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Abstract

An Analysis of Sampling Methods and Uncertainty Propagation for Shallow
Water Modeling
By Muqi Fan

Numerical models depend on inputs and parameters that are often uncer-
tain. This causes uncertainty in the output. In this work, we explore both
sampling and uncertainty propagation methods. We aim to assess which sam-
pling methods best represent uncertainties in inputs and also explore which
uncertainty propagation methods best depict the uncertainty that results in
the output. We assess these methods using a two-dimensional shallow water
model.
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1 Introduction

The field of mathematical modeling has transformed since the introduction

of computers. In recent decades, computing has experienced technological

advancements that have grown at an unimaginable rate, giving researchers

the ability to gather and process large quantity of data like never before.

It has also allowed researchers to increase sample sizes for statistical anal-

yses, which would otherwise be limited, using simulation. With the ability

to gather and process data of unimaginable quantities and at unimaginable

speeds, the computational model, or modeling using computation and simu-

lation, revolutionized traditional mathematical modeling methods. For each

model, the most common concern is the accuracy of simulated outputs. Is-

sues surrounding the accuracy of inputs, however, are often overlooked.

In most complex computational models, many parameters are involved

in an effort to capture the main elements that play a role in the output.

The parameters, however, usually contain certain degrees of uncertainties,

such as the errors from measuring methods, errors due to limited sample

sizes, and numerical errors. This leads to an issue: even if the model is

able to predict the outputs accurately, the errors from the input parameters

will still lead to errors in the output. Exploration of this issue leads to the

analysis of the propagation of uncertainty, a crucial procedure needed for

most computational models today, in order to assess the reliability of the

modeling.
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To describe the propagation of uncertainty in a brief notion, it is when

the volatility in input parameters is passed on to the output results after

being processed through a mathematical model. As the complexity of the

model grows, it becomes more likely that a small uncertainty in the input

will have some unpredictable impact on the results in the end, and thus such

analysis is critical for almost all mathematical models.

The attempt to measure the mathematical error of a model has been one

of the oldest topics in the history of mathematics, but the concern for the

propagation of uncertainty was raised much more recently. One of the earliest

prominent figures who raised the problem of propagation of error was Ray-

mond T. Birge, who developed some of the earliest efficient and systematic

methodologies measuring the propagation of error [1]. A few more papers

regarding the issue were published after that, and propagation of uncertainty

became one of the most important components in model development and

validation today.

In this thesis, the variance will be the estimator measuring uncertainty, for

it was one of the most commonly used parameters for the subject, suggested

in JCGM [2]. A few sampling methods and propagation of uncertainty meth-

ods will be explored. Samples generated in each of the sampling methods will

be applied to a shallow water model, and with the procedures measuring the

propagation of uncertainty, we hope to quantify the propagation of uncer-

tainty and decide which sampling method is most accurate in characterizing

the propagation of uncertainty in the shallow water model in 2D.
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Figure 1: Overview

2 Sampling Methodologies

With the law of large numbers, as long as our sample size is large enough,

we can be infinitely close to truth. The problem is, when the collection

of samples becomes too difficult and too expensive, we must explore other

options. Therefore, prior to analyzing propagation of uncertainty, we will

first explore some of the most popular sampling methods: Random Sampling,

Stratified Sampling, and Latin Hypercube Sampling. We will then compare

the advantages and disadvantages of each sampling method and discuss the

ideal scenarios in which to use each.
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2.1 Random Sampling

Let random variable Xr be a random variables with distributions D. The

simple random sample suggest that if one want N samples from each random

variables, one should select the samples based on some probabilistic function

derived from D. The estimators for the mean and variance are:

E(Xr) =
1

N

N∑
i=1

Xi (1)

Where Xi denote the ith sample from X, and

V ar(Xr) =
1

N − 1

N∑
i=1

(Xi − X̄) (2)

2.2 Stratified Sampling Method

The stratified sampling method suggest that we split the sample space into

stratas, or intervals, and then draw set amount of random sample from each

of the stratas. Let there be a random variable Xs, be a random variables with

distributions D. Let the sample space of S be split into I disjoint stratas Si.

