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Abstract

SVD Approximations of Large Scale Inverse Problems
By Chang Meng

This thesis studies efficient methods for computing approximations of the singular
value decomposition (SVD) for large matrices that arise in ill-posed inverse prob-
lems, with a focus on image deblurring. These methods are: the Lanczos method,
the randomized method, and the Kronecker product approximation method. After
introducing the SVD and describing the approximation methods, we show test results
involving the accuracy and speed comparisons of these methods, and provide some
deblurring examples.
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Chapter 1

Introduction

Remember how frustrated you were when you wanted to take a sharp, clear picture

of the beautiful scenery you see but all you ended up with were only dim, blurred

ones? These unfortunate events happen a lot, and are almost inevitable, not only

because of the probability that you have shaky hands, but also because of some

mechanical reasons, for the optical system in a camera lens may be out of focus, etc.

In astronomical imaging, blurring also occurs. Yet oftentimes this is another type of

blurring, which is due to air turbulence [6]. Although many telescopes are located at

high altitudes where air is thin, turbulence could still cause some blur in the image.

When an unknown, blurred image is recorded, the mathematical model that de-

scribes this is

g(x, y) =

∫ b

a

∫ b

a

k(x, s; y, t)f(s, t)dsdt

where g(x, y) is the observed, blurred image, f(s, t) is the original image (object),

and k (called the point spread function) represents the blurring phenomena. We may

assume that k and g are known. This integral equation is a two-dimensional Fredholm

integral equation of the first kind (IFK) [3]. Our aim is to “undo” the integration to

find the original image f , and this is called an inverse problem. An inverse problem

is ill-posed for the following reasons [1]:

• There might not be a unique solution f corresponding to the given observed
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image g and the point spread function k. Thus, the image that we obtain after

solving the equation may not be unique.

• A small perturbation in the observed image g can lead to large changes in the

solution f .

In this thesis, instead of trying to solve for f in the ill-posed integral equation,

we attempt to solve an ill-conditioned matrix-vector equation Kf = g, which is

equivalent to solving the original integral equation. How do we obtain such a linear

system? We discretize the interval and apply quadrature methods to the integral. To

make things easier, we first consider a 1-D integral g(x) =
∫ b
a
k(x, s)f(s)ds and then

consider the 2-D case.

We attempt to approximate the integral using a quadrature rule. Here comes a

brief review of two widely used quadrature rules - the Rectangle rule and the Trape-

zoidal rule [2]: The rectangle rule approximates the area under f(s) from s = 0

to s = h by the area of a rectangle whose width equals h and length equals f(0).

Therefore we have ∫ h

0

f(s)ds ≈ hf(0)

Note that in a rectangle rule, we could also use f(h) or f(h/2) or any point in the

interval [0, h] to get the height. In the case of h/2, we call this the ”mid-point rule”.

Similarly, the trapezoidal rule approximates area by the area of a right trapezoid with

a height of h and bases f(0), f(h):

∫ h

0

f(s)ds ≈ h

2

(
f(0) + f(h)

)

If h is small, and f is smooth on the interval [0, h], then both rules are a good

approximation to the integral. Thus, to accurately approximate an integral over the
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interval [a, b], we divide it into several subintervals by some equally spaced points si

such that

a = s0 < s1 < · · · < sN = b

where the length h of each subinterval is h = b−a
N

and apply the rectangle or trape-

zoidal rule to each of these subintervals. In this way we obtain the Composite rectangle

rule: ∫ b

a

f(s)ds ≈ h
(
f(s0) + f(s1) + · · ·+ f(sN−1)

)
and the Composite trapezoidal rule:

∫ b

a

f(s)ds ≈ h

(
f(s0)

2
+ f(s1) + · · ·+ f(sN−1) +

f(sN)

2

)

The composite rules can be easily extended to IFK’s from which we could obtain

the matrix-vector form of the ill-posed problem. Here we only demonstrate how to

achieve this using the less complex, more straightforward rectangle rule. Before we

start, we need also discretize the interval [c, d] on which g(x) is defined. Suppose

the lengths of [c, d] and [a, b] are equal, we could use the same h on [c, d] by taking

xi = c+ ih for i = 0 : N − 1. Then the IFK can be written as

g(xi) = h
(
k(xi, s0)f(s0) + k(xi, s1)f(s1) + · · ·+ k(xi, sN−1)f(sN−1)

)

We can approximate each g(xi) using the above formula and write a linear system


hk(x0, s0) hk(x0, s1) · · · hk(x0, sN−1)

hk(x1, s0) hk(x1, s1) · · · hk(x1, sN−1)
...

hk(xN−1, s0) hk(xN−1, s1) · · · hk(xN−1, sN−1)




f(s0)

f(s1)
...

f(sN−1)

 =


g(x0)

g(x1)
...

g(xN−1)
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where the three components are K, f ,g respectively.

