
Distribution Agreement

In presenting this thesis or dissertation as a partial fulfillment of the requirements for

an advanced degree from Emory University, I hereby grant to Emory University and

its agents the non-exclusive license to archive, make accessible, and display my thesis

or dissertation in whole or in part in all forms of media, now or hereafter known,

including display on the world wide web. I understand that I may select some access

restrictions as part of the online submission of this thesis or dissertation. I retain all

ownership rights to the copyright of the thesis or dissertation. I also retain the right to

use in future works (such as articles or books) all or part of this thesis or dissertation.

Signature:

Umberto Villa Date

Scalable Efficient Methods for Incompressible Fluid-dynamics
in Engineering Problems

by

Umberto Villa
Doctor of Philosophy

Mathematics and Computer Science

Alessandro Veneziani, Ph.D.
Advisor

Michele Benzi, Ph.D.
Committee Member

James Nagy, Ph.D.
Committee Member

Accepted:

Lisa A. Tedesco, Ph.D.
Dean of the James T. Laney School of Graduate Studies

Date

Scalable Efficient Methods for Incompressible Fluid-dynamics in Engineering Problems

By

Umberto Villa
M.S. in Mathematical Engineering, Politecnico di Milano, 2007
B.S. in Mathematical Engineering, Politecnico di Milano, 2005

Advisor: Alessandro Veneziani, Ph.D.

An abstract of
A dissertation submitted to the Faculty of the

James T. Laney School of Graduate Studies of Emory University
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in Mathematics and Computer Science

2012

Abstract

Scalable Efficient Methods for Incompressible Fluid-dynamics in Engineering Problems
By Umberto Villa

Accurate and effective methods for the numerical solution of incompressible fluid
dynamics is an old but still important challenging problem, as more and more complex
problems in engineering biology, ecology, medicine, sport are tackled with computa-
tional methods.

In this thesis, we investigate efficient solvers for two important models that governs
the motion of a fluid, the incompressible Navier-Stokes and the Brinkman equations.
The former describes the motion of an incompressible fluid in either an open or closed
domain. The latter is used for describing the dynamics in a matrix of an inhomogeneous
porous media, alternating bubbles and open channels.

For the solution of the unsteady Navier-Stokes Equations, we move from the pres-
sure correction algebraic factorization formerly proposed by Saleri, Veneziani (2005),
and we introduce the incremental formulation of pressure corrected schemes. These
schemes feature an intrinsic hierarchical nature, such that an accurate approximation
of the pressure Schur complement is obtained by computing intermediate low-order
guesses. When used as a splitting method instead of a preconditioner, the difference
between the pressure at two successive correction steps provides a natural a-posteriori
estimator with no additional computational cost. We consider the basics settings of the
method and its more stable variants; we also discuss implementation details that make
the method competitive for real interest problems.

For the solution of the Brinkman Equations, we follow the approach presented in
Mardal, Winther (2011) to precondition symmetric saddle point problems in a Hilbert
settings. More specifically, we first present a novel mixed formulation of the Brinkman
problem, with improved stability properties, in which we introduce the flow’s vorticity
as additional unknown. Based on stability analysis of the problem in the H(curl) −
H(div)−L2 norms, we derive a scalable block diagonal preconditioner which is optimal
in the constant coefficient case.

Algorithms and preconditioners analysed in this thesis have been implemented in a
parallel C++ code, using the finite element libraries LifeV and MFEM, and the linear
algebra libraries Trilinos and HYPRE. We emphasize the performance of the proposed
algorithms in solving problems of practical interest, involving complex geometries and
realistic flow conditions. Numerical experiments in 2D and 3D confirm the effective-
ness of our approach showing good efficiency and parallel scalability properties of the
solvers proposed.

Scalable Efficient Methods for Incompressible Fluid-dynamics in Engineering Problems

By

Umberto Villa
M.S. in Mathematical Engineering, Politecnico di Milano, 2007
B.S. in Mathematical Engineering, Politecnico di Milano, 2005

Advisor: Alessandro Veneziani, Ph.D.

A dissertation submitted to the Faculty of the
James T. Laney School of Graduate Studies of Emory University

in partial fulfillment of the requirements for the degree of
Doctor of Philosophy

in Mathematics and Computer Science
2012

Acknowledgements

I begin by thanking my advisor, Prof. Alessandro Veneziani, for leading
me and the rest of the Italian crew towards the conquering of a “brave new
(scientific research) world”. As we usually say in Italy “non c’e’ il due senza
il tre”, here I am defending my third thesis with Alessandro. I’d like to
express my sincere gratitude to him for the trust he always granted me, the
enthusiasm he was able to transmit, the freedom he gave me in pursing
my scientific interests, and the encouragements with which he thrust me
toward more and more ambitious challenges.

I also thank the members of my thesis committee, Prof. Michele Benzi and
Prof. James Nagy, for their helpful suggestions and challenging questions.
Their expert guidance in the new American academic system was of utmost
importance to arrive where I am now.

A special thanks goes to Tiziano, Lucia, Luca, Marina, Marta, Mauro:
their presence has been of great support but professionally and personally.
They have been real friends to me, always willing to help, joke, and cheer
me up in difficult moments. Also, their comments and feedback highly con-
tributed to the quality of my work. I really enjoyed the long and productive
discussions and I thank them for the fresh ideas and stimulating challenges
they shared with me.

I am also indebted to Prof. Vaidy Sunderam and Jaroslaw Slawinski,
their experience in parallel computing was an inestimable asset in building,
executing, and tuning my applications on the HPC clusters and clouds. I
acknowledge also Edgar Leon, our system administrator, for maintaining
the local computational resources and supporting me with his invaluable
know-how.

My sincere thanks goes also to the other faculty, staff, and graduate students
for creating a friendly and stimulating environment. In particular, I am
grateful to my teaching mentors Prof. Dwight Duffus, Prof Skip Garibaldi,
and Prof. Ron Gould, who shared with me their passion, enthusiasm, and
experience (sometimes also patience!) in teaching to undergrads. They
helped me understanding the needs of my students and building a easygo-
ing, professional and constructive relationship with them.

I owe special gratitude to Michele who introduced my to the National Labs
world. I wish to thank Dr. Judith Hill (Oak Ridge Nat. Lab.) and Dr.

Panayot Vassilevski (Lawrence Livermore Nat. Lab.) for offering me the
opportunity to work with them during my summer internships. It was a
highly rewarding experience from which I learnt a lot and that helped my
professional growth. The new connections I made with them and thanks to
them will highly benefit the quality of my scientific research.

Last but not least, I would like to thank my family and my friends for their
love and support. To my parents and sister, Roberto, Ornella and Federica,
in Italy (“le radici”, the roots) and to my wife Deborah (“le ali”, the wings)
I dedicate my thesis.

... and now, dear Debbie, it is time to fly west. Our journey together is
waiting us!

Access to some computational resources was partially supported by US National
Science Foundation Grant OCI-1124418, and used the Extreme Science and Engi-
neering Discovery Environment (XSEDE), which is supported by National Science
Foundation grant number OCI-1053575. We also thank Consorzio Interuniversi-
tario Lombardo per L’Elaborazione Automatica (CILEA) for providing free access
to their HPC clusters and for their assistance in building and executing our appli-
cations (Paride Dagna).

le radici e le ali

Contents

1 Introduction 1

1.1 The incompressible Navier-Stokes equations 2

1.2 The Brinkman Equations . 6

1.3 Thesis outline . 7

2 Discretization of the unsteady Navier-Stokes equations 13

2.1 Governing equations . 14

2.2 Weak formulation and Galerkin Projection 17

2.3 Space discretization of the generalized Oseen Problem 21

2.4 Time discretization . 26

2.4.1 Treatment of the non-linear convective term 30

2.5 A note on mass lumping for high order finite element 32

2.5.1 Mass lumping and orthogonal finite element basis 33

2.5.2 Accuracy of mass-lumped finite elements 35

3 Algebraic splittings and block preconditioners 41

3.1 Velocity-pressure splittings methods . 42

3.1.1 Incremental formulation of splitting methods 50

3.2 The high order Yosida splitting . 51

3.3 Algorithmic form of High Order Yosida schemes 54

3.4 Analysis of the pressure corrected splittings 55

3.4.1 Non-singularity and consistency 56

3.4.2 Stability analysis . 58

3.4.3 Convergence analysis . 62

3.5 Algebraic splitting as preconditioners . 65

3.5.1 Block preconditioners and approximated Schur Complement op-

erators . 66

3.5.2 Spectral properties of algebraic splitting preconditioners 68

3.5.3 Comparison with the Cahouet-Chabard preconditioner 71

3.5.4 Comparison with the Least Squares Commutator preconditioner . 72

4 Time Adaptivity 75

4.1 Time adaptivity for computational fluid-dynamics 75

4.2 Analysis of the incremental formulation of High Order Yosida schemes . 77

4.3 Adaptation rule . 82

4.4 A posteriori error estimators for the Navier-Stokes problem 84

4.4.1 Algebraic splitting based estimators 87

4.4.2 Preconditioned unsplit solvers estimators 88

4.5 Numerical results . 90

4.5.1 Preliminary 2D results . 90

4.5.2 3D Womersley test case . 93

4.5.3 Sensitivity with respect to the mesh size 93

4.5.4 An adaptive 3D blood flow simulation 95

5 Implementation 101

5.1 Libraries and Software . 104

5.1.1 LifeV . 104

5.1.2 Trilinos . 105

5.1.3 SuiteSparseQR . 109

5.2 On the numerical solution of the discrete Laplacian with direct methods 112

5.2.1 Parallel performance results . 113

5.2.2 The effect of the ordering strategy 115

5.3 Management of Block Operators in LifeV/Trilinos 117

5.3.1 Overview of the block linear algebra module 119

5.4 Scalability Results . 123

5.4.1 Weak scalability test . 126

5.4.2 Strong scalability test . 131

6 The Brinkman Problem 139

6.1 Mixed formulation of the Brinkman Problem 141

6.1.1 Functional spaces and orthogonal decompositions 142

6.1.2 Weak formulation . 144

6.2 Well-posedness of the mixed variational formulation 146

6.3 Discretization . 153

6.3.1 Analysis of the discrete problem 154

6.4 Discretization error numerical results . 157

6.4.1 Discretization error for constant coefficients. 157

6.4.2 Discretization error for non-constant smooth coefficients. 160

6.4.3 Discretization error for coefficients with jumps 160

6.5 Preconditioning . 162

6.5.1 Augmented Lagragian formulation 167

6.6 Scalability results . 169

6.6.1 Software and implementation details 170

6.6.2 Constant coefficient weak scalability test 171

6.6.3 The case of non-constant smooth coefficients 173

6.6.4 The case of coefficients with discontinuities 175

7 Conclusion 179

List of Figures

1.1 Flow past a cylinder for a Reynolds number of 100. At this Reynolds

number the flow is mostly in the laminar regime, however observe the

local formation flow disturbances downstream the cylinder. 4

1.2 Localized turbulent flow in a blood flow simulation. The Left Ventric-

ular Assistant Device (LVAD) is a pump that helps the heart in pushing

the blood from the left ventricular to the aorta. Notice the formation

vortexes in the blood flow where the LVAD hooks up to the aorta (left).

These flow disturbances are not present in the case of a healthy person

(right). 5

1.3 Direct Navier-Stokes simulation of turbulent flow past a step 5

1.4 Logarithmic plot of the inverse permeability coefficient in the SPE10

problem, a challenging benchmark for reservoirs simulation codes. Note

the two distinct soil layers and the large jumps in the coefficient between

them. 8

1.5 The Brinkman model is a unified law governing the flow of a viscous fluid

in cavity (Stokes equations) and in porous media (Darcy Equations).

In real applications, the number and the locations of the Stokes-Darcy

interfaces might be not known a priori. 8

2.1 Inf-Sup compatible velocity (top) and pressure (bottom) spaces. Contin-

uous pressure spaces (Taylor Hood, MINI Elements) on the left, discon-

tinuous pressure elements (P2-P0, Crouzeix-Raviart) on the right. . . . 22

2.2 Sparsity pattern of Taylor-Hood finite element matrices for the Oseen

Problem: consistent viscous stress tensor (left), consistent viscous stress

tensor (right). 25

2.3 Degree of freedom of the modified second order finite element proposed

in [92]. 34

2.4 Relative error of the numerical solution of a diffusion reaction problem

in the H1(Ω) (blue circles) and L2(Ω) (red triangles) norm as a func-

tion of the mesh size h. For P b1 elements (on the left) the subspace

approximation errors dominates the mass lumping error and we observe

optimal rate of convergence (O(h) in the H1(Ω) norm and O(h2) in the

L2(Ω) norm). For P b2 elements (on the right) the mass lumping error

leads to suboptimal rate of convergence (O(h) in the H1(Ω) norm and

O(h2) in the L2(Ω) norm). 39

3.1 Consistency error ‖Σ − SQq‖∞ induced by the splitting, for different

values of q. Matrices corresponds to a P1-iso-P2, P1 finite element dis-

cretization on a unit square. 58

3.2 Velocity errors for a pressure corrected scheme with q = 2. Left: h =

1/40, Right: h = 1/80. 62

3.3 Velocity (left) and pressure (right) errors for a pressure corrected scheme

with q = 1. As expected, for a BDF formula of order 4 the splitting is

limiting the velocity accuracy with an order between 3 and 4. Pressure

exhibits a slightly higher convergence order than the one predicted by

the theory. 64

3.4 Velocity splitting error ‖E‖L2(0,T ;H1(Ω)) (left) and pressure splitting error

‖e‖L2(0,T ;L2(Ω)) (right) for the the solution of the Womersley problem. . . 65

3.5 Eigenvalues of the preconditioned Schur Complement (SQq)
−1Σ for q =

0 (top, left), 1 (top, right), 2 (bottom, left), 3 (bottom, right) and for

different time steps. Eigenvalues are computed with Matlab on a coarse

mesh (square domain with h = 1/16) for the non symmetric Navier-

Stokes problem. As expected, when the time step gets smaller, eigenval-

ues are clustering around 1, the clustering being more evident when q

gets larger. 70

4.1 Two problems demanding for time adaptivity: pressure dynamics of the

oil in a brake (left - courtesy of Brembo, Italy) and flow rate in a carotid

artery (right). 76

4.2 Norm of the error estimator as a function of the time step. L2 norm

‖z‖L2 on the left, infinity norm ‖z‖L∞ on the right (in 2D lid driven

cavity problem). 88

4.3 Order of the estimator zk for the non-incremental method and the in-

cremental methods of order s. These results are obtained by solving a

lid cavity problem driven by a C∞(0, T) forcing term (utop = esin(2.0πt)−

1.0). Space discretization is Taylor Hood finite elements Q2 −Q1 on a 8

by 8 by 8 hexahedral mesh. Time discretization is a BDF-(s+1). 89

4.4 Time step automatically selected by using z2 as error estimator for a fluid

in a 2D channel with a periodic forcing term (reported in the bottom

panel). For the first time unit adaptivity is off. Then it is turned on.

After two time units, the forcing term is set to 0, so the adaptive scheme

is supposed to select a large time step. This happens with the BDF3

(left). With the BDF4, reduced stability of the split scheme prevents the

selection of large time steps (right). 91

4.5 Time adaptivity in a 2D bifurcation with an input time-dependent ve-

locity modulated by a physiological waveform. Three heart beats with

a physiological peak Reynolds of about 700. In the first beat, adaptiv-

ity is off and time step is selected for capturing the fast transients of

the first part of the heart beat (systole). In the second and third heart

beat, the adaptivity maintains the same time step during systole (see the

zoomed box below) and selects larger steps during the subsequent phase

(diastole). In this way, one third of time steps used by the non-adaptive

computation are required. 92

4.6 Simulation for increasing Womersley numbers: 1, 2, 4, 8, 16 (from the

left to the right). The imposed pressure drop and the computed flux at

the inflow section are showed on the top (in dashed blue line and solid

green line respectively). The adaptive time step and the pressure are

showed on the bottom (in solid red line and dashed blue line respec-

tively). Increasing the Womersley number the phase lag between pres-

sure and flux increases, and the amplitude of flux oscillation decreases.

Note how the behaviour of the adaptive time step is the same for each

simulation. 94

4.7 Average, minimum, maximum time step selected by the adaptive algo-

rithm Schur complement-Yosida1 incremental approach as a function of

the period of oscillation in the simulation with different Womersley num-

bers. 94

4.8 On the left the dynamic in time of the velocity of the lid. On the right

the time step chosen by the time adaptive procedure. Qualitatively the

adaptive choice of the time step shows the same behaviour for all the

three different mesh diameters. The time step is refined when the accel-

erations of the lid cause fast changes in the pressure, and it is coarsened

when the lid velocity varies slowly and the pressure gradients are less

steep. 96

4.9 The L2(Ω) norm of the velocity (on the left), and the L2(Ω) norm of the

pressure (on the right) for the lid driven cavity problem. The different

behaviour of the velocity and pressure norms on the coarse grid suggests

that the fluid-dynamics is under-resolved on that mesh. 96

4.10 Geometry of an aortic arch reconstructed from a CT with the code Vas-

cular Modeling Toolkit (www.vmtk.org) and used for our time adaptive

simulations. 97

4.11 On the left, we plot the imposed flux (solid green line) and the computed

pressure (dashed blue line) at the inflow section of the aorta. Note the

shift between the pressure and flux pick. On the right, we display the

L2(Ω) norm of the pressure and the time step. The first stroke is simu-

lated with a constant time step of 10−3s, in the next two heart beats time

adaptivity is turned on. 98

4.12 The evolution in time of the L2(Ω) norm of the velocity field (on the left)

and of the L2(∂Ω) norm of the wall shear stress (on the right). Note how

the adaptive choice of the time step seems adequate for both velocity and

shear stress dynamics. 99

4.13 Blood flow in a human aorta in physiological conditions (72 heart beats

per minute): from the left to the right we display the solution at t=0.088s,

t = 0.144s, and t = 0.226s. Arrows show the flow direction, their lengths

are proportional to the magnitude of the velocity, their colors reflect the

magnitude of pressure field. 99

5.1 Speedup curves exploiting the different levels of parallelism (tree-based

on the left, Blas-based in the middle, combined on the right). Results

relative to P1b-P1 matrices are on top, relative to P2-P1 on bottom. Col-

ors represent the matrix size: small matrices are in blue, medium in red,

large in green. 116

5.2 Speedup for each matrix in Tab.5.1 using Metis and COLAMD ordering.

The first 3 bars refers to n = 16, the last 4 to n = 8. 118

5.3 Inheritance diagram. Arrows point from the derived to the parent class. 122

5.4 Collaboration diagram. Arrows point from the parent to the derived

classes. 122

5.5 Steps for the numerical solution of a time-dependent PDE problem. . . . 125

5.6 Solution of the problem proposed by C. R. Ethier and D. A. Steinman [47]

for t = 0.003s. Arrows represent the vector field u, while in the cubic

domain are shown isosurfaces of the scalar field p. 127

5.7 Parallel speed-ups: linear solve phase (on the left), complete time step

(on the right). 133

5.8 Streamlines of the velocity field in correspondence of the maximum flow

rate over the cardiac cycle (t = 0.28s). 134

5.9 The average computation time per simulated time step, for the bench-

marked architectures . 137

6.1 Lowest order Finite Element spaces for the discretization of the De Rham

complex: P1 Lagrangian elements, first order Nédélec elements, zero

order Raviart-Thomas elements, and discontinuous piecewise constant

elements. 153

6.2 Relative discretization error in the case of constant coefficients for dif-

ferent choices of the ratio k
ε2

. 159

6.3 Relative discretization error in the case of non-constant coefficients for

different choices of the ratio kmax
kmin

. 161

6.4 Velocity and vorticity profiles in the radial direction for different values

of k. 162

6.5 Numerical solution of the preferential channel on the finest grid (k = 1):

velocity on the left, vorticity in the center, pressure on the right. 163

6.6 Relative discretization error for the preferential channel test case for

different values of the inverse permeability k in the surrounding porous

medium. 163

List of Tables

2.1 Coefficients of the zero-stable BDF formulas for p = 1, . . . , 4 in the case

of constant step-size. 28

2.2 Properties of the quadrature rules used to perform mass lumping with

P b1 and P b2 finite elements on a tetrahedron (rows 1 and 2) and with

Q2 elements on a hexahedron (row 3). The quadrature nodes are given

in barycentric coordinates (for quadrature rules on a tetrahedron), and

the number of possible permutations are inside the square brackets ([·]).

The weights ω include the measure of the element K (mes(K)). 38

2.3 Comparison between the best subspace approximation error and the er-

ror introduced by the mass lumping. Proposition 2.5.3 shows that the

convergence rate of finite elements without mass lumping is not affected

for P b1 and Q2 elements, while it is reduced for P b2 elements. 38

3.1 Velocity splitting error ‖E‖L2(0,T ;H1(Ω)) and pressure splitting error ‖e‖L2(0,T ;L2(Ω))

for the Womersley test case (theoretical expected order in brackets). . . 65

5.1 Finite element matrices used in the test of the parallel performance of

SuiteSparseQR. The finite element space FE, the mesh size h, the number

of rows n, the number of columns m, the number of non zero elements

nnz, the number of frontal matrices nf , and the serial factorization time

are reported. 114

5.2 Maximum speed-up achieved on a Sun Microsystems SunFire V40z shared

memory machine, with 4 Dual Core AMD Opteron(tm) Processors and

32 GB of memory running Linux. 115

5.3 Number of frontal matrices and serial factorization time for the matrices

in Tab.5.1 using the Metis and COLAMD ordering. 117

5.4 Weak scalability test (Taylor Hood Elements on the top, MINI Elements

on the bottom): np represents the number of processes, Ndof the number

of unknowns (DOFs), nit the average number of iterations, tsolve the

average linear solver time, tprec the average preconditioner setup, ttot

the average total time per timestep. Timings are measured in seconds

using the gettimeofday function. 132

5.5 Strong scalability test. We report the number of processors np, and the

average time for time step to assemble the finite element matrices tass,

compute the preconditioner tprec, solve the linear system tsolve. 136

6.1 Number of elements nt, faces nf , and edges ne on the coarser level of

each unstructured mesh. 173

6.2 Number of MINRES iterations with the exact preconditioner for different

values of k. N represents the total number of unknowns. 173

6.3 Number of MINRES iterations with the AMG preconditioner for different

values of k. N represents the total number of unknowns. 174

6.4 Computational cost of the AMG preconditioner. nn is the number of

nodes used, np is the number of processes, N the total number of de-

grees of freedom, tsolve and tsetup measures the time in seconds to solve

the linear system and to assemble the preconditioner, respectively. . . . 174

6.5 Performances of the exact and AMG preconditioner for variable coeffi-

cient problem as a function of the ratio kmax
kmin

. N represents the total

number of unknowns and nit the number of preconditioned MINRES

iterations to achieve a relative reduction of the residual norm up to 10−10.176

6.6 Number of MINRES iterations to achieve a reduction of 10−10 for the

relative residual norm in the preferential channel test case. 177

List of Algorithms

2.1 Arbitrary order, variable time step BDF coefficients 29

3.1 Pressure corrected algebraic Chorin-Temam (ACT-PC) splitting method . . 49

3.2 Pressure corrected Yosida (YOS-PC) splitting method 49

3.3 Arbitrary order pressure correction algorithm 56

4.1 Incremental q-pressure corrected Yosida splitting method. 78

4.2 Adaptation rule algorithm . 85

1 Introduction

In this thesis, we are interested in efficient methods for the numerical solution of two

important models that governs the motion of a fluid, the incompressible Navier-Stokes

and the Brinkman equations. The first set of equations describes the flow of a New-

tonian fluid in an either open or closed domain, while the second is commonly used

to describe the flow in an inhomogeneous medium, where bubbles or channels alter-

nate inside of a porous matrix. These equations are fundamental for many problems

of practical interest, ranging from mechanical engineering to geophysics to biomedical

to thermodynamics applications. Fast and accurate numerical solution of these prob-

lems is still a formidable challenge, as a consequence of the saddle point nature of the

algebraic systems arising from finite element discretization of such equations. As it

is well known [23, 107], the role of the pressure as Lagrange multiplier of the incom-

pressibility constraint requires special numerical techniques, leading in general to large

algebraic systems to be solved after space and time discretization. A further challenge

is represented by the non linearity of the convective term (Navier-Stokes equations) or

the extreme variations in the porous medium permeability (Brinkman equations).

Many different options are available for improving efficiency of numerical simu-

lations, ranging from parallelization to identification of appropriate preconditioners

[16, 45] and, in the unsteady case, to velocity-pressure splittings (see for example

[106, 112, 125]) and time adaptivity [60, 61, 128]. In this thesis, we explore all these

different acceleration techniques and we integrate them together in order to maximize

the efficiency of the solver.

2 1.1 The incompressible Navier-Stokes equations

In the next sections we will describe in more details the two models of incompress-

ible fluid that are studied in the thesis.

1.1 The incompressible Navier-Stokes equations

The incompressible Navier-Stokes equations (INS) govern the flow of a viscous Newto-

nian fluid in a generic domain Ω. Letting the velocity and kinetic pressure of the fluid

be denoted by u(x, t) and p(x, t) (x ∈ Ω, t ∈ (t0, T]) respectively, the unsteady INS

equations read



∂u
∂t −∇ ·

(
ν(∇u +∇uT)

)
+ (u · ∇) u +∇p = f in Ω× (t0, T]

∇ · u = 0 in Ω× (t0, T]

Bu = g on ∂Ω× (t0, T]

u(x, t0) = u0 in Ω.

(1.1)

Here Ω is an open bounded domain in Rd where d = 2, 3, ν > 0 is the kinetic viscos-

ity, f an external force field, and B a boundary (trace) operator, including Dirichlet,

Neumann or Robin conditions on different portions of the boundary ∂Ω.

The Reynolds number Re = ‖u‖L
ν represents the ratio between the viscous and the

inertial forces in the fluid. Here L represents a characteristic length of the geometry.

For example a common choice for L in the contest of blood flow problems is the av-

erage diameter of the vessel. In a straight channel with constant cross-sectional area,

a Reynolds number of 4000 represents the transition between laminar and turbulent

flows (see for example [110]). Given the kind of applications of interest for this the-

sis, we consider Reynolds number up to the order of few hundreds, which is typical in

hemodynamic problems. In such conditions the flow is mostly in the laminar regime

and shows disturbances or vortexes only in few localized regions. Such instabilities

1. INTRODUCTION 3

occur in the presence of particular features of the geometry, such as obstacles, bifurca-

tions, or steps. A well-known example is the flow past a cylinder benchmark proposed

in [121]. In Fig. 1.1 we show the streamlines of few particles of fluids for a simulation

with Reynolds number of 100, computed with the solvers implemented in this thesis.

Small vortexes are visible in the region immediately downstream of the cylinder, while

in the rest of the domain the flow is still in the laminar regime. Another example, this

one of medical relevance, is shown in Fig. 1.2, where we compare the blood flow in the

aorta of a healthy individual (right) and in a patient with implanted a left ventricular

assistant device1 (left). The left ventricular assistant device is a pump that helps the

heart in pushing the blood from the left ventricular to the aorta. Notice how the device

induces vortexes and recirculation in the blood flow that are not present in the healthy

case.

The flow disturbances described above are usually captured by local mesh refine-

ments, and do not require sophisticated turbulence models to be simulated. On the

contrary, to accurately simulate fully developed turbulence, direct Navier-Stokes meth-

ods (DNS) would require highly refined meshes and they may not be a viable approach

due to the extremely high computational cost. For example, in Fig. 1.3 we show a

snapshot of a DNS simulation2 of a fully developed turbulent flow (Reynolds number

3500) in a nozzle with a conical concentrator and a sudden expansion. It was nec-

essary to compute more than 16 million of unknowns in order to capture a location

of the jet rupture that was consistent with the experimental results presented in [65].

The simulation of even higher Reynolds numbers is beyond the scope of this thesis. For

those problems, specialized techniques such as subgrid modeling of unresolved velocity

and pressure modes [95] or deconvolution models [83] should be adopted to balance

between accuracy and computational cost.
1Simulation prepared and executed by T. Passerini using the solvers presented in this thesis. Project

in collaboration with Dr. D. Gupta, Department of Cardiology, Emory Hospital
2Courtesy of T. Passerini. Project in collaboration with A. Quaini, Dept. of Mathematics, Houston

University

4 1.1 The incompressible Navier-Stokes equations

Figure 1.1: Flow past a cylinder for a Reynolds number of 100. At this Reynolds num-
ber the flow is mostly in the laminar regime, however observe the local formation flow
disturbances downstream the cylinder.

1. INTRODUCTION 5

Figure 1.2: Localized turbulent flow in a blood flow simulation. The Left Ventricular
Assistant Device (LVAD) is a pump that helps the heart in pushing the blood from the left
ventricular to the aorta. Notice the formation vortexes in the blood flow where the LVAD
hooks up to the aorta (left). These flow disturbances are not present in the case of a healthy
person (right).

Figure 1.3: Direct Navier-Stokes simulation of turbulent flow past a step

6 1.2 The Brinkman Equations

The Reynolds number can therefore be interpreted as a measure of the difficulty

of the problem: at high Reynolds number the convective term (u · ∇)u dominates the

viscous stresses term, increasing the non-linearity and the non-symmetry of the prob-

lem. In the unsteady case, time lagging or extrapolation of the velocity field from the

solution at the previous time steps (cfr. Section 2.4.1) is usually preferred to Newton

or Picard iterations in order to cope with the non-linearity induced by the convective

term. Overall, the computational advantages of this approach respect to non-linear

iterations overcome the loss of accuracy in time (if low order extrapolation is used)

or the conditional stability of the time advancing algorithm (if higher order extrapola-

tion is used). Nevertheless convection dominated problems requires special stabiliza-

tion techniques (streamline diffusion, streamline upwind Petrov Galerkin, least squares

Galerkin) [45, 104] or discontinuous Galerkin (DG) discretizations [33, 85]. Moreover,

the presence of a strong convection term represents a challenge also for the precondi-

tioning of the saddle point problem.

1.2 The Brinkman Equations

The Brinkman equations describe the flow of a viscous fluid in cavity and porous media.

It was initially proposed in [2, 3] as a homogenization technique for the Navier-Stokes

equations. Since in real applications the number and the locations of the Stokes-Darcy

interfaces might not be known a priori, the unified equations in the Brinkman model

represent an advantage over the domain decomposition methods coupling the Darcy

and the Stokes equations.

Mathematically speaking the Brinkman model is a parameter-dependent combina-

tion of the Darcy and Stokes models. Letting Ω be a bounded domain in Rd with a

1. INTRODUCTION 7

regular enough boundary ∂Ω, the steady Brinkman equations read


−ν ∆u + k(x)u +∇p = f(x) ∀x ∈ Ω

div u = 0 ∀x ∈ Ω

Bu = g on ∂Ω

(1.2)

where ν ≥ 0 is the fluid viscosity and k(x) is the inverse permeability of the medium.

If ν = 0 the Brinkman equations reduce to the Darcy ones. The challenge of this prob-

lem is when the coefficient k = k(x) admits extreme large variations between different

parts of Ω. In Fig. 1.4 we show, as an example, an actual permeability field used in

a oil reservoir simulation benchmark (www.spe10.org). Note that the permeability

field admits jumps of several orders of magnitude between distinct layers of soil. The

upper part is a Tarbet formation consisting of massive homogeneous highly permeable

sandstones, while the lower part is a Ness formation, a heterogeneous mixture of sand-

stones, mudrocks, and coal.

In the part of the domain where k is small, the PDE behaves like a Stokes problem,

whereas in the rest of the domain, it behaves like Darcy equation (Fig. 1.5). This

double nature of the problem (Darcy or Stokes) represents a difficulty for the numer-

ical discretization, since the construction of a finite element space which is uniformly

well behaved with respect to both the Darcy and Stokes limits is still an area of active

research [64, 130]. In addition, the high variability in the PDE coefficients negatively

affects also the conditioning of the discrete problem which poses a substantial challenge

for developing efficient preconditioners.

1.3 Thesis outline

In this thesis we investigate efficient solvers for the saddle point systems arising from

finite element discretization of the two important classes of fluid dynamic problems

www.spe10.org

8 1.3 Thesis outline

Figure 1.4: Logarithmic plot of the inverse permeability coefficient in the SPE10 problem,
a challenging benchmark for reservoirs simulation codes. Note the two distinct soil layers
and the large jumps in the coefficient between them.

Figure 1.5: The Brinkman model is a unified law governing the flow of a viscous fluid in
cavity (Stokes equations) and in porous media (Darcy Equations). In real applications, the
number and the locations of the Stokes-Darcy interfaces might be not known a priori.

1. INTRODUCTION 9

described in the previous sections.

For the solution of the unsteady incompressible Navier-Stokes Equations, we

move from the pressure correction algebraic splittings formerly proposed by [112], and

we introduce the incremental formulation of such schemes. These schemes feature an

intrinsic hierarchical nature, such that an accurate approximation of the pressure Schur

complement is obtained by computing intermediate low-order guesses [55, 126]. Such

schemes prove to be efficient both when used as either a solver or a preconditioner.

Additionally the difference between the pressure at two successive correction steps pro-

vides a natural a-posteriori estimator with no additional computational cost [128]. We

consider the basic settings of the method and its more stable variants; we also discuss

implementation details that make the method competitive for real interest problems.

For the solution of the Brinkman Equations, we follow the approach presented

in [87] to precondition symmetric saddle point problems in a Hilbert complex. More

specifically, we first present a novel mixed formulation of the Brinkman problem, with

improved stability properties, in which we introduce the flow’s vorticity as additional

unknown. Such formulation extends to the Brinkman problem the mixed formulation

of the Stokes problem in [12, 13]. Differently from other vorticity-velocity-pressure

formulations (see e.g. [103], [96]) where the equation for the vorticity is obtained by

taking the curl of the momentum equation, our formulation exploits the structure of

the de Rham complex

H(curl) curl−−−−→ H(div)
div−−−→ L2

to translate the governing equations into a mixed finite element settings. Indeed, this

formulation leads to a uniformly stable and conforming discretization by standard finite

elements (Nédélec, Raviart-Thomas, piecewise discontinuous). Based on the stability

analysis of the problem in the H(curl)−H(div)−L2 norms, we derive a scalable block

diagonal preconditioner which is optimal in the constant coefficient case. Such pre-

10 1.3 Thesis outline

conditioner is based on the auxiliary space algebraic multigrid solvers for H(curl) and

H(div) (see e.g. [10, 11, 70, 80, 81]).

Algorithms and preconditioners analyzed in this thesis have been implemented in

a parallel C++ code, using the finite element libraries LifeV and MFEM, and the lin-

ear algebra libraries Trilinos and HYPRE. Particular emphasis is posed in measuring

the performance of the proposed algorithms in solving problems of practical interest,

involving complex geometries and realistic flow conditions, as idealized case tests and

simple geometries might be not fully reliable estimators of the performances of the al-

gorithms. Numerical experiments in 2D and 3D support the validity of our approach

showing both good efficiency and parallel scalability properties of the solvers proposed.

The thesis is organized as follows.

In Chapter 2 we provide some notations and basic settings used through this the-

sis. We first briefly derive the incompressible Navier-Stokes equations from the physical

principles of mass, momentum, and energy conservation. We next introduce the weak

formulation of the problem and we outline the well-posedness of the semidiscrete prob-

lem obtained with Galerkin Projection. Particular emphasis is posed on the importance

of the compatibility between the velocity and the pressure spaces (inf-sup condition).

We then address the space and time discretization of the Navier-Stokes equations by,

respectively, Finite Element Method (FEM) and Backward Differential Formulas (BDF).

We conclude the chapter with an original analysis of mass lumping techniques for high

order finite elements.

In Chapter 3 we review, in a unified framework, the different velocity-pressure

splitting methods based on an inexact block factorization of the fully coupled Navier-

Stokes equations. We also introduce the incremental formulation, a popular approach

to improve the accuracy of the splitting method. We next analyze in details the pressure

1. INTRODUCTION 11

corrected Yosida schemes and we provide stability and convergence results. Finally we

demonstrate how velocity and pressure splitting methods can be efficiently used as

preconditioners for the coupled saddle point system.

In Chapter 4 we explain how the algebraic splitting methods introduced in the

previous chapter can be successfully utilized to derive a posteriori error estimator for

time adaptivity. As a matter of fact, the hierarchical structure of the pressure corrected

schemes provides, as a by product of the computations, an estimate of the local splitting

error that can be exploited to adaptively choose the time step. Numerical results sug-

gest that time adaptivity can sensibly reduce the computational time in hemodynamic

applications.

In Chapter 5 we provide implementation details and performance measures for the

algebraic splitting schemes and preconditioners presented in Chapter 3. After a brief

introduction of the scientific computing libraries LifeV, Trilinos, and SuiteSparseQR, we

discuss efficient solvers targeting (1) small-medium scale applications that can easily

run on personal laptops, and (2) large scale applications on massively parallel archi-

tectures. In particular, for small-medium scale applications we show how direct solvers

for the pressure system can drastically improve performances of the pressure corrected

schemes. For large scale applications, we present weak and strong scalability results of

the block factorization preconditioner framework implemented in this thesis work.

In Chapter 6 we study a stable discretization and a robust preconditioner for the

Brinkman problem. We first propose a novel mixed discretization with improved sta-

bility properties, and then we derive a scalable block diagonal preconditioner that is

optimal in the constant coefficient case. The methods and numerical experiments pre-

sented in this chapter are the result of two internships (summer 2011, summer 2012)

spent working at Lawrence Livermore National Laboratory (LLNL, Livermore, CA) un-

der the supervision of Dr. P. Vassilevski.

Concluding remarks, future work guidelines and insights are reported in Chapter

12 1.3 Thesis outline

7.

2 Discretization of the unsteady

Navier-Stokes equations

In this chapter, we start by providing a brief derivation of the equations governing the

motion of a fluid starting from the general physical principles of mass, momentum,

and energy conservation and then we introduce the simplifying assumptions that lead

to the well-known Navier-Stokes equations (Section 2.1). We then define the func-

tional spaces and the weak formulation of the Navier-Stokes equations that represents

the starting point of many space discretization methods based on Galerkin projection,

such as Finite Elements, Spectral Methods, Discontinuous Galerkin (Section 2.2). We

conclude by addressing the numerical discretization in space and time of the mixed

formulation. To this aim, we initially discuss the finite element discretization of the

Oseen problem (an auxiliary problem resulting from linearization of the Navier-Stokes

equations), with particular emphasis on the choice of the discrete finite element spaces

and on the stabilization techniques for convection dominated problems (Sections 2.3).

Then, we present time-stepping techniques based on finite differences in time (BDF

formulas) and different treatments (fully-implicit, semi-implicit, fully-explicit) of the

non-linear convective term (Section 2.4)). We conclude the chapter with a note on

mass lumping techniques for high order finite elements (Section 2.5). In particular, we

discuss how the use of inexact quadrature rules in the assembly of the finite element

mass matrices affects the overall accuracy of the space discretization. The analysis of

these effects based on the Strang Lemma is an original results in this thesis work.

14 2.1 Governing equations

2.1 Governing equations

The equations describing the motion of a general fluid are derived from three conserva-

tion laws (mass, momentum, energy). Let us denote by u the velocity of the fluid, ρ > 0

its density, and ê = e + 1
2 |u|2 its total (thermal and kinetic) internal energy per unit

mass. For a quantity of interest G (G = ρ, ρu, ρê), let us define the material derivative

DG

Dt
=
∂G

∂t
+ div(Gu).

Then the governing equations, in conservative forms, reads



Dρ

Dt
=
∂ρ

∂t
+ div(ρu) = 0 (mass conservation)

D(ρu)

Dt
=
∂(ρu)

∂t
+ div(ρu⊗ u) = div T + ρf (momentum conservation)

D(ρê)

Dt
=
∂ (ρê)

∂t
+ div [(ρê) u] = div(T u)− divq + ρf · u + ρr (energy conservation).

(2.1)

Here we have denoted by T = T (u, p̂) the stress tensor, p̂ the pressure, q = q(θ) the

heat flux, θ > 0 the (absolute) temperature, and finally by f and r the external force

field per unit mass and heat source per unit mass per unit time, respectively. Moreover

we have used the notation

(u⊗ u)ij := uiuj , (div T)i :=
d∑
j=1

∂Tij
∂xj

, (T u)i :=
d∑
j=1

Tijuj , i = 1, . . . , d.

With standard simplifications and by exploiting the conservation of mass, the non-

conservative form of (2.1) reads

∂ρ

∂t
+ div(ρu) = 0

ρ
∂(u)

∂t
+ ρ(u · ∇)u = div T + ρf

ρ
∂e

∂t
+ ρu · ∇ e = T : ε(u)− divq + ρf · u + ρr,

(2.2)

2. DISCRETIZATION OF THE UNSTEADY NAVIER-STOKES EQUATIONS 15

where ε(u) denotes the symmetric deformation tensor those components are given by

εij =

[
1

2

(
∇u + (∇u)T

)]
ij

=
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, (2.3)

and

T : ε(u) =
∑
i,j

Tij εij .

