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Abstract:

Infectious disease models attempt to evaluate the effects on the spread and trans-
mission of disease. One particular model, the susceptible-infected-recovered (SIR)
model, places individuals into classes of disease progression, where a series of dif-
ferential equations tracks the rates of transmission and recovery for a given disease
through a susceptible population. Two parameters, the transmission parameter and
the recovery parameter, drive the dynamics of the model, and their ratio, R0, is the
average number of cases caused by one infectious individual within a completely sus-
ceptible population. R0 is seen as one of the most important quantities in the study of
epidemics, and signals how quickly a particular disease can spread amongst a suscep-
tible population. Previous analyses have focused primarily on tracking these epidemic
disease parameters over time, and classifying individuals due to baseline differences
which reflect heterogeneity within the population. For example, these differences can
be based on age, gender, vaccination status, or behavior.

However, we choose to quantify the spatial heterogeneity that exists in spatially-
referenced data in an effort to define core areas of disease rates and transmission.
We first consider geographically weighted regression (GWR) models in an effort to
assess the spatial variability that exists between disease rates and baseline tract-
level characteristics which can define core disease areas. Next, we build hierarchical
Bayesian models which incorporate random effects structures, inducing correlation
in local estimates of disease transmission with exchangeable random effects, which
smooth local estimates based on global averages, and conditionally autoregressive
(CAR) random effects, which smooth local estimates based on neighboring estimates.
We extend a chain binomial model to predict the spread of disease, while considering
two different parameterizations of the chain binomial model, and simulate outbreaks
to assess model performance. In addition, we extend a general epidemic model, which
incorporates aspects of frailty models in assessing heterogeneity within the popula-
tion. Through our modeling approaches, we are able to identify cores areas for the
transmission of sexually transmitted infections (STIs) in Baltimore, Maryland from
2002-05.



Estimation of Epidemic Model Parameters:

A Spatial Analysis using Bayesian Techniques

By

Jeffrey M. Switchenko

M.S., Emory University, 2010

B.A., Bowdoin College, 2006

Advisor: Lance A. Waller, Ph.D.

A dissertation submitted to the Faculty of the

James T. Laney School of Graduate Studies of Emory University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in Biostatistics

2011



Acknowledgements

I would like to thank my advisor, Lance Waller, for his incredible support and

advice over these last five years. The challenges I have faced along the way would

have been impossible to tackle without his help and advice.

I would also like to thank my committee members, Andrew Hill, Michael Haber,

and Leslie Real, for their help and suggestions on my dissertation. Their guidance

has been invaluable in my progress towards finishing my dissertation. For her help

in accessing the data, I would like to thank Jacky Jennings from Johns Hopkins

University who made this research possible.

In my time at Emory University, I have had the opportunity to consult on a

number of projects, which would not have been possible without the assistance and

opportunities provided by Kirk Easley and Michael Kutner. In addition, I would like

to thank Patrick Kilgo for providing me with teaching opportunities in a problem-

based learning environment as well as the opportunity to work on creative projects in

statistics in baseball research. Thanks to all the various students and faculty members

in my department for their help and encouragement.

Finally, I would like to thank my parents for their constant support, guidance,

and love through every step of my life. My completion of the degree is a reflection of

their dedication and sacrifice to make my goals possible.



Contents

1 Introduction 1

1.1 SIR Disease Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Parameters of interest . . . . . . . . . . . . . . . . . . . . . . 3

1.1.2 Differential equations . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 R0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Analysis and Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Mathematical vs. Statistical Modeling 12

2.1 Calculation of R0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.1 Basic calculation . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.2 Survival function . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.3 Multitype model . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.4 Next-generation operator . . . . . . . . . . . . . . . . . . . . . 18

2.2 Statistical Estimation of R0 . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.1 Epidemic curve estimation . . . . . . . . . . . . . . . . . . . . 19

2.2.2 Final outbreak size . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.3 Least squares estimation . . . . . . . . . . . . . . . . . . . . . 20

2.2.4 Chain binomial models . . . . . . . . . . . . . . . . . . . . . . 21

3 Bayesian Inference for Epidemic Modeling 23

3.1 Chain binomial models . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.1 Transitional approach . . . . . . . . . . . . . . . . . . . . . . 27

3.1.2 Reed-Frost approach . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 General epidemic model . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Introduction to Conceptual Epidemic Models 35

4.1 Initial Spatial Analysis: Tracking Spatial Patterns in Prevalence . . . 35

i



4.2 Methods and Model Descriptions: A Geographically

Weighted Regression Approach . . . . . . . . . . . . . . . . . . . . . 42

4.3 Application to Baltimore STI Data . . . . . . . . . . . . . . . . . . . 45

5 Extending the SIR Model to Spatial Analysis 51

5.1 Chain Binomial: A Transitional Approach . . . . . . . . . . . . . . . 53

5.1.1 Random effects - Exchangeable, Conditionally Autoregressive,

and Convolution Structures . . . . . . . . . . . . . . . . . . . 55

5.2 Transmission Estimation in Chain Binomial Models . . . . . . . . . . 60

5.3 Reed-Frost Chain Binomial Model . . . . . . . . . . . . . . . . . . . . 62

5.4 Chain Binomial Model Overview . . . . . . . . . . . . . . . . . . . . 64

5.5 A Spatial Approach to the General Epidemic Model . . . . . . . . . . 66

5.6 Results: Chain Binomial - Spatial Model . . . . . . . . . . . . . . . . 70

5.6.1 Estimation of Transmission Probability . . . . . . . . . . . . . 70

5.6.2 Estimation of R0 - Transition Chain Binomial Model . . . . . 72

5.6.3 Estimation of R0 - Reed-Frost Chain Binomial Model . . . . . 78

5.6.4 Chain Binomial Model Comparison . . . . . . . . . . . . . . . 82

5.7 Results: General Epidemic Model - Spatial Estimation . . . . . . . . 93

5.8 Assessing Model Performance through Simulations of the Chain Bino-

mial Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.9 Discussion - R0 Estimation Models . . . . . . . . . . . . . . . . . . . 108

6 Future Work 110

6.1 Extensions to Existing Models . . . . . . . . . . . . . . . . . . . . . . 110

6.2 Spatially-varying Coefficient Models . . . . . . . . . . . . . . . . . . . 112

6.3 Identifiability Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Bibliography 114

ii



List of Figures

1 Maps of total GC cases, total population at risk, and GC case rate per

1,000 individuals at risk from 2002-05. . . . . . . . . . . . . . . . . . 37

2 Maps of Baltimore demographics generated in ArcMap using data from

US Census Bureau. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3 The Local Test for spatial autocorrelation is shown above. The black

color indicates significant high-high areas (high rate areas surrounded

by other high rate areas), light gray indicates low-low areas, crosshatch

indicates high-low areas, and solid stripes indicate low-high areas. . . 40

4 Statistically significant most likely clusters based on a spatial scan

statistic for circular clusters ranging up to 50% of the population at

risk (upper left), 25% of the population (upper right), and 25% of the

population at risk adjusting for race (lower left). . . . . . . . . . . . . 42

5 The linear geographically weighted regression maps are shown above.

Local estimates for % black with a bandwidth of 0.02 vs. 0.01 (top

row), % below the poverty line with a bandwidth of 0.02 vs. 0.01

(middle row), and % with a high school degree or higher with a band-

with of 0.02 vs. 0.01 (bottom row) are calculated with a fixed kernel

bandwidth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6 The Poisson geographically weighted regression maps are shown above.

Local estimates for % black with a bandwidth of 0.02 vs. 0.01 (top

row), % below the poverty line with a bandwidth of 0.02 vs. 0.01

(middle row), and % with a high school degree or higher with a band-

with of 0.02 vs. 0.01 (bottom row) are calculated with a fixed kernel

bandwidth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

iii



7 Local median estimates for the transmission probability, i.e. the per-

cent chance of moving from the susceptible class to the infectious class

given a contact with an infectious individual based on the transition

chain binomial model approach. Maps shown include crude probabil-

ity estimates, along with exchangeable, CAR, and convolution random

effects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

8 The Markov chain of the temporal R0 estimate over 10,000 iterations,

along with a histogram of the last 8,000 iterations and a kernel density

estimate over the last 1,000 iterations. . . . . . . . . . . . . . . . . . 73

9 Local median estimates for R0. Estimates obtained using assumption

of a binomially distributed set of newly infected individuals, with ex-

changeable, CAR, and convolution random effects correlation induced

in the transmission parameter. A map of estimates from the crude

(non-adjusted) model is also included. . . . . . . . . . . . . . . . . . . 75

10 Local median estimates for R0. Comparing median estimates of ex-

changeable, conditionally autoregressive, and convolution random ef-

fects with the transition chain binomial model. . . . . . . . . . . . . . 76

11 Local estimates for R0. Comparing median estimates of exchangeable,

conditionally autoregressive, and convolution random effects across

tract number. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

12 The Markov chain of the temporal R0 estimate over 10,000 iterations,

along with a histogram of the last 8,000 iterations and a kernel density

estimate of the last 1,000 iterations. . . . . . . . . . . . . . . . . . . . 78

iv



13 Local median estimates for R0. Estimates obtained using assumption

of a binomially distributed set of infected individuals, with exchange-

able, CAR, and convolution random effects correlation induced in the

transmission probability within the Reed-Frost model. Crude model

map also included. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

14 Local median estimates for R0. Comparing median estimates of ex-

changeable, conditionally autoregressive, and convolution random ef-

fects with the Reed-Frost chain binomial model. . . . . . . . . . . . . 81

15 Local median estimates for R0. Comparing median estimates of ex-

changeable, conditionally autoregressive, and convolution random ef-

fects across tract number using the Reed-Frost chain binomial model. 82

16 Linking the values of R0 for exchangeable, CAR, and crude models

(Transition model). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

17 Linking the values of R0 for exchangeable, CAR, and crude models

(Reed-Frost model). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

18 Posterior densities of R0 for first ten tracts as well as two higher median

R0 tracts, and one lower median R0 tract. CAR random effects - Chain

Binomial Models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

19 Local median estimates for R0. Comparing median estimates of ex-

changeable, conditionally autoregressive, and convolution random ef-

fects with the Reed-Frost chain binomial model. Assumption of Si0 =

300 susceptible individuals per tract. . . . . . . . . . . . . . . . . . . 90

20 Local median estimates for R0. Comparing median estimates of ex-

changeable, conditionally autoregressive, and convolution random ef-

fects across tract number using the Reed-Frost chain binomial model.

Assumption of Si0 = 300 susceptible individuals per tract. . . . . . . 91

v



21 Linking the values of R0 for exchangeable, CAR, and crude models

(Reed-Frost model). Assumption of Si0 = 300 susceptible individuals

per tract. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

22 Local median estimates for R0. Estimates obtained using assumption

of a binomially distributed set of infected individuals, with exchange-

able, CAR, and convolution random effects correlation induced in the

transmission probability within the Reed-Frost model. Crude model

map also included. Assumption of Si0 = 300 susceptible individuals

per tract. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

23 Histogram of R0 for last 500 iterations of the general epidemic model

(Left). Autocorrelation functions over all 1000 iterations and last 500

iterations also shown (Right) . . . . . . . . . . . . . . . . . . . . . . . 94

24 Local median estimates for R0. Estimates obtained using the general

epidemic model, with exchangeable, CAR, and convolution random

effects correlation. Crude model map also included. Assumption of

300 susceptible individuals per tract. . . . . . . . . . . . . . . . . . . 96

25 Local median estimates for R0. Comparing median estimates of ex-

changeable, conditionally autoregressive, and convolution random ef-

fects with the general epidemic model. Assumption of 300 susceptible

individuals per tract. . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

26 Local median estimates for R0. Comparing median estimates of ex-

changeable, conditionally autoregressive, and convolution random ef-

fects across tract number using the general epidemic model. Assump-

tion of 300 susceptible individuals per tract. . . . . . . . . . . . . . . 98

27 Linking the values of R0 for exchangeable, CAR, and crude models

(General epidemic model). Assumption of 300 susceptible individuals

per tract. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

vi



28 Simulated epidemic curves generated with the transition chain bino-

mial model using a value of R0 of 1.01, a susceptible population of

336,551 individuals, and 340 initially infectious individuals. The ob-

served epidemic curve is in bold. . . . . . . . . . . . . . . . . . . . . . 101

29 Iterations of MCMC algorithm, and the estimated posterior density of

R0 over the study space, with a median = 1.021, and 95% credible set:

(0.987, 1.054) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

30 Baltimore City County census tracts divided into three zones. The

zones are assigned the followingR0 values: {1.0, 1.1, 1.2}, {1.3, 1.4, 1.5},

{1.6, 1.7, 1.8}, {1.9, 2.0, 2.1} . . . . . . . . . . . . . . . . . . . . . . . 102

31 Comparing estimates of R0 to the true R0 value used to simulate bi-

nomial chain. Effects of tract population size on R0 estimation also

noted. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

32 Estimates for R0 across Baltimore using the following set of fixed R0

values: {1.0, 1.1, 1.2}, {1.3, 1.4, 1.5}, {1.6, 1.7, 1.8}, {1.9, 2.0, 2.1} . . . 105

33 Comparing estimates of R0 to the true R0 value used to simulate Reed-

Frost binomial chain. Si0 = 300 susceptible individuals per tract. . . . 106

34 Local median estimates for R0. Assessing the spatial pattern of disease

transmission across model type using CAR random effects. The tran-

sition chain binomial model (upper left), Reed-Frost chain binomial

model (upper right), and general epidemic model (bottom center) are

shown above. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

vii



List of Tables

1 List of R0 values for well-known infectious diseases. Note that each

disease has a range of R0 estimates, not one specific value. . . . . . . 7

2 Data and summary statistics taken from American Fact Finder - US

Census Bureau. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3 The linear regression univariate analysis of demographic characteristics

in relation to GC rate in Baltimore. Significance assessed at 0.05 level. 46

4 The multivariate linear regression analysis of demographic characteris-

tics in relation to infections in Baltimore. Note, % black, % below the

poverty line, and % with a high school degree or higher represent the

three most significant covariates in the multivariate setting, controlling

for the other variables. Significance assessed at 0.05 level . . . . . . . 46

5 Summary of our proposed spatial chain binomial models . . . . . . . 65

6 List of parameter estimates for α0 and τ in the transmission probability

model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

7 List of parameter estimates for β0 and τ in the transition chain binomial

model for the estimation of R0. . . . . . . . . . . . . . . . . . . . . . 75

8 List of parameter estimates for α0 in the Reed-Frost chain binomial

model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

9 D̄, D̂, pD, and DIC values for probability, transition, and Reed-Frost

models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

10 Measures of model performance - Comparing the fixed true R0 to es-

timated R0 value using summary statistics with the transition chain

binomial model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

11 Measures of model performance - Comparing the fixed true R0 to es-

timated R0 value using summary statistics. The Reed-Frost approach

with Si0 = 300 susceptible individuals per tract. . . . . . . . . . . . . 107

viii



1

1 Introduction

Since epidemiologic methodology has arisen in the last century, researchers attempted

to quantify, measure, and track infectious diseases over time and space. The goals pri-

marily involved the containment, control, and prevention of infectious disease spread,

and the attempt to define the most vulnerable populations at risk for obtaining dis-

ease. Measures such as calculating disease rates over time or mapping the locations

of disease helped researchers identify disease outbreaks, as with John Snow plotting

cholera cases on a Broad Street map in London in an effort to determine the source

of an outbreak and eliminate it. Attempts to model disease spread involve the basic

premise of controlling infectious diseases and reducing disease incidence. Any model

in infectious diseases is only as effective as the quality and reliability of the available

data, and each model brings a specific insight into the dynamics of a particular infec-

tious disease. For example, some models are effective in accounting for vaccination

rates and others address the inherent heterogeneity of those at risk.

Our research focuses on quantifying the spatial heterogeneity that exists in infec-

tious disease data. By allowing model parameters to vary according to a position in

space, we can identify core areas of disease transmission, i.e. areas of higher disease

rates which are defined geographically and typically can be characterized by socioeco-

nomic factors such as poverty and poor health care access. The objective of our model

choice is to estimate parameters which effectively describe the level of infectiousness

and contagiousness of a given disease, and we hope to identify areas where future

outbreaks are likely. We test our models on sexually transmitted infection (STI) data

collected in Baltimore City County, Maryland from 2002 through 2005.
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1.1 SIR Disease Modeling

Infectious disease systems can be thought of as a complex network of interactions,

representing processes at different scales, and among individuals in a population. In

order to describe some of the underlying mechanisms of disease dynamics, we can

use mathematical and statistical models with sets of assumptions that generate pre-

dictions about a specific system. The process of modeling infectious diseases can be

broken down into a series of objectives where we set up simple models, account for

contact heterogeneities, account for seasonal transmission dynamics, add stochastic

extensions, and ultimately estimate parameters of interest [36]. At the outset, we

can start by assigning individuals within a population to specific categories of disease

transmission, and tracking the progress of the disease using a series of basic differ-

ential equations. These equations account for changes in the numbers of those who

have contracted the disease and those who have recovered from the disease.

The Kermack-McKendrick model is an epidemiological model that computes the

theoretical number of people infected with a contagious illness in a closed population

over time [37]. At any time t, individuals in that population can be classified as

susceptible X(t), infectious Y (t), or recovered Z(t). At the outset of an epidemic,

we assume that the number of people in the susceptible class is approximately equal

to the total population and that the number of infectives is relatively small (close to

zero). We also generally assume that zero individuals are in the recovered stage at

the outset.
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1.1.1 Parameters of interest

Under an assumption of random mixing, i.e. that every individual is equally likely to

interact with any other individual, we define κ as the contact rate between individ-

uals per unit of time, and c as the probability of transmission given contact. For a

susceptible, a fraction Y/N of contacts will be with those who are infected, and in a

small time interval δt, the number of contacts with infectives is κ(Y/N)δt. Thus, the

probability of escaping infection is equal to (1− c)κ(Y/N)δt or 1− δq. If we define the

transmission parameter β as −κ log(1− c), then:

• δq = 1− exp(−βY δt/N)

• δq = 1−

(
1− βY δt/N +

(βY δt/N)2

2!
− (βY δt/N)3

3!
+ ...