Suppose the kernel k is stationary (that is, k(x, s) = k(x− s)), and substitute si

with a+ ih, xi with c+ ih, we could rewrite the matrix K:

K =


hk(c− a) hk(c− a− h) · · · hk(c− a− (N − 1)h)

hk(c− a+ h) hk(c− a) · · · hk(c− a− (N − 2)h)
...

hk(c− a+ (N − 1)h) hk(c− a+ (N − 2)h) · · · hk(c− a)


It is not hard to notice that this matrix has a special structure, and we call it a

Toeplitz matrix. The structure of such matrix could be exploited to compute the

Kronecker product approximation and then the SVD approximation, as discussed in

Section 3.3. Similarly, the two-dimensional IFK

g(x, y) =

∫ b

a

∫ b

a

k(x, s; y, t)f(s, t)dsdt

can also be written as a linear system. But in this case the matrix K has dimension

n × n where n = N2. Given a stationery kernel k, this matrix is a block Toeplitz

matrix with Toeplitz blocks.

When solving an inverse problem, we assume that the point spread function k is

given. That is, the PSF matrix K is given. Another factor to be considered when

forming K is the boundary condition, which would differ for different problems. This

thesis will not go over how to obtain K, but any interested reader should see [6] for

more information.

What we also have in hand is the observed image g(x, y). To discretize g, we

think of the image as a 2-D array of pixels, while each value in the observed image

g represents the color and intensity of one pixel. Another way to phrase this is, the

image can be transformed into a function g(x, y), where the range of x, y are positive
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integers no larger than the number of pixels horizontally and vertically in the image,

and the value of each g(xi, yi) represents measurements of each pixel.

From this point, we consider how to solve the system Kf = g for f accurately and

efficiently. The idea is to compute the singular value decomposition (SVD) for K:

K = UΣV T

and manipulate this decomposition to compute f . We will go over the definition and

properties of the SVD, as well as representation of f using the SVD in Chapter 2

Section 2.1.

For an image deblurring problem, some challenges include but are not limited to:

• In addition to blurring, observed images usually come with noise. Noise, accord-

ing to [6], can be caused by background photons, readout errors and quantiza-

tion errors. As discussed earlier, a small change in g can lead to large changes

in the solution f since the linear system is very ill-conditioned. Thus if there

is noise in g, solving the system directly would make our solution less credible.

To compensate for the negative impact of noise, regularization methods can be

used, and will be discussed in Section 2.3.

• The linear systems that we are solving are often pretty large. If we have an

N × N image to deblur, the matrix K that we are forming is of dimension

N2×N2 = n×n. The squaring of pixel numbers in the blurring matrix is very

demanding on the methods that we use to solve the linear system. Appropriate

methods should be both accurate and fast. In Chapter 3 we are going the

examine three methods, namely, the Lanczos method, the randomized method,

and the Kronecker product approximation method, to compute low-rank SVD
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approximations of the matrix K. In Chapter 4, we run experiments on these

three methods and compare their performance in terms of accuracy and speed.

From here, having in mind the idea of regularization and efficient SVD approxi-

mation methods, we are ready to deblur an image! In this chapter we are not going

to go over the technical details of how to actually deblur an image, but rather render

a realistic expectation when deblurring an image. The following is an example of a

deblurred image. More examples will come later in Chapter 4.

Figure 1.1: Blurred image (left) and deblurred image (right).

In most cases, the deblurred image will not be as sharp and clear as the true image,

as in Figure 1.1. But the deblurred image at least has one important improvement

from the observed image - we now know that the object in the image is a satellite!

The following chapters demonstrate details in the image deblurring process.
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Chapter 2

Singular Value Decomposition

2.1 Definition and Properties

The singular value decomposition (SVD) is an important and useful matrix decom-

position in numerical linear algebra. The SVD is defined as follows [11]:

Every matrix K ∈ Rm×n of rank k can be written as:

K = UΣV T = (U1 U2)

(
Σ1 0

0 0

)(
V T
1

V T
2

)
,

where U ∈ Rm×m, V ∈ Rn×n are orthogonal matrices (U−1 = UT and V −1 = V T ),

U1 ∈ Rm×r, V1 ∈ Rn×r, and

Σ1 = diag(σ1, σ2, . . . , σr) ∈ Rr×r

is a real nonnegative diagonal matrix. σ1 ≥ σ2 ≥ · · · ≥ σr > 0 are called the singular

values of K. If we write

U = [u1, . . . ,um] , V = [v1, . . .vn]

then ui ∀ i = 1 : m and vi ∀ i = 1 : n are called left and right singular vectors
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respectively. Furthermore, since U and V are orthogonal, their column vectors form

orthonormal sets, that is,

uTi uj =


1 if i = j.

0 if i 6= j.

and vTi vj =


1 if i = j.

0 if i 6= j.

Given K = UΣV T , we can derive two relevant relations:

1. Kvi = σiui, i = 1, 2, . . . , k,

2. KTui = σivi, i = 1, 2, . . . , k.

The SVD is an important tool for analyzing properties of numerical linear algebra

problems. For example, it can be shown that

‖K‖2 = σ1 (the largest singular value of K)

and if K is nonsingular, that is, if K−1 exists,

‖K−1‖2 =
1

σn
(the reciprocal of the smallest singular value of K)

Thus, using the 2-norm, the condition number of the matrix K is:

κ2(K) = ‖K‖2‖K−1‖2 =
σ1
σn
.

