investigate is the cell-type-specific gene

regulatory mechanism using the publicly available single-cell genomics data. While

biological experiments have been conducted to analyze one or several specific genes

and link them to biological processes or disease progression, exploring the entire gene

regulatory network of specific cell types could reveal new insights into the under-
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lying molecular mechanisms of cell function and disease. Currently, our approach

using Cellcano for celltyping in the cross-modality scenario yields reasonable results,

suggesting a potential cell-type-specific correlation between gene expression and sum-

marized gene scores. However, we acknowledge that our summarization approach fails

to capture distal regions from the gene body that may contain crucial regulatory in-

formation. Therefore, my plan is to use the pseudo-labels generated by Cellcano

as guidance, and then model the bin counts from scATAC-seq and gene expressions

from scRNA-seq to reveal the connections between gene expressions and regulatory

elements beyond the gene body region. Another research perspective that I am in-

terested in is leveraging the co-expression from scRNA-seq data, co-accessibility from

scATAC-seq data, and co-localization information from spatial transcriptomics data

to predict other interaction information such as co-methylation and three-dimensional

genomic interactions. As co-interaction data is structured as a network or graph and

contains multiple modalities, I plan to use multi-view learning in conjunction with

graph neural network techniques to achieve my goal.
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Appendix A

Appendix for Chapter 2

A.1 Performance Grain / Loss Calculation

For each metric in each experiment, we have 9 classifiers and 6 feature selection

methods resulting in a 9x6 two-way table. We first calculate the mean of each two-

way table as the experiment’s baseline performance. Next, we subtract the mean

from the two-way table for each experiment and aggregate all experiments together

by taking the average. This results in one 9x6 data matrix for each metric. Finally,

we sort the table in a descending way by rows and columns, in which the top left

corner combination has the most gain while bottom right combination has the most

loss. We present the gains/losses in a heatmap for each metric.

When merely focusing on the gains/losses from feature selection strategies, we

subtract the mean of each column (representing each feature selection method) to

average out effects from classifiers. Then, we combine all results together to draw

the boxplot. Similar procedure has been done for evaluating the gains/losses from

different classifiers.
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A.2 Data Pre-processing

All scRNA-seq datasets have been pre-processed by filtering out low-quality cells

expressing in less than 10 genes and genes expressing in less than 10 cells. We then

use normalize each cell to have 10,000 reads and do log-transformation. Next, we

scale the dataset to zero mean and unit variance and truncate absolute values with

maximum of 6. Finally, the data is fed to corresponding classifiers.

A.2.1 Analysis details for comparing condition effects

For comparing condition effects, we include 7 mice from “Mouse brain FC” and 6 mice

from “Mouse brain HC” using Drop-seq, 6 mice with saline treatment from “Mouse

brain pFC” using 10X Chromium, and 2 cortex samples named cortex1 and cortex2

from “Mouse brain cortex” using DroNc-seq. DroNc-seq and Drop-seq are proved to

have similar performance. To summarize the differences for the two datasets effect,

the “Mouse brain pFC” contains protocol difference and the “Mouse brain cortex”

includes certain region difference as it profiles the whole cortex region.

We then curate each dataset to contain only major cell types, such as integrating

multi-layers of neurons in “Mouse brain FC” together as neurons, removing pericytes

from “Mouse brain cortex”, etc. During cell type curation, we find there exists both

newly formed oligodendrocytes (NF Oligo) and oligodendrocytes (Oligo) in “Mouse

brain pFC”. We first categorize NF Oligo into oligodendrocytes, but we find NF Oligo

is annotated as polydendrocytes in “Mouse brain FC” when visualizing subjects from

“Mouse brain FC” and “Mouse brain pFC” together (Appendix Figure A.7). There-

fore, we decide to categorize NF Oligo as polydendrocytes. In summary, there are 7

major cell types: neuron, interneuron, astrocytes, oligodendrocyte, polydendrocyte,

endothelial and microglia. We use P60FCCx3cr1Rep1 from “Mouse brain FC” as the

target individual to validate the condition effect.
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A.2.2 Analysis details for comparing pooling effect

Under intra-dataset setting, we conduct three experiments (1) 8 lupus patients in

batch1 from “Human PBMC lupus”, (2) 7 mice from “Mouse brain FC” using 14

major cell types, and (3) the same subjects using 81 sub-cell types. We fix one

individual (ID: 1085) in (1) and one mouse subject (P60FCCx3cr1Rep1) in (2)(3) as

target and then perform the “pooling” strategy. For “pooling”, we combine all other

individuals or subjects together to predict the fixed one. Then, we down-sample the

combined reference to the average number of the dataset (total number of cells divided

by number of individuals or subjects) for 30 times. As for inter-dataset, we use 7 mice

in “Mouse brain FC” to predict 6 mice with saline treatment in “Mouse brain pFC”.