)

• δq/δt ≈ βY/N → dq/dt = βY/N

The transmission rate per susceptible is equal to βY/N , and the resulting transmis-

sion rate for the entire susceptible class is −βXY/N . If we assume the recovery rate

is constant, then γ is equivalent to the infectious period or the inverse of the length of

time spent infectious. The transmission rate is assumed to depend on the frequency

of contacts between susceptibles and infecteds in the population Y/N . Although we

assumed κ to be constant, we easily could assume that the contact rate is propor-

tional to the population size N , i.e. the contact rate is equal to κN , resulting in

density-dependent transmission. Frequency dependence is generally more appropri-

ate in large populations with heterogeneous mixing, sexually transmitted infections,

or vector-borne pathogens, while density-dependence is more likely for wildlife dis-

eases with smaller population sizes [36].
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1.1.2 Differential equations

Differential equations form the foundation of the SIR (susceptible-infected-recovered)

model, as rates of change for each class are tracked over time. The dynamics of the

outbreak are governed by two parameters in this basic model: β, the transmission

parameter, and γ, the recovery parameter. The SIR differential equations are defined

as follows:

X(t) = susceptible population size at time t.

Y (t) = infected population size at time t.

Z(t) = removed/recovered population size at time t.

N = X + Y + Z = Total population size, assumed to be constant.

The population dynamics follow:

dX

dt
=
−βXY
N

,

dY

dt
=
βXY

N
− γY , and

dZ

dt
= γY ,

where X(0) = X0 ≈ N , Y (0) = N −X0 ≈ 0, Z(0) = 0.
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The SIR model can also be rewritten to display proportions, as opposed to counts.

We denote S =
X

N
, I =

Y

N
,R =

Z

N
, where S, I, R are now dimensionless proportions

and the dynamics follow:

dS

dt
=

(
1

N

)
dX

dt
= −βXY

N
,

= −β
(
X

N

)(
Y

N

)
,

= −βSI,

dI

dt
= βSI − γI, and

dR

dt
= γI,

where S(0) = S0 ≈ 1, I(0) = 1− S0 ≈ 0, R(0) = 0.

The basic SIR model offers many opportunities for customization. For instance, sea-

sonal changes in disease dynamics and births/deaths (demography) can be taken into

account. An exposed class can be added for diseases with a latency period, and the

model can be adapted to an SIS system, where no individuals develop immunity, i.e.,

individuals move directly from the infective class back to the susceptible class with no

recovery time. Finally, we can account for stochasticity, which involves fluctuations

in population processes that arise from the random nature of events at the level of

the individual, where the baseline probability associated with each event is fixed at

the proportions above, but individuals can experience different outcomes.
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1.2 R0

For frequency-dependent transmission, R0 is defined as the ratio of the transmission

parameter to the recovery parameter,
β

γ
, and can be thought of as the maximum

reproductive potential of a pathogen - also referred to as the basic reproduction num-

ber. If the SIR model is established with density-dependent transmission in a closed

population of N individuals, R0 is equivalent to
βN

γ
, with homogeneous mixing where

each individual produces on average βN offspring per unit of time for an average of

1/γ time-units.

Conceptually, R0 is the average number of susceptible individuals infected by one

infectious individual in a completely susceptible population, and can also be thought

of as the product of the average transmission rate per contact, the average number

of new contacts per time unit, and the average length of infectious period or βcD [3].

As noted by Halloran [28], the value of R0 is not specific to a parasite or pathogen,

but to a population within a particular host population at a particular time. We

further extend this idea by considering R0 as a function of location; that is R0 is also

a function of a particular place. For example, the contact rates in rural areas should

be lower than contact rates in urban areas, so we would expect R0 of measles, for

example, to be lower in rural areas than in urban areas. R0 values for a variety of

well-known infectious diseases are listed below (Table 1).
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Disease Transmission R0

Measles Airborne 12-18
Pertussis Airborne droplet 12-17

Diphtheria Saliva 6-7
Smallpox Social contact 5-7

Polio Fecal-oral route 5-7
Rubella Airborne droplet 5-7
Mumps Airborne droplet 4-7

HIV/AIDS Sexual contact 2-5
SARS Airborne droplet 2-5

Influenza (1918) Airborne droplet 2-3

Table 1: List of R0 values for well-known infectious diseases. Note that each disease
has a range of R0 estimates, not one specific value.

According to Heesterbeek, R0 is the most important quantity in the study of

epidemics and notably in comparing population dynamical effects of control strate-

gies [31]. If everyone is initially susceptible, a sustained outbreak requires X/N =

1 > 1/R0 or R0 > 1, i.e., each infection must do more than replace itself, on average,

for an epidemic to occur. If everyone is not susceptible, then a successful pathogen

invasion requires X/N = 1/R0 so the fraction susceptible must be above 1/R0. In a

spatial setting, this reproduction number is very useful for determining core areas of

disease as it signals how quickly the disease can spread amongst a susceptible popu-

lation and is directly related to the amount of control effort needed to eliminate an

infection from a population.

It is possible to reduce the parameters β and γ to a single parameter, by rescaling

the SIR model. With a rescaled time variable τ = γt, the mean duration of infection

is 1/γ, where a unit increase in τ corresponds to the real elapsed time equal to the

mean duration of infection [22]:

dS

dτ
=

(
1

γ

)
dS

dt
= −

(
β

γ

)
SI,

= −R0SI,
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dI

dτ
= R0SI − I, and

dR

dτ
= I,

where R0 =
β

γ
.

At time 0,
dY

dτ
= Y (R0X0 − 1) ≈ Y (R0 − 1) and the relationship between R0

and R∞ (the fraction of all individuals who contract the disease before it dies out) is:

R0 = − 1

R∞
ln(1− R∞). Thus, the SIR model parameters can be reduced to one pa-

rameter, R0, again demonstrating the central role of R0 in determining the dynamics

of an infectious disease.
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1.3 Analysis and Data

We attempt to extend these infectious disease models to a specific population, and ac-

count for differences in transmission based on location, or spatial heterogeneity. As a

result, we hope to estimate infectious disease parameters spatially in order to address

public health problems in Baltimore, Maryland. Our goal is to provide quantitative

evidence of core areas of disease transmission.

Sexually transmitted infections (STIs) represent a challenging public health

dilemma. In the community of Baltimore, Maryland, researchers at the Baltimore

City Health Department (BCHD) collected information on several STIs over the

course of four years, 2002-05. The data for this analysis include a set of coordinates

for each STI case location in the greater Baltimore area, as well as the date (year,

month, day) of diagnosis. The BCHD recorded a total of 12,556 cases of gonorrhea

(GC) over the study period. For the purposes of our study, we will be grouping the

cases by census tract location in order to perform areal data analysis [6]. Specifically,

we consider the 200 census tracts which make up Baltimore City County. According

to the 2000 US Census, 651,154 people live in Baltimore City County, and consistent

with the STI literature, we consider the 336,551 individuals aged 15-49 in the pop-

ulation to be “at-risk” for GC. This results in a median tract-level incidence rate of

40 GC cases per 1000 individuals at risk from 2002-05 [51].

We will consider four years of data with a total of 12,556 cases of GC contracted

in the Baltimore area. The data will be aggregated by census tract as well as month

of infection, and we will assume that the aggregated cases within each tract at each

time point represent the number of newly infectious individuals. However, in order

to estimate our primary function of parameters, R0, we need both infection times

and removal times. We will assume a fixed infectious period of one month for each

infectious individual, which will fix γ at 1.

GC is a sexually transmitted infection caused by the bacterium Neisseria gon-
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orrhoeae, which can grow and easily multiply in the reproductive tract. It can be

spread through sexual contact, or from mother to child during childbirth. Although

some individuals will remain asymptomatic, symptoms can occur less than 5 days

after infection. Like syphilis, GC can be treated with antibiotics, but the disease

can be reacquired through sexual contact with another individual with the disease.

According to the CDC, gonorrhea is very common, with approximately 700,000 new

cases in the United States each year, although only half are usually reported [25].

From 1975 to 1997, rates declined, although the national rate has steadily climbed

since 2000. Previous spatial analyses of sexually transmitted infections have focused

on gonorrhea [27], chosen because the geography of the disease has been widely stud-

ied, incidence is relatively high, and the disease is easily and readily diagnosed. It

has been noted that because of the disease’s short incubation and absence of acquired

immunity, GC incidence responds rapidly to changes and does not exhibit the wider

oscillations characteristic of other sexual transmitted infections such as syphilis [7].

Hethcote and Yorke developed mathematical models for gonorrhea incidence in

the 1970s and 1980s [56, 32]. Their modeling procedures address the concept of a

saturation factor which limits the prevalence of disease, and they note that acquired

immunity cannot be a saturation factor for GC. A saturation factor occurs when infec-

tious individuals contact individuals who are already infected from different sources

- also known as the preemption effect. Since some individuals may have many more

sex partners than others, the population is not uniform and homogeneously mixing.

Thus, the preemption that limits gonorrhea occurs primarily in a subset of the at-risk

population. As a result, Hethcote and Yorke propose separating the population at

risk into many subgroups according to demographic characteristics and other relevant

factors such as the number of sex partners. Hethcote and Yorke describe the pop-

ulation within groups with significant preemption effects as the “core” driving the

disease dynamics.
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Other epidemiologic studies of STIs have noted substantial associations between

demographic variables and high incidence of STIs. In a number of US cities, African-

Americans typically live in highly segregated neighborhoods, and sexually transmit-

ted infections, as a result, tend to remain confined to those neighborhoods because of

racially and geographically segregated sexual networks [35]. The analyses below build

on earlier studies which have focused primarily on the presence of “core areas” of STI

transmission in Baltimore, Maryland in the mid-1990s [7, 35, 57]. Core areas primar-

ily are defined geographically and can be characterized by socioeconomic factors such

poverty and poor health care access [7]. Other study areas have also been considered

in STI core area analysis [1, 16, 39, 47, 50]. Hethcote and Yorke note that if the

core infections are removed so that there is no saturation in the remaining groups at

risk, the disease will eventually die out [56]. The primary focus of this research will

be to build on the concept of core area identification over space and time through

quantitative methods.
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2 Mathematical vs. Statistical Modeling

In describing the spread of infectious diseases, it may be necessary to quantify the

results using particular mathematical functions to describe the deterministic patterns

in the data. It is possible to use mechanistic descriptions with meaningful parame-

ters, derived from a theoretical model describing the underlying process driving the

pattern [13]. There are a variety of analytical and computational methods available

to explain ecological phenomena, and the differential equations from an SIR model

are an example of a more complex system of functions used to determine the deter-

ministic flow of disease spread in a population. Many of these theoretical models

can provide general insight on an ecological question, and although quantitatively

precise, they result in qualitative conclusions. In 1966, Levins addressed the nature

of theoretical model building as a trade-off between generality, realism, and precision,

and the truths about these ecological questions could be revealed by “robust theo-

rems” [41].

However, for many ecologists and statisticians, it is apparent that true systems

have a level of variability in the system. Purely deterministic differential equations

can describe nicely the general spread of disease from susceptibles to infectives to

recovered individuals, but do not account for “noise” or variability in the estimates of

the parameters driving the dynamics of the model. Thus, the introduction of stochas-

ticity, or randomness, to a deterministic model provides a more accurate description

of how the disease is actually behaving and spreading in a given population. More

specific insight is available than a purely mathematical model, and these applied sys-

tems can capture the real complexity and quirkiness of the behavior of the disease

through added variability in the model. Bolker details this discrepancy as a trade-off

between process, the theoretical set of functions describing expectation, and pattern,

the phenomenological application to real-world dilemmas [13].

Overall, the type of model one chooses and implements is the result of determin-
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ing the ecological questions one wants to answer and the ecological questions one

actually can answer. The data available will help to determine the direction of the

modeling process, and hopefully yield reliable estimates for the questions to be an-

swered. We propose development of mathematical and statistical analyses of R0 for

sexually transmitted infections (STIs) within a geographically defined population.

In the following, we distinguish between mathematical calculations of R0 and sta-

tistical estimation of R0, and we briefly review the literature and common approaches

for both here. Anderson and May proposed the most well-known equation for calcu-

lating R0, where R0 is the product of the transmission probability, the contact rate,

and the duration of the disease (βcD) [3]. However, more advanced methods are

available for determining the theoretical value of R0 for a given disease in a given

population.
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2.1 Calculation of R0

2.1.1 Basic calculation

Two indirect, simple approaches for calculating R0 can be used when the transmission

system is assumed to be in dynamic equilibrium [28]. If one assumes that the average

incidence rate and prevalence of disease are not changing, then the infectious case

will produce one other infectious case, on average, so R = 1. Also, from the relation

R = R0x = 1, the proportion susceptible at equilibrium would be equal to x = 1/R0.

If one assumes random mixing, then R0 is calculated simply by the reciprocal of the

proportion susceptible. In the second method, derived by Dietz, the incidence rate

is assumed to be independent of age, and the average age of infection A is equal to

the inverse of the incidence rate I. If one knows the average life expectancy L of a

population, then R0 is calculated by dividing the life expectancy L by the average

age of infection A [21].

2.1.2 Survival function

Dietz [21] moved from mathematical calculation toward statistical estimation by con-

sidering an underlying survival model. As proposed by Dietz, consider a large popu-

lation and let:

• p(α) = the probability of surviving to age α, or the probability a newly infected

individual remains infectious for at least time α

• β(α) = the rate of giving birth for an individual of age α, or the average number

of newly infected individuals that an infectious individual will produce per unit

time when infected for total time α
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Then:

R0 =
∫∞

0
p(α)β(α) dα

It is straightforward to handle situations in which infectivity depends on time since

infection and other transmission probabilities between states vary with time [48]. If

we assume:

• X = number of susceptibles,

• Y = number of infectives,

• h = proportion of contacted persons who are infected given a contact,

• κ = number of persons contacted per unit of time by one infectious individual,

• γ = rate of transfer to a non-infectious state (either susceptible or immune),

• N0 = initial size of population,

• 1 = initial number of infectious individuals,

• X = N0 − 1 initially (t=0),

then:

dY

dt
= κh

X

N0 − 1
Y − γY , and

Y will increase only if R0 =
κh

γ
> 1 where D =

1

γ
= the duration of the infectious

period, and κD equals the number of persons contacted during this period. As noted

by Dietz, R0 is only meaningful for diseases where contacts are clearly defined such

that they can be counted, and his methods can be difficult to apply in practice [48].
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2.1.3 Multitype model

In the multitype model, Britton [15] and Ball and Clancy [5] assume a closed pop-

ulation of size N , consisting of k different types of individuals, i = 1, ..., k, from a

heterogeneous population, and define a stochastic SIR epidemic model where:

• ni = the number of i-individuals (individuals in type i), and

• πi =
ni
n

, the corresponding population proportion.

If an i-individual becomes infected, he/she becomes infectious, possibly after a latency

period. An i-individual has a “close contact” with any given j-individual at rate
βij
n

,

where a “close contact” is defined as contact which could result in infection if the

other individual is susceptible, else the contact has no effect. The matrix {βij} of

contact intensities is assumed to be irreducible, omitting the possibility of a major

outbreak for some but not all types of individuals. The infectious period Ii has

distribution Fi, mean µi, and standard deviation σi. The parameter λij = µiβij is

also of interest, where λijπj is the expected number of close contacts which an i-

individual has with j individuals during the infectious period. When the infectious

period is over, the individual recovers and becomes immune, and the individual is

removed. The epidemic evolves until there are no more infectious individuals in the

population. All contact processes and infectious periods are defined to be mutually

independent.

If we allow for time-varying infectivity, including an initial latency period, with

{Ii(t); t ≥ 0}, then Ii(t) is the infectivity t time units after infection of an i-individual

and Fi denotes the distribution of
∫∞

0
Ii(t) dt. Thus, a branching process determines

how the infectious individuals infect new individuals independently, and R0 is defined

as largest positive eigenvalue of the matrix λijπj. In the branching process, λijπj

corresponds to the matrix of the mean offspring distribution, where the proportion

sj are susceptible.
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Similar to Britton, Höhle defines R0 in terms of an eigenvalue of a matrix within

a branching process [33]. R0 is then equivalent to the mean number of offspring in

a limiting multitype branching process, which is the Perron-Frobenius eigenvalue of

the matrix: nE(T1)BΠ where E(T1) =
γI
δI

= the mean infectious period, B = the

contact rate matrix, and Π = diag
(n1

n
, ...,

nk
n

)
which is the proportion of the initial

susceptible individuals in the individual units.

According to Grassly, one can also define R0 based on the idea of an offspring

distribution [26]. If Y is the number of secondary infections that are generated by a

single infected individual, then the probability function that describes the distribution

of Y is referred to as the offspring distribution. Thus, the number of secondary

infections would depend on the infectiousness of the index case over time τ since the

index case became infectious, which is equivalent to β(t). This quantity is the product

of biological infectiousness and contact rates or a product of biological, behaviorial,

and environmental infectiousness. R0 can be calculated through the integral:

E(Y ) = c
∫∞

0
β(τ) dτ = R0.

The SIR model typically assumes a constant infectivity β while an individual re-

mains infected and a constant rate of recovery from infection γ such that the time

spent infectious is exponentially distributed. Under an assumption of random in-

fectious contacts among individuals in a population, the reproduction number can

be thought of as a mixture of Poisson distributions with exponentially distributed

means. In reality, the infectiousness and susceptibility of an individual are influ-

enced by many different factors, where individuals can be categorized by any factors

that are considered to be important for infectious disease transmission, denoted as

h-states by Diekmann and Heesterbeek [20]. The h-state variables are characteristics

which describe an individual or group of individuals, and are defined by varying levels

of susceptibility to disease, where h denotes heterogeneity in a population. Similar

methods for determining R0 assuming an age-stratified heterogeneous population are
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discussed by Farrington [24]. The h-state concept also motivates our consideration of

spatial heterogeneity in the model parameters.