This is an important property: if the ratio σ1
σn

is large, then the matrix K is

ill-conditioned.

Suppose K is an n × n nonsingular matrix with SVD K = UΣV T (from now on

we only consider K to be a square matrix), where

U = [u1 u2 · · ·un] ,ui = ith column of U



9

V = [v1 v2 · · ·vn] ,vi = ith column of V

Σ = diag(σ1, σ2, . . . , σn)

The solution to the linear system Kf = g can be written as:

f = K−1g = (UΣV T )−1g = V Σ−1UTg =
n∑
i=1

uTi g

σi
vi

If the matrix K comes from discretizing an ill-posed problem, as is the case in

image restoration, then the SVD of K typically has the following properties:

• K is typically very ill-conditioned; that is, κ2(K) = σ1
σn

is large (e.g., 108−1016).

• In general, σ1 ≈ 1 and σn ≈ 0. Moreover, the singular values decay smoothly to

zero, so it is difficult to determine a cutoff between ”large” and ”small” singular

values.

• The singular vectors ui and vi tend to ”oscillate” more and more as i increases.

That is, the singular vectors corresponding to small singular values tend to

oscillate as shown in Figure 2.1.

2.2 Computational Difficulties

When working on an image deblurring problem, obtaining an accurate SVD approx-

imation is very difficult:

• Computing the SVD is very expensive, both in terms of time and storage.

If we are working on a 256 × 256 image, the blurring matrix K that we form

is 2562 × 2562 (65536 × 65536) in dimension. Although the algorithm that

MATLAB uses can compute the SVD accurately, it would fail in the case of
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Figure 2.1: Singular values and some right singular vectors of a 256 × 256 matrix
(condition number =1.34× 108) generated by the “phillips” function in regu tools[5]

such a large matrix because it would take “forever” to do so. The bad news is,

a 256 pixel by 256 pixel image is not a ”large” image in practice. The images

that a high-definition space telescope sends back can have much more pixels

and if we were to deblur such an image, a much faster method is necessary.

Three efficient SVD approximation methods will be introduced in Chapter 3.

On the other hand, a 65536×65536 dense matrix requires 32.0GB of storage. If

we want to compute the full SVD of this matrix, MATLAB will complain that

the matrix is too big and would cause MATLAB to be unresponsive. However,

luckily, we don’t need the full SVD for our problem. Most of the time, what

we need is subset of the columns of the U and V matrices corresponding to the
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largest singular values of K. The precise number depends on the application,

which will be discussed in Chapter 4.

• What we already know is our image at hand is blurred by some mechanical or

physical process. But almost always the image that we work on might not be

the original blurred image since it can also be contaminated by noise. It seems

at first glance that having a 0.01% deviation in measurement is not too bad,

but if we take a look at Figure 2.2, where the lower-left plot plots the solution

f = K−1g where there is no noise, and the lower-right one plots the solution

fη = K−1gη where gη contains 10−4 noise, it is obvious that such noise would

lead to s solution that has too much oscillation and is not even “close” to the

true solution.

In the following analysis, we show how a small noise can cause large error in

computing the solution f :

Suppose the noise in the observed data is η, thus the original linear system

Kf = g that we work on becomes:

gη = g + η = Kf + η = UΣV T f + η

Since {u1,u2, · · ·un} and {v1,v2, · · ·vn} are orthonormal bases for Rn, we can

rewrite the vectors f and η as linear combinations of vectors in the bases, that

is, we can find coefficients fi and ηi such that

f =
n∑
i=1

fivi and η =
n∑
i=1

ηiui

Then, the observed data gη can be written as

gη =
n∑
i=1

(σifi + ηi)ui
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Figure 2.2: Test problem generated by Phillips [5] demonstrating the impact of noise
on solutions.

Solving gη = g + η = Kf + η yields

f =
n∑
i=1

uTi gη
σi

vi =
n∑
i=1

σifi + ηi
σi

vi =
n∑
i=1

(
fi +

ηi
σi

)
vi.

Since the singular values σi for large indices i are small, the noise coefficients

ηi are highly magnified. For example, suppose the noise level is 10−4, and

the corresponding σi is 10−8, then the noise level would be magnified by 104.

Additionally, as we have previously demonstrated, the right singular vectors vi

corresponding to large i tend to oscillate a lot, so it would be easy to imagine

that the computer solution will be dominated by noise. Fortunately, there are

things that can be done to eliminate the impact of noise. These methods are
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called regularization, and will be discussed in detail in the next section.

2.3 Regularization Methods

Discrete regularization can be thought of as a scheme to ”filter out” the noise contri-

butions. This is done through “filter factors”, which are essentially some scalars that

help highlight the impact of large singular values and vectors, while weakening the

small ones, in the regularized solution. From now on we drop the subscript η on gη.