To close system (2.2) we need to introduce the constitutive equations which charac-

terize the motion and thermodynamics of the fluid considered, and the state equations

that relate pressure p̂, internal energy e, density ρ and temperature θ. Constitutive

equations and state equations are specific of the fluid and type of flow considered. In

the following we will restrict ourself to the analysis of the incompressible, isothermal

flow of a Newtonian fluid.

For incompressible flows, that are of main interest in this thesis, the pressure p̂ is

no longer related to the thermodynamic variables e, ρ, θ, but it is determined solely

through the momentum equation (2.2)2. In particular, the state equation for the pres-

sure is replaced by the incompressibility constraint

div u = 0. (2.4)

The stress tensor is now independent of the thermodynamic variables and linear with

respect to the strain tensor ε(u), according to the constitutive equation

T = −p̂I + 2 µ ε(u) = −p̂I + µ
(
∇u + (∇u)T

)
, (2.5)

where µ is the dynamic viscosity of the fluid, and I the identity tensor.

Thanks to the hypothesis of isothermal flow, we also assume that density ρ and

dynamic viscosity µ are independent of the fluid temperature θ, so that we can decouple

16 2.1 Governing equations

the motion equations from the thermodynamics.

Under the above assumptions, we drop the energy equation and then rewrite system

(2.2) in the simplified form


ρ

(
∂u

∂t
+ (u · ∇)u

)
= −∇p̂+ div

[
µ
(
∇u +∇uT

)]
+ ρf

∂ρ

∂t
+ u∇ρ = 0.

(2.6)

Finally, if we make the assumption of homogeneous flow, the density ρ does not

depend of the space coordinate x. Equation (2.6)2 implies that for an incompressible

and homogeneous fluid the density is equal to a constant ρ0 at every point x in the

domain Ω and instant t in (0, T]. Under these assumptions, and by letting p = p̂
ρ0

,

ν = µ
ρ0

be the kinematic pressure and viscosity, the Navier-Stokes system takes the well

known form


∂u

∂t
− div

[
ν
(
∇u +∇uT

)]
+ (u · ∇) u +∇p = f in Ω× (t0, T]

div u = 0 in Ω× (t0, T].

(2.7)

This system is then completed by prescribing an initial condition u0 on the fluid

velocity,

u(t = 0,x) = u0(x), ∀ x ∈ Ω,

and proper boundary conditions. Generally the surface stress h = T n is prescribed on

a portion of the boundary Γn and a velocity profile g on the remaining part, called Γe.

A possible set of boundary conditions for problem (2.7) is therefore

−p n + ν
(
∇u +∇uT

)
n = h on Γn ⊂ ∂Ω

u = g on Γe ⊂ ∂Ω

(2.8)

with Γn ∪ Γe = ∂Ω and Γn ∩ Γe = ∅. In case Γn = ∅ the boundary velocity g must

2. DISCRETIZATION OF THE UNSTEADY NAVIER-STOKES EQUATIONS 17

satisfy the condition
∫
∂Ω g · n = 0 to ensure compatibility with div u = 0. For this set

of boundary conditions the pressure p is defined up to constant.

Boundary conditions on Γe are called essential boundary conditions, since they will

be imposed strongly in the variational formulation of (2.7) by an opportune choice of

the functional spaces, and boundary conditions on Γn are called natural because they

originate by integration by parts of the non-conforming terms.

In the following, for easiness of notation, we will take g = 0, as the extension

to non-homogeneous essential boundary conditions is rather standard. To this aim,

one writes u =
◦
u +ug where ug is any function (lifting) such that ug = g on Γe and

the new unknown
◦
u satisfies

◦
u= 0 on Γe. The incompressibility constraint then reads

div
◦
u= −div ug, resulting in general in a non-homogeneous right end side for equation

(2.7)2. We refer e.g. to [52, Chapter 7] for the details.

To conclude this section, we observe that, by assuming constant viscosity and thanks

to the incompressibility constraint (2.4), we can simplify the divergence of the viscous

stress tensor as follows

−∇ ·
(
ν(∇u +∇uT)

)
= −ν (∆u +∇(div u)) = −ν∆u. (2.9)

However it is worth to notice that the equality above does not usually hold at the

discrete level, leading to different sparsity patterns in the finite element matrices and

in differences in the numerical solution, as shown in Section 2.3.

2.2 Weak formulation and Galerkin Projection

Let X denote a scalar Hilbert space. Then X = Xd is a vectorial Hilbert space, such

that each component ui (i = 1, . . . , d) of a function u ∈ X belongs to X. If p, q ∈ X we

denote with the symbol (p, q)X the standard inner product in X, and with (u,v)X :=∑d
i=1(ui, vi)X its vectorial counterpart.

18 2.2 Weak formulation and Galerkin Projection

For example, if Ω is a bounded regular domain in Rd (d = 2, 3), L2(Ω) is the space

of square-integrable functions and L2(Ω) := [L2(Ω)]d is the space of the vectorial func-

tions f : Rd → Rd, such that fi is in L2(Ω). The inner products in such spaces read

(p, q)L2(Ω) =

∫
Ω
p q dΩ, (u,v)L2(Ω) =

∫
Ω

u · v dΩ.

We also introduce the spaces

H1(Ω) :=
{
u ∈ L2(Ω) | ∇u ∈ L2(Ω)

}
, H1(Ω) =

{
u ∈ L2(Ω) | ui = (u)i ∈ H1(Ω)

}
,

equipped with the inner products

(u, v)H1(Ω) =

∫
Ω
u v dΩ +

∫
Ω
∇u · ∇v dΩ,

and (u,v)H1(Ω) =

∫
Ω

u · v dΩ +

∫
Ω
∇u : ∇v dΩ.

In the following we will omit the subscript in the inner product symbol for the spaces

L2(Ω) or L2(Ω).

To write the weak formulation of the Navier-Stokes problem, we introduce the

spaces V ⊆ H1(Ω) and W ⊆ L2(Ω) for the velocity u(x, t) and pressure p(x, t), re-

spectively. The actual definition of the functional spaces V and W depends on the

boundary conditions. For example, if we consider the boundary conditions in (2.8), we

have

V :=
{
u ∈ H1(Ω) | u = 0 on Γe

}
, and W := L2(Ω),

while in the case of only essential boundary conditions (Γe = ∂Ω), we have

V = H1
0(Ω) =

{
u ∈ H1(Ω) | u = 0 on ∂Ω

}
, and W := L2(Ω)\R.

To obtain the weak formulation, we multiply the system (2.7) by arbitrary functions

2. DISCRETIZATION OF THE UNSTEADY NAVIER-STOKES EQUATIONS 19

v ∈ V and q ∈W and integrate over the domain Ω,



∫
Ω

∂u

∂t
· v dΩ +

∫
Ω

(u · ∇) u · v dΩ −

−
∫

Ω
div
(
ν(∇u +∇uT)

)
· v dΩ +

∫
Ω
∇p · v dΩ =

∫
Ω

f · v dΩ ∀v ∈ V∫
Ω

(div u) q dΩ = 0 ∀q ∈W.

Exploiting some basic integration-by-parts identities and the boundary conditions

(2.8), the non-conforming terms become

−
∫

Ω
div
(
ν(∇u +∇uT)

)
· v dΩ +

∫
Ω
∇p · v dΩ =∫

Ω
ν
(
∇u +∇uT

)
:
(
∇v +∇vT

)
dΩ−

∫
Ω
p (div v) dΩ−

∫
∂Ω

(
−p I + ν(∇u +∇uT)

)
n·v dS =∫

Ω
ν
(
∇u +∇uT

)
:
(
∇v +∇vT

)
dΩ−

∫
Ω
p (div v) dΩ−

∫
Γn

h · v dS.

Therefore a weak solution u(t) ∈ V, p(t) ∈ W of (2.7) satisfies the variational

problem



∫
Ω

∂u

∂t
· v dΩ +

∫
Ω

(u · ∇) u · v dΩ +

∫
Ω
ν
(
∇u +∇uT

)
:
(
∇v +∇vT

)
dΩ−∫

Ω
p div v dΩ =

∫
Ω

f · v dΩ +

∫
Γn

h · v dS ∀v ∈ V

−
∫

Ω
(div u) q dΩ = 0 ∀q ∈W.

Introducing the variational forms

- F (v) =

∫
Ω

f · v dΩ +

∫
Γn

h · v dS, v ∈ V,

- m(u,v) =

∫
Ω

u · v dΩ, u, v ∈ V,

- k(u,v) =

∫
Ω
ν
(
∇u +∇uT

)
:
(
∇v +∇vT

)
dΩ, u, v ∈ V,

- c(u,v; w) =

∫
Ω

(w · ∇) u · v dΩ, u, v ∈ V,

20 2.2 Weak formulation and Galerkin Projection

- b(u, q) = −
∫

Ω
(div u) q dΩ, u ∈ V, p ∈ W,

we write the non-linear saddle-point problem


find (u(t), p(t)) ∈ V ×W :

d
dt [m(u(t),v)] + k(u(t),v) + c(u(t),v; u(t)) + b∗(p(t),v) = F (v) ∀v ∈ V

b(u(t), q) = 0 ∀q ∈W.
(2.10)

In the above formulation, the bilinear form b(u, q) represents the incompressibility

constraint (2.4). Functions in V × W are such that the following inf-sup condition

(Ladyzhenskaja-Babuska-Brezzi condition) is verified

inf
u∈V

sup
q∈W

b(u, q)

‖u‖V‖q‖W
≥ βΩ, (2.11)

where βΩ is a positive constant that depends only on the domain Ω.

A discrete in space approximation of (2.10) can be devised by applying the Galerkin

method. With this aim, let {Vh | h > 0} be a family of finite dimensional subspaces of

V, and {Wh | h > 0} a family of finite element subspaces of W . We assume that the

spaces Vh and Wh are compatible in the sense that the inf-sup condition (2.11) holds

also in the discrete case uniformly respect to discretization parameter h. In other words

there exists a constant β = β(Ω) independent from h such that

inf
uh∈Vh

sup
qh∈Wh

b(uh, qh)

‖uh‖V‖qh‖W
≥ β. (2.12)

Additionally we require the following approximation property to hold: there exist

two operators ΠV
h : V→ Vh and ΠW

h : W →Wh such that

‖v −ΠV
h (v)‖V → 0, ‖q −ΠW

h (q)‖W → 0 as h→ 0.

2. DISCRETIZATION OF THE UNSTEADY NAVIER-STOKES EQUATIONS 21

Then, for each h > 0 we consider the non-linear semi-discrete in space problem


find(uh(t), ph(t)) ∈ Vh ×Wh :

d
dt(uh(t),v) + k(uh(t),vh) + c(uh(t),vh; uh(t)) + b∗(ph(t),vh) = F (vh) ∀vh ∈ Vh

b(uh(t), qh) = 0 ∀qh ∈Wh.

(2.13)

For the convergence of the projected solution (uh, ph) of the Galerkin projection to

the weak solution of (2.10) we refer, for example to [117].

Time discretization and Picard-like linearization of (2.13) (see Section 2.4) results

in a sequence of (generalized) Oseen problems of the form


find (uh, ph) ∈ Vh ×Wh :

σ[m(uh,vh)] + a(uh,vh) + b∗(ph,vh) = F (vh) ∀vh ∈ Vh

b(uh, qh) = 0 ∀qh ∈Wh.

(2.14)

Here σ is a scalar value proportional to the inverse of the time step, and the variational

form a is defined as

a(uh,vh) = k(uh,vh) + c(uh,vh; wh), (2.15)

with wh ∈ Vh being a given velocity field (wind velocity). When wh = 0, the variational

form a is symmetric positive definite, and we obtain the generalized Stokes problem.

In Section 2.3 we will discuss the Finite Element Method for problem (2.14), and in

Section 2.4 we will describe time advancing and linearization techniques for problem

(2.10).

2.3 Space discretization of the generalized Oseen Problem

We now proceed to the numerical approximation of the generalized Oseen problem

(2.14) by using the Finite Element Method (FEM).

22 2.3 Space discretization of the generalized Oseen Problem

Figure 2.1: Inf-Sup compatible velocity (top) and pressure (bottom) spaces. Continuous
pressure spaces (Taylor Hood, MINI Elements) on the left, discontinuous pressure elements
(P2-P0, Crouzeix-Raviart) on the right.

We introduce a conformal, regular, and quasi-uniform partition Th of the domain Ω

in Ne polygonal (2D) or polyhedral (3D) elements Tk such that

Ω ≈ Ωh =
⋃
Tk, with h = max

Tk∈Th
hk, hk = diam(Tk), k = 1, . . . , Ne.

Then we assume that Vh ⊂ V is the finite dimensional space (dim(Vh) = Nu) of

vectorial piecewise-polynomial functions on every element of Th, and globally contin-

uous in Ω. Similarly, Wh ⊂ W (dim(Wh) = Np) is the space of piecewise polynomial

functions on every element of the decomposition, not necessarily continuous. To guar-

antee the stability of the mixed formulation (2.14) we also assume that the spaces Vh

and Wh satisfy the discrete inf-sup condition (2.12). Examples of inf-sup compatible

spaces are shown in Fig. 2.1.

By denoting with {ϕj}, j = 0, . . . , Nu − 1 a base of the space Vh (shape functions),

the finite element approximation uh ∈ Vh is uniquely associated with the vector U =[
U0, U1, . . . , UNu−1

]T
in the expansion

2. DISCRETIZATION OF THE UNSTEADY NAVIER-STOKES EQUATIONS 23

uh(x) =

Nu−1∑
j=0

Ujϕj(x).

In a similar way, denoting with {ψj}, j = 0, . . . , Np − 1, the shape functions of the

space Wh, we have

P =

[
P0, P1, · · · , PNp−1

]T
, ph(x) =

Np−1∑
j=0

Pjψj(x).

By taking vh = ϕi (0 ≤ i ≤ Nu − 1) and qh = ψi (0 ≤ i ≤ Np − 1) in (2.14), we

finally obtain the linear system



Nu−1∑
j=0

(
σ[m(ϕj ,ϕi)] + a(ϕj ,ϕi)

)
Uj +

Np−1∑
j=0

b∗(ψj ,ϕi)Pj = F (ϕi) i = 0, · · · , Nu − 1

Nu−1∑
j=0

b(ϕj , ψi)Uj = 0 i = 0, · · · , Np − 1.

This can be written in matrix form asσM +A BT

B 0


U

P

 =

f

0

 , (2.16)

with

- M = [mij] ∈ RNu×Nu , mij = m(ϕj ,ϕi), 0 ≤ i, j ≤ Nu − 1,

- A = [aij] ∈ RNu×Nu , aij = a(ϕj ,ϕi), 0 ≤ i, j ≤ Nu − 1,

- B = [bij] ∈ RNp×Nu , bij = b(ϕj , ψi), 0 ≤ i ≤ Np − 1, 0 ≤ j ≤ Nu − 1,

- f = [fi] ∈ RNu , [fi] = F (ϕi), 0 ≤ i ≤ Nu − 1. In the following we will denote

with A the block matrix in (2.16).

The inf-sup condition (2.12) guarantees that the pressure gradient matrix BT has

24 2.3 Space discretization of the generalized Oseen Problem

full column rank. Indeed, for each vh =
∑Nu−1

j=0 Vjϕj , ‖vh‖V = 1, there exists

qh =
∑Nu−1

j=0 Qjϕj , ‖qh‖W = 1, such that

QBV = b(vh, qh) ≥ β.

The above inequality ensures the absence of spurious modes in the numerical

approximations, that is oscillatory modes P̂ such that BT P̂ = 0. We refer to

[21, 23] for more details on how to ensure the inf-sup compatibility of the spaces

Vh, Wh, and to [45, 107] for stabilization techniques to circumvent the inf-sup

condition.

In Fig. 2.2 we show the typical sparsity pattern of the block matrix A, after finite

element discretization with Taylor-Hood elements. Note that, when the consis-

tent viscous stress tensor 2 ν ε(u) is used, all the velocity components are coupled

together (left). On the contrary, if one uses the simplification (2.9), it is possible

to decouple the velocity components inducing a block diagonal structure in the

matrix A (right). However in many applications, even if more computational ex-

pensive, the first approach is preferred because of its stabilizing effect (described

in the next section) and the more physical natural boundary conditions associ-

ated to it. Moreover, to exploit (2.9) in a fluid-structure interaction problem can

compromise the fidelity of the simulation by underestimating the stresses at the

fluid-solid interface.

Stabilization of convection dominates problem

Another important aspect to be addressed in the discretization of the Oseen Prob-

lem is that severe oscillations may arise in the numerical approximation uh of

the velocity field if the viscosity ν is small with respect to the norm of the wind

velocity ‖wh‖L∞(Ω) (convection dominated problem). To be more specific, let us

2. DISCRETIZATION OF THE UNSTEADY NAVIER-STOKES EQUATIONS 25

Figure 2.2: Sparsity pattern of Taylor-Hood finite element matrices for the Oseen Problem:
consistent viscous stress tensor (left), consistent viscous stress tensor (right).

introduce the local Péclet number defined as

Pek :=
‖wh‖L∞(Tk)hk

2 ν
, k = 1, . . . , Ne.

In the regions of the domain where Pek is small (less than 1) the viscous stresses

dominate the convective term and the finite element methods provides a satisfac-

tory approximation of the solution; while in the rest of the domain (large Pek)

numerical viscosity should be added to guarantee stability [45, 107].

Many different stabilization techniques for advection dominated problems are

known in literature: artificial diffusion, streamline upwind, SUPG (streamline

upwind Petrov Galerkin), GLS (Galerkin Least Squares) to name some (see, for

example, [45, 107]). In particular, for the Navier-Stokes equations, the grad-div

and SUPG stabilizations are the most popular, due to their strong consistency

properties. As a matter of fact (see [95]), such stabilizations can be derived from

two different viewpoints: (i) as a variational multiscale approach for pressure

26 2.4 Time discretization

subgrid models, (ii) a stabilization procedure of least squares type. In this logic,

the choice of the stabilization parameters can be informed by physical consider-

ations, such as viscous dissipation of energy. In particular, for some parameters

δ1, δ2 > 0, the grad-div and SUPG stabilizations result in adding to the variational

form in (2.14) the extra terms

sgrad−div(uh,vh) = δ1 (div uh,div vh)

and

sSUPG([uh, ph], [vh, qh]) = δ2

∑
Tk∈Th

(L(uh, ph)− f ,
hk
|wh|

Lss(vh, qh)),

where Lss = (L−L∗)/2 denotes the skew-symmetric part (with respect to the L2

inner product) of the Oseen differential operator

L(uh, ph) =

σuh − div(2 ν ε(uh)) + (wh · ∇) uh +∇ph
div uh

 .

2.4 Time discretization

For the time discretization of the semidiscrete problem (2.13), we consider the back-

ward differences formulas (BDF) method. BDF are among the most used schemes for

the discretization of parabolic problems, due to their θ-stability properties (see e.g.

[35], pages 618-619). BDF is a family of implicit multistep methods. The convergence

rate is O(∆tp), where p denotes the number of steps. Only formulas with p ≤ 6 are

zero-stable.

We summarize here the main ideas of the method in the case of constant and vari-

able step size. Let us consider the following system of ordinary differential equations

2. DISCRETIZATION OF THE UNSTEADY NAVIER-STOKES EQUATIONS 27

dy

dt
= f(t,y), t ∈ (0, T]. (2.17)

In the constant step size case, the time interval (0, T] is subdivided into N subinter-

vals with a positive time step ∆t = T/N . Then the equations (2.17) are collocated at

the time level tn+1 = (n+ 1)∆t, and the time derivative dy
dt is approximated by a linear

combination of the solution yi = y(ti) at the previous time levels. So we have

dy

dt

∣∣∣∣
t=tn+1

≈ 1

∆t

p+1∑
i=0

αiyn+1−i, (2.18)

where αi are computed from the first derivative of the polynomial interpolator of y(t)

at the p+ 1 time levels tn+1, tn, . . . , tn−p+1.

This leads, at each time level, to the iterative solution of the (possibly non-linear)

system
α0

∆t
yn+1 − f(t,yn+1) = − 1

∆t

p+1∑
i=1

αiyn+1−i.

A good initial guess y∗n+1 is therefore mandatory to guarantee (or to accelerate) the

convergence of the method.

Such initial guess can be provided by using an explicit method to compute y∗n+1

(predictor-corrector approach), or simply by time lagging (y∗n+1 = yn). A predictor-

corrector approach computes a more accurate guess, but incurs in computational and

memory allocations overhead.

Polynomial in time extrapolation of the solution y(t) combines the benefits of the

two approaches. In fact, one can use the values of the solution y(t) at the previous

p time levels tn, . . . , tn−p+1 (already stored by the BDF method) to extrapolate the

solution y(t) at time tn+1, that is

y∗n+1 =

p∑
i=1

βiyn+1−i. (2.19)

28 2.4 Time discretization

first derivative coeff. extrapolation coeff.
p α0 α1 α2 α3 α4 β1 β2 β3 β4

1 1 1 – – – 1 – – –
2 3

2 -2 1
2 – – 2 −1 – –

3 11
6 −3 3

2 -1
3 – 3 −3 1 –

4 25
12 −4 3 −4

3
1
4 4 −6 4 −1

Table 2.1: Coefficients of the zero-stable BDF formulas for p = 1, . . . , 4 in the case of
constant step-size.

In Tab. 2.1 we write the coefficients αi and βi for the zero-stable BDF formulas

up to the 4th order of accuracy (p = 1, 2, 3, 4). We also recall that BDF-1 and BDF-2

are unconditionally stable, while higher order BDF formulas are conditionally stable

(θ-stable).

For variable step size BDF formulas we rely on the so called variable coefficient

technique (see e.g. [28, 29]). Such technique extends the polynomial interpolation ap-

proach to the case of non-constant time step sizes. The time interval (0, T] is subdivided

into subintervals with a positive time step ∆tk (k ≥ 1), which may be different in size

for each time level or selected adaptively during the simulation on the basis of some a

posteriori error estimator. The time derivative and the extrapolation of the solution y

at the time level tn+1 =
∑n+1

k=1 ∆tk are approximated by

dy

dt

∣∣∣∣
t=tn+1

≈ 1

∆tn+1

p+1∑
i=0

α
(n+1)
i yn+1−i, y∗n+1 =

p∑
i=1

β
(n+1)
i yn+1−i

where the coefficients α(n+1)
i and β

(n+1)
i are recomputed at each time level by Algo-

rithm 2.1.

Stability bounds for these time-advancing methods as function of the step-size ratios

∆tj+1/∆tj are available in literature (see e.g. [28, 29]).

2. DISCRETIZATION OF THE UNSTEADY NAVIER-STOKES EQUATIONS 29

Input: p −→ order of the BDF discretization
Input: ∆t(j) = ∆tn+1−j , j = 0, . . . , p− 1 −→ current and previous time step

sizes
Output: BDF coefficients αi, βi

for j = 0, . . . , p− 1 do

ρ(j) =
∆t(0)

j∑
i=0

∆t(i)
;

end

α0 =
∑
j

ρ(j);

// β0 is not used for the extrapolation
for j = 0, . . . , p− 1 do

Ij = {i ∈ N | 0 ≤ i ≤ p− 1, i 6= j};

βj+1 =

1−

∏
i∈Ij

ρ(i)

ρ(j)


−1

;

αj = ρ(j)β(j);
end

Algorithm 2.1: Arbitrary order, variable time step BDF coefficients

30 2.4 Time discretization

2.4.1 Treatment of the non-linear convective term

Different choices are available for the treatment of the non-linear convective term in

(2.13), namely the fully-implicit, semi-implicit, and fully-explicit treatments. The fully-

implicit treatment of the convective term requires the solution at each time level of a

non-linear system of equations by using Newton or Picard fixed point iterations. This

approach does not affect the stability and accuracy of the time discretization, but the

cost for time-step might be prohibitive in real applications [107]. On the contrary, fully-

explicit treatments of the convective term, provides an approximation of the convective

term by exploiting the values of the solution computed at the previous time levels, that

is

un+1 · ∇un+1 ≈ F (un,un−1, . . . ,un+1−p).

Two common choices for F (un,un−1, . . . ,un+1−p) are given by

F1(un,un−1, . . . ,un+1−p) = u∗n+1 · ∇u∗n+1 =

(
p∑
i=1

βiun+1−i

)
· ∇
(

p∑
i=1

βiun+1−i

)
,

or

F2(un,un−1, . . . ,un+1−p) = (u · ∇u)∗n+1 =

p∑
i=1

βi (un+1−i · ∇un+1−i) .

The latter expression was proposed in [75], and it provides a more accurate estimate

of the convective term. It is worth noticing that fully-explicit methods, independently

of the particular choice of F , reduce the stability region of the time discretization, by

requiring the time step to satisfy the CFL condition

∆t ≤ C hk
‖u‖L∞(Tk)

, ∀Tk ∈ Th, (2.20)

being hk diameter of the element Tk in the triangulation Th, and C a constant (not

necessarily smaller or equal to 1). However, the conditional stability of the method

2. DISCRETIZATION OF THE UNSTEADY NAVIER-STOKES EQUATIONS 31

is balanced by the fact that the problem to be solved at each time step has a mod-

erate computational cost. Indeed the discretized Navier-Stokes equations reduce to a

symmetric generalized Stokes system of the form


α0
∆tMUn+1 +KUn+1 +BTPn+1 = fn+1 − F (un, . . . ,un+1−p)− 1

∆t

p∑
i=1

αiUn+1−i

BUn+1 = 0,

(2.21)

for which optimal preconditioners, such as the Cahouet-Chabard preconditioner [26],

are known in literature.

In order to balance between stability and cost per time-step, we consider a semi-

implicit approach, amounting to the following approximation:

un+1 · ∇un+1 ≈ u∗n+1 · ∇un+1 =

p∑
i=1

βi(un+1−i · ∇)un+1. (2.22)

For each time level tn+1, we then solve an Oseen problem (2.14) of the form


α0
∆tMUn+1 +An+1Un+1 +BTPn+1 = fn+1 − 1

∆t

p∑
i=1

αiUn+1−i

BUn+1 = 0,

(2.23)

where An+1 is the advection-diffusion matrix relative to the variational form

an+1(uh,vh) = (ε(uh), ε(vh)) +
(
u∗n+1 · ∇uh,vh

)
,

and u∗n+1 is the wind velocity.

It is worth noticing that the semi-implicit approach does not affect the global accu-

racy of the time discretization even if it introduces an upper bound on the allowable

time step size ∆t for high order in time schemes. However this bound is less restric-

tive than (2.20), and in many applications it does not represent a real limitation since

accuracy considerations require smaller ∆t.

32 2.5 A note on mass lumping for high order finite element

Efficient numerical methods for the solution of the linear system (2.23), which is of

main interest for this thesis, will be addressed in Chapter 3.

2.5 A note on mass lumping for high order finite element

Mass lumping is a technique that consists in replacing the consistent finite element mass

matrix M with a diagonal approximation M̂ . This technique has been often advocated

for the stabilization of reaction dominated problems and for efficient solution of time

dependent problems (see e.g [52, 107]). In addition, as we will emphasize in the

following chapters, mass lumping is highly desirable also for efficient implementation

of the algebraic splitting solvers and preconditioners presented in this thesis.

However, mass lumping techniques commonly used for linear or bilinear finite ele-

ments are not trivially extended to the higher order inf-sup compatible finite element

discretizations (P b1 , P2, or Q2) for the velocity field. As well known, the simple row

condensation approach

M̂ii =
∑
j

Mij , M̂ij = 0 if i 6= j,

does not lead necessarily to a non-singular (nor positive definite) matrix.

Two main different approaches have been proposed in literature to obtain positive

definite lumped mass matrices M̂ with higher order finite elements (see [132]),

1. normalize the mass matrix diagonal so that mass conservation is guaranteed, e.g.

M̂ii = Mii

∑
i,jMij∑
jMjj

M̂ij = 0 if i 6= j; (2.24)

2. enforce the orthogonality among the finite element basis functions by using a

discrete scalar product induced by ad-hoc quadrature rules.

2. DISCRETIZATION OF THE UNSTEADY NAVIER-STOKES EQUATIONS 33

Here we follow the latter approach where the error induced by the lumping can be

rigorously estimated in terms of the quadrature error by applying the Strang Lemma.

2.5.1 Mass lumping and orthogonal finite element basis

Let us consider Lagrangian finite elements. {ai} will denote the set of degrees of free-

dom of the finite element space Vh, and {φi} will indicate the corresponding shape

functions.

When assembling the finite element mass matrix, we assume the L2(Ω) scalar prod-

uct (φi, φj) to be replaced by the discrete inner product (φi, φj)h,

(φi, φj)h ≡
∑
K∈Th

∑
l

ωK,lφi(âK,l)φj(âK,l) ≈ (φi, φj), (2.25)

where ωK,l and âK,l are respectively the l-th weight and quadrature node for the ele-

ment K.

Mass lumping is achieved if the basis functions φi and φj (i 6= j) are orthogonal

for the discrete inner product (·, ·)h. The orthogonality condition for the discrete inner

product is stated in [34], as recalled by the following well known result.

Lemma 2.5.1 A sufficient condition for the orthogonality of the basis function respect

to the discrete scalar product (2.25) is that the degrees of freedom of Vh coincide with

the quadrature nodes.

Indeed, if i 6= j, the product φiφj necessarily vanishes at each quadrature point. For

linear Lagrangian finite elements this condition is promptly obtained by taking the ver-

tices of the unit simplex as quadrature nodes (trapezoidal formula). For higher order

elements, stability and accuracy issues should be taken into account while enforcing

condition of Lemma 2.5.1. In particular, the quadrature weights should be strictly pos-

itive to guarantee the spectral equivalence between the consistent (symmetric positive

34 2.5 A note on mass lumping for high order finite element

Figure 2.3: Degree of freedom of the modified second order finite element proposed in
[92].

definite) mass matrix and the lumped one [34]. Moreover, when using Pk (respectively

Qk) finite element, the quadrature rule (2.25) should have degree of exactness at least

2k (respectively 2k for each space coordinate) to preserve the uniform Vh ellipticity and

the accuracy of the space discretization [32, 50].

For example, in the case of P2 finite elements no quadrature simultaneously satisfies

both the orthogonality condition of Lemma 2.5.1 and the positivity constraint on the

quadrature weights. In [92], a modified second order finite element has been proposed

for the solution of the wave equations (see Fig. 2.3). The finite element and the associ-

ated quadrature rule satisfy both the orthogonality condition and stability constraints.

Moreover, it does not affect the accuracy of the computation. However the high con-

nectivity and number of degree of freedom of the element (23 in total, one per vertex,

one per edge, three for face, and one barycentric) entail a huge cost both in terms of

computational effort and memory allocation.

A possible trade-off is to apply a low order quadrature formula fulfilling Lemma

2.5.1 only to the mass matrix. Even though this may affect the order of the convergence

of the discretization as stated by the Strang Lemma, the Vh ellipticity and stability of

the discretization are preserved as long as the other terms of the problem are exactly

integrated.

2. DISCRETIZATION OF THE UNSTEADY NAVIER-STOKES EQUATIONS 35

We investigate the accuracy of this approach for inf-sup compatible finite elements

in the next subsection.

2.5.2 Accuracy of mass-lumped finite elements

Let us recall a well known result in the numerical integration literature (see e.g. [46],

Lemma 8.4).

Lemma 2.5.2 Assume that {Th}h>0 is a shape regular family of affine mesh which ap-

proximates a non empty, Lipschitz, compact subset Ω of Rd. We consider a quadrature

rule with degree of exactness q > d
2 − 1 (which is trivially true for d = 2, 3). Let {âK,l}

and {ωK,l} be the nodes and the weights of the quadrature formula on each element

K. Let f be a L1 function in Ω such that it belongs to Hq+1(K) for each element K.

Then, there exists a constant c independent of h, such that

∣∣∣∣∣∣
∫

Ω
fdΩ−

∑
K∈Th

∑
l

ωK,lf(âK,l)

∣∣∣∣∣∣ ≤ chq+1

∑
K∈Th

|f |2Hq+1(K)

 1
2

. (2.26)

In the sequel, we set r ≡ q + 1. Let V = H1(Ω) and Vh a suitable finite dimension

subspace of V , with ‖vh‖Vh = ‖vh‖V for every vh ∈ Vh. In the particular case of geom-

etry discretization with tetrahedral meshes, we choose Vh to be the space of piecewise

polynomial functions added by a bubble function vanishing on the boundaries. More

precisely, we set for k′ > k

Vh =
{
vh ∈ H1(Ω) | ∀K ∈ Th vh|K ∈ Pk + Bk′

}
,

where Bk′ is the set of bubble polynomial functions of degree k′.

Consider the generic problem: for a given f regular enough, find u ∈ V solution to

a(u, v) ≡ (u, v) + b(u, v) = (f, v) ∀v ∈ V (2.27)

36 2.5 A note on mass lumping for high order finite element

where b(·, ·) is a coercive bilinear form. We assume to integrate exactly the terms

b(u, v) and (f, v) with proper Gaussian quadratures. We replace the L2 product with a

quadrature formula (·, ·)h fulfilling the assumptions of Lemma 2.5.2. This implies that

the bilinear form a(·, ·) is uniformly coercive in Vh × Vh and the problem: find uh ∈ Vh
s.t.

(uh, vh)h + b(uh, vh) = (f, vh) ∀vh ∈ Vh (2.28)

is well posed.

By a direct application of the Strang Lemma (see e.g. [107]), we have the following

Proposition. Set m = max(k′, r).

Proposition 2.5.3 If u ∈ Hm+1(Ω), then the solution uh of (2.28) fulfills the error

estimate

‖u− uh‖V = O(hs),

being s = min(k, r + 1−min(r, k′)).

Proof

Let us consider the following error term coming from the application of the Strang

Lemma.

Eq = inf
vh∈Vh

sup
wh∈Vh

|a(vh, wh)− ah(vh, wh)|
‖wh‖V

.

In particular we select vh = ΠVhu the polynomial of order k′ projection of u on the Vh

space. We have

Eq ≤ sup
wh∈Vh

|(ΠVhu,wh)h − (ΠVhu,wh)|
‖wh‖V

.

By exploiting the quadrature error formula given in Lemma 2.5.2 and the Cauchy-

Schwarz inequality, we have

Eq ≤ Chr‖ΠVhu‖Hr

∑
K∈Th

‖wh‖Hr(K)

‖wh‖V
.

2. DISCRETIZATION OF THE UNSTEADY NAVIER-STOKES EQUATIONS 37

Since wk is a polynomial of degree k′, we have that ‖wh‖Hr(K) = ‖wh‖Hmin(r,k′)(K).

Moreover, by the inverse inequality we have

∑
K∈Th

‖wh‖Hmin r,k′ (K)

‖wh‖V
≤ C2h

−(min(r,k′)−1)
∑
K∈Th

‖wh‖H1(K)

‖wh‖V
≤ C2h

−(min r,k′−1),

where C2 is independent of h. We conclude therefore that the error induced by the

quadrature is O(hr+1−min(r,k′)), so that the thesis follows from the Strang Lemma.

�

From the previous result we conclude that the quadrature error is not affecting the

finite element accuracy r for r −min(r, k′) ≥ k − 1.

In Tab. 2.3, we particularize the theoretical convergence estimated rates in Propo-

sition 2.5.3 to the case of P b1 (k = 2, k′ = 4, r = 3) and P b2 (k = 2, k′ = 4, r = 4) finite

element discretizations. Notice that with similar arguments we can prove for hexahe-

dral elements Qk that the accuracy is in this case min(k, r + 1 −min(r, k)). Numerical

results in Fig. 2.4 confirm the theoretical estimates in Tab. 2.3, in the case of a simple

diffusion reaction problem. With elements P b1 and the 5 nodes formula of Tab. 2.2,

the linear accuracy is preserved, while P b2 elements with the 11 nodes formula have

only order 1. For Hexahedral elements, Q2 with the quadrature formula with 27 nodes

reported in Tab. 2.2 preserve second order accuracy (the quadrature error being of

order r + 1−min(r, k) = 3).

38 2.5 A note on mass lumping for high order finite element

number
of points

degree
of exactness z nodes and weights

5 2
(1, 0, 0, 0) [4] mes(K) 1

20

(1
4 ,

1
4 ,

1
4 ,

1
4) [1] mes(K) 4

5

11 3

(1, 0, 0, 0) [4] mes(K) 1
60

(1
2 ,

1
2 , 0, 0) [6] mes(K) 1

15

(1
4 ,

1
4 ,

1
4 ,

1
4) [1] mes(K) 8

15

27 3

vertexes [8] mes(K)
1

63

edges mid points [12] mes(K)
4

63

faces barycenters [6] mes(K)
42

63

element barycenter [1] mes(K)
43

63

Table 2.2: Properties of the quadrature rules used to perform mass lumping with P b1 and
P b2 finite elements on a tetrahedron (rows 1 and 2) and with Q2 elements on a hexahedron
(row 3). The quadrature nodes are given in barycentric coordinates (for quadrature rules
on a tetrahedron), and the number of possible permutations are inside the square brackets
([·]). The weights ω include the measure of the element K (mes(K)).

FE Space Quadrature rule inf
vh∈Vh

‖u− vh‖Vh
sup
wh∈Vh

|a(vh, wh)− ah(vh, wh)|
‖wh‖Vh

P b1 5v in Tab. 2.2 O(h) O(h)
P b2 11v in Tab. 2.2 O(h2) O(h)
Q2 27v in Tab. 2.2 O(h2) O(h3)

Table 2.3: Comparison between the best subspace approximation error and the error in-
troduced by the mass lumping. Proposition 2.5.3 shows that the convergence rate of finite
elements without mass lumping is not affected for P b1 and Q2 elements, while it is reduced
for P b2 elements.

2. DISCRETIZATION OF THE UNSTEADY NAVIER-STOKES EQUATIONS 39

Figure 2.4: Relative error of the numerical solution of a diffusion reaction problem in
the H1(Ω) (blue circles) and L2(Ω) (red triangles) norm as a function of the mesh size
h. For P b1 elements (on the left) the subspace approximation errors dominates the mass
lumping error and we observe optimal rate of convergence (O(h) in the H1(Ω) norm and
O(h2) in the L2(Ω) norm). For P b2 elements (on the right) the mass lumping error leads to
suboptimal rate of convergence (O(h) in the H1(Ω) norm and O(h2) in the L2(Ω) norm).

40 2.5 A note on mass lumping for high order finite element

3 Algebraic splittings and block pre-

conditioners

In this Chapter we address the numerical solution of the non-symmetric saddle-point

problem (2.23), arising after space and time discretization and linearization of the

unsteady Navier-Stokes equations. Two different, but related, approaches are described

in this chapter: (i) fractional steps methods that decouple the computation of velocity

and pressure, (ii) block preconditioners for the coupled velocity and pressure saddle

point problem. We first provide a general review of the algebraic splitting methods in

the framework of inexact LU factorizations of the saddle-point matrix in (2.23) (Section

3.1), then we focus on the construction and analysis of a class of pressure-corrected

algebraic splittings that guarantee arbitrary high order accuracy in time (Section 3.2,

3.3 and 3.4). Such schemes, called in the following High Order Yosida (HOY), fulfil

exactly the discrete momentum equation while introduce a consistency error in the

conservation of mass that decays polynomially with respect to the time-step. However,

such schemes are only conditionally stable, possibly reducing the absolute stability

region of the BDF formulas. We conclude the chapter by investigating the use of such

algebraic splittings as preconditioners of the saddle-point problem and comparing them

with state of the art preconditioners, such as the Cahouet-Chabard and Least Squares

Commutator preconditioners (Section 3.5).

42 3.1 Velocity-pressure splittings methods

3.1 Velocity-pressure splittings methods

Discretization (in time and space) and the semi-implicit linearization (2.22) of the

unsteady Navier-Stokes (2.10) yield to the following algebraic system to be solved at

time level n+ 1:

Ayn+1 = bn+1, n = 0, . . . , N − 1, (3.1)

where

A =

C BT

B 0

 , yn+1 =

Un+1

Pn+1

 bn+1 =

f̂n+1

0

 . (3.2)

Here the momentum matrix C ∈ RNu×Nu has the form

C =
α0

∆t
M +A, A = K +N, (3.3)

where M is the velocity mass matrix, K is the discretization of the viscous terms, N

stems from the Picard-linearization and discretization of the convective term. If N = 0,

then matrix A ≡ K is symmetric positive definite, and (3.1) reduces to the solution of

a generalized Stokes problem.

The right hand side

f̂n+1 = fn+1 +
M

∆t

p∑
i=1

αiUn+1−i

collects the contributions of fluid body forces (gravity, for example), boundary condi-

tions, and discretization of the time derivative. Here p denotes the order of the BDF

formula used for the time discretization.

System (3.1) typically features large dimensions and bad conditioning properties.