Two forms of stratified sampling can be conduct after the stratification: the

proportional method and the nonproportional method. For the proportional

case, the number of sample for each strata chosen must be based on the size

of the strata in comparison to the size of the sample space, whereas for the

nonproportional case there is no such restriction.

The reason behind the nonproportional sampling is when the given dis-
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tribution is considered biased to begin with, especially when the extreme val-

ues are underrepresented. Sometimes approach of nonproportional sampling

method such as the snowball sampling [3] is favored over the proportional

approach. Consider the example with a normal distribution below:

Figure 1: Unproportional Stratified Sampling with normal distribution split
into four stratas and extract 5 data points from each strata. As the figure
shows, such method allowed us to represent the data points from the the tails
more. [4]

The mean and variance are derived as follows. let Ni be the number of

elements in each stratum, and ni be the number of elements chosen from Ni

to be data point in each stratum. Then, let yij be the jth unit in ith stratum.

Therefore the population mean can be expressed as [5]:

ȳN =
1

N

k∑
i=1

NiȳNi
=

k∑
i=1

piȳNi
(3)

Where pi represent the probability of a data point from ith stratum. As for

the variance of the stratified sampling,

V ar(ȳN) = V ar(
1

N

k∑
i=1

Niȳni
) (4)
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since we assumed that samples are independent and identically distributed,

we can establish that the variance of sum is the sum of variance:

V ar(ȳN) =
1

N2

k∑
i=1

N2
i var(ȳni

) (5)

Then by the finite population of correction, we will rewrite the sample vari-

ance of the strata as proportion of the population variance of the strata:

V ar(ȳN) =
1

N2

k∑
i=1

N2
i (
Ni − ni

Ni

)
var(ȳNi

)

ni

(6)

From the derivation by Mckay [6], suggested that the proportional strat-

ified sampling variance can also be expressed as the following

V ar(Xs) = V ar(Xr)−
1

N

N∑
i=1

pi(µi − µ)2 (7)

Where pi = ni/N represent proportional sampling and µi represent the sam-

ple average at corresponding strata.

2.3 Latin Hypercube Sampling

The Latin hypercube sampling suggest that instead of drawing some number

of samples from potentially uneven stratas, one sample will be draw from

each equally spaced stratas that covers the entire sample space. Let the

input sample space be k-dimension such that there are k random variables

X1, X2,...Xi...XN . After dividing each of the X into equal-sized N stratas,
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we will then select the a random number from each of the stratas of different

dimensions at random, and match them with one another to form a sample.

Figure 2: In a two variable LHS, after separating each vector of the sample
space into equally spaced 4 stratas, we draw a random number for each strata
for both vectors of the matrix, and the use the set of number to represent
the actual sample to be drawn from the XY sample space. [7]

The LHS method is advantages when there is few number of input vari-

ables, as it represent each variable’s distribution accurately, which is opposite

toward the stratified method. The variance of the LHS is derived as follow-

ing [6]:

V ar(Xl) = V ar(Xr) +
N − 1

N
∗ 1

Nk(N − 1)k

∑
alli,j

(µi − µ)(µj − µ) (8)
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2.4 Comparing Sampling Methods

By observing the relationship between variance estimations from each sam-

pling method, we found out two points: One being that stratified sampling

always have a lower variance than random sampling, and LHS have a lower

variance than random sampling only if

N − 1

N
∗ 1

Nk(N − 1)k

∑
alli,j

(µi − µ)(µj − µ) ≤ 0 (9)

Which is true only when the covariance between cells with different coor-

dinate are negative. This is true when the given function is monotonic. [6]

