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Abstract	

Integrative	Prioritization	of	Genetic	Loci	for	Nicotine	Consumption	
By	Nikhil	Ramgiri	

	

The	consumption	of	nicotine	products	constitutes	a	serious	public	health	concern,	due	to	the	
substance’s	addictive	properties	and	its	potential	to	disrupt	psychosocial	functioning.	Evidence	
from	twin	and	molecular	genetics	studies	strongly	suggest	that	nicotine	consumption,	as	a	trait,	
adhere	to	a	polygenic	model.	To	date,	traditional	approaches	to	characterizing	the	genetics	of	
polygenic	traits,	such	as	genome-wide	association	studies	of	nicotine/tobacco	use	disorders,	
have	been	limited	in	their	ability	to	resolve	genomic	loci	that	contribute	to	the	liability	to	
misuse.	Drug	exposure	paradigms	in	animal	models	provide	us	with	a	potentially	useful	source	
of	cross-species	gene	expression	data;	the	current	study	thus	attempted	to	utilize	
transcriptomic	data	from	nicotine/tobacco	exposure	studies	in	model	organisms	to	better	
capture	genetic	variance	in	nicotine	consumption	in	human	populations.	The	following	thesis	
addresses	two	primary	objectives.	Firstly,	we	construct	and	assess	the	viability	of	an	integrative	
framework	that	leverages	functional	cross-species	data	to	characterize	the	genetic	
underpinnings	of	nicotine	consumption.	Secondly,	we	determine	whether	regions	of	the	
genome	localized	by	cross-species	expression	data	can	inform	prediction	of	nicotine-related	
phenotypes	in	an	independent	human	target	sample.	Our	findings	indicate	significant	
enrichment	of	co-transcriptionally	regulated	loci	identified	via	cross-species	data;	additionally,	
these	loci	carried	significant	predictive	utility	when	applied	to	an	independent	human	sample.	
Our	research	thus	puts	forth	a	promising	approach	towards	unraveling	polygenic	variants	
involved	in	the	neuro-molecular	physiology	of	nicotine	consumption	and	other	drug	use	
phenotypes.	
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Introduction 
 
Background of Nicotine/Tobacco Dependence  

Tobacco smoke, whether via first-hand or environmental inhalation, has long been 

implicated in deleterious health outcomes, chief among them being cancers of the lung, oral 

cavity/throat, and the liver1. Research delving into the chemical composition of tobacco smoke 

and its biological effects at the cellular level has identified components, including polycyclic 

aromatic hydrocarbons (PAHs), aromatic amines, and N-nitrosamines, among others, to be direct 

causal factors in tumorigenesis2. Metabolic activation of these compounds promotes the 

formation of DNA adducts, which covalently bind to DNA in pleural cells, interfering with 

replication and inducing mutant cell production3. Since nicotine is not among these identified 

carcinogens in tobacco products, contemporary marketing strategies by tobacco companies have 

shifted towards selling non-tobacco nicotine products, such as e-cigarettes, juul, and other vapor-

producing products, in an effort to destigmatize nicotine as a harmful substance. Nicotine, 

however, can cause changes in neural organization, particularly in the brain’s reward systems, 

and in psychomotor and cognitive processes via its ability to interact with naturally occurring 

nicotinic acetylcholine receptors (nAChRs)4; 5. By altering neural circuits, especially those 

comprising the dopaminergic systems of the midbrain, nicotine can elicit high potential for 

addiction, regardless of the form in which it is consumed6. The addictive properties of nicotine 

therefore increase the risk for individuals to engage in patterns of overconsumption and 

eventually experience a loss of psychosocial function.  

Nicotine dependence has been observed to run in families beyond what can be explained by 

environmental factors. Heritability estimates for nicotine dependence obtained from twin study 

designs range from 40-70%, suggesting a high contribution of additive genetic elements to the 
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trait’s total variance in the population7. In general, genetic effects on tobacco involvement have 

been shown to vary based on the phenotypic construct being studied. For instance, nicotine 

withdrawal heritability has been estimated at 54%8, smoking initiation at 44%9, and nicotine 

consumption as 80%10. These differences in heritability estimates across constructs suggest not 

only that nicotine involvement is a highly heritable phenotype, but also that many genetic 

elements exhibit widespread pleiotropic effects11. Considered in light of the extensive variation 

in expression of the trait within the population, it is likely that the genetic architecture of nicotine 

use and dependence adheres to an polygenic model, in which thousands of loci across the 

genome contribute to the trait of interest through interconnected gene regulatory networks12. 

Given this knowledge, the task of unearthing the genetic underpinnings of nicotine dependence 

has gained prime importance, particularly as sequencing technologies and large population 

registries have increased our access to available genotypic and phenotypic data. Identification of 

the specific genetic risk factors and causal pathways that collectively contribute to the 

manifestation of nicotine dependence in the population would allow for the implementation of 

prevention strategies tailored to individuals who carry increased risk within their genomes.  