Some popular strategies are based in subdividing the computation of velocity and pres-

sure into successive solution of smaller problems. Such strategies consist in using

fractional-step methods of differential or algebraic type. In the former, the splitting

3. ALGEBRAIC SPLITTINGS AND BLOCK PRECONDITIONERS 43

is based either on physical considerations (see e.g. [58]), or on the Helmholtz decom-

position of any vector field into a solenoidal and an irrotational part. These methods

are called projection methods, and the most famous one is the Chorin-Temam scheme

[30, 116]. The algorithm consists of two stages in which the computation of velocity

and pressure are split at the level of the differential equation. In the first stage, an

intermediate velocity û that does not satisfy the incompressibility constraint is com-

puted at each time step. In the second, the pressure is used to project û onto a space

of divergence-free velocity field to get the next update of velocity u and pressure p (see

e.g. [107], [103]). More specifically, the Chorin-Temam scheme reads


α0ûn+1

∆t − ν∆un+1 + un+1∇un+1 = f̂n+1

∆pn+1 = 1
∆tdiv ûn+1

un+1 = ûn+1 −∆t ∇pn+1.

(3.4)

We remark that the accuracy of the projection depends strongly on the boundary con-

ditions chosen for the pressure differential problem (3.4)2. In particular, if Dirichlet

boundary conditions are prescribed on the whole boundary ∂Ω for the velocity un-

known, as it was assumed in the original derivation of the scheme, Neumann boundary

conditions should be imposed for (3.4)2. However, if different sets of velocity boundary

conditions are considered, it is not evident which kind of conditions should be imposed

for the pressure. The main drawback of the Chorin-Temam scheme is therefore that pres-

sure boundary conditions might not be in accordance with the fluid-dynamics, leading

to inaccurate solutions at the boundary of the domain.

To overcome this problem, algebraic splittings methods decouple the velocity and

pressure computation at the linear system level (3.1) instead that at the differential

level. Following this approach, boundary conditions are directly incorporated in the

discretized operator and no additional boundary conditions have to be selected. Such

algebraic decomposition (or splitting) could be performed either by a sum of simpler

44 3.1 Velocity-pressure splittings methods

matrices (see e.g. [86, 131]) or by a product of block-triangular matrices. In this

prospective, in [100] the Chorin-Temam method is revisited as an approximate (or

inexact) block LU factorization of the matrix A. Various works followed [100] in which

new families of (algebraic) fractional step methods, with good stability and accuracy

properties but not necessarily provided with a differential counterpart, were proposed

and investigated (for e.g. [36, 75, 105, 106, 125]).

We now provide a unified derivation of those methods. Let us consider the block

LU factorization

A =

C BT

B 0

 =

C 0

B Σ


I C−1BT

0 I

 , (3.5)

Here Σ = −BC−1BT denotes the pressure Schur complement matrix that needs to be

solved in order to compute the pressure unknown. While for the Steady Stokes problem

Σ is spectrally equivalent to the pressure mass matrix [45], in the unsteady Navier-

Stokes problem Σ is badly conditioned, the condition number increasing when the

time step is decreased (see e.g. [22]). Also, the presence of conjugate pairs of complex

eigenvalues in the spectrum of Σ due to the non-symmetry of the convective term

represents an additional challenge for the iterative solution of linear system involving

Σ. Moreover, Σ is not explicitly computable, due to the presence of the C−1 factor as

well as to the fill-in associated with the matrix products.

Since the computational cost of solving the pressure Schur complement Σ can be

very high, an exact block LU factorization may not be a viable approach for problems of

practical interest. To avoid this computational bottleneck, practical splitting schemes

therefore consider an inexact factorization

Â =

C 0

B −BFBT


I GBT

0 I

 , (3.6)

being F and G suitable approximations of C−1.

3. ALGEBRAIC SPLITTINGS AND BLOCK PRECONDITIONERS 45

The solution of the problem at each time step then consists of the following linear

systems

L− step :

 CÛ = f1

−BFBT P̂ = f2 −BÛ
, U− step :

 P = P̂

U = Û−GBTP.
(3.7)

Different methods can be derived by an opportune choice of the matrices F and

G. We refer to [106] for additional details and for the relationships between inexact

factorization and differential splittings. Here we limit to observe that the splitting error

is given by

A− Â =

C BT

B 0

−
C CGBT

B −BFBT +BGBT

 =

0 (I − CG)BT

0 B(G− F)BT

 . (3.8)

In [125] it is suggested that possible choices for F and G can be obtained by trun-

cating the Neumann expansion of the matrix C. Letting I be the Nu × Nu identity

matrix, we formally write

C−1 =
∆t

α0

(
I +

α0

∆t
M−1A

)−1
M−1 =

∆t

α0

+∞∑
k=0

(−∆T

α0
M−1A)k−1M−1. (3.9)

If we denote with H the first order truncation of the Neumann expansion,

H =
∆t

α0
M−1, (3.10)

then the algebraic Chorin-Temam scheme (ACT) in [100] is obtained by selecting F =

G = H in (3.6), while the Yosida scheme (YOS) in [105, 106] is obtained by taking F =

H and G = C−1. The two schemes feature the same L-step in (3.7) and approximate

46 3.1 Velocity-pressure splittings methods

the pressure Schur complement Σ with the discrete laplacian matrix

S = −BHBT . (3.11)

The YOS method differs from ACT basically by fulfilling the discrete momentum

equation, while the ACT method guarantees discrete conservation of mass (as can be

immediately observed by direct substitution of the matrices F and G defined above

in (3.8)). For this reason, the YOS method is usually preferred in fluid-structure-

interaction problems, where an accurate approximation of the fluid stresses at the

interface with the solid is mandatory.

As a matter of fact, such splittings achieve a consistent reduction in the computa-

tional effort without affecting the stability of the algorithm. Moreover, if a first order

time discretization scheme is adopted, the splitting error does not reduce the overall

accuracy (see [105]).

The crucial point of extending the above result to more accurate in time discretiza-

tions was addressed for the first time in [66] and [125], using different but comple-

mentary approaches. While in [66] the authors advocate the use incremental schemes,

based on numerical extrapolation of the pressure unknown, to increase the order of the

splitting (cfr. Section 3.1.1), in [125] the author proposes unconditionally stable high

order splitting by accounting for more terms in the Neumann expansion of C−1. More

specifically, instead of using the first order truncation H in the ACT or YOS schemes,

the author defines the matrices Hj =
∑j

k=0(−∆T
α0
M−1A)kM−1, being j+1 the number

of terms retained in the expansion (3.9). Clearly H0 ≡ H.

The following results in [125] generalize the stability analysis of the ACT and HOY

schemes applied to the generalized Stokes problem (A ≡ K) to higher order splittings

in which Hj (j ≥ 0) is used instead of H.

Proposition 3.1.1 If the momentum matrix C is symmetric positive definite (s.p.d.),

3. ALGEBRAIC SPLITTINGS AND BLOCK PRECONDITIONERS 47

then the matrices Sj = −BHjB
T are unconditionally s.p.d. for j even (i.e. s.p.d. for

all ∆t), and conditionally s.p.d. for j odd (i.e. s.p.d. for ∆t sufficiently small).

Proposition 3.1.2 Suppose that the momentum matrix C is symmetric positive defi-

nite, and consider the inexact block LU factorization (3.6) built according to the ACT

or YOS strategies (i.e. F = G = Hj and F = Hj , G = C−1 respectively). Then the

splitting scheme induced by the factorization is unconditionally stable (in time) if j is

even.

The computational bottleneck in the high order schemes so constructed is the so-

lution of the pressure approximated Schur complements Sj . Indeed for problems of

practical interest, the numerical solution of linear systems involving the high order ap-

proximated Schur complements Sj is not a viable approach. On the one hand Sj may

not be explicitly available due to memory constraint (fill-in in the matrix-matrix mul-

tiplications), and on the other hand the construction of efficient preconditioners for

matrix-free Krylov methods involving Sj may be cumbersome.

Even if the practical relevance of these schemes is limited, they represent an im-

portant step towards the construction of the more computationally efficient pressure

corrected schemes [54, 55, 56, 112].

Pressure corrected schemes are based on the observation that at each time-step, the

final pressure P of the inexact splitting scheme in (3.7) coincides with the intermedi-

ate pressure P̂ and it therefore induces a difference in the treatment of velocity and

pressure deteriorating the accuracy of the scheme.

In [112] the authors consider the following modified inexact factorization of A,

Â =

C 0

B −BFBT


I GBTZ

0 Q

 =

C CGBTZ

B B
(
GBTR− FBTQ

)
 , (3.12)

where the matrices Z and Q are square Np × Np matrices chosen to reduce in some

48 3.1 Velocity-pressure splittings methods

sense the splitting error A− Â.

Two new splittings (ACT-PC and YOS-PC) are proposed in [112] extending, respec-

tively, the ACT and YOS approaches to the modified factorization (3.12).

More specifically, in the ACT-PC scheme (F = G = H) the discrete mass conserva-

tion is enforced by selecting R = Q, while in the YOS-PC scheme (F = H, G = C−1)

the discrete momentum equation is fulfilled exactly with the choice R = INp (see Algo-

rithm 3.1 and 3.2 for their precise definition).

In fact, a simple computation gives

A− ÂACT−PC =

0 BT − CHBTQ

0 0


and

A− ÂYOS−PC =

0 0

0 SQ− Σ

 .
It is worth to note that the correction matrix Q proposed in [112] is the same for

both the ACT-PC and YOS-PC schemes, and in particular we have

Q = (BHCHBT)−1S.

The application of the pressure correction step QP = P̂ therefore entails a linear solve

with the scaled discrete laplacian matrix S and a few other matrix-vector multiplica-

tions.

Let us summarize here the main results concerning the stability and convergence of

those methods, referring to [112] for the detailed analysis.

Proposition 3.1.3 Consider the Stokes problem discretized with BDF formulas. Then

1. the ACT-PC method is unconditionally stable and it introduces a first order in time

3. ALGEBRAIC SPLITTINGS AND BLOCK PRECONDITIONERS 49

splitting error, that is ‖A− ÂACT−PC‖ = O(∆t);

2. the YOS-PC method is conditionally stable (i.e. for ∆t small enough) and it

introduces a third order in time splitting error, that is ‖A− ÂYOS−PC‖ = O(∆t3).

It is worth to notice that on the one hand pressure correction does not improve the

order of accuracy of the ACT schemes, even if the magnitude of the error is reduced.

This is mostly due by the fact that ACT-PC still uses the intermediate pressure in the

computation of the end-of-step velocity (see Algorithm 3.1). On the other hand, the

YOS-PC method trades the unconditional stability of the YOS scheme for a higher order

of accuracy. In the next section we will present a possible approach to obtain arbitrary

order pressure corrections for the Yosida scheme.

Input: b1, b2 the right hand sides for the momentum and continuity equation,
respectively

Output: U, P the end of step velocity and pressure

CÛ = b1 ;
SP̂ = BÛ− b2;
QP = P̂ ;
U = Û−HBT P̂ ;

Algorithm 3.1: Pressure corrected algebraic Chorin-Temam (ACT-PC) splitting
method

Input: b1, b2 the right hand sides for the momentum and continuity equation,
respectively

Output: U, P the end of step velocity and pressure

CÛ = b1 ;
SP̂ = BÛ− b2 ;
QP = P̂ ;
CU = b1 −BTP ;

Algorithm 3.2: Pressure corrected Yosida (YOS-PC) splitting method

50 3.1 Velocity-pressure splittings methods

3.1.1 Incremental formulation of splitting methods

A popular variant to the splitting methods presented above (both at the differential and

algebraic level) often advocated is the so-called incremental formulation (see [62, 66,

102]). Let us write at each time step

Pn = δPn + P ∗n

where P ∗n is an extrapolation of Pn based on the previous time steps, such that

Pn − P ∗n = O(∆ts),N 3 s ≥ 1. (3.13)

More explicitly, we have

P ∗n =
s∑
i=1

βiPn−i,

where the coefficients βi are given in Tab. 2.1 (for the constant time step case) or

recomputed at each time level by Algorithm 2.1 (for the variable time step case). For

s = 0 (non incremental case) we keep the same notation for simplicity, with the as-

sumption that P ∗n = 0. Then, we write

 C BT

B O


 Un

Pn

 =

 f̃n

0

 ⇒
 C BT

B O


 Un

δPn

 =

 f̃n −BTP ∗n

0

 . (3.14)

Previous works on splitting methods for the solution of Navier-Stokes equations argue

that solving for incremental pressure has better convergence properties than those of

the non-incremental one, and that it does not affect the overall stability of the method.

In particular, in [63] the authors note that the incremental method gives stable ve-

locity and pressure fields under minimal hypotheses, provided that the finite element

discretization fulfils the inf-sup condition. In [112], the authors provide numerical

evidence of good stability and accuracy properties of the ACT-PC splitting (Algorithm

3. ALGEBRAIC SPLITTINGS AND BLOCK PRECONDITIONERS 51

3.1 in Section 3.1) when coupled with a second order in time incremental approach.

Finally, in [66], the authors suggest the incremental method as a valid and computa-

tionally convenient alternative to using high order matrix factorizations. However, they

notice that incremental methods may accumulate round-off errors, in the case of long

time simulations. For this reason they provide an alternative formulation in which they

correct the end of step pressure to take into account the accumulation errors.

In Chapter 4 we will provide a detailed analysis of the convergence properties of

the incremental pressure corrected algebraic splittings, and we will propose a time

adaptive procedure based on these methods.

3.2 The high order Yosida splitting

A general framework for computing arbitrary order pressure correction for the Yosida

scheme was proposed in [56] and analyzed in [55, 126].

As noted above, when we replace A with Â, we introduce a splitting error that is

however confined to the continuity equation, as it is highlighted by the explicit form of

Â,

Â =

 C O

B S


 INu C−1BT

O Q

 =

 C BT

B SQ− Σ

 . (3.15)

An exact factorization would be yielded by the choice Qex = S−1Σ. This choice is

however unfeasible, since it still requires the inversion of the Schur complement Σ.

The high order Yosida schemes (HOY in the following) stem from the choice Q = Qq

where q is a parameter related to the time accuracy of the method, such that

‖Σ− SQq‖ = O(∆tf(q)) (3.16)

where f(q) is an appropriate (linear) function of q.

More specifically, two approaches are possible to build the matrices Qq:

52 3.2 The high order Yosida splitting

1. to construct a sequence of matrices {Qq}q to approximate the exact correction

matrix Qex by exploiting the Neumann expansion of Σ;

2. to consider the sequence of their inverses {Q−1
q }q to directly approximate Q−1

ex by

exploiting the Neumann expansion of Σ−1.

The second approach is to be preferred since it leads to more accurate and efficient

algorithms [55].

By recalling the definition of the momentum matrix C = H−1 + A in (3.3), we

formally write the Neumann expansion of the pressure Schur complement as follows:

Σ = −BC−1BT = −B(I +HA)−1HBT = −
∑
k≥0

B(−HA)kHBT . (3.17)

We remark that such expansion is convergent only if the spectral radius ρ(HA) is less

than 1, implying the condition ν∆t = O(h2). However, such condition is not strictly

required for the stability of the pressure corrected splitting schemes [55].

By setting

Dk = B(−HA)kHBT = O(∆tk+1), k ≥ 0 (3.18)

we have Σ = −∑k≥0Dk.

Next, noticing that S = −BHBT = −D0, we write

Σ−1 =

−∑
k≥0

Dk

−1

=

S −∑
k≥1

Dk

−1

=

I − S−1
∑
k≥1

Dk

−1

S−1. (3.19)

Now, let us denote R = S−1
∑

k≥1Dk, for which ||R|| = O(∆t). For ∆t small enough

such that the spectral radius ρ(R) < 1, we have

Σ−1 = (I −R)S−1 =
∑
k≥0

RkS−1. (3.20)

3. ALGEBRAIC SPLITTINGS AND BLOCK PRECONDITIONERS 53

Consequently, we have Q−1
ex = Σ−1S =

∑q
k=0R

k +
∑

k≥q+1R
k = I +

∑q
k=1R

k +

O(∆tq+1).

A natural approximation of Q−1
ex arises by neglecting the higher order term (h.o.t.)

on the right hand side and taking Q−1
ex ≈

∑q
k=0R

k. However, as pointed out in [126],

this is still unfeasible since R and its powers are series. It is also non-optimal for

computational purposes, since Rk even for k ≤ q still retains some terms of order

higher than q. In fact, terms of Rk can be re-arranged on the basis of their dependence

on ∆t [126], as we explicitly illustrate (for the case q = 3) in the table below.

O(∆t) O(∆t2) O(∆t3) h.o.t.

R = S−1D1 + S−1D2 + S−1D3 + O(∆t4)

R2 = (S−1D1)2 + S−1D1S
−1D2 + S−1D2S

−1D1 + O(∆t4)

R3 = (S−1D1)3 + O(∆t4)

R̂1 R̂2 R̂3

Then, following the columnwise notation introduced in the table and setting R̂0 =

R0 = I, we have
∑q

k=0 R̂k =
∑q

k=0R
k + h.o.t.

A viable approximation of Qex is given therefore by

Q−1
ex ≈ Q−1

q =

q∑
k=0

R̂k. (3.21)

Denoting by zk the vectors such that R̂kzk = P̂ , we have P =
∑q

k=0 zk. Application

of the sequence of matrices R̂k can be rearranged in a hierarchical way. Indeed, let us

54 3.3 Algorithmic form of High Order Yosida schemes

consider, as before, the case q = 3. Set z0 = P̂ , then

z1 = S−1D1P̂ ⇒ Sz1 = D1z0

z2 =
(
S−1D2 + (S−1D1)2

)
P̂ ⇒ Sz2 = D2z0 +D1z1

z3 =
(
S−1D3 + S−1D2S

−1D1 + S−1D1S
−1D2 + (S−1D1)3

)
P̂ ⇒

Sz3 = D3z0 +D2z1 +D1z2.

(3.22)

More accuracy is obtained by solving more systems which, however, all entail the same

matrix S. The efficiency of the method then strongly relies upon the easiness of solu-

tion for the matrix S. In order to preserve sparsity of S we resort to the mass lumping

techniques introduced in Section 2.5 to approximate the velocity mass matrix M . For

some finite elements (e.g. P1b on tetrahedra and Q2 on hexahedra) we proved, in

fact, that mass lumping can be obtained by using apposite inexact quadrature rules

for the mass matrix assembly, without jeopardizing the overall accuracy of the spacial

discretization. Whenever possible, for small scale problems, direct methods for solving

S should then be recommended (for instance in 2D, by exploiting a QR factorization).

For large scale methods, recycling Krylov subspace solvers and algebraic multigrid pre-

conditioners can be used for fast and efficient solution of linear systems involving S.

More details are provided in Chapter 5.

3.3 Algorithmic form of High Order Yosida schemes

The practical implementation of the high order pressure corrected Yosida method re-

quires well designed data structures in order to efficiently compute the pressure correc-

tions for a generic order q. We address here some possible options that allow a compact

implementation of the method. Let us introduce the following structures. Let Z be the

matrix with Np rows and q + 1 columns, such that the generic column i (where i starts

3. ALGEBRAIC SPLITTINGS AND BLOCK PRECONDITIONERS 55

from 0 as in C/C++ syntax) corresponds to the vector zi,

Z = [z0, z1, . . . ,]

Let moreover Z3 be the three index array (where the first index ranges from 0 to Nu−1,

the second and third ones from 0 to q − 1) such that

Z3(0 : Nu − 1, 0, i) = −HAHBT zi,

Z3(0 : Nu − 1, j, i) = −HA× Z3(0 : Nu − 1, j − 1, i), j ≥ 1

Finally, we introduce the three index array BZ3 such that BZ3 = B × Z3. A visual

representation of BZ3 is given by the following q × q matrix,

BZ3 =



D1z0 D2z0 D3z0 . . . Dqz0

D1z1 D2z1 D3z1 . . . Dqz1

D1z2 D2z2 D3z2 . . . Dqz2

.

D1zq−1 D2zq−1 D3zq−1 . . . Dqzq−1


, (3.23)

where each entry is a vector (associated with the first index of the array).

With this data structure, the implementation of the pressure correction steps is

given by Algorithm 3.3.

3.4 Analysis of the pressure corrected splittings

In this section we will recall the main results concerning the consistency, stability and

convergence of the pressure corrected schemes. We will consider here mostly the non

incremental formulation of these schemes, referring to Chapter 4 and [112, 128] for

the incremental one. The analysis of the non incremental formulation has been carried

56 3.4 Analysis of the pressure corrected splittings

Input: u intermediate (non-divergence free) velocity
Output: pressure corrected computed pressure

Z[0] = solve(S, B ∗ u);
for i = 0; i < q; + + i do

Z3[0, i] = (−H ∗ A) ∗ H ∗ BT ∗ Z[i];
BZ3[0, i] = B ∗ Z3[0, i];
rhs = BZ3[0, i];
for j = 1; j < i + 1; + + j do

Z3[j, i− j] = (−H ∗ A) ∗ ZZ[j− 1, i− j];
BZ3[j, i− j] = B ∗ Z3[j, i− j];
rhs + = BZ3[j, i− j];

end
Z[i + 1] = solve(S, rhs);

end
pressure = sum(Z);

Algorithm 3.3: Implementation of the arbitrary order pressure correction algo-
rithm. solve(Matrix,RightHandSide) gives the solution x of the system
Matrix*x=RightHandSide.

out in [55] limited to the case q = 0, 1, 2, and extended to the case of arbitrary pressure

corrections q in [126].

3.4.1 Non-singularity and consistency

The complete consistency analysis for the arbitrary order pressure correction schemes

was given in [126] and it is summarized in the proposition below.

Proposition 3.4.1 For any q ∈ N

1. the matrices Qq are non-singular for ∆t small enough;

2. the consistency error is such that

‖Σ− SQq‖ = O
(
∆tq+2

)
, ∀q ≥ 0. (3.24)

For the sake of completeness, let us provide a sketch of the prove of the proposition

above. Since Qq =
(∑q

k=0 R̂k

)−1
, a sufficient condition for the non-singularity of

3. ALGEBRAIC SPLITTINGS AND BLOCK PRECONDITIONERS 57

Qq is that the eigenvalues of
∑q

k=0 R̂k are bounded away from 0 and ∞. By letting

rk = ‖R̂k‖ = O(∆tk) for k > 0, a straightforward computation gives

ρ

(
q∑

k=1

R̂k

)
≤
∥∥∥∥∥

q∑
k=1

R̂k

∥∥∥∥∥ ≤
q∑

k=1

∥∥∥R̂k∥∥∥ =
r1 − rq+1

1− r1
= O(∆t).

Recalling that R̂0 = I, the eigenvalues of
∑q

k=0 R̂k are in the form

λi = 1 + ci∆t,

and consequently Qq is not singular for ∆t small enough.

For the second part, proceeding as in [55], let us introduce the matrices Q̂q =

S−1
(
−∑p

k=0Dk

)
. Such matrices provide a different approximation of Qex = S−1Σ

directly based on the Neumann expansion of Σ. By recalling that ‖Dk‖ = O(∆tk+1),

we have

‖SQ̂q − Σ‖ =

∥∥∥∥∥∥
∑
k≥q+1

Dk

∥∥∥∥∥∥ ≤
∑
k≥q+1

‖Dk‖ = O(∆tp+2). (3.25)

It is also possible to prove (see [126]) that

‖SQq − SQ̂q‖ = ‖SQq(I −Q−1
q Q̂q)‖ = O(∆tp+2). (3.26)

The thesis then follows from (3.25) and (3.26) by triangular inequality.

The consistency analysis is confirmed by the numerical results on a unit square (2D

lid-driven cavity) reported in Fig. 3.1 1.
1 All the 2-D results presented in this section were obtained by the thesis advisor using the Fortran

finite element library LIFE-II and presented for the first time at the 5th European Congress on Computa-
tional Methods in Applied Science and Engineering ECCOMAS 2008, Venice, Italy

58 3.4 Analysis of the pressure corrected splittings

Figure 3.1: Consistency error ‖Σ−SQq‖∞ induced by the splitting, for different values of
q. Matrices corresponds to a P1-iso-P2, P1 finite element discretization on a unit square.

3.4.2 Stability analysis

Before analyzing the stability properties of the HOY schemes, let us introduce some

definitions and basic results.

Consider the homogeneous time dependent Stokes problem

C BT

B 0


Un+1

Pn+1

 =

M∆t∑p
i=1 αiUn+1−i

0

 , (3.27)

where the matrix C = α0
∆tM +K is symmetric positive definite.

Then we say that an algebraic splitting method

Â

Un+1

Pn+1

 =

M∆t∑p
i=1 αiUn+1−i

0



3. ALGEBRAIC SPLITTINGS AND BLOCK PRECONDITIONERS 59

for the solution of (3.27) is conditionally stable if

∃∆tmax such that ‖Un+1‖M ≤ ‖Un‖M , ∀∆t < ∆tmax, (3.28)

where ‖U∗‖M = UT
∗MU∗ denotes the discrete L2 norm of the velocity unknown. If

condition (3.28) holds for every ∆t, then we say that the splitting is unconditionally

stable.

The following result relates the stability of Yosida-like (i.e. that fulfil exactly the

discrete momentum equation) algebraic splitting methods to the violation of the con-

servation of mass. In particular, if a splitting dissipates mass then it is unconditionally

stable, and it is conditionally stable otherwise.

Proposition 3.4.2 Consider a consistent, Yosida-like inexact factorization

Â =

C BT

B −E(∆t)

 , lim
∆t→0

E(∆t) = 0.

Then the algebraic splitting induced by Â is

1. unconditionally stable if the error matrix E is symmetric positive semi-definite;

2. conditionally stable if the error matrix E is not symmetric positive semi-definite.

Proof For simplicity, we will consider the case of a BDF-1 time discretization. The

extension to higher order BDF formulas is rather technical but standard. Application of

the algebraic splitting induced by Â to the time-dependent Stokes problem resorts to

solve at each time step the following system:

 1
∆tM +K BT

−B E


Un+1

Pn+1

 =

 1
∆tMUn

0

 .

60 3.4 Analysis of the pressure corrected splittings

Stability is proved by multiplying both sides by [UT
n+1, P

T
n+1] and applying the Young

inequality

UT
n+1MUn ≤

1

2

(
UT
n+1MUn+1 + UT

nMUn

)
.

Indeed, we have

1

2∆t
UT
n+1MUn+1 + UT

n+1KUn+1 + P Tn+1EPn+1 ≤
1

2∆t
UT
nMUn. (3.29)

If the error matrix E is symmetric positive semidefinite, then ‖Un+1‖2M ≤ ‖Un‖2M and

unconditional stability is obtained. Otherwise, since E vanishes when ∆t tends to zero

(consistency), we have |P Tn+1EPn+1| ≤ UT
n+1KUn+1 for ∆t small enough, yielding the

conditional stability of the scheme. �

The definiteness of the error matrix E for the HOY splitting schemes,

E = Σ− SQq, q = 0, 1, 2, (3.30)

has been studied in [55, 105, 112, 126], and it is summarized in the lemma below.

Lemma 3.4.3 For the Stokes problem, we have that

1. Σ− SQ0 is positive definite;

2. Σ− SQ1 is negative semidefinite;

3. Σ− SQ2k, N 3 k ≥ 1 is positive semidefinite for ∆t small enough.

Σ− SQ0 > 0 has been originally proven in [105] by using the analogy with the Yosida

regularization operator. In [55], a simpler proof, based on the symmetric positive

definite matrix H − C−1, is given. Σ− SQ1 ≤ 0 was found in [112], while the correct

proof of the conditionally semipositiveness of Σ − SQq for all even q ≥ 2 was given in

[126].

3. ALGEBRAIC SPLITTINGS AND BLOCK PRECONDITIONERS 61

These results suggest that the splitting can actually affect the time stability, apart

from the case q = 0. It is worth noticing, however, that the stability of BDFp+HOYq

schemes depends on the stability of both the the BDF scheme and the algebraic split-

ting. The following lemma [55, 105, 112] highlights the unconditional stability of

the YOS splitting (q = 0) when associated with absolutely stable BDF (p = 1, 2), and

the conditional stability of the HOY splitting (q = 1, 2) when coupled with any BDF

method.

Lemma 3.4.4 The BDFp+HOYq scheme is unconditionally stable if p = 1, 2 and q = 0,

while it is conditionally stable for p > 2 or q > 0.

Proof. The lemma is an immediate consequence of the BDF method stability properties,

Proposition 3.4.2, and Lemma 3.4.3. In particular, since the YOS splitting (q = 0)

dissipates mass (Σ − SQ0 > 0) it will lead to an unconditionally stable method when

coupled with BDF1 or BDF2. The HOY1 scheme is conditionally stable (independently

of the order of the BDF formula) since Σ − SQ1 is negative definite, while HOY2 is

conditionally stable since the semipositiveness of Σ−SQ2 can be ensured under suitable

restrictions on ∆t. �

In Fig. 3.2 we report the error obtained when solving in a 2D rectangular domain

the pressure drop problem with a sinusoidal time dependence of the pressure difference

between inlet and outlet sections (Womersley test case: the 3D analytical solution can

be found in [129], the 2D one can be found e.g. in [124]) in the case of q = 2. For

larger time steps, the solution blows up independently of the BDF scheme adopted, as

a consequence of a loss of stability induced by the splitting.

As noted in [112], the region of absolute stability of the time advancing scheme is

even more drastically reduced for the HOY1 splitting, due to the fact that Σ − SQ1 is

negative definite. For this reason, the HOY1 splitting is more often used as a precon-

ditioner (see [54]) then a solver. In Section 3.5 we will provide more details on the

62 3.4 Analysis of the pressure corrected splittings

Figure 3.2: Velocity errors for a pressure corrected scheme with q = 2. Left: h = 1/40,
Right: h = 1/80.

usage of HOY splittings as preconditioners.

3.4.3 Convergence analysis

We recall here the accuracy result proven in [55] for the time dependent Stokes prob-

lem discretized with BDF formulas of order p = 1, 2. In Chapter 4 we will provide an

analogous result for the incremental formulation of the splitting and BDF formulas of

arbitrary order.

To this aim, let us denote with Un+1, Pn+1 the solution to the fully coupled system


α0
∆tMUn+1 + νKUn+1 +BTPn+1 = f1 − M

∆t

∑p
i=1 Un+1−i, n = 0, · · ·NT − 1

BUn+1 = 0,

(3.31)

3. ALGEBRAIC SPLITTINGS AND BLOCK PRECONDITIONERS 63

and with Û
(q)
n+1, P̂ (q)

n+1 the split solution computed according to the HOYq scheme


α0
∆tMUn+1 + νKUn+1 +BTPn+1 = f1 − M

∆t

∑p
i=1 Un+1−i, n = 0, · · ·NT − 1

BUn+1 − (Σ− SQq)P̂n+1 = 0.

(3.32)

At each time level tn we denote with EU,q
n = Û

(q)
n −Un and EP,q

n = P̂
(q)
n − Pn the

vectors of the nodal values of the splitting errors. For a generic time level k, we set

||EU,q
k ||20 ≡ EU,q

k

T
MEU,q

k , ||EU,q
k ||21 ≡ EU,q

k

T
KEU,q

k and ||EP,q
k ||20 ≡ EP,q

k

T
MpE

P,q
k where

Mp is the mass matrix for the pressure unknown.

The following theorem is proven in [55].

Theorem 3.4.5 If there exists a positive constant c such that
∑NT−1

n=0 ∆t||pn+1||2 ≤ c

and ∆t is sufficiently small, then there exist two positive constants c1, c2 dependent

on the space discretization and independent of ∆t such that the HOYq schemes for

q = 0, 1, 2 applied to the Stokes problem satisfy

||EU,q
NT
||20 + ν

NT−1∑
n=n0

∆t||EU,q
n ||21 ≤ c1∆t2q+3,

NT−1∑
n=n0

∆t||EP,q
n ||2 ≤ c2∆t2q+2. (3.33)

We omit the proof of this result, given that, in Chapter 4, the analysis of the local

splitting error in Theorem 4.2.1 is demonstrated with similar arguments.

Here we limit to show some numerical results for the Navier-Stokes case.

In Fig. 3.3 we report results on a 2D finite element test case featuring the exact

solution ux = sin(5πt)(y − y2), uy = 0 and p = 2ν(x)sin(5πt). As observed in [55]

(with spectral discretization), in some cases numerical results show a better conver-

gence than expected. In this case, velocity splitting errors converge with an order q+ 2

versus the expected q + 3/2.

In Fig. 3.4 we solve the incompressible Navier-Stokes equation in a cylindrical

domain with a sinusoidal pressure drop (∆P = A cos(wt)) between the inflow and the

64 3.4 Analysis of the pressure corrected splittings

Figure 3.3: Velocity (left) and pressure (right) errors for a pressure corrected scheme with
q = 1. As expected, for a BDF formula of order 4 the splitting is limiting the velocity
accuracy with an order between 3 and 4. Pressure exhibits a slightly higher convergence
order than the one predicted by the theory.

outflow and no-slip conditions on the vessel wall (Womersley test case). Geometrical

and physical parameters (diameter d, length of the cylinder l, viscosity ν, forcing term

pulsation ω) yield the Womersley number

W =

√
d2ω

4ν
= 15

which is within the human physiological range in hemo-dynamics problems.

Space discretization is obtained with Taylor-Hood finite element Q2 − Q1 for ve-

locity and pressure respectively over a structured stretched hexahedral mesh (1080

elements). Time discretization is performed with BDF of order q + 1. The non-linear

term has been linearized with a Picard approach, being the extrapolation of the velocity

in the convective term of order q + 1.

Tab. 3.1 compares the numerical and the expected order of converges estimated for

the Stokes problem with different q. For q = 1, 2 we obtain the expected order, while for

3. ALGEBRAIC SPLITTINGS AND BLOCK PRECONDITIONERS 65

Figure 3.4: Velocity splitting error ‖E‖L2(0,T ;H1(Ω)) (left) and pressure splitting error
‖e‖L2(0,T ;L2(Ω)) (right) for the the solution of the Womersley problem.

BDF1+HOY0 BDF2+HOY1 BDF3+HOY2
order velocity 1.86 (1.5) 2.73 (2.5) 3.08 (3.5)
order pressure 1.86 (1) 2.76 (2) 3.05 (3)

Table 3.1: Velocity splitting error ‖E‖L2(0,T ;H1(Ω)) and pressure splitting error
‖e‖L2(0,T ;L2(Ω)) for the Womersley test case (theoretical expected order in brackets).

BDF 3 with q = 2 we notice a degeneration of 1/2 order in the expected velocity error.

This is likely due to the presence of the convective term, that prevents the symmetry of

the matrices, which is on the contrary an assumption in the proofs of the convergence

results.

3.5 Algebraic splitting as preconditioners

In this section, we investigate the use of block factorizations as preconditioners of sys-

tem (3.1) and their connection to other block preconditioners available in the literature,

namely the Cahouet-Chabard [26] and Least Squares Commutator [44, 45] precondi-

tioners.

66 3.5 Algebraic splitting as preconditioners

Two different, but related, approaches are considered. On the one hand one may

consider to directly precondition the fully coupled saddle point system

C BT

B 0


U

P

 =

f1

f2

 . (3.34)

On the other hand, one may consider the pressure matrix method,


CÛ = f1

ΣP = −BÛ

CU = f1 −BTP,

(3.35)

and develop preconditioners for the pressure Schur complement matrix Σ = −BC−1BT .

The first approach leads in general to more efficient algorithms (especially if de-

signed for massive parallel computations), while the latter, in which the computations

are divided into smaller size sub-problems, is still widely used when memory allocation

can be a limiting resource. Indeed, the bottleneck of the pressure matrix method is that

each application of Σ to a vector requires to solve a linear system in the momentum ma-

trix C up to a tight tolerance. However, as it will be shown below, the preconditioning

techniques for these two approaches are strongly related one to the other.

3.5.1 Block preconditioners and approximated Schur Complement oper-

ators

Proceeding as in [45], an initial insight can be obtained by considering the generalized

eigenvalue problem

A

U

P

 = λP

U

P

 , A =

C BT

B 0

 , P =

C 0

0 −Σ

 . (3.36)

3. ALGEBRAIC SPLITTINGS AND BLOCK PRECONDITIONERS 67

It is possible to prove [93] that there are precisely three eigenvalues of (3.36),

λ1 = 1, λ2,3 =
1±
√

5

2
,

so that (in exact arithmetic) system (3.34) is solved in three GMRES steps. Indeed,

P−1A solves p(λ) = (λ− 1)(λ2 − λ− 1) = 0. Incidentally we notice that the ratios −λ1
λ3

and λ2
λ1

are equal to the golden ratio.

Next let us study the spectral properties of the generalized eigenvalue problem

A

U

P

 = λP̂

U

P

 , P̂ =

C 0

0 −Σ̂

 , (3.37)

where Σ̂ is an opportune (cheaper to apply) approximation of Σ. It is possible to

prove that the eigenvalue λ = 1 has both algebraic and geometric multiplicity equal to

NU −NP (see [45]). Manipulation of the first block of equations leads to

U =
1

λ− 1
C−1BTP,

and then eliminating U from the second block gives

ΣP = µΣ̂P, (3.38)

where µ = λ(λ− 1).

Thus, if Σ̂ is a good approximation of Σ (i.e. the eigenvalues µ are tightly clustered

in a small region near (1, 0) in the complex plane), then eigenvalues of (3.37) will be

tightly clustered in two regions, symmetric with respect to imaginary axis, according to

the mapping

λ→ 1±√1 + 4µ

2
. (3.39)

68 3.5 Algebraic splitting as preconditioners

Better spectral properties are achieved if one considers block lower or upper trian-

gular preconditioners of the form

P̂L =

C 0

B Σ̂

 , or P̂U =

C BT

0 Σ̂

 , (3.40)

instead of the block diagonal preconditioner in (3.37). Such modification does not

entail any significant increase in the cost of applying the preconditioner, but leads to

much rapid convergence.

Indeed, by using the same argument used in the block diagonal case, it is possible

to prove that the solution of the generalized eigenvalue problem (3.37) with P̂ = P̂L

or P̂ = P̂U is given by

{λ} = {1}
⋃
{µ}, (3.41)

where {µ} are the eigenvalues of ΣP = µΣ̂P . All the eigenvalues {λ} of the precon-

ditioned system now lie on one side of the imaginary axis, significantly reducing the

number of GMRES iterations (as many as half iterations in same cases) for the solution

of (3.34), see [43].

Relation (3.41) suggests that the behavior of the preconditioners P̂L and P̂U can

be inferred by the spectral approximation properties of Σ̂, and therefore that efficient

preconditioners for the pressure matrix method can be immediately extended to block

preconditioner for the saddle point system (3.34).

3.5.2 Spectral properties of algebraic splitting preconditioners

We now consider the adoption of inexact (pressure corrected) LU factorization as pre-

conditioners for system (3.34). More specifically, we consider the inexact factorization

3. ALGEBRAIC SPLITTINGS AND BLOCK PRECONDITIONERS 69

matrix

Â =

C 0

B S


INu U1,2

0 Qq

 , (3.42)

where U1,2 = C−1BT for the HOYq scheme, and U1,2 = HBTQq for the ACT-PC scheme.

A simple computation shows that the eigenvalues of the preconditioned matrix

Â−1A =

INu C−1BT − U1,2(SQq)
−1Σ

0 (SQq)
−1Σ


are independent of the choice of the block U1,2. Indeed, we have λ = 1 with (alge-

braic) multiplicity Nu, while the other Np eigenvalues are those of (SQq)
−1Σ. The

above observation suggests that to set U1,2 = 0 in the preconditioner can reduce the

computational cost of applying the preconditioner without causing deterioration in the

convergence rate of the solution of the preconditioned system [125]. In this case, in

fact, we obtain a lower triangular block preconditioner L̂,

L̂ =

C 0

B SQq


of the form (3.40).

However, as observed in [125], different choices for the matrix U1,2 give raise to

a different dynamic in the preconditioned residual. In particular, the choice U1,2 =

C−1BT (HOYq) yields a null residual for the momentum equation starting from the

first iteration, while the choice U1,2 = HBTQ1 (ACT-PC) reduces the residual of the

mass conservation equation to machine precision since the first iteration.

Performances of these preconditioners have been investigated in [125] for the case

q = 0 and in [54] for the case q = 1. More in general, Fig. 3.5 pinpoints how the

eigenvalues of the preconditioned Schur Complement (SQq)
−1 Σ (q = 0, 1, 2, 3) of the

non symmetric Navier-Stokes problem are clustering around 1 for a lid driven cavity

70 3.5 Algebraic splitting as preconditioners

Figure 3.5: Eigenvalues of the preconditioned Schur Complement (SQq)
−1Σ for q = 0

(top, left), 1 (top, right), 2 (bottom, left), 3 (bottom, right) and for different time steps.
Eigenvalues are computed with Matlab on a coarse mesh (square domain with h = 1/16)
for the non symmetric Navier-Stokes problem. As expected, when the time step gets
smaller, eigenvalues are clustering around 1, the clustering being more evident when q
gets larger.

with Re = 1000 for and different values of ∆t.