Though simple random sampling was probably still the most commonly used

method of sampling, its limitations was also obvious, as it usually has much

higher variances and may be under-representative toward the extreme cases

within a distribution. The stratified method was created so the extreme val-

ues won’t be overlooked. As for the LHS, the method is favorable due to its

lower computational cost, acknowledged by more and more researchers over

the years [8]. Such feature is especially crucial for the Monte Carlo process

done on a slower machines.
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3 Procedures Measure Propagation of Un-

certainty

The analysis of propagation of uncertainty is closely linked to the sensitivity

analysis. The sensitivity analysis method generally falls into two categories:

the local sensitivity test and the global sensitivity test. The prior examine

the uncertainty in output by changing individual input parameters one at

time, while the latter attempt to understand the sensitivity by examine the

response of the output due to some total change of the input. There exists

many procedures measuring how uncertainty propagate through a model.

In this section, we will discuss some of the most popular methods used:

Monte Carlo Analysis, Differential Analysis,Response Surface methodology,

and Fourier Amplitude Sensitivity Test. For simplicity, we assume that the

input variables are independently distributed.

3.1 Monte Carlo Analysis

One of the most popular methodology is the famous Monte Carlo Analysis.

The general idea of this methodology is straightforward: first we will sample

the input, or combination of inputs should the input parameters be plural.

Afterward we will put the inputs through the given model, and thus obtain

the corresponding output. By repeat the process countless times, we will

obtain a sample for input population and a sample for output population.

Through examine each of their variance, we will thus observe how uncertainty

9



propagate through the model.

3.1.1 Monte Carlo Analysis

The Monte Carlo analysis is probably the most commonly used methodology

in measuring the propagation of uncertainty when the computational cost is

not a concern. The Monte Carlo Analysis procedures has following steps [9]:

1. Use the samples drawn to build probability distribution for every input

variables

2. Obtain a of sample from every input variables

3. Put the set of input samples through the model

4. Repeat the step 2 and 3 numerous times, ideally larger than 106 itera-

tions.

The real challenge of conducting a Monte Carlo efficiently comes from two

aspect: the cost it takes to sample in a large scale, and the cost of running

them through a model countless times. If the data collection is convenient

and the choice of PDF is simple enough, we can use the direct sampling

and generate samples from the inverse CDF. The exponential distribution,

as an example, have a simple inverse CDF and thus easy to directly sample

fromsince its PDF is

f(x) = λ ∗ e−(λ)(x) (10)

10



And accordingly, the CDF become:

F (x) =

∫ 0

x

λ ∗ e−(λ)(x)du = 1− e−(λ)(x) (11)

Solve the inverse of the CDF x = F−1(y), we have

D(u) =
1

λ
ln(1− u) (12)

Noted now u is can be generated as a random number with the range of

[0,1], which is one of the most common function of many computational

languages. Thus the sample data can be repeatedly generated from the

original exponential PDF.

Such method, however, is not always available. For sometimes CDF of

a distribution is not only very difficult to derive the inverse, but also very

hard to draw sample from. One example being the inverse of Gaussian dis-

tribution. Though it is possible to obtain the inverse of the PDF as the

following [10]:

f(x;m,λ) =

√
λ

2π x3
e
−λ(x−µ)2

2xµ2 (13)

Where m is the mean and λ is the shape parameter, it is extremely inefficient

for computers to draw large amount of samples from such complex inverse

CDF. Facing such challenge, two alternative approaches was introduced.
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3.1.2 Rejection Sampling

The rejection sampling method suggest instead of trying to draw sample from

the difficult probability distribution function f, we instead introduce another

much simpler PDF g such that with some constant c [9]:

c = sup
allx

f(x)

g(x)
< ∞ (14)

Where the support of f is contained within the support of g. After generating

data through the inverse of G, the CDF of g just like what we discussed in

the direct sampling method, we will then decide whether to accept or reject

the data collected with the following procedure:

1. Generate uniform distribution U [0, 1]

2. Test if the generated data x is contained in both distributions, or

U ≤ f(x)

c ∗ g(x)
(15)

If true, accept the data, and if not, reject the data.