2.1.4 Next-generation operator

Heesterbeek and Diekmann provide another approach to calculating R0 using the

next-generation method [20, 31]. To define R0, one must first specify a linear posi-

tive operator - “the next-generation operator” - which maps generations of infected

individuals into each other, as distributed over the possible individual characteristics.

Susceptibles are assumed to be in a steady state in the absence of an infectious agent,

and one only regards the initial stage of an invasion by an infectious agent into a fixed

population of susceptibles.

If we express the next-generation operator as a matrix, then the dominant eigen-

value is equal to R0. Hence, to determine R0, one must identify relevant heteroge-

neous characteristics, construct elements of the next-generation operator in terms of

the basic parameters and ingredients, and compute the dominant eigenvalue of the

operator. The “type-at-birth” causes individuals to have different susceptibility -

similar to heterogeneities within host populations with complex risk structures [36].

The next-generation operator is an n×n matrix where n equals the number of types-

at-birth. K(ε, η) is equal to the expected number of new cases with type-at-birth ε

caused by a single infected individual with type-at-birth η. Infectivity, contacts, and

disease status depend on the time elapsed since becoming infected τ . Requirements

for calculation include infectivity as a function of τ and η, survival as a function of τ

and η, and total contacts towards susceptibles that could be born with type ε. Next,

define operator K as:

(Kψ)(ε) =
∫

Ω
K(ε, η)ψ(η) dψ
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where ψ is equal to the generation of infecteds as distributed over the types-at-birth,

and R0 is equal to the dominant eigenvalue of K.

2.2 Statistical Estimation of R0

A number of methods exist for statistically estimating R0 from observed data, rang-

ing from simpler techniques such as measuring the slope of an epidemic curve, to

more complex model-based methods involving Bayesian sampling techniques such

as Markov chain Monte Carlo (MCMC) methods. Each method provides an ap-

proximation to the reproduction number by using different sets of data available for

estimation; thus, more complex methods require more data of more different types.

Direct estimation, according to Dietz, is not easy [21].

2.2.1 Epidemic curve estimation

An epidemic curve is a plot of the number of infections over time, where the frequency

of infectious individuals is plotted across the y-axis and time (usually in days, weeks,

or months) is plotted over the x-axis. During the early stages of an outbreak, the

number of infected individuals is approximately I(t) ≈ I0 exp[(R0−1)(β+γ)t]. After

taking the logarithm of both sides, one can show that the log of the number of in-

fected individuals is approximately linear in time with a slope which can be corrected

to be roughly equivalent to R0 [36]. As a result, simple linear regression fit to the

first several data points on a log-scale, corrected to account for β and γ, provides a

rough estimate for R0.
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2.2.2 Final outbreak size

An additional method for estimating R0 comes from information contained in the

final size of an epidemic. Although not helpful at the early stages of an epidemic,

this method can be a useful tool for later analysis. Keeling and Rohani propose that

we assume the epidemic is started by a single infectious individual in a completely

susceptible population [36]. As mentioned previously, this individual would infect

R0 others, on average. The probability a particular individual escaped infection is

exp(−R0/N). If Z individuals have been infected, then the probability of an individ-

ual escaping infection from all potential sources is exp(−ZR0/N). At the end of an

epidemic, a proportion R(∞) = Z/N have been infected and the fraction remaining

susceptible is S(∞) = exp(−R(∞)R0), which is equal to 1 − R(∞). Thus, we can

obtain the equation 1 − R(∞) − exp(−R(∞)R0) = 0, and numerical methods are

then required to find the value of R0 solving the equation.

2.2.3 Least squares estimation

Of course, more complicated methods exist for estimating R0 more efficiently and

exactly. The next methods for estimation involve estimating the parameters of the

SIR model and then calculating R0 from the parameter estimates. One technique

involves least squares fitting or trajectory matching, where we find the values of the

model parameters which minimize the squared differences between model predictions

and the observed data [13]. R functions [45], such as optim, enable estimation by

finding parameter values minimizing this sum of squared errors.
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2.2.4 Chain binomial models

Next, we move toward parameter estimation based on maximum likelihood - a very

general method for model parameterization, estimation, and importantly inference [13].

After specifying a stochastic model presumed to have generated the observed data,

we next determine the probability that the observed data would be generated by the

model. Maximum likelihood estimation (MLE) attempts to identify which parame-

terizations make this probability the greatest.

As an example, consider a chain binomial epidemic. Chain binomial models are

dynamic models developed from the simple binomial model by assuming that infec-

tion spreads from individual to individual in populations in discrete units of time,

producing chains of infection governed by the binomial probability distribution. In

the Reed-Frost model [8], we assume that people pass through three states: suscepti-

ble, infectious, and recovered. If we assume that p equals the probability of infection

for one susceptible individual when contacting one infectious individual at a given

time point, and q = 1− p equals the probability of avoiding infection from that con-

tact, then qit is the probability that a susceptible individual avoids infection from it

infectious individuals. The transition probability of getting It+1 = it+1 new infectives

at time t+ 1, given St = st and It = it susceptibles and infectives [30] is:

P (It+1 = it+1|St = st, It = it) =

(
st
it+1

)
(1− qit)it+1qit(st−it+1), st ≥ it+1

The number of new infectives depends on the number of old infectives in the Reed-

Frost model. In the Greenwood model, the number of new infectives does not depend

on the number of old infectives, but on the presence of one or more infectives, such

that:

P (It+1 = it+1|St = st, It = it) =


(
st
it+1

)
(1− qit)it+1qit(st−it+1), st ≥ it+1, it > 0

0 otherwise





22

The binomial probabilities for each of the chain binomial models define their respec-

tive likelihood functions. Then, we maximize the likelihood, or log-likelihood, func-

tions with respect to the model parameters. With the likelihood function in place,

we can extend the models into a Bayesian framework as shown in the next section.
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3 Bayesian Inference for Epidemic Modeling

The mathematical and statistical models represent a progression from determinis-

tic solutions to stochastic estimation. Likelihood-based methods provide adequate

modeling techniques in the field of epidemic modeling; however, we can define a full

probability model and estimate parameters using the framework of Bayesian infer-

ence. In classical inference, the parameters from our epidemic models are regarded

as fixed quantities, where the values of the parameters are estimated from data us-

ing estimators that are random variables and whose distributional properties may

be known [43]. However, in Bayesian inference, the parameters are assumed to be

random variables, and the posterior distribution is the desired density for estimation

purposes. The posterior density, or the distribution of the parameters given the data,

is defined using Bayes’ Theorem as the normalized product of the likelihood and the

prior density. We can choose a prior density specific to our modeling needs, such that

uncertainty can be represented by uninformed prior distributions. Likewise, in the

case of stronger epidemiological prior evidence, we can use informative priors.

Bayesian inference has a number of advantages over the techniques used in clas-

sical inference. Using a Bayesian framework enables us to make inferences on the

probability of a given parameter or model - an issue for classical inference. Addi-

tionally, in sparse data cases, we can introduce prior information on the parameters

of interest. Finally, problems involving random effects, process and measurement

error, and unobserved states are typically more difficult to solve using classical tech-

niques [13]. Oftentimes, it can be straightforward to obtain credible intervals under

Bayesian inference for parameters, whereas classical confidence intervals may require

the development of appropriate theoretical results [43].

Another advantage of Bayesian inference involves the imputation of missing data.

We often encounter missing data in epidemic modeling due to missing infection or

removal times, for example, and classical inferential techniques along with the stan-
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dard likelihood may be difficult to evaluate. This becomes a substantial problem

with temporal data, as the likelihood usually involves integration over all possible

infection times. With Bayesian inference, we can assume that missing infection times

are random quantities or extra model parameters to be estimated. Although classical

techniques such as the EM algorithm have been considered for analysis of epidemic

data, the expectation step can become more complicated [43]. Techniques available

in Bayesian inference are more straightforward.

For the purposes of parameter estimation in epidemic modeling, Bayesian infer-

ence assumes the following:

• y = (y1, ..., yn): the observed data, such as counts of cases or infection/removal

times,

• f(y|θ): a stochastic model for the observed data, usually a probability distri-

bution, defining the likelihood,

• θ: a vector of unknown parameters, assumed a random quantity, and

• π(θ): the prior distribution of θ.

Therefore, the posterior distribution for inference concerning θ is

p(θ|y) =
f(y|θ)π(θ)∫
f(y|u)π(u)du

. We can avoid evaluating the denominator integral by the

use of Markov chain Monte Carlo (MCMC) methods, wherein we focus on the unnor-

malized posterior density: p(θ|y) ∝ f(y|θ)π(θ) or p(θ|y) ∝ L(θ)π(θ). By sampling

from the unnormalized posterior density, we hope to build the posterior density of the

parameters under the knowledge that the denominator of our posterior distribution

is independent of the parameters and will cancel out in the algorithm.

MCMC methods are an established suite of methodologies, and the literature

on MCMC methods is extensive. In Bayesian inference, the target density is the

joint posterior density of the model parameters, and these methods work by defining
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a Markov chain whose stationary distribution is equal to the normalized target den-

sity [43]. We simulate the chain until we establish adequate convergence, and samples

from the target density of interest can be drawn. MCMC sampling techniques have

the advantage of eliminating the summation and high-dimensional integration that

can make classical inferential techniques numerically complicated or intractable for

models involving integration over infectious periods. These techniques also enable

us to analyze any model parameters or a specific function of them. In our case, if

we attempt to estimate both transmission and recovery parameters, we still have the

ability to analyze the ratio of the two - R0.

Two algorithms are typically associated with MCMC methods: the Gibbs sampler

and the Metropolis-Hastings algorithm. The Gibbs sampler is an algorithm used to

generate a sequence of samples from the joint posterior density of two or more random

variables. The goal of the Gibbs sampler is to approximate the joint distribution or

the marginal distributions of one or more of the variables. In the algorithm, the next

value of a particular parameter is sampled from a distribution conditioned on the

previous values of the other parameters. The Gibbs sampler is a special case of the

more general Metropolis-Hastings algorithm.

With the Metropolis-Hastings (MH) algorithm, we start with a target distribution

π for a parameter θ, and construct a Markov chain according to the following rules:

• Start with some initial value X0 = x0.

• For n = 0 to N do:

– Simulate a candidate value Y ∼ q(j|Xn = i). Suppose Y = j.

– Compute the MH acceptance probability: aij = min

{
πjq(i|j)
πiq(j|i)

, 1

}
.

– Generate U ∼ Unif[0,1].

– Accept the candidate Y = j if U ≤ aij, otherwise Xn+1 = Xn.
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The post-convergence values of the Markov chain Xi for i=1 to N iterations represent

a sample from the posterior density of θ. Note that a symmetric proposal density

q(i|j) = q(j|i) yields the original Metropolis algorithm. The acceptance probability

simplifies to aij = min{πj
πi
, 1}. For the Gibbs Sampling algorithm, we consider the

target distribution to be f(x) and we assume that we can sample from full conditional

distributions xi|x−i, where the notation x−i indicates all elements of x except the ith

component. We construct the Gibbs Sampler as follows:

• Start with some initial value X0 = x0.

• For n = 0 to N do:

– Sample xn+1
1 ∼ f1(x1|x(t)

−1).

– Sample xn+1
2 ∼ f2(x2|x(t+1)

1 , x
(t)
3 , ..., x

(t)
p ).

– Sample xn+1
p ∼ fp(xp|x(t+1)

−p ).

As with the Metropolis-Hastings algorithm, the values of the Markov chain x
(i)
1

from i=1 to N iterations represents the posterior density of our parameter of in-

terest [46, 14]. After establishing a burn-in period, we estimate the parameters of

interest by either taking the mean or median of the posterior samples in the gener-

ated chain.
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3.1 Chain binomial models

We next move to more specific models for estimating the parameters of our epidemic

models using the MCMC techniques listed above. Although a wide variety of epidemic

models can work, the processes of the Metropolis-Hastings algorithm and Gibbs Sam-

pling algorithm remain consistent. We choose the stochastic chain binomial models

as a way of defining the relationship between our parameters and the data.

Chain binomial models are stochastic, dynamic models, which assume that the

numbers of individuals who are susceptible or infected are binomially distributed and

that infection spreads from individual to individual in discrete time units. The num-

bers of individuals who are susceptible and infectious are assumed to be known at

each time point. In the Reed-Frost model, individuals start out susceptible to infec-

tion S, then can be become infected/infectious I, and eventually recover from the

disease R. Thus, the SIR model assumes no latency period, and can be used to track

the progression of person-to-person infectious diseases [30].

3.1.1 Transitional approach

We extend the basic chain-binomial model, which assumes that the infection time

series is a chain of binomially distributed random variables. In previous work done

by Lekone and Finkenstädt [40], the numbers of newly infectious individuals and

newly recovered individuals (transition compartments) are binomially distributed.

The transitions of individuals from one stage of disease to the next are stochastic

movements between the corresponding model compartments. In each time period,

an individual can either stay or move on to the next compartment. If we assume

an exponentially distributed length of time that an individual spends in each com-

partment with compartment specific rate λ(j), then the probability of staying within

that compartment for an additional length of one time unit (months, for example)
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is exp(−λ(j)). Thus, the probability of leaving is 1 − exp(−λ(j)). Let NIj denote

the number of susceptible individuals who become infectious at time j. Likewise, let

NRj denote the number of cases who are removed from the infectious class at time j.

We use a discrete-time approximation to a continuous SIR model, and we also define

individuals as susceptible, infectious, or removed from the population as follows for

the transition approach to the chain binomial model:

Sj = those susceptible at time point j,

Ij = those infectious at time point j,

Rj = those removed at time point j,

Sj+1 = Sj −NIj,

Ij+1 = Ij +NIj −NRj, and

Rj+1 = Rj +NRj.

NIj and NRj are random variables with binomial distributions:

NIj ∼ Bin(Sj, pj),

NRj ∼ Bin(Ij, pR),

where pj = 1− exp

(
−β
N
Ij

)
,
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and pR = 1− exp(−γ)

where pj represents the probability of a susceptible individual becoming infectious at

the given timepoint j. pR represents the probability that an infectious individual is

removed from the study population. These probabilities of staying in a compartment

are the result of the compartment-specific exponential rates. We can establish a

Bayesian model as follows:

NIj
ind∼ Bin(Sj, pj),

pj = 1− exp

(
−βj
N

NIj

)
, and

βj = β0.

We next assign a vague gamma prior to the fixed effect β0, since β0 can take values

of 0 or greater. As we are assuming the infectious period is equal to one time unit (1

month), R0 is equivalent to β0.
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3.1.2 Reed-Frost approach

In the Reed-Frost model of disease transmission, the assumption is made that indi-

viduals pass through three states - susceptible, infective, and recovered. The model

assumes a fixed population size N , and each person is in one of the three states where

Sj, Ij, and Rj are defined in the previous chain binomial model. Binomial models are

often used to estimate the transmission probability, and the exposure to infection can

occur in discrete time contacts, which can also be discrete time units of exposure [30].

It is typically assumed that each contact is independent of other contacts. We can

define pj as the transmission probability during a contact between a susceptible in-

dividual and an infectious individual at time point j, and we can further define qj as

the escape probability which is equivalent to 1− pj. The probability that a suscepti-

ble individual escapes infection from all infectious individuals at time point j is q
Ij
j .

Thus, the probability of not escaping infection is 1− qIjj or hj.

In this case, R0 is a function of the number of initial susceptibles S0 and the trans-

mission probability pj, such that R0 = S0 ∗ pj. No assumptions are made concerning

the recovery parameter γ, as well as the transmission parameter β. The Reed-Frost

chain binomial model is set up as follows:

Ij+1
ind∼ Bin(Sj, hj),

hj = 1− qIjj ,

qj = 1− pj,

Logit(pj) = α0, and

α0 ∼ N(0, τz).

We can assign a vague normal prior to the fixed effect α0, as well as a vague gamma

hyperprior distribution to τz.
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3.2 General epidemic model

We can define a general epidemic as a counting process for infections and removals [2,

8, 43, 44]. A counting process is a stochastic process N(t), t ≥ 0 that contains the

following properties:

• N(t) ≥ 0,

• N(t) is an integer, and

• If s ≤ t, then N(s) ≤ N(t).

If s < t then N(t) − N(s) is the number of events that occurred during the interval

(s, t]. In addition, we consider a closed population of M individuals, and we assume

that multiple cases introduce the infection into a population of initially susceptible

individuals, starting an outbreak. Once the outbreak starts, the hazard of infection

depends only on the presence or number of infectives in the population. If an indi-

vidual becomes infected, he or she is infective for an exponentially distributed period

of time, after which he/she becomes removed when developing symptoms. Those

individuals who are removed will no longer contribute to the outbreak, and there is

no latency period.

For an individual i, the events of infection and removal could be described in

terms of two counting processes, where N
(i)
I (t) jumps by one at the time of infection,

and N
(i)
R (t) jumps by one at the time of removal. We assume N

(i)
I (0) and N

(i)
R (0) =

0, except for the initial cases where N
(i)
I (0) = 1. Additionally, we can denote H

(i)
t as

the history of the two processes up to time t: H
(i)
t = {N (i)

I (s), N
(i)
R (s); 0 ≤ s ≤ t}.

The two counting processes are then specified in terms of their stochastic intensities:

P (dN
(i)
I (t) = 1|H(i)

t−) =
β

M
I(t)S(i)(t)dt, and

P (dN
(i)
R (t) = 1|H(i)

t−) = γI(i)(t)dt
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where S(i)(t) = 1 − N
(i)
I (t−), I(i)(t) = N

(i)
I (t−) − N

(i)
R (t−), and I(t) =

M∑
i=1

I(i)(t).