In our experience and in agreement with previous studies [54], among all the pres-

sure corrected algebraic splittings, the HOY1 approximation SQ1 of the Schur Comple-

ment Σ is the most efficient for large time steps, providing the best trade-off between

computational cost and spectral properties. In order to gain some inside of the spec-

tral properties of SQ1, let us write its explicit definition and compare its structure

with other popular preconditioners, namely the Cahouet-Chabard [26] and the Least

Squares Commutator [44] preconditioner. Recalling the hierarchical definition of the

3. ALGEBRAIC SPLITTINGS AND BLOCK PRECONDITIONERS 71

pressure correction matrices Qq in (3.22), an explicit computation (with q = 1) gives

SQ1 = S
(
I + S−1D1

)−1
= S

(
S −BHAHBT

)−1
S, (3.43)

where S = −BHBT is the discrete laplacian matrix defined in (3.11). In the next

two paragraphs we will use (3.43) to investigate its relationship with the Cahouet-

Chabard preconditioner, and its strong similarity with the Least Squares Commutator

preconditioner.

3.5.3 Comparison with the Cahouet-Chabard preconditioner

The Cahouet-Chabard (CC in the following) is one of the most popular preconditioner

for both the unsteady Stokes and Navier-Stokes problems. It was originally proposed

in [26] and it is an optimal preconditioner for the generalized Stokes problem, both

with respect to the discretization parameter h, and the PDE coefficients σ, ν.

In particular, if we let A = νK, the corresponding generalized Stokes matrix and

the CC preconditioner read

A =

σM + νK BT

B 0

 , P =

σM + νK 0

0 (σ−1K−1
p + ν−1M−1

p)−1

 , (3.44)

where Mp, Kp are the finite element matrices representing the discrete inner-products

(ph, qh) and (∇ph,∇qh), with ph, qh ∈Wh.

Here we would like to point out the relationship between the HOY1 preconditioners

and the CC one. By letting A = νK in (3.43), we have

SQ1 = S(S − νBHKHBT)−1S =
(
S−1 − νS−1BHKHBTS−1

)−1
. (3.45)

72 3.5 Algebraic splitting as preconditioners

Proceeding as in [54], let now assume that

KHBT = BTM−1
p BHBT . (3.46)

The condition above is the algebraic counterpart of the differential identity

−∆ ∇ = (−∇ div + curl curl) ∇ = −(∇ div) ∇,

and has been advocated in [79] as a compatibility condition (holding for special set of

boundary conditions) in the context of Finite Difference space discretizations. Even if

the equality (3.46) does not generally hold for common choices of the finite element

spaces Vh and Wh, we still substitute (3.46) in (3.45) and write

SQ1 =
(
S−1 − νS−1BHKHBTS−1

)−1 ≈ −
(
S−1 + νM−1

p

)−1
. (3.47)

SQ1 can be therefore interpreted as the algebraic counterpart of the CC precondi-

tioner, where the discrete laplacian S is used instead of σKp. If the mass matrix Mp

in the CC preconditioner is lumped, then the CC preconditioner is much cheaper than

SQ1, since the latter requires the solution of two linear system in the matrix S instead

of one. However, SQ1 significantly reduces the number of iterations also in the case of a

generalized Stokes problem, and it is naturally suited to account for the non-symmetric

case, being based on a block factorization of the more general Oseen problem [54].

3.5.4 Comparison with the Least Squares Commutator preconditioner

Let us first provide a brief derivation of the Least Squares Commutator (LSC) precondi-

tioner. The method is based on the notion of approximate algebraic commutator [44].

Consider the advection-diffusion-reaction operator in the momentum equation of the

Oseen Problem,

3. ALGEBRAIC SPLITTINGS AND BLOCK PRECONDITIONERS 73

Lu = σu− ν∆u + (w · ∇)u, (3.48)

where w is the wind velocity, and σ ≥ 0 is the reaction term. In particular, σ = 0

for steady problems, and inversely proportional to the time-step for unsteady ones. To

derive the LSC preconditioner, one assumes that there is an analogous operator, defined

on the pressure space,

Lpp = σp− ν∆p+ w · ∇p, (3.49)

and considers the commutator of the advection-diffusion-reaction operator with the

gradient operator,

E = L∇−∇Lp. (3.50)

When the wind velocity w is small or smooth, one expects this commutator to be small

in some sense. By using the notation introduced in Section 3.1, a discrete version of

the commutator takes the form

E = (M−1C)(M−1BT)− (M−1BT)(M−1
p Cp),

where Mp, Cp represent respectively the mass and advection-diffusion-reaction matri-

ces in the pressure finite element space.

Next, one assumes that also the norm of the algebraic version of the commutator is

small (E ≈ 0), so that the following approximation of the pressure Schur Complement

is obtained:

Σ = −BC−1BT ≈ −BM−1BTC−1
p Mp. (3.51)

To complete the construction of the preconditioner one should opportunely define

the matrix Cp. In the LSC preconditioner, the j-th column [Cp]j of the matrix Cp is

74 3.5 Algebraic splitting as preconditioners

computed by minimizing the following algebraic norm of the commutator

‖[M−1CM−1BT]j −M−1BTM−1
p [Cp]j‖2M , j = 0, . . . , Np − 1.

Finally, by substituting in (3.51) the matrix Cp whose columns are the solution

of the least squares problem above, one obtains the following approximation of the

pressure Schur Complement matrix:

Σ ≈ −
(
BM−1BT

) (
BM−1CM−1BT

)−1 (
BM−1BT

)−1
. (3.52)

To reduce the computational cost of the preconditioner, one usually substitute the

consistent matrix M with a spectrally equivalent matrix Q that it is simpler to invert,

such as a lumped mass matrix or simply diag(M).

A simple computation show that, for unsteady problems, the LSC preconditioner

(3.52) and the pressure corrected preconditioner SQ1 are equivalent.

In fact, recalling H = (σM)−1, S = −BHBT , C = H−1 +A we rewrite (3.52) as

Σ ≈ −S
[
BH(H−1 +A)HBT

]−1
S = S

[
S −BHAHBT

]−1
S = SQ1, (3.53)

where in the last equality we use the definition of SQ1 in (3.43).

4 Time Adaptivity

In this Chapter, we introduce a time-adaptive method specifically devised for the al-

gebraic splitting schemes discussed in the previous Chapter for the incompressible

Navier-Stokes equations. Indeed such pressure corrected schemes feature a hierar-

chical structure, such that the final pressure is the result of a sequence of low order

approximations. For this reason, the comparison between two different estimates is

a natural error estimator for the problem, where “natural” means that no additional

computation is required.

The time-adaptive solver implemented upon this idea is one of most important re-

sults of the present thesis. The presentation of the methods and the numerical re-

sults in this chapter closely follows manuscript [128], submitted for publication. After

a brief literary review of adaptive methods in computational fluid-dynamics (Section

4.1), we proceed with the local splitting error analysis of the incremental version of the

high order Yosida method (Section 4.2). Such analysis is of utmost importance for the

derivation of the error estimator for our time-adaptive solver (Sections 4.3 and 4.4).

We finally report several numerical results in 2D and 3D, that confirm the reliability

and effectiveness of the time adaptive solver (Section 4.5).

4.1 Time adaptivity for computational fluid-dynamics

In some cases, the practical problems at hand involve a sequence of fast and slow

transients, only partially (or not at all) predictable a priori. This is the case, for instance,

of the pressure dynamics in the oil surrounding the piston of a brake (see Fig. 4.1, left),

76 4.1 Time adaptivity for computational fluid-dynamics

Figure 4.1: Two problems demanding for time adaptivity: pressure dynamics of the oil in
a brake (left - courtesy of Brembo, Italy) and flow rate in a carotid artery (right).

that experiences a peak in corresponding of a sudden braking action; or the blood flow

in arteries (see Fig. 4.1, right), featuring the sequence of the systolic phase, when the

aortic valve is open and the velocity is high, and the diastolic phase where the valve is

closed and the velocity falls. In these cases, a time adaptive implementation can reduce

the computational effort by reducing the number of time steps required in the intervals

of slow transients. Time adaptivity requires basically two ingredients: (a) a reliable and

effective a posteriori error estimator for testing the adequacy of the current time step;

(b) an adapting rule for selecting a proper time step on the basis of the estimated error.

The latter finds the trade-off between the selection of the largest possible time step and

the need of limiting the number of its variations. The former is a critical issue. Residual

estimators check quantities that are prevented to vanish - as they would do at the

continuous level - by the numerical scheme. More in general, estimators are computed

either by combining different schemes with a different order of accuracy, or using the

same scheme with two different time steps [104]. Both these strategies can result in

an increment of the computational cost, since the numerical solution is computed in

two different ways. This has probably limited the extensive adoption of time adaptive

schemes for the Incompressible Navier-Stokes (INS) equations, which are intrinsically

4. TIME ADAPTIVITY 77

fairly expensive at the numerical level. A few recent papers address time adaptivity for

this problem. In [49] a stabilized space-time Galerkin method is presented for solving

free-surface problems with a time adaptivity based on the residual of the continuity

equation. In [60] adaptivity is based on the combination of two-steps linear implicit

schemes with different order. In the recent papers [61, 78], a smart combination of

the trapezoid rule and the Adams-Bashforth 2 schemes is used for estimating the local

truncation error and eventually computing the proper time step. Adaptivity is applied

to the coupled momentum-mass system rather than to segregated schemes, since the

latter are expected to require smaller time steps.

4.2 Analysis of the incremental formulation of High Order

Yosida schemes

We now proceed with the convergence analysis of the incremental q-pressure corrected

Yosida scheme (HOYq), one of the most original contribution of this thesis. The method

was presented in Chapter 3, however, for convenience, we summarize it in Algorithm

4.1.

Similarly to what already done in [55] (see also Section 3.4) for the analysis of

the non-incremental method, we consider the unsteady Stokes problem, where the

momentum matrix C = α0
∆tM + νK is symmetric positive definite. However, in the

incremental case, we should require additional regularity of the analytical solution in

order for (3.13) to hold. In fact, while in [55] the author assumes that the pressure

belongs to the space L∞(0, T ;L2(Ω)) of measurable functions q : [0, T] → L2(Ω), such

that ‖q‖L∞(0,T ;L2(Ω)) = ess sup0≤t≤T ‖q(t)‖L2Ω; here we assume p ∈W s,∞(0, T ;L2(Ω)),

that is

p ∈ L∞(0, T ;L2(Ω)), and
∂ip

(∂t)i
∈ L∞(0, T ;L2(Ω)), i = 1, . . . , s.

78 4.2 Analysis of the incremental formulation of High Order Yosida schemes

Input: fn+1 the discretized forcing term and boundary conditions
Output: Un+1, Pn+1 the end of step velocity and pressure

// Intermediate velocity step

CÛn+1 = fn+1 − 1
∆t

∑
i=0 αiUn+1−i −BTP ∗n+1 ;

// Intermediate pressure increment step

SδP̂n+1 = BÛ− b2 ;
// Pressure increment correction step QqδPn+1 = δP̂n+1, see

Algorithm 3.3
for k = 0, . . . , q do

zk = R̂kδP̂n+1

end
δPn+1 =

∑q
k=0 zk;

// End of step pressure
Pn+1 = P ∗n+1 + δPn+1;
// End of step velocity
CUn+1 = fn+1 − 1

∆t

∑
i=0 αiUn+1−i −BTPn+1 ;

Algorithm 4.1: Incremental q-pressure corrected Yosida splitting method.

In the following result, we denote by Uunsp
n , P unsp

n the solution of (3.14) and by

U
(q,s)
n , P

(q,s)
n the solution of the q-pressure corrected Yosida scheme, with an increment

of order s, i.e.

C 0

B S


I C−1BT

0 Qq


U

(q,s)
n

δP
(q,s)
n

 =

 f̃n −BTP ∗n

0

 .
In order to investigate the splitting error introduced at each step, we postulate

the localizing assumption, i.e. we assume that the solution at the time steps prior the

current one corresponds to the unsplit solution, U
(q,s)
i = Uunsp

i and P (q,s)
i = P unsp

i for

i = k − 1, k − 2, . . . k − p.

We denote the global splitting error at time tk by Ek ≡ Uunsp
k −U

(q,s)
k , ek ≡ P unsp

k −

P
(q,s)
k , and the local splitting errors by Ek,∗ and ek,∗. Recalling the discrete norms

‖Ek,∗‖20 = ET
k,∗MEk,∗, ‖Ek,∗‖21 = ET

k,∗KEk,∗, ‖ek,∗‖20 = eTk,∗Mpek,∗,

4. TIME ADAPTIVITY 79

we have the following convergence theorem for the incremental HOYq schemes.

Theorem 4.2.1 If the pressure p ∈ W s,∞(0, T, L2(Ω)) for some s ≥ 0 and ∆t is suf-

ficiently small, then the local splitting error of a q-pressure corrected s-incremental

Yosida scheme applied to the generalized Stokes problem satisfies

sup
k
‖Ek,∗‖0 ≤ C0∆tq+s+2, sup

k
‖Ek,∗‖1 ≤ C1∆tq+s+3/2, sup

k
‖ek,∗‖0 ≤ c0∆tq+s+1.

(4.1)

Proof

A BDF approximation of order p for the Stokes system reads


α0

∆t
MUunsp

k + νKUunsp
k +BTP unsp

k = fk +
1

∆t

p∑
i=1

αiMUunsp
k−i

BUunsp
k = 0

, (4.2)

while the Yosida s-incremental pressure corrected splitting reads


α0

∆t
MU

(q,s)
k + νKU

(q,s)
k +BTP

(q,s)
k = fk +

1

∆t

p∑
i=1

αiMU
(q,s)
k−i

BU
(q,s)
k − (Σ− SQq)δP (q,s)

k = 0

. (4.3)

Under the localizing assumption, we have

δP unsp
k = ek + δP

(q,s)
k

where we have set P unsp
k ≡ δP unsp

k + P ∗,unsp
k . Then, by subtracting (4.3) from (4.2) we

get 
α0

∆t
MEk,∗ + νKEk,∗ +BT ek,∗ = 0

BEk,∗ − (Σ− SQq)ek,∗ = −(Σ− SQq)(δP unsp
k)

. (4.4)

80 4.2 Analysis of the incremental formulation of High Order Yosida schemes

With standard manipulation, we get

α0(MEk,∗,Ek,∗) + ν∆t(KEk,∗,Ek,∗) + ∆t((Σ− SQq)ek,∗, ek,∗)

= ∆t((Σ− SQq)δP unsp
k , ek,∗).

(4.5)

Thanks to Cauchy-Schwarz and Young inequality, we have

α0‖Ek,∗‖20 + ν∆t‖Ek,∗‖21
≤ 1

2ε
‖(Σ− SQq)δP unsp

k ‖2 +

(
2ε+ γ

|||Σ− SQq|||
∆t

)
∆t2‖ek,∗‖2,

(4.6)

where γ = 0 if Σ−SQq is semidefinite positive, 1 otherwise. Notice that in [126] it has

been proved that Σ− SQq is semidefinite positive for all even splitting order, provided

that ∆t is small enough (see also Lemma 3.4.3).

Since |||Σ− SQq||| ≤ c∆tq+2 (recall Proposition 3.4.1), we have

α0‖Ek,∗‖20 + ν∆t‖Ek,∗‖21 ≤
1

2ε
c2∆t2q+4‖δP unsp

k ‖2 +
(
2ε+ γc∆tq+1

)
∆t2‖ek,∗‖2. (4.7)

Thanks to the inf-sup condition (2.12), to (4.4)1, and to the discrete Poincaré in-

equality ‖V‖0 ≤ CΩ‖V‖1, we have

‖ek,∗‖ ≤
1

β
sup
V

|(BT ek,∗, V)|
‖V‖1

=
1

β
sup
V

|(α0
∆tMEk,∗ + νKEk,∗,V)|

‖V‖1
≤

≤ 1

β
sup
V

α0
∆t‖Ek,∗‖0‖V‖0

‖V‖1
+ sup

V

|(νKEk,∗,V)|
‖V‖1

≤ 1

β

[
CΩ

α0

∆t
‖Ek,∗‖0 + ν‖Ek,∗‖1

]
,

(4.8)

where β = β(Ω) is the inf-sup constant independent of the time step. Therefore

∆t2‖ek,∗‖2 ≤ C∗
[
‖Ek,∗‖20 + ∆t2ν‖Ek,∗‖21

]
, (4.9)

4. TIME ADAPTIVITY 81

being C∗ = 2 max
(
C2

Ωα
2
0

β2 , ν
β2

)
.

Let ε = 1
4C∗

and substitute (4.9) in (4.7)

(
1

2
− γc∆tq+1

)(
α0‖Ek,∗‖20 + ν∆t‖Ek,∗‖21

)
≤ 2C∗c

2∆t2q+4‖δP unsp
k ‖2. (4.10)

Under the assumption of regularity for the pressure we have ‖δP unsp
k ‖ = O(∆ts), so

that (
1

2
− γc∆tq+1

)(
α0‖Ek,∗‖20 + ν∆t‖Ek,∗‖21

)
≤ K∆t2q+4+2s, (4.11)

where k = 4C∗c
2

(
max
t

∥∥∥∥∂sp∂ts
∥∥∥∥)2

is a constant independent of ∆t. Should either γ = 0

or ∆t small enough (∆t ≤ (4c)−1/(q+1)), the local splitting error is such that

‖Ek,∗‖0 ≤ (2+2γ)k
α0

∆tq+s+2,

‖Ek,∗‖1 ≤ (2+2γ)k
ν ∆tq+s+3/2,

‖ek,∗‖ ≤ (2+2γ)k
β (1 + CΩ)∆tq+s+1.

(4.12)

�

Remark - When we remove the localizing assumption and introduce the error propa-

gation contribution, it is possible to prove that

‖Ek‖0 ≤ C∆tq+s+1,

as a consequence of the previous Theorem and of the classical propagation error analy-

sis of linear multistep method (see for example [67] pages 235-249). More complicated

is the estimation of the pressure global splitting error ek. We conjecture that also when

we remove the localizing assumption the pressure splitting error still features an order

‖ek‖ ≤ C̃∆tq+s+1. A rigorous proof is still missing.

82 4.3 Adaptation rule

4.3 Adaptation rule

In this section we briefly describe a general time step adaptation rule based on a poste-

riori estimators for the local error, postponing to next section the specialization to the

incompressible Navier-Stokes equations. Consider the abstract initial value problem


dy

dt
= f(y), t ∈ (0, T]

y(0) = g,

and assume two different approximations yn, ŷn of the analytical solution y(tn) are

computed, the first having a local error τi of order O(∆tr), the second having a local

error τ̂i of order O(∆tr+1).

Recalling the definition of local error,

y(ti) = yi, ∀i ≤ n −→ y(tn+1)− yn+1 = ∆t τn,

we have

τn =
1

∆t
[y(tn+1)− yn+1] =

1

∆t
[y(tn+1)− ŷn+1] +

1

∆t
[ŷn+1 − yi+1]

= τ̂n +
1

∆t
[ŷn+1 − yi+1] . (4.13)

Observe that, since τn = O(∆tr) and τ̂n = O(∆tr+1), the quantity [ŷn+1 − yi+1]

represents the principal contribution to the local error τn. Then an a posteriori error

estimator η is given by the difference of the solutions ŷn+1 and yn+1. In particular, by

letting

η = ‖ŷn+1 − yn+1‖,

the local error τn is such that

‖τn‖ ≈
η

∆t
. (4.14)

4. TIME ADAPTIVITY 83

The a posteriori estimator η so designed can then be used in the adaptation rule as

follows.

Since τn = O(∆tr), there exists a constant k such that ‖τn‖ = k∆tr. From (4.14),

we then have

k∆tr ≈ η

∆t
.

Now, let χ be a multiplicative factor of the current time step, so that ∆tnew = χ∆told.

We look for χ such that for a prescribed tolerance ε we have

‖τn(χ∆told)‖ ≤ ε.

Here ε represents the maximum allowed error per unit of time, so that the above con-

dition guarantees that the global error at time T = tnT is bounded by

‖y(T)− ynT ‖ ≤ εT.

Since

‖τn(χ ∆told)‖ = k(χ ∆told)r = χr(k∆trold) ≈ χr

∆t
η,

we have

χ ≤
(
ε ∆told

η

)r
. (4.15)

The value of χ is then used, according to the adaptation rule,

1. to reject, if necessary, the initial choice ∆told at the time level n, and to repeat the

computation using ∆tnew = χ ∆told;

2. to accept the solution computed at the time level n, and to predict the time step

∆tnew = χ ∆told for the next time step.

It is worth to notice that, for multistep time advancing methods, stability constraints

may restrict the selection of χ to a range of admissible values (χmin, χmax). For exam-

84 4.4 A posteriori error estimators for the Navier-Stokes problem

ples, the stability of the variable step BDF formulas is guaranteed if ∆tnew ≤ δ∆told,

where 1 ≤ δ ≤ 1.5 is a constant depending of the number of steps [28, 29].

In practice, more elaborated adaptation rules should be introduced in order to avoid

excessive oscillations in the selection of the time step ∆t and to guarantee a high quality

implementation.

Below we list some technical details to make the adaptation rule more robust and

efficient (see Algorithm 4.2).

1. We multiply χ by a safety coefficient s ≤ 1 (usually between 0.8 and 0.9, cfr.

[35]) in order to relax the accept/reject criterion.

2. We introduce three different reference values χ0, χ1, χ2 (χmin ≤ χ0 ≤ s ≤ χ1 ≤

1 ≤ χ2 ≤ χmax) in order guarantee smooth variations in the time step and to

reduce the number of time-step rejected. The relaxed adaptation rule then reads

(a) if sχ ≤ χ0, reduce the time-step and reject the solution;

(b) if sχ ∈ [χ0, χ1], reduce the time-step and move to the next time step;

(c) if sχ ∈ [χ1, χ2], keep current time-step and move to the next time frame

(d) if sχ ≥ χ2, increase the time-step and move to the next time frame.

3. We restrict the time step to belong to some interval (∆tmin,∆tmax) which is typi-

cal of the application.

4.4 A posteriori error estimators for the Navier-Stokes prob-

lem

In this section, we discuss error estimators η based on the incremental q-pressure cor-

rected schemes in Algorithm 4.1, which can be used for the automatic selection of the

time-step according the the adaptation rule in Section 4.3.

4. TIME ADAPTIVITY 85

Input: η a posteriori error estimator of order r.
Input: ∆t the current time step used to compute the estimator

χ =
(
ε ∆t
η

)r
;

χ̂ = max (min(sχ, χmax), χmin);

if χ̂ ≤ χ0 then
reject the time step; set ∆t← χ̂∆t, and recompute the solution;

end
else if χ̂ ∈ (χ0, χ1) then

accept the time step; reduce ∆t← χ̂∆t; move to the next time level;
end
else if χ̂ ∈ (χ1, χ2) then

accept the time step; keep the same ∆t; move to the next time level;
end
else if χ̂ > χ2 then

accept the time step, increase ∆t← χ̂∆t; move to the next time level
end

if ∆t < ∆tmin then
∆t← ∆tmin;

end
else if ∆t > ∆tmax then

∆t← ∆tmax;
end

Algorithm 4.2: Adaptation rule algorithm

86 4.4 A posteriori error estimators for the Navier-Stokes problem

It is worth to notice that the error between the exact and the numerical solution

consists of three different contributions: the space discretization error related to the

Finite Element Method, the time discretization error associated to the time advanc-

ing technique (BDF and linearization/extrapolation of the convective term), and the

splitting error induced by the pressure corrected schemes.

To be more specific, let us denote with P ex
n the analytical pressure at time tn, P semi

n

the solution of the semi-discrete in space Problem (2.13), and make the localizing

assumption P semi
k = P unspl

k = P
(q,s)
k for all time level k previous to n.

Then the total error is such that

‖P ex
n − P (q,s)

n ‖ ≤ ‖P ex
n − P semi

n ‖ +‖P semi
n − P unspl

n ‖ +‖P unspl
n − P (q,s)

n ‖

= O(hα) +O(∆tp+1) +O(∆tq+s+1),

where α ≥ 1 is an integer number depending on the choice of the finite element spaces,

and p is the order of the time advancing method.

In the following, assuming that mesh size h is small enough, we neglect the spa-

tial contribution to the error since it is independent of the time step. Thanks to the

local splitting error analysis in Theorem 4.2.1, we devise error estimators to explicitly

address the third contribution to the total error. If p > q + s, we can also neglect the

time discretization error since it represents an higher order term compared to the local

splitting error. On the contrary, for p = q+s, we heuristically assume that the two error

contributions have a similar behavior, i.e. ‖P semi
n − P unspl

n ‖ ≈ ‖P unspl
n − P (q,s)

n ‖.

In the next paragraph, we will present the error estimator specifically devised for

the algebraic splitting schemes discussed in the previous Chapter. Indeed such pres-

sure corrected schemes feature a hierarchical structure, such that the final pressure is

the result of a sequence of low order approximations. For this reason, the comparison

between two different estimates is a natural error estimator for the problem, where

“natural” means that no additional computation is required. Even though the error

4. TIME ADAPTIVITY 87

estimator is reliable, the pressure corrected schemes may suffer from some stability

constraints induced by the splitting that reflect in the automatic selection of the time

step. For this reason, a variant of the original idea, based on using the pressure cor-

rected scheme as preconditioners and the comparison with the unsplit solution for the

error estimation, is presented in Paragraph 4.4.2. This second approach is in general

computationally more expensive, but it does not suffer from the stability drawback

induced by the splitting.

4.4.1 Algebraic splitting based estimators

For the HOY-q incremental schemes, the correction step QqδP = δP̃ takes the form

δP =

q∑
k=0

zk, zk = R̂kδP̃ .

From the convergence Theorem 4.2.1 we infer that the addition of each term zk in-

creases the accuracy of the pressure. As a matter of fact, we deduce from (4.1)3 that

O(∆tq+s+1) = ‖P ex−P (q,s)‖ ≤ ‖P (q+1,s)−P (q,s)‖+ ‖P ex−P (q+1,s)‖ = ‖zq+1‖+ h.o.t.,

where vector zq+1 is a by-product of the hierarchical structure of the scheme, so it does

not need any additional computation.

The above inequality highlights the role of the quantity η = ‖zq+1‖0 as possible

error estimator (of order r = q + s) to be used in the adaptation rule (see Algorithm

4.2).

In Fig. 4.2 we report the quantification of the norm L2 and L∞ of vectors zk for

k = 1, 2, 3 in a 2D problem on a unit square. In Fig. 4.3 we analyze the norm L2 of

the zk for different orders s of pressure extrapolation in a 3D lid driven cavity problem.

The expected behavior is confirmed by the numerical evidence.

88 4.4 A posteriori error estimators for the Navier-Stokes problem

10
−4

10
−3

10
−2

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

∆ t

|| z
1
||

2

slope=1

|| z
2
||

2

slope=2

|| z
3
||

2

slope=3

10
−4

10
−3

10
−2

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

∆ t

slope=1

|| z
1
||

∞ || z
2
||

∞

slope=2

|| z
3
||

∞

slope=3

Figure 4.2: Norm of the error estimator as a function of the time step. L2 norm ‖z‖L2 on
the left, infinity norm ‖z‖L∞ on the right (in 2D lid driven cavity problem).

4.4.2 Preconditioned unsplit solvers estimators

In real applications reduction of stability induced by the combination of high order

schemes with the splitting can be a major issue, limiting the effectiveness of the adap-

tive procedure. This can prevent the automatic selection of large time steps, depending

on the size of the space mesh. As a matter of fact, a few highly stretched elements or

mesh singularities may drastically increase the spectral radius of the Neumann expan-

sion matrix HA, leading to severe constraints on the choice of the time step. A possible

workaround is the adoption of pressure corrected factorizations as preconditioners for

system (3.14). Performances of Yosida-like preconditioners have been investigated in

Section 3.5.1 (see also [125] for the case q = 0, and [54] for q = 1). In particular, it has

been proved in [125] that each preconditioned iterations provide a progressively more

accurate estimate for the pressure. A possible error estimator can be therefore obtained

by comparing the solution obtained by the pressure corrected scheme (corresponding

to one preconditioned iteration) P (q,s) (typically with q = 0, 1) and the converged (un-

split) solution P unsp. More specifically, assuming that the time discretization for the

4. TIME ADAPTIVITY 89

10
−4

10
−3

10
−2

10
−10

10
0

time step

slope = 0

slope = 1

slope = 2

slope = 3

slope = 4

Non incremental (s=0)

10
−4

10
−3

10
−2

10
−10

10
0

time step

slope = 1

slope = 2

slope = 3

slope = 4

slope = 5

Incremental (s=1)

10
−4

10
−3

10
−2

10
−15

10
−10

10
−5

10
0

slope = 2

slope = 3

slope = 4

slope = 5

slope = 6

Incremental (s=2)

10
−4

10
−3

10
−2

10
−20

10
−10

10
0

slope = 3

slope = 4

slope = 5

slope = 6

slope = 7

Incremental (s=3)

||z
0
|| ||z

1
|| ||z

2
|| ||z

3
|| ||z

4
||

s= 0 s= 1 s= 2 s= 3

k= 0 -0.0012 (0) 0.9469 (1) 1.9980 (2) 2.9005 (3)

k= 1 0.9987 (1) 1.9488 (2) 2.9999 (3) 3.8903 (4)

k= 2 1.9987 (2) 2.9484 (3) 3.9972 (4) 4.8908 (5)

k= 3 2.9987 (3) 3.9478 (4) 4.9970 (5) 5.8910 (6)

k= 4 3.9987 (4) 4.9470(5) 5.9967 (6) 6.8906 (7)

Figure 4.3: Order of the estimator zk for the non-incremental method and the incremental
methods of order s. These results are obtained by solving a lid cavity problem driven by a
C∞(0, T) forcing term (utop = esin(2.0πt) − 1.0). Space discretization is Taylor Hood finite
elements Q2 −Q1 on a 8 by 8 by 8 hexahedral mesh. Time discretization is a BDF-(s+1).

90 4.5 Numerical results

unsplit scheme is accurate enough (p > q + s), we have

‖P ex − P (q,s)‖ ≤ ‖P ex − P unsp‖+ ‖P unsp − P (q,s)‖ = ‖P unsp − P (q,s)‖+ h.o.t.

By letting η = ‖P unsp − P (q,s)‖0, we therefore obtain, thanks to (4.1)3, an a poste-

riori error estimator of order r = q + s.

Since at the end of the time step, the solution Punsp is retained, the overall stability

of the method is driven by the stability of the BDF scheme.

4.5 Numerical results

In this section, we present 2D and 3D numerical results to demonstrate the validity

of our time adaptive procedures. 2D results have been obtained with the Fortran fi-

nite element code LifeII, while 3D have been obtained with the 3D library LifeV

(www.lifev.org). We first present some preliminary 2D results in which we use the alge-

braic splitting based error estimator, and then we present 3D results in which we use the

preconditioned unsplit solvers estimators. Results are mainly related to cardiovascular

problems that have inspired the present thesis.

4.5.1 Preliminary 2D results

In Fig. 4.4 we present a 2D test case, where a forcing pressure drop between inlet and

outlet boundaries in a channel is applied with a sinusoidal waveform in the first part of

the time interval. Then, the pressure drop is turned off. In the first quarter of the time

interval adaptivity is not activated and the time step is fine enough for the dynamics

forced by the pressure drop. Successively the time step is selected according to the

adaptive strategy. The results are obtained by comparing the solutions with q and q+ 1

for q = 1 and a tolerance ε = 0.01. When the time step is accepted, even though the

4. TIME ADAPTIVITY 91

Figure 4.4: Time step automatically selected by using z2 as error estimator for a fluid in a
2D channel with a periodic forcing term (reported in the bottom panel). For the first time
unit adaptivity is off. Then it is turned on. After two time units, the forcing term is set to
0, so the adaptive scheme is supposed to select a large time step. This happens with the
BDF3 (left). With the BDF4, reduced stability of the split scheme prevents the selection of
large time steps (right).

estimate refers to the error for q = 1, the “more accurate” solution is available and it is

retained.

When we adopt a BDF of order 3, we find the expected behaviour on the selection

of time step, and the final ∆t is selected to be large when the forcing pressure drop is

off (Fig. 4.4, left). When we use the BDF of order 4, the reduced stability induced by

the combination of the time advancing BDF4 and the splitting prevents the selection of

large time steps (Fig. 4.4, right).

A less trivial example of adaptivity is presented in Fig. 4.5, where a 2D domain re-

sembling a vascular bifurcation has been simulated with a physiological-like waveform

in the flow rate. The waveform reported in the picture refers to three heart beats and

has been used for modulating the inflow velocity profile. Neumann conditions have

been prescribed at the outlets. Adaptivity has been activated after the first heart beat.

The initial time step has been tuned for a correct representation of the first part of each

heart beat (systole), that features a fast transient. The adaptive scheme (BDF3 with

92 4.5 Numerical results

Figure 4.5: Time adaptivity in a 2D bifurcation with an input time-dependent velocity
modulated by a physiological waveform. Three heart beats with a physiological peak
Reynolds of about 700. In the first beat, adaptivity is off and time step is selected for
capturing the fast transients of the first part of the heart beat (systole). In the second
and third heart beat, the adaptivity maintains the same time step during systole (see the
zoomed box below) and selects larger steps during the subsequent phase (diastole). In this
way, one third of time steps used by the non-adaptive computation are required.

4. TIME ADAPTIVITY 93

q = 1) works in the expected way. At the beginning (during the second systole) the

time step is not changed significantly, then during the diastolic phase a larger ∆t is

automatically selected. The overall number of time steps is reduced from 3334 (with

no adaptivity) to 1127 per heart beat.

4.5.2 3D Womersley test case

We solve the incompressible Navier-Stokes equations in a cylindrical domain with a

sinusoidal pressure drop (∆P = A cos(w t)) between the inflow and the outflow and

no-slip conditions on the vessel wall (Womersley test case).

The maximum pressure drop is the same for each simulation (A = 5), while pul-

sation frequency w is varied so to yield to different Womersley numbers (1, 2, 4, 8,

16).

We use in particular a time adaptive method with a BDF of order 3, and a selection

of the time step based on the combination of the Yosida-1 solution and the unsplit

solution (see Section 4.4.2). In Fig. 4.6 we illustrate the pressure drop prescribed

with the flow rate computed (top) and the time step selected (bottom) for different

Womersley numbers. As expected from the analytical solution of the Womersley test

case, higher is the Womersley number and larger is the phase lag between pressure

and flow rate. The time step selected is more refined in correspondence of the fast

transients, when the pressure gradient is steep.

In Fig. 4.7 we illustrate the period of oscillation versus the automatically selected

time step. The slope of the graph (in a log-log plot) suggests a non polynomial depen-

dence.

4.5.3 Sensitivity with respect to the mesh size

We consider a modified 3D lid driven cavity problem with the kinematic viscosity of

the fluid equal to 0.01. The computational domain is the unitary cube ([−1
2 ,

1
2]3). The

94 4.5 Numerical results

0 5
−5

0

5

P
re

s
s
u
re

 d
ro

p

0 5
−0.1

0

0.1

0 5
−5

0

5

P
re

s
s
u
re

 d
ro

p

time
0 5

0

0.02

0.04

0 0.5 10 0.5 1
−0.1

0

0.1

0 0.5 1
time

0 0.5 1
0

0.005

0.01

0 0.20 0.2
−0.05

0

0.05

0 0.2
time

0 0.2
0

0.5

1

1.5

2

2.5

3
x 10

−3

0 0.050 0.05
−0.01

0

0.01

0 0.05
time

0 0.05
0

0.5

1
x 10

−3

0 0.010 0.01
−2

0

2
x 10

−3

In
fl
o
w

 F
lu

x

0 0.01
time

0 0.01
0

2

4
x 10

−4

T
im

e
 s

te
p

Figure 4.6: Simulation for increasing Womersley numbers: 1, 2, 4, 8, 16 (from the left
to the right). The imposed pressure drop and the computed flux at the inflow section are
showed on the top (in dashed blue line and solid green line respectively). The adaptive
time step and the pressure are showed on the bottom (in solid red line and dashed blue
line respectively). Increasing the Womersley number the phase lag between pressure and
flux increases, and the amplitude of flux oscillation decreases. Note how the behaviour of
the adaptive time step is the same for each simulation.

10
−2

10
−1

10
0

10
1

10
−4

10
−3

10
−2

10
−1

Period

d
t

max dt

mean dt

min dt

Figure 4.7: Average, minimum, maximum time step selected by the adaptive algorithm
Schur complement-Yosida1 incremental approach as a function of the period of oscillation
in the simulation with different Womersley numbers.

4. TIME ADAPTIVITY 95

horizontal velocity prescribed on the top face of the cube (z = 1
2) is equal to

vx =
esin(2πt) − 1.0

e

(
1− (2x)4

) (
1− (2y)4

)
,

leading to a maximum Reynolds number of 100.

Space discretization is Q2 − Q1 Taylor-Hood finite elements in a structured hexa-

hedral mesh. Three mesh diameters are considered: h = 0.25, h = 0.125, h = 0.0625.

Time discretization is BDF of order 3. We use the third order error estimator in which

we compare the Schur complement pressure with the incremental Yosida 1 approxima-

tion (p = 1, s = 1).

In order to avoid too small time step, we set a target tolerance for the adaptive

selection of the time step which varies with the mesh diameters. In particular we use

a tolerance ε = 2.25 · 10−5 on the coarse mesh, ε = 10−4 on the intermediate mesh,

ε = 4 · 10−4 on the fine mesh. The ratio between the previous time step and the next is

bounded from above by χmax = 1.05, while we reject a time step for χ ≥ 0.9.

Fig. 4.8 suggests that the error estimator is robust with respect to the mesh size.

The adaptively selected time step shows in fact the same dynamics for all three the

mesh diameter: the time step is refined in correspondence of the accelerations of the

lid, which generates fast changes in the pressure field, while it is coarsened when the

lid moves slower. The quantitative differences in the selection of the time step, may be

justified by the fact that a finer mesh is able to capture smaller and less stable features

of the flow, which require a smaller time step to be properly resolved.

4.5.4 An adaptive 3D blood flow simulation

We finally present a real 3D case of the simulation of blood flow in a domain rep-

resented by a human aorta reconstructed from images (see Fig. 4.10) with the free

software VMTK [8].

96 4.5 Numerical results

0 0.5 1 1.5 2
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

time

to
p
 v

e
lo

c
it
y

0 0.5 1 1.5 2 2.5
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

time

ti
m

e
s
te

p

h = 0.25

h = 0.125

h = 0.0625

Figure 4.8: On the left the dynamic in time of the velocity of the lid. On the right the
time step chosen by the time adaptive procedure. Qualitatively the adaptive choice of the
time step shows the same behaviour for all the three different mesh diameters. The time
step is refined when the accelerations of the lid cause fast changes in the pressure, and it
is coarsened when the lid velocity varies slowly and the pressure gradients are less steep.

0 0.5 1 1.5 2 2.5
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

time

||
u
||

L
2

0 0.5 1 1.5 2 2.5
0

0.02

0.04

0.06

0.08

0.1

0.12

time

||
p
||

L
2

h = 0.25

h = 0.125

h = 0.0625

Figure 4.9: The L2(Ω) norm of the velocity (on the left), and the L2(Ω) norm of the
pressure (on the right) for the lid driven cavity problem. The different behaviour of the
velocity and pressure norms on the coarse grid suggests that the fluid-dynamics is under-
resolved on that mesh.

4. TIME ADAPTIVITY 97

Figure 4.10: Geometry of an aortic arch reconstructed from a CT with the code Vascular
Modeling Toolkit (www.vmtk.org) and used for our time adaptive simulations.

The dataset of medical images has been acquired at Ospedale Maggiore in Milano,

Italy, using a Siemens SOMATOM Definition Flash Dual-Source CT Scanner. From the

original scanned volume, the region including the aortic arch and the thoracic aorta

has been selected. Segmentation has been performed using the level set method im-

plemented in the free software VMTK [8]. All the side branches have been excluded for

simplicity.

We simulate three heart beat, the first one with a constant time step, the others with

an adaptive time step. We prescribe an inlet parabolic velocity profile based on a realis-

tic waveform of the flow rate. Stress-free conditions are assumed at the outflow section,

and no-slip boundary condition on the vessel walls. Fig. 4.11 (on the left) shows the

prescribed flux and the computed pressure on the inflow section as function of time. To

discretize the geometry we use an unstructured tetrahedral mesh with 10,000 nodes.

We adopt inf-sup compatible P b1 -P1 finite element for velocity and pressure respectively

and a BDF of order 3 for the time advancing.

Adaptivity is carried out by coupling the Yosida 1 scheme with the unsplit solution.