Curation procedure has been done first. Then, we use each mouse in “Mouse brain

pFC” as target to perform individual effect and then the “pooling” strategy. When

using each mouse as target, the down-sampling is performed 10 times.

A.2.3 Datasets for pooling saturation analysis

When analyzing the performance saturation of using larger reference data, we conduct

three experiments using mouse brain datasets because they have more individuals and

cells compared to other datasets. For predicting major and sub-cell types within the

dataset, we use 6 individuals in “Mouse brain FC” to predict the rest individual

(P60FCCx3cr1Rep1). For across datasets prediction, we use all 6 mice from “Mouse

brain pFC” and 3 mice from “Mouse brain Allen” to predict major cell types in one

mouse from “Mouse brain FC” (P60FCCx3cr1Rep1) to mimic the real scenario.

A.2.4 Analysis details for purifications

We conduct four experiments for testing cell purifications. The first three experiments

come from “Human PBMC lupus” and the last experiment is conducted on “Mouse
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brain FC”. We (1) use one lupus patient (ID: 1154) to predict another patient (ID:

1085) in batch1; (2) use 8 lupus samples from batch1 to predict 8 lupus samples

from batch2; (3) use 8 lupus samples from batch2 to predict 8 IFN-β treated samples

from the same batch; (4) use one mouse subject (ID: P60FCRep1) to predict another

subject (ID: P60FCCx3cr1Rep1) from the same brain region on sub-cell types. For

distance-based purification, we first compute each cluster’s centroid by averaging the

processed read count matrix (scale and log-normalized) of cells belonging to this

cluster. Next, we compute the Euclidean distance between each cell and the centroid

and remove 10% cells with the largest distance. For probability-based purification,

we first fit an SVM with RBF kernel model on the reference dataset and generate a

probability matrix denoting how possible a cell belongs to a cluster. Then, for each

cluster, we remove 10% cells with the lowest probability. After purifying the cluster,

we predict again on the same target dataset.

A.3 Analyses details on pooling saturation

For creating reference data by combining individuals, we first randomly shuffle the

orders of the individuals, and then sequentially add them to the reference dataset.

For each reference, we perform F-test to select the top 1000 features selection and

predict cell types in the target dataset. To remove the potential variations brought by

the order of the individual, we repeat the above procedure for 50 times and average

the results. For creating reference data by subsampling from all cells, we first pool

all cells from all individuals together and randomly shuffle the order. We add 3,000

cells each time to create a reference dataset. Again, we repeat this process 50 times

in order to reduce the variations in sampling.
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A.4 Number of features has an impact on perfor-

mance

We also inspect how the number of features might affect the prediction. We pick

two experiments as illustrations. One experiment is using 8 samples from “Human

PBMC lupus” batch2 under control status as a reference to predict 8 IFN-β stimulated

samples from the same batch. The other experiment is using one mouse in “Mouse

brain FC” to predict another mouse “Mouse brain FC”. We set the feature number

from 100 to 5,000 with 100 as the step size. For the first experiment, the performance

reaches a peak of around 500-600 features and decreases when the feature number

increases (Appendix Figure A.8A). For the second experiment, the performance first

increases and plateaus after 500 features (Appendix Figure A.9A). The pattern can be

fully explained by the tSNE dimension reduction plot (Appendix Figure A.8B, A.9B)

for both experiments. When the feature number increases, clusters first become

tighter and then gradually over-clustered. For major cell types, over-clustering will

not affect prediction, but for similar subtypes, it introduces biases. However, feature

selection itself is a very interesting research topic in the single-cell research area. In

our study, we choose 1,000 as the number of features for further analysis because

most experiments perform well.
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Table A.1: Mouse brain datasets used in evaluation study

Dataset Description Protocol No. cells No. major cell
types (subtypes)

Mouse
brain
FC

GSE116470, Frontal cor-
tex brain region, 7 male
adult mice subjects

Drop-seq 71,639 14 (81)