The regularized solution can be written as

freg =
n∑
i=1

φi
σifi + ηi

σi
vi =

n∑
i=1

φi
uTi g

σi
vi

where the scalars φi are the filter factors. These filter factors should have magnitude

of 0 to 1, and intuitively, should satisfy the property that as σi decreases (that is, as

i increases), the corresponding φi should approach 0 so that the noisy contributions

of σifi+ηi
σi

vi to the solution are filtered out.

In subsections 2.3.1 and 2.3.2 we are going to investigate two regularization meth-

ods, namely, truncated SVD (TSVD) and Tikhonov regularization.

2.3.1 Truncated SVD

The truncated singular value decomposition regularization is implemented by replac-

ing the small singular values of K by 0, keeping only the first k singular values and

corresponding singular vectors. The filter factors φi can be written as

φi =


1 for σi ≥ σk

0 for σi ≤ σk
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and the TSVD regularized solution is given by

ftsvd =
k∑
i=1

uTi g

σi
vi

Note that the TSVD method is equivalent to solving

Kkf = g

where Kk = UΣkV
T and Σk = diag(σ1, σ2, · · · , σk, 0, · · · , 0). Thus the solution can

also be written as

ftsvd = V Σ†kU
Tg

where Σ†k = diag(1/σ1, . . . , 1/σk, 0, . . . , 0).

An important question to consider is where do we truncate the SVD? That is,

how do we choose the parameter k? Computing the SVD for large matrices is very

expensive and in general, the matrix K for image restoration is too large to be able

to compute an SVD, so it would be unwise to attempt to compute the SVD first

and then think about the “cutoff”. In practice, what we would want to do is to only

compute the first k singular values and corresponding singular vectors (methods to

be discussed in Chapter 3), which would result naturally in a TSVD solution.

2.3.2 Tikhonov Regularization

In Tikhonov regularization [11], the linear system Kf = g is replaced by the mini-

mization problem

min
f
{‖Kf − g‖22 + λ2‖f‖22}
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which is the same as solving the least squares (LS) problem

min
f

∥∥∥∥∥
[
K

λI

]
f −

[
g

0

]∥∥∥∥∥
2

2

.

The normal equations to the LS problem are given by

(KTK + λ2I)freg = KTg

Although the normal equations should not be formed to compute solutions to the LS

problem, they can be used to show that the filter factors φi used for the regularized

solution ftik =
n∑
i=1

φi
uT
i g

σi
vi are

φi =
σ2
i

σ2
i + λ2

.

Moreover, we can also use the normal equations, together with the Shermann-Morrisen-

Woodbury formula to show that the Tikhonov solution of f is

ftik = (KTK + λ2I)−1KTg = V diag

(
σi

σ2
i + λ2

)
UTg

Compared to TSVD regularization discussed in the previous subsection, the filter

factors for Tikhonov regularization correspond to a smoother filter that dampens the

components corresponding to σi < λ. If we choose λ = σk where σk is the “cutoff”

singular value in TSVD, then the filter factors for TSVD and Tikhonov would behave

similarly, but Tikhonov would display a smoother transition than TSVD. As shown in

Figure 2.3, the TSVD “cutoff” is the 100th singular value (σ100), while correspondingly

the Tikhonov parameter λ = σ100.

The question that comes now is how to choose the parameter λ for Tikhonov

regularization. In fact, for different problems, the parameter λ would differ. For



16

0 50 100 150 200 250

0

0.2

0.4

0.6

0.8

1

tsvd filter factors

0 50 100 150 200 250

0

0.2

0.4

0.6

0.8

1

tikhonov filter factors

Figure 2.3: TSVD and Tikhonov filter factors for a 256× 256 Phillips [5] matrix.

a specific problem, the easiest way to find λ is to compare the regularized solution

for various values of λ and choose the parameter that corresponds to the ”closest”

solution to the true f .

Figure 2.4 demonstrates the effect of the Tikhonov parameter λ on computed

solutions. From the figure, we could tell easily that λ = 0.001×σ1 is a good parameter.

If it is too big (λ = 0.1× σ1), as in the lower-left corner plot, the computed solution

will not fit the true solution closely because not enough “large” singular values and

corresponding singular vectors are kept to render a good solution; if it is too small

(λ = 0.0001 × σ1), as in the lower-right corner plot, the computed solution fits the

true solution, but has too much oscillation because too many “small” singular values

and corresponding singular vectors are kept. Instead of purely observing the plots,

we could also compute the relative error norms of computed solutions corresponding

to different λ’s. This is especially useful when two parameters yield similar solutions

that our eyes cannot distinguish.

Another approach to determine the parameter λ is to draw the “L-curve”. Suppose

we have lots of choices for λ, we could do the following for each λ:
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Figure 2.4: Solutions of f corresponding to different values of the regularization pa-
rameter λ

1. Compute the solution f corresponding to this λ and compute the its norm,

2. compute the residual of f , that is, g −Kf , and compute its norm.