We use an incremental scheme with s = 1. In particular, we select a tolerance ε =

0.1Ppeak, where Ppeak is the pressure required for standing the peak flow rate in a

98 4.5 Numerical results

0 0.5 1 1.5 2 2.5 3
−1

−0.5

0

0.5

1

1.5

2

2.5
x 10

4

time

P
r
e

s
s

u
r
e

0 0.5 1 1.5 2 2.5 3
0

50

100

150

200

250

300

350

F
lu

x

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2
x 10

5

time
||

p
||

L
2

0 0.5 1 1.5 2 2.5 3
0

0.01

0.02

0.03

0.04

ti
m

e
s

te
p

 (
s

e
c

)

Figure 4.11: On the left, we plot the imposed flux (solid green line) and the computed
pressure (dashed blue line) at the inflow section of the aorta. Note the shift between the
pressure and flux pick. On the right, we display the L2(Ω) norm of the pressure and the
time step. The first stroke is simulated with a constant time step of 10−3s, in the next two
heart beats time adaptivity is turned on.

steady flow. The value Ppeak = 383[g/(cm · s2)] has been estimated from the length

of the centreline and the average radius of the aorta by using the Poiseuille law. The

tolerance in this way depends only on the physical properties (viscosity) of the blood

and on geometry of the vessel.

The simulation of a heart beat with constant time step required 837 steps, while

the adaptive one only 226. We stress again that the cost of a time step without error

estimation is the same as with the estimate, since the estimator is a by-product of the

segregated scheme.

4. TIME ADAPTIVITY 99

0 0.5 1 1.5 2 2.5 3
0

200

400

600

800

time

||
u

||
L

2

0 0.5 1 1.5 2 2.5 3
0

0.01

0.02

0.03

0.04

ti
m

e
s

te
p

 (
s

e
c

)

0 0.5 1 1.5 2 2.5 3
0

20

40

60

80

time

||
w

s
s

||
0 0.5 1 1.5 2 2.5 3

0

0.01

0.02

0.03

0.04

ti
m

e
s

te
p

 (
s

e
c

)

Figure 4.12: The evolution in time of the L2(Ω) norm of the velocity field (on the left) and
of the L2(∂Ω) norm of the wall shear stress (on the right). Note how the adaptive choice
of the time step seems adequate for both velocity and shear stress dynamics.

Figure 4.13: Blood flow in a human aorta in physiological conditions (72 heart beats per
minute): from the left to the right we display the solution at t=0.088s, t = 0.144s, and t
= 0.226s. Arrows show the flow direction, their lengths are proportional to the magnitude
of the velocity, their colors reflect the magnitude of pressure field.

100 4.5 Numerical results

5 Implementation

In this Chapter we discuss implementation issues related to the algebraic splitting pre-

conditioners presented in this thesis and parallel performances of our solvers.

In particular, as we have seen in Chapters 2 and 3, time and space discretization

and linearization of the Navier-Stokes equations results in a sequence of large, sparse

linear systems of the form C BT

B 0


U

P

 =

f1

f2

 , (5.1)

where u, p are the finite element approximations of the velocity and pressure field

respectively, and f1, f2 collect the discretization of the forcing term and boundary con-

ditions. BT is the pressure gradient matrix, B the velocity divergence matrix. The

matrix C has the form

C = σM +A

where M is the velocity mass matrix, A is the discretization of the viscous and convec-

tive terms, σ is related to time discretization.

High order algebraic splitting methods (see Section 3.2) consider an approximated

LU block factorization of the matrix in (5.1) of the form

C BT

B 0

 =

C 0

B Σ


I C−1BT

0 I

 ≈

C 0

B S


I C−1BT

0 Q

 , (5.2)

where Σ = −BC−1BT is the Schur complement, S = −BHBT a first order in time

102

approximation of Σ, and Q is associated to the so called pressure correction step. Matrix

H is the scaled inverse mass matrix (σM)−1, and it is in general a dense matrix. How-

ever, for some particular choices of the finite element spaces, the mass matrix M can

be diagonalized (mass lumping) in order to preserve the sparsity of the matrix S (cfr.

Section 2.5).

In this Chapter, we focus on efficient implementations of the pressure corrected

schemes (5.2) targeting different problem sizes and hardware specifications. More

specifically, we consider first the case of small-medium scale applications running on

serial or multicore machines (such as a personal laptops or desktops), and later the case

of large scale problems running on massively parallel architectures (high performance

computing clusters or even clouds [99, 114]). In order to obtain efficient solvers, the

algorithms and their implementation should be specifically designed according to the

problem dimensions and hardware specifications.

In fact, in serial small-medium scale applications, effective implementation of the

pressure corrected schemes (5.2) requires fast algorithms for the solution of linear sys-

tems involving the matrix S. Indeed, high order algebraic splittings method require to

solve several linear systems in S to compute the action of Q−1. Therefore, if memory

constraints are not a limiting factor, direct factorizations of the matrix S may be a viable

alternative to the iterative methods. In fact, the computational cost of the factorization

can be amortized over the solution of several linear systems all involving the same ma-

trix S and different right hand sides. Later in this Chapter, we will propose an efficient

technique to compute a Cholesky factorization of S, based on the QR factorization of

the matrix H1/2BT .

On the other hand, in massively parallel applications, the symmetric definite matrix

S can be efficiently solved by conjugate gradient (CG) method and algebraic multigrid

(AMG) preconditioning. Additionally Krylov subspace recycling or deflation techniques

can be used to accelerate the convergence of the iterative method. The computational

5. IMPLEMENTATION 103

bottleneck is then represented by the solution of the momentum matrix C. Indeed,

the non-symmetry of C due to the convective terms poses a challenge to standard al-

gebraic multigrid techniques (such as smoothed aggregation [120], or classical Ruge

and Stuben coarsening [111]), and it demands for more sophisticated (and compu-

tationally expensive) techniques, such as multilevel additive Schwarz preconditioners

or specialized coarse space corrections. We will then focus on scalable solvers for the

coupled saddle point problem (5.1) with iterative methods of the GMRES family. As

preconditioner, we will use a block triangular operator of the form

P =

Ĉ BT

0 ŜQ̂

 , (5.3)

where Ĉ, Ŝ, Q̂ are appropriate approximations (i.e. using inexact solves, or just pre-

conditioners) of the operators C, S, Q.

The remainder of this chapter is structured as follows. In Section 5.1, we present

the libraries and software for finite element assembly procedures (LifeV, [51]), parallel

sparse linear algebra operators and solvers (Trilinos, [68]), and sparse factorization

(SuiteSparseQR, [37, 38, 39]). In Section 5.2, we then discuss a direct solver based

on SuiteSparseQR for the solution of linear systems involving the discrete laplacian

matrix S, and we demonstrate the viability and effectiveness of this approach for small

and medium scale applications on serial or multicore machines. We then proceed, in

Section 5.3, to the presentation of a Trilinos-based general framework for the solution

of block linear systems and block preconditioners. Finally, in Section 5.4, we present

weak and strong scalability results of our implementation of the algebraic splitting

preconditioners described in Chapter 3.

104 5.1 Libraries and Software

5.1 Libraries and Software

5.1.1 LifeV

LifeV is an open source library for the numerical solution of partial differential equa-

tions with the finite element method ([51], www.lifev.org).

LifeV is written in C++ and is entirely coded with an Object Oriented approach

and advanced programming features. Paralization in LifeV is based on MPI. The project

started in 1999 from the collaboration of the Department of Mathematics at EPFL, Lau-

sanne, Switzerland, of the Department of Mathematics at Politecnico di Milano, Italy

and the INRIA Rocquencourt, France, under the supervision of Alfio Quarteroni. Nowa-

days, LifeV is concurrently developed and maintained by CMCS Lausanne (group coor-

dinator), MOX di Milano, REO and ESTIME and the E(CM)2 group at the Department

of Mathematics and Computer Science at Emory University, Atlanta (GA), USA.

As for now, the library includes solvers for incompressible fluid dynamics, linear and

non-linear structural problems, transport in porous media, fluid-structure interaction,

electrical conduction in the heart. Even though this library is a research code oriented

to the development and test of new numerical methods and algorithms, it is intended

to be an effective tool for solving complex "real-life" engineering problems. One of the

main field of applications (although not the only one) is cardiovascular mathematics.

Parallel management of sparse linear algebra operations, iterative solvers and pre-

conditioner is based on the C++ library Trilinos [68], that will be described in details in

the following section. Interfaces to other sparse linear algebra libraries (SuiteSparse,

SuperLU, Tauchos, PETSC, Paradiso, MUMPS, SCALAPACK, DSCPACK) are available

through Trilinos.

LifeV supports different mesh formats generated with some of the most popular

mesh generation software, such as Netgen [113], Cubit, Gmsh [57], and also imple-

ments simple structured mesh generation algorithms. On-line or off-line mesh par-

5. IMPLEMENTATION 105

titioning capabilities are available by using the multilevel graph partitioning library

ParMetis [77]. Finally, results obtained in LifeV can be conveniently visualized and

post-processed in Paraview [1] and can be stored in different (ASCII or binary) formats

such as HDF5 [118], Ensight, VTK.

5.1.2 Trilinos

The Trilinos Project (www.trilinos.org, [68]) is an effort to develop algorithms and

enabling technologies within an object-oriented software framework for the solution

of large-scale, complex multi-physics engineering and scientific problems. The Trilinos

project is divided in several packages, that can be used separately or combined together.

Here we give a short description of the packages used in our applications in order to

provide basics parallel sparse linear algebra operations (Epetra and EpetraExt),

Krylov iterative solvers (Aztecoo and Belos), preconditioners (Ifpack and ML),

general purpose utilities (Teuchos).

Basics parallel sparse linear algebra operations packages

Epetra provides the fundamental construction routines and service functions that are

required for parallel linear algebra libraries and it represents the underlying foundation

for all Trilinos solvers. EpetraExt is a set of extensions to Epetra to add support for

additional capabilities, such as transformations (permutations, sub-block views, etc.),

coloring support, and input/ouput (I/O) utilities.

In particular, Epetra provides classes to easily operate with maps (Epetra_Map),

vectors (Epetra_MultiVector), matrices (Epetra_CsrMatrix) and other objects

distributed on a parallel machine. Such classes support local and global permutations,

overlapping Schwarz operations and many other data movement and redistribution

algorithms. It also offers a specialization of the parallel sparse row matrix format

optimized for finite element applications (Epetra_FECrsMatrix).

106 5.1 Libraries and Software

Krylov iterative solvers packages

Aztecoo provides an object-oriented interface to the well-known Aztec solver library.

Furthermore, it allows flexible construction of matrix and vector arguments via Epetra

matrix and vector classes.

Belos provides next-generation iterative linear solvers and a powerful linear solver

framework. The collection of iterative linear solver algorithms in Belos achieves a

high level of abstraction, since matrices, preconditioners, and vectors are treated as

opaque objects with simple interfaces. These interfaces do not depend on the internal

representation of these objects. Belos’ solvers only use matrices and preconditioners

as black-box “operators” that take one or more vectors as input, and return the same

number of vectors as output. They only access vectors via a simple interface for sum-

ming vectors together or computing their inner products or norms. This framework

includes the following abstract interfaces and implementations.

1. Abstract interfaces to linear algebra using traits mechanisms. This allows the user

to leverage any existing investment in their description of matrices and vectors.

In addition, Belos provides concrete linear algebra adapters for Epetra.

2. Abstract interfaces to orthogonalization; implementations of iterated classical

Gram-Schmidt (ICGS), classical Gram-Schmidt with a DGKS correction step [73],

and iterated modified Gram-Schmidt (IMGS) are included.

3. Abstract interfaces to iteration kernels and powerful solver managers that allows

to specify user-defined stopping criterion and output information.

Belos can currently solve real-valued (often complex-valued), Hermitian and non-

Hermitian, linear problems, via the following solvers:

1. Single-vector and block GMRES;

2. Single-vector and block CG;

5. IMPLEMENTATION 107

3. Pseudo-block variants (perform single-vector algorithms simultaneously): pseudo-

block CG, pseudo-block GMRES;

4. Recycling solvers: GCRO-DR and RCG;

5. Flexible variants: Flexible GMRES.

Preconditioner packages

The packages Ifpack (Inexact factorization) and ML (Multilevel algorithms) provide

a suite of object-oriented algebraic preconditioners for the solution of preconditioned

iterative solvers, implemented by the Aztecoo and Belos packages.

In particular, most Ifpack preconditioners can be rewritten as additive Schwarz

methods of overlapping domain decomposition type. The user can adopt a minimal-

overlap, or ask Ifpack to extend the overlap. The resulting preconditioner reads:

P−1
IFPACK =

NumProcs−1∑
i=0

PiA
−1
i Ri

where Ri is the restriction operator from the global vector to the overlapping subdo-

main i, and Pi is the prolongator operator. Pi is in general the transpose of Ri, but

not necessarily (restricted additive Schwarz [27]). It is assumed that each subdomain

solver Ai is assigned to a different processor.

A key component of the previous formula is the strategy to apply A−1
i . Using

Ifpack, this can be defined by one of the following.

1. Point or block relaxation preconditioners. Point relaxation preconditioners are

probably the simplest iterative methods, and are generally used as smoothers

in multilevel methods (for instance, within ML). For block relaxation, the local

matrix Ai is divided into blocks, then a relaxation method is applied on the block

108 5.1 Libraries and Software

structure of Ai. Available choices are Jacobi, Gauss-Seidel, symmetric Gauss-

Seidel, or their block counterpart.

2. Incomplete factorization (IC, ICT, ILU, ILUT) for symmetric and non-symmetric

matrices, with dropping based on graph or on values.

3. An exact solve on each subdomain (such as LU or Cholesky).

ML is designed to solve large sparse linear systems of equations arising primarily

from elliptic PDE discretizations. ML is used to define and build multigrid solvers and

preconditioners, and it contains black-box classes to construct highly-scalable smoothed

aggregation preconditioners. The primary goal of ML is to provide state-of-the-art it-

erative methods that perform well on massively parallel computers (with thousands of

processes involved in the computations) and that at the same time are easy to use for

application engineers.

Algebraic multigrid methods consists of two basics ingredient, a smoothing tech-

nique and a coarsering strategy. ML provides a large selection of parallel smoother

methods: processor-based Gauss-Seidel type methods, processor-based block Jacobi,

Gauss-Seidel and symmetric Gauss-Seidel, polynomial-based smoothers, Krylov sub-

space smoothers, additive Schwarz preconditioners (available through the Ifpack

interface), direct subdomain solvers. Also ML provides several different algorithms

to guide the type of coarsening and the inter-grid transfers (including the ability to

drop weak coupling within the operator during inter-transfer construction), such as

smoothed and unsmoothed aggregation, classical Ruge–Stüben AMG, finite element

based two-level schemes, energy minimization prolongators.

General purpose utilities packages

Teuchos provides a suite of common tools for all other Trilinos packages. These tools

include

5. IMPLEMENTATION 109

1. low-level math utilities (BLAS/LAPACK wrappers, numerical scalar traits, serial

dense matrices);

2. smart pointers (non-persisting or reference-counted pointers);

3. parameter lists and parsers (XML files and commandline);

4. outputting support, performance monitoring (timings and flop count), exception

handling.

In particular, the class Teuchos::ParameterList is templated parameter list which

holds a map of <key,value> pairs, where the "value" can be any type of object and the

"key" is a string object. The type of parameter is chosen through the templated Set/Get

methods, which allows it to be any standard type (float, double, int, ...), user defined

class, or another parameter list.

5.1.3 SuiteSparseQR

SuiteSparseQR is a sparse QR factorization package based on the multifrontal method

[37, 38]. The multifrontal method breaks the factorization of a large sparse matrix into

a sequence of small dense frontal matrices. These frontal matrices are related to one

another in a tree that specifies the order in which such matrices should be assembled

and factorized. Within each frontal matrix, LAPACK [7] and the multithreaded BLAS

[41],[59] enable the method to obtain high performance on multicore architectures.

Parallelism across different frontal matrices is handled with Intel’s Threading Building

Blocks library [71].

More specifically, the factorization algorithm in SuiteSparseQR consists of three

steps.

1. Fill-reducing ordering aims to reduce the computational cost of the factorization

and the memory requirement for the allocation of the upper triangular matrix R,

110 5.1 Libraries and Software

by introducing an opportune permutation of the columns of A. Three different

ordering strategies are available, AMD (Approximate Minimum Degree, [6]), CO-

LAMD (a variant of AMD specific for rectangular matrices, [40]), Metis (a graph

partitioning based reodering, [76]).

2. Symbolic factorization performs the symbolic supernodal Cholesky factorization

of ATA = RTR, by solely analyzing A and without explicitly computing the spar-

sity pattern of ATA. The first step is to compute the column elimination tree of A.

This tree is required in the rest of symbolic analysis and also describes the data

dependencies for the numeric factorization. Then the algorithm proceeds with

the identification of the supernodes in the multifrontal factorization. A supern-

ode in R represents a group of adjacent rows with identical or nearly identical

nonzero pattern. Each supernode in R gives rise to a single frontal matrix in the

numeric QR factorization. A frontal matrix is therefore a dense submatrix of A in

which portions of the QR factorization of A are performed. Such frontal matrices

are normally much smaller than the matrix A being factorized. Finally, the frontal

matrices dependency tree is computed according to the supernodes definition and

the columns elimination tree. Frontal matrices at the same level of the tree may

be assembled and factorized in parallel. Symbolic factorization also provides an

upper bound for the memory allocation in the rest of the computation.

3. Numerical factorization computes the dense Householder QR factorization of each

frontal matrix starting from the leaves of the dependency tree, and then assem-

bling and factorizing the parent frontal matrices. Such factorization is nearly

the same as DGEQRF in LAPACK and uses BLAS Level-3 routines. Parallel BLAS

implementation may be exploited at this point.

5. IMPLEMENTATION 111

Parallelism

At least two opportunities for parallelism exist within a multifrontal sparse QR fac-

torization. The first opportunity arises in the frontal matrix tree, the second in the

numerical factorization of each frontal matrix.

More specifically, SuiteSparseQR determines, in the analysis phase, the frontal ma-

trix tree, an amalgamated version of the column elimination tree, in which each node

is a frontal matrix consisting of one or more rows of A. Next the size of each frontal

matrix is determined, and an estimate of the floating point operations in each front is

computed.

The goal of the parallel analysis phase is to assign frontal matrices to tasks, which

are normally less than the number of frontal matrices. In order to ensure load bal-

ancing, the assignment of frontal matrices to tasks is performed as follows. For each

frontal matrix f , the algorithm estimates the work in the subtree rooted at f . A big

node is defined as a node for which the work in its subtree is greater than max(ω/α, β)

where ω is the total flop count for the entire QR factorization, and α and β are two

user-defined parameters that control the task tree granularity. Typically α should be at

least twice the number of cores, and β = 106 [37]. All other nodes are small. The first

pass assigns all small nodes to tasks. Suppose front f is a small node but its parent p is

a big node. All fronts in the subtree rooted by f are placed in a new task. Additional

children of pwhich are also small nodes are added to this task, until the task has at least

max(ω/α, β) work. After that, a new task is created for the subtrees of the children of

p.

The second pass assigns all big nodes to tasks. If all children of f are assigned to

the same task, then f is also assigned to the same task. If f has no children, or if it has

children assigned to different tasks, then a new task is created to which f is assigned.

To conclude the symbolic analysis phase, the algorithm precomputes the stack size

for each task, so that memory is allocated by the main process before parallel tasks are

112 5.2 On the numerical solution of the discrete Laplacian with direct methods

forked. Two tasks can share a stack if one is the ancestor of the other, so that there are

only as many stacks as there are leaves in the task tree. In the numerical factorization

phase, each task factorizes all frontal matrices in the subtree, and the results are left

on the stack for the children tasks. No synchronization is needed except that a task can

start when all its children are finished.

SuiteSparseQR exploits tree-based parallelism by using Intel’s Threading Building

Blocks (TBB) software. TBB is written in the C++ language and it is specifically de-

signed to target shared memory multicore architectures [71, 109]. TBB-based applica-

tions need only to specify tasks and the dependencies between them, while TBB itself

takes care of the scheduling and synchronization.

Additional parallelism within each task is exploited in the numerical factoriza-

tion of the frontal matrices. For this second level of parallelism SuiteSparseQR re-

lies on the multithreading already present in many high quality implementations of

the Blas/Lapack libraries. For example, many vendor-specific Blas/Lapack implemen-

tations, such as the Intel Math Kernel Library (MKL, [72]) and the AMD Core Math

Library (ACML, [5]), use OpenMP to parallelize their linear algebra routines.

Parallel performances achieved exploiting the two different levels of parallelism and

their combination are discussed in Section 5.2.

5.2 On the numerical solution of the discrete Laplacian with

direct methods

As pointed out in Chapter 3, several algebraic factorization methods/preconditioners

for the INS entail the solution of S = −BHBT . Since S is a symmetric negative

definite matrix, a Cholesky factorization of −S looks appealing. Let DT = H1/2BT , Q

the orthogonal matrix and R the upper triangular part matrix of the QR factorization

5. IMPLEMENTATION 113

of DT , then we can factorize S as

S = −BHBT = −DDT = −(QR)T (QR) = −RTR.

Observed that in this way, it is possible to compute the Cholesky factorization of −S

without explicitly assembling it, but using only the matrix DT . Additionally notice that

the orthogonal matrix Q does not need to be explicitly assembled, since it does not

appear in the final Cholesky factorization.

The sparse QR factorization of the matrix DT was originally proposed, for solving

2D problems, in [125], where the author used QR27 library by P. Matstoms [88] to

carry out the computations. Here, for 3D problems we use the C/C++ library SuiteS-

parseQR by Tim Davis [38],[37]. As we discussed in the previous section, the multi-

frontal QR method implemented in this suite splits the factorization of a large sparse

matrix into a sequence of small dense frontal matrices. The latter are related one to

the other in a tree, which provides one parallel level. Within each dense frontal matrix,

LAPACK [7] and the Level-3 BLAS [41],[59] provide another layer for parallelism.

5.2.1 Parallel performance results

We tested the QR factorization suite by solving the Navier-Stokes equations in a unit

cube, discretized with a uniform structured tetrahedral mesh. Three different mesh

sizes h are considered: coarse (8 elements per edge), medium (16 elements per edge),

fine (32 elements per edge). Two different couples of inf-sup compatible finite element

are considered, P b1 -P1 and P2-P1 for velocity and pressure respectively. The former

clearly features smaller and more sparse matrices .

In Tab. 5.1 we provide for each case the basic features (finite element space, mesh

size h), size (number of rows n, columns m, and number of non zero entries nnz),

results of the symbolic factorization (number of frontal matrices nf using the Metis

114 5.2 On the numerical solution of the discrete Laplacian with direct methods

FE h n (1e3) m (1e3) nnz (1e3) nf serial time
P b1 -P1 1/8 11.403 0.729 52.419 57 0.19s
P b1 -P1 1/16 88.467 4.913 447.043 220 9.19s
P b1 -P1 1/32 697.635 35.937 3700.419 1386 7m35s
P2-P1 1/8 23.955 0.729 131.378 44 0.50s
P2-P1 1/16 181.539 4.913 1056.774 209 19.7s
P2-P1 1/32 1413.699 35.937 8490.734 1306 14m7s

Table 5.1: Finite element matrices used in the test of the parallel performance of SuiteS-
parseQR. The finite element space FE, the mesh size h, the number of rows n, the number
of columns m, the number of non zero elements nnz, the number of frontal matrices nf ,
and the serial factorization time are reported.

ordering), and serial factorization times. Notice that the QR factorization time is com-

parable to the timing of computing, in serial, an ILUT preconditioner of the momentum

equation with Aztec/Trilinos.

In Fig. 5.1 we compare the speed-up achieved exploiting different levels of paral-

lelism, namely

1. tree-based only: the large sparse matrix is split into dense smaller frontal matri-

ces, which are grouped in subsets according to a dependency tree. Driven by

load-balancing criteria, a scheduler assigns one or more of these frontal matrices

subsets to tasks (basic units of work) that can be executed in parallel.

2. Blas-based only: the factorization of frontal matrices is performed sequentially.

Parallelization is performed by a parallel implementation of the Householder re-

flection for the QR factorization in the Blas.

3. combined: both the levels of parallelism are exploited.

Numerical results are summarized in Tab. 5.2. In the comparison between the

two levels of parallelism, we observe that tree-based parallelism provides better speed-

up for small matrices, while Blas-based parallelism is less scalable but achieves better

speed-up for large matrices. Notice that in the combined case the speed-up for the large

P2-P1 matrix is about 15% higher than the one for P b1 -P1.

5. IMPLEMENTATION 115

Matrix Tree-based Blas-based Combined
P b1 -P1 small 1.72 1.16 1.79
P b1 -P1 medium 2.15 2.02 3.00
P b1 -P1 large 2.49 3.13 3.68
P2-P1 small 1.69 1.25 1.96
P2-P1 medium 2.03 2.08 3.08
P2-P1 large 2.37 3.09 4.27

Table 5.2: Maximum speed-up achieved on a Sun Microsystems SunFire V40z shared
memory machine, with 4 Dual Core AMD Opteron(tm) Processors and 32 GB of memory
running Linux.

Our test were performed on crunch.mathcs.emory.edu, a Sun Microsystems SunFire

V40z shared memory machine, with 4 Dual Core AMD Opteron(tm) Processors and 32

GB of memory running linux. The total duration of the test was 7 hours 40 minutes,

and 288 matrix factorizations were computed.

These results point out that the factorization performed by the SparseQR Suite is a

viable approach in small-medium scale 3D computations using multicore architectures.

5.2.2 The effect of the ordering strategy

Fill-in reducing reordering of the columns of H1/2BT is the first step of the symbolic

analysis. It plays a fundamental role in the whole factorization since the ordering

strategy strongly affects the structure of frontal matrices tree and the sparsity of the

factor R.

In this test we compare the serial performances (factorization times) and parallel

ones (speed-ups) for the two kinds of ordering which well fit the characteristics of the

matrices in Tab. 5.1: Metis (a graph partitioning ordering), and COLAMD (a modifica-

tion of the approximate minimum degree ordering).

For each of the two ordering strategies we consider different combinations of the

maximum number of TBB and OpenMP tasks (ntbb and nomp respectively). The total

duration of the test was 2 hours 34 minutes, and 84 matrix factorizations were com-

116 5.2 On the numerical solution of the discrete Laplacian with direct methods

Figure 5.1: Speedup curves exploiting the different levels of parallelism (tree-based on the
left, Blas-based in the middle, combined on the right). Results relative to P1b-P1 matrices
are on top, relative to P2-P1 on bottom. Colors represent the matrix size: small matrices
are in blue, medium in red, large in green.

5. IMPLEMENTATION 117

Metis COLAMD

P1b-P1 small
P1b-P1 medium

P1b-P1 large
P2-P1 small

P2-P1 medium
P2-P1 large

nf serial time
57 0.19s

220 9.19s
1386 7m35s

44 0.50s
209 19.7s

1306 14m7s

nf serial time
39 0.18s

167 8.69s
973 12m38s
20 1.02s

134 22.4s
649 23m59s

Table 5.3: Number of frontal matrices and serial factorization time for the matrices in
Tab.5.1 using the Metis and COLAMD ordering.

puted.

Tab. 5.3 shows the number of frontal matrices and serial factorization times for

both orderings. Observe that using Metis we obtain a larger number of frontal matrices

with respect to the one obtained using COLAMD. This is an advantage, since a larger

number of frontal matrices provides more opportunities for tree-based parallelism. Ad-

ditionally, frontal matrices obtained with the Metis reordering are, in average, smaller

in sizes and this help in reducing the fill-in in the R factor. Serial factorization times

are comparable for small and medium sized matrices, while COLAMD requires much

more computational effort for large matrices.

Fig. 5.2 shows that Metis ordering, already faster in the serial case, also offers

similar or better scalability properties compared to COLAMD, especially for ntbb = 8, 4.

This result is in agreement with the numerical test performed in [38], and it suggests

that Metis ordering improves scalability for the tree-based parallelism.

5.3 Management of Block Operators in LifeV/Trilinos

In this section we describe one of the main contributions of this thesis to the LifeV

library, that is the implementation of a flexible linear algebra module for the finite

element library LifeV. The purpose of this module is to provide a general framework

to the preconditioning of block linear systems (such as Navier-Stokes equations, PDE

118 5.3 Management of Block Operators in LifeV/Trilinos

n concurrent tasks 16 8
combinations
(ntbb, nomp)

1 2 3
(8,2) (4,4) (2,8)

4 5 6 7
(8,1) (4,2) (2,4) (1,8)

Figure 5.2: Speedup for each matrix in Tab.5.1 using Metis and COLAMD ordering. The
first 3 bars refers to n = 16, the last 4 to n = 8.

5. IMPLEMENTATION 119

constrained optimization problems, fluid structure interaction) in order to simplify the

implementation and the testing of different solution strategies.

To this aim, we intensively used advanced features of the C++ language (poly-

morphism, virtual classes, factories) in order to guarantee interoperability between the

classes in the module. In particular, classes are organized in specific hierarchies accord-

ing to their purpose, so that algorithmic features are hidden behind general interfaces.

All classes derived from the same base class differ the one from the other only in the

way they are set-up, but not in the way they are successively applied in the code. Base

classes are purely virtual, derived classes are concrete (if no other class inherits from

them) or implement the NVP idiom (non-virtual public interface) if they delegate the

implementation of some features to children classes. The advantage of the NVP idiom

is that it leads to a robust and extensible design of the class hierarchies [115, rule

39]. It is robust because the base class maintains control over the invariants, pre and

post conditions of the methods in the public interface; it is extensible since the actual

algorithm to produce the desired output is implemented by a derived class.

Additionally, in the implementation of the module, we introduced a strong sepa-

ration between the finite element assembly routines in LifeV and the linear algebra

operations involved in the construction of block preconditioners and the solution of

coupled linear systems, so that the module can be also used as a stand-alone package.

The module is based on the parallel linear algebra Trilinos [68], and provides inter-

faces to the Aztecoo, Belos, Ifpack, ML packages.

5.3.1 Overview of the block linear algebra module

The module consists of two parts.

1. The linear_algebra part contains classes which provides a simple and pow-

erful framework to manage linear operators defined in a matrix free fashion,

block matrices and block vectors, preconditioners and Krylov solvers.

120 5.3 Management of Block Operators in LifeV/Trilinos

2. The navier_stokes part contains the implementation of state of the art pre-

conditioners for the Navier-Stokes equations (Least-Squares-Commutator, High-

Order-Yosida, Cahouet-Chabard, and a preliminary version of the Augmented La-

grangian preconditioner [18, 19]).

The main goal of this module is to allow the user to set at run time (through an

XML files) the type of block preconditioner to use, the desired Trilinos package for

Krylov iterative methods (Aztecoo or Belos), and the desired Trilinos package for

preconditioning (Ifpack or ML).

To achieve such flexibility, we use dynamic polymorphism and opaque containers

(Teuchos::ParameterList). In particular, the hierarchy of classes follows a simple

and clear design. Base classes (prototypes) are purely abstract. They define the public

interface and let the derived classes implement the public interface. Derived class

can be concrete or abstract. Such classes may introduce new constructors or set-up

methods with respect to the base class, but should not introduce new functionalities.

Concrete derived classes should implement all the methods in the public interface of the

prototype class, and should not have other classes derived from them. Abstract derived

classes should still implement all the methods in the public interface of the base class

but also define abstract virtual protected methods to provide a hook for customization

to the derived classes. Factory are used to allocate concrete instances of an abstract

class and for their setup.

General linear algebra classes

Here we discuss the features of the linear algebra framework. LinearOperator is an

abstract class that provides the basic public interface for all the classes in the frame-

work. Such class directly inherits from the abstract class Epetra_Operator defined

by the Epetra module in Trilinos, and introduces some additional type definitions.

LinearOperator defines the basic functionalities a derived class should provide in

5. IMPLEMENTATION 121

order to be used in collaboration with other classes in the module. In particular, it pro-

vides methods to apply a linear operator (or its inverse) to a vector, and to construct

vectors compatible with the domain and range of the operator.

The main reason to use Epetra_Operator as prototype for LinearOperator is

that in this way all the objects of the framework can be directly used inside Aztecoo

and Belos.

The following classes directly derive from LinearOperator.

1. BlockOperator is a lightweight interface to block structured linear operators

and preconditioners. It provides functionality as matrix-vector multiplication,

lower/upper triangular block operators solves.

2. InvertibleOperator accepts a Epetra_Operator object and it implements

the method ApplyInverse() by using the Krylov methods implemented in

Aztecoo (AztecooOperator) or Belos (BelosOperators). If desired, the

user may provide as preconditioner another object of type Epetra_Operator.

3. RowMatrixPreconditioner accepts a Epetra_CsrMatrix, and it imple-

ments the method ApplyInverse() by computing an incomplete factoriza-

tion (IfpackPreconditioner) or a AMG cycle (MLPreconditioner). A

RowMatrixPreconditioner object can be provided as preconditioner to an

InvertibleOperator object.

4. ApproximatedInvertibleRowMatrix accepts a Epetra_CsrMatrix ob-

ject, and it implements the method ApplyInverse() by using preconditioned

Krylov method. As private attributes, the class stores an InvertibleOperator

and a RowMatrixPreconditioner objects.

The design of these classes is shown in Fig. 5.3 and Fig 5.4. The former is the

inheritance diagram where each arrow points from the derived to the parent class. The

122 5.3 Management of Block Operators in LifeV/Trilinos

Figure 5.3: Inheritance diagram. Arrows point from the derived to the parent class.

Figure 5.4: Collaboration diagram. Arrows point from the parent to the derived classes.

latter is the collaboration diagram and explains how class interacts between each other:

there is an arrow connecting two classes if the first class has an instance of the second

class as private (or protected) attribute. The shape of the boxes depends on the class

design: we use ellipses to represent pure virtual classes, squares with diagonals for the

virtual base classes in the NPI idioms, and squares for concrete classes.

Preconditioners for the Navier-Stokes equations

We now discuss the classes specifically implemented for the solution of the discrete

Navier-Stokes problem. We distinguish them in two categories: linear operator classes,

such as DiscreteLaplacian, HighOrderYosida, LeastSquaresCommutator,

5. IMPLEMENTATION 123

and an helper class (OseenOperatorManager and derived class) used to set up the

block preconditioner.

The helper class OseenOperatorManager is an abstract class (NPI idiom) from

which classes implementing different methods are derived.

Such classes (OseenOperatorManagerHOY, OseenOperatorManagerLSC,

OseenOperatorManagerCC, OseenOperatorManagerAL) implement the High Or-

der Yosida, Least Squares Commutator, Cahouet-Chabard, Augmented Lagrangian block

preconditioners. Such classes require as input the momentum, pressure gradient, and

velocity divergence finite element matrices, and return an InvertibleOperator ob-

ject for the solution of the Navier-Stokes saddle point problem. Given the fact that

different preconditioners may require additional data (velocity mass matrix, time step,

pressure mass matrix, for example) we use an opaque container (MatrixContainer)

to provide such information.

In the next section, we will present scalability results for the algebraic pressure

corrected preconditioners implemented in this framework.

5.4 Scalability Results

In this section we present scalability results for our implementation of the pressure cor-

rected algebraic splitting preconditioners for the Navier-Stokes equations. In particular

we consider both a weak and strong scaling test.

In a weak scaling test the number of unknowns proportionally increases with the

number of processors involved in the simulation. In our application, this can be achieved

by constructing, for the same domain Ω, a hierarchy of meshes with different size h.

Perfect (weak) scaling is achieved if the measured wall time to complete the simulation

is independent of the size of the problem. The (weak) scalability properties of an ap-

plication depends on three factors: the computational complexity of the algorithm, the

124 5.4 Scalability Results

quality of the implementation, and finally the hardware specifications. In particular, in

order to obtain good weak scalability properties it is mandatory to develop solvers and

preconditioners that are mesh independent, that is the number of iterations does not

increase as the mesh is refined.

In a strong scaling test we keep the number of unknowns constant (i.e. we fix the

number of elements in the mesh) while we increase the number of processors. Perfect

(strong) scaling is achieved if the measured wall time is inversely proportional to the

number of processes used in the simulation. In reality, this does not happen because

of many factors, such as small load imbalances between processors, synchronization

points in the application (such as MPI_Barrier or MPI_Wait), non-overlapping commu-

nications and computations, hardware and network performances.

Before presenting the numerical results let us briefly describe the overall organiza-

tion of the Navier-Stokes solver application used in our tests.

Some operations are independent of the time advancing and are performed out

of the temporal loop, while other operations need to be performed at each time step.

These constitute the computationally-intensive kernel of the software. Schematically,

we represent the stages of the application in Figure 5.5.

Here we detail each phase. Step (i) consists of the definition of the computational

domain – given by the mesh – where the equations have to be solved numerically. Mesh

generation is typically accomplished with in-house software (for structured meshes) or

third-party software such as NetGen [113] and GMSH [57]. In the parallel application,

the domain is partitioned so that each process takes care of only a subset of the global

mesh. This splitting is achieved through the use of graph partitioning algorithms, such

as those implemented in the library ParMETIS [77], guaranteeing a proper load balanc-

ing among processes. The load is measured as the number of mesh elements assigned

to each process. At the same time, high quality partitionings should minimize the edge-

cut, or the number of connections between disjoint partitions. This property is valuable

5. IMPLEMENTATION 125

Figure 5.5: Steps for the numerical solution of a time-dependent PDE problem.

126 5.4 Scalability Results

because in the considered application the communication between processes mostly in-

volves the exchange of data related to neighbouring elements. Other operations of this

step refer to all the computations that are time independent and can be performed

once.

Step (ii) concerns the computation (or more specifically the assembly) of the ma-

trices and vectors required for the construction of the discretized algebraic problem.

Each process has local access to a subset of the matrices and vectors corresponding to

its own portion of the mesh and requires limited access to adjacent submeshes. Assem-

bly is carried out with algorithms provided by LifeV, while the data structures for the

management of the distributed matrices and vectors are provided by Trilinos [68].

Trilinos also provides algorithms for the solution of the algebraic problem (Step (iii)).

In particular, we use preconditioned iterative methods. We then distinguish Step (iiia)

for the computation of the preconditioner, and Step (iiib) for the actual solution of the

preconditioned system.

Step (iv) concerns the visualization of the solution to the differential problem, and

can be delegated to third-party software such as Paraview [1]. This step may also

include the computation of quantities of interest related to the solution u.

For the purpose of these tests, we are mostly concerned with Steps (ii) and (iii),

which have a major impact on the entire computational cost of the application.

5.4.1 Weak scalability test

For this test, we use the popular benchmark proposed by C. R. Ethier and D. A. Stein-

man [47]. The exact solution of this problem is shown in Fig. 5.6. The initial velocity

and boundary conditions are set to yield a Reynolds number of approximately 100.

The computational domain is a unit cube discretized with a structured tetrahedral

mesh. Time discretization is second order BDF formulas. Due to accuracy considera-

tions, the timestep ∆t is chosen proportional to the mesh size h. At the coarsest level

5. IMPLEMENTATION 127

Figure 5.6: Solution of the problem proposed by C. R. Ethier and D. A. Steinman [47]
for t = 0.003s. Arrows represent the vector field u, while in the cubic domain are shown
isosurfaces of the scalar field p.

we have h = 0.1 and ∆t = 10−3.

We consider two different treatments of the convective terms: semi-implicit and

fully explicit (cfr. Section 2.4.1). Semi-implicit treatment of the convective term leads

to the solution of a generalized Oseen Problem. To cope with the non-symmetry in the

momentum matrix COseen = σM+K+N , we add grad-div stabilization to the problem

(cfr. Section 2.3). Fully explicit treatment of the convective term leads, on the other

hand, to the solution of a generalized Stokes Problem, where the momentum matrix

CStokes = σM + K is symmetric positive definite. Additionally, in this case we use the

simplified strain tensor in order to decouple the components of the velocity field and

induce a block diagonal structure in CStokes.

Concerning the choice of the finite element space, we consider both the case of

Taylor Hood elements P2-P1 and MINI elements P1B-P1. The former couple of spaces

yields to a second order in space approximation of the velocity field, while the latter

only first order. The better accuracy of Taylor Hood elements is balanced by the fact that

the linear systems to be solved are larger in dimensions and feature less sparse matrices.

It is worth to notice another computational advantage of MINI elements compared to

Taylor Hood elements. While for the formers the use of inexact quadrature rules gives

accurate lumped velocity mass matrices, for the latter the same lumping technique does

128 5.4 Scalability Results

not apply (cfr. Section 2.5), so that the consistent mass matrix should be used in the

computations.

At each time step, we then solve the saddle point problem

C BT

B 0


U

P

 =

fu

fp

 , (5.4)

with preconditioned GMRES iterations (Belos). GMRES is restarted every 50 iter-

ations, and vectors in the Krylov subspace are orthogonalized by using one or more

steps of the modified Gram-Schmidt algorithm. Finally, by letting rk the residual at

iteration k, the stopping criterion is given by

‖rk‖
‖r0‖

≤ 10−9.

The block upper-triangular preconditioner

P =

C BT

0 Σ̂


is applied inexactly by using the AMG preconditioners available in ML. We use station-

ary AMG cycles, so that no flexible variant of GMRES is required. Here Σ̂ = SQ1 stands

for the HOY1 approximation of the pressure Schur Complement, and its application to

a vector requires two approximate solves of the discrete laplacian matrix S = −BHBT

and a few other matrix vector multiplications in the velocity space. For the symmet-

ric positive matrices S and CStokes we used smoothed aggregation to build the coarse

AMG hierarchies, while to deal with the non-symmetry induced by the convective term

in COseen we chose an unsmoothed aggregation algorithm specific for non-symmetric

problems. In this case, the prolongation operator is constructed in order to maximize

the reduction of the residual norm based on the spectral properties of the fine grid

5. IMPLEMENTATION 129

operator and smoother. For both the symmetric and not symmetric case, we used three

sweeps of the symmetric Gauss-Seidel algorithm as smoother. ParMETIS was used to

improve load balancing at the coarser levels of the AMG hierarchy.

