
Distribution Agreement

In presenting this thesis as a partial fulfillment of the requirements for a degree from Emory

University, I hereby grant to Emory University and its agents the non-exclusive license to

archive, make accessible, and display my thesis in whole or in part in all forms of media, now

or hereafter now, including display on the World Wide Web. I understand that I may select

some access restrictions as part of the online submission of this thesis. I retain all ownership

rights to the copyright of the thesis. I also retain the right to use in future works (such as

articles or books) all or part of this thesis.

Zhangyi Pan April 9, 2020

Communication Efficient Distributed Tensor Factorization based on Local SGD for
Collaborative Health Data Analysis

by

Zhangyi Pan

Li Xiong
Advisor

Department of Computer Science

Li Xiong
Advisor

Bree Ettinger
Committee Member

Davide Fossati
Committee Member

2020

Communication Efficient Distributed Tensor Factorization based on Local SGD for
Collaborative Health Data Analysis

by

Zhangyi Pan

Li Xiong
Advisor

An abstract of
a thesis submitted to the Faculty of Emory College of Arts and Sciences

of Emory University in partial fulfillment
of the requirements of the degree of

Bachelor of Science with Honors

Department of Computer Science

2020

Abstract

Communication Efficient Distributed Tensor Factorization based on Local SGD for

Collaborative Health Data Analysis

By Zhangyi Pan

Tensor factorization is a useful technique for phenotyping, and has proven to be an effective

way to approach massive medical data. We can factorize the electronic health records (EHRs)

to discover latent clinical concepts that capture interactions among multiple attributes such

as medication and diagnosis. One challenge is how to perform high-throughput tensor fac-

torization using EHRs distributed among multiple sites while preserving patient privacy.

Federated tensor factorization has been proposed recently in which local sites communicate

intermediate factors with differential privacy to a global server without sharing the original

data. Existing methods based on Elastic Averaging Stochastic Gradient Descent (EASGD),

although has lowered the communication cost by infrequent communications, relies on an

auxiliary penalty which leads to inferior converged results. In this thesis, we propose a com-

munication efficient approach based on local Stochastic Gradient Descent, where the local

sites only communicate with the global server after several iterations of local updates and

do not require the auxiliary penalty. Our experiments using real medical dataset show that

the proposed approach can simultaneously achieve better accuracy and lower communication

cost than the state-of-the-art approaches.

Communication Efficient Distributed Tensor Factorization based on Local SGD for
Collaborative Health Data Analysis

By

Zhangyi Pan

Li Xiong
Advisor

A thesis submitted to the Faculty of Emory College of Arts and Sciences
of Emory University in partial fulfillment

of the requirements of the degree of
Bachelor of Science with Honors

Department of Computer Science

2020

Acknowledgements

My thanks to Dr.Li Xiong, my advisor, who gives me this precious opportunity to further

probe into the field of machine learning. Also thanks to postdoc fellow Jian Lou and PhD

student Jing Ma, who gives me a lot of guidance and help throughout the research.

Contents

1 Introduction 1

2 Background and Related Work 3

2.1 Notations . 4

2.2 Tensor Factorization . 4

2.2.1 Tensor . 4

2.2.2 Matrix Products . 5

2.2.3 CP Decomposition . 6

2.3 Stochastic Gradient Descent . 7

2.4 Concentrated Differential Privacy . 8

2.5 Distributed Tensor Factorization . 10

2.5.1 Vanilla Distributed SGD . 10

2.5.2 ADMM Based Approaches . 10

2.5.3 EA-SGD Based Approaches . 11

2.6 Local Stochastic Gradient Descent . 12

3 Proposed Model 15

3.1 Overview . 15

3.2 Algorithm . 17

3.3 Worker Side Update . 18

3.3.1 Patient Factor Matrix . 18

3.3.2 Feature Factor Matrix . 19

3.4 Server Side Update . 20

3.5 Privacy Analysis . 21

4 Experiments 22

4.1 Dataset . 22

4.1.1 Data Description . 22

4.1.2 Pre-processing . 23

4.2 Implementation Details . 25

4.3 Baselines . 25

4.4 Parameters . 25

4.4.1 l2,1 regularization term µ . 26

4.4.2 Learning rate η . 26

4.4.3 Number of Sites T . 26

4.4.4 Number of Local Updates per Communication b 26

4.5 Results . 27

4.5.1 Accuracy . 27

4.5.2 Communication Costs . 28

4.5.3 Utility . 28

4.5.4 Convergence . 29

5 Conclusion and Future Work 31

5.1 Conclusion . 31

5.2 Future Work . 31

Bibliography 33

Chapter 1

Introduction

Nowadays, more and more hospitals choose to store clinical histories in the form of Electronic

Health Records (EHRs) [1]. While such an approach benefits both in research and practi-

cal aspects, it requires EHRs to be succinct but comprehensive. Many favor phenotyping

to transform EHR data into certain medical concepts, i.e. to extract phenotypes. We can

then use the extracted phenotypes for multiple downstream data analysis purposes such as

predicting mortality or risk of certain diseases and improving treatments.

A common approach for phenotyping is the tensor factorization [2, 3, 4, 5], which extracts

phenotypes by factorizing the input tensor into factors. We treat the data as a tensor, and

then decompose the tensor into factors that store some aspect of information as well as the

correlation between different aspects (e.g. correlated medical treatments and diseases). In

such a way, the information appears to be more interpretable and suitable for further utili-

ties and therefore can be used to improve healthcare quality and thereby utilizes biomedical

discoveries.

Recent studies also indicate that we can combine EHR data from different hospitals to

get a global result and the result would benefit individual hospitals. By incorporating data

1

from other hospitals, local hospitals can have a more comprehensive understanding of certain

diseases and medications, therefore achieve a better service for their patients. Nevertheless,

issues arise from such global integration: 1) leakage of patients’ privacy during intermediary

results sharing; and 2) high communication costs between global server and local sites.