Then, each λ would have s solution norm and residual norm associated with it. We

could store the solution norms and residual norms in order in two vectors, and plot

them against each other in one plot, which often results in the L-curve.

Figure 2.5 displays an L-curve, where the range of λ is 10−2 × σ1 to 10−4 × σ1,

which is chosen according to what we observed in Figure 2.4. The reason why the

curve is called an “L-curve” is quite obvious. Notice that the “L” has a corner on

the lower-left, and this corner corresponds corresponds to a λ with a balance of small

residual norm but not too large solution norm. To locate this corner and find the

corresponding λ, we can do either of the following:
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Figure 2.5: L-curve, 256× 256 Phillips [5] matrix.

1. Take an initial guess of the corner point, plot it, improve our guess, and watch

it approach the true corner,

2. use the “l-corner” or “corner” function in regularization tools [5].

Once we are able to find this corner, a good λ is found.

In practice, however, when we are looking for the parameter λ, we usually do not

use the “L-curve”. Most times we utilize the first approach: trying a few λ’s and

observing the computed solution would allow us to find a good Tikhonov parameter.
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Chapter 3

SVD Approximations

In this chapter we investigate three methods for computing low-rank SVD ap-

proximations. Here we only discuss briefly how the approximations are done, but for

detailed proofs and error analysis refer to [4, 9, 8, 7, 10]. When computing the SVD

approximation of matrix K, we assume that the desired rank is fixed.

3.1 Lanczos Method

For K ∈ Rn×n, Lanczos bidiagonalization (LBD) [9] (implemented in PROPACK 1)

computes a sequence of Lanczos vectors uj ∈ Rn and vj ∈ Rn and scalars αj and βj

for j = 1, . . . , k (after k Lanczos steps) such that

KVk = Uk+1Bk

where uj and vj orthonormal and are columns of Uk+1 and Vk such that

Uk+1 = [u1, . . . ,uk+1]

Vk = [v1, . . . ,vk]

1PROPACK can be obtained from http://sun.stanford.edu/∼rmunk/PROPACK/.

http://sun.stanford.edu/~rmunk/PROPACK/
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and where Bk is a (k + 1)× k lower bidiagonal matrix

Bk =



α1

β2 α2

β3
. . .
. . . αk

βk+1


.

To compute the SVD approximation of K, we first compute the SVD of the matrix

Bk (which can be done relatively easily)

Bk = PΣQT

where the k singular values of Bk are good approximations to the k largest singular

values of K. Then, we compute the products U = Uk+1P and V = VkQ, from which

we could obtain the SVD approximation of K:

K ≈ UΣV T .

3.2 Randomized Method

This section summarizes the work of Halko, Martinsson and Tropp [4], which provided

a general scheme and detailed randomized algorithms for standard matrix factoriza-

tion approximations. The general scheme consists of two stages:

1. Compute an approximate basis for the range of the input matrix K ∈ Rn×n.

That is, find matrix Q such that Q has orthonormal columns and

K ≈ QQTK
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The number of columns in Q is fixed, and is related to the desired rank in the

approximation.

2. Use Q to help compute a standard factorization (QR, SVD, etc.) of K.

To construct the matrix Q, we use random sampling techniques on K. Suppose

we have a random vector ω ∈ Rn, the product y = Kω can be viewed as a random

sample from the range of K. If the desired rank of K is k, we can perform the

sampling process k times:

yi = Kωi, i = 1, 2, . . . , k

The random vectors ωi form a linearly independent set and as a result, the sampling

vectors yi are also linearly independent so they span the range of K.

Given a fixed rank k, and an oversampling parameter p, we compute an n×(k+p)

matrix Q whose columns are orthonormal and whose range approximates the range

of K:

1. Draw an n× (k + p) random matrix Ω.

2. Form Y = KΩ.

3. Construct Q whose columns form an orthogonal basis for the range of Y . That

is, compute the QR factorization of Y to obtain Q.

For choice of the random matrix Ω, we can either draw a standard Gaussian

matrix, or draw a subsampled random Fourier transform (SRFT) matrix. Also note

that if the singular value spectrum of K decays slowly, then, when forming Y , we can

do

Y = (KKT )qKΩ
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where q is a positive integer usually less than or equal to 5.

Once we have Q, we go on to stage 2 to compute the approximate SVD for K:

1. Form M = QTK.

2. Compute the SVD (can use svd in MATLAB) of the small matrix: M = ŨΣV T .

3. Set U = QŨ . Then K ≈ UΣV T is the SVD approximation of K.

Since Q is an n × (k + p) matrix, there will be k + p singular values in Σ. Our

desired rank is k, so we can simply take the first k singular values in Σ. Oversampling

here will improve accuracy in the computed singular values, especially the small ones.

The matrix V in the approximation is a full n×n matrix, but in practice it is very

hard to store such a matrix (see 2.2), so we can manipulate the input parameters of

the function svd in MATLAB to compute only k + p columns corresponding to the

singular values.