For this test we used lagrange, a hpc machine at CILEA, Italy, one of the most ad-

vanced supercomputing centres in Europe (http://www.cilea.it/1/). This super-

computer, when assembled, was placed at the 136-th position in the TOP500 list [89].

The machine is composed of HP ProLiant server blades with two hexacore Intel Xeon

X5660 processors and 24 GB RAM each. The network infrastructure is provided by

InfiniBand (IB) 4X Double Data Rate (DDR, 20 Gb/s bandwidth). Computing nodes

are controlled by the CentOS version 5.6 operating system. 22 computational nodes of

lagrange were specifically reserved to this benchmark. The code was compiled using

the Intel Compiler Suites 12.1, and linked against CPU vendor-specific BLAS/LAPACK

libraries (MKL [72]), ParMetis 3.1.1, Trilinos 10.6.4, LifeV 2.0.0.

We ran the simulations using up to a maximum of 8 processes per node (each node

has two hexacore cpus) up to 128 processes, in order to balance overheads due to

concurrent access to resources inside the node (memory and cache) on the one hand

and communication between nodes on the other hand. For the last simulation (258

processes) we had to use the full capacity of each node due to limited number of

nodes that were reserved to our experiment. This can partially explain the decrease of

performances observed with 256 processes.

In Tab. 5.4, we report the results of our weak scalability test. For each choice of

finite element spaces (Taylor Hood or MINI elements) and treatment of the convective

term (semi-implicit or fully-explicit) we report the number np of processors involved

in the simulation, the total number of degrees of freedom (Ndof), the average number

of GMRES iterations (nit) for each time step, the average wall time to solve the linear

http://www.cilea.it/1/

130 5.4 Scalability Results

system (tsolve), to compute the preconditioner (tprec), and the total average time, in-

cluding also the finite element assembly phase, to perform the entire time-step (ttot).

Timings are measured in seconds by using the gettimeofday function. All average

values correspond to the first 100 time step of the simulation.

As expected, we observe that Taylor Hood elements incur in a much higher compu-

tational cost with respect to MINI elements, in fact not only more iterations are needed

to achieve convergence but also each of them is more expensive. In the case of MINI

elements, we observe a slight increase in the number of iterations as we increase the

number of processors. This is expected due to the choice of parameters in the AMG

cycles. However, in the case of Taylor Hood elements the number of iterations tends

to decrease as we increase the number of degrees of freedom. In order obtain some

insight on this phenomenon let us consider the inexact LU block factorization

Â =

C 0

B S


I C−1BT

0 Q

 ,
where, for simplicity, we take Q = I (Yosida scheme). Here we use the consistent

velocity mass matrix M in the definition of the momentum matrix C = α0
∆tM + A to

preserve the second order of accuracy for the discrete velocity field, while we use the

lumped mass matrix M̂ given by (2.24) for an approximation of H to preserve sparsity

in the discrete laplacian S. A straightforward computation gives

A−Â =

0 0

B(C−1 − dt
α0
M̂−1)

 =

0 0

0 B(C−1 − ∆t
α0
M−1)BT + ∆t

α0
B(M−1 − M̂−1)BT

 .
The splitting error then consists of two contributions: the usual Yosida splitting error

‖B(C−1 − ∆t
α0
M−1)BT ‖ = O(∆t2) and an additional error introduced by the mass

lumping ‖∆t
α0
B(M−1 − M̂−1)BT ‖ = O(∆t). This second contribution leads to a slower

5. IMPLEMENTATION 131

decay of the norm of the residual for the continuity equation resulting in a higher

number of iterations for the solution of the saddle point problem (5.4). However, the

mass lumping error vanishes as h goes to zeros, justifying the reduction in the number

of iterations for finer meshes.

Independently of the choice of the finite element spaces, we notice that the fully ex-

plicit treatment is computationally cheaper than the semi-implicit ones, both regarding

number of iterations and wall time. In the fully explicit case, in fact, the momentum

matrix C has a block diagonal structure, and it allows for more efficient AMG precon-

ditioning due to its symmetry.

In Fig. 5.7, we show the parallel speed-up achieved in the linear solver phase alone

on the left, and in the whole time step computation (FE assembly, computation of the

preconditioner, linear solver) on the right. For a weak scalability test, we define the

parallel speed-up S as

S =
Wp/Tp
Ws/Ts

,

where Wp/Tp and Ws/Ts are the ratios between the number of degrees of freedom and

the wall time required to complete the task in parallel and in serial, respectively. In

case of perfect scalability S is proportional to the number of processes (black line). It is

worth noticing that the most computationally expensive problem (Oseen Problem with

Taylor Hood elements) is also the most scalable.

5.4.2 Strong scalability test

In this test we use a benchmark problem proposed in the Inaugural CFD Challenge

Workshop at the ASME 2012 Summer Bioengineering Conference. This involves the

simulation of blood flow in a giant aneurysm grown in the internal carotid artery. All

the physical features are assigned (µ = 0.04Poise and ρ = 1g/cm3). We consider a sin-

132 5.4 Scalability Results

Semi-implicit convective term Explicit convective term
np Ndof nit tsolve tprec ttot nit tsolve tprec ttot

1 29K 114 3.30 0.28 3.90 70 1.08 0.12 1.36
2 57K 110 3.42 0.34 4.20 71 1.23 0.17 1.59
4 113K 106 4.40 0.39 5.29 67 1.44 0.20 1.85
8 216K 105 6.39 0.48 7.41 66 2.12 0.24 2.58

16 428K 103 6.97 0.55 8.13 65 2.46 0.30 3.02
32 860K 102 7.33 0.59 8.57 64 2.70 0.33 3.32
64 1.66M 99 8.43 0.65 9.77 62 3.33 0.40 4.02

128 3.33M 91 9.08 0.70 10.55 61 4.35 0.45 5.16
256∗ 6.71M 80 13.98 1.16 16.29 57 6.78 0.79 8.25

Semi-implicit convective term Explicit convective term
np Ndof nit tsolve tprec ttot nit tsolve tprec ttot

1 23K 12 0.15 0.11 0.62 11 0.10 0.06 0.46
2 46K 12 0.18 0.17 0.77 10 0.10 0.10 0.55
4 93K 13 0.25 0.20 0.91 11 0.13 0.11 0.59
8 181K 15 0.42 0.25 1.16 12 0.23 0.13 0.70

16 363K 15 0.51 0.31 1.33 12 0.28 0.17 0.82
32 734K 15 0.59 0.37 1.49 12 0.35 0.20 0.91
64 1.43M 17 0.86 0.43 1.83 13 0.52 0.25 1.15

128 2.87M 18 1.20 0.49 2.30 14 0.79 0.31 1.53
256∗ 5.82M 21 2.10 0.78 3.70 16 1.28 0.56 2.48

∗ 12 processes per node instead of 8. (One mpi process per core)

Table 5.4: Weak scalability test (Taylor Hood Elements on the top, MINI Elements on the
bottom): np represents the number of processes, Ndof the number of unknowns (DOFs),
nit the average number of iterations, tsolve the average linear solver time, tprec the average
preconditioner setup, ttot the average total time per timestep. Timings are measured in
seconds using the gettimeofday function.

5. IMPLEMENTATION 133

Figure 5.7: Parallel speed-ups: linear solve phase (on the left), complete time step (on the
right).

gle scenario among the ones proposed in the original benchmark, that is the simulation

of a pulsatile flow with a mean flow rate of 5.13mL/sec.

The physical phenomenon that we simulate is the movement of blood in the internal

carotid artery and in the aneurysm, during a single heart beat. We assume that at the

beginning of the simulation (t = 0s) the system is at rest, with the blood velocity

and the pressure both being zero. In the first part of the simulation (from t = 0s to

t = 0.05s) we linearly increase the prescribed blood velocity at the inlet section until

we reach the physiologic value corresponding to the beginning of the heart beat. We

then prescribe a time-varying flow waveform with a period of 1s, and we stop the

simulation at t = 1.05s. The prescribed blood velocity at the inlet section in the last

simulated frame coincides with the velocity prescribed at t = 0.05s.

In the numerical solver, the time derivative is discretized with a second order BDF,

and we use the semi-implicit treatment of the convective term. The unknowns u and p

are approximated using MINI elements. The number of unknowns in the linear system

to be solved at each time step of the simulation was 3,162,146. We simulated 100

134 5.4 Scalability Results

frames within the cardiac cycle (i. e. the simulation time step is 0.01s). A snapshot of

the computed solution is shown in Figure 5.8.

Figure 5.8: Streamlines of the velocity field in correspondence of the maximum flow rate
over the cardiac cycle (t = 0.28s).

We performed the same test on different architectures to better evaluate the effects

of hardware specifications on performances. In particular, we used the department

cluster puma, the university one ellipse, the high performance computing machine

lonestar1, and the supercomputing cloud server rockhopper. Here we provide

a short description of each machine, while we refer to [99] for a more detailed per-

formance and cost analysis comparing on site resources, high performance computing

clusters, and clouds for this benchmark.

The in-house computing cluster puma comprises thirty two four-core nodes. Each

node includes two AMD 2214 processors, 8GB memory with 80GB local scratch disk

space, while Gigabit Ethernet (1GbE) provides the network interconnections. This clus-

ter is controlled by Linux CentOS 5.2, Rocks 5.1, and Portable Batch System (PBS)

Torque 2.3.6. When we performed our experiment only 124 computational cores were

available, due to hardware issue with one of the nodes.
1Access to this facility was granted by the National Science Foundation XSEDE Project, Extreme Sci-

ence and Engineering Discovery Environment, https://www.xsede.org

https://www.xsede.org

5. IMPLEMENTATION 135

The university cluster ellipse consists of 256 four-core nodes with AMD 2218

processors and 8GB RAM; Gigabit Ethernet provides the interconnection fabric. All

nodes are controlled by CentOS 4.5.

The lonestar Linux Cluster consists of 1,888 compute nodes, with two 6-Core

processors per node, for a total of 22,656 cores. It is configured with 44 TB of total

memory and 276TB of local disk space. The theoretical peak compute performance is

302 TFLOPS. The system supports a 1PB global, parallel file storage, managed by the

Lustre file system. Nodes are interconnected with InfiniBand technology in a fat-tree

topology with a 40Gbit/sec point-to-point bandwidth.

rockhopper is supercomputing cloud appliance hosted by Indiana University. It

consists of 11 Penguin Computing Altus 1804 servers, each containing four AMD Opteron

6172 12-cores processors and 128 GB of RAM. The total RAM in the system is 1.5 TB.

Each server chassis has a QDR (40 Gbs) InfiniBand interconnect to the cluster’s switch

fabric. The rockhopper nodes run CentOS 5. Job management and scheduling are

provided by the Sun Grid Engine (SGE) resource manager.

We performed a series of simulations on each platform, each time doubling the

number of processors and starting from the minimal number of processes which could

support the computation on a given target. This lower limit is governed by memory

availability – the whole problem to be solved has to fit in memory in order to perform

the computation.

In Tab. 5.5 we report the average wall time to compute the different phases of the

time step: assembly of the finite element matrices (tass), computing the preconditioner

(tprec), solving the linear system (tsolve). Observe that the solution of the linear system

is the phase were most of the total time for iteration is spent. This is, not only the most

computationally intensive, but also the phase were the majority of collective communi-

cations happen. Each GMRES iterations, in fact, requires to compute a few vector inner

products, that call the MPI function MPI_AllReduce() in their implementation. On

136 5.4 Scalability Results

puma ellipse lonestar rockhopper

np tass tprec tsolve tass tprec tsolve tass tprec tsolve tass tprec tsolve

8 – – – 19.28 28.98 863.34 9.82 13.87 559.29 – – –

16 9.77 4.15 507.07 9.52 12.23 468.24 5.07 7.37 306.06 9.32 11.71 428.78

32 4.99 7.61 296.67 5.07 6.92 289.51 2.61 3.94 143.34 5.24 6.91 242.24

64 2.71 4.32 170.47 3.07 5.99 204.82 1.32 2.25 79.87 3.11 4.50 177.02

128 2.26∗ 3.18∗ 134.54∗ 1.69 2.73 127.20 0.77 1.51 49.67 1.73 3.64 116.35

256 – – – – – – 0.52 1.23 51.81 3.31 9.46 298.31
∗These tests were performed on 124 processors instead of 128 due to hardware failure.

Table 5.5: Strong scalability test. We report the number of processors np, and the average
time for time step to assemble the finite element matrices tass, compute the preconditioner
tprec, solve the linear system tsolve.

the converse, the most scalable part of the computation is the finite element assembly

phase, where each processor need to communicate the shared degrees of freedom to

its neighbours once local matrices are computed.

The graph in Fig. 5.9 shows a comparison of the performances of the different plat-

forms (total average time per time-step), as a function of the number of computing

cores. The black line represents the ideal case of perfect strong scalability, when the

average time per iteration is inversely proportional to the number of processors. All

platforms achieve good strong scaling up to 128 computing cores, while they show

a significant decrease in performance for larger numbers of cores. In particular, the

fastest execution case in our experiment corresponds to running the simulation with

128 computing cores on lonestar. On this platform speed up increases by a remark-

able factor of 11.2 when passing from 8 computing cores to 128 computing cores. In

the case of rockhopper we observe a severe loss of performances when we move from

128 to 258 processors. This is quite common for cloud computing platforms where out-

of-node communication overheads may jeopardize scalability [99].

5. IMPLEMENTATION 137

2 4 8 16 32 64 128 256

100

1000

mpi processes

av
er

ag
e

ti
m

e
pe

r
ti

m
e-

st
ep

in
se

co
nd

s

puma
ellipse
lonestar
rockhopper
perfect

Figure 5.9: The average computation time per simulated time step, for the benchmarked
architectures

138 5.4 Scalability Results

6 The Brinkman Problem

The Brinkman model is a unified law governing the flow of a viscous fluid in cavity

(Stokes equations) and in porous media (Darcy equations). It was initially proposed

in [2], [3] as a homogenization technique for the Navier-Stokes equations. Typical

applications of this model are in underground water hydrology, petroleum industry,

automotive industry, biomedical engineering, and heat pipes modeling.

In this chapter we analyze a mixed formulation of the Brinkman problem, in which

we introduce the (scaled) flow vorticity as additional unknown. We prove the well-

posedness of this formulation in the abstract framework of Finite Element Exterior Cal-

culus [12], extending to the Brinkman problem the analysis of the mixed formulation

of the Stokes problem in [13], [9]. The numerical stability of the method is guaran-

teed by an appropriate choice of the finite elements spaces. The particular choice of

Nédélec, Raviart-Thomas and piecewise discontinuous elements, in fact, reproduces

the same embedding and mapping properties of the continuous spaces in the finite

elements spaces. The linear system obtained after finite element discretization has a

symmetric saddle point form. In contrast to the penalization methods for the Brinkman

problem advocated in [24], [25], the proposed approach allows for a conforming dis-

cretization by standard finite elements. We also illustrate our analysis with numerical

examples regarding the behavior of the discretization errors in the H(curl; Ω)-norm of

the vorticity, in the H(div; Ω)-norm of the velocity and in the L2(Ω)-norm of the pres-

sure. We numerically observe some suboptimal error behavior of the (scaled) vorticity

in the Darcy limit, while velocity and pressure exhibit uniform error decay rates with

140

respect to the inverse permeability coefficient k(x).

Additionally, the proven stability of our mixed discretization allows us to consider

effective preconditioning techniques for the discrete saddle point problem. Following

the approach advocated in [87], we construct in [122] a block diagonal preconditioner

with optimal convergence properties based on the stability analysis of the continuous

problem. Such preconditioner has on its main diagonal the finite element matrices

corresponding to the H(curl; Ω), H(div; Ω), and L2(Ω) norms involved in the stability

estimates. To improve the efficiency of the preconditioner, we resort to the auxiliary

space multigrid preconditioner for H(div) and H(curl) problems recently developed in

[80, 81]. The resulting (inexact) block-diagonal preconditioner appears to be robust

with respect to constant and smoothly varying coefficient k(x). The general case of fully

robust (with respect to coefficient variation) preconditioning method is still an open

problem. One possible approach is to develop appropriate adaptive (element-based)

algebraic multigrid techniques that respect the entire de Rham complex on coarse lev-

els. For some progress in that direction, we refer to [98], [82].

The remainder of the present Chapter is structured as follows. In Section 6.1, we

briefly derive the mixed formulation of the Brinkman problem based on the Hodge

Laplacian and in Section 6.2 we provide a stability estimate for the weak formulation.

In Section 6.3 we address the numerical discretization of the mixed formulation with

Nédélec, Raviart-Thomas and piecewise polynomial discontinuous finite element which

leads to a large sparse saddle point linear system. In Section 6.4 we present numer-

ical results illustrating the error behavior of our discretization schemes for the case

of constant coefficient, smoothly varying coefficient, and discontinuous coefficient. In

Section 6.5 we derive an optimal preconditioner with respect to the mesh size. We also

investigate an augmented Lagrangian approach in order to improve the robustness of

the preconditioner with respect to the PDE coefficients. Finally, in Section 6.6 we inves-

tigate the performance of our preconditioner, including some parallel scalability tests

6. THE BRINKMAN PROBLEM 141

for the solution of the Brinkman Problem with constant and space-dependent inverse

permeability coefficient.

The presentation and the numerical results in this Chapter closely follows manuscripts

[122, 123], submitted for publication.

6.1 Mixed formulation of the Brinkman Problem

We assume that Ω is a bounded simply connected domain in R3 with a regular (Lipschitz

continuous) simply connected boundary ∂Ω that has well-defined (almost everywhere)

unit outward normal vector n ∈ R3.

The generalized Brinkman problem reads



−ν ∆u + k(x) u +∇p = f(x), ∀ x ∈ Ω

div u = g(x), ∀ x ∈ Ω

u× n = g, on ∂Ω

−p+ ν div u = h, on ∂Ω,

(6.1)

where ν ≥ 0 is the fluid viscosity and k(x) is the inverse permeability of the medium.

The challenge of this problem is when the coefficient k = k(x) ranges over the interval

[a, b] with a = O(1) and b = O(1/ε). In the part of the domain Ω with k = O(1), the

PDE behaves like a Stokes problem, whereas in the rest of the domain it behaves like

the Darcy equations.

In the present work, for simplicity, we assume natural boundary conditions on

∂Ω. However, other set of boundary conditions, like the essential boundary conditions

(u · n = un, σ × n = στ), can also be treated in a similar way. For the Hodge Lapla-

cian, natural boundary conditions are also known in the literature as electric boundary

conditions while the essential ones as magnetic boundary conditions due to the close

relation with Maxwell’s equations. In our work, we do not consider the case of full

142 6.1 Mixed formulation of the Brinkman Problem

Dirichlet boundary condition, as the mixed formulation is harder to analyze; it leads to

suboptimal discretization error behavior [9].

To obtain a mixed formulation of the Brinkman problem (6.1), we exploit the vector

identity

∆u = ∇ div u− curl curl u,

and we define the (scaled) vorticity variable as

σ = ε curl u, with ε =
√
ν.

After some straightforward manipulations, our mixed formulation reads



σ − ε curl u = 0, ∀ x ∈ Ω

ε curl σ − ε2∇ div u + k(x) u +∇p = f(x), ∀ x ∈ Ω

div u = g(x), ∀ x ∈ Ω

u× n = g, on ∂Ω

−p+ ε2div u = h, on ∂Ω.

(6.2)

6.1.1 Functional spaces and orthogonal decompositions

To come up with the weak formulation of the system (6.2) and using the notation

introduced in Section 2.2, we define the functional spaces Q, R and W as

- Q ≡ H(curl; Ω) :=
{
σ ∈ L2(Ω) | curl σ ∈ L2(Ω)

}
, equipped with the norm

‖τ‖2Q = ‖τ‖2 + ‖curl τ‖2;

- R ≡ H(div; Ω) :=
{
u ∈ L2(Ω) | div u ∈ L2(Ω)

}
, equipped with the norm

‖v‖2R = ‖v‖2 + ‖div v‖2;

6. THE BRINKMAN PROBLEM 143

- W ≡ L2(Ω), equipped with the norm

‖q‖2W = ‖q‖2.

We denote with Q∗, R∗, and W ∗ the dual spaces of Q, R, and W , respectively. It is

clear that in the case of essential (magnetic) boundary conditions, the respective spaces

Q, R are proper subsets of H(curl; Ω), H(div; Ω); Q, R then consist of functions with

vanishing tangential or normal boundary traces.

We need next the orthogonal decompositions ofH(curl; Ω) andH(div; Ω) associated

with the kernels of the respective differential operators. Such decompositions are of

utmost importance in the stability analysis of the mixed problem, and for the derivation

of the auxiliary space multigrid preconditioners for such spaces [10, 11].

The assumption that the domain Ω is simply connected with simply connected

boundary, also called contractible (that is, any cycle in Ω is homologous to a point

in Ω), guarantees that de Rham sequence

0→ H1(Ω)\R ∇−−−→ H(curl; Ω)
curl−−−−→ H(div; Ω)

div−−−→ L2(Ω)→ 0 (6.3)

is exact. In other words, the space of the k-harmonic forms has dimension 0 for all

k = 1, 2, 3, or, equivalently, we have that range(∇)⊥∩ker(curl) = {0} and range(curl)⊥∩

ker(div) = {0}. Therefore, we have that these nullspaces are defined as X = {τ ∈

H(curl; Ω) | ∃ψ ∈ H1(Ω) : τ = ∇ψ} and Y = {v ∈ H(div; Ω) | ∃ψ ∈ H(curl; Ω) :

v = curl ψ}. The original spaces admit the following orthogonal decompositions [119,

Appendix A]:

H(curl; Ω) = X⊕X⊥, H(div; Ω) = Y ⊕Y⊥,

144 6.1 Mixed formulation of the Brinkman Problem

which imply the Poincaré inequalities

‖τ⊥‖H(curl;Ω) ≤ γ‖curl τ⊥‖L2(Ω), ∀ τ⊥ ∈ X⊥,

and ‖v⊥‖H(div;Ω) ≤ β‖div v⊥‖L2(Ω), ∀ v⊥ ∈ Y⊥,
(6.4)

with constants γ and β which depend only on the domain Ω. The orthogonal comple-

ment spaces are characterized as

X⊥ = {τ ∈ H(curl; Ω) ∩H(div; Ω) | div τ = 0 in Ω, τ · n = 0 on ∂Ω} ,

and Y⊥ =
{
v ∈ H(div; Ω) | ∃φ ∈ H1

0 (Ω) : v = ∇φ
}
.

For more complete characterization of such spaces and for the orthogonal decomposi-

tions in the case of essential (magnetic) boundary conditions we refer, for example, to

[119, Appendix A] or [90, 101].

6.1.2 Weak formulation

To obtain the weak formulation of (6.2), we first multiply the system by [τ , v, q] ∈

Q×R×W and integrate over Ω:



∫
Ω

σ · τ dΩ−
∫
Ω

ε (curl u) · τ dΩ = 0, ∀ τ ∈ Q∫
Ω

ε (curl σ) · v dΩ−
∫
Ω

ε2 (∇div u) · v dΩ +

∫
Ω

k(x) u · v dΩ +

∫
Ω

(∇p) · v dΩ =

=

∫
Ω

f · v dΩ, ∀ v ∈ R∫
Ω

(div u) q dΩ =

∫
Ω

g q dΩ, ∀ q ∈W.

By letting γT (τ) = (n× τ |∂Ω) × n, γn(v) = n · v|∂Ω and exploiting some basic

6. THE BRINKMAN PROBLEM 145

integration-by-parts identities [91, Chapter 3], the non-conforming terms become

−
∫
Ω

ε (curl u) · τ dΩ = −
∫
Ω

ε u · (curl τ) dΩ +

∫
∂Ω
ε (u× n) · γT (τ) dS =

−
∫
Ω

ε u · (curl τ) dΩ +

∫
∂Ω
ε g · γT (τ) dS,

and

−
∫
Ω

ε2 (∇div u) · v dΩ +

∫
Ω

(∇ p) · v dΩ =

=

∫
Ω

ε2 (div u) (div v) dΩ−
∫
Ω

p (div v) dΩ +

∫
∂Ω

(p− ε2 div u) γn(v) dS =

=

∫
Ω

ε2 (div u) (div v) dΩ−
∫
Ω

p (div v) dΩ−
∫
∂Ω

h γn(v) dS.

Therefore a weak solution σ ∈ Q, u ∈ R, and p ∈W of (6.2) satisfies the following

variational problem



∫
Ω

σ · τ dΩ−
∫
Ω

ε u · (curl τ) dΩ = −
∫
∂Ω

ε g · γT (τ) dS, ∀ τ ∈ Q∫
Ω

ε (curl σ) · v dΩ +

∫
Ω

ε2 (div u) (div v) dΩ +

∫
Ω

k(x) u · v dΩ−
∫
Ω

p (div v) dΩ =

=

∫
Ω

f · v dΩ +

∫
∂Ω

h γn(v) dS, ∀ v ∈ R∫
Ω

(div u) q dΩ =

∫
Ω
g q dΩ, ∀ q ∈W.

(6.5)

The variational problem above can be written as an abstract saddle-point problem

of the form

146 6.2 Well-posedness of the mixed variational formulation

Problem 6.1.1 Find (σ,u, p) ∈ Q×R×W such that


m(σ, τ) −c∗(u, τ) = F (τ), ∀ τ ∈ Q

−c(σ,v) −a(u,v)− d(u,v) +b∗(p,v) = G(v), ∀ v ∈ R

b(u, q) = H(q), ∀ q ∈W

(6.6)

where

m(σ, τ) = (σ, τ), σ, τ ∈ Q

c(σ, v) = ε (Cσ, v), σ ∈ Q, v ∈ R,

a(u, v) = ε2(Bu, Bv), u, v ∈ R,

d(u, v) = (k(x) u, v), u, v ∈ R,

b(u, q) = (Bu, q), u ∈ R, q ∈W.

(6.7)

Here C, B denote some differentiation operators (curl and div), and F ∈ Q∗, G ∈ R∗,

H ∈ W ∗ are bounded functionals that take into account volume forces and boundary

conditions.

6.2 Well-posedness of the mixed variational formulation

Before studying the well-posedness of Problem 6.1.1, we recall the following classical

result due to Babuška [14].

Theorem 6.2.1 Let B : X×X → R be a symmetric bounded bilinear form on a Hilbert

space X which satisfies the inf-sup condition

α := inf
06=y∈X

sup
06=x∈X

B(x, y)

‖x‖X‖y‖X
> 0. (6.8)

Then, if F(y) belongs to X∗, the problem of finding B(x, y) = F(y) for all y ∈ X is

well-posed. Moreover, it has a unique solution x for each F ∈ X∗, and the following a

6. THE BRINKMAN PROBLEM 147

priori estimate holds

‖x‖X ≤
1

α
‖F‖X∗ .

In what follows, we assume that the inverse permeability coefficient k(x) belongs

to L∞(Ω) ∩ L2(Ω), and we let kmax < +∞ be a constant such that

0 ≤ k(x) ≤ kmax almost everywhere in Ω.

Since by assumption the inverse permeability k(x) and the viscosity ε2 can not both

vanish at the same time, there exist constants κmin > 0 and κmax < +∞, such that

0 < κmin = kmin + ε2 ≤ k(x) + ε2 ≤ kmax + ε2 = κmax.

For the stability analysis of Problem 6.1.1, we use the following weighted norms

‖τ‖2Qw
= ‖τ‖2 +

ε2

κmax
‖Cτ‖2,

‖v‖2Rw
= κmin‖v‖2R = κmin‖v‖2 + κmin‖Bv‖2,

‖q‖2Ww
=

1

κmax
‖q‖2.

(6.9)

Remark 1 The weighted space Qw can be interpreted as intersection of Hilbert spaces,

that is Qw = L2(Ω)
⋂ ε2

κmax
H(curl; Ω). This space coincides with to H(curl; Ω) as a set,

but the corresponding norm approaches the L2(Ω) norm as ε2

κmax
tends to zero. In other

words, the smaller this ratio, the less control we have on the L2(Ω) norm of the curl

of functions in Qw. For a detailed characterization of the intersection of Hilbert spaces

and of their dual spaces we refer, for example, to [20, Chapter 2] and [87].

The stability of the mixed formulation of the Brinkman problem, which is a central

result in this chapter, is stated below.

148 6.2 Well-posedness of the mixed variational formulation

Theorem 6.2.2 If ε ≥ 0 and k(x) ∈ L∞(Ω) ∩ L2(Ω), 0 < κmin ≤ k(x) + ε2 ≤ κmax

almost everywhere in Ω, then for given continuous linear functionals F ∈ Q∗w, G ∈ R∗w,

H ∈ W ∗w the generalized Brinkman problem (6.1.1) admits a unique solution and the

following a priori estimate holds

‖σ‖2Qw
+ ‖u‖2Rw

+ ‖p‖2Ww
≤ C(Ω)(‖F‖2Q∗w + ‖G‖2R∗w + ‖H‖2W ∗w),

where C(Ω) is a constant depending only on the domain.

Proof. The variational mixed formulation of the Brinkman problem (6.1.1) can be writ-

ten in the form of Theorem 6.2.1, where X = Qw × Rw × Ww and B denotes the

symmetric bilinear form

B(σ,u, p; τ ,v, q) = (σ, τ)− ε(u,Cτ)

− ε(Cσ,v)− (k(x) u,v)− ε2(Bu,Bv) + (p,Bv) + (Bu, q), (6.10)

and F(τ ,v, q) = F (τ) +G(v) +H(q).

Then, the following Lemmas 6.2.3 and 6.2.4 imply Theorem 6.2.2, by establish-

ing respectively the boundedness of B and the inf-sup condition (6.8) required by

Babuška’s theorem (Theorem 6.2.1).

�

Lemma 6.2.3 Under the assumptions of Theorem 6.2.2, there exists a constantM such

that for any (σ,u, p), (τ ,v, q) ∈ Qw ×Rw ×Ww

|B(σ,u, p; τ ,v, q)| ≤

M
κmax

κmin

(
‖σ‖2Qw

+ ‖u‖2Rw
+ ‖p‖2Ww

) 1
2
(
‖τ‖2Qw

+ ‖v‖2Rw
+ ‖q‖2Ww

) 1
2 . (6.11)

6. THE BRINKMAN PROBLEM 149

Proof. Simple applications of Cauchy–Schwarz inequalities show that the desired bound-

edness holds with M = 2. Indeed, we have

|B(σ,u, p; τ ,v, q)| ≤ ‖σ‖‖τ‖+ ε‖u‖‖Cτ‖+ ε‖Cσ‖‖v‖+

+ kmax‖u‖‖v‖+ ε2‖Bu‖‖Bv‖+ ‖p‖‖Bv‖+ ‖Bu‖‖q‖ ≤

≤
(
‖σ‖2 +

ε2

κmax
‖Cσ‖2 + (κmax + kmax)‖u‖2 + (κmax + ε2)‖Bu‖2 +

1

κmax
‖p‖2

) 1
2

(
‖τ‖2 +

ε2

κmax
‖Cτ‖2 + (κmax + kmax)‖v‖2 + (κmax + ε2)‖Bv‖2 +

1

κmax
‖q‖2

) 1
2

. �

Lemma 6.2.4 Under the assumptions of Theorem 6.2.2, there exists a constant α(Ω),

depending only on the Poincaré constants γ and β in (6.4), such that for any (σ,u, p) ∈

Qw ×Rw ×Ww, there exists a triplet (τ ,v, q) ∈ Qw ×Rw ×Ww such that

B(σ,u, p; τ ,v, q) ≥ α(Ω)(‖σ‖2Qw
+ ‖u‖2Rw

+ ‖p‖2Ww
)

1
2 (‖τ‖2Qw

+ ‖v‖2Rw
+ ‖q‖2Ww

)
1
2 .

Proof. By the orthogonal decomposition of H(div), we can write

u = Cϕ⊥ + u⊥, where ϕ⊥ ∈ X⊥ and u⊥ ∈ Y⊥.

Thanks to the orthogonal decompositions and the Poincaré inequalities in (6.4), we

have

‖ϕ⊥‖Q ≤ γ‖Cϕ⊥‖R ≤ γ‖u‖R, ‖u⊥‖R ≤ β‖Bu‖. (6.12)

In a similar way, using also the exactness of (6.3), we can write p = Bw⊥, where

w⊥ ∈ Y⊥ and

‖w⊥‖R ≤ β‖Bw⊥‖ = β‖p‖W . (6.13)

150 6.2 Well-posedness of the mixed variational formulation

For some positive real numbers ai, i = 1, 2, 3, 4 (to be specified later on), we choose

τ = σ − a1ϕ
⊥ ∈ Q, v = −u− a2Cσ + a3w

⊥ ∈ R, q = p+ a4Bu ∈W. (6.14)

By direct substitution, we obtain

B(σ,u, p; τ ,v, q) = ‖σ‖2 − a1(σ,ϕ⊥)− ε(u,Cσ) + εa1(u,Cϕ⊥)

+ ε(Cσ,u) + εa2‖Cσ‖2 − εa3(Cσ,w⊥) + ‖
√
k(x)u‖2 + a2(k(x)u,Cσ)− a3(k(x)u,w⊥)

+ ε2‖Bu‖2 + ε2a2(Bu,BCσ)− ε2a3(Bu,Bw⊥)− (p,Bu)− a2(p,BCσ) + a3(p,Bw⊥)

+ (Bu, p) + a4‖Bu‖2.

Exploiting orthogonality and obvious simplifications, noticing that (u, Cϕ⊥) = ‖Cϕ⊥‖2,

the above expression reduces to

B(σ,u, p; τ ,v, q) = ‖σ‖2 + εa1‖Cϕ⊥‖2 − a1(σ,ϕ⊥)

+ εa2‖Cσ‖2 + ‖
√
k(x)u‖2 + a2(k(x)u,Cσ)− a3(k(x)u,w⊥)

+ ε2‖Bu‖2 − ε2a3(Bu, p)

+ a3‖p‖2 + a4‖Bu‖2.

Applying Cauchy-Schwarz and Young inequalities, and the Poincaré inequalities

(6.12), (6.13), the remaining inner products are estimated as follows:

|a1(σ,ϕ⊥)| ≤ 1

2
‖σ‖2 +

a2
1

2
‖ϕ⊥‖2 ≤ 1

2
‖σ‖2 +

a2
1

2
γ2‖Cϕ⊥‖2,

|a2(k(x)u,Cσ)| ≤ 1

4
‖
√
k(x)u‖2 + a2

2‖
√
k(x)Cσ‖2 ≤ 1

4
‖
√
k(x)u‖2 + a2

2kmax‖Cσ‖2,

|a3(k(x)u,w⊥)| ≤ 1

4
‖
√
k(x)u‖2 + a2

3‖
√
k(x)w⊥‖2 ≤ 1

4
‖
√
k(x)u‖2 + a2

3kmaxβ
2‖p‖2,

6. THE BRINKMAN PROBLEM 151

|ε2a3(Bu, p)| ≤ ε2‖Bu‖2 +
ε2

4
a2

3‖p‖2.

Substituting the above inequalities in the expression for B we have

B(σ,u, p; τ ,v, q) ≥ 1

2
‖σ‖2 +

(
εa2 − a2

2kmax

)
‖Cσ‖2

+
kmin

2
‖u‖2 +

(
εa1 −

a2
1

2
γ2

)
‖Cϕ⊥‖2 + a4‖Bu‖2

+

(
a3 − a2

3(kmaxβ
2 +

ε2

4
)

)
‖p‖2.

Then we choose a1 = ε
γ2 = O(ε), a2 = ε

2kmax+ε2
= O(ε

κmax
), a3 = 2

(4kmaxβ2+ε2)
=

O(1
κmax

) and a4 = κmin, so that

B(σ,u, p; τ ,v, q) ≥ 1

2
‖σ‖2 +

ε2

4κmax
‖Cσ‖2

+
kmin

2
‖u‖2 +

ε2

2γ2
‖Cϕ⊥‖2 + κmin‖Bu‖2 +

1

4kmaxβ2 + ε2
‖p‖2.

Recalling that u = u⊥ + Cϕ⊥ and by using the second inequality in (6.12), we have

kmin
2 ‖u‖2 + ε2

2γ2 ‖Cϕ⊥‖2 + κmin‖Bu‖2

≥ kmin
2

(
‖u⊥‖2 + ‖Cϕ⊥‖2

)
+ ε2

2γ2 ‖Cϕ⊥‖2 + κmin
2β2 ‖u⊥‖2 + κmin

2 ‖Bu‖2

≥
(
kmin

2 + κmin
2β2

)
‖u⊥‖2 +

(
kmin

2 + ε2

2γ2

)
‖Cϕ⊥‖2 + κmin

2 ‖Bu‖2

=
(

(1
2 + 1

2β2)kmin + ε2

2β2

)
‖u⊥‖2 +

(
kmin

2 + ε2

2γ2

)
‖Cϕ⊥‖2 + κmin

2 ‖Bu‖2

≥ 1
2 min(1, 1

γ2 ,
1
β2) κmin

(
‖u⊥‖2 + ‖Cϕ⊥‖2

)
+ κmin

2 ‖Bu‖2

= 1
2 min(1, 1

γ2 ,
1
β2) κmin ‖u‖2 + κmin

2 ‖Bu‖2

≥ 1
2 min(1, 1

γ2 ,
1
β2) κmin ‖u‖2R.

152 6.2 Well-posedness of the mixed variational formulation

Using this estimate in the above estimate for B, implies

B(σ,u, p; τ ,v, q) ≥ c(Ω)

(
‖σ‖2 +

ε2

κmax
‖Cσ‖2 + κmin‖u‖2R +

1

κmax
‖p‖2W

)
= c(Ω)

(
‖σ‖2Qw

+ ‖u‖2Rw
+ ‖p‖2Ww

)
, (6.15)

where c(Ω) is a constant depending only on the Poincaré constants γ and β.

To conclude, we notice that

(
‖τ‖2Qw

+ ‖v‖2Rw
+ ‖q‖2Ww

)
≤ [c(Ω)]2

(
‖σ‖2Qw

+ ‖u‖2Rw
+ ‖p‖2Ww

)
, (6.16)

where c(Ω) is a constant depending only on the Poincaré constants γ and β. In fact, the

following inequalities hold:

1

2
‖τ‖2Qw

≤ ‖σ‖2Qw
+ a2

1‖ϕ⊥‖2Qw
≤ ‖σ‖2Qw

+
ε2

γ4
‖u‖2R ≤ ‖σ‖2Qw

+
1

γ4
‖u‖2Rw

,

1

3
‖v‖2Rw

≤ ‖u‖2Rw
+ a2

2κmin‖Cσ‖2 + a2
3κmin‖w⊥‖2R

≤ ‖u‖2Rw
+
κminε

2

κ2
max

‖Cσ‖2 + c(β)
κmin

κ2
max

‖p‖2W

≤ ‖u‖2Rw
+
κmin

κmax
‖σ‖2Qw

+ c(β)
κmin

κmax
‖p‖2Ww

,

1

2
‖q‖2Ww

≤ ‖p‖2Ww
+ a2

4

1

κmax
‖Bu‖2 ≤ ‖p‖2Ww

+
κ2

min

κmax
‖u‖2R ≤ ‖p‖2Ww

+
κmin

κmax
‖u‖2Rw

.

Above, c(β) = 4β2

min2(4β2,1)
. Therefore the inf-sup condition for B follows by taking

α(Ω) = c(Ω)c(Ω). �

6. THE BRINKMAN PROBLEM 153

Figure 6.1: Lowest order Finite Element spaces for the discretization of the De Rham
complex: P1 Lagrangian elements, first order Nédélec elements, zero order Raviart-Thomas
elements, and discontinuous piecewise constant elements.

6.3 Discretization

In this section, we discuss the discretization of the complete de Rham complex, even

though the Brinkman problem explicitly involves only the last three spaces of the se-

quence. In order to achieve stability of the discretized problem, the discrete spaces

Sh ⊂ H1(Ω), Qh ⊂ Q, Rh ⊂ R, Wh ⊂ W should preserve the de Rham complex

structure of the continuous case (see [12, 13] for more details):

H1(Ω)\R ∇−−−→ Q
curl−−−−→ R

div−−−→ Wy
y

y
y

Sh\R ∇−−−→ Qh
curl−−−−→ Rh

div−−−→ Wh

.

A standard choice for numerical discretization of the Hodge Laplacian is the follow-

ing. For a given integer r ≥ 0, we let Sh be the continuous piecewise polynomial of

degree at most r+ 1, Qh the (r+ 1)-th order Nédélec finite elements [94], Rh the r-th

order Raviart-Thomas finite elements [94, 108], and Wh the discontinuous piecewise

polynomials finite element of degree at most r (see Fig. 6.1 for the case r = 0).