To address the privacy issue, we apply zero-concentrated differential privacy technique [6],

which outperforms traditional differential privacy technique in terms of tigher compositional

ability. These privacy techniques guarantee privacy to a strict standard, thus mitigate pri-

vacy leak to a great extent.

To reduce the communication cost, we integrate the idea of Local Stochastic Gradient De-

scent (Local SGD) [7]. Compared with general Stochastic Gradient Descent (SGD) which

updates global results each iteration, Local SGD only communicates after some number of

local updates, therefore greatly reduce communication costs. Each time after global commu-

nication, the global server sends aggregated information back to local sites and continue local

updates. With a comfortable batch size (number of local updates before a global update),

we can reduce communication costs and achieve a better outcome. To summarize, our algo-

rithm improves existing methods by: 1) a higher accuracy evaluated under the RMSE loss;

2) better utility when used for downstream machine learning task (e.g.mortality prediction);

3) strong privacy guarantee for patients and 4) lower communication costs. We evaluate our

algorithm on the MIMIC III dataset to verify the improved accuracy, communication cost

and utility of the proposed method.

2

Chapter 2

Background and Related Work

In this section, we will introduce the notations we use in this thesis and related works,

including tensor factorization, concentrated differential privacy, and Local SGD.

3

2.1 Notations

Here are some notations we used in this thesis:

Symbols Descriptions

⊗ Kronecker product

� Khatri-Rao product

◦ Outer Product

∗ Element-wise Product

N Number of modes

T Number of local sites

R Number of ranks

X(n) Mode-n matricization of tensor O

X, X, x Tensor, matrix, vector

B̂, Ĉ Global factor matrices

A[t], B[t], C[t] Local factor matrices at the t-th site

X[t] Local tensor at the t-th site

xi:, x:r Row vector, Column vector

2.2 Tensor Factorization

In this section, we will introduce tensor factorization, which is the main topic of interest in

our thesis.

2.2.1 Tensor

A tensor is a multidimensional array [8]. More formally, an N-way or Nth-order tensor is

an element of the tensor product of N vector spaces, each of which has its own coordinate

system. To be more clear, a first-order tensor is a vector, a second-order tensor is a matrix

4

and the following image shows a third order tensor.

Figure 2.1: A third order tensor [9]

2.2.2 Matrix Products

To begin with, we define the following products which are commonly used in the tensor

factorization.

Definition 1 The Kronecker product of matrices A ∈ RI×J and B ∈ RK×L is denoted

byA⊗B. The result is a matrix of size (IK) × (JL) and defined by:

A⊗B =

a11B a12B · · · a1JB

a21B a22B · · · a2JB

...
...

. . .
...

aI1B aI2B · · · aIJB

,

=

[
a1 ⊗ b1 a1 ⊗ b2 a1 ⊗ b3 · · · aJ ⊗ bL−1 aJ ⊗ bL

]
,

(2.1)

5

Definition 2 The Khatri–Rao product is the “matching columnwise” Kronecker product.

Given matrices A ∈ RI×K and B ∈ RJ×K , their Khatri-Rao product is denoted by A�B.

The result is a matrix of size (IJ) × K defined by:

A�B =

[
a1 ⊗ b1 a2 ⊗ b2 · · · aK ⊗ bK

]
, (2.2)

If a and b are vectors, then the Khari-Rao and Kronecker products are identical, i.e. A⊗B =

A�B.

2.2.3 CP Decomposition

The CANDECOMP-PARAFAC (CP) decomposition factorizes a tensor into a sum of com-

ponent rank-one tensors or vectors [10]. Each vector can represent a certain concept and

we want the decomposed tensors to contain information about its concept and also we can

multiply to get the correlation between dimensions. Suppose we have a third-order tensor

X ∈ RI×J×K , we want to decompose it as:

X ≈
R∑
r=1

ar ◦ br ◦ cr, (2.3)

where R is referred to as the rank of the CP decomposition. Elementwise, it will be:

xijk ≈
R∑
r=1

airbjrckr, (2.4)

Figure 2.2 will be a good illustration for CP decomposition and R is the number of component

rank-one tensors.

6

Figure 2.2: CP decomposition for a three-way tensor [11]

We call the combinations of vectors from one certain dimension or rank-one components

as factor matrices, i.e. A =

[
a1 a2 · · · aR

]
. For a third-order tensor, we will decompose

it to three factor matrices A, B and C and for tensor factorization with a 3-way tensor, we

will be coping with the following optimization problem:

min
1

2
‖O− [[A,B,C]]‖2

F , (2.5)

which means we want the difference between the original tensor and decomposed matrices

to be as small as possible.

2.3 Stochastic Gradient Descent

Gradient Descent is a first-order iterative algorithm to find a local optimum for a differen-

tiable equation. We take the gradient of the equation and iteratively subtract a proportion

of the gradient from the equation to get a local minimum. If we want a local maximum, we

add a proportion of the gradient each time and we refer to it as gradient ascent. To be more

specific, suppose we have a function F(x) and we have an initial guess x0, we will then find

the local minimum through:

xn+1 = xn − ηn∇F(x), (2.6)

and for a η small enough, we are moving against the gradient, thus reducing our F(x) value

7

and hopefully xn+1 will converge to a local minimum.

Stochastic Gradient Descent (SGD) is a stochastic approximation version of the gradient

descent [12]. SGD replaces the gradient in Gradient Descent method with an approximation

of it. We want to minimize the sum of the objective function related to each observation:

min
x
F(x) = min

x

1

n

n∑
i=1

Fi(x), (2.7)

and Fi(x) denotes the objective function associated with observation i. With such an idea,

we can rewrite the optimization problem as:

x = x− η∇F(x) = x− η

n

n∑
i=1

∇Fi(x), (2.8)

in which the η denotes the learning rate. However, problems may arise if we have too much

data as we may spend too much on computing some unrelated data. In SGD, we only take

a small proportion of data or even one observation each time and update, that is:

x = x− η∇Fi(x), (2.9)

With SGD, we may save a lot of computational costs and speed up the algorithm, but at

the cost of a slower convergence rate.