Next, we count the total numbers of infections and removals that occur up to time t:

NI(t) =
M∑
i=1

N
(i)
I (t) and NR(t) =

M∑
i=1

N
(i)
R (t)

Thus, the numbers of susceptibles and infectives at time t are:

S(t) =
M∑
i=1

S(i)(t) = M −NI(t−) and I(t) =
M∑
i=1

I(i)(t) = (NI(t−)−NR(t−))

We then define the general epidemic as a counting process for infections and removals:

P (dNI(t) = 1|Ht−) =
β

M
I(t)S(t)dt

P (dNR(t) = 1|Ht−) = γI(t)dt

where Ht is the history of the aggregated processes. The infection times are: {0 =

t1 < t2 < ... < tn} and removal times: {τ1 < τn−1 < τn = T}. The likelihood of

parameters β and γ based on the complete data is as follows:

L(β, γ; ycomplete) =
n∏
i=1

{
γI(τi) exp

− τi∫
τi−1

γI(u)du

}

×
n∏
j=2

{
β

M
I(tj)S(tj) exp

− tj∫
tj−1

β

M
I(u)S(u)du

}

× exp

− T∫
tn

β

M
I(u)S(u)du


=

n∏
i=1

{γI(τi)}
n∏
j=2

{ β
M
I(tj)S(tj)}

× exp

− T∫
0

(γI(u) +
β

M
I(u)S(u))du
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The likelihood aggregates the amount of time spent in the infectious class by all

infectives over the time period, the amount of time susceptibles spend interacting

with infectives, as well as the hazard of infection and hazard of removal. The survival

component (the integral) aggregates the cumulative hazard over time. We assume

independent gamma priors for β and γ as follows:

f(β) ∝ βνβ−1 exp(−λββ), and

f(γ) ∝ γνγ−1 exp(−λγγ).

The following Metropolis-Hastings algorithm can be used in the estimation of β

and γ:

• Initialize chain for β0 and γ0.

• Draw candidate β1 from proposal distribution q(.|β0).

• Set numerator equal to
f(t, τ |β1, γ0)f(β1)

q(β1|β0)
.

• Set denominator equal to
f(t, τ |β0, γ0)f(β0)

q(β0|β1)
.

• Generate U from U(0,1).

• If U < numer/denom, then β1 = β1 else β1 = β0.

• Draw candidate γ1 from proposal distribution z(.|γ0).

• Set numerator equal to
f(t, τ |β1, γ1)f(γ1)

z(γ1|γ0)
.

• Set denominator equal to
f(t, τ |β1, γ0)f(γ0)

z(γ0|γ1)
.
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• Generate U from U(0,1).

• If U < numer/denom, then γ1 = γ1 else γ1 = γ0.

• Run for N iterations, until convergence then draw samples from posterior den-

sity.

After establishing a burn-in period, we can estimate the parameters of interest by

either taking the mean or median of the generated chain representing the posterior

density of a given parameter. From these methods, we can estimate R0 as the ratio of

the transmission parameter β to the recovery parameter γ. By running this process

over the entire study space as well as each census tract, we can estimate an overall

R0 as well as a series of tract-specific values of R0. We use the software package R

to implement the MCMC sampling techniques for the general epidemic model.
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4 Introduction to Conceptual Epidemic Models

4.1 Initial Spatial Analysis: Tracking Spatial Patterns in

Prevalence

Our data include 12,556 cases of gonorrhea (GC) in the years 2002-05 within Balti-

more City County - the specific area of interest for our analysis. A total of 651,154

people live in the 200 census tracts of Baltimore City County, and we consider the

336,551 individuals aged 15-49 in the population to be “at-risk”. The GC data were

collected by the Baltimore City Health Department, and accessed by researchers at

the The Johns Hopkins University. The raw data were geocoded in ArcMap [23] us-

ing the TIGER/Line files for the street map and census block group boundary file.

Addresses outside Baltimore City County were excluded based on street name and

zip code, and all years had similar geocoding rates (between 93-96%). In addition,

addresses were automatically geocoded with a 10-meter offset, a minimum 70% match

score, and allowed for ties.

A total of 651,154 people live in the 200 census tracts of Baltimore City County,

yielding a median tract-level incidence rate of 40 cases per 1000 people at risk over

the four years. At the census tract level, the average percent of the population with

a college degree is 17.9%, the average percent with a high school degree is 66.2%, and

the average median home value is $71,514 (Table 2). Also at the census tract level,

the average median age is 35 years, the average per capita income is $16,872, and

the average percent below the poverty line is 24.6% (Table 2). The average percent

black is 63.5%, the average percent white is 31.7%, and the average percent foreign

born is 4.3% (Table 2). Figure 2 illustrates some of the discrepancies between census

tract level total cases and case rate per 1,000 people over four years in each census

tract, although generally a higher number of cases yields higher rates of cases. De-

mographic choropleth maps are also shown in Figure 2, and similar spatial patterns



36

exist in nearly all maps. Areas of lower educational qualifications are typically areas

of lower income, higher percent in poverty, lower home values, and also high GC

rate. It appears that GC rates are also highly associated with race, as evidenced

by particularly high numbers and rates within the African-American communities in

Baltimore.

The data for analysis include a set of coordinates for each GC case location in the

greater Baltimore area, as well as the date (year, month, day) of diagnosis. These

observations were taken over the course of four years from 2002 through 2005, and

are aggregated over the time period to produce one set of total cases. The U.S.

Census Bureau provides the rest of the data used for analysis [51]. These variables

include percent with a college degree, percent with a high school degree, median home

value, median age, per capita income, percent black, percent white, percent below

the poverty line, and the percent foreign born. Demographic variables such as race

and age are Census 2000 100-percent Data, while socioeconomic variables such as

education level and housing data are Census 2000 Sample Data. Census tract level

population numbers are used to establish rates of GC infection per 1,000 people at

risk in each census tract. We use Hawth’s Tool “Count Points in Polygons” within

ArcMap [12] to attribute a GC count number for each census tract in the Baltimore

area, which was then standardized by the population and multiplied by 1000 to es-

tablish a GC rate of infection per 1,000 persons per census tract [23]. Choropleth

maps were generated for GC count, GC rate, and several of the socioeconomic census

variables (Figures 1, 2). Although cases exist throughout the greater Baltimore area,

only census tracts within Baltimore City County are analyzed in this study.
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Descriptive Statistics of Census Tracts (n=200)
Effect Mean St. Dev. Median

% w/ College Degree 17.9 17.2 11.1
% w/ High School Deg. 66.2 13.3 67.8

Home Value 71,514.21 44,400.91 62,600
Median Age 35.0 5.0 35.3

Per Capita Income 16,872.34 9,007.96 14,419
% Black 63.5 35.9 79.7

% Below Poverty Line 24.6 13.7 22.0
% White 31.7 33.3 16.3

% Foreign Born 4.3 4.4 3.3

Table 2: Data and summary statistics taken from American Fact Finder - US Census
Bureau.
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Cases per 1000 people
0 - 11.9
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49.2 - 67.4
67.4 - 117.3

Figure 1: Maps of total GC cases, total population at risk, and GC case rate per
1,000 individuals at risk from 2002-05.
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Figure 2: Maps of Baltimore demographics generated in ArcMap using data from US
Census Bureau.

We first analyzed the data for spatial associations, and to measure global and local

spatial autocorrelation in an effort to find core areas of disease transmission. Using

ClusterSeer [49], it was possible to obtain a Global Moran’s I statistic for GC case

rates in Baltimore. Moran’s I coefficient of autocorrelation quantifies the similarity of

an outcome variable observed in one area with values observed in neighboring areas.

It is defined as follows:

I =
N∑

i

∑
j wij

∑
i

∑
j wij(Xi − X̄)(Xj − X̄)∑

i(Xi − X̄)2

where N is the number of spatial units indexed by i and j, X is the variable of interest

(disease rates, for example), X̄ is the mean of X, and wij is an element of a matrix

of spatial weights. The spatial weight for a given element wij is given a value of 1 if
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two regions are neighbors, and a value of 0 if not neighbors. Under a null hypothesis

of independent observations, the expected value of Moran’s I is
−1

N − 1
. A Moran’s I

value of zero indicates no clustering, while a positive Moran’s I indicates a positive

spatial autocorrelation or a clustering of areas of similar attribute values. Thus, values

far from 0 indicate disease rates are not spatially independent. It is then possible to

test the significance of the Moran’s I value using Monte Carlo randomization where

p < 0.05 yields a significant Moran’s I value.

Additionally, using GeoDa [4], Local Moran’s I values were calculated for GC case

rates, where neighbors are once again defined by contiguity, and the local values were

then used to generate maps showing local clustering. The Local Moran test detects

local spatial autocorrelation in group-level data, termed Local Indicators of Spatial

Association or LISAs. LISAs sum to the global indices of spatial association, which

yield one statistic over the entire study space. LISA is defined as follows:

Ii,std =
Yi − Ȳ
s

∑N
j=1 wij

Yj − Ȳ
s

.

Sub i denotes the estimation for each i region, s is the standard deviation, Ȳ is the

average value for the study area, and wij is equal to 1 if regions i and j share a

boundary and 0 otherwise. The global Moran’s I statistic is equal to
∑

i

Ii
N

, where N

is the number of observations. High-high areas indicate high rate areas surrounded

by other high rate areas, while low-low areas indicate low rate areas surrounded by

other low rate areas.

A Global Moran’s I value of 0.588 (p=0.002) was obtained for the GC rate data.

As a result of the p-value from the Monte Carlo simulations in ClusterSeer [49],

we conclude significant positive global spatial autocorrelation in the GC rate spatial

data. From the maps showing local clustering mapped across Baltimore City County,

it is apparent that there are clear high-high clustering areas near downtown Balti-

more and substantial low-low rate clustering areas around the outskirts of the city

(Figure 3). This seems to indicate clear distinctions in local clustering, indicative of
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tracts of similar disease rates around most observations. Both the Global Moran’s

I generated from ClusterSeer and the Local Moran test from GeoDa indicate high

spatial autocorrelation at both the global and local level.

0 2 4 6 81
Kilometers

µ
High-High
Low-Low
High-Low
Low-High

Figure 3: The Local Test for spatial autocorrelation is shown above. The black color
indicates significant high-high areas (high rate areas surrounded by other high rate
areas), light gray indicates low-low areas, crosshatch indicates high-low areas, and
solid stripes indicate low-high areas.

Additionally, we applied spatial scan statistics via SaTScan to detect significant

clusters of disease transmission in Baltimore, using a discrete Poisson model with

varying cluster sizes [38]. SaTScan provides an objective approach in defining high

and low prevalence cutoff points, and allows for adjustment for binary covariates.

SaTScan identifies the most likely clusters from a set of circular potential clusters

centered at each tract centroid. Under the null hypothesis of the Poisson model, the

expected number of cases in each region is proportional to the population size. The

likelihood under the assumption of the Poisson model is as follows:(
c

E[c]

)c(
C − c

C − E[c]

)C−c
I(),

where C is the total number of cases, c is the observed number of cases within the

window, E[c] is the expected number of cases within the window under the null hy-

pothesis, and I() is the indicator function which is equal to 1 if c > E[c] or 0 otherwise.
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As we are only interested in finding clusters of high rates, I() should be set equal

to 1 [54]. We first applied SaTScan using standard default settings of the largest

potential clusters comprised of 50% of the population at risk. In order to assess any

variation in the local likelihood ratio within this cluster, we consider limiting the

maximum spatial cluster size to a smaller fraction of the study population: 25% of

the population at risk. We also adjusted the results using a binary race variable which

was dichotomized based on high and low rates of white residents (above and below

the median value of 16.3% white). This work was done in part to compare results

to previous studies analyzing relationships between demographic characteristics and

sexually transmitted disease infection rates using SaTScan, which adjust for race as

well [35].

The results shown in Figure 4 tend to mirror clusters found by the Local Moran

test (Figure 3) and past studies of GC transmission in Baltimore [7, 35, 57]. When

allowing the cluster size to approach 50% of the population at risk, two large clusters

appear, which also occur when refining the maximum allowable cluster size to 25% of

the population at risk (i.e. focusing on geographically smaller clusters). One can dis-

tinguish two very significant clusters in each situation, as is the case in the Jennings

study [35]. Nevertheless, an adjustment for race at the smaller allowable cluster size

provides little change in cluster location or size in contrast to the formerly mentioned

GC study.
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Figure 4: Statistically significant most likely clusters based on a spatial scan statistic
for circular clusters ranging up to 50% of the population at risk (upper left), 25% of
the population (upper right), and 25% of the population at risk adjusting for race
(lower left).

4.2 Methods and Model Descriptions: A Geographically

Weighted Regression Approach

Our next step assessed associations with tract-level demographics via a linear regres-

sion model. In this case, the response variable is the GC rate per 1,000 individuals

at risk in the population, and we considered a linear model of the following form:

yi = β0 + β1 ∗X1i + β2 ∗X2i + ...+ εi where i = 1, ..., 200

where the coefficients β assess the magnitude of association between disease rates and

demographic variables over the 200 census tracts. A univariate analysis in SAS [34]

determined significant risk factors at the α = 0.05 level of significance, and a final
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model was defined using a Wald-type test for adding and removing variables using

a 0.05 cut-off point. R2 values assess the overall goodness-of-fit for the model. In

linear regression (and other forms of regression), observations are assumed to be in-

dependent, and associations between observations and covariates are assumed to be

constant. These assumptions could potentially be violated with spatially referenced

data [53].

Next, we consider spatial variation in the observed associations with significant

predictors. In this situation, geographically weighted regression analyzes the spa-

tial effects of significant factors in predicting GC rates. Geographically weighted

regression (GWR) is a technique for exploratory data analysis, which allows the rela-

tionships of interest to vary over space, i.e. the parameter coefficients need not be the

same everywhere. With GWR, instead of assuming fixed global parameter estimates,

estimates can now vary according to a position in space, characterized by latitudinal

and longitudinal coordinates.

Under the typical linear regression framework, maximum likelihood methods are

used to estimate model parameters using the standard linear model:

yi = β0 + β1 ∗X1i + β2 ∗X2i + ...+ εi where i = 1, ..., 200

In contrast, GWR involves estimating regression coefficients locally by weighted least

squares where we weight data based on distance from each of a given number of

estimation locations [53]. The weighting function used by GWR typically takes the

form: Wj = exp

(
−dj
b2

)
, where dj is the distance from the point i at which the

regression model is being fitted, and b is the bandwidth defining the smoothness of the

parameter surfaces. The bandwidth is calibrated by a cross-validation technique to

minimize the score
yi − yi(b)

2
where yi(b) is the fitted value of yi using the bandwidth

b and the weighted regression model centered at the point i. What follows is a

regression model where the coefficients are specific to a location i:

yi = βi0 + βi1 ∗X1i + βi2 ∗X2i + ...+ εi where i = 1, ..., 200
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We applied GWR in R [45] using the spgwr package, and the kernel bandwidth was

fixed at values of 0.01 and 0.02. The bandwidth will determine the level of smoothing

in the surface of estimates, where a larger bandwidth indicates more smoothing or

weighting the local estimates closer to the overall global mean. The predictors were

the same as those of the final global multivariate linear regression model. Maps of

predictor variables with local β estimates, adjusting for other variables in the model,

were reported for each bandwidth type.

As counts and rates are often modeled via Poisson regression, we also fit a GWR

Poisson model using the spgwr package in R [45]. We let yi denote the number of

cases in each census tract where i = 1, ..., 200, and we assume the cases follow inde-

pendent Poisson distributions with the tract-specific mean Ei exp (µi). Ei represents

the number of cases expected under a null model where every individual is equally

likely to become infected, and it is fixed and proportional to the population size in

tract i, denoted ni. The observed GC rate over the study population, R, is equal

to
Ei
ni

, with exp (µi) representing the local relative risk due to local covariates [53].

Using the same local covariates as the linear GWR model, we create the following

model with a population offset:

E(yi) = exp[ln (ni) + βi0 + βi1 ∗X1i + βi2 ∗X2i + βi3 ∗X3i] where i = 1, ..., 200

Offsets typically appear in Poisson models since the outcome is assumed to occur at

an underlying fixed rate per individual. Thus, by including an offset, the covariate

terms are defined based on the impact of an underlying rate as opposed to the un-

derlying counts. As with the GWR linear model, the coefficients are allowed to vary

spatially. However, unlike the linear framework, estimation requires more complex

computation using Taylor series and iteratively reweighted least squares due to the

non-linear nature of the Poisson model [53]. For data which is Poisson-distributed, the

variance will depend on the mean, and as a result, the weighted least squares equa-

tions implemented in GWR will be weighted by a diagonal variance matrix based
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on the variance function for the data [53]. Several fixed bandwidths were chosen for

analysis in the Poisson model in order to display the effect of bandwidth on spatial

variability. Maps generated through the linear GWR and Poisson GWR techniques

provide quick, descriptive results relaying the smoothed general differences in associ-

ation.

In summary, we present three types of models for analysis, a non-spatial linear

model for determining socio-demographic characteristics most highly associated with

high/low GC rates, a spatial linear GWR model assessing the additive effect of each

characteristic on GC rate, and a spatial Poisson model assessing the multiplicative

effect of each characteristic on infection count. Each provides a unique interpretation

on how case rates vary over population characteristics, and the latter two on how

those associations may vary spatially.

4.3 Application to Baltimore STI Data

In the univariate linear regression analysis, every census tract socioeconomic de-

mographic variable considered was found to be strongly associated with GC rate.

The percent with a college degree (p < 0.0001), percent with a high school degree

(p < 0.0001), median home value (p < 0.0001), median age (p < 0.0001), per capita

income (p < 0.0001), percent black (p < 0.0001), percent white (p < 0.0001), percent

below the poverty line (p < 0.0001), and the percent foreign born (p < 0.0001) were

all strong individual predictors of STI risk (Table 3).
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Effect Estimate 95% CI p-value
% w/ College Degree -1.043 (-1.219, -0.869) <0.0001

% w/ High School Deg. -1.330 (-1.559, -1.100) <0.0001
Home Value (per $1000) -0.335 (-0.410, -0.261) <0.0001

Median Age -1.561 (-2.317, -0.804) <0.0001
Per Capita Income (per $1000) -1.956 (-2.294, -1.619) <0.0001

% Black 0.602 (0.533, 0.672) <0.0001
% Below Poverty Line 1.374 (1.163, 1.585) <0.0001

% White -0.650 (-0.725, -0.575) <0.0001
% Foreign Born -3.025 (-3.812, -2.239) <0.0001

Table 3: The linear regression univariate analysis of demographic characteristics in
relation to GC rate in Baltimore. Significance assessed at 0.05 level.