In fact, this choice of finite elements guarantees that the commutativity property

curl ΠQ
h = ΠR

h curl, and div ΠR
h = ΠW

h div (6.17)

154 6.3 Discretization

holds [10], [11]. Here, ΠV
h : V 7→ Vh denotes the canonical interpolation operator

from the continuous space V into the finite element counterpart Vh, V := Q, R, W .

Moreover, the above commutativity property together with the exactness of the

continuous de Rham complex (for simply connected domain Ω with simply connected

boundary) implies the discrete orthogonal decompositions

Rh = curlQh ⊕∇hWh, and Qh = ∇Sh ⊕ curlhRh,

where ∇h : Wh → Rh is the adjoint of the map −div : Rh → Wh, and curlh : Rh →

Qh is the adjoint map of curl : Qh → Rh.

An important result in [12, 13] guarantees that the discrete Poincaré inequalities

‖τ⊥h ‖Q ≤ γh‖curl τ⊥h ‖L2 , ∀ τ⊥h ∈ curlhRh,

and ‖v⊥h ‖R ≤ βh‖div v⊥h ‖L2 , ∀ v⊥h ∈ ∇hWh

(6.18)

hold with constants γh and βh bounded independently of h. Since ∇hWh 6⊂ Y⊥ and

curlhRh 6⊂ X⊥, the above results is not trivial, and it requires the construction of a

bounded cochain projector operator πh from the continuous to the discrete de Rham

complex. Such bounded projectors can be derived by composing the canonical inter-

polation operators ΠV
h with commutative smoothing operators [31]. Then γh ≤ γ‖πh‖

and βh ≤ β‖πh‖, where the norm of the cochain projector ‖πh‖ is uniformly bounded

with respect to h. We refer to [12, 13] for the complete proof.

6.3.1 Analysis of the discrete problem

We now proceed with the analysis of the finite dimensional approximation of the vari-

ational problem, Problem 6.1.1. The Galerkin formulation of the problem reads

6. THE BRINKMAN PROBLEM 155

Problem 6.3.1 Find (σh,uh, ph) ∈ Qh ×Rh ×Wh such that


m(σh, τ h) −c∗(uh, τ h) = F (τ h), ∀ τ h ∈ Qh

−c(σh,vh) −a(uh,vh)− d(uh,vh) +b∗(ph,vh) = G(vh), ∀ vh ∈ Rh

b(uh, qh) = H(qh), ∀ qh ∈Wh

Stability of Problem 6.3.1 is equivalent to the inf-sup condition for B restricted to

the finite element space [15], which is stated below.

Lemma 6.3.2 Under the hypothesis of Theorem 6.2.2, there exists a constant αh, de-

pending only on the constants γh and βh in the discrete Poincaré inequalities (6.18),

such that for any (σh,uh, ph) ∈ Qh × Rh ×Wh there is a triplet (τ h,vh, qh) ∈ Qh ×

Rh ×Wh for which the following estimate holds

B(σh,uh, ph; τ h,vh, qh) ≥

αh(‖σh‖2Qw
+ ‖uh‖2Rw

+ ‖ph‖2Ww
)

1
2 (‖τ h‖2Qw

+ ‖vh‖2Rw
+ ‖qh‖2Ww

)
1
2 . (6.19)

Proof. The proof in the discrete case closely follows the proof given before for the

continuous case in Lemma 6.2.4. Given uh ∈ Rh there exists ϕ⊥h ∈ curlhRh ⊂ Qh and

u⊥h ∈ ∇hWh ⊂ Rh such that

uh = curl ϕ⊥h + u⊥h , ‖ϕ⊥h ‖Q ≤ γh‖curl ϕ⊥‖R, ‖u⊥h ‖R ≤ βh‖div uh‖.

Similarly, given ph ∈ Wh, there exists w⊥h ∈ ∇hWh, such that ph = div w⊥h and

‖w⊥h ‖R ≤ βh‖ph‖W . The result now follows by taking

τ h = σh−a1ϕ
⊥
h ∈ Qh, vh = −uh−a2curl σh+a3w

⊥
h ∈ Rh, qh = ph+a4div u⊥h ∈Wh

156 6.3 Discretization

instead of (6.14), and by using the discrete Poincaré inequalities (6.18) instead of the

continuous ones (6.4). �

The convergence of the discrete solution to the continuous one directly follows from

the stability and consistency of the discrete problem.

Theorem 6.3.3 Let (σ,u, p) ∈ Q×R×W be the solution of the continuous Problem

6.1.1 and let (σh,uh, ph) ∈ Qh×Rh×Wh be the solution of the discrete Problem 6.3.1.

Then

‖σ − σh‖2Qw
+ ‖u− uh‖2Rw

+ ‖p− ph‖2Ww
≤(

1 +
M

αh

κmax

κmin

)2(
inf

τh∈Qh

‖σ − τ h‖2Qw
+ inf

vh∈Rh

‖u− vh‖2Rw
+ inf
qh∈Wh

‖p− qh‖2Ww

)
.

Proof. The proof of this theorem is a direct application of the Babuška Theorem in [14],

and follows from the discrete inf-sup condition in Lemma 6.3.2 and the boundedness

of the bilinear form B in Lemma 6.2.3. �

Assuming certain smoothness of the continuous solutions and some regularity of

the finite element mesh, the above theorem implies the standard error estimate

‖σ − σh‖2Qw
+ ‖u− uh‖2Rw

+ ‖p− ph‖2Ww
= O(h2r),

for the choice of (r + 1) − th order Nédélec elements, r-th order Raviart-Thomas, and

r-th order piecewise discontinuous elements. We refer to [4, 42, 48, 94] for a detailed

analysis of the approximation properties of the Nédélec and Raviart-Thomas spaces.

In the following and in the numerical experiments, we restrict ourselves to the case

r = 0, i.e., to the first order Nédélec space Qh, the lowest order Raviart-Thomas space

Rh, and the piecewise constant elements, Wh. As well known, such choice leads to a

6. THE BRINKMAN PROBLEM 157

first order discretization error.

6.4 Discretization error numerical results

The numerical results in this section aim to verify the accuracy of the mixed formula-

tion. In particular, we analyze three different test cases: the first for a constant inverse

permeability coefficient k(x) = k0, the second one for a variable but smooth coefficient,

and the third one for discontinuous coefficient.

Concerning the choice of the finite element spaces, we will restrict ourselves to

the case r = 0, i.e. first order Nédélec elements, lowest order Raviart-Thomas el-

ements, and piecewise constant elements. It is worth pointing out that, in many

practical applications, only discretization error of first order can be achieved due to

non-smooth exact solutions and to discontinuities in the PDE coefficients. The initial

meshes used in our simulation were generated with the unstructured mesh generator

netgen [http://www.hpfem.jku.at/netgen/].

Concerning the finite element discretization of the Brinkman problem, we used the

finite element library MFEM [http://code.google.com/p/mfem/], developed at Lawrence

Livermore National Laboratory (LLNL). MFEM is a general, modular, parallel C++ li-

brary for finite element methods research and development. It supports a wide variety

of finite element spaces in 2D and 3D, as well as many bilinear and linear forms defined

on them. It includes classes for dealing with various types of triangular, quadrilateral,

tetrahedral and hexahedral meshes and their global and local refinement.

6.4.1 Discretization error for constant coefficients.

We study the accuracy of the discretization as function of the ratio k
ε2

in the case of

constant inverse permeability k. Obviously if k
ε2

= 0 the Brinkman problem reduces

to the Stokes problem, while if k
ε2
→ ∞ the Brinkman problem approaches the Darcy

158 6.4 Discretization error numerical results

limit.

The analytical solution is given by

σex = επ


sin(πx) cos(πy)− cos(πz) sin(πx)

sin(πy) cos(πz)− cos(πx) sin(πy)

sin(πz) cos(πx)− cos(πy) sin(πz)

 , uex =


sin(πy) sin(πz)

sin(πz) sin(πx)

sin(πx) sin(πy)

 ,

pex = 8.0 sin(πx) sin(πy) sin(πz).

The right hand side and the natural boundary conditions on ∂Ω are prescribed accord-

ingly to the analytical solution. To avoid poorly scaled right hand sides, for a given

ratio k
ε2

we choose k and ε2 such that max(k, ε2) = 1.

The domain Ω = [0, 1]3 is discretized with an unstructured tetrahedral mesh with

474 elements. The original mesh is uniformly refined 5 times, and each element of the

mesh is divided in 8 through a bisection algorithm for tetrahedrons. The total number

of degrees of freedom ranges from around 2 thousand unknowns on the coarsest mesh

up to 65 millions on the finest mesh.

In Figure 6.2 we show the relative discretization errors in the H(curl; Ω), H(div; Ω)

and L2(Ω) norms. The systems were solved by using preconditioned MINRES with a

stopping criterion based on the relative residual norm. As expected from the theory,

uh linearly converges to uex in the H(div; Ω) norm and ph linearly converges to pex

in L2(Ω). Moreover the errors are independent of the ratio k
ε2

. The scaled vorticity

σh, instead, converges linearly to σex for moderate values of k
ε2

, while it shows a

degradation in the error behavior for higher values of such ratio.

6. THE BRINKMAN PROBLEM 159

10
−3

10
−2

10
−1

10
0

10
−3

10
−2

10
−1

10
0

k

ε2
= 0re

la
tiv

e
er

ro
r

‖σex − σh‖H (curl)

‖σex‖H(curl)

‖uex − uh‖H (div)

‖uex‖H(div)

‖pex − ph||L2

‖pex||L2

slope = 1

10
−3

10
−2

10
−1

10
0

10
−3

10
−2

10
−1

10
0

k

ε2
=

1

106

10
−3

10
−2

10
−1

10
0

10
−3

10
−2

10
−1

10
0

k

ε2
=

1

103

10
−3

10
−2

10
−1

10
0

10
−3

10
−2

10
−1

10
0

k

ε2
= 1

mesh size h

re
la

tiv
e

er
ro

r

10
−3

10
−2

10
−1

10
0

10
−3

10
−2

10
−1

10
0

k

ε2
= 103

mesh size h
10

−3
10

−2
10

−1
10

0

10
−3

10
−2

10
−1

10
0

k

ε2
= 106

mesh size h
10

−3
10

−2
10

−1
10

0

10
−3

10
−2

10
−1

10
0

k

ε2
=+∞

mesh size h

Figure 6.2: Relative discretization error in the case of constant coefficients for different
choices of the ratio k

ε2 .

160 6.4 Discretization error numerical results

6.4.2 Discretization error for non-constant smooth coefficients.

Now we consider the case of non-constant coefficient k(x). For Ω = [0, 1]3 and c ≤ 1

being a positive number, we take

k(x) =
1

sin(πy) sin(πz) + c
∀ x = (x, y, z) ∈ Ω. (6.20)

The number c controls how large are the variations in the coefficient k(x), since k(x)

ranges between kmin ∼ 1 and kmax ∼ 1
c . We let the viscosity ν = ε2 = 1 and we

choose the right hand side and the natural boundary conditions on ∂Ω be such that the

analytical solution is given by

σexact =


0

π sin(πy) cos(πz)

−π cos(πy) sin(πx)

 , uexact =


sin(πy) sin(πz)

0

0

 , pexact = −x.

In this test we use the same initial mesh and refinement strategy as in the previous

case of constant coefficients.

In Figure 6.3 we report the relative discretization error with respect to the analytical

solution. In all cases, we observe a linear error decay in the H(curl; Ω) −H(div; Ω) −

L2(Ω) energy norms of vorticity, velocity, and pressure.

6.4.3 Discretization error for coefficients with jumps

For this test we consider the analytical solution of the so-called circular preferential flow

pathway proposed in [74]. Such solution describes the steady flow of an incompressible

fluid through a circular channel of radius R and length L in an infinite porous medium

in response to a constant pressure gradient ∆p
L in the direction of the channel. Inside

the preferential channel the inverse permeability is 0 (Stokes equations), outside is

constant and equal to k. Using a cylindrical coordinate system, r stands for the distance

6. THE BRINKMAN PROBLEM 161

10
−3

10
−2

10
−1

10
0

10
−3

10
−2

10
−1

10
0

kmax

kmin
= 2

mesh size h

re
la

tiv
e

er
ro

r

‖σex − σh‖H (curl)

‖σex‖H(curl)

‖uex − uh‖H (div)

‖uex‖H(div)

‖pex − ph||L2

‖pex||L2

slope = 1

10
−3

10
−2

10
−1

10
0

10
−3

10
−2

10
−1

10
0

kmax

kmin
≈ 103

mesh size h
10

−3
10

−2
10

−1
10

0
10

−3

10
−2

10
−1

10
0

kmax

kmin
≈ 106

mesh size h

Figure 6.3: Relative discretization error in the case of non-constant coefficients for differ-
ent choices of the ratio kmax

kmin
.

from the centerline of the preferential channel, θ is the angle, and x is the coordinate

along the centerline; r̂, θ̂, x̂ are the unit vector in the radial, tangential, and centerline

directions. The analytical solution of the flow is given by

σ =


∆p
4µL(−2r)θ̂ if r ≤ R
∆p
4µL

(
2R

K′0(
√
kr)

K1(
√
kR)

)
θ̂ if r > R,

u =


∆p
4µL

(
R2 − r2 + 4

k + 2R√
k

K0(
√
kR)

K1(
√
kR)

)
x̂ if r ≤ R

∆p
4µL

(
4
k + 2R√

k

K0(
√
kr)

K1(
√
kR)

)
x̂ if r > R,

p =
∆p

2L
− ∆p

L
x,

where K0, K1 are the modified Bessel functions of II type.

In Figure 6.4, we show the velocity and vorticity profiles in the radial direction. The

velocity is continuous and differentiable with respect to r for each value of k, while the

vorticity has a jump in the radial derivative at the interface between the preferential

channel and the porous medium (r = R). Moreover for large value of k, we observe

a boundary layer in the porous medium next to the interface with the preferential

channel. In Figure 6.5, we show the three-dimensional solution computed on the finest

162 6.5 Preconditioning

0 0.5 1
0

0.5

1

1.5

2

2.5

Preferential Channel

Porous media

r

x

Preferential Channel

Porous media

0 1 2
0

0.5

1

1.5

2

2.5

|u|
0 0.2 0.4 0.6

0

0.5

1

1.5

2

2.5

|σ|

k=1

k=10

k=100

k=103

k=105

Figure 6.4: Velocity and vorticity profiles in the radial direction for different values of k.

mesh.

The external geometry for this test is a cylinder of radius 2 and length L = 1. An

embedded cylinder of radius R = 1 represents the Preferential Channel. The Prefer-

ential Channel and the porous region are two non-overlapping domains in our setting.

The total number of degrees of freedom ranges from three thousand on the coarser

level up to 10 millions on the finest one.

In Figure 6.6, we show the behavior of the discretization error for different values of

the inverse permeability k in the porous medium surrounding the preferential channel.

We observe that the discretization errors in the H(div; Ω)-norm of the velocity and

L2(Ω)-norm of the pressure are optimal with respect to the choice of finite elements

(O(h)). Similarly to what we already observed in the constant coefficient case, the

H(curl; Ω) norm of the discretization error for the vorticity field admits linear decay

only for moderate values of the inverse permeability k; while for higher values (k =

105), we observe a sensible degradation in the converge rate.

6.5 Preconditioning

In this section, we introduce a block diagonal preconditioner for the discrete Galerkin

problem, Problem 6.3.1. To this aim, let us first introduce the finite element vectors

Σ ∈ Rdim(Qh), U ∈ Rdim(Rh), P ∈ Rdim(Wh), collecting the finite element degrees of

6. THE BRINKMAN PROBLEM 163

Figure 6.5: Numerical solution of the preferential channel on the finest grid (k = 1):
velocity on the left, vorticity in the center, pressure on the right.

10
−3

10
−2

10
−1

10
0

10
−3

10
−2

10
−1

10
0

k = 1re
la

tiv
e

er
ro

r

‖σex − σh‖H (curl)

‖σex‖H(curl)

‖uex − uh‖H (div)

‖uex‖H(div)

‖pex − ph||L2

‖pex||L2

slope = 1

10
−3

10
−2

10
−1

10
0

10
−3

10
−2

10
−1

10
0

k = 10

10
−3

10
−2

10
−1

10
0

10
−3

10
−2

10
−1

10
0

k = 100

mesh size h

re
la

tiv
e

er
ro

r

10
−3

10
−2

10
−1

10
0

10
−3

10
−2

10
−1

10
0

k = 103

mesh size h
10

−3
10

−2
10

−1
10

0
10

−3

10
−2

10
−1

10
0

k = 105

mesh size h

Figure 6.6: Relative discretization error for the preferential channel test case for different
values of the inverse permeability k in the surrounding porous medium.

164 6.5 Preconditioning

freedom σih, i = 1, . . . ,dim(Qh), uih, i = 1, . . . ,dim(Rh) and pih, i = 1, . . . ,dim(Wh).

Also let us denote with M , C, A, D, B the finite element matrices whose entries are

given by

Mi,j = m(σjh, τ
i
h) = (σjh, τ

i
h), i, j = 1, . . . ,dim(Qh)

Ci,j = c(σjh, vih) = ε (curl σjh, vih), i = 1, . . . ,dim(Rh), j = 1, . . . ,dim(Qh)

Ai,j = a(ujh, vih) = ε2(div ujh, div vih), i, j = 1, . . . ,dim(Rh)

Di,j = d(ujh, vih) = (k(x) ujh, vih), i, j = 1, . . . ,dim(Rh)

Bi,j = b(ujh, q
i
h) = (div ujh, q

i
h), i = 1, . . . ,dim(Wh), j = 1, . . . ,dim(Rh).

Then, the discrete Galerkin problem, Problem 6.3.1, leads to the solution of a large

sparse linear system

BX = B (6.21)

where the block matrix B and block vectors X and B read

B =


M −CT 0

−C −A−D BT

0 B 0

 , X =


Σ

U

P

 , B =


F

G

H

 . (6.22)

The above linear system has the form of a symmetric saddle-point problem. In fact,

if we reorder the unknowns as (Σ, P, U), then B admits the form


M 0 −CT

0 0 B

−C BT −(A+D)

 .

It is clear then that B has dim(Qh)+dim(Wh) positive eigenvalues and dim(Rh) neg-

ative eigenvalues. An effective iterative method to solve linear system with symmetric

indefinite matrices is MINRES [97] employing a symmetric positive definite precondi-

6. THE BRINKMAN PROBLEM 165

tioner P.

To derive the preconditioner, we follow the approach presented in [87] to precon-

dition symmetric saddle point problems in a functional space setting. According to the

authors, the mapping properties of the differential operators of the continuous prob-

lem suggest that block diagonal preconditioners are natural choice for saddle point

problems. More specifically, given a stability estimate for the continuous problem in

some functional spaces, the block diagonal matrix, in which the blocks represent the

discretization of the inner products in those spaces, leads to a uniformly bounded (in

terms of h) preconditioner for the discrete saddle point system of interest.

As before, we consider the positive numbers wQ = ε2

κmax
, wR = κmin, wW = 1

κmax
,

and introduce the symmetric positive definite variational forms

q(σh, τ h) = (σh, τ h) + wQ(curl σh, curl τ h), σh, τ h ∈ Qh

r(uh,vh) = wR(uh,vh) + wR(div uh,div vh), uh,vh ∈ Rh

w(ph, qh) = wW (ph, qh), ph, qh ∈Wh.

(6.23)

The above forms represent the weighted inner products in the spaces Qw, Rw and Ww

defined by (6.9).

Therefore Lemma 6.3.2 and Lemma 6.2.3 imply that a mesh independent precon-

ditioner for the saddle point problem (6.21) is given by

P =


PQ 0 0

0 PR 0

0 0 PW

 , (6.24)

where PQ, PR, PW are the matrix representation of the weighted inner products q(σh, τ h),

r(uh,vh), and w(ph, qh) in (6.23).

For completeness, we now proceed with the standard analysis of the spectral con-

dition number K(A) of the preconditioned saddle-point operator A = P−
1
2BP−

1
2 . The

166 6.5 Preconditioning

following result was proven in [122].

Theorem 6.5.1 The relative condition number of B with respect to the block–diagonal

preconditioner P satisfies the estimate

K(P−
1
2BP−

1
2) =

max |λ|
min |λ| ≤

M

αh

κmax

κmin
.

Proof. First of all, we remark that, if the vector Ŷ ∈ RN collects the degrees of

freedom of the finite element functions τ h ∈ Qh, vh ∈ Rh, qh ∈ Wh, then the P norm

of Ŷ is equal to the norm of (τ h,vh, qh) in Qw ×Rw ×Ww, that is

‖Ŷ‖P =
√

ŶTPŶ = ‖(τ h,vh, qh)‖Qw×Rw×Ww .

Next, we recall the definition of the spectral condition number of an invertible

(symmetric indefinite) operator A,

K(A) = sup
X∈RN

‖AX‖2
‖X‖2

sup
Y∈RN

‖A−1Y‖2
‖Y‖2

=
max |λ|
min |λ| , λ ∈ σ(A).

The aim now is to bound the two factors supX∈RN
‖AX‖2
‖X‖2 and supY∈RN

‖A−1Y‖2
‖Y‖2 by using

the continuity and the inf-sup condition of the bilinear form B. For the first term, by

letting X̂ = P−
1
2 X and Ŷ = P−

1
2 Y and by using (6.11), we have

sup
X∈RN

‖AX‖2
‖X‖2

= sup
X∈RN

sup
Y∈RN

YTAX

‖Y‖2 ‖X‖2
= sup

X̂∈RN

sup
Ŷ∈RN

ŶTBX̂

‖Ŷ‖P ‖X̂‖P
≤Mκmax

κmin
.

6. THE BRINKMAN PROBLEM 167

Similarly, by using the discrete inf-sup condition (6.19), for the second term we have

sup
Y∈RN

‖A−1Y‖2
‖Y‖2

=

(
inf

X∈RN

‖AX‖2
‖X‖2

)−1

=

(
inf

X∈RN
sup

Y∈RN

YTAX

‖Y‖2 ‖X‖2

)−1

=(
inf

X̂∈RN
sup

Ŷ∈RN

ŶTBX̂

‖Ŷ‖P ‖X̂‖P

)−1

≤ 1

αh
. (6.25)

The thesis follows from the last two inequalities above. �

Theorem 6.5.1 implies that in the particular case of constant inverse permeability

k(x) = k0, the condition number of the preconditioned saddle-point problem is inde-

pendent of both the mesh size and k0. The numerical experiments in the following

section confirm this statement. However, in the general case of variable coefficient

k(x), the condition number increases proportionally to the ratio κmax
κmin

.

Finally, we stress that the operator A = P−
1
2BP−

1
2 above is introduced only for

the purpose of the analysis, and it does not explicitly appear in the implementation of

the preconditioned MINRES algorithm; indeed only applications of P−1 to a vector are

required. Moreover, to make it practical, we substitute P−1 with a spectrally equivalent

operator P̂−1 that is easier to apply (in fact, with optimal cost). In the numerical re-

sults section, we demonstrate that letting P̂−1 be an auxiliary space algebraic multigrid

preconditioner (AMG) can drastically reduce the computational effort.

6.5.1 Augmented Lagragian formulation

We now introduce an augmented lagrangian formulation of the Brinkman problem

that showed better performances in our preliminary numerical tests. To this aim, we

formally solve for the vorticity variable Σ the block equation MΣ − CTU = F and,

after some algebraic manipulation, we rewrite the block saddle point problem (6.21)

168 6.5 Preconditioning

in the form A+D + CM−1CT −BT

−B 0


U

P

 =

−G− CM−1F

−H

 (6.26)

The role of the pressure variable P as lagrangian multiplier is made explicit by consid-

ering the equivalent constrained optimization formulation

min
U

1

2
UT (A+D + CM−1CT)U + UT (G + CM−1F)

subject to: BU = H.
(6.27)

Letting MW ∈ RNp×Np be the pressure mass matrix and γ ∈ R a positive number,

we multiply the constraint BU = H by γBTMW and we sum the result to the first

block equation of (6.28) to obtain

A+D + CM−1CT + γBTM−1
W B −BT

−B 0


U

P

 =

−G− CM−1F + γBTM−1
W H

−H


(6.28)

It is worth noticing that, since MW is a (block) diagonal matrix, the augmentation

matrix BTM−1
W B is sparse. In addition, thanks to the commutativity property (6.17),

it is also possible to prove that this matrix has exactly the same sparsity pattern of the

stiffness matrix A. As matter of fact, we can write A = ε2BTM−1
W B.

By reintroducing the vorticity Σ previously eliminated, we finally obtain the aug-

mented lagrangian formulation

BγX = Bγ ,

6. THE BRINKMAN PROBLEM 169

where the augmented matrix Bγ and right hand side Bγ have the form

Bγ =


M −CT 0

−C −A−D − γBTM−1
W B BT

0 B 0

 , Bγ =


F

G− γBTM−1
W H

H

 . (6.29)

The advantage of this augmented lagrangian formulation is that it, in practice, leads

to the solution of better conditioned problems, provided that the augmentation param-

eter γ is not too large [17, 53, 84]. In the numerical result presented in the following

we take γ of the order of the inverse permeability coefficient k.

Finally, to alleviate the dependence of the condition number with respect to the ratio

κmax
κmin

, we introduce, in Section 6.6.3, a special augmentation of the Brinkman problem

and a modified version of the preconditioner, which gives optimal convergence rates

for smooth coefficients k(x).

6.6 Scalability results

The numerical results presented in the following aim to study the performance of the

proposed preconditioner both in terms of number of iterations and wall time. Problems

with increasing level of difficulty are considered: first the case when the inverse per-

meability coefficient k(x) is constant in the domain, then when it varies smoothly, and

finally we illustrate the difficulties with the block–diagonal preconditioning approach

when the coefficient k(x) admits large jumps.

In the following results, we use the stopping criterion proposed in [97] for MINRES.

In particular, letting rk = b−Axk be the residual of the linear system Ax = b at iteration

k, convergence is achieved when

‖rk‖2
‖A‖2‖xk‖2

≤ τ (6.30)

170 6.6 Scalability results

for some specified tolerance τ . Here ‖A‖2 is estimated by the MINRES algorithm as a

by-product of the computations.

Two different versions of the block-diagonal preconditioner in (6.24) are compared.

In the exact (ideal) version the blocks PQ, PR are solved up to a tight tolerance by

using the preconditioned conjugate gradient method (auxiliary space AMG is used as

preconditioner); while in the AMG (practical) version the inverse of blocks PQ, PR

are approximated by one V-cycle for the auxiliary space AMG for H(curl) and H(div)

problem respectively.

In practice the AMG version of the preconditioner out-performs the exact one, but

we remark the theoretical importance of the latter, since it allows us to confirm the

expected performance of the preconditioner, uniform with respect to the mesh.

In both versions of the preconditioner, the block PW is inverted exactly. Indeed,

due to the choice of discontinuous pressure finite elements PW has a block diagonal

structure, and it reduces to a diagonal matrix for piecewise constant elements.

6.6.1 Software and implementation details

Before discussing in detail the obtained numerical results, we describe briefly the soft-

ware, compilers and hardware that we have used.

Concerning the finite element discretization, we used the parallel C++ library

MFEM [http://code.google.com/p/mfem/], developed at Lawrence Livermore National

Laboratory (LLNL). Parallelization in MFEM is based on MPI, and it leads to high scal-

ability in the finite element assembly procedure. It supports several solvers from the

HYPRE library (http://www.llnl.gov/CASC/hypre/). In particular, in our tests we used

the auxiliary space algebraic multigrid solvers for H(curl) and H(div) [80, 81].

Our code was compiled with the Intel mpiicc and mpiicpc compilers version 11.1.046.

All the computations presented in this section were obtained on hera, a high per-

6. THE BRINKMAN PROBLEM 171

formance computer at LLNL. Hera has a total of 864 nodes connected by InfiniBand

DDR (Mellanox). Each node has 16 AMD Quad-Core Opteron 2.3Ghz CPUs, and 32GB

of memory. Hera is running CHAOS 4.4, a Linux kernel developed at LLNL, specific for

high performance computing.

6.6.2 Constant coefficient weak scalability test

We study the performance of the proposed preconditioner in the case of constant coeffi-

cient k(x) = k0. In particular, we present results relative to the augmented formulation

(6.29) with γ = k0 and the block diagonal preconditioner P, where the weights wQ,

wR, wW are given by

wQ =
ε2

k0 + ε2
, wR = k0 + ε2, wW =

1

k0 + ε2
. (6.31)

For this test we use three different meshes in which the number of elements doubles

from the previous to the next. By alternating between the three meshes and by using

uniform refinements on each of them, we are able to build a sequence of discrete

Brinkman problems whose size doubles each time. The sizes of the three meshes at the

coarser level of refinement are given in Table 6.1. We use Metis [76] for the partitioning

of the mesh among the processors.

Throughout the simulations we choose the number of processors in order to keep

the number of unknowns per processor as constant as possible as we increase the total

number of unknowns. We equally distribute the number of processes on each node of

the parallel machine and we try to balance concurrency inside the node, on the one

hand, with communications between nodes, on the other. In particular, we always use

maximum of a quarter of the total node capacity, in order to minimize overhead due

to concurrent access to memory. In particular, we start with only one node and we run

1, 2, and 4 parallel processes, then we move to 8 nodes and we run 8, 16, 64 parallel

172 6.6 Scalability results

processes (i.e. 1, 2, 4 processes per node, respectively), and so on.

In Table 6.2 we verify the uniform, with respect to the mesh, performance of the

exact version of the preconditioner. The outer tolerance of MINRES is set to 10−10

(stopping criterion given by equation (6.30)) while the inner tolerance of the PCG (for

inverting the blocks of P) is set to 10−12 (two-norm of the relative residual less than the

specified tolerance). The number of iterations is uniformly bounded for every value of

k. Beside the case k = 106 in which, we observe a moderate increase of the iteration

numbers (while decreasing h), the preconditioner shows a perfectly uniform behavior.

In Table 6.3, we show the number of iterations when using a single V-cycle of the

auxiliary space AMG preconditioners for H(curl) and H(div), keeping all other param-

eters in the test the same as before. For fixed k, we observe a moderate increase of

the number of iterations as the number of unknowns is growing. This is expected,

given the particular choice of the parameters in the V-cycle which are made in order to

minimize wall time rather than the number of iterations. We refer to [80] for a more

detailed discussion about the choice of the multigrid parameters and their effects on

number of iterations for the auxiliary space AMG preconditioner for H(curl) problems.

Regarding the dependency of the iteration count with respect to the value of k, we no-

tice that in the AMG version the number of iterations (even somewhat higher) is quite

homogeneous with respect to k (for fixed mesh size).

Finally, in Table 6.4, we report the wall time to set-up the preconditioner (tsetup) and

to solve iteratively the linear system with MINRES (tsolve). Timings are computed by

using the mpi function MPI_Wtime(). The computation of the preconditioner consists

in two phases. First we assemble the finite element matrices for the variational forms

q(σh, τ h), r(uh,vh), and w(ph, qh). Then, we compute the parameters (interpolation

and coarse-level matrices) needed to build the auxiliary space solvers and to apply

the V-cycle. We show only one column for tsetup since the preconditioner set-up is

independent of the values of k. tsetup is usually negligible compared to tsolve (less than

6. THE BRINKMAN PROBLEM 173

nt nf ne
mesh 1 30336 62336 37940
mesh 2 57472 118304 72164
mesh 3 129920 266448 161602

Table 6.1: Number of elements nt, faces nf , and edges ne on the coarser level of each
unstructured mesh.

N Number of MINRES iterations (Exact Preconditioner)
k = 0 k = 10−6 k = 10−3 k = 1 k = 103 k = 106 ν = 0

130612 16 16 16 18 30 17 10
247940 16 16 16 18 30 18 10
557970 16 16 16 18 30 20 10

1027944 16 16 16 18 30 20 10
1949480 16 16 16 18 30 22 10
4396980 16 16 16 18 30 23 10
8156368 16 16 16 18 30 23 10
15460560 16 16 16 18 30 25 10
34910120 16 16 16 18 30 27 10

Table 6.2: Number of MINRES iterations with the exact preconditioner for different values
of k. N represents the total number of unknowns.

10% in all cases), and it scales well (even if not perfectly) with the number of processes.

The fact that for np = 16 and np = 128 it is faster than in the cases np = 8 and np = 64,

respectively, may suggest some load unbalance due to the partition of the meshes in the

latter case. With respect to the solution times tsolve, we notice that for a fixed problem

size they tend to decrease as we approach the Darcy limit since fewer iterations are

required to converge. For fixed k the scaling of tsolve with respect to the number of

processors is similar to the one reported in [80] up to 128 processes, but we observe

a severe loss of scalability when we use 256 processes. Possible causes of this loss of

performance could be not perfect load balancing and hardware configuration issues,

which are beyond the scope of this thesis.

6.6.3 The case of non-constant smooth coefficients

Now we consider the case of non-constant coefficient k(x) presented in Section 6.4.2.

For this test, we extend the augmentation technique discussed before to the case of

174 6.6 Scalability results

Number of MINRES iterations (AMG Preconditioner)
N k = 0 k = 10−6 k = 10−3 k = 1 k = 103 k = 106 ν = 0

130612 44 44 44 36 37 32 21
247940 48 48 48 40 39 34 23
557970 51 51 51 46 43 37 24
1027944 57 57 57 48 49 39 26
1949480 60 60 60 51 50 40 27
4396980 61 61 61 52 52 42 28
8156368 68 69 68 61 55 43 28

15460560 72 73 72 64 58 44 30
34910120 72 72 72 65 59 45 30

Table 6.3: Number of MINRES iterations with the AMG preconditioner for different values
of k. N represents the total number of unknowns.

tsolve (AMG Preconditioner) tsetup
nn np N k = 0 k = 10−6 k = 10−3 k = 1 k = 103 k = 106 ν = 0
1 1 130612 15.2 15.1 15.1 12.7 13.0 11.3 8.0 0.71
1 2 247940 17.7 17.7 17.7 15.1 14.7 13.0 9.5 0.96
1 4 557970 22.6 22.5 22.5 19.5 19.4 16.8 11.9 1.28
8 8 1027944 25.6 25.2 24.9 21.6 21.9 17.5 13.0 1.47
8 16 1949480 26.8 26.9 26.8 22.8 22.6 18.4 13.7 1.42
8 32 4396980 33.0 33.0 33.1 28.3 28.6 22.9 17.0 1.74
64 64 8156368 36.2 36.8 36.7 33.2 30.6 24.5 20.1 2.15
64 128 15460560 45.3 44.8 44.9 41.5 35.7 28.3 22.0 1.76
64 256 34910120 90.0 91.7 91.0 83.2 76.7 52.3 43.6 2.56

Table 6.4: Computational cost of the AMG preconditioner. nn is the number of nodes used,
np is the number of processes, N the total number of degrees of freedom, tsolve and tsetup
measures the time in seconds to solve the linear system and to assemble the preconditioner,
respectively.

6. THE BRINKMAN PROBLEM 175

non constant coefficient. In particular, we solve the augmented saddle-point problem



(σh, τ h)− ε (uh, curl τ h) = F (τ h), ∀ τ h ∈ Qh

−ε (curl σh,vh)− (k(x) uh,vh)− ((k(x) + ε2) div uh,div vh) + (ph,div uh) =

G(vh) +H(k(x) div vh), ∀ vh ∈ Rh

(div uh, qh) = H(qh), ∀ qh ∈Wh

(6.32)

preconditioned by a block-diagonal preconditioner with blocks corresponding to the

following bilinear forms:


(σh, τ h) + ε2

(
1

k(x) + ε2
curl σh, curl τ h

)
σh, τ h ∈ Qh(

(k(x) + ε2) uh, vh
)

+
(
(k(x) + ε2) div uh, div vh

)
uh,vh ∈ Rh(

1

k(x) + ε2
ph, qh

)
ph, qh ∈Wh.

(6.33)

In Table 6.5, we report the number of MINRES iterations for the solutions of the

Brinkman problem with variable coefficients (stopping criterion: norm of the relative

residual less or equal to 10−10). We show both the exact and inexact block-diagonal

preconditioner. The exact preconditioner shows perfect uniformity with respect to the

mesh behavior, and a moderate dependence on the ratio kmax
kmin

. The inexact precon-

ditioner consists of one V-cycle of the auxiliary space AMG applied to the weighted

H(curl) and H(div) variational forms in (6.33). The number of iterations tends to

grow as we refine the mesh, but it is more uniform respect to the ratio kmax
kmin

.

6.6.4 The case of coefficients with discontinuities

For this test, we consider the analytical solution of the so-called circular preferential

flow pathway proposed in [74] and described in Section 6.4.3.

In Table 6.6, we report the number of MINRES iteration required to achieve a re-

duction of 10−10 in the relative residual norm. Both, for the exact and AMG version

176 6.6 Scalability results

Exact nit AMG nit

N kmax

kmin
= 2 kmax

kmin
≈ 103 kmax

kmin
≈ 106 kmax

kmin
= 2 kmax

kmin
≈ 103 kmax

kmin
≈ 106

2.24K 19 30 30 26 35 36
16.9K 19 29 30 32 37 38
130K 19 29 32 46 45 48
1.03M 19 27 32 52 49 53
8.16M 19 27 32 63 61 61
65M 19 27 32 74 70 70

Table 6.5: Performances of the exact and AMG preconditioner for variable coefficient
problem as a function of the ratio kmax

kmin
. N represents the total number of unknowns and

nit the number of preconditioned MINRES iterations to achieve a relative reduction of the
residual norm up to 10−10.

of the preconditioner, the number of iterations highly depends on the size of the jump

in the inverse permeability coefficient. In particular, for inverse permeability of the

porous media up to 100, the qualitatively behavior of the preconditioner is the same

as the constant and smoothly variable coefficient case: the number of iterations is uni-

form with respect to the mesh for the exact version, whereas for the AMG version it

moderately increases as the mesh is refined. On the contrary, for higher values of the

inverse permeability, the number of iterations tends to double at each mesh refinement

for both versions of the preconditioner. Indeed, efficient preconditioning of the linear

system with large jumps in the coefficient requires the introduction of a specialized

coarse space correction and it is a subject of further investigation. For some progress in

that direction, exploiting element-based algebraic multigrid (AMGe), we refer to [98]

and [82].

6. THE BRINKMAN PROBLEM 177

Exact preconditioner nit
N k = 1 k = 10 k = 102 k = 103 k = 105

2.9K 28 40 92 129 121
21K 27 38 94 189 221

164K 25 36 90 202 393
1.3M 23 34 83 199 640
10M 23 31 79 186 868

AMG preconditioner nit
N k = 1 k = 10 k = 102 k = 103 k = 105

2.9K 30 43 93 133 135
21K 30 43 100 199 271

164K 31 44 105 235 526
1.3M 34 48 112 264 921
10M 40 57 128 293 > 999

Table 6.6: Number of MINRES iterations to achieve a reduction of 10−10 for the relative
residual norm in the preferential channel test case.

178 6.6 Scalability results

7 Conclusion

In this thesis we have studied and implemented efficient methods for the solution of

two important problems in computational fluid-dynamics, namely the Navier-Stokes

and the Brinkman equations. It goes without saying that the set up of effective solvers

for the study of incompressible flows in real-life situations requires computational

power, together with a careful analysis and optimization of the numerical methods. In-

deed, the effectiveness of the preconditioning and solving strategies as well as the scal-

ability properties of the algorithms can not be inferred only from their performances on

standard benchmarks and test cases. For example, in our experience in the modelling of

blood flow, the complexity of the geometry (reconstructed from subject specific medical

images) and therefore the flow conditions (based on subject specific flow and pressure

measurements) determines challenges that can hardly be foreseen when dealing with

simplified geometries or small scale problems.

The two main contributions of this thesis are (i) the development of new time

adaptive algorithms for the Navier-Stokes equation, and (ii) the construction of robust

solvers for the Brinkman problem.

In particular, time adaptivity is a viable strategy for reducing computational costs

in the numerical solution of unsteady differential problems. In the case of incompress-

ible fluid dynamics (Navier-Stokes equations) this could be of particular interest in

some emerging applications like hemodynamics. In this thesis we have developed a

strategy based on the (incremental) pressure corrected Yosida schemes. These schemes

rely upon a sequence of guesses for the pressure field with an increasing order of time

180

accuracy. The difference between two guesses provides a natural error estimator for

the selection of the time step.

The error estimator is thus computed with no additional cost. The results in 2D

and 3D presented in this thesis show that the error is actually estimated with good

reliability. Overall accuracy can be improved with the incremental formulation of the

method. However, the splitting behind the pressure-correction approach, in particular

with high order corrections, can affect significantly the stability of the time advancing.

This eventually prevents the time adaptive method from selecting large time steps. A

different - still hierarchical - approach consists of using low order pressure corrections

as preconditioner. The comparison of the iterates of the preconditioned scheme with

the converged solution provides in this case the error estimator. The stability of the

time discretization method is retained, even if the computational costs are increased.