12



Figure 3: The uniform distribution represent cg(x), and samples drawn from
such distribution is much easier than directly drawing from f(x) [9]

3.1.3 Importance Sampling

The method of importance sampling is very similar to rejection sampling,

except of reject the data if it falls outside of the given distribution, a weight

is assigned to each of the data drawn [9]. Let there be a population X with

distribution of f, and let’s say we are interested in calculating the mean of

h(x), or

Ef (h(X))

by extract n samples. Instead of finding the mean directly, we introduce

another distribution q(X) such that

Ef (h(X)) = Eg(
f(X)

g(X)
h(X)) (16)

13



Expand the equation of mean:

µ =
1

n

n∑
i=1

f(xi)

g(xi)
h(xi) (17)

With f(xi)
g(xi)

we can thus express the estimator for sample mean. The impor-

tance sampling has the advantage over rejection sampling since that instead

of simply throw samples away when they are not contained in the distribu-

tion, at accept them after assigned some weight, thus require less computa-

tions.

3.2 Differential Analysis

The differential analysis started with an assumption: The mathematical

model can be deduced to a first order Taylor series, taking the form as fol-

lowing:

f(X) = f(x0) +
n∑

j=1

∂f(x0)

∂xj

(xj − xj0) (18)

Where X is the vector of inputs of x0, x1, ...xn, and x0 is the base vector

selected. For convenience, we will let x0 be the vector of means of each

input. Once the above expansion is established, one can easily determine its

estimators for the expected value and variance [11]:

E(f(x)) = f(x0) +
n∑

j=1

∂f(x0)

∂xj

E(xj − xj0) (19)

14



But since E(xj − xj0) = 0,

E(f(x)) = f(x0) (20)

And as for variance or the uncertainty estimation:

V ar(f(x)) =
n∑

j=1

(
∂f(x0)

∂xj

)2V ar(xj) + 2
n∑

j=1

n∑
k=j+1

∂f(x0)

∂xj

∂f(x0)

∂xk

Cov(xj, xk)

(21)

With our assumption that the input variables are independent from each

other,

V ar(f(x)) =
n∑

j=1

(
∂f(x0)

∂xj

)2V ar(xj) (22)

Therefore, with knowledge of V ar(xj), the uncertainty of each individual

input variable, we will be able to estimate the variance of the output f(x).

There is a major issue with this method, however.For some mathematical

models is simply too complicated for us to assume any kind of linear rela-

tionship between input and output, it is then very difficult to obtain the

accurate partial derivatives for the Taylor series. To solve such issue, I will

use Regression Analysis in the next propagation of uncertainty method to

determine the partial differentials.

3.3 Response Surface Methodology(RSM)

The method of RSM focus on examine how the output response to each in-

dividual input variables. The method is often used to solve optimization
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problem involving uncertainties, which is different than the traditional opti-

mization problem that generally focus on one single, constant solution. For

example, if one want to know what is the ideal output of CO2 for each car

in a town that is best for both economy and environment, one would like to

get a single constant answer. However, it would be impossible to maintain

that standard with every car owner. Thus with RSM, we will obtain a range

of ideal solutions that are considered acceptable. In our case, we will use

method for a different purpose: to explore the propagation of uncertainty

by breaking down the mathematical model into smaller pieces, such that ev-

ery individual independent variable will produce certain degree of response

for the output. Such method has another name called regression analysis.

Consider the model as following [12]:

Y = β0 + β1X1 + β2X2 + β3X3 + ...+ βjXn + µ (23)

Where there are X1, X2, ...Xn independent variables, and each has m samples

drawn. The µ stands for the error, and Y represent the vector of responses

given each combination of input variables. It can be represented in the matrix

16



form Y = Xβ + µ as:



y1

y2
...

yn


=



1 x11 x12 · · · x1n

1 x21 x22 · · · x2n

...
...