2.4 Concentrated Differential Privacy

Differential privacy is a de facto notion to preserve individual information [13]. We want

the dataset to be available for the public but also prevent personal information leakage.

Concentrated Differential Privacy (CDP) is a new variant of the differential privacy [6]. A

certain formulation of CDP is zero-concentrated differential privacy (zCDP) which utilizes

8

the Renyi divergence between probability distributions to measure the divergence and re-

quires the privacy loss random variable to be sub-Gaussian. It has been shown to provide

tighter privacy composition analysis. To be more specific:

Definition 3 Two datasets X,Y are said to be neighboring if |X|=|Y |=n but X and Y differ

in one record. [14]

Definition 4 We say a randomized mechanism A is ρ-zero concentrated private if for any

two neighboring databases D and D′
that differs in at most one data entry and for all

α ∈ (1, inf):

Dα(A(D) ‖ A(D′
)) ,

1

α− 1
log (E[e(α−1)L(o)]) ≤ ρα, (2.10)

where Dα(A(D) ‖ A(D′
)) is called α-Renyi divergence between the distributions A(D) and

A(D′
)), and L(o) is the privacy loss random variable which is defined as:

L
(o)

(A(D)‖A(D′))
, log

Pr(A(D = o)

Pr(A(D′) = o)
, (2.11)

We have already talked about how we define privacy guarantees with zCDP. Now the remain-

ing question is how we design a mechanism to satisfy these privacy-preserving guarantees.

A very useful privacy mechanism is the Gaussian Mechanism:

Definition 5 Suppose we have an arbitrary ε ∈ (0, 1). For c2 > 2ln(1.25
δ

), the Gaussian

Mechanism with parameter σ ≥ c
a

2(A)/ε, adding a noise with scale to N (0, σ2) to each

component of the algorithm A, is (ε− δ)-deferentially private

It’s also proved that a Gaussian mechanism with noise N (0, σ2) where σ =
√

1/(2ρ)
a

2

satisfies ρ-zCDP. As a result, we will use Gaussian noise in our experiments to satisfy our

proposed concentrated differential privacy.

9

2.5 Distributed Tensor Factorization

There already exist some methods that deal with distributed tensor factorization. In this

section, we will introduce some state-of-art models.

2.5.1 Vanilla Distributed SGD

Vanilla Distributed SGD is a distributed version of SGD, which separates the data into

several parts and distributes the partitions to local workers. Then the local worker performs

gradient descent on the distributed data and then aggregates their results [15]. The overall

algorithm can be described as:

Algorithm 1 Vanilla Distributed SGD
Input: c, η, t

1: for i ∈ {1,...,t} do in parallel

2: vi = SGD(ci, η)

3: end for

4: Aggregate the results from all the clients by v = 1
t

∑t
i=1 vi

5: return v

Here c denotes the data and we separate c into k parts and let the local workers compute

the results in parallel. Such an approach takes more data into account while runs faster as

each local site only computes a proportion of the data.

2.5.2 ADMM Based Approaches

The alternating direction method of multipliers (ADMM) is an algorithm that solves convex

optimization problems by breaking them into smaller pieces, each of which is then easier to

handle [16]. It has found wide applications in a number of areas. ADMM algorithm can be

applied to lots of machine learning problems, including tensor factorization. The objective

10

function for general ADMM is:

minimize F(x) + G(z)

subject to Ax+Bz = c

(2.12)

A tensor factorization method that incorporates Alternating direction method of multipli-

ers (ADMM) algorithm into the optimization problem is TRIP [17]. Compared with methods

based on Distributed SGD, TRIP extends ADMM to tensor factorization and incorporates

infrequent communication, thus saves some communication costs. However, to assist in-

frequent communication, TRIP introduces some auxiliary variables and thus increases the

communication cost per iteration. In TRIP, the overall communication cost is reduced but

the cost per iteration is larger thus we may be interested in avoiding the auxiliary variables.

For each worker t, TRIP will be minimizing the objective function:

min
1

2
‖O[t] − [[A[t],B[t],C[t]]]‖2

F +
λ

2
‖I−B′B‖2

F +
λ

2
‖I−C′C‖2

F

s.t. B = B[t],C = C[t]

and B′ = B,C′ = C

(2.13)

2.5.3 EA-SGD Based Approaches

EA-SGD is a modified version of SGD where the communication and coordination of work

among local workers are based on an elastic force that links the parameters they compute

with the central server [18]. The overall objective function for EA-SGD can be expressed as:

F(x) +
γ2

2
(x− x̃), (2.14)

where x̃ denotes the global variable.

DPFact extends Elastic Averaging SGD (EA-SGD) to tensor factorization and adds some

11

noises to preserve privacy [19]. DPFact also has infrequent communication and does not

need auxiliary variables in communication. As a result, DPFact has a smaller communica-

tion cost than TRIP. Nevertheless, to achieve infrequent communication, DPFact introduces

some elastic penalties and such penalties may change the objective function for the opti-

mization during updates, thus jeopardizing the overall accuracy and utility. In conclusion,

we want a method that infrequently communicates and preserves accuracy and utility and

we then propose the usage of Local SGD, an improved version of Vanilla Distributed SGD

which communicates after several local updates. DPFact optimizes the objective function

defined as following:

min
1

2
‖O[t] − [[A[t],B[t],C[t]]]‖2

F +
γ

2
‖B[t] − B̂‖2

F +
γ

2
‖C[t] − Ĉ‖2

F + µ‖(A[t])>‖2,1. (2.15)

2.6 Local Stochastic Gradient Descent

Distributed SGD seems very appealing in every aspect, but it gives rise to another problem:

the high communication costs caused by the communication between the local workers and

the server. In each iteration, the local workers will have to share their results and the costs

can accumulate through the iterations. To speed up to local update, we want the k to be

larger thus each local site will be assigned less data but increase the communication costs.