3.3 Kronecker Product Approximation Method

Given matrices A ∈ RN×N and B ∈ RN×N , the Kronecker product K = A ⊗ B has

size n× n where n = N2, and is defined as

K =


a11B a12B · · · a1nB

a21B a22B · · · a2nB
...

...

an1B an2B · · · annB

 .

It can be shown that the Kronecked product has the following property

(A⊗B)(C ⊗ E) = AC ⊗BE.
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So if A = UaΣaV
T
a and B = UbΣbV

T
b , then

A⊗B = (Ua ⊗ Ub)(Σa ⊗ Σb)(Va ⊗ Vb)T .

Thus, if we want to compute the SVD of matrix K, finding matrices A,B such that

K = A⊗ B, computing their SVD’s, and integrate into the SVD of K will be much

more efficient than computing the SVD of K directly.

However, not every matrix can be written into a Kronecker product. But every

matrix K ∈ Rn×n can be written as a sum of Kronecker products:

K =
r∑
i=1

Ai ⊗Bi

where r is called the Kronecker rank. In general, r ≤ n, but in image deblurring

problems, it can be shown that r ≤ N where the images are N × N pixels and

N2 = n. Moreover,

A1 ⊗B1 = arg min‖K − A⊗B‖F .

That is, A1⊗B1 is the solution to the minimization problem min‖K−A⊗B‖F where

‖ • ‖F is the Frobenius norm of a matrix defined to be the square root of the sum of

the squares of all entries of the matrix.

The scheme for computing the SVD of K using Kronecker product approximation

method is the following:

1. Compute the Kronecker product decomposition of K:

K =
r∑
i=1

Ai ⊗Bi
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2. Compute the SVD of A1 and B1:

A1 = UaΣaV
T
a , B1 = UaΣbV

T
b

3. Compute the SVD of A1 ⊗B1 = ŨΣ̃Ṽ T , that is, compute

Ũ = Ua ⊗ Ub, Ṽ = Va ⊗ Vb, Σ̃ = Σa ⊗ Σb

4. Find a low rank approximation of K using Ũ and Ṽ :

Kk = ŨT
k KṼk

where Ũk, Ṽk are the first k columns of U and V , the rank of Kk is k, and the

dimension of Kk is k × k.

5. Compute the SVD of Kk:

Kk = UkΣkV
T
k

6. The SVD approximation of the original matrix K can be computed as

K ≈ ŨkUkΣkV
T
k Ṽ

T
k

The above approach for computing an approximate SVD of K is a new approach,

not previously published in the literature. How to compute the Kronecker product

decomposition of K is beyond the scope of this thesis. [10, 7, 8] contain useful

information, including proofs and algorithms, on exploiting structures (Toeplitz, block

Toeplitz) of matrices and constructing their Kronecker product approximations.
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Chapter 4

Numerical Experiments

This chapter contains numerical experiments on accuracy and speed comparisons

of the three SVD approximation methods discussed in Chapter 3. Examples on image

deblurring will also be provided. Note that in the experiments, the rank in the SVD

approximations may not be what we initially wanted, since the Kronecker product

method is not able to compute every desired-rank approximation.

4.1 Accuracy Test

The accuracy in the SVD approximation of the matrix K is crucial for the quality

of restored images. Therefore it is necessary to test the accuracy of the methods

used in SVD approximations. In real applications, the matrix K is often too large to

compute the true SVD, so we test the accuracy of these methods on smaller matrices.

In this test, we assume that the image size is 32 × 32 pixels. Then the size of the

blurring PSF matrix K has size 322× 322 = 1024× 1024. The methods’ performance

in accuracy on the small PSF matrix would be representative of their performance

on large matrices.

The accuracy test runs experiments with different values in the following factors:

• Boundary conditions: zero or reflexive

• Type of blur: standard Gaussian blur or tilted blur, as in Figure 4.1
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• Rank in the SVD approximation: 10, 50, 100, and 500 (which will later be

adjusted by the Kronecker product method)
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30

Standard blur. Tilted blur.

Figure 4.1: Type of blur

The test also has the following properties:

• In the Kronecker product method, the number of terms in the Kronecker prod-

uct approximation (the Kronecker rank) of K is as large as possible. That is,

the number of terms is sufficient for the approximation to be exactly accurate.

• There are two randomized methods in the comparison - the two are different in

the way of generating Ω, using either SRFT or standard Gaussian.

• In the randomized method, we let q = 5 when forming Y , with improved ac-

curacy from q = 0 (see Section 3.2). In addition, we set the oversampling

parameter p to be 10 in both randomized methods.

• The parameter used to compare the accuracy of different methods is the relative

error in the approximated singular values. That is, the absolute difference in

the corresponding computed σi and the true σi divided by the true σi, which is

computed on the full matrix using MATLAB’s svd function.
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• Color use: red - Kronecker product method, magenta - Lanczos method, blue

- randomized method using standard Gaussian random matrices, black - ran-

domized method using SRFT random matrices.
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Figure 4.2: Accuracy comparison: zero boundary condition and standard blur.