...
. . .

...

1 xm x2
m · · · xmn





β0

β1

β2

...

βn


+



µ1

µ2

...

µm


(24)

And let Ŷ be the estimated response called fitted value, such that Y =

Ŷ + µ. A few assumptions must be made for such regression:

1. The samples are chosen randomly

2. Zero Conditional Mean:

E(µ|x) = 0

3. No perfect Collinearity, such that no xi can be perfectly explained by

some linear combination of some other x variable vectors.

4. As a result from (a) and (b), E(XU) = 0.

Let the sum of error squared be denoted as SSR. The βs in the regression is

determined in least square method, such that SSR is minimized as follonwing:

minβ

n∑
i=1

µ2 = minβ(µ
′µ) (25)

17



Expanding µ we then have

minβ(Y − βX)′(Y − βX) = Y ′Y − 2βX ′Y + β′X ′Xβ (26)

Setting first order differential equal to 0 it becomes:

∂βSSR = −2X ′Y + 2X ′Xβ = 0 (27)

Solving the system we will obtain the β estimators:

β̂ = (X ′X)−1X ′Y (28)

In certain cases it is possible that the relationship between input variable

and output variable are not necessarily linear. In such case we can use

polynomial regression to estimate the model:

Y = β0+β11X1+β12X
2
1+...+β1mX

m
1 +β21X2+...+β2mX

m
2 +...βn1Xn+...βnmX

m
n +µ

(29)

With similar process of using using least square method from the linear

case, we will obtain the estimators for βij by solve the system of first order

condition equations:

∂SSR

∂βij

= 0 (30)

for all i,j.

18



And accordingly the variance of Y to be

V ar(Y ) =
n∑

i=1

(
m∑
j=1

βij2V ar(Xj) + 2
k=1∑
m1

j=k+1∑
m

βikβijCov(Xk, Xj)) + V ar(µ)

(31)

As for the Variance and Covariance of powers of X:

V ar(Xj
i ) = E(X2j

i )− E(Xj
i )

2 (32)

Cov(Xk, Xj) = E(Xk+j)− E(Xk)E(Xj) (33)

Which can be found using moment generating function

E(Xj
i ) = ∂t(Mx(0)) (34)

For reference of the application later, the first four moment of normal distri-

butions are [13]:

µ

µ2 + σ2

µ3 + 3σ2

µ4 + 6µ3σ2 + 15µσ4

Theoretically, as the power of the polynomial grow, the less the sum of

error squared will be, which is equivalent of saying that the variance of error

will be smaller. Then by (31), we will exclude the variance of error term
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when we are trying to estimate the variance of the population output.

3.4 Fourier Amplitude Sensitivity Test(FAST)

The FAST is another widely used method in measuring the propagation

uncertainty in many fields. The FAST method have similar idea approaching

the measurement of uncertainty with the Differential Analysis and Response

Surface methodology discussed before, but instead it tries to break down

the variance into partial variances. The FAST method will first try to break

down the output variance using Solbol’s variance decomposition method, and

then apply Fourier transformation and break down the total output variance

into partial variances contributed by each individual input variables.

Consider the following model [14]:

y = g(x1, x2, ....xn) (35)

Where y is a model with n input parameters, and each input variable has

distribution fi(xi). Now consider the notion

V (xi,xj) = V (E(y|xi, xj) (36)

Be the joint partial variance of y that is due to uncertainty in xi and xj, and

let V(xi,xj) Be the part of V(y) that result from the interaction of xi and xj.

Assuming the input parameters are independent from one another, we can

20



establish the Sobol’s variance decomposition as following [15]:

V (xi) = V(xi) (37)

Vxi,xj
= V (xi,xj) − Vxi

− Vxj
(38)

......