Mouse
brain
HC

GSE116470, Hippocam-
pus cortex brain region, 6
male adult mice subjects

Drop-seq 53,204 12 (103)

Mouse
brain
pFC

GSE124952, 6 saline-
treated adult mice (2
in each 3 timepoints:
control, 48h after cocaine
withdrawal (CW), 15
days after CW)

10X Chromium 11,886 8 (9)

Mouse
brain
cortex

SCP425, cortex1 and cor-
tex2 samples from one-
month old mice

DroNc-seq 1,452 (cortex1)
892 (cortex2)

8

Mouse
brain
Allen

NeMO: dat-jb2f34y, 3
male adult mice with
frontal cortex extracted

10X Chromium 65,944 8 (47)

Note: We remove pericytes from Mouse brain cortex dataset. For Mouse brain Allen
dataset, we extract out cells within ACA and PL;ILA;ORB brain regions and
consider them as frontal cortex.
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Table A.2: Human PBMC Datasets used in evaluation study

Dataset Description Protocol No. cells No. major cell
types (subtypes)

Human
PBMC
lupus

GSE96583, batch1, 8 SLE
patients

10X Chromium 12,544 6 (8)

Human
PBMC
lupus

GSE96583, batch2, 8 SLE
patients untreated for 6
hours

10X Chromium 12,138 6 (8)

Human
PBMC
lupus

GSE96583, batch2, 8
SLE patients activated
by IFN-β for 6 hours

10X Chromium 12,167 6 (8)

Human
PBMC
proto-
cols

SCP424, pooled frozen
25million pbmc1 and
within 4-hour fresh blood
pbmc2

Smart-seq2/
CEL-Seq2/ 10X
Chromium (v2)

6,814 (pbmc1)
223 (pbmc2)

6 (9)

Human
PBMC
FACS

10X Genomics Datasets,
fresh healthy Donor A
with 10 bead-enriched
subpopulations

FACS 94,655 5 (10)

Note: For Human PBMC 7 protocols dataset, we extract pbmc1 data with
Smart-seq2, CEL-Seq2 and 10X Chromium protocols and pbmc2 data with
Smart-seq2 data only.

Table A.3: Human Pancreas datasets used in evaluation study

Dataset Description Protocol No. cells No. major cell
types (subtypes)

Human
Pan-
creas

GSE85241, 4 dead donors
(1 female, 3 males; varia-
tion in Age and BMI), 8
libraries

CEL-Seq2 2,018 6

Human
Pan-
creas

E-MTAB-5061, 6 healthy
and 4 T2D individuals
(variation in healthy gen-
der and age, BMI)

Smart-Seq2 2,038 6

Human
Pan-
creas

GSE81608, 12 Healthy
and 6 T2D donors (bal-
anced gender, varied age,
BMI, weight)

SMARTer 1,492 6

Note: We curate the human pancreas datasets only containing the 6 major cell
types including alpha, beta, gamma, delta, acinar and ductal cells.
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Figure A.1: Prediction performance comparisons before and after imputation. (A)
Accuracy; (B) ARI; (C) Macro F1. The imputation methods are performed on both
reference and target datasets. The black, orange, blue, and green bars stand for
MAGIC, SAVER, scVI and the one without imputation respectively.
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Figure A.2: Prediction performance comparisons before and after batch effect correc-
tion. (A) Accuracy; (B) ARI; (C) Macro F1. The batch effect correction is performed
between reference and target datasets. The black, orange, and blue bars stand for
Harmony, fastMNN and the one without batch effect correction respectively.
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(A)

(B)

(C)

(D)

Figure A.3: Impact of “pooling” on individual effect under intra-dataset and inter-
dataset scenarios on ARI and Macro F1. (A)(B)(C) are under intra-dataset setting
(black line indicates “pooling” all individuals) and (D) is under inter-dataset setting
(black box indicates “pooling” all individuals).
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(A)

(B)

Figure A.4: Cell type annotations when combining “Mouse brain pFC” and “Mouse
brain cortex” to predict the target from the “Mouse brain FC” dataset. (A) The blue
dots in red box are cells from “Mouse brain cortex” and all other blue dots come from
“Mouse brain pFC”. The orange dots are cells from “Mouse brain FC”. As shown in
(B), corresponding cells in the red box contain a mixture of several cell types. (C)
Ground truth cell types for target dataset. (D) Predicted cell types for target dataset.
(D) shows some interneurons (green dots) misclassified as neurons (purple dots).