In order to determine the factors most highly correlated with GC rate, one would

need to observe the magnitude of the parameter estimates and p-values generated for

the corresponding demographic data. For example, the percent below the poverty

line is influential in predicting higher GC rates in the multivariate model (Table 4).

A 1% increase in the percent of the population which is below the poverty line re-

sults in a 0.388 increase in GC rate per 1,000 individuals at risk in the population.

Other factors in the multivariate model, such as percent black and percent with a

high school degree or higher, are also significant.

Effect Estimate 95% CI p-value
% Black 0.460 (0.403, 0.516) <0.0001

% Below Poverty Line 0.388 (0.198, 0.578) <0.0001
% w/ High School Degree -0.655 (0.020, -0.471) <0.0001

Table 4: The multivariate linear regression analysis of demographic characteristics in
relation to infections in Baltimore. Note, % black, % below the poverty line, and %
with a high school degree or higher represent the three most significant covariates in
the multivariate setting, controlling for the other variables. Significance assessed at
0.05 level

Next, in an effort to assess spatial variation in the parameter estimates of the

multivariate model, we perform a geographically weighted regression. It appears that

the associations between GC rates and education level are strongest in the outskirts
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of the city, where there exists a stronger negative association between disease rate

and education level in western and eastern Baltimore, and a weaker effect towards

the central parts of the city (Figure 5). However, the local estimates for the percent

in poverty display stronger associations in the central parts of the city. Higher levels

of poverty result in higher GC rates in central Baltimore. The percent black variable

seems to have a stronger effect in the central and western parts of the city.

In the results from the Poisson GWR model, there appears to be stronger spatial

variability (Figure 6), although the choice of bandwidth is important in determining

the level of variation. A lower bandwidth will display areas of stronger parameter

estimates in individual census tracts and will account for local variation more accu-

rately, but does not capture a specific spatial trend across Baltimore as well as higher

bandwidths. Higher bandwidths show clear, smooth spatial trends, but at the cost of

regressing individual tract parameter estimates closer to the non-spatial global values.

From the maps in Figure 6, it appears that tract-level education level and percent in

poverty have similar patterns to those in the GWR linear regression models. Stronger

estimates in the race variable occur in the northern and western regions of Baltimore,

in contrast to the stronger effects found in southern and western Baltimore in the

linear GWR model. Both models present strong cases for allowing the effects to vary

spatially, and the choice of bandwidth will affect the visual interpretation of the spa-

tial effect on the given covariates.
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Figure 5: The linear geographically weighted regression maps are shown above. Local
estimates for % black with a bandwidth of 0.02 vs. 0.01 (top row), % below the poverty
line with a bandwidth of 0.02 vs. 0.01 (middle row), and % with a high school degree
or higher with a bandwith of 0.02 vs. 0.01 (bottom row) are calculated with a fixed
kernel bandwidth.
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Figure 6: The Poisson geographically weighted regression maps are shown above.
Local estimates for % black with a bandwidth of 0.02 vs. 0.01 (top row), % below
the poverty line with a bandwidth of 0.02 vs. 0.01 (middle row), and % with a high
school degree or higher with a bandwith of 0.02 vs. 0.01 (bottom row) are calculated
with a fixed kernel bandwidth.

These results rely on several statistical modeling techniques to assess the de-

mographic variables most highly associated with disease transmission, the spatial

variation of GC cases throughout Baltimore, and the spatial association between the

significant disease predictors and GC rates. From the linear regression modeling
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approach, it is apparent that socioeconomic and demographic factors are highly asso-

ciated with high GC rates in the Baltimore area from 2002-05. Among the strongest

relationships include educational factors such as the percent with a high school or a

college degree and economic factors such as median home value, per capita income,

and the percent that live below the poverty line. High rate areas for GC exist in cen-

tral and western Baltimore City County in predominately poorer, African-American

communities, with fewer educational credentials.

Two tight spatial clusters in Baltimore were found in both the demographic GC

case analysis as well as the SaTScan images, which correspond to similar core areas

and clusters from the Jennings GC study [35]. The SaTScan results agree with the

Local Moran test in revealing the two clusters of disease risk within central Balti-

more. Since local tests seek individual units of high risk surrounded by other high

risk units, the smaller, localized clusters are visually displayed. The socioeconomic

variables such as the percent in poverty and education level were relatively heteroge-

neous across space, while the effects of race were also shown to vary spatially, which

would perhaps indicate that the geographically weighted regression model describes

the data better than a global model. Areas of higher associations with tract-level

percent black are at or near boundaries of transition between predominately white

and predominately black census tracts in Baltimore, suggesting that there may be an

interaction between race and spatial GC rates.

The areas indicated by GWR, SaTScan, and the Local Moran test all focus at-

tention on two areas in central Baltimore, areas previously identified as core areas.

However, none of these methods directly assess a hypothesis regarding core areas and

none provide local estimates of the risk of transmission, motivating our model devel-

opment by adding a spatial dimension to the SIR techniques described earlier.
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5 Extending the SIR Model to Spatial Analysis

Previous research has addressed the challenges in estimating R0 for a variety of in-

fectious diseases, and we will build off those methods to estimate R0 spatially for

sexually transmitted infections, specifically. As noted in earlier sections, R0 is the

average number of susceptible individuals infected by one infectious person in a com-

pletely susceptible population. Since our data contain geographic locations, it will be

possible not only to estimate the reproduction number and its component parameters

over time, but also over space.

We begin by building off of the same parameters established in the Kermack-

McKendrick model [37]. As noted, the Kermack-McKendrick model is an epidemiolog-

ical model that computes the theoretical number of people infected with a contagious

illness in a closed population over time. Differential equations form the foundation

of the SIR (susceptible-infected-recovered) model, as rates of change for each class

are tracked over time. Additionally, the dynamics of the outbreak are governed by

two parameters in this basic model: β, the transmission parameter, and γ, the re-

covery parameter. As a reminder, the SIR differential equations are defined as follows:

Let:

X(t) = susceptible population size at time t,

Y(t) = infected population size,

Z(t) = removed/recovered population size, and

N = X + Y + Z = Total population size (fixed).

The dynamics of the system are defined via:

dX

dt
=
−βXY
N

,

dY

dt
=
βXY

N
− γY ,
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dZ

dt
= γY , and

where X(0) = X0 ≈ N , Y (0) = N −X0 ≈ 0, Z(0) = 0.

Our goal is a spatially-varying estimate of the reproduction number to determine

“core areas” of disease since R0 signals how quickly the disease can spread amongst a

susceptible population and is directly related to the amount of control effort needed

to eliminate an infection from a population. Our spatial analysis enables further

inference addressing the dynamics of outbreaks initiated at different locations, i.e.

“How quickly will the outbreak spread if it starts here?” Other methods have also

been considered in STI core area analysis [1, 16, 39, 47, 50]. The following Bayesian

models represent attempts to visualize the spatial variability of transmission and re-

covery pertaining to STIs in Baltimore, in addition to quantifying the extent and

reliability of core areas.
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5.1 Chain Binomial: A Transitional Approach

The Kermack-McKendrick model provides the first look at the types of parameters

we wish to estimate spatially. The next step involves developing a statistical model

which can give us a likelihood to use for parameter estimation purposes. We focus

primarily on the use of chain binomial models.

Chain binomial models are stochastic models, which assume a binomially dis-

tributed number of infectious or susceptible individuals. Infection can spread from

individual to individual in discrete time units, and the numbers of individuals who

are susceptible and infectious are assumed to be known at each time point. An SIR

model typically assumes no latency period, and can be used to track the progression

of person-to-person infectious diseases [30].

In our analysis, we extend the basic transition chain binomial model described by

Lekone and Finkenstädt [40], which assumes that the infection time series is a chain of

binomially distributed random variables. In their previous work, the numbers of newly

infectious individuals and newly recovered individuals (transition compartments) are

binomially distributed. The transitions of individuals from one stage of disease to the

next are stochastic movements between the corresponding compartments over time.

If we assume an exponentially distributed length of time that an individual spends

in each compartment, then the probability of leaving is 1− exp(−λ(j)). In our spa-

tial analysis, we let NIij denote the number of susceptible individuals who become

infectious at time j and are located in census tract i. Likewise, let NRij denote the

number of cases who are removed from the infectious class at time j in tract i. Using

a discrete-time approximation to a continuous SIR model, we expand upon models

defined previously [40] by adding a spatial component to our model. We also define

individuals as susceptible, infectious, or removed from the population as follows:

Sij = i×j matrix of those susceptible in tract i at time point j,
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Iij = i×j matrix of those infectious in tract i at time point j,

Rij = i×j matrix of those removed in tract i at time point j,

Si,j+1 = Sij −NIij,

Ii,j+1 = Iij +NIij −NRij, and

Ri,j+1 = Rij +NRij.

NIij and NRij are random variables with binomial distributions:

NIij ∼ Bin(Sij, pij), and

NRij ∼ Bin(Iij, pR),

where pij = 1− exp

(
−βi
Ni

Iij

)
,

and pR = 1− exp(−γ)

As with Lekone’s and Finkenstädt’s model, we follow the spread of disease over

time; however, we also track the location of cases. Here, pij represents the probability

of a susceptible individual becoming infectious at the given timepoint j in tract i.

pR represents the probability that an infectious individual is removed from the study

population. We assume this value is independent of time and location.

We begin to explore the idea of extending the epidemic models which cover param-

eter estimation over time to encompass estimation over space. Given that we possess



55

coordinates and census tract information for each individual case in the study, it

is relevant to investigate spatial correlation between tract-specific estimates of our

epidemic parameters. The difficulty in obtaining reliable local estimates of disease

transmission has propelled our research towards models which offer both global and

local smoothing techniques coupled with adequate geographic resolution for our esti-

mates.

5.1.1 Random effects - Exchangeable, Conditionally Autoregressive, and

Convolution Structures

We propose the use of Bayesian methods - a hierarchical approach to induce positive

spatial autocorrelation across the estimated local disease transmission parameters, as

described by Waller and Carlin [52] through a conditionally autoregressive (CAR)

random effects distribution assigned to area-specific intercepts [9]. The CAR model

has been extended to a fully Bayesian setting and implemented using MCMC algo-

rithms [11].

The conditionally autoregressive random effects model proposed by Besag, York,

and Mollié [11] induces spatial autocorrelation amongst the individual levels of dis-

ease risk specified by the observed counts of disease cases and number of individuals

in each region. If Yi is the observed count of disease cases in region i = 1, ...I, Be-

sag, York, and Mollié model the counts as Poisson random variables using a log link

function. Additional data include the number of individuals at risk in a given region

ni and the local number of “expected” cases under some null model of disease trans-

mission (constant risk for all individuals). We also can assume the ni values are fixed

and known.

In contrast to previous studies regarding the mapping of disease rates using a

Poisson model [52], we first implement a Bayesian logistic model to estimate the
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probability of becoming infectious. This procedure has been implemented previously

in studies mapping the prevalence of schistosomiasis in Tanzania in 2008 [19]. In

that study, the number of individuals Yi having reported experiencing schistosomiasis

in ward i was binomially distributed based on ni the number of individuals ques-

tioned/interviewed in ward i and pi the prevalence of experiencing schistosomiasis in

ward i. Both spatial random effects and exchangeable random effects were imple-

mented in their model. Similarly, we adjust this model to complement the transition

chain binomial model for disease transmission, and we first consider an exchangeable

random effects model where we add the following components:

NIij|vi
ind∼ Bin(Sij, pij),

Logit(pij) = α0 + vi,

where vi ∼ N(0, σ2
v), for i = 1, . . . , I.

The structure described above allows us to build the overall distribution of NIij in

two steps. First, the observations NIij are conditionally independent given the values

of the random effects vi. Second, correlation is induced in the marginal distribution of

the NIijs. The exchangeable random effects are linked to the probability of infection

using a logit link, as the newly infectious individuals are binomially distributed. We

assign a vague normal prior to the fixed effect α0, as well as a vague gamma hyper-

prior distribution to τv (where σv
2 =

1

τv2
). This approach will provide a local estimate

defined by the weighted average of the observed data in tract i and the global overall

mean.

Although the previous model induces correlation between local estimates based

on the overall global mean, we have not yet introduced spatial correlation among

the observations. Clayton and Kaldor [17] introduced the concept of replacing ex-

changeable priors with a spatially structured prior distribution, where local estimates
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borrow strength from neighboring regions rather than the entire study space. Using a

conditionally autoregressive set of random effects, we introduce a spatially structured

prior distribution where local estimates of disease transmission are a weighted average

of the local estimates and the neighboring estimates [52] such that:

NIij|ui
ind∼ Bin(Sij, pij),

Logit(pij) = α0 + ui,

where u ∼ MVN(0,Σu).

In addition to previously defined parameters, we introduce Σu, which denotes a spatial

covariance matrix, and a vector u = (u1, ...uI) of spatially correlated random effects.

The vector u can be implemented as a joint prior or as conditionally autoregressive,

a collection of conditional distributions. The value of a given ui is conditioned on the

random effects of the neighboring regions. We impose the restriction
I∑
i=0

ui = 0 at

each iteration. The spatial effects are linked to the probability of infection using a logit

link, as the number of newly infectious individuals follows a binomial distribution.

The parameter τCAR denotes a hyperparameter related to the conditional variance of

ui given the values of the other elements of u [52]. Once again, a vague normal prior

is placed on α0, and a vague gamma hyperprior is placed on τCAR. Here, we have

a collection of conditional Gaussian priors for each ui wherein the prior mean is a

weighted average of the other uk, i 6= k:

ui|uk 6=i ∼ N

(∑
j 6=i cikuk∑
k 6=i cik

,
1

τCAR
∑

k 6=i cik

)
, i = 1, . . . , I.

This is an implementation of the joint multivariate normal distribution by a collection

of conditionals. In order to determine the distributions of the random effects, the set

of spatial random effects was modeled using an adjacency matrix, where a weight of

one was given to neighboring tracts, and a weight of zero was given to tracts which
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did not border one another. According to Besag and Kooperberg [10], to define the

connection between the autoregressive spatial dependence parameters cik and the

joint spatial covariance matrix σu, if c follows a multivariate Gaussian distribution

with covariance σu, then the density f(u), takes the form:

f(u) ∝ exp

(
−1

2
u′Σ−1

u u

)
.

Standard multivariate Gaussian theory defines the associated conditional distribu-

tions as

ui|uk 6=i ∼ N

(∑
k 6=i

(
−Σ−1

u,ik

Σ−1
u,ii

)
uk ,

1(
Σ−1
u,ii

)) ,
where Σ−1

u,ik denotes the (i, k)th element of the precision matrix Σ−1
u . Note the con-

ditional mean for ui is a weighted sum of uk, k 6= i, and the conditional variance is

inversely proportional to the diagonal of the inverse of Σu, just as it is in the CAR

specification above.

Besag et al. [11] notes that we could include both global and local borrowing of

information within one model using a convolution prior. This would incorporate both

exchangeable random effects and conditionally autoregressive random effects for each

tract, such that:

NIij|ui, vi
ind∼ Bin(Sij, pij),

Logit(pij) = α0 + ui + vi,

where ui|uk 6=i ∼ N

(∑
j 6=i cikuk∑
k 6=i cik

,
1

τCAR
∑

k 6=i cik

)
,

and vi ∼ N(0, σ2
v), for i = 1, . . . , I.
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As with the previous models, we assign hyperpriors to the hyperparameters τCAR and

σ2
v , typically gamma hyperpriors.
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5.2 Transmission Estimation in Chain Binomial Models

With the previous model, we have defined a process for estimating the probability of

transmission for each susceptible individual at a given time point j and census tract i.

The model in 5.1 adds spatial correlation to pij through the logit link. Here, we prefer

to add spatial correlation to βij. The next step involves converting the estimate for

pij into an estimate for the transmission parameter for each tract βij. With estimates

for βij, we can then assume removal times for each case occur after one time unit

(one month) for a fixed period of recovery. Thus, an estimate for βij provides the

necessary information for an estimate for R0i.

We set the number of susceptible individuals in each tract Si0 equal to the number

initially at risk in the population in a given tract - i.e. the number of individuals aged

15-49. From the initial chain binomial model, we assume pij = 1 − exp

(
−βij
Ni

Iij

)
;

however, we substitute NIij for Iij since we now assume individuals recover after one

time unit. We now estimate βij using the following exchangeable model, and we note

that βij = βi for all j:

NIij|vi
ind∼ Bin(Sij, pij),

pij = 1− exp

(
−βij
Ni

NIij

)
,

βij = β0 + vi,

where vi ∼ N(0, σ2
v), for i = 1, . . . , I.

We assign a vague gamma prior to the fixed effect β0, as well as a vague gamma

hyperprior distribution to τv (where σv
2 =

1

τv2
). Likewise, we can similarly define a
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conditionally autoregressive model as follows:

NIij|ui
ind∼ Bin(Sij, pij),

pij = 1− exp

(
−βij
Ni

NIij

)
,

βij = β0 + ui,

where ui|uk 6=i ∼ N

(∑
j 6=i cikuk∑
k 6=i cik

,
1

τCAR
∑

k 6=i cik

)
.

Once again, a vague gamma prior is placed on β0 and a vague gamma hyperprior is

place on τCAR. Finally, we can define a convolution model as follows:

NIij|ui, vi
ind∼ Bin(Sij, pij),

pij = 1− exp

(
−βij
Ni

NIij

)
,

βij = β0 + ui + vi,

where ui|uk 6=i ∼ N

(∑
j 6=i cikuk∑
k 6=i cik

,
1

τCAR
∑

k 6=i cik

)
,

and vi ∼ N(0, σ2
v), for i = 1, . . . , I.