From the accuracy comparisons in Figure 4.2 to Figure 4.5 we can make the

following observations:

• For various ranks in the approximations and all methods used, the approxima-

tions of smaller singular values are generally less accurate than the approxima-

tions of larger singular values.

• The Lanczos method is the most accurate no matter what boundary condition

or the type of blur is used. The relative error in all singular values are not

greater than 10−10 in general.
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Figure 4.3: Accuracy comparison: zero boundary condition and tilted blur.

• The Kronecker product approximation method is most accurate when the bound-

ary condition is reflexive and the type of blur is standard.

• When the boundary condition is zero, the Kronecker product method is the

least accurate; the accuracy of the randomized method lies between that of the

Kronecker product method and the Lanczos.

• Using SRFT random matrices and standard Gaussian matrices in the random-

ized method results are similar in accuracy. But when the boundary condition

is zero and when the blur is tilted, using standard Gaussian is a little more

accurate than using SRFT, as in Figure 4.3.

• When the boundary condition is reflexive, and the blur is tilted, the Kronecker

product method and the randomized methods are both not very accurate.
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Figure 4.4: Accuracy comparison: reflexive boundary condition and standard blur.
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Figure 4.5: Accuracy comparison: reflexive boundary condition and tilted blur.
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4.2 Speed Test

Computing the SVD of large matrices is very expensive, so one of the main things

that we care about in SVD approximation methods is whether they are fast or not.

In this section we compare the timings of the randomized, Lanczos, and Kronecker

product methods. We test their speeds with respect to rank for the following test

problems from the image deblurring package Restore Tools.1:

• Satellite.mat

• AtmosphericBlur10.mat

• AtmosphericBlur30.mat

• AtmosphericBlur50.mat

All of these test problems have the matrix K with dimension 2562× 2562. And in

this test we set initial ranks to be 10 : 10 : 100, which would later be adjusted by the

Kronecker product method. The number of terms in the Kronecker product method

is as many as possible – 256 or fewer if fewer-term approximation of K is accurate. In

fact, computing more Kronecker terms does not increase the timing cost significantly,

as in Figure 4.6, even computing the full Kronecker product decomposition of K takes

less than a second.

Also, in this test, the randomized method has q = 0. We would have used q = 5 to

conform with the accuracy test, but q = 5 would significantly slow down the method,

as in Figure 4.7, and is not really necessary since q = 0 is already pretty slow. The

oversampling parameter p here is also equal to 10, as in the previous section.

1The Restore Tools package can be obtained from http://www.mathcs.emory.edu/∼nagy/
RestoreTools/index.html.

http://www.mathcs.emory.edu/~nagy/ RestoreTools/index.html
http://www.mathcs.emory.edu/~nagy/ RestoreTools/index.html
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Figure 4.7: Timings for Randomized method with increasing q in Satellite with
rank 100 and zero boundary condition.
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Color use in this speed test is the same as in the accuracy test in the previous

section. And also similar to the accuracy test, we are doing tests for both zero and

reflexive boundary conditions.
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Figure 4.8: Timing comparisons: zero boundary condition

From Figure 4.8 and Figure 4.9 we can make the following conclusions:

• The Kronecker product method is the fastest of all methods, no matter what

the boundary condition or the test problem is. Also, increasing rank in the SVD

approximation does not increase the timing cost significantly in the Kronecker

product method.

• The Lanczos method is the slowest of all methods, especially for higher ranks.

• Both the Kronecker product method and the Lanczos method work slower for

reflexive boundary condition than for zero boundary condition.
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Figure 4.9: Timing comparisons: reflexive boundary condition

• The randomized method with SRFT is slower than with standard Gaussian

random matrix.

• While Lanczos seems to be the slowest, the randomized methods are only tested

with q = 0, which sacrifices accuracy; so if a larger q is used, Lanczos might not

be the slowest.

4.3 Deblurring Examples

In this section, we are going to look at some image deblurring examples. In par-

ticular, we are going to restore some blurred images using the Kronecker product

approximation method. Although it is not the most accurate among the three meth-

ods according to experiments in Section 4.1, it is the fastest. When deblurring an
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image, we do not know the appropriate rank in advance; so we take an adaptive ap-

proach, increasing the rank until the resulted image looks clear enough or no longer

improves with increasing ranks. In this situation, we are in need of a method that is

fast enough. The Lanczos method and the randomized method may be more accurate

than the Kronecker product method in some cases, they are simply too slow to use,

especially when computing a solution with rank of a few thousand.

We are going to restore the blurred images in the following test problems:

• Satellite.mat

• AtmosphericBlur30.mat

• Grain.mat

• GaussianBlur422.mat

In all of these four test problems, both the original image and the blurred image is

provided. The first two contain images of a satellite, the third is a microscopic image

of pollen grain, and the last is a microscopic image of carbon ash. See Figure 4.10.

Satellite. Grain. Carbon ash.

Figure 4.10: Original images.