Vx1,x2,...xn = V (x1,x2,...xn) −
n∑

i=1

Vxi
−
∑
i<j

Vxi,xj
−

∑
i<j<k

Vxi,xj ,xk
− ..... (39)

Noted how here V (x1,x2,...xn) is equivalent to V(y), so reformulate the equation

we have

V (y) = (
n∑

i=1

Vxi
+
∑
i<j

Vxi,xj
+

∑
i<j<k

Vxi,xj ,xk
+ ......) + Vx1,x2,...xn (40)

Thus complete the decomposition of variance for y. Then, we will recon-

struct y into a periodic search function

xi = G(θi) = F−1(
1

2
+

1

π
arcsin(sin(θi))) (41)

Where θi is the random variable with uniform distribution from 0 to 2π, and

F−1 is the inverse CDF of the xi parameter Then the original model can be

rewritten to

y = g(G(θ1), G(θ2), ....G(θn)) (42)
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Note that the equation (40) still holds after the periodic transformation of

the function [14]. After the transformation into the periodic parameters, We

can apply multiple Fourier transformation on above equation:

g(G(θ1), G(θ2), ....G(θn)) =
∞∑

r1,r2,...rn=−∞

Cθ
r1,r2,...rn

er1θ1+r2θ2+...+rnθn (43)

Where

Cθ
r1,r2,...rn

= (
1

2π
)n

∫ 2π

0

...

∫ 2π

0

g(G(θ1), G(θ2), ....G(θn))e
r1θ1+r2θ2+...+rnθndθ1dθ2.....dθn

(44)

This allow us to establish the fact that:

Cθ
r1,r2,...rn

= E(g(G(θ1), G(θ2), ....G(θn))e
r1θ1+r2θ2+...+rnθn) (45)

Which is

Cθ
r1,r2,...rn

=
1

N

N∑
j=1

g(G(θj1), G(θj2), ....G(θjn))e
r1θ

j
1+r2θ

j
2+...+rnθ

j
n (46)

Where the θj means the nth sample of chosen from the periodic space. With

some prove we can also establish that the summation of Fourier amplitudes

also estimate the corresponding partial variances:

Vxi
=

∞∑
|ri|=1

|Cθ
0,0,...,ri,...rn|

2 (47)
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Vxixj
=

∞∑
|ri|,|rj |=1

|Cθ
0,0,...,ri,...rj,...rn|

2 (48)

......

Vx1,x2,...xn =
∞∑

|r1|,|r2|,...|rn|=1

|Cθ
r1,r2,...rn|

2 (49)

Using the decomposition of variance formula, we can establish that

V (y) = V (x1,x2,...xn) =
∞∑

|r1|,|r2|,...|rn|=1

|Cθ
r1,r2,...rn|

2 (50)

With the detailed derivation of FAST see [14]

Thus complete the Fourier Amplitude Sensitivity Test and we have an esti-

mate of the output variance based on Fourier Coeficients. In the application

section, I will use SALib documentation’s code in python to conduct FAST

analysis.

4 Applications

4.1 Shallow Water Equation in 2D

The shallow water equation in 2D if a system of differential equations de-

scribing the behavior of fluid wave under certain impact. The system of

equations is directly derived from conservation of mass and conservation of

momentum [16].

23



∂h

∂t
+

∂uh

∂x
+

∂vh

∂y
= 0

∂uh

∂t
+

∂u2h+ 1
2
gh2

∂x
+

∂ubh

∂y
= 0

∂uh

∂t
+

∂u2h+ 1
2
gh2

∂y
+

∂ubh

∂x
= 0

Where x and y represent coordinates, h(x,y,t) is the fluid height, u(x,y,t)

and v(x,y,t) are velocity vectors, and g as the gravitational constant. We

will rewrite the equation to be

∂tU + ∂xF (U) + ∂yG(U)

Where

U =


h

uh

vh



F (U) =


uh

u2h+ 1
2
gh2

uvh



G(U) =


vh

uvh

v2h+ 1
2
gh2


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For simplicity, let the shallow water model have a initial condition of u =

v = 0 at t = 0 for the entire surface, and with a reflexive boundary condition

such that the waves bounce back after reaching the edge. Let there be certain

initial impact landed at xi,yi with a radius of r.