In such a way, local update time decreases while the communication time increases, wasting

the benefits achieved from parallel work and stochastic approximation.

Thus we use the Local Stochastic Gradient Descent (Local SGD) [7], an extension of SGD

and Distributed SGD. In Local SGD, we still separate the work to several clients, just like

in Distributed SGD, but this time we locally update several times separately and then com-

municates only at some certain iterations (typically after some number of iterations). We

12

can express the way that Local SGD evolves as :

xti+1 =

xti − ηi∇F(xti+1) i+ 1 /∈ LI

1
T

∑T
t=1(xti − ηi∇F(xti+1)) i+ 1 ∈ LI ,

(2.16)

where K denotes the number of local sites and ηt denotes the learning rate at iteration t (we

allow the learning rate to change from step to step, but we may also keep a global learning

rate). T is the set of all indices (iterations) and LT is the list of indices that we will do

global communicates. If LT contains every index, then it will be identical to Parallel SGD

and if LT contains only the last index, we will only communicate at the very end. Both

cases are not ideal so we will need to find a proper gap between communications. If we fix

the number of total iterations, our communication costs will be greatly reduced, and if we

compute until convergence, we will need to deal with the number of total iterations. With

respect to other research, Local SGD converges fast, and as a result, we can conclude that

Local SGD reduces the communication cost. The overall algorithm can be described as:

Algorithm 2 Local SGD
Input: I, η, T

1: for i ∈ I do

2: for t ∈ {1,...,T} do in parallel

3: if i+ 1 ∈ LI then

4: xti+1 ←− 1
T

∑T
t=1(xti − ηi∇F(xti+1))

5: else

6: xti+1 ←− xti − ηi∇F(xti+1)

7: end if

8: end for

9: end for

In sum, local SGD is a useful extension of the original gradient descent in which we can

13

achieve a speedup while getting rid of excessive communication costs and can deal with a

large amount of data.

14

Chapter 3

Proposed Model

In this chapter, we provide an overview of the algorithm and further details about how we

approach the optimization problem.

3.1 Overview

For simplicity, in this chapter, we suppose we have a three-order tensor with modes patients,

procedures and diagnoses as the input, even though our algorithm generally applies to ten-

sors with a higher order. For input, we want the format to be (value, mode 1, mode 2, mode

3) and in our case, mode 1, mode 2, mode 3 represents patients, procedures, and diagnoses

correspondingly.

Since our algorithm is a distributed one, which means we have local sites and a global

server, we have to compute phenotypes while protecting the privacy of the patients in local

sites. Though we assume the global server may be trusted, but curiosity may still trigger

some privacy probing within the protocols. As a result, the local sites only send B and C

to the global server, which denotes procedure and diagnoses information. With the incor-

poration of Local SGD, we first set a batch size b and we only globally communicate after

b iterations of local updates and we add Gaussian noise to B and C factor matrices each

15

iteration. After global communication, the server sends the updated global factor matrices

back to the local sites and local sites continue their local updates. The process continues

until convergence, which means we have little change in local factor matrices.

Figure 3.1: Algorithm Overview

Figure 3.1 is an overview of the whole algorithm. O[t] represents the t-th local sites and

the local sites compute in parallel, thus the number of sites will not have a significant impact

on the local updates time.

16

3.2 Algorithm

Algorithm 3 LocalTF

Input: O, τ , η, γ, µ, σ, ρ, b

1: Randomly initialize the global feature matrices B, C and local feature factor matrices

B[t], C[t] for t ∈ T.

2: while B[t], C[t] not converge do

3: if Hospital then

4: for k = 1, ..., t do

5: Shuffle tensor elements;

6: for observation i do

7: Update A[t] using (3.6);

8: Update B[t], C[t] using (3.10);

9: end for

10: Proximal update for newA[t] using (3.7);

11: end for

12: Calibrate Gaussian noise matrix M
[t]
B and M

[t]
C asN (0,

a2
2

(2ρ)
) for each factor matrix;

13: Update factor matrices privB
[t] and privC

[t] using (3.11);

14: if Every b iterations then

15: Send privB
[t], privC

[t] to Server;

16: end if

17: end if

18: if Server for every b iterations then

19: Receive privB
[t], privC

[t] from local hospitals;

20: Update global B̂, Ĉ using (3.12);

21: Send B̂, Ĉ back to local hospitals;

22: end if

23: end while

17

In Algorithm 1, we separate the problem to the hospital side and the global server side. For

hospitals, each hospital computes its own part in parallel and calibrate noises to the feature

factor matrices. In every b iterations, the hospitals send their results to the global server.

For server, they gather and compute the global information once every b iterations and then

send the corresponding results back to the hospitals.

3.3 Worker Side Update

For local updates, we will generally be solving the following optimization problem:

min
1

2
‖O[t] − [[A[t],B[t],C[t]]]‖2

F + µ‖(A[t])>‖2,1, (3.1)

For the patient factor matrix, we will add a l2,1-norm to regularize the matrix. For the

feature matrices, we will be adding privacy terms. Because we are applying different terms

to different matrices, we will be talking about patient and feature factor matrices separately.