As with the previous models, we will assign hyperpriors to the hyperparameters τCAR

and σ2
v , typically conjugate gamma hyperpriors.
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5.3 Reed-Frost Chain Binomial Model

As with the transition chain binomial model, the Reed-Frost model of disease trans-

mission assumes that individuals pass through three states - susceptible, infective,

and recovered. Likewise, the model assumes a fixed population size N , and each

person is in one of the three states, where Sij, Iij, and Rij are defined in the previous

chain binomial model. Binomial models are often used to estimate the transmission

probability, and the exposure to infection can occur in discrete time contacts, which

can also be discrete time units of exposure [30]. It is typically assumed that each

contact is independent of other contacts. We can define pij as the transmission prob-

ability during a contact between a susceptible individual and an infectious individual

in tract i at time point j, and we can further define qij as the escape probability which

is equivalent to 1−pij. The probability that a susceptible individual escapes infection

from all infectious individuals in tract i at time point j is q
Iij
ij . Thus, the probability

of not escaping infection is 1 − q
Iij
ij or hij. This is analogous to the probability of

leaving the susceptible compartment within the transition model.

In this case, R0i is a function of the number of initial susceptibles in each tract

Si0 and the transmission probability pij, such that R0i = Si0 ∗ pij. No assumptions

are made concerning the recovery parameter γ, as well as the transmission parameter

β. The Reed-Frost chain binomial model is set up as follows using an exchangeable
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random effects model initially:

Ii,j+1|vi
ind∼ Bin(Sij, hij),

hij = 1− qIijij ,

qij = 1− pij,

Logit(pij) = α0 + vi,

α0 ∼ N(0, τz),

where vi ∼ N(0, σ2
v), for i = 1, . . . , I.

As with the model estimating the transmission probabilities from the transition chain

binomial model, we assign a vague normal prior to the fixed effect α0, as well as a

vague gamma hyperprior distribution to τv (where σv
2 =

1

τv2
) and τz. This approach

will provide a local estimate defined by the weighted average of the observed data in

tract i and the global overall mean. We next consider a CAR model where:

Ii,j+1|ui
ind∼ Bin(Sij, hij),

hij = 1− qIijij ,

qij = 1− pij,

Logit(pij) = α0 + ui,

α0 ∼ N(0, τz),

where ui|uk 6=i ∼ N

(∑
j 6=i cikuk∑
k 6=i cik

,
1

τCAR
∑

k 6=i cik

)
.
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Once again, a vague normal prior is placed on α0, and vague gamma hyperpriors are

placed on τCAR and τz. Finally, the convolution model is defined as follows:

Ii,j+1|ui, vi
ind∼ Bin(Sij, hij),

hij = 1− qIijij ,

qij = 1− pij,

Logit(pij) = α0 + ui + vi,

α0 ∼ N(0, τz),

where ui|uk 6=i ∼ N

(∑
j 6=i cikuk∑
k 6=i cik

,
1

τCAR
∑

k 6=i cik

)
,

and vi ∼ N(0, σ2
v), for i = 1, . . . , I.

We will assign hyperpriors to the hyperparameters τCAR, σ2
v , and τz, typically conju-

gate gamma hyperpriors.

5.4 Chain Binomial Model Overview

Below is an overview of the chain binomial models presented above. Each maintains

the framework of a stochastic binomial process, tracking groups of individuals in each

of the three stages over space and time. Note the unique parameterizations of the

transmission parameters and transmission probabilities.

Overall, we present two methods for estimating R0 using the theory of chain bi-

nomial models. We induce correlation in our estimates through distinct techniques:

estimating transmission using an identity link, and estimating transmission probabil-

ity using a logit link. Our results reflect varying levels of success when using these

two processes. We fit each model within WinBUGS, which uses a Gibbs sampling

and Metropolis step approach to estimate model parameters.
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The Reed-Frost model adds spatial correlation to pij to reflect spatially correlated

variations in the transmission probability, while the transition model has a parametric

model of pij and induces spatial correlation on the parameter βij. The variability in

our estimates possibly could be due to spatially correlated variations in unmeasured

risk factors associated with disease transmission.

Model Name Model Parameters R0

pij = 1− exp

(
−βij
Ni

Iij

)
Transition Model βij = β0 + ui R0i = βij

ui ∼ CAR

1− qIijij =prob. escape infection

pij = 1− qij= transmission prob.

Reed-Frost Model logit(pij) = α0 + ui R0i = pij ∗ Si0

ui ∼ CAR

Table 5: Summary of our proposed spatial chain binomial models
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5.5 A Spatial Approach to the General Epidemic Model

As described in Chapter 3, we can define a general epidemic as a counting process

for infections and removals [2, 8, 43, 44], where we consider a closed population of M

individuals, and we assume that multiple cases introduce the infection into a popula-

tion of initially susceptible individuals. The hazard of infection will depend only on

the presence or number of infectives in the population, and as with the chain binomial

models, if an individual becomes infected, he or she is infective for an exponentially

distributed period of time. From these methods, we can estimate R0 as the ratio

of the transmission parameter β to the recovery parameter γ, and by running this

process over the entire study space as well as each census tract, we can estimate an

overall R0 as well as tract-specific values R0i for each tract i.

The likelihood and prior information specified by the model can be reformulated

as a hierarchical random effects structure. As with the chain binomial models listed

earlier, we can fit exchangeable random effects, conditionally autoregressive random

effects, or a combination of the two (via a convolution prior) to our general epidemic

model. The placement of the exchangeable and spatial random effects in our model

is based on similar random effects structures in frailty models [42, 29].

The term “frailty” typically represents the idea that some people are more suscep-

tible than others to experiencing an event. Frailty models are random effects survival

models that account for unmeasured heterogeneity between individuals, and can be

used to unify biological models of heterogenous distribution of susceptibility.

As an example, in the study of the impact of vaccination on time to infection, we

can assume that each person in the population makes contact with others at a rate of

c contacts per unit of time [42]. If a susceptible unvaccinated person makes a single

contact with an infected person, then that susceptible individual will become infected

with probability π, which corresponds to the transmission probability to an unvac-

cinated person. However, if a susceptible vaccinated person makes a single contact
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with an infected person, then that susceptible individual will become infected with

rate θπ where θ denotes the multiplicative efficacy of the vaccine against infection.

Let φ(t) be the infection point prevalence at time t. In order to model individual

heterogeneity in susceptibility to infection, we can also define the non-negative miss-

ing random variable Zν . Thus, the individual level hazard rate to an unvaccinated

person at time t would be:

λ0(t) = Z0cπφ(t)

and to a vaccinated person would be:

λ1(t) = Z1θcπφ(t)

From there, we could then define the survival function Sν(t) corresponding to each

hazard rate of stratum ν, which would be the fraction of stratum ν considered to be

at risk of infection at time t, t ≥ 0 [42]. In this case, vaccination strata are indexed

by ν = 0 for unvaccinated and ν = 0 for vaccinated.

In another example of frailty models, Clayton and Cuzick introduced a further

generalization of the survival proportional hazards model which allowed for positive

association of survival times [18]. This model is a semiparametric generalization of

other work that allowed for a random effect, or frailty, in the hazard mode, and was

motivated by epidemiological studies of disease occurrence in families, litter-matched

carcinogenesis experiments, and by studies of sojourn times of the same individual in

different states in prognostic studies.

Using the typical language of animal experimentation, the hazard function for an

animal from litter l with covariate vector z is:

λ(t|z, l) = λ0(t)ξl exp
(
βT z

)
,

where ξl are random multiplicative effects, or frailties, shared by all members of the

same litter. The frailties are assumed to be i.i.d. gamma variates with mean 1 and

variance γ, such that:
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ξl ∼ G(γ−1, γ−1)

Using the concepts of frailty modeling, we extend a similar random effects approach to

handle spatial heterogeneity of our study population. We fit a multiplicative random

effect within our existing counting process likelihood for the general epidemic model.

First, we consider an exchangeable random effect as follows, where the likelihood is:

L(β, γ; t, τ) =
n∏
i=1

{γI(τi)}
n∏
j=2

{ β
M
I(tj)S(tj)} exp(vi) exp

(
−

T∫
0

(γI(u) +
β

M
I(u)S(u))du

)
with vi ∼ N(0, σ2

v), for i = 1, . . . , I. A vague gamma hyperprior distribution can be

given to τv where σ2
v =

1

τ 2
v

. As with the chain binomial models, this approach should

provide a local estimate defined by the weighted average of the observed data in

tract i and the global overall mean outcome. The estimates βi = β exp(vi) are tract-

specific as the infection times and removal times, as well as the hazards of infection

and removal, and cumulative hazard are aggregated over each tract, and smoothed

using exchangeable random effects. We can write the independent gamma priors for

β and γ as:

f(β) ∝ βνβ−1 exp(−λββ)

f(γ) ∝ γνγ−1 exp(−λγγ)

where vague hyperpriors are assigned to νβ, λβ, νγ, and λγ. We then express the

log-likelihood for the purposes of the Metropolis-Hastings algorithm as follows:

LogLik(β, γ) = n× [ln(γ)] + (n− 1)× [ln(β)]−
T∫
0

(γI(u) +
β

M
I(u)S(u))du+ vi

Additionally, we consider a conditionally autoregressive random effect, where we bor-

row strength in our estimates from neighboring regions rather than the entire study

space. As with the exchangeable random effect, we can fit a multiplicative CAR effect

in our likelihood as follows:
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L(β, γ; t, τ) =
n∏
i=1

{γI(τi)}
n∏
j=2

{ β
M
I(tj)S(tj)} exp(ui) exp

(
−

T∫
0

(γI(w) +
β

M
I(w)S(w))dw

)
where ui|uk 6=i ∼ N

(∑
j 6=i cikuk∑
k 6=i cik

, 1
τCAR

∑
k 6=i cik

)
, i = 1, . . . , I

A vague gamma hyperprior is also placed on τCAR. Similar to the exchangeable

log-likelihood, the CAR log-likelihood is as follows:

LogLik(β, γ) = n× [ln(γ)] + (n− 1)× [ln(β)]−
T∫
0

(γI(w) +
β

M
I(w)S(w))dw + ui

Convolution models provide a balance between global smoothing techniques imple-

mented with exchangeable random effects, and local smoothing with conditionally au-

toregressive random effects. Both exchangeable and CAR random effects are placed

in the model:

L(β, γ; t, τ) =

n∏
i=1

{γI(τi)}
n∏
j=2

{ β
M
I(tj)S(tj)} exp(ui + vi) exp

(
−

T∫
0

(γI(w) +
β

M
I(w)S(w))dw

)

where ui|uk 6=i ∼ N

(∑
j 6=i cikuk∑
k 6=i cik

,
1

τCAR
∑

k 6=i cik

)
, i = 1, . . . , I

and vi ∼ N(0, σ2
v), for i = 1, . . . , I.

The corresponding log-likelihood for the Metropolis-Hastings algorithm is as follows:

LogLik(β, γ) = n× [ln(γ)] + (n− 1)× [ln(β)]−
T∫
0

(γI(w) +
β

M
I(w)S(w))dw+ ui + vi

We define the proposal distribution q(.|β0) as a uniformly distributed step

U(−0.001, 0.001) around β0, and the proposal distribution z(.|γ0) is a uniformly dis-

tributed step U(−0.001, 0.001) around γ0. We use the software package R, to imple-

ment the MCMC algorithm over 10,000 iterations per tract.
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5.6 Results: Chain Binomial - Spatial Model

5.6.1 Estimation of Transmission Probability

We consider the first four years of cases for the transition probability model - an ad-

justment to the temporal chain binomial model with a specified set of priors. First, we

induce global smoothing by using an exchangeable random effects structure built into

our spatial hierarchical model. Initially, we borrow strength globally for our local esti-

mates using a set of exchangeable random effects in order to estimate the probability

of transmission for each susceptible individual at a given time point in a given tract.

Next, we induce local correlation from neighboring census tracts according to the

conditionally autoregressive random effects spatial structure. Choropleth maps have

been produced in ArcMap, and cut-off intervals of the probability of transmission are

fixed across all maps using the quantiles from the CAR model. We run the model in

WinBUGS, which uses an assortment of Gibbs and Metropolis steps to estimate the

marginal posterior densities of each of our parameters, and we assessed convergence

using the Brooks-Gelman-Rubin statistic. If the full conditional is not recognizable

in WinBUGS, either adaptive rejection sampling will be used or the Metropolis algo-

rithm. With adaptive rejection sampling, a dynamic envelope function is created to

closely mimic the functional form of the full conditional. In the Metropolis algorithm,

WinBUGS will sample from a candidate generating normal density, whose variance

is ideally close to the true posterior variance. As with the Metropolis-Hastings algo-

rithm described earlier, the candidate is either accepted as the new iterate or rejected

and the old value is retained.

Figure 7 shows strong spatial patterns amongst the estimated probabilities of

transmission. Higher probabilities are found towards the center of the city - an indi-

cation of the location of core areas of disease transmission. For the exchangeable α0

prior, we chose N(0, 0.01), and for the τv hyperprior, we chose Gamma(0.01, 0.01).
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Additionally, we addressed spatial correlation by incorporating conditionally autore-

gressive random effects which allows local estimates to borrow strength from neigh-

boring census tracts. These “neighbors” are defined using an adjacency matrix. As

with the map detailing the effect of exchangeable random effects, we find strong spa-

tial correlation between the probabilities of transmission. For the α0 prior, we again

chose N(0, 0.01), and for the τCAR hyperprior, we chose Gamma(0.01, 0.01). In order

to incorporate both global and neighboring weighting techniques, a convolution model

was developed. These estimates were mapped, and display strong similarities to both

the exchangeable and CAR models (Figure 7). Prior information was the same as

the previously described models. A list of parameter estimates for the overall mean

effect α0 as well as for the exchangeable and CAR hyperpriors are listed in Table 6.

The numbers suggest strong overlap in the mean effects across the types of random

effects structures.
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Figure 7: Local median estimates for the transmission probability, i.e. the percent
chance of moving from the susceptible class to the infectious class given a contact
with an infectious individual based on the transition chain binomial model approach.
Maps shown include crude probability estimates, along with exchangeable, CAR, and
convolution random effects.

Model α0 [Mean (SE)] τv [Mean (SE)] τCAR [Mean (SE)]
Exchangeable -7.340 (0.0687) 0.9767 (0.107) .

CAR -7.347 (0.0148) . 0.3649 (0.0410)
Convolution -7.346 (0.0170) 0.3322 (0.0480) 64.99 (58.89)

Table 6: List of parameter estimates for α0 and τ in the transmission probability
model.

5.6.2 Estimation of R0 - Transition Chain Binomial Model

As with our model estimating the probability of transmission, we used the first four

years of our data. We apply exchangeable, conditionally autoregressive, and con-

volution priors within the model, in an effort to assess the level of variation in our
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estimates over the study space. In this model, we fix our recovery parameter γ to be

one month, so that our estimate for β is equivalent to R0. In the overall temporal

model, we obtain a median R0 value of 1.019 with a 95% credible set of (1.002, 1.037)

(Figure 8) which behaves well over 10,000 iterations.

0 4000 8000

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

2.
2

Iteration

R
0

R0

F
re

qu
en

cy

0.95 1.05

0
50

0
10

00
15

00

0.98 1.00 1.02 1.04 1.06

0
10

20
30

40
50

Kernel Density Estimation for Overall R0

Transition Method
Posterior Density − R0

D
en

si
ty

Figure 8: The Markov chain of the temporal R0 estimate over 10,000 iterations, along
with a histogram of the last 8,000 iterations and a kernel density estimate over the
last 1,000 iterations.

In our spatial estimation of R0, we map local estimates of R0 with no random

effects structure, an exchangeable random effects structure, a conditionally autore-

gressive random effects structure, and a convolution random effects structure. The

goal is to visualize and quantify the effect on inducing varying types spatial correla-

tion over a study space. We assign a Gamma(0.01, 0.01) prior to β0, our overall mean

effect, for each model, as well as for τCAR and τv. Estimates were calculated using

10,000 iterations for each model with a 2,000 iteration burn-in, and the number of

susceptible individuals per tract at the outset is assumed to be the number of people

at risk - i.e., individuals in the population aged 15-49 with 336,551 total susceptibles

in the study area. We create choropleth maps in ArcMap, using cut-offs established
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by the CAR model quantiles.

All four maps of tract-specific R0 estimates detail several hot spots for disease

transmission, particularly the conditionally autoregressive structure (Figure 9). Core

areas of STI transmission can be found towards the center of the city, as was also

indicated in our maps from the initial spatial analysis in SaTScan and GeoDa, as well

as the spatial estimation of the transmission probability in our previous model.

From Figure 9, we find core areas (dark) of disease spread based on higher median

values of R0. These higher values of R0 are found primarily in central and western

parts of Baltimore, with lower values found primarily in the northern and eastern

edges of the city. There are clear spatial patterns and clustering emerging in the

CAR model, where the smoother surfaces are due local smoothing techniques. The

level of smoothing can be altered based on the strength of the hyperpriors on τCAR,

although we choose vague hyperpriors. In addition, we produce parameter estimates

for the overall mean effect β0 and τ (Table 7). The values of β0 (overall mean) are

equivalent to the overall mean R0 for each model since the recovery rate γ is fixed at

one time unit (month). We find stable estimates of the overall R0 of about 1.034-1.038

based on three models used, along with stable estimates of τv and τCAR.

In order to compare and evaluate estimates based on the exchangeable, CAR,

and convolution random effects structures, we create scatterplots of the median R0

estimates of exchangeable random effects vs. CAR random effects, CAR vs. convolu-

tion, and exchangeable vs. convolution (Figure 10). We find that median estimates

across each set of pairs are highly correlated, with stronger correlation for tracts with

higher values of R0, and less correlation for lower values of R0. The CAR effects and

convolution effects produce estimates which are most strongly correlated across all

values of R0. In these plots, we observe no outlying tract estimates away from the di-

agonal, and we produced these plots using R with estimates generated in WinBUGS.

Additionally, we track the median estimates of R0 across census tract for all three
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models, broken down into sets of 50 tracts (Figure 11). In most cases, the median

tract estimates are very similar between each of the three random effects structures,

and we generally find the strongest overlap for higher median R0 tract estimates, and

weaker overlap for lower estimates.
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Figure 9: Local median estimates for R0. Estimates obtained using assumption of
a binomially distributed set of newly infected individuals, with exchangeable, CAR,
and convolution random effects correlation induced in the transmission parameter. A
map of estimates from the crude (non-adjusted) model is also included.