Note that when deblurring the blurred versions of these images, different boundary

conditions should be used. “Satellite”, for example, since is uniformly dark on the
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boundary, should use the zero boundary condition; while “Grain” should use the

reflexive boundary condition, since we can imagine a repetition of the cells outside

the top and left borders, and so is “Carbon ash”. The blurred images are shown

in Figure 4.11. Note that although the top two blurred images look similar, they

actually have different blurs on the image of the satellite.

Satellite. Atmosphericblur30.

Grain. GaussianBlur422.

Figure 4.11: Blurred images

When deblurring the images, we take into consideration of how many Kronecker

terms are needed when computing the Kronecker product decomposition of K, the

rank in the SVD approximation, and the use of regularization methods.

Let us first have a look at the effect of rank k on computed solutions. We set the

initial ranks to be 200, 300, and 400 and respectively the actual ranks are 506, 1122
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and 1558. We need to make sure that rank is the only variable in this comparison, so

we set the number of Kronecker terms r and the Tikhonov parameter λ to be constant

(r = 2 and λ = 0.02).

TSVD, rank=506. TSVD, rank=1122. TSVD, rank=1558.

Tikhonov, rank=506. Tikhonov, rank=1122. Tikhonov, rank=1558.

Figure 4.12: Satellite, computed solutions with various rank k

As in Figure 4.12, increasing rank from 506 to 1122 did produce a sharper and

clearer solution for both TSVD and Tikhonov, but when rank goes from 1122 to

1558, the solution does not appear to be significantly improved, and even is not as

clear in the TSVD solution. This is because, as we discussed in Chapter 2, too

many small singular values are computed, magnifying the noise contribution. The

Tikhonov solutions for k = 1122 and k = 1558 do not differ so much because the

noise contribution to smaller singular values have been filtered out.

Figure 4.13 demonstrates how many Kronecker terms are needed when computing
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TSVD, r = 1. TSVD, r = 2. TSVD, r = 10.

Tikhonov, r = 1. Tikhonov, r = 2. Tikhonov, r = 10.

Figure 4.13: Satellite, computed solutions with various r

the solution. In this comparison, the rank k and the Tikhonov parameter λ are kept

constant: k = 1122 and λ = 0.02. Increasing the number of terms from 1 to 2

remarkably improves the solution, but going from 2 to 10 terms does not make much

difference. Actually, in most problems, no more than 3 Kronecker terms are needed.

Changing the Tikhonov regularization parameter λ also imposes influence on the

computed solution. As in Figure 4.14, a smaller λ produces a sharper image, but

would not filter out much noise contribution; a larger λ would filter out much noise,

but it would also sacrifice the sharpness of the resulting image. In this test, rank

k = 1122 and the number of Kronecker terms r = 2.

Choosing the rank, the number of Kronecker terms, and the Tikhonov parameter

is important when working on a deblurring problem. Different combinations of these
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λ = 0.01. λ = 0.02. λ = 0.03.

Figure 4.14: Satellite, Tikhonov solutions with various λ

factors may produce very differently-looking results. In the Satellite problem,

using rank k = 1122, Kronecker terms r = 2 and Tikhonov parameter λ = 0.02 yields

reasonable results.

For the next examples, we are not going to provide as detailed analysis as in

Satellite, but rather, we will only be showing ”best” deblurred images and introduce

which k, r, and λ are chosen in the computed solution.

Blurred image. TSVD solution. Tikhonov solution.

Figure 4.15: AtmosphericBlur30, r = 3, k = 1628, λ = 0.05.

When working on a problem, we should test with different values of the parameters

r, k, λ, and our choices of parameters are usually not the same in different problems.

The quality of deblurring also differs for different problems. For example, in Figure
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Blurred image. TSVD solution. Tikhonov solution.

Figure 4.16: Grain, r = 2, k = 4292, λ = 0.001.

Blurred image. TSVD solution. Tikhonov solution.

Figure 4.17: GaussianBlur422, r = 2, k = 1891, λ = 0.1.

4.16, the computed solutions, both TSVD and Tikhonov are very accurate compared

to the true image in Figure 4.10. But in Figure 4.17, the computed solutions are even

more blurry than the blurred image. The quality of deblurring depends not only on

the method used to compute the SVD, but also on the type of blur on the original

image.
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Chapter 5

Conclusion and Discussion

In image deblurring problems, we form the linear system Kf = g and compute f

using the SVD decomposition of K. However, the matrix K in imaging problems is

too large to compute the SVD of, so we introduced three SVD approximation meth-

ods - Lanczos, randomized, and Kronecker product approximation methods. Since

the blurred image usually has noise in it, we can use regularization methods to filter

out the noise contributions once we have the approximated SVD of K. We ran exper-

iments in order to compare the accuracy and speed of the three SVD approximation

methods. We also illustrated some deblurring examples using the Kronecker product

method, which went pretty well for some of the problems. One of the key messages

that the experiments tell us is, there’s no single best method for an image deblur-

ring problem: some are accurate but not fast enough, some are fast but not accurate

enough. The search for efficient algorithms should not end, and for future work, it

would be interesting to modify the randomized method to take into consideration of

the matrices’ special structures, as in the Kronecker product approximation method.
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