3.3.1 Patient Factor Matrix

For some local site t, we will be updating the patient factor matrix A[t] through minimizing

an objective function with respect to local tensors and the l2,1-norm, which is:

min
A[t]

1

2
‖O[t] − [[A[t],B[t],C[t]]]‖2

F︸ ︷︷ ︸
F

+µ‖(A[t])>‖2,1︸ ︷︷ ︸
H

, (3.2)

We incorporate the l2,1-norm because it does help the model but also makes the optimization

non-differentiable. As a result, we treat the problem as a combination of two functions,

the differentiable F and non-differentiable H. In such a way, we can approach the local

optimization problem with the proximal gradient method [20]. With proximal gradient

18

method, we can iteratively update the A[t] with the proximal operator:

newA[t] = proxηH(A[t] − η∇F(A[t])), (3.3)

where η denotes the learning rate and the proximal operator can be computed through:

proxηH(Θ) = argmin
Θ

(
1

2η
‖Θ− Θ̂‖+H(Θ)), (3.4)

where Θ̂ denotes the updated matrix, which is the formula inside the proximal operator in

(4.3). We can get the closed form solution for the proximal operator by:

proxηH(Θ) = Θ̂r:(1−
µ

‖Θ̂r:‖2

)+, (3.5)

After some calculations, we can get the update rule for the matrix with respect to each

row, which is:

a
[t]
i: ← a

[t]
i: − η[(a

[t]
i: (b

[t]
j: ∗ c

[t]
k:)
> −O

[t]
ijk)(b

[t]
j: ∗ c

[t]
k:)], (3.6)

After updating all entries, we will use the proximal operator to update the patient factor

matrix A[t] by:

newA[t] = proxηH(A[t]), (3.7)

3.3.2 Feature Factor Matrix

For the feature factor matrices, we locally update them through the objective functions:

min
B[t]

fb =
1

2
‖O[t] − [[A[t],B[t],C[t]]]‖2

F

min
C[t]

fc =
1

2
‖O[t] − [[A[t],B[t],C[t]]]‖2

F

, (3.8)

19

We then take the partial derivatives with respect to row vector b
[t]
j: and c

[t]
k: respectively, and

we will get:
∂fb

∂b
[t]
j:

= [(a
[t]
i: (b

[t]
j: ∗ c

[t]
k:)
> −O

[t]
ijk)(a

[t]
i: ∗ c

[t]
k:)]

∂fc

∂c
[t]
k:

= [(a
[t]
i: (b

[t]
j: ∗ c

[t]
k:)
> −O

[t]
ijk)(a

[t]
i: ∗ b

[t]
j:)],

(3.9)

and we will update the factor matrices by rows adding the partial derivatives:

b
[t]
j: ← b

[t]
j: − η

∂fb

∂b
[t]
j:

c
[t]
k: ← c

[t]
k: − η

∂fc

∂c
[t]
k:

,

(3.10)

And we will update τ rounds locally, then we will add the Gaussian noises to the feature

factor matrices before we send them to the central server. We will be adding zero mean

Gaussian noise with a standard deviation of σ =
a2

2

2ρ
, thus we will be adding a Gaussian

noise matrix M to each feature factor matrix for privacy purpose and a detailed privacy

analysis will be provided in section 3.5, the noise will be denoted as:

privB
[t] ← B[t] + M

[t]
B ,

privC
[t] ← C[t] + M

[t]
C ,

(3.11)

3.4 Server Side Update

After local updates, we will be updating the global matrices according to the objective

function for the feature factor matrices B and C, which will be:

B̂← B̂ + η

T∑
t=1

γ(privB
[t] − B̂),

Ĉ← Ĉ + η

T∑
t=1

γ(privC
[t] − B̂),

(3.12)

20

This update incorporates the information collected from the local sites and gets a global

phenotype that best represents all the local information. The global server will then send

the updated global matrices back to the local sites.

3.5 Privacy Analysis

In this section, we want to analyze the privacy budget for our algorithm compared with

DPFact.

Theorem 1 The algorithm 1 is (ε, δ)-differentially private if we choose the input privacy

budget for each factor matrix per epoch as

ρ =
ε2

8Elog(1/δ)
, (3.13)

where E denotes the number of iterations when the algorithm is converged

The proof for this theorem can be found in DPFact [19]. The standard deviation of our

Gaussian noise will be σ =
√

1/(2ρ)
a

2 and our privacy is closely related with our conver-

gence rate. We can apply the translation between (ε, δ)-differential privacy and concentrated

ρ-CDP based on section 2.3. We fix our ε and δ of each iteration in our method and we incor-

porate the ε and δ in each iteration from DPFact. Thus if our E is smaller than DPFact, we

will have a smaller standard deviation than DPFact. With a smaller standard deviation, we

have less perturbation and therefore achieve a better utility under the same privacy budget.

21

Chapter 4

Experiments

We evaluate our algorithm with MIMIC III dataset and we evaluate the accuracy measured

by the RMSE metric. Also, we calculate and compare the communication cost. We also

evaluate the accuracy of utility, which we use the mortality prediction. We named our

method as LocalTF, which represents local SGD and tensor factorization.

4.1 Dataset

In this section, we will elaborate the dataset we use and what we have done to get the final

data used in experiments.

4.1.1 Data Description

We use MIMIC-III dataset for evaluation. MIMIC-III (Medical Information Mart for In-

tensive Care III) is a publicly available database of health-related data collected from over

forty thousand patients in care units of the Beth Israel Deaconess Medical Center between

2001 and 2012. It contains information about patient information(no name), procedures,

medications, diagnoses and mortality (used for mortality).

Though MIMIC-III consists of lots of information, we only concern some certain tables, that

22

is ADMISSIONS, ICUSTAYS, DIAGNOSES ICD, PROCEDURES ICD, D ICD DIAGNOSES,

D ICD PROCEDURES, and PATIENTS.

The ADMISSIONS table provides information regarding patients’ admissions to the hospi-

tal. It has its key as the HADM ID, which represents each admission to hospital. It also has

many useful attributes like SUBJECT ID, which link us to patient information. We also use

the HOSPITAL EXPIRE FLAG, which denotes whether the patient died in this admission

and we use this for utility prediction.