95

(A)

(B)

(C)

Figure A.5: The blue line, orange line and green line indicate Accuracy, ARI and
macroF1 changes respectively. Results are based on 50 random shuffles when adding
individuals (left panel) and cells (right panel). The shaded area is the 0.025 quantiles
and 0.975 quantiles of the 50 results. (A) “Mouse brain FC” within dataset prediction
using major cell types; (B) combines the “Mouse brain pFC” and “Mouse brain Allen”
to predict one individual in “Mouse brain FC”; and (C) “Mouse brain FC” sub-cell
types prediction. With more individuals being added, the performance increases and
saturates in (A) and (B) but increases without saturation in (C).
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(A)

(B)

Figure A.6: Orange dots are remained as reference dataset and blue dots are removed
by different purification strategies. (A) “Human PBMC lupus”: use one lupus sample
from batch1 to predict another sample from the same batch under the same condition.
(B) “Mouse brain FC”: use one mouse subject to predict another mouse from the
same dataset under the same condition on sub-cell types. As shown in the right
panels, cells on boundaries of clusters are removed in probability-based purification.

Figure A.7: Different cell type annotations between mouse brain datasets. The red
box contains two lineages. The blue lineage is annotated as newly formed oligoden-
drocytes (NF Oligo) while the orange lineage is annotated as polydendrocytes.
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Figure A.8: Impact of feature number when using 8 samples from “Human PBMC
lupus” batch2 to predict 8 IFN-β treated samples from the same batch. (A) shows
Accuracy, ARI and Macro F1 performance changes when selecting 100 to 5,000 fea-
tures and (B) shows tSNE visualizations when selecting 100, 500 and 2,000 features.

100 features 500 features 2,000 features

(A)

(B)

Figure A.9: Impact of feature number when using one mouse subject from “Mouse
brain FC” to predict another mouse subject from the same dataset under the same
condition. (A) shows Accuracy, ARI and Macro F1 performance changes when se-
lecting 100 to 5,000 features and (B) shows tSNE visualizations when selecting 100,
500 and 2,000 features.
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Appendix B

Appendix for Chapter 3

B.1 Data preprocessing by ArchR

All raw scATAC-seq data (fragment or bam files) are processed by ArchR. We set

genome hg19 for human PBMCs datasets and mm10 for mouse brain datasets. Then,

we load the downloaded fragment files or bam files as input for ArchR to generate

the ArrowFiles with createArrowFiles() function. In the function, two parameters

serve with quality control purpose: minTSS and minFrags. We adjust the thresholds

according to original papers to obtain high-quality cells.

The gene score matrices and genome-wide fixed-size bin counts are generated

using the default setting in ArchR. The gene score matrix is generated with ArchR

recommended gene score model (as illustrated in the next subsection). The bin counts

are generated with 500-bp bins genome-wide. This results in around 6 million bins

in hg19 and 5 million bins in mm10. To accelerate the data loading time, we filter

out the bins with non-zero counts in less than 1% cells to reduce the feature space.

The peak-by-cell matrices generation needs additional peak calling steps in ArchR.

To reuse the ArrowFiles generated earlier, we put ArrowFiles from all human PBMCs

datasets together and call peaks. ArchR first clusters cells and then creates pseudo-
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bulk replicates to assure the reproducibility of peak calling. Once the peaks are

obtained, reads are counted on the peak regions to generate the peak count matrices.

The same procedure has been performed in mouse brain datasets.

B.2 An introduction to different ArchR gene score

models

The script to generate gene score models is provided by ArchR (https://github.

com/GreenleafLab/ArchR_2020). In total, there are eight categories of gene score

models including:

• (1) Model – Promoter: This class of models count the reads located on the

promoter region with different window sizes.

• (2) Model – GeneBody: This class of models count the reads located on the

whole gene body with certain extension in up- or down-stream.

• (3) GeneModel – Constant: This class of models count reads from 1K bps

upstream transcription start site (TSS) and different bps downstream TSS.

The constant gene model considers each read having the same weight as 1.

• (4) GeneModel – TSS – Exponential: This class of models extract reads from

1K bps upstream and 100K bps downstream TSS. Gene boundaries are set so

that reads from one gene body will not overlap with other gene bodies. Then, an

exponential decay function is used to weight the reads from each windowed tile

based on the distance to TSS. The exponential decay function is demonstrated

as exp(−abs(distance)
window

+ exp(−1)) with different window parameters.