 

Characterizing the Etiology of Nicotine/Tobacco Dependence 

Individual genetic markers, such as single-nucleotide polymorphisms (SNPs), have been 

the primary subject of modern approaches to characterizing genetic contributors to complex 

disorders, which are affected by many variants with small effect sizes. The current approach to 

capturing genetic risk underlying such complex disorders has been the use of genome-wide 

association studies (GWAS), which harness the statistical power afforded by very large sample 

sizes to identify reproducible SNPs that are associated with the phenotype of interest. While this 
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approach has done well in laying the groundwork for characterizing the genetics of complex 

traits, it is not without significant limitations. Firstly, GWAS designs carry the risk of being 

underpowered to detect causal variants, due to the strict significance threshold necessarily set for 

multiple comparisons. For example, Saccone and colleagues13 indicated in 2007 that the SNP 

representing the CHRNB3 gene, which encodes for the E3 nicotine acetylcholine receptor 

(nAChR) subunit, produced a low enough statistical p-value to reach genome-wide significance. 

However, Gelernter and colleagues14 found in 2015 that the gene cluster on chromosome 15 

housing nicotinic receptor genes, including the same CHRNB3 gene, failed to reach genome-

wide significance in their sample. This failure of GWAS designs to replicate significant results 

across studies, particularly for a gene encoding a subunit of an nAChR, long understood to 

mediate nicotine’s addictive properties in the brain, underscores the need for extremely large 

sample sizes, often in the 10’s to 100’s of thousands, to avoid potential causal variants falling 

through the cracks. Recent efforts that have focused on meta-analyzing GWAS summary 

statistics, such as the large-scale association analyses of tobacco and alcohol use using the data 

from 1.2 million individuals aggregated across several genetic consortiums conducted by Liu and 

colleagues15, have begun to combat this issue. Under normal circumstances however, such large 

sample sizes place severe constraints on available funding and become impractical without large-

scale collaboration efforts or extensive computational resources. Secondly, significantly 

associated SNPs identified via GWAS study designs often carry small effect sizes, particularly in 

traits that adhere to a polygenic model, and are thus not always readily linked to discernable 

targets for pharmaceutical therapy. Because of these limitations, the translatable target loci that 

tend to emerge from drug dependence GWAS findings have been mostly restricted to receptors 

and metabolizing enzymes, leaving a large proportion of the variance unaccounted for.  
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  One potential approach to increasing our power to detect causal loci contributing to 

liability for nicotine dependence is by using prioritized subsets of variants, based on prior 

experimental evidence. In 2008, Li et al. proposed an approach they termed “prioritized subset 

analysis” (PSA), in which they demonstrated that integrating prior information regarding 

relevant trait-associated loci into GWAS designs improved power to detect risk markers in a 

variety of model phenotypes16. Specifically, they found that the degree of power improvement 

increased the more number of identified risk markers were contained in the prioritized subset16. 

Additionally, recent work investigating the genetic architecture of various drug dependence 

syndromes has indicated that common variants contributing most to the expression of opioid, 

alcohol, and nicotine addiction phenotypes are not homogeneously spread across the genome, 

instead suggesting they could be enriched in certain regions17-19. Assessing these findings in the 

context of the omnigenic model of nicotine dependence, these regions would likely constitute 

loci involved in the pharmacokinetic and pharmacodynamic effects of nicotine. Since GWAS 

designs seem to capture pharmacokinetics (in the form of receptors and drug metabolizing 

enzymes) much better than they do pharmacodynamics, we could perhaps utilize the PSA to 

integrate prior evidence from both domains with traditional GWAS to better characterize genetic 

liability in the population.     

To implement a prioritized subset approach in characterizing regions of potential 

enrichment, we need an appropriate source of evidence from which to construct the prioritized 

subset. The most relevant source of prior evidence that could be harnessed for genetically 

mediated effects of tobacco/nicotine on nicotine dependence would be differential gene 

expression data taken from brain tissue from a living, intact human. Exposing sample brain cells 

to acute or chronic administrations of nicotine would shed light on specific epigenetic and 
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expression changes that occur at the molecular level and would directly identify expression 

quantitative trait loci (eQTLs) most sensitive to the pharmacodynamic effects of the drug. Since 

such rich experimental data from living, intact human samples are scarce, another possible 

source of prior knowledge to be used in our prioritized subset lies in animal models of drug 

dependence.  

Much like brain tissue from living, intact humans, we can use model organisms (M. 

musculus, R. norvegicus, D. rerio, etc.) to measure differential gene expression as a function of 

nicotine/tobacco exposure. Animal models provide a set of distinct advantages that make them 

ideal for use in this case. Firstly, they afford a degree of tight experimental control, in that 

environmental factors in the laboratory setting and genetic background (through the use of 

known inbred strains) can be closely monitored and manipulated by the experimenter. Secondly, 

exposure paradigms, in which pharmacokinetic, pharmacodynamic, and behavioral effects of 

given drug doses are measured, can be modeled in a manner that would be unethical to do in 

humans. Following identification of differentially expressed loci, phylogenetic similarities 

between animal and human genomes can be harnessed to produce a list of loci that can serve as 

the basis of a prioritized subset in characterizing the genetic architecture of nicotine dependence 

phenotypes in human populations. 