Model β0 [Mean (SE)] τv [Mean (SE)] τCAR [Mean (SE)]
Exchangeable 1.038 (0.0147) 48.69 (5.797) .

CAR 1.034 (0.0107) . 28.89 (4.383)
Convolution 1.038 (0.0153) 41.00 (5.442) 19.69 (3.722)

Table 7: List of parameter estimates for β0 and τ in the transition chain binomial
model for the estimation of R0.
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Figure 10: Local median estimates for R0. Comparing median estimates of exchange-
able, conditionally autoregressive, and convolution random effects with the transition
chain binomial model.
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Figure 11: Local estimates for R0. Comparing median estimates of exchangeable,
conditionally autoregressive, and convolution random effects across tract number.
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5.6.3 Estimation of R0 - Reed-Frost Chain Binomial Model

As with our transition chain binomial model, we use four years of data correspond-

ing to 2002-05. We fit exchangeable, conditionally autoregressive, and convolution

random effects to the Reed-Frost chain binomial model. In the overall temporal

Reed-Frost model, we obtained a median R0 value of 1.019 with a 95% credible set of

(1.002, 1.039) (Figure 12) which behaves well over 10,000 iterations. The Reed-Frost

model produces the same median R0 estimate as the transition chain binomial model.
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Figure 12: The Markov chain of the temporal R0 estimate over 10,000 iterations,
along with a histogram of the last 8,000 iterations and a kernel density estimate of
the last 1,000 iterations.

In our spatial modeling approach, we map local median estimates of R0 using the

assortment of random effects structures listed above. Unlike the transition chain bi-

nomial model, we needed to fix the values of τCAR and τv to 0.01 and 0.01 respectively

for the algorithms to perform adequately. A number of combinations of fixed values

were considered for τCAR and τv, although authors typically suggest values of τCAR

approximately equal to 0.7τv so that fair weighting is assigned to both local and global

smoothing techniques. Allowing the precision parameters to vary caused a number
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of issues in the estimation of R0 spatially and failed to induce spatial correlation as

well as the fixed precision parameters. The overall mean effect, α0 was given a vague

N(0, 0.01) prior for each random effects model.

The maps listed below (Figure 13) display variations in median R0 values accord-

ing to the type of random effects structure, and show core areas (dark) of disease

spread based on higher values of R0. Cut-off values for the choropleth intervals are

based on CAR model quantiles. As with the transition model, higher values of R0

are found primarily in central and western parts of Baltimore, and lower values are

found primarily in northern and eastern edges of city. From the maps, we also see

strong similarities in the patterns within the map, perhaps due to fixing the preci-

sion parameters. This level of correlation between the median R0 estimates is further

shown in Figure 14, where the exchangeable, CAR, and convolution random effects

produce very similar estimates when fixing τCAR and τv. Aside from a few tracts

corresponding to regions with very low case counts, we see almost no variation in the

R0 estimates across random effects structures. CAR effects and convolution effects

produce estimates which are most strongly correlated across all values of R0.

In order to get an idea of the differences in R0 across the tracts, we also produced

line graphs linking the median R0 values (Figure 15). We compare median exchange-

able, CAR, and convolution estimates of R0 across census tract number, broken down

into sets of 50 tracts as with the transition model. In most cases, median tract esti-

mates are very similar between each of the three random effects structures; however,

tracts with small numbers of cases, such as Tract 8, Tract 20, Tract 130, and Tract

198 produce median R0 values which are harder to predict and more dependent on

the model.

Again, we find more variability in areas with lower numbers of individuals who

contract the disease. It appears that the Reed-Frost model is more sensitive to low

counts than the transition chain binomial model. Exchangeable, CAR, and convo-
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lution random effects can produce vastly different estimates at these types of small

count locations. The overall parameter estimate α0 (Table 8) varies based on the

structure implemented, from -3.79 to -7.32, and the latter estimate most closely fol-

lows the α0 estimates produces by the transmission probability model listed earlier.

0 2 4 6 81
Kilometers

µ

R0 - Crude Model
0.806 - 0.985
0.985 - 1.009
1.009 - 1.023
1.023 - 1.036
1.036 - 1.070 0 2 4 6 81

Kilometers

µ

R0 - Exchangeable Model
0.663 - 0.985
0.985 - 1.009
1.009 - 1.023
1.023 - 1.036
1.036 - 1.068

0 2 4 6 81
Kilometers

µ

R0 - CAR Model
0.691 - 0.985
0.985 - 1.009
1.009 - 1.023
1.023 - 1.036
1.036 - 1.068 0 2 4 6 81

Kilometers

µ

R0 - Convolution Model
0.654 - 0.985
0.985 - 1.009
1.009 - 1.023
1.023 - 1.036
1.036 - 1.068

Figure 13: Local median estimates for R0. Estimates obtained using assumption of
a binomially distributed set of infected individuals, with exchangeable, CAR, and
convolution random effects correlation induced in the transmission probability within
the Reed-Frost model. Crude model map also included.

Model α0

Exchangeable -3.790 (0.0578)
CAR -7.318 (0.0194)

Convolution -4.695 (0.0833)

Table 8: List of parameter estimates for α0 in the Reed-Frost chain binomial model.
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Figure 14: Local median estimates for R0. Comparing median estimates of exchange-
able, conditionally autoregressive, and convolution random effects with the Reed-Frost
chain binomial model.
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Figure 15: Local median estimates for R0. Comparing median estimates of exchange-
able, conditionally autoregressive, and convolution random effects across tract number
using the Reed-Frost chain binomial model.

5.6.4 Chain Binomial Model Comparison

In order to further evaluate and compare models, we recorded information on model

fit available in WinBUGS. The Deviance Information Criterion (DIC) is a hierar-

chical modeling generalization of AIC and BIC, useful in situations with posterior

densities obtained using MCMC sampling techniques. We noted for each model - the

transmission probability model, transition model, and Reed-Frost model - the three

components of the DIC - D̄, D̂, and pD - as well as the DIC values. The deviance is

defined as D(θ) = −2 ln(p(y|θ)) where y denotes the data, θ are the model parame-
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ters, and p(y|θ) is the likelihood function. The average deviance, or D̄, is a measure

of how well the model fits the data and is equal to E[D(θ)]. The larger the value the

worse the fit. pD denote the effective number of parameters in model, and DIC = D̄

+ pD. Lower values of DIC indicate better fit. From Table 9, it is apparent that the

chain binomial models estimating R0, as opposed to transmission probability, provide

a better fit. Based on the DIC values, the transition chain binomial model with a

CAR random effects structure has the lowest value and best fit among the models

considered. In general, the transition chain binomial model appears to provide a

better overall fit to the data than the Reed-Frost model, as well as providing more

stable estimates as noted in the previous section.

In addition, we examined the effect of random effects on median R0 estimates.

Typically, models will have more variability in local estimates which do not induce

correlation amongst the other estimates, i.e., each tract is estimated independently.

CAR and exchangeable random effects should have a smoothing influence on the pa-

rameter estimates and pull observations closer to the neighborhood or global mean,

respectively. From Figure 16, we find that the exchangeable and CAR random effects

draw extreme values closer to the overall average, and their estimates tend to have

less variability than the crude model estimates. Five outlying values with R0 less

than 0.8 in the crude model are pulled back towards the other values closer to the

overall mean, as shown in Figure 16. However, in the Reed-Frost model in Figure 17,

we also find that the exchangeable and CAR random effects do not have the desired

influence on the crude model estimates. In contrast to the transition chain binomial

model, inducing correlation can have a detrimental effect on the Reed-Frost model.

Small counts for cases in tracts have an undesirable effect when inducing correlation

in the Reed-Frost model, and we conclude that the Reed-Frost model as implemented

with exchangeable or CAR random effects does not fit our data well.

We also plotted and observed the kernel density estimates of the posterior distribu-
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tions of R0 for the first ten census tracts based on the adjacency matrix identification

number, as well as the estimated posterior distributions of two larger median R0 val-

ues and one smaller median R0 value (Figure 18). These densities represent plots of

the posterior densities of R0i under the CAR random effects structure, using the coda

function in WinBUGS. The last 1,000 iterations of the Markov chain for each tract

are used for kernel estimation purposes. The standard error and spread of posterior

density are strongly tied to value of R0 - lower R0 values equate to more spread in

density. Again, we observe tighter densities and stronger estimation in the transition

chain binomial model compared to the Reed-Frost model across all values of R0. In

addition, the Reed-Frost model has difficulty locating and estimating lower R0 values,

as is shown with the lower R0 estimate of 0.69 and its corresponding flat distribu-

tion. It is clear that long strings of zero counts in a given tract over time make it

difficult to create the posterior density of R0 in the Reed-Frost model. As a result,

we recommend the use of the transition chain binomial model when estimating model

parameters spatially with our data.

However, if we relax some of our assumptions about the Reed-Frost model, in

particular, how many individuals we consider susceptible to infection at the start of

the study period, our modified Reed-Frost model can be more stable in its identifying

core areas of disease transmission. We can successfully implement random effects

structures in an effort to induce correlation if we reduce the number of susceptible

individuals in the population. For example, we assume that the 336,551 individu-

als aged 15-49 are at risk for infection, which the literature suggests as a reasonable

approximation for a susceptible population size. However, a more realistic estimate

may be a lower, less conservative number, such as 60,000 individuals in the popula-

tion, or 300 per tract, which is equivalent to about 10% of the overall population.

When implementing these new numbers, we obtain much more reliable results with

the Reed-Frost model.
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The scatterplots generated in Figure 19 reveal more variability in the R0 estimates

comparing CAR, exchangeable, and convolution models, as we can now place vague

gamma prior distributions on τCAR and τv. There are no extreme outlying points.

As with the transition chain binomial model, the median tract estimates are very

similar between each of the three random effects structures, and we generally find

the strongest overlap for higher median R0 tract estimates, and weaker overlap for

lower estimates (Figure 20). We find the strongest evidence for model reliability in

Figure 21, as we now observe the exchangeable and CAR random effects pulling the

crude R0 estimates back towards the overall global estimate and neighborhood esti-

mates, respectively.

In the previous Reed-Frost example with the much larger susceptible class popu-

lation size, the exchangeable, CAR, and convolution models produce unusually high

or low R0 estimates in tracts with small case counts compared to the crude model.

This result is the reverse of what we would expect to occur when inducing correlation,

and we are able to correct the model by reducing the number of individuals initially

susceptible at the outset. The adjusted susceptible population size will increase the

values of R0 across the study space, since the transmission probabilities are now esti-

mated to be higher; however, the underlying core area pattern that emerges is similar

to the results generated by the transition model under the assumption of a larger

susceptible population size (Figure 22). Thus, when adjusting the population at risk

to smaller sizes in relation to the number of infectious individuals over the course

of the study period, we can use either the transition or Reed-Frost chain binomial

models without significant issues with estimation.
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Model Prob. Model Trans. Model RF Model
D̄ 25183.60 14996.70 15099.90

Exchangeable D̂ 24990.40 14900.00 14903.40
pD 193.23 96.71 196.56

DIC 25376.80 15093.40 15296.50
D̄ 25184.50 14955.60 15107.20

CAR D̂ 24997.90 14899.50 14904.00
pD 186.59 56.07 203.139

DIC 25371.10 15011.70 15310.30
D̄ 25183.20 15017.50 15104.90

Convolution D̂ 24996.50 14900.30 14903.40
pD 186.64 117.28 201.542

DIC 25369.80 15134.8 15306.40

Table 9: D̄, D̂, pD, and DIC values for probability, transition, and Reed-Frost models.
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Figure 16: Linking the values of R0 for exchangeable, CAR, and crude models (Tran-
sition model).
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Figure 17: Linking the values of R0 for exchangeable, CAR, and crude models (Reed-
Frost model).
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Figure 18: Posterior densities of R0 for the first ten tracts as well as two higher
median R0 tracts, and one lower median R0 tract. CAR random effects - Chain
Binomial Models.
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Figure 19: Local median estimates for R0. Comparing median estimates of exchange-
able, conditionally autoregressive, and convolution random effects with the Reed-Frost
chain binomial model. Assumption of Si0 = 300 susceptible individuals per tract.
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Figure 20: Local median estimates for R0. Comparing median estimates of exchange-
able, conditionally autoregressive, and convolution random effects across tract num-
ber using the Reed-Frost chain binomial model. Assumption of Si0 = 300 susceptible
individuals per tract.
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Figure 21: Linking the values of R0 for exchangeable, CAR, and crude models (Reed-
Frost model). Assumption of Si0 = 300 susceptible individuals per tract.
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Figure 22: Local median estimates for R0. Estimates obtained using assumption of
a binomially distributed set of infected individuals, with exchangeable, CAR, and
convolution random effects correlation induced in the transmission probability within
the Reed-Frost model. Crude model map also included. Assumption of Si0 = 300
susceptible individuals per tract.

5.7 Results: General Epidemic Model - Spatial Estimation

The general epidemic model and corresponding frailty model extensions, introduced

earlier, are a novel approach in the spatial estimation of R0. Previous research

estimated R0 and its component parameters through this type of counting pro-

cess [2, 8, 43, 44], and we develop an initial method for extending this process into

spatial analysis. We run the model using the Metropolis-Hastings algorithm in R,

and derive the chains for R0 by dividing the values of β and γ at each iteration, thus

providing the posterior density of R0.

When running the MCMC algorithm over the entire study space, we estimate R0
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to be 1.022 (Figure 23), which is very close to the R0 estimated by both the transition

and Reed-Frost chain binomial models - 1.019. Based on the histogram of the last

500 iterations as well as the autocorrelation function, we conclude that the algorithm

has converged appropriately.
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Figure 23: Histogram of R0 for last 500 iterations of the general epidemic model
(Left). Autocorrelation functions over all 1000 iterations and last 500 iterations also
shown (Right)

Within our spatial estimation of R0 using the general epidemic model, we map lo-

cal estimates of R0 with no random effects structure, an exchangeable random effects

structure, a conditionally autoregressive random effects structure, and a convolution

random effects structure. We assign vague gamma priors to τCAR and τv, and base

estimates on 10,000 iterations of the MCMC algorithm. We fix the number of suscep-

tible individuals in our population to be 300 per tract, since we had difficulty once

again with larger, more conservative, estimates of the susceptible population size. In

addition, we note that values of R0 will be higher for these local estimates based

on the reduction of initial susceptibles and increase in the transmission probabilities.

However, as with the Reed-Frost model with relaxed assumptions, we should still be
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able to detect the pattern of disease transmission under a different scale. We again

create choropleth maps in ArcMap, using cut-offs established by the CAR quantiles.

From Figure 24, we find similar core areas of disease transmission across Balti-

more compared to the transition and Reed-Frost models. Central and western parts

of Baltimore tend to have higher values of R0 than areas in the northern and eastern

regions. We note that the CAR model will smooth estimates based on neighboring

regions, as seen with the southernmost census tract. Its estimate has been smoothed

to a lower quantile level based on the effects of its surrounding regions, which is

not the case with the other random effects structures. When comparing estimates

across random effects structures, we produced scatterplots of median R0 estimates

of exchangeable random effects vs. CAR random effects, CAR vs. convolution, and

exchangeable vs. convolution (Figure 25). We find that estimates across each set

of pairs are highly correlated when comparing the different types of random effects

structures, although we notice a few outliers. In addition, we track median exchange-

able, CAR, and convolution R0 estimates across census tract number (Figure 26).

Aside from a couple of outlying points in Tracts 20 and 130 where the numbers of

cases are small, we generally find strong association between each of the three random

effects structure.

As with the two chain binomial models we evaluated earlier, we examine the effect

of correlation-inducing random effects on estimated median R0 values. We would ex-

pect a crude model to have more varied values for R0, while CAR and exchangeable

random effects models should have a smoothing influence on the parameter estimates.

From Figure 27, we find that the CAR and exchangeable random effects pull several

extreme values from the crude model towards the global and neighborhood means,

while the random effects have a smaller influence on less extreme values. This was

also observed in the chain binomial model analysis on the influence of random effects.
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Figure 24: Local median estimates for R0. Estimates obtained using the general
epidemic model, with exchangeable, CAR, and convolution random effects correlation.
Crude model map also included. Assumption of 300 susceptible individuals per tract.
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Figure 25: Local median estimates for R0. Comparing median estimates of exchange-
able, conditionally autoregressive, and convolution random effects with the general
epidemic model. Assumption of 300 susceptible individuals per tract.



98

0 10 20 30 40 50

0.
0

0.
5

1.
0

1.
5

2.
0

R0 Estimates by Tract 1−50

Tract

M
ed

ia
n 

R
0 

E
st

im
at

e

CAR
Exch
Convo

50 60 70 80 90 100

0.
0

0.
5

1.
0

1.
5

2.
0

R0 Estimates by Tract 51−100

Tract

M
ed

ia
n 

R
0 

E
st

im
at

e

CAR
Exch
Convo

100 110 120 130 140 150

0.
0

0.
5

1.
0

1.
5

2.
0

R0 Estimates by Tract 101−150

Tract

M
ed

ia
n 

R
0 

E
st

im
at

e

CAR
Exch
Convo

150 160 170 180 190 200

0.
0

0.
5

1.
0

1.
5

2.
0

R0 Estimates by Tract 151−200

Tract

M
ed

ia
n 

R
0 

E
st

im
at

e

CAR
Exch
Convo

Figure 26: Local median estimates for R0. Comparing median estimates of exchange-
able, conditionally autoregressive, and convolution random effects across tract num-
ber using the general epidemic model. Assumption of 300 susceptible individuals per
tract.