• (5) GeneModel – TSS – NoBoundary – Exponential: Same as (4) except no

gene boundaries are set.

https://github.com/GreenleafLab/ArchR_2020
https://github.com/GreenleafLab/ArchR_2020
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• (6) GeneModel – GB – Exponential: Same as (4) except the distance in the

exponential decay function is calculated based on the distance to gene bodies

instead of TSS. Gene boundaries are set in this class of models.

• (7) GeneModel – GB – Exponential – Extend: Same as (6) except the gene bod-

ies are extended. The distance in the exponential decay function is calculated

based on the extended gene bodies.

• (8) GeneModel – GB – NoBoundary – Exponential: Same as (6) except there

are no gene boundaries limitations.

The gene score model recommended by ArchR lies in category (7). It integrates

the signals from the gene body with TSS extended 5kb in the upstream direction.

Then, it weights the reads outside the gene body region and use the window parameter

as 10,000.

B.3 Majority voting strategy

When evaluating the choice of gene score model, we apply the majority voting strat-

egy to 54 ArchR gene score models. We use one gene score matrix from the reference

data to train the Cellcano two-round model and predict the corresponding gene score

matrix from the target data. This results in 54 predictions for each cell. We then

select the one with the highest vote as the final cell type. In total, we select four inter-

dataset human PBMCs experiments as examples which are: (1) use PBMC D10T1

from Granja et al. PBMCs dataset as reference to predict PBMC Rep1 from Sat-

pathy et al. PBMCs dataset; (2) use PBMC D10T1 from Granja et al. PBMCs

dataset as reference to predict PBMC Rep2 from Satpathy et al. PBMCs dataset;

(3) use PBMC Rep1 from Stapathy et al. PBMCs dataset as reference to predict

PBMC D10T1 from Granja et al. PBMCs dataset; and (4) use PBMC Rep1 from
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Stapathy et al. PBMCs dataset as reference to predict PBMC D11T1 from Granja

et al. PBMCs dataset.

B.4 Details on datasets processing

We download either fragment or bam files for all datasets. We collect datasets for

human PBMCs, and mouse brains listed in Appendix Table B.1.

Datasets in human PBMCs include:

• The Satpathy et al. PBMC dataset [95] is downloaded from GEO with the

accession number GSE129785. It contains 4 healthy individuals labeled as

PBMC Rep1, PBMC Rep2, PBMC Rep3, and PBMC Rep4. We download the

fragment files for them. The cell types are annotated based on unsupervised

clustering with prior biological knowledge.

• The Granja et al. PBMC dataset [34] is from a mixed-phenotype acute leukemias

study (MPAL). We download the fragment files from GEO with the accession

number GSE139369. We focus on the 5 replicates which contain 3 healthy

donors: PBMC D10T1, PBMC D11T1, PBMC D12T1, PBMC D12T2, and

PBMC D12T3. The cell types are annotated based on Seurat SNN cluster-

ing results as well as the manually curated marker gene lists.

• The 10X PBMC dataset is downloaded from the 10X Single Cell Multiome

ATAC + Gene Expression with granulocytes removed through cell sorting. We

use the data with 10k cells. The dataset contains one healthy donor and the

cell type annotations are obtained from MOFA pipeline [4].

• The FACS PBMC dataset [56] is available on GEO with accession number as

GSE123578. Five human PBMCs cell types are sorted: CD4 T cells, CD8 T

cells, B cells, Monocytes, and NK cells.
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All human PBMCs datasets are mapped to human genome build hg19, except for

10X PBMC dataset, which is based on hg38. We use liftOver to map that dataset to

hg19 so that all four datasets are consistent. All cell types are curated into 6 major

cell types: B cells, CD4 T cells, CD8 T cells, NK cells, Monocytes and Dendritic cells.

The mouse brain datasets include:

• The Lareau et al. dataset [56] is downloaded from GEO with accession number

as GSE123581. There are 2 mice in this dataset. Cell types are labeled based

on the projection of another scRNA-seq mouse brain dataset. The projection

is done by calculating the correlation between the promoter-region chromatin

accessibility scores and gene expression on marker genes.

• The Cusanovich et al. dataset [25] is obtained from The Mouse sci-ATAC-seq

Atlas (https://atlas.gs.washington.edu/mouse-atac/data/). We extract

WholeBrainA 62216, WholeBrainA 62816, PreFrontalCortex 62216 and Cere-

bellum 62216 as our mouse brain samples. Cells are annotated based on unsu-

pervised clustering and cluster-specific marker gene lists.