The ICUSTAYS table contains information about each ICU stay. The key of ICUSTAYS is

ICUSTAY ID, and we can link to ADMISSIONS with HADM ID and link to PATIENTS

with SUBJECT ID. We also use the attribute FIRST CAREUNIT to separate the data into

different ICU units. DIAGNOSES ICD and PROCEDURES ICD are the tables that store

the information of the diagnoses and procedures corresponding to admissions. Either table

contains attributes as Row ID, SUBJECT ID, HADM ID, SEQ NUM and ICD9 CODE. We

can use the HADM ID to find the corresponding admission and ICD9 Code represents the

detailed description of the diagnoses and procedures. SEQ NUM denotes the order of the

procedures or the diagnoses. D ICD DIAGNOSES and D ICD PROCEDURES are the ta-

bles with the detailed diagnoses and procedures information. We relate this description to

DIAGNOSES ICD and PROCEDURES ICD with ICD9 CODEs.

4.1.2 Pre-processing

We use mySQL to select the hospital admissions with 202 procedures and 316 diagnoses

that appeared most frequently in the database. We order the procedures and diagnoses

based on the number of different admissions in which they are related to and assign the

order as the new key. In the experiments, we only select admissions with those frequent

procedures and diagnoses and abandon the others. We join the ICUSTAYS, ADMISSIONS,

DIAGNOSES ICD, and PROCEDURES ICD to combine all the information we need. We

then separate the ICU stays into 6 local tensors, each representing stays in different ICU

23

units. We want to count how many times the same patient has been given identical diagnoses

and procedures and the processed data should look like:

Count Patient ID Medication ID Diagnosis ID

1 1 10 3

1 1 8 7

3 2 10 4

2 2 11 7

5 3 1 8

We join the DIAGNOSES ICD and PROCEDURE ICD with the ADMISSIONS based on

HADM ID. We also find all the SUBJECT ID in our used data and get the corresponding

mortality tag from ADMISSIONS attribute HOSPITAL EXPIRE FLAG. We want our pa-

tient id to be consecutive distinct integers, thus we select all the distinct SUBJECT ID and

assign the ranking to them as the new PATIENT ID. We also select all distinct frequent pro-

cedures and diagnoses then assign them consecutive distinct id number as medication id and

diagnosis id. In such a way, the constructed tensors will be one-to-one corresponded to the

patients, procedures, and diagnoses and will be easier for us to analyze. To achieve a dataset

with the format in the table shown above, we group the overall table by distinct (Patient

id, Medication id, Diagnosis id) pair the count how many different times they appeared in

the data. With this dataset as input, the resulting tensor should be of size 40662 patient

* 202 procedures * 316 diagnoses. Since we also want to do mortality prediction with the

patient factor matrix, we keep a dictionary with corresponding SUBJECT ID and the new

patient id. We then relate the patient id to the mortality flag achieved from ADMISSIONS.

We can then use the resulting patient factor matrix and the tag for each patient (each row

represents a patient and the row number is the patient id) to fit into a logistic regression

model to do prediction and evaluate the result.

24

4.2 Implementation Details

We implement the algorithm in Matlab, along with Tensor Toolbox 2.6 package [21] for

tensor-related functionalities. To simulate the distributed nature of local hospitals, we use

the Parallel Computing toolbox provided by Matlab. For utility prediction, we use the

logistic regression model support by Scikit learn in Python. We split the data into train and

test with a ratio 8:2.

4.3 Baselines

We use two baselines methods for comparison, CP-ALS and DPFact.

CP-ALS is an existing centralized method supported by Matlab package tensor toolbox. It

uses the alternating least square approach to solve the tensor decomposition. DPFact [19]

is federated tensor factorization and It uses the same privacy method and has the same

privacy guarantee as our method (LocalTF). It uses the Elastic Averaging SGD to approach

the optimization problem. It also adds penalty terms to penalize the difference between local

feature factor matrices and the global feature factor matrices to minimize the gap between

local sites and global server.

4.4 Parameters

We have a lot of input parameters in our algorithm and each of these will greatly affect the

results. We will use grid search for those parameters, including quadratic penalty parameter

γ, l2,1 regularization term µ, learning rate η and number of sites T. We will fix the rank R

to 50 in order to catch more features.

25

4.4.1 l2,1 regularization term µ

The regularization term µ regulates the sparsity of the output factors. Since different local

sites (which means different ICU units in our dataset) have different sparsity, we will give

different values to different local sites. A small µ exerts little effect on the sparsity regu-

larization while a high µ might cancel off too many columns thus jeopardizing the accuracy

of the phenotypes. Since the similarity between datasets of our algorithm and DPFact, we

incorporate the µ values of DPFact, which is µ = [1, 1.8, 3.2, 1.8, 1.5, 0.6] for TSICU, SICU,

MICU, CSRU, CCU, NICU respectively.

4.4.2 Learning rate η

The learning rate η is also referred to as step size, denoting how fast we ”learn” in each step.

η conveys a trade-off between time and optimal, where a small η takes too long to finish

and a large might result in sub-optimal results and instability. After gird searching through

η = [10−5, 10−4, 10−3, 10−2, 10−1], we choose η = 10−2 as our learning rate.

4.4.3 Number of Sites T

The number of sites generally affect communication cost, so we compare the communication

cost with respect to the number of sites and we find the communication costs increase

proportionally with respect to the number of sites. Since we have 6 different ICU units, we

pick T = 6 in our final experiment setting.

4.4.4 Number of Local Updates per Communication b

The Number of Local updates per communication is a very important variable in our method.

For a small B value, we have little effect on reducing communication costs. For example,

if we choose b=1, then Local SGD has no difference with the Vanilla Distributed SGD and

the communication cost is not reduced. For a large b value, it may take too long to local

26

update and converge, and if the convergence is too slow, we will have to communicate more

iterations thus increase the communication costs. Overall we will have to find a proper B

value so we grid search through b = [2, 3, 5, 8, 10] and we choose b = 3 for experiments.