To solve such problem we will use the finite difference method. We will

first assign the water surface a mesh grid with equal intervals.

Figure 4: The stage 1 of the Runge Kutta process of the Shallow Water
Model, where the center of each meshgrid intervals are known. [16]

Let the term Un
i,j denote the U vector at ith row, jth column, and nth

time. The finite difference method consist of two steps: In the first step,

we will use the Runge Kutta, or the shooting method to estimate what will

happen at the midpoints on the mesh after t = 1
2
has passed by solving the

following equations:

U
n+ 1

2

i+ 1
2
,j
=

1

2
(Un

i+1,j + Un
i,j)−

∆t

2∆x
(F n

i+1,j − F n
i,j)

U
n+ 1

2

i,j+ 1
2

=
1

2
(Un

i,j+1 + Un
i,j)−

∆t

2∆y
(Gn

i,j+1 −Gn
i,j)
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Figure 5: The stage 2 of the Runge Kutta process of the Shallow Water
Model, where the information on the half points are directly derived from
the information given in stage 1. [16]

And the second step will then compute the center of the cell at t = 1

using the values obtained from the step 1, using the following equation:

Un+1
i,j = Un

i,j −
∆t

∆x
(F

n+ 1
2

i,j+ 1
2

− F
n+ 1

2

i,j− 1
2

)− ∆t

∆y
(G

n+ 1
2

i+ 1
2
,j
−G

n+ 1
2

i− 1
2
,j
)

Thus solves U at t=1. Repeat the method indefinite time will give the motion

of the water surface over time.

Consider the following case: we want to know the height of the water

level at some location and time, but we are uncertain about exactly where

and when does the initial impact occur.Let such uncertainty be represented

by xi and yi distributed normally with µ = 78 and σ = 2, and r with normal

distribution of µ = 3 and σ = 0.5. Let the interested output be the height

of the wave at (x, y) = (60, 40) and t = 30. We will use the procedures

of propagation of uncertainty to examine how the uncertainty in the initial
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condition will impact the height of the water surface at this location and

time.

4.2 Results

In order to examine the propagation of uncertainty in the shallow water

model problem, we will first draw a samples of N = 10000 for each of the

input variables from the normal distributions mentioned above. This will

serve as the population, and with Monte Carlo process we will obtain cor-

responding variance of the solutions, which will serve as the true value for

the uncertainty of output. Then, we will draw a sample of n = 600 for each

of the x,y,r using random, proportional stratified, nonproportional stratified,

and Latin hypercube method. For the stratified sampling, we will have four

equally spaced stratas across the range of the input variables. For the non-

proportional sampling method, 10 samples will be redistributed from the

each of the middle strata to the border stratas.

V(x) V(y) V(r)
Random 4.0267 4.1399 0.2705
Proportional Stratified 3.8018 4.0704 0.2527
Nonproportional Stratified 4.8182 4.3020 0.2790
LHS 4.0128 4.0579 0.2461

Table 1: Measured Input Sample Variances

With population output generated by Monte Carlo over N=10000 iter-

ations as our standard as truth, we found that the expected uncertainty of

the output is about 0.163. Overall, the draws of x,y, and r from Random,
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proportional stratified, and LHS showed a similar variances toward the popu-

lation variances. The nonproportional stratified method, on the other hand,

showed a much higher variances in x and y.

4.2.1 Response Surface Method and Differential Analysis

Using the statsmodels module in python, we were able to do regression anal-

yses on samples from all of four sampling methods.

Figure 6: Response Surface Method Results
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Where sol I,II,III,IIII each represent the results for Random, Proportional

stratified, Nonproportional Stratified, and LHS sampling. The coeficients for

the βs are the values without parentheses.