All mouse brain datasets are mapped to mouse genome build mm10, except for the

dscATAC-seq Mouse Brain dataset, which is based on mm9. We use liftOver to lift

the genome to mm10. We curate all cells into 7 major cell types including: Excitatory

neurons, Inhibitory neurons, Microglia, Endothelial, Astrocyte, Oligodendrocyte and

Polydendrocyte.

https://atlas.gs.washington.edu/mouse-atac/data/
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Table B.1: Datasets used in Cellcano study

Datasets OrganismsTissue Protocol No.
cells

No.
indi-
viduals
(repli-
cates)

No. cell
types

Satpathy et
al.

Human PBMCs 10X Chromium 21,126 4 6

Granja et al. Human PBMCs 10X Chromium 8,302 3 (5) 6
10X PBMCs Human PBMCs 10X Single Cell Mul-

tiome ATAC + Gene
Expression

11,909 1 6

FACS
PBMCs

Human PBMCs Flow Cytometry 21,214 1 5

Lareau et al. Mouse Brain dscATAC-seq 61,558 2 7
Cusanovich
et al.

Mouse Brain sci-ATAC-seq 18,632 2 (4) 7

Note: In FACS PBMCs dataset, each cell type is extracted from different donors.
Here, we consider them as one individual.
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Figure B.1: (a) ARI and (b) macroF1 comparisons on n = 29 human PBMCs celltyp-
ing tasks between Cellcano with genome-wide fixed-size bins as input and Cellcano
with gene scores as input. (c) ARI and (d) macroF1 comparisons on n = 21 mouse
brain celltyping tasks. The dotted red lines are identity lines.
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Figure B.2: (a) ARI and (b) macroF1 gains/losses using different entropy cutoffs in
n = 29 human PBMCs celltyping tasks. Each box contains n = 29 prediction results.
(c) ARI and (d) macroF1 gains/losses using different entropy cutoffs in n = 21 mouse
brain celltyping tasks. Each box contains n = 21 prediction results.
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Figure B.3: (a) ARI, (b) macroF1, (c) Cohen’s kappa, (d) median precision, (e) me-
dian recall and (f) median F1 comparisons on n = 7 celltyping tasks using one human
PBMCs FACS-sorted dataset as the target. Each box contains n = 7 prediction
results. (a)-(b) include prediction performances both from celltyping methods and
integration with label transfer methods. All boxplots are ordered to have the leftmost
method with the highest average performance. Note that we use red dots to indicate
the mean of the data.
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Figure B.4: (a) ARI, (b) macroF1, (c) Cohen’s kappa, (d) median precision, (e) me-
dian recall, and (f) median F1 comparisons on n = 22 more human PBMCs celltyping
tasks. Each box contains n = 22 prediction results. (a)-(b) include prediction perfor-
mances both from celltyping methods and integration with label transfer methods.
All boxplots are ordered to have the leftmost method with the highest average per-
formance. Note that we use red dots to indicate the mean of the data.
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Figure B.5: (a) ARI, (b) macroF1, (c) Cohen’s kappa, (d) median precision, (e) me-
dian recall, and (f) median F1 comparisons on n = 21 mouse brain celltyping tasks.
Each box contains n = 21 prediction results. (a)-(b) include prediction performances
both from celltyping methods and integration with label transfer methods. All box-
plots are ordered to have the leftmost method with highest average performance.
Note that we use red dots to indicate the mean of the data.