4.5 Results

In this section, we will present the results from our experiments in multiple aspects, including

accuracy, communication costs, utility and convergence rate.

4.5.1 Accuracy

We evaluate our accuracy with Root Mean Square Error (RMSE). We set all the parameters

with respect to section 5.3 and we pick 6 local sites, each representing a different ICU unit.

Since we randomly initialize our matrices, the results vary each, so we test for 5 times for

each algorithm and calculate the average and variance of those results

CP-ALS DPFact Local TF DPfact w/o l2,1norm Local TF w/o l2,1norm

Average 1.29164 0.7734 0.7442 1.21252 1.13328

Variance 6.46E-7 2.44E-5 5.32E-6 2.54E-5 5.99E-5

We can see that LocalTF achieves better accuracy compared with the other two methods,

especially CP-ALS. CP-ALS has the lowest variance, which means it has the best stability

while LocalTF appears to be more stable than DPFact. Overall, LocalTF has the lowest

RMSE but ranks the second in the aspect of stability. DPFact has a relatively acceptable

RMSE but has poor stability. CP-ALS performs poorly when speaking of accuracy but

gives a stable result, probably because CP-ALS does not have regularization and that may

jeopardize the RMSE result. In order to compare more directly with CP-ALS, we also

test for DPFact and our algorithm without l2,1 regularization and see the results. In later

sections, we will be talking about convergence and we are also comparing the convergence

27

with the results from CP-ALS, DPFact without l2,1 regularization and our algorithm without

l2,1 regularization. With the results of the methods without l2,1 regularization, we can see

LocalTF still has the best performance, but the gap between CP-ALS and LocalTF becomes

much smaller. From these results, we can say that the l2,1 norm plays a crucial role in

reducing the RMSE loss, and after removing the l2,1 regularization, the three methods are

overall comparable when speaking of accuracy, while LocalTFs turns out to be the best. We

can see that the variance of DPFact and LocalTF stays at the same level regardless of the

l2,1 norm and CP-ALS always gives the most stable result.

4.5.2 Communication Costs

In this section, we will be comparing the communication costs of DPFact and LocalTF. Since

the accumulated costs should be proportional to the cost of a single worker, to be simple,

we will analyze the communication costs between a certain worker and the central server.

We measure how much information we will have to communicate, which is the bytes of the

B and C. And the communication costs will be:

DPFact LocalTF Distributed SGD

Total Number of Communication Rounds 25 21 35

Cost Per Iteration 207200 207200 207200

Total Communication Costs (Bytes) 5180000 4351200 7252000

We can see that the two methods have close communication costs, and our method achieves

a slightly smaller cost. Since DPFact also reduces its communication costs in its algorithm,

we think the result of our LocalTF is acceptable. Compared with other SGD methods, the

communication costs of DPFact and LocalTF are much smaller.

4.5.3 Utility

Even though we have evaluated our selected methods with RMSE, it does not mean our

tensor factorization method works perfectly because we have to see how much information is

28

”stored” in our tensors. We want to see how predictive can our tensors be, thus we evaluate

our methods through utility. We use the mortality prediction task to measure utility, in

which we use the result patient factor matrix as the features and we get the mortality target

from the MIMIC III database corresponding to each patient in our data. We evaluate the

prediction result with the AUC score.

CP-ALS DPFact LocalTF DPFact w/o l21 LocalTF w/o l21

Average 0.63658 0.62668 0.63144 0.54736 0.5612

We can see that CP-ALS has the highest prediction AUC score, while LocalTF has a rela-

tively high AUC score compared with DPFact. It kind of contradicts our instinct, because

CP-ALS has the worst RMSE. It can be explained as CP-ALS do not have the l2,1 regu-

larization thus the RMSE could be higher than the other two models with regularization.

Overall, LocalTF achieves a better predictive power than the DPFact. After we remove the

l2,1 norm, we can see that the results our DPFact and LocalTF goes down significantly, and

LocalTF still gives a better result than the DPFact. It can be seen that all these methods

perform not as good as the CP-ALS in utility aspect and since CP-ALS is an idealized case,

it’s nearly impossible for LocalTF to exceed the utility of CP-ALS, thus we think our utility

result is overall acceptable.

4.5.4 Convergence

In this section, we will be comparing the convergence rate of those three methods. To be

fair, we compare the convergence rate of CP-ALS, DPFact and LocalTF without l2,1 norm,

as CP-ALS does not support l2,1 norm.

29

0 5 10 15 20 25

1

1.5

2

2.5

3

3.5

4

DPFact

LocalTF

CP-ALS

Distributed SGD

Figure 4.1: Convergence Rate

In this graph, we can see that CP-ALS converges the fastest and LocalTF and DPFact

achieve close convergence rate and LocalTF converges slightly faster. We do care about

convergence rate because communication costs are also highly related to the number of

iterations. Again, though CP-ALS converges in a marvelous speed, it’s an idealized method

and it gives the best result as perfect as we can. LocalTF achieves a convergence rate at

least as good as DPFact, thus we can conclude LocalSGD converges as fast as DPFact, or

even slightly faster.

30

Chapter 5

Conclusion and Future Work

5.1 Conclusion

LocalTF is a useful tensor factorization method that guarantees strict privacy and reduces

communication costs. With multiple local sites and a central server, LocalTF can protect the

privacy of patients from local sites and also has a great impact on reducing communication

costs. As such, we will not worry too much about have too many local sites and wastes

too many resources in communication. Our model out-beats DPFact, another well-designed

Privacy-Preserving tensor factorization method, in both accuracy and utility aspect. By

testing on MIMIC III dataset, we showed that LocalTF is more useful in predictive tasks

like mortality prediction. LocalTF also achieved comparable results when compared with

CP-ALS, an idealized method, in the aspect of utility test. Thus we can conclude, LocalTF

method can be applied in real world applications and will give comfortable results. Overall,

LocalTF performs pretty well in communication costs, accuracy, and real world applications.