We have successfully applied this strategy to biomedical relevant problems. As a future

development, we plan to investigate a hybrid adaptive strategy. This means that we use

the coupling between two pressure corrected solvers when accuracy forces small time

steps, and the split/unsplit error estimator for larger time step.

In the last chapter of this thesis we also analyzed a mixed formulation of the

Brinkman problem by introducing the (scaled) vorticity as an additional unknown.

The well-posedness analysis of the mixed formulation was based on the Hodge decom-

position, and the numerical stability of the method was guaranteed by an analogous

results on the discrete level. The particular choice of Nédélec, Raviart-Thomas and

piecewise discontinuous elements, in fact, reproduces the same embedding and map-

ping properties of the continuous spaces in the finite elements spaces. Differently from

penalization methods for the Brinkman problem, our approach provides a conformal

discretization by standard finite elements. Discretization errors in the H(div; Ω) norm

of the velocity and in the L2(Ω) norm of the pressure show uniform linear decay rate

with respect to the inverse permeability coefficient k(x). Only the (scaled) vorticity is

7. CONCLUSION 181

approximated with less accuracy as we approach the Darcy limit.

Despite the increased number of unknowns, the algebraic linear system obtained after

the finite element discretization can be efficiently solved with Krylov iterative meth-

ods using block diagonal AMG preconditioning. In particular, we used the auxiliary

space algebraic multigrid preconditioners for H(curl) and H(div) for the vorticity and

velocity block respectively, and diagonal scaling for the pressure block. In the case of

constant and smooth PDE coefficients, the proposed preconditioner exhibits good scal-

able properties and it is robust with respect to a wide range of values of the inverse

permeability coefficient k(x). Future developments of interest include upscaling tech-

niques and construction of a coarse hierarchy that respects the de Rham complex with

good approximation properties, to handle the non-constant coefficient case with both

upscaling and solver (multigrid) purpose. The latter is feasible based on appropriate

element-based algebraic multigrid (AMGe) technique. For some progress in that direc-

tion, we refer to [98], [82]. Finally, in the presence of stable hierarchy of coarse spaces,

for stochastic coefficients, multilevel Monte-Carlo process can be employed in order to

perform numerical simulations for underground flow of practical interest.

To summarize, the original contributions of this thesis work are the following.

1. We analysed the convergence properties of the incremental version of the high

order pressure corrected schemes proposed in [56] for the solution of the incom-

pressible Navier-Stokes equations, proving that the incremental pressure methods

improve the accuracy of the splitting.

2. Based on the above splitting error analysis we proposed reliable a posteriori esti-

mator for time adaptivity. Such estimator is a by-product of the pressure corrected

Yosida splitting, and do not represent any additional cost.

3. We analysed the use of inexact quadrature rule to produce diagonal (lumped)

182

finite element mass matrices for inf-sup compatible finite elements. We used the

Strang lemma to estimate the error introduced by such lumping.

4. We proposed a novel mixed formulation for the Brinkman problem. We used the

tools developed in the Finite Element Exterior Calculus framework [12, 13] to

prove the numerical stability of the formulation.

5. We constructed a block-diagonal algebraic multigrid preconditioner for the above

formulation of the Brinkman problem that is optimal in the case of constant coef-

ficient.

In addition, we contributed to the finite element libraries LifeV and MFEM in the

following ways.

1. We provided an efficient implementation of the high order pressure corrected

splittings and preconditioners for the serial and parallel version of LifeV.

2. We implemented time adaptive algorithms for the Navier-Stokes equations that

are able to sensibly reduce the computational costs of hemodynamics simulation.

3. We implemented in LifeV a general parallel (Trilinos based) framework for the

preconditioning of block linear systems. The framework has been widely tested

in this thesis for the solution of the incompressible Navier-Stokes equations, how-

ever the same framework is now applied to the solution of defective boundary

condition problems (see [69], [127] for an introduction), fluid structure interac-

tions, heterogeneous domain decomposition.

4. We implemented in MFEM mixed discretization and preconditioners for the Brinkman

problem. To this aim we also implemented a block linear algebra framework sim-

ilar to the one in LifeV.

(P)ALADINS, in particular, is the (Parallel) ALgebraic ADaptive Incompressible Navier-

Stokes Solver, written in C++, that implements the algebraic splitting methods and

7. CONCLUSION 183

preconditioners discussed in this thesis. ALADINS is based on the serial version of

the C++ finite element LifeV, and it shows satisfactory performance in the solution

of small/medium scale problems. ALADINS exploits the multifrontal QR factorization

package SuiteSparseQR to drastically increase the effectiveness of the pressure cor-

rection step. As a matter of fact, in the case of fixed domain simulations, the initial

computational cost to perform the factorization is amortized over the rest of the sim-

ulation. In order to solve large scale problems on high performance clusters, we also

developed a parallel adaptive algebraic Navier-Stokes solver (PALADINS) based on the

parallel version of LifeV. PALADINS extends the benefits of time adaptivity to large

scale problem and shows good scalability properties. The algorithms and precondition-

ers in PALADINS represent also the numerical solver for application codes written for

collaborative projects between the research group of the thesis advisor and School of

Medicine at Emory (Dr. R. W. Taylor, Dr. H. Samady, Dr. F. Tong) and the Department

of Biomedical Engineering at Ga Tech & Emory (Dr. D. Giddens, Dr. A. P. Yoganathan).

References

[1] A. A. HENDERSON. ParaView Guide, A Parallel Visualization Application.

http://www.paraview.org, 2007. 105, 126

[2] G. ALLAIRE. Homogenization of the Navier-Stokes equations in open sets

perforated with tiny holes I. Abstract framework, a volume distribution of

holes. Archive for Rational Mechanics and Analysis, 113:209–259, 1991. 6, 139

[3] G. ALLAIRE. Homogenization of the Navier-Stokes equations in open sets

perforated with tiny holes II: Non-critical sizes of the holes for a volume

distribution and a surface distribution of holes. Archive for Rational Mechanics

and Analysis, 113:261–298, 1991. 6, 139

[4] A. ALONSO AND A. VALLI. An optimal domain decomposition preconditioner

for low-frequency time-harmonic Maxwell equations. Mathematics of Com-

putation, 68:607–631, 1999. 156

[5] AMD. AMD Core Math Library (ACML). http://www.amd.com/acml,

2012. 112

[6] P. R. AMESTOY, T. A. DAVIS, AND I. S. DUFF. Algorithm 837: AMD, an Ap-

proximate Minimum Degree Ordering Algorithm. ACM Trans. Math. Softw.,

30(3):381–388, 2004. 110

[7] E. ANDERSON, Z. BAI, C. BISCHOF, J. DEMMEL, J. DONGARRA, J. DU CROZ,

A. GREENBAUM, S. HAMMARLING, A. MCKENNEY, S. OSTROUCHOV, AND

D. SORENSEN. LAPACK’s User’s Guide. Society for Industrial and Applied Mathe-

matics, Philadelphia, PA, USA, 1999. 109, 113

[8] L. ANTIGA, M. PICCINELLI, L. BOTTI, B. ENE-IORDACHE, A. REMUZZI, AND

D. STEINMAN. An Image-Based Modeling Framework for Patient-Specific

http://www.paraview.org
http://dx.doi.org/10.1007/BF00375065
http://dx.doi.org/10.1007/BF00375065
http://dx.doi.org/10.1007/BF00375065
http://dx.doi.org/10.1007/BF00375066
http://dx.doi.org/10.1007/BF00375066
http://dx.doi.org/10.1007/BF00375066
http://www.amd.com/acml
http://dx.doi.org/10.1007/s11517-008-0420-1
http://dx.doi.org/10.1007/s11517-008-0420-1

Computational Hemodynamics. Medical and Biological Engineering and Com-

puting, 46:1097–1112, 2008. 95, 97

[9] D. N. ARNOLD, R. S. FALK, AND J. GOPALAKRISHNAN. Mixed finite element

approximation of the vector Laplacian with Dirichlet boundary conditions.

arXiv 1109.3668, submitted to Mathematical Models & Methods in Applied Sci-

ences, 2011. 139, 142

[10] D. N. ARNOLD, R. S. FALK, AND R. WINTHER. Preconditioning in H(div) and

applications. Mathematics of Computations, 66:957 – 984, 1997. 10, 143, 154

[11] D. N. ARNOLD, R. S. FALK, AND R. WINTHER. Multigrid in H(div) and H(curl).

Numerische Mathematik, 85:197 – 217, 2000. 10, 143, 154

[12] D. N. ARNOLD, R. S. FALK, AND R. WINTHER. Finite element exterior calculus,

homological techniques, and applications. Acta Numerica, 15:1–155, 2006.

9, 139, 153, 154, 182

[13] D. N. ARNOLD, R. S. FALK, AND R. WINTHER. Finite element exterior calcu-

lus: from Hodge theory to numerical stability. Bull. Amer. Math. Soc. (N.S.),

47:281–354, 2010. 9, 139, 153, 154, 182

[14] I. BABUŠKA. Error-bounds for finite element method. Numer. Math., 16:322–

333, 1970/1971. 146, 156

[15] I. BABUŠKA AND A. K. AZIZ. Survey lectures on the mathematical foundations

of finite element method. In The Mathematical Foundations of the FEM with

Application to PDE. Academic Press, 1972. 155

[16] M. BENZI, G. H. GOLUB, AND J. LIESEN. Numerical Solution of Saddle Point

Problems. Acta Numerica, 14:1–137, 2005. 1

[17] M. BENZI AND M. A. OLSHANSKII. An Augmented Lagrangian-Based Approach

to the Oseen Problem. SIAM Journal on Scientific Computing, 28(6):2095–

2113, 2006. 169

[18] M. BENZI, M. A. OLSHANSKII, AND Z. WANG. Modified Augmented Lagrangian

Preconditioners for the Incompressible Navier-Stokes Equations. Int. J.

Num. Meth Fluids, 66:486–508, 2011. 120

http://dx.doi.org/10.1007/s11517-008-0420-1
http://dx.doi.org/10.1007/s11517-008-0420-1
http://dx.doi.org/10.1017/S0962492906210018
http://dx.doi.org/10.1017/S0962492906210018
http://link.aip.org/link/?SCE/28/2095/1
http://link.aip.org/link/?SCE/28/2095/1

[19] M. BENZI AND Z. WANG. A Parallel Implementation of the Modified Aug-

mented Lagrangian Preconditioner for the Incompressible Navier-Stokes

Equations. Numerical Algorithms, 2012. 120

[20] J. BERGH AND J. LÖFSTRÖM. Interpolation spaces: an introduction. Grundlehren

der mathematischen Wissenschaften. Springer-Verlag, 1976. 147

[21] D. BOFFI, F. BREZZI, AND M. FORTIN. Finite Elements for the Stokes Problem.

In D. BOFFI AND L. GASTALDI, editors, Mixed Finite Elements, Compatibility Con-

ditions, and Applications, number 1939 in Lecture Notes in Mathematics, pages

45–100. Springer, Berlin, 2006. 24

[22] J. BRAMBLE AND J. PASCIAK. Iterative techniques for the time dependent

Stokes problems. Computers Math. Applic., 33:13 – 30, 1997. 44

[23] F BREZZI AND M FORTIN. Mixed and Hybrid finite element method. Springer-

Verlag, Berlin, 1991. 1, 24

[24] E. BURMAN AND P. HANSBO. Stabilized Crouzeix-Raviart element for the

Darcy-Stokes problem. Numerical Methods for Partial Differential Equations,

21(5):986–997, 2005. 139

[25] E. BURMAN AND P. HANSBO. A unified stabilized method for Stokes’

and Darcy’s equations. Journal of Computational and Applied Mathematics,

198(1):35 – 51, 2007. 139

[26] J. CAHOUET AND J. P. CHABARD. Some Fast 3D Finite Element Solvers for the

Generalized Stokes Problem. Int. J. for Numer. Meth. Fluids, 8, 1988. 31, 65,

70, 71

[27] X. C. CAI AND M. SARKIS. A Restricted Additive Schwarz Preconditioner for

General Sparse Linear Systems. SIAM J. Sci. Comput., 21(2):792–797, 1997.

107

[28] M. CALVO, T. GRANDE, AND R. D. GRIGORIEFF. On the Zero Stability of

the Variable Order Variable Stepsize BDF-Formulas. Numerische Mathematik,

57(1):39–50, 1990. 28, 84

http://books.google.co.uk/books?id=jB3vAAAAMAAJ
http://dx.doi.org/10.1002/num.20076
http://dx.doi.org/10.1002/num.20076

[29] M. CALVO AND R. D. GRIGORIEFF. Time Discretisation of Parabolic Problems

with the Variable 3-Step BDF. BIT Numerical Mathematics, 42(4):689–701,

2002. 28, 84

[30] A. J. CHORIN. Numerical Solutions of the Navier-Stokes equations. Math.

Comp., 22:745–762, 1968. 43

[31] S. H. CHRISTIANSEN AND R. WINTHER. Smoothed projections in finite ele-

ment exterior calculus. Mathematics of Computation, 77:813–829, June 2008.

154

[32] P. G. CIARLET. The Finite Element Method for Elliptic Problems. North-Holland,

1978. 34

[33] B. COCKBURN AND S. W. SHU. The local discontinuous Galerkin method for

time-dependent convection-diffusion systems. SIAM J. Num. Anal., 35:2440–

2463, 1998. 6

[34] G. COHEN, P. JOLY, J. E. ROBERTS, AND N. TORDJMAN. Higher Order Trian-

gular Finite Elements with Mass Lumping for the Wave Equation. SIAM J.

Numer. Anal., 38(6):2047–2078, 2001. 33, 34

[35] V. COMINCIOLI. Analisi Numerica Metodi Modelli Applicazioni (Numerical Analy-

sis: Methods, Models, and Applications). MCGRAW-HILL, 1990. 26, 84

[36] W. COUZY. Spectral Element Discretization of the Unsteady Navier-Stokes equa-

tions and its Iterative Solution on Parallel Computers. PhD thesis, EPFL, Lausanne,

1995. 44

[37] T. A. DAVIS. Algorithm 8xx: SuiteSparseQR, a Multifrontal Multithreaded

Sparse QR Factorization Package. ACM Trans. Math. Softw., 2008. 103, 109,

111, 113

[38] T. A. DAVIS. Multifrontal Multithreaded Rank-Revealing Sparse QR Factor-

ization. ACM Trans. Math. Softw., 2008. 103, 109, 113, 117

[39] T. A. DAVIS. User’s Guide for SuiteSparseQR, a Multifrontal Multithreaded

Sparse QR Factorization Package. ACM Trans. Math. Software, 2008. 103

http://www.cise.ufl.edu/research/sparse/SuiteSparse/
http://www.cise.ufl.edu/research/sparse/SuiteSparse/

[40] T. A. DAVIS, J. R. GILBERT, S. I. LARIMORE, AND E. G. NG. Algorithm 836:

COLAMD, a Column Approximate Minimum Degree Ordering Algorithm.

ACM Trans. Math. Softw., 30(3):377–380, 2004. 110

[41] J. J. DONGARRA, J. D. CRUZ, S. HAMMERLING, AND I. S. DUFF. Algorithm 679:

A Set of Level 3 Basic Linear Algebra Subprograms: Model Implementation

and Test Programs. ACM Trans. Math. Softw., 16(1):18–28, 1990. 109, 113

[42] J. J. DOUGLAS AND J. E. ROBERTS. Global estimates for mixed methods for

second order elliptic equations. Math. Comp, 44:39–52, 1985. 156

[43] H. ELMAN AND D. SYLVESTER. Fast Nonsymmetric Iterations and Precondi-

tioning for Navier-Stokes Equations. SIAM J. Sci. Comput., 20:33–46, 1996.

68

[44] H. C. ELMAN, V. E. HOWLE, J. SHADID, R. SHUTTLEWORTH, AND R. TUMINARO.

Block Preconditioners based on Approximate Commutators. SIAM J. Sci.

Comput., 27:1651–1668, 2006. 65, 70, 72

[45] H. C. ELMAN, D. J. SILVESTER, AND A. J. WATHEN. Finite Elements and Fast

Iterative Solvers: with Applications in Incompressible Fluid Dynamics. Oxford Uni-

versity Press, USA, 2005. 1, 6, 24, 25, 44, 65, 66, 67

[46] A. ERN AND J. L. GUERMOND. Theory and Practice of Finite Elements. Springer

Verlag, 2004. 35

[47] C.R. ETHIER AND D.A. STEINMAN. Exact fully 3D Navier–Stokes solutions

for benchmarking. International Journal for Numerical Methods in Fluids,

19(5):369–375, 1994. xvii, 126, 127

[48] R. S. FALK AND J. E. OSBORN. Error estimates for mixed methods. In MR

592753 (82j:65076), 14 of RAIRO Anal. Numér., pages 249–277, 1980. 156

[49] Y. T. FENG AND D. PERIĆ. A Time-Adaptive Space-Time Finite Element

Method for Incompressible Lagrangian Flows with Free Surfaces: Compu-

tational Issues. Comput. Methods Appl. Mech. Eng. , 190(5-7):499–518, 2000.

77

[50] G. J. FIX. The Mathematical Foundations of the Finite Element Method with Ap-

plications to Partial Differential Equations, chapter Effect of Quadrature Errors

in the Finite Element Approximation of Steady State, Eigenvalue and Parabolic

Problems, pages 525–556. Academic Press, 1972. 34

[51] L. FORMAGGIA, J. F. GERBEAU, AND C. PRUD’HOMME. LifeV Developer Manual.

EPFL, INRIA, MOX, 2008. 103, 104

[52] L. FORMAGGIA, F. SALERI, AND A. VENEZIANI. Solving Numerical PDEs: Problems,

Applications, Exercises. Springer, Milan, 2012. 17, 32

[53] M. FORTIN AND R. GLOWINSKI. Augmented Lagrangian methods: applications

to the numerical solution of boundary-value problems. Studies in Mathematics

and its Applications. North-Holland, Amsterdam, 1983. Transl.of : Méthodes de

Lagrangian augmentées. Paris : Dunod, 1982. 169

[54] A. GAUTHIER, F. SALERI, AND A. VENEZIANI. A Fast Preconditioner for the

Incompressible Navier Stokes Equations. Computing and Visualization in Sci-

ence, 6(2):105–112, 2004. 47, 61, 69, 70, 72, 88

[55] P. GERVASIO. Convergence Analysis of High Order Algebraic Fractional Step

Schemes for Time-Dependent Stokes Equations. SIAM Journal on Numerical

Analysis, 46(4):1682–1703, 2008. 9, 47, 51, 52, 56, 57, 60, 61, 62, 63, 77

[56] P. GERVASIO, F. SALERI, AND A. VENEZIANI. Algebraic Fractional-Step Schemes

with Spectral Methods for the Incompressible Navier-Stokes Equations. J.

Comput. Phys., 214(1):347–365, 2006. 47, 51, 181

[57] C. GEUZAINE AND J.F. REMACLE. Gmsh: a three-dimensional finite element

mesh generator with built-in pre-and post-processing facilities. Int J Numer

Meth Engng, 79:1309–1331, 2009. 104, 124

[58] R. GLOWINSKI. Splitting Methods for the Numerical Solution of the Incom-

pressible Navier-Stokes Equations, 1986. 43

[59] K. GOTO AND R. VAN DE GEIJN. High-Performance Implementation of the

Level-3 BLAS. ACM Trans. Math. Softw., 35(1):1–14, 2008. 109, 113

file:www.lifev.org
http://www.tacc.utexas.edu/resources/software/
http://www.tacc.utexas.edu/resources/software/

[60] B. GOTTERMEIER AND J. LANG. Adaptive Two-Step Peer Methods for Incom-

pressible Navier-Stokes Equations. In G. KREISS, P. LÖTSTEDT, A. MÅLQVIST,

AND M. NEYTCHEVA, editors, Numerical Mathematics and Advanced Applications

2009, pages 387–395. Springer Berlin Heidelberg, 2010. 1, 77

[61] P. M. GRESHO, D. F. GRIFFITHS, AND D. J. SILVESTER. Adaptive Time-Stepping

for Incompressible Flow Part I: Scalar Advection-Diffusion. SIAM J. Sci. Com-

put., 30:2018–2054, May 2008. 1, 77

[62] P. M. GRESHO AND R. L. SANI. Incompressible Flow and the Finite Element

Method. Vol. 1: Advection-Diffusion. Vol. 2: Isothermal Laminar Flow. Chichester:

Wiley, 2000. 50

[63] L. G. GUERMOND AND L. QUARTAPELLE. On Stability and Convergence of Pro-

jection Methods Based on Pressure Poisson Equation. Int. J. Numer. Meth.

Fluids, 26:1039–1053, 1998. 50

[64] J. GUZMÁN AND M. NEILAN. A family of nonconforming elements for the

Brinkman problem. IMA Journal of Numerical Analysis, 2012. 7

[65] P. HARIHARAN, M. GIARRA, V. REDDY, S. W. DAY, K. B. MANNING, S. DEUTSCH,

S. F. C. STEWART, M. R. MYERS, M. R. BERMAN, G. W. BURGREEN, E. G. PATER-

SON, AND R. A. MALINAUSKAS. Multilaboratory Particle Image Velocimetry

Analysis of the FDA Benchmark Nozzle Model to Support Validation of Com-

putational Fluid Dynamics Simulations. J. Biomech. Engin., 133(4):041002,

2011. 3

[66] MARTIN OFSTAD HENRIKSEN AND JENS HOLMEN. Algebraic Splitting for Incom-

pressible Navier-Stokes Equations. J. Comput. Phys., 175(2):438–453, 2002.

46, 50, 51

[67] P. HERNICI. Discrete Variable Methods in Ordinary Differential Equations. John

Wiley & Sons, New York, 1964. 81

[68] M. A. HEROUX, R. A. BARTLETT, V. E. HOWLE, R. J. HOEKSTRA, J. J. HU,

G. K. TAMARA, R. B. LEHOUCQ, K. R. LONG, R. P. PAWLOWSKI, E. T. PHIPPS,

A. G. SALINGER, H. K. THORNQUIST, R. S. TUMINARO, J. M. WILLENBRING,

http://dx.doi.org/10.1007/978-3-642-11795-4_41
http://dx.doi.org/10.1007/978-3-642-11795-4_41
http://portal.acm.org/citation.cfm?id=1405006.1405022
http://portal.acm.org/citation.cfm?id=1405006.1405022
http://imajna.oxfordjournals.org/content/early/2012/01/10/imanum.drr040.abstract
http://imajna.oxfordjournals.org/content/early/2012/01/10/imanum.drr040.abstract
http://link.aip.org/link/?JBY/133/041002/1
http://link.aip.org/link/?JBY/133/041002/1
http://link.aip.org/link/?JBY/133/041002/1

A. WILLIAMS, AND K. S. STANLEY. An overview of the Trilinos project. ACM

Trans. Math. Softw., 31(3):397–423, 2005. 103, 104, 105, 119, 126

[69] J. G. HEYWOOD, R. RANNACHER, AND S. TUREK. Artificial boundaries and flux

and pressure conditions for the incompressible Navier-Stokes equations.

Int. J. Numer. Meth. Fluids, 22:325–352, 1996. 182

[70] R. HIPTMAIR AND J. XU. Nodal auxiliary space preconditioning in H(curl)

and H(div) spaces. SIAM Journal on Numerical Analysis, 45(6):2483–2509,

2007. 10

[71] Intel. Intel(R) Threading Building Blocks, 2008. 109, 112

[72] INTEL. Intel Math Kernel Library (Intel MKL). http://software.intel.

com/en-us/articles/intel-mkl, 2012. 112, 129

[73] J. W. J. DANIEL, W. B. GRAGG, L. KAUFMAN, AND G. W. STEWART. Reorthogo-

nalization and stable algorithms for updating the Gram-Schmidt QR factor-

ization. Math. Comput., 30:772–995, 1976. 106

[74] A. A. JENNINGS AND R. PISIPATI. The impact of Brinkman’s extension of

Darcy’s law in the neighborhood of a circular preferential flow pathway.

Environmental Modelling and Software with Environment Data News, 14(5):427–

435, 1999. 160, 175

[75] G. E. KARNIADAKIS, M. ISRAELI, AND S. A. ORSZAG. Higher Order Splitting

methods for the Incompressible Navier-Stokes Equations. J. Comput. Phys.,

97:414 – 443, 1991. 30, 44

[76] G. KARYPIS AND V. KUMAR. A Fast and High Quality Multilevel Scheme for

Partitioning Irregular Graphs. SIAM J. Sci. Comput., 20:359–392, 1998. 110,

171

[77] G. KARYPIS AND V. KUMAR. MeTis: Unstructured Graph Partitioning and

Sparse Matrix Ordering System, Version 4.0. http://www.cs.umn.edu/

~metis, 2009. 105, 124

http://www.threadingbuildingblocks.org/
http://software.intel.com/en-us/articles/intel-mkl
http://software.intel.com/en-us/articles/intel-mkl
http://www.ingentaconnect.com/content/els/13648152/1999/00000014/00000005/art00085
http://www.ingentaconnect.com/content/els/13648152/1999/00000014/00000005/art00085
http://www.cs.umn.edu/~metis
http://www.cs.umn.edu/~metis

[78] D. A. KAY, P. M. GRESHO, D. F. GRIFFITHS, AND D. J. SILVESTER. Adaptive

Time-Stepping for Incompressible Flow Part II: Navier-Stokes Equations.

SIAM J. Sci. Comput., 32:111–128, 2010. 77

[79] G. M. KOBELKOW AND M. OLSHANSKII. Effective Preconditioning of Uzawa

Type Schemes for a Generalized Stokes Problem. Num. Mat., pages 443–470,

2000. 72

[80] T. KOLEV AND P. S. VASSILEVSKI. Parallel Auxiliary Space AMG for H(curl)

Problems. J. of Computational Mathematics, 27, 2009. 10, 140, 170, 172, 173

[81] T. KOLEV AND P. S. VASSILEVSKI. Parallel Auxiliary Space AMG Solver for

H(div) Problems. Technical Report LLNL-JRNL-520391, December 15, 2011.

10, 140, 170

[82] I. V. LASHUK AND P. S. VASSILEVSKI. Element Agglomeration Coarse Raviart-

Thomas Spaces With Improved Approximation Properties. Numerical Linear

Algebra with Applications, 19(2):414–426, 2012. 140, 176, 181

[83] W. J. LAYTON AND L. G. REBHOLZ. Approximate Deconvolution Models of Turbu-

lence: Analysis, Phenomenology and Numerical Analysis, 2042 of Lecture Notes in

Mathematics. Springer, 2012. 3

[84] P. LE TALLEC AND T. SASSI. Domain decomposition with nonmatching grids:

augmented Lagrangian approach. Math. Comp., 64(212):1367–1396, 1995.

169

[85] J. G. LIU AND C. W. SHU. A high order discontinuous Galerkin method for

2D incompressible flows. J. Comput. Phys., 160:577–596, 2000. 6

[86] G. I. MARCHUK. Splitting and Alternating Direction Methods. In P. G. CIAR-

LET AND J. L. LIONS, editors, Handbook of Numerical Analysis, vol. 1, pages 197

– 462. Elsevier Science Publisher B. V., North Holland, 1990. 44

[87] K. A. MARDAL AND R. WINTHER. Preconditioning discretizations of systems

of partial differential equations. Numerical Linear Algebra with Applications,

18(1):1–40, 2011. 9, 140, 147, 165

http://dx.doi.org/10.1137/080728032
http://dx.doi.org/10.1137/080728032
http://dx.doi.org/10.1002/nla.716
http://dx.doi.org/10.1002/nla.716

[88] P. MATSTOMS. Parallel Sparse QR Factorization on Shared Memory Archi-

tectures. Parallel Computing, 21(3):473 – 486, 1995. 113

[89] H. MEUER, E. STROHMAIER, J. DONGARRA, AND H. SIMON. TOP500 Project.

http://top500.org/, 2012. 129

[90] A. MILANI AND R. PICARD. Decomposition theorems and their application

to non-linear electro- and magneto-static boundary value problems. In

S. HILDEBRANDT AND R. LEIS, editors, Partial Differential Equations and Calculus

of Variations, 1357 of Lecture Notes in Mathematics, pages 317–340. Springer

Berlin / Heidelberg, 1988. 144

[91] P. MONK. Finite Element Methods for Maxwell’s Equations. Numerical Mathe-

matics and Scientific Computation. Oxford University Press, Oxford, UK, 2003.

145

[92] W. A. MULDER. A Comparison between Higher-Order Finite Elements and

Finite Differences for Solving the Wave Equation. In J. A. Desideri, P. Le

Tallec, E. Onate, J. Periaux and E. Stein (eds), Proceedings of the Second ECCOMAS

Conference on Numerical Methods in Engineering (Paris, Sept. 9-13, 1996), pages

344–350. John Wiley and Sons, 1996. xiii, 34

[93] M. F. MURPHY, G. H. GOLUB, AND A. J. WATHEN. A Note on Preconditioning

for Indefinite Linear Systems. SIAM J. Sci. Comput., 21:1969–1972, 2000. 67

[94] J. C. NÉDÉLEC. Mixed finite elements in R3. Numerische Mathematik, 35:315–

341, 1980. 10.1007/BF01396415. 153, 156

[95] M. OLSHANSKII, G. LUBE, T. HEISTER, AND J. LÖVE. Grad-Div Stabilization

and Subgrid Pressure Models for the Incompressible Navier-Stokes Equa-

tions. Comput. Meth. Appl. Mech. Engrg., 198:3975–3988, 2009. 3, 25

[96] M. OLSHANSKII AND L. G. REBHOLZ. Velocity-Vorticity-Helicity formulation

and a solver for the Navier-Stokes equations. J. of Comput. Phys., 229:4291–

4303, 2010. 9

[97] C. C. PAIGE AND M. A. SAUNDERS. Solution of sparse indefinite systems of

linear equations. SIAM J. Numerical Analysis, pages 617–629, 1975. 164, 169

http://www.sciencedirect.com/science/article/B6V12-3YCM0C3-2T/2/879d7dfa8eadeeec02c3d2c11dbfbe61
http://www.sciencedirect.com/science/article/B6V12-3YCM0C3-2T/2/879d7dfa8eadeeec02c3d2c11dbfbe61
http://top500.org/
http://dx.doi.org/10.1007/BFb0082873
http://dx.doi.org/10.1007/BFb0082873
http://www.math.udel.edu/~monk/FEBook/index.html
http://dx.doi.org/10.1007/BF01396415

[98] J. E. PASCIAK AND P. S. VASSILEVSKI. Exact de Rham Sequences of Spaces

Defined on Macro-elements in Two and Three Spatial Dimensions. SIAM J.

on Scientific Computing, 30(5):2427–2446, 2008. 140, 176, 181

[99] T. PASSERINI, J. SLAWINSKI, U. VILLA, A. VENEZIANI, AND V. SUNDERAM. Ex-

periences with a computational fluid dynamics code on clouds, grids, and

on-premise resources. submitted to J. Par. Distrib. Comput., 2012. 102, 134,

136

[100] J. B. PEROT. An Analysis of the Fractional Step Method. J. Comput. Phys.,

108(1):51 – 58, 1993. 44, 45

[101] R. PICARD. Some decomposition theorems and their application to non-

linear potential theory and Hodge theory. Mathematical Methods in the Ap-

plied Sciences, 12(1):35–52, 1990. 144

[102] A. PROHL. Projection and Quasi-Compressibility Methods for Solving the Incom-

pressible Navier-Stokes Equations. Wiley Teubner Advances in Numerical Mathe-

matics. Stuttgart: B. G. Teubner, 1997. 50

[103] L. QUARTAPELLE. Numerical Solution of the Incompressible Navier-Stokes equa-

tions. International Series of Numerical Mathematics. Birkhäuser-Verlag, Basel,

1993. 9, 43

[104] A. QUARTERONI, R. SACCO, AND F. SALERI. Numerical Mathematics. Springer

Verlag, 2007. 6, 76

[105] A. QUARTERONI, F. SALERI, AND A. VENEZIANI. Analysis of the Yosida Method

for the Incompressible Navier-Stokes Equations. Journal des Mathématiques

Pures et Appliqués, 78(5):473–503, 1999. 44, 45, 46, 60, 61

[106] A. QUARTERONI, F. SALERI, AND A. VENEZIANI. Factorization Methods for the

Numerical Approximation of Navier-Stokes Equations. Computer Methods in

Applied Mechanics and Engineering, 188(1-3):505–526, 2000. 1, 44, 45

[107] A. QUARTERONI AND A. VALLI. Numerical Approximation of Partial Differential

Equations. Springer-Verlag, Berlin, 1994. 1, 24, 25, 30, 32, 36, 43

http://dx.doi.org/10.1002/mma.1670120103
http://dx.doi.org/10.1002/mma.1670120103

[108] P. A. RAVIART AND J. M. THOMAS. A mixed finite element method for 2nd

order elliptic problems. Mathematical Aspects of the Finite Element Method,

Lecture Notes in Mathematics, 606:292–315, 1977. 153

[109] J. REINDERS. Intel Threading Building Blocks: Outfitting C++ for Multi-Core

Processor Parallelism. O’Reilly, 2007. 112

[110] N. ROTT. Note on the History of the Reynolds Number. Annual Review of

Fluid Mechanics, 22(1):1–12, 1990. 2

[111] J. W. RUGE AND K. STÜBEN. Algebraic multigrid. In In Multigrid methods,

pages 73–130, 1987. 103

[112] F. SALERI AND A. VENEZIANI. Pressure Correction Algebraic Splitting Meth-

ods for the Incompressible Navier-Stokes Equations. SIAM Journal on Nu-

merical Analysis, 43(1):174–194, 2006. 1, 9, 47, 48, 50, 55, 60, 61

[113] J. SCHBERL, H. GERSTMAYR, AND R. GAISBAUER. NETGEN - automatic mesh

generator. http://www.hpfem.jku.at/netgen, 2012. 104, 124

[114] J. SLAWINSKI, T. PASSERINI, U. VILLA, A. VENEZIANI, AND V. SUNDERAM. Ex-

periences with Target-Platform Heterogeneity in Clouds, Grids, and On-

Premises Resources. In 2012 26th International Parallel and Distributed Pro-

cessing Symposium (IPDPS-HCW), pages 41–52. IEEE, 2012. 102

[115] H. SUTTER AND A. ALEXANDRESCU. C++ Coding Standards: 101 Rules, Guide-

lines, and Best Practices. C++ In-Depth Series. Addison-Wesley, Boston, 2004.

119

[116] R. TEMAM. Sur l’Approximation de la Solution des Équations de Navier-

Stokes par la méthode de Pas Fractionaires (II). Arch. Rat. Mech. Anal.,

33:377–385, 1969. 43

[117] R. TEMAM. Navier-Stokes Equations: Theory and Numerical Analysis. CHEL Se-

ries. Ams Chelsea Pub., 2001. 21

[118] THE HDF GROUP. Hierarchical data format version 5. http://www.

hdfgroup.org/HDF5, 2012. 105

http://www.hpfem.jku.at/netgen
http://www.hdfgroup.org/HDF5
http://www.hdfgroup.org/HDF5

[119] A. TOSELLI AND O. B. WIDLUND. Domain Decomposition Methods–Algorithms

and Theory. Springer Series in Computational Mathematics. Springer, 2005.

143, 144

[120] R. S. TUMINARO AND T. TONG. Parallel Smoothed Aggregation Multigrid:

Aggregation Strategies on Massively Parallel Machines. SC Conference, 0:5,

2000. 103

[121] S. TUREK AND M. SCHÄFER. Recent Benchmark Computations of Laminar

Flow Around a Cylinder, 1996. 3

[122] P. S. VASSILEVSKI AND U. VILLA. A Block-Diagonal Algebraic Multigrid Pre-

conditioner for the Brinkman Problem. SIAM J. Sci. Comput., 2012. accepted.

140, 141, 166

[123] P. S. VASSILEVSKI AND U. VILLA. A mixed formulation for the Brinkman prob-

lem. submitted to SINUM, available as LLNL-JNRL-563632, 2012. 141

[124] A. VENEZIANI. Mathematical and Numerical Modeling of Blood Flow Problems.

PhD thesis, University of Milan, Italy, 1998. 61

[125] A. VENEZIANI. Block Factorized Preconditioners for High-Order Accurate in

Time Approximation of the Navier-Stokes Equations. Numerical Methods for

Partial Differential Equations, 19(4):487–510, 2003. 1, 44, 45, 46, 69, 88, 113

[126] A. VENEZIANI. A Note on the Consistency and Stability Properties of Yosida

Fractional Step Schemes for the Unsteady Stokes Equations. SIAM Journal

on Numerical Analysis, 47(4):2838–2843, 2009. 9, 51, 53, 56, 57, 60, 80

[127] A. VENEZIANI AND C. VERGARA. An approximate method for solving incom-

pressible Navier-Stokes problems with flow rate conditions. Comput. Meth-

ods Appl. Mech. Engrg., 196 (9-12):1685–1700, 2007. 182

[128] A VENEZIANI AND U VILLA. ALADINS: an ALgebraic splitting time ADaptive

solver for the Incompressible Navier-Stokes equations. J. Comput. Phys.,

2012. accepted. 1, 9, 55, 75

http://books.google.com/books?id=tpSPx68R3KwC
http://books.google.com/books?id=tpSPx68R3KwC

[129] J. WOMERSLEY. Method for the Calculation of Velocity, Rate of Flow and

Viscous Drag in Arteries when the Pressure Gradient is Known. J. Physiol.,

1955. 61

[130] X. P. XIE, J. C. XU, AND G. R XUE. Uniformly-stable finite element methods

for Darcy-Stokes-Brinkman models. J. Comput. Math., 2008. 7

[131] N. N. YANENKO. The Method of Fractional Steps. Springer, New York, 1971. 44

[132] O. C. ZIENKIEWICZ, R. L. TAYLOR, AND J. Z. ZHU. The Finite Element Method:

Its Basis and Fundamentals. Elsevier, 2005. 32

	1 Introduction
	1.1 The incompressible Navier-Stokes equations
	1.2 The Brinkman Equations
	1.3 Thesis outline

	2 Discretization of the unsteady Navier-Stokes equations
	2.1 Governing equations
	2.2 Weak formulation and Galerkin Projection
	2.3 Space discretization of the generalized Oseen Problem
	2.4 Time discretization
	2.4.1 Treatment of the non-linear convective term

	2.5 A note on mass lumping for high order finite element
	2.5.1 Mass lumping and orthogonal finite element basis
	2.5.2 Accuracy of mass-lumped finite elements

	3 Algebraic splittings and block preconditioners
	3.1 Velocity-pressure splittings methods
	3.1.1 Incremental formulation of splitting methods

	3.2 The high order Yosida splitting
	3.3 Algorithmic form of High Order Yosida schemes
	3.4 Analysis of the pressure corrected splittings
	3.4.1 Non-singularity and consistency
	3.4.2 Stability analysis
	3.4.3 Convergence analysis

	3.5 Algebraic splitting as preconditioners
	3.5.1 Block preconditioners and approximated Schur Complement operators
	3.5.2 Spectral properties of algebraic splitting preconditioners
	3.5.3 Comparison with the Cahouet-Chabard preconditioner
	3.5.4 Comparison with the Least Squares Commutator preconditioner

	4 Time Adaptivity
	4.1 Time adaptivity for computational fluid-dynamics
	4.2 Analysis of the incremental formulation of High Order Yosida schemes
	4.3 Adaptation rule
	4.4 A posteriori error estimators for the Navier-Stokes problem
	4.4.1 Algebraic splitting based estimators
	4.4.2 Preconditioned unsplit solvers estimators

	4.5 Numerical results
	4.5.1 Preliminary 2D results
	4.5.2 3D Womersley test case
	4.5.3 Sensitivity with respect to the mesh size
	4.5.4 An adaptive 3D blood flow simulation

	5 Implementation
	5.1 Libraries and Software
	5.1.1 LifeV
	5.1.2 Trilinos
	5.1.3 SuiteSparseQR

	5.2 On the numerical solution of the discrete Laplacian with direct methods
	5.2.1 Parallel performance results
	5.2.2 The effect of the ordering strategy

	5.3 Management of Block Operators in LifeV/Trilinos
	5.3.1 Overview of the block linear algebra module

	5.4 Scalability Results
	5.4.1 Weak scalability test
	5.4.2 Strong scalability test

	6 The Brinkman Problem
	6.1 Mixed formulation of the Brinkman Problem
	6.1.1 Functional spaces and orthogonal decompositions
	6.1.2 Weak formulation

	6.2 Well-posedness of the mixed variational formulation
	6.3 Discretization
	6.3.1 Analysis of the discrete problem

	6.4 Discretization error numerical results
	6.4.1 Discretization error for constant coefficients.
	6.4.2 Discretization error for non-constant smooth coefficients.
	6.4.3 Discretization error for coefficients with jumps

	6.5 Preconditioning
	6.5.1 Augmented Lagragian formulation

	6.6 Scalability results
	6.6.1 Software and implementation details
	6.6.2 Constant coefficient weak scalability test
	6.6.3 The case of non-constant smooth coefficients
	6.6.4 The case of coefficients with discontinuities

	7 Conclusion