109

−40

0

40

−40 0 40
tSNE1

tS
N

E2

Ground Truth

−40

0

40

−40 0 40
tSNE1

tS
N

E2

First−round Prediction

−40

0

40

−40 0 40
tSNE1

tS
N

E2

Cell Labels
Astrocyte
Endothelial
ExNeuron
InNeuron
Microglia
Oligodendrocyte

Second−round Prediction

−5

0

5

10

15

20

0 10
UMAP1

U
M

AP
2

First−round Prediction

−5

0

5

10

15

20

0 10
UMAP1

U
M

AP
2

Cell Labels
Astrocyte
Endothelial
ExNeuron
InNeuron
Microglia
Oligodendrocyte

Second−round Prediction

−5

0

5

10

15

20

0 10
UMAP1

U
M

AP
2

Ground Truth

a b c

d e f

Figure B.6: (a)-(c) are tSNE visualizations and (d)-(f) are UMAP visualizations.
The cells are colored with (a)(d) ground truth labels; (b)(e) Cellcano first-round
predicted labels; and (c)(f) Cellcano second-round predicted labels. The red boxes
indicate Cellcano’s ability to correct wrongly assigned cells predicted from the first
round.
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Figure B.7: Heatmap showing all prediction performances in 29 human PBMCs cell-
typing tasks. The celltyping tasks are labeled with corresponding categories. The
heatmap is sorted to have the left most column with the highest average perfor-
mance.
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Figure B.8: Heatmap showing all prediction performances in 21 mouse brain cell-
typing tasks. The celltyping tasks are labeled with corresponding categories. The
heatmap is sorted to have the left most column with the highest average perfor-
mance. Note that EpiAnno fails to generate results for two larger celltyping tasks
(denoted as NA in the figure) due to memory limit.
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Figure B.9: Visualization on batch effect removal showing one of the celltyping tasks
using one FACS-sorted dataset as target and a combination of four individuals from
Satpathy et al. PBMCs dataset as reference. The left panels show the integrated
datasets labeled by data source which is either from reference or target. The middle
panels show the individual information, and the right panels show the cells colored
by cell types. (a) shows the visualization before batch effect removal along with
visualizations after batch effect removal conducted with (b) ComBat using peaks as
input, (c) LIGER using peaks as input, (d) Portal using gene scores as input, and (e)
Harmony using gene scores as input.
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Appendix C

Appendix for Chapter 4

C.1 Bulk RNA-seq data preprocessing

The raw count of mouse bulk RNA-seq study on neurodegenerative dementia is down-

loaded from Gene Expression Omnibus (GEO) (Accession number: GSE90693). DE

analysis is performed using DESeq2 [69] to obtain DEGs in each brain region.

The raw count of bulk RNA-seq study on PTSD is downloaded from Recount2

[24]. We extract out the experiment contrasting PTSD cases and healthy controls

with time point of preemployment and perform DESeq2 to obtain DEGs.

C.2 DEGs detection using DEseq2

We first use DESeqDataSetFromMatrix() function to create an object for running

DESeq2 and feed in the design matrix. We do not filter out any genes and perform

DESeq() function to estimate the parameters. Then results() function is used to

extract out pvalues or DEGs.
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C.3 scRNA-seq data preprocessing

In this study, we include marker genes from mouse whole brain, human prefrontal

cortex (pFC) and human PBMC, along with 66 cell-types’ markers from four tissues

(midbrain, cord blood, ovary and skeletal muscle) adopted from MSigDB. For each

scRNA-seq dataset, we first retrieve raw read count matrix. Next, we filter out low-

quality cells and genes and apply column-wise normalization and log transformation

on the data.

The mouse whole brain scRNA-seq dataset [96] produced using the Drop-seq tech-

nology [76] contains nine brain regions from adult mice. The data provided has al-

ready been prefiltered by the authors. For cell types other than neurons, we directly

utilize the information provided on the study website (http://dropviz.org/). For

neurons and interneurons, we curate the sub-cell types following the original study.

The human pFC scRNA-seq dataset [82], produced by 10X Genomics Chromium,

is derived from the pFC region (specifically BA9). The dataset contains two condi-

tions: healthy controls and major depressive disorder. We split the data matrix into

two parts and filter out cells expressing less than 10 genes and genes expressed in

less than 10 cells, respectively. We also filter out mitochondrial, ribosomal genes and

genes from annotation clusters (Astros 1, Mix 1, Mix 2, Mix 3, Mix 4, Mix 5 and

Inhib 4 SST).

The PBMC dataset [39], generated by CITE-seq technology [99], is derived from

an HIV vaccine trial study which involves eight volunteers at three time points: im-

mediately before, three days and seven days after the vaccine. The study contains

161 764 cells in total. To accelerate the marker gene selection, we separate the count

matrix according to the time label and filter out low-quality cells and genes (mito-

chondrial, ribosomal genes and those expressed in less than 1000 cells). The cluster

annotated as ‘Doublet’ is filtered out.

http://dropviz.org/
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C.4 MSigDB marker genes

We download cell marker gene sets from MSigDB category C8-cell type signature

gene sets. Since not all tissue types are suitable for LRcell, we apply the following

criteria to select tissues: (i) nonfetal tissues; (ii) have more than eight sub-cell types;

(iii) minimum number of marker gene greater than 50 and (iv) median number of

marker genes greater than 80. In the end, four tissue types remain: the midbrain,

cord blood, ovary and skeletal muscle.