5.2 Future Work

We still have some future works remaining to be done. First, we want to test LocalTF on

some other datasets related to healthcare data. MIMIC III dataset is a comprehensive real

31

world medical dataset, and the results from this dataset should be very representative and

applicable to other datasets. However, we are still interested in how our methods apply to

other datasets and such experiments will be more comprehensive. We may also test our

method with synthetic dataset and see how it performs in such settings and we want to have

a good result in synthetic dataset as well. We want to test on synthetic datasets because we

may be interested in generalizations such as higher-order (more than 3) tensor factorization

and such dataset might be hard to find. In such settings, synthetic dataset might be a proper

choice.

Another possible future work is to consider how we can further reduce the communication

cost per iteration. Currently, both DPFact and LocalTF work on minimizing the number of

iterations we communicate, and few researches have explores how we can minimize the costs

for each iteration. If we can reduce the cost each iteration, the communication cost can be

further reduced and since this is quite another aspect of the problem, the result might be

more optimistic.

Currently, we assume all the workers are honest and moral but in reality, there could be

some malicious workers who intentionally upload tampered results to the central server, thus

jeopardize the global results. Nowadays, we have many machine learning algorithms that

deal with such malicious attack, we want to see if any of these is applicable to LocalSGD to

deal with adversarial attacks without greatly affecting our current accuracy and utility.

32

Bibliography

[1] Tracy D. Gunter and Nicholas P. Terry. The Emergence of National Electronic Health

Record Architectures in the United States and Australia: Models, Costs, and Questions.

PMC, 2005.

[2] Joyce Ho, Joydeep Ghosh, and J. Sun. Marble: High-throughput phenotyping from

electronic health records via sparse nonnegative tensor factorization. Proceedings of the

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 08

2014.

[3] Joyce C. Ho, Joydeep Ghosh, Steve R. Steinhubl, Walter F. Stewart, Joshua C. Denny,

Bradley A. Malin, and Jimeng Sun. Limestone: High-throughput candidate phenotype

generation via tensor factorization. Journal of Biomedical Informatics, 52:199 – 211,

2014. Special Section: Methods in Clinical Research Informatics.

[4] Joyce Ho, Jin-Mann Lin, Brian Gurbaxani, Jimeng Sun, and Joydeep Ghosh. Uncover-

ing medication usage patterns of patients with chronic fatigue syndrome via nonnegative

tensor factorization. 01 2015.

[5] Ian Davidson, Sean Gilpin, Owen Carmichael, and Peter Walker. Network discovery via

constrained tensor analysis of fmri data. 08 2013.

[6] Cynthia Dwork and Guy N. Rothblum. Concentrated Differential Privacy. arXiv e-

prints, page arXiv:1603.01887, March 2016.

33

[7] Sebastian U. Stich. Local SGD converges fast and communicates little. In International

Conference on Learning Representations, 2019.

[8] Tamara G. Kolda and Brett W. Bader. Tensor decompositions and applications. SIAM

Review, 51(3):455–500, September 2009.

[9] Yongwon Jeong. Speaker adaptation in the maximum a posteriori framework based

on the probabilistic 2-mode analysis of training models. EURASIP Journal on Audio,

Speech, and Music Processing, 2013, 12 2013.

[10] Conditions For and Richard A. Harshman. Foundations of the parafac procedure: Mod-

els and conditions for an ”explanatory ” multimodal factor analysis by.

[11] Lele Wang, Kun Xie, Thabo Semong, and Huibin Zhou. Missing data recovery based

on tensor-cur decomposition. IEEE Access, PP:1–1, 11 2017.

[12] John C. Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for

online learning and stochastic optimization. J. Mach. Learn. Res., 12:2121–2159, 2010.

[13] Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential privacy.

Foundations and Trends in Theoretical Computer Science, 9(3â4):211–407, 2014.

[14] Masooma Iftikhar, Qing Wang, and Yu Lin. Publishing differentially private datasets

via stable microaggregation, 2019.

[15] Debraj Basu, Deepesh Data, Can Karakus, and Suhas Diggavi. Qsparse-local-SGD:

Distributed SGD with Quantization, Sparsification, and Local Computations. arXiv

e-prints, page arXiv:1906.02367, June 2019.

[16] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. Dis-

tributed optimization and statistical learning via the alternating direction method of

multipliers. Foundations and Trends in Machine Learning, 3(1):1–122, 2011.

34

[17] Yejin Kim, Jimeng Sun, Hwanjo Yu, and Xiaoqian Jiang. Federated tensor factorization

for computational phenotyping. In Proceedings of the 23rd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, KDD ’17, page 887–895, New

York, NY, USA, 2017. Association for Computing Machinery.

[18] Sixin Zhang, Anna Choromanska, and Yann LeCun. Deep learning with elastic aver-

aging sgd. In Proceedings of the 28th International Conference on Neural Information

Processing Systems - Volume 1, NIPS’15, page 685–693, Cambridge, MA, USA, 2015.

MIT Press.

[19] Jing Ma, Qiuchen Zhang, Jian Lou, Joyce C. Ho, Li Xiong, and Xiaoqian Jiang. Privacy-

preserving tensor factorization for collaborative health data analysis. In Proceedings of

the 28th ACM International Conference on Information and Knowledge Management,

CIKM ’19, page 1291–1300, New York, NY, USA, 2019. Association for Computing

Machinery.

[20] Ingrid Daubechies, Michel Defrise, and Christine Mol. An iterative thresholding algo-

rithm for linear inverse problems with a sparsity constrains. Communications on Pure

and Applied Mathematics, 57, 11 2004.

[21] Brett W. Bader, Tamara G. Kolda, et al. Matlab tensor toolbox version 2.6. Available

online, February 2015.

35