The regression results from different sampling methods showed a similar

pattern, such that there is a strong linear relationship between the x,y and

the output variables. The quadratic relationship, however, are much less

significant. With the method of measuring the variance mentioned in the

section 3.3 we thus obtained the output uncertainty:

Var(U)
Random 0.1094
Proportional Stratified 0.1270
Nonproportional Stratified 0.1067
LHS 0.1216

Table 2: RSM Results

As expected the estimated variances are much lower than the true uncer-

tainty since the variance of the error term is not accounted in.

4.2.2 The Differential Analysis

With the coefficients of regressions determined in the previous method, we

will be able to construct the Taylor series representation of the model, and

thus estimate the variances.
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Var(U)
Random 0.0675
Proportional Stratified 0.0827
Nonproportional Stratified 0.0330
LHS 0.0852

Table 3: Differential Analysis

4.2.3 The Fourier Amplitude Sensitivity test

With Fourier amplitude sensitivity test we found a common pattern such that

the output variances caused by each individual input variable along are very

small, and the variances resulted from the interaction between input variables

played a much more significant role in determine the final uncertainty.

S1 ST S1 conf

x 0.0431 0.8668 0.0821

y 0.0454 0.8555 0.0669

r 0.0343 0.8775 0.0635

Table 4: Random Sampling

S1 ST S1 conf

x 0.0575 0.8726 0.0754

y 0.0208 0.4482 0.0776

r 0.0335 0.6725 0.0662

Table 5: Proportional Stratified Sampling
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S1 ST S1 conf

x 0.0292 0.8870 0.0748

y 0.0125 0.3294 0.0628

r 0.0057 0.1919 0.0676

Table 6: Nonproportional Stratified Sampling

S1 ST S1 conf

x 0.0405 0.8472 0.0741

y 0.0101 0.7715 0.0776

r 0.0360 0.9057 0.0726

Table 7: Latin Hypercube Sampling

Where S1 represent the portion of V(U) that is caused by the input

variable along, and ST represent the portion of the V(U) caused by the input

variable as well as all of the interaction involves it. Using the formula (50)

we will obtain the resulting output uncertainty for each sampling method in

table below:
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Table 8: FAST

Var(U)

Random 0.5208

Proportional Stratified 1.3570

Nonproportional Stratified 1.3810

LHS 0.5474

4.3 Discussion

With the Monte Carlo simulation on the population data we obtained the

supposed true variance of the output should be 0.1631, yet non of the mea-

surements from the propagation procedures matched that. The RSM results

revealed that there is a strong linear relationship between the output and

x,y, but not as much with r, and not much of quadratic relations at all. Both

the results from RSM and Differential Analysis showed a similar pattern:

The LHS and the proportional stratified sampling resulted in a output un-

certainty much closer than the true value of population V(U) compare to

other two sampling methods. From results in Table 4 to 7, FAST revealed

that the interaction between variables played a much bigger role on the V(U)

than the variables just by themselves. The estimations of V(U) from FAST,

however, are much conflicting with what we observed thus far, as all of the

estimations are much larger than the expected truth.

32



4.4 Conclusion

Generally, the results from our methods did not meet our expectations. We

found out that RSM method is best at characterizing the propagation of

uncertainty, but as expected, its results shows lower value than the true

variance of output due to the ignorance of the error variance. The differential

analysis showed a less accurate prediction than the RSM method, but has

shown a similar pattern. As for the Fourier Amplitude Sensitivity test, its

results is highly erred form the expected output variances, but we can still

observe how each input and their interactions influence the output variance.

One possible explanation with the discrepancies showed in the differential

analysis result may be the method used for measuring the individual partial

differential’s, which is a complex topic in the field of sensitivity analysis. The

order of the polynomial regression may be still too low to truly capture the

partial effect of each input toward the output by minimizing the SSR. The

sample size of n=600 is also a source of error, for it may too small to capture

the true propagation of uncertainty.
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