99

● ●● ● ● ●● ●● ● ●●● ● ●● ●● ●● ● ●● ● ●● ●● ●● ●● ●●● ● ●●●●●● ● ● ●● ●●● ●

0.0 0.5 1.0 1.5 2.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Tracts 1−50

R0

●● ● ●● ●● ●● ● ●● ● ●●●●● ●● ● ●●● ●●●●●● ●● ●●● ●●● ●●● ●●● ●● ●●● ●

● ●● ●● ●● ●● ● ●● ● ● ●● ●● ●● ●● ● ●●●● ●● ●● ●●● ● ●●●● ●● ●● ●● ●●● ●

Exch
Crude
CAR

●● ●● ●●● ●●● ●● ●●● ●●● ●●● ●● ●●● ●● ●● ● ●● ● ●●● ● ●●● ● ● ●●●● ●● ●

0.0 0.5 1.0 1.5 2.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Tracts 51−100

R0

●● ●● ●●● ●●● ●● ●●● ●● ● ●●● ●● ●● ●●● ● ● ● ●●● ●●● ● ●●● ●● ●●●● ●● ●

●● ●● ●●● ●●● ●● ● ●● ●●● ●●● ●● ●●●● ● ●● ● ●● ● ●●● ● ●●● ● ● ●●●● ●● ●

Exch
Crude
CAR

● ●● ●● ● ● ● ●●● ●●●●● ●● ●● ●● ●● ● ●●●●● ● ●●●●● ● ●●● ●● ●●● ●● ● ●●

0.0 0.5 1.0 1.5 2.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Tracts 101−150

R0

● ●● ●● ● ● ● ●●● ● ●●●● ●● ●● ●● ●● ● ●●●● ●● ●●●●● ● ●●●● ● ●●● ●●●●●

● ●●●● ● ● ● ●●● ●●●●● ●● ●● ●● ●● ● ●●●● ● ●●●● ● ● ●●● ●● ● ●● ●● ● ●●

Exch
Crude
CAR

●●● ●●● ● ●●● ●●● ●● ●●● ●●● ●●● ●●● ●● ●● ●●●●●●●●● ●● ●● ●●● ● ●●

0.0 0.5 1.0 1.5 2.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Tracts 151−200

R0

●●● ●●● ●●● ● ●● ●● ● ●●● ●●● ●●● ● ●● ●●●● ●●● ● ● ●●● ● ●● ●● ●●● ● ●●

●●●●●● ● ●●● ●●● ●● ●●● ●●● ●●● ●●● ●●●● ●●● ● ●●●● ● ●●●● ●●● ● ●●

Exch
Crude
CAR

Figure 27: Linking the values of R0 for exchangeable, CAR, and crude models (Gen-
eral epidemic model). Assumption of 300 susceptible individuals per tract.

5.8 Assessing Model Performance through Simulations of the

Chain Binomial Models

In this section, we attempt to test the MCMC algorithm through the application to

simulated epidemic data. The goal of simulations is to evaluate how well the model

performs with data generated using the same chain binomial model described above.

After generating simulated data with a set of initial values and parameters, which

we assume to be true, we can then apply our models and their associated MCMC

algorithm to these data. We seek a model which can accurately identify the true
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values used to generate the data.

From the temporal results of the transition chain binomial model based on the

observed data, we estimated a median R0 value of 1.01. This value was used to gener-

ate 100 epidemic chains and the results are displayed below in Figure 28. We assume

that 336,551 individuals are susceptible at the outset, and 340 individuals are initially

infectious. Overall, the generated chains of infection follow the observed chain well,

although the observed chain does not experience the same early peak of cases that

is predicted by the model. Using a vague gamma prior of Gamma(0.001, 0.001) with

10,000 iterations and a 2,000 iteration burn-in, we estimate an R0 of 1.021 (95% cred-

ible set: (0.987, 1.054)). From Figure 29, the posterior medians of R0 are distributed

around the true value driving the simulations.

In order to evaluate how well the model performs over the study space of the 200

census tracts of Baltimore, we use the 2000 Census population numbers from each

of the tracts, and take the estimates of those at risk - i.e. those ages 15-49. Those

at risk are assumed to be the number of individuals susceptible in each tract, and

we assume that 2 individuals are infectious at the outset in each tract. In order to

evaluate which values of R0 are reliable at the tract level, we assign three zones of

true values of R0 that are separated by 0.1, and we vary the window of true values

from 1.0-1.2 to 1.9-2.1 in groups of 3 (see Figure 30). We look for the ranges of values

which generate maps and produce statistics which accurately reflect the true values.
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Figure 28: Simulated epidemic curves generated with the transition chain binomial
model using a value of R0 of 1.01, a susceptible population of 336,551 individuals,
and 340 initially infectious individuals. The observed epidemic curve is in bold.
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Figure 30: Baltimore City County census tracts divided into three zones. The zones
are assigned the following R0 values: {1.0, 1.1, 1.2}, {1.3, 1.4, 1.5}, {1.6, 1.7, 1.8},
{1.9, 2.0, 2.1}

From the results in the simulation analysis, the MCMC algorithm begins to have

difficulty converging to the fixed true values as R0 approaches 1 (Figure 31). For val-

ues ranging from 1.3 to 2.1, the MCMC chains converge well to posterior distributions

containing the true values. This is true regardless of population size in a given tract,

which has little influence on how well the algorithm estimates R0 according to the

simulations. From Table 10, we see that the algorithm generates the correct estimates

from 1.3 to 2.1 with low variability and posterior standard deviations ranging from

0.024 to 0.204. The table shows the summary statistics for tract-specific R0 medians.

The higher standard deviation corresponding to R0 of 1.9 is the result of an unusually

low R0 estimate for one tract. However, it is obvious that the algorithm has difficulty

estimating values of R0 less than 1.2.

We can also assess model performance across the geographic space by comparing

maps of these sets of R0 values to Figure 30. Figure 32 demonstrates the breakdown

of structure as we lower the value of R0. Maps displaying R0 estimated values of
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{1.3, 1.4, 1.5}, {1.6, 1.7, 1.8}, {1.9, 2.0, 2.1} mirror the bullseye effect seen in the map

of the true R0 values; however, the map of the lowest estimates does not display the

expected pattern.

In addition, we run simulations for the Reed-Frost chain binomial model under the

assumption of 300 initially susceptible individuals per tract, in contrast to the pop-

ulation considered at risk for the transition chain binomial model. We assume that

issues with estimation with the observed data and large susceptible population class

will also occur when simulating from true values to assess model performance. Thus,

along with the assumption of 300 susceptible individuals per tract, we also assume

5 initially infectious individuals, and use the same window of four sets of three R0

values in order to determine how well the Reed-Frost model performs when varying

the values of R0. Since all tracts are assumed to be identical in terms of population,

we will not analyze estimated R0 across population or attempt to map the results.

Under these new assumptions, we find that the algorithm also has difficulty con-

verging when R0 approaches 1 as observed with the transition chain binomial model.

However, for values ranging from 1.3 to 2.1 in Table 11, we discover that the MCMC

chains converge well to posterior distributions containing the true value. From Ta-

ble 11, median and mean R0 estimates are close to their corresponding true values

and the posterior standard deviations are relatively low, ranging from 0.029 to 0.058

for distributions containing true R0 values of 1.3 to 2.1. We conclude that the Reed-

Frost model provides adequate R0 estimates across higher values of true values of R0,

comparable to the transition chain binomial model.

Overall, we can expect the model to estimate effectively and efficiently higher

values of R0, but we will encounter difficulties with smaller values of R0 at the tract

level for both models. This is the result of the unpredictability of binomial chains

generated with lower transmission probabilities and small initial infectious counts. In

some situations, the initial cases generate a sustainable chain of infectious individuals
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where R0 is well defined. In other situations, the initial cases generate almost no

future cases, and the resulting chain is a series of zeros, which makes estimation of

the model parameters difficult. We had no issues estimating R0 values close to 1

for the entire study space since we had a large number of initial infectious individu-

als. With smaller initial susceptible population sizes and slightly more initial cases,

we find that the MCMC algorithm in coordination with Reed-Frost model correctly

identifies most true R0 values.
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Figure 31: Comparing estimates of R0 to the true R0 value used to simulate binomial
chain. Effects of tract population size on R0 estimation also noted.
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R0 Value N Mean St. Dev. Median (Min, Max)
1.0 87 2.124 1.480 1.548 (0.687, 7.184)
1.1 64 2.103 1.416 1.586 (0.674, 6.015)
1.2 49 1.249 0.154 1.262 (0.922, 1.549)
1.3 87 1.316 0.072 1.309 (1.108, 1.871)
1.4 64 1.405 0.027 1.406 (1.352, 1.488)
1.5 49 1.498 0.024 1.496 (1.435, 1.559)
1.6 87 1.593 0.027 1.589 (1.541, 1.751)
1.7 64 1.684 0.024 1.687 (1.626, 1.746)
1.8 49 1.788 0.024 1.784 (1.721, 1.844)
1.9 87 1.865 0.204 1.886 (0.000, 1.951)
2.0 64 1.999 0.040 1.991 (1.913, 2.102)
2.1 49 2.112 0.055 2.121 (1.975, 2.236)

Table 10: Measures of model performance - Comparing the fixed true R0 to estimated
R0 value using summary statistics with the transition chain binomial model.

0 2 4 6 81
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µ

Estimated R0
< 0.95
0.95 - 1.05
1.05 - 1.15
1.15 - 1.25
> 1.25 0 2 4 6 81

Kilometers
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Estimated R0
< 1.25
1.25 - 1.35
1.35 - 1.45
1.45 - 1.55
> 1.55

0 2 4 6 81
Kilometers

µ

Estimated R0
< 1.55
1.55 - 1.65
1.65 - 1.75
1.75 - 1.85
> 1.85 0 2 4 6 81

Kilometers

µ

Estimated R0
< 1.85
1.85 - 1.95
1.95 - 2.05
2.05 - 2.15
> 2.15

Figure 32: Estimates for R0 across Baltimore using the following set of fixed R0

values: {1.0, 1.1, 1.2}, {1.3, 1.4, 1.5}, {1.6, 1.7, 1.8}, {1.9, 2.0, 2.1}
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Figure 33: Comparing estimates of R0 to the true R0 value used to simulate Reed-
Frost binomial chain. Si0 = 300 susceptible individuals per tract.
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R0 Value N Mean St. Dev. Median (Min, Max)
1.0 87 0.902 0.318 0.965 (0.177, 1.463)
1.1 64 0.970 0.239 1.004 (0.163, 1.502)
1.2 49 1.091 0.133 1.107 (0.725, 1.366)
1.3 87 1.285 0.058 1.288 (1.153, 1.418)
1.4 64 1.386 0.045 1.393 (1.275, 1.462)
1.5 49 1.497 0.038 1.501 (1.378, 1.571)
1.6 87 1.586 0.035 1.588 (1.482, 1.668)
1.7 64 1.681 0.029 1.679 (1.615, 1.749)
1.8 49 1.774 0.037 1.774 (1.650, 1.835)
1.9 87 1.860 0.039 1.860 (1.765, 1.975)
2.0 64 1.950 0.048 1.950 (1.864, 2.115)
2.1 49 2.051 0.051 2.050 (1.944, 2.156)

Table 11: Measures of model performance - Comparing the fixed true R0 to esti-
mated R0 value using summary statistics. The Reed-Frost approach with Si0 = 300
susceptible individuals per tract.
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5.9 Discussion - R0 Estimation Models

Overall, we can expect the model to estimate effectively and efficiently spatial pat-

terns in values of R0, but we will encounter difficulties with smaller values of R0 at the

tract level. This is the result of the unpredictability of binomial chains generated with

lower transmission probabilities, small initial infectious counts, and larger numbers

of individuals who are susceptible. In some situations, the initial cases can generate

a sustainable chain of infectious individuals where R0 is well defined. In other sit-

uations, the initial cases generate almost no future cases, and the resulting chain is

a series of zeros, considerably complicating estimation of the model parameters. We

had no issues estimating R0 values close to 1 for the entire study space since we had

a large number of initially infectious individuals. In the Reed-Frost chain binomial

model, larger estimates for the number of susceptible individuals in the population

result in inconsistent estimation across the varying random effects structures. We

also found this to be an issue with the general epidemic model. By lowering our

susceptible population size to a reasonable 10% of the total population, we find that

the Reed-Frost model and general epidemic model adequately identify and quantify

patterns of disease transmission and correctly implement the smoothing techniques.

Despite the differences in the models and the sets of accompanying assumptions, we

find roughly the same estimated pattern of disease transmission across Baltimore in

this time period (Figure 34).
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1.026 - 1.030
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Figure 34: Local median estimates for R0. Assessing the spatial pattern of disease
transmission across model type using CAR random effects. The transition chain
binomial model (upper left), Reed-Frost chain binomial model (upper right), and
general epidemic model (bottom center) are shown above.

Our work demonstrates several advantages over existing models and models which

do not implement correlation-inducing random effects. The Bayesian approach allows

us to obtain posterior densities and credible sets for R0 at each location. In addition,

our random effects models incorporate local and global information which provide

more statistically precise local estimates than crude estimation alone. One of the

goals of our research is to obtain precise local estimates with adequate spatial res-

olution, and we believe correlation-inducing random effects provide more accurate,

precise, and realistic local R0 estimates. Our models also discovered a cluster of core

area disease transmission in north-western Baltimore, which was not highlighted in

previous spatial methods such as the Local Moran test and SaTScan.

Our results show that spatial estimation of epidemic model parameters such as the
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transmission probability, transmission parameter β, or R0 is feasible under the right

conditions and data support. Chain binomial models require enough cases to sustain

an endemic or epidemic disease for a long period of time, and more cases lead to stable

estimation and less variability in our estimates, as is shown with both the observed

data and simulated data examples. In our observed data model, we have shown that

conditionally autoregressive random effects structures can effectively smooth the sur-

face of parameter estimates over a study space without losing much spatial resolution

from individual regions. In particular, for our motivating example of gonorrhea in

census tracts in Baltimore City County, we have been able to capture clear spatial

delineation of core areas of disease transmission through the use of chain binomial

model estimation as well as general epidemic model estimation within the framework

of Bayesian hierarchical modeling.

6 Future Work

6.1 Extensions to Existing Models

Although we chose vague priors for the precision parameters in every analysis, which

yielded maps with only slight differences across random effect type, we could imple-

ment stronger priors to induce stronger correlation in our estimates. For our maps,

the strength of correlation is a compromise between finding the underlying pattern

of disease transmission, and allowing for accurate local estimation. We hope that the

models used will assist in the local estimation of R0 for regions with smaller numbers

of cases.

Additionally, we have fixed our recovery parameter γ to be equal to 1 for each

model used. This estimate was based on literature noting that the typical infectious

period could range from two weeks to a few months depending on the severity of the
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symptoms [32]. Future work could attempt to estimate infection times using MCMC

techniques, although we note that estimation will be substantially more difficult with

missing infection times to be estimated.

We also used an assortment of values for the number of initially susceptible indi-

viduals in each tract. In two of our models, the Reed-Frost chain binomial model and

the general epidemic model, estimation of R0 was more difficult assuming everyone

aged 15-49 was susceptible to infection. Future analyses could look at results when

varying the number of susceptible individuals from the least conservative estimate

(let S0 equal the total number of infections over time) to the most conservative es-

timate (let S0 equal the number of individuals aged 15-49). This type of sensitivity

analysis could be useful in determining accurate susceptible population sizes in future

research.

Although we assumed an SIR model since only a very small number of individuals

appeared in our dataset more than once, future work could transition towards an SIS

(susceptible-infectious-susceptible) model where those who clear the infection class

move back into the susceptible class. The accuracy of this model depends on having

enough individuals appear more than once in the dataset, so a period of more than

four years may be necessary to carry out this future analysis.

Hethcote and Yorke discussed models for control methods which involve clas-

sifying individuals based on gender, sexual activity, and whether the individual is

symptomatic, resulting in 8 distinct groups [32]. A more effective and accurate model

would account for these discrepancies within groups, and future analyses should focus

on addressing this method of classification. They suggest closely following asymp-

tomatics and sexually active individuals, assuming this level of information is avail-

able.
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6.2 Spatially-varying Coefficient Models

Spatially-varying coefficient models represent the next step toward combining aspects

of geographically weighted regression techniques with Bayesian inferential techniques.

Instead of allowing the associations between disease rates and covariates to vary spa-

tially, we can use spatially-varying coefficient models to predict transmission rates

while incorporating different types of correlation structures. As with our random ef-

fects models from the chain binomial analysis, we estimate an overall mean intercept

along with local deviations from the mean [53].

With more covariate baseline data on the subjects, we could attempt to adjust

our epidemic model parameters for other variables. Although spatial heterogeneity

in susceptible populations has been addressed, future steps could account for the ef-

fects of gender, age, and race on epidemic parameters in addition to space. Clearly,

a number of factors influence the existence of varying levels of disease susceptibility

in populations, and we hope to extend our epidemic models into the area spatially-

varying coefficient models in order to provide additional details in the model-based

inference of core areas of infectious diseases.

6.3 Identifiability Issues

With MCMC, issues with reparameterization estimation can be applicable, since we

are concerned with potential correlations between the epidemic parameters β and γ.

If we sample and estimate β and γ, then the ratio of the two provides the posterior

density of the function of interest: R0. Since we have fixed γ in our previous analysis,

we did not consider whether β or γ are varying spatially or whether both are varying

spatially. Thus, the issue of identifiability arises when we are unable to distinguish

the two parameters in a multilevel process. If the available data do not shed light on a

parameter, then that parameter is said to be unidentifiable. Bayesians have the abil-
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ity to place proper prior distributions on the unidentified parameters [55]. However,

weakly identifiable parameters are even more common than perfectly unidentifiable

parameters, as the model may be structured in a way that an enormous dataset

is needed in order to have the power to differentiate ecological processes [13]. In

MCMC, weak identifiability leads to weak convergence - an important issue to con-

sider in estimating epidemic model parameters. Future work could address solutions

to accounting for identifiability problems, including running models with known in-

puts through simulations.

In conclusion, the models represent a step toward the development of hierarchical

spatial models of the spread of infectious diseases. The estimation problems are chal-

lenging, but manageable under the right data support. We believe the methodology

of correlation-inducing random effects within stochastic infectious disease models can

continue to provide accurate and precise local estimates for epidemic model parame-

ters in the future.
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