C.5 Differential expressed genes (DEGs) detection

using Limma-Voom

We first use the calcNormFactors() function to calculate normalization factors. For

comparison purpose, since we do not filter out genes during DESeq2 analysis, we do

not filter out any genes when conducting Limma-Voom analysis. We then design the

design matrix and use voom() function to calculate the mean-variance trend. Next,

a linear model is fit using lmFit() function and group contrast is calculated using

makeContrasts() function. Then contrast for each gene is estimated by contrasts.fit()

function along with smoothing of standard errors with eBayes(). Finally, topTable()

function is used to extract out p-values of DEGs.
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Figure C.1: Line plots show the comparisons of CellAMA, scJoint, and Seurat in
Accuracy, macroF1, and Cohen’s kappa for each celltyping prediction task.
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y-axis.
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a

b

c

Figure C.3: tSNE visualization of (a) CellAMA, (b) scJoint, and (c) Seurat V3. The
left panels indicate the modality of the datasets, either scRNA-seq data or scATAC-
seq data. The middle panels show the ground truth cell label information and the
right panels show the predicted cell types.
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Figure C.4: LRcell analysis results obtained from simulated data. (A)-(B): LRcell
analysis result from data simulated under the scenario that there are DEGs in selected
sub-cell type but the proportions of all sub-cell types remain the same. (A) The
proportions of all sub-cell types are evenly distributed; (B) The proportion of all
sub-cell types are not evenly distributed. (C)-(E): Comparison of results obtained
using different methods on data simulated under the scenario that only proportions
of the five sub-cell types have changed. (C) LRcell result. (D) MuSiC result. (E)
GSEA result. (F)-(H): Comparison of results obtained using different methods on
data simulated under the scenario that only proportions of the 10 sub-cell types have
changed. (F) LRcell result. (G) MuSiC result. (H) GSEA result. (I)-(K): Comparison
of results obtained using different methods on data simulated under the scenario that
only proportions of the 15 sub-cell types have changed. (I) LRcell result. (J) MuSiC
result. (K) GSEA result. Here, rank 1 indicates the changes are correctly identified
where the actual change in the specific sub-cell type among the 5, 10 or 15 sub-cell
types is correctly captured.
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A B C

Figure C.5: Comparison of results obtained using different methods on data simulated
under a specific simulation experiment scenario. There are 15 sub-cell types were
involved and 1,000 cells were simulated. In the simulation experiment, only FC 1-
1.Interneuron CGE’s proportion was increased by 20% from the original proportion.
(A) LRcell result. (B) MuSiC result. (C) GSEA result.
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C D

Figure C.6: Robustness of LRcell results with different number of marker genes on
the PTSD study. LRcell results using (A) top 50, (B) top 300, (C) top 600 and (D)
top 1,000 marker genes derived from the PBMC dataset.
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A B

Figure C.7: LRcell result obtained on DEGs detected by the Limma-Voom method.
(A) LRcell result on the AD study using DEG p-values calculated by Limma-Voom.
(B) LRcell result on the PTSD study using DEG p-values calculated by Limma-Voom.
We did not filter out any gene and default parameters of Limma-Voom were used.

A B

Figure C.8: Comparison of computing time of LRcell, GSEA and MuSiC when an-
alyzing simulated data. (A) Different number of cells in the simulated dataset. (B)
Different number of sub-cell types in the simulated dataset.
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[84] Aaron M Newman, Chloé B Steen, Chih Long Liu, Andrew J Gentles, Aadel A

Chaudhuri, Florian Scherer, Michael S Khodadoust, Mohammad S Esfahani,

Bogdan A Luca, David Steiner, et al. Determining cell type abundance and

expression from bulk tissues with digital cytometry. Nature biotechnology, 37

(7):773–782, 2019.



135

[85] Siew-Min Ong, Karen Teng, Evan Newell, Hao Chen, Jinmiao Chen, Thomas

Loy, Tsin-Wen Yeo, Katja Fink, and Siew-Cheng Wong. A novel, five-marker

alternative to cd16–cd14 gating to identify the three human monocyte subsets.

Frontiers in immunology, 10:1761, 2019.

[86] Giovanni Pasquini, Jesus Eduardo Rojo Arias, Patrick Schäfer, and Volker
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