 

Study Aims 

The goal of the present study is two-fold. Firstly, we construct a novel integrative 

pipeline to determine whether functional gene expression data from model organism studies can 

be leveraged to streamline the process of characterizing the genetic underpinnings of the nicotine 

consumption phenotype. The viability of using animal models would be apparent if the 
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transcriptionally informed loci yielded by these studies can account for a significant proportion 

of the total genetic variance observed for the trait in a human sample (see Figure 1). We 

specifically examine nicotine consumption as a phenotype in order to reduce issues of 

translatability between the exposure paradigms used in the selected model organism studies and 

the corresponding trait in humans. Secondly, we seek to determine whether the regions of 

enrichment localized using our informed subset from animal models can inform prediction of 

nicotine consumption in an independent human target sample. We tested this hypothesis directly 

by constructing a polygenic risk score (PRS) using the effect sizes of markers housed in the 

enriched regions and assessing whether it captures a significant amount of the total variance of 

the phenotype in the independent sample.  

 

Methods 

Assembling a prioritized subset 

To construct a prioritized subset of loci, we used the GeneWeaver ontological system, a 

repository of functional gene expression data from various model organisms with an 

accompanying suite of tools to allow for further gene-set analysis20. We conducted a query of the 

database to identify gene sets that originated from empirical studies in which a nicotine/tobacco 

exposure or consumption paradigm was implemented. In these experiments, mRNA was isolated 

from the animal’s brain tissue following exposure/consumption and gene expression profiles 

were built from DNA microarray, RNA sequencing, or weighted gene co-expression network 

analysis (WGCNA) data (see Table 1 for full information on study paradigms).  

The full list of genes from the GeneWeaver query was merged with the human genome 

(hg19/build 37) to produce an orthologous subset for use in further analyses. The empirical query 
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of the GeneWeaver database yielded a total of 923 genes differentially expressed as a function of 

nicotine exposure/consumption, 742 of which were matched onto the human genome. Of these, 

only 201 genes were found across more than one study, suggesting the pharmacodynamic effects 

of nicotine are highly heterogeneous (see Figure 2 for distribution of replication across studies). 

 

Genome Partitioning and Heritability Estimation 

 To determine the relative effect on the phenotype by the genes compiled from 

GeneWeaver, we partitioned the length of the genome into three regions of interest. The “gene” 

region encompassed all genes shown to differentially expressed as a function of nicotine 

exposure in the empirical animal literature. The flanking “buffer” regions encompassed the base 

pairs directly upstream of the 5’ end and directly downstream of the 3’ end of each of the genes. 

Five buffer lengths (5kB, 10kB, 25kB, 35kB, and 50kB) were considered in an effort to capture 

any potential variation imparted by transcription factor binding sites (TFBS) and other regulatory 

elements, whose exact positions are variable and unknown. The “all other variants” regions 

encompassed all variants that did not fall into either the “gene” of the “buffer” regions (see 

Figure 3 for diagrammatic depiction of genome partitioning). 

The human analytical sample used for heritability estimation was drawn from individuals 

in the UK Biobank21 who reported being either a current or former smoker (n = 123,844). The 

nicotine consumption phenotype was described as the number of cigarettes smoked per month. 

The total sample was split into three constitutionally equivalent folds (n1 = 41,263, n2 = 41,368, 

n3 = 41,213) to allow for computational efficiency and to demonstrate robustness of findings via 

replication of results across folds.  
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The genetic data of the individuals in each fold were fit to a multivariate model via 

GCTA-GREML22 to evaluate the relative contribution of each region-of-interest to the 

expression of the phenotype. Sex, testing site location, age, and age2 were controlled for in this 

analysis. Enrichment values (E) were calculated for the gene regions, each of the varying buffer 

lengths, and the “all others” regions to determine whether the observed component-heritability 

estimates were greater than what would be expected by chance, given the total genetic variance 

for the nicotine consumption phenotype in the sample and the 4.6 million SNP markers used in 

the analysis. Calculated in this manner, the enrichment values represent the ratio of the observed 

effect size to the effect size expected by agnostic, unbiased selection of loci across the genome. 

Expected h2SNP =
#SNPs𝑅𝑂𝐼 x Obsℎ2SNP_Total

#SNPs𝑇𝑜𝑡𝑎𝑙  

 

Mixed Linear Model Association Analysis 

To highlight the potential utility of harnessing expression data from the animal model 

literature alongside traditional agnostic GWAS designs, we carried out a mixed linear model 

association (MLMA) analysis, implemented in GCTA via the MLMA-LOCO23 option. The 

MLMA-LOCO assessed the association between genotyped SNP markers (nSNPs = 4656938) in 

the UK Biobank sample of individuals (n = 123,844) and the consumption phenotype (measured 

as cigarettes smoked per month).  

SNP markers were then divided into bins based on p-values yielded by the cigarettes-per-

month MLMA-LOCO analysis. Bins ranged from the genome-wide significance threshold of p 

<= 5 x 10-8 to p = 1. A distribution was then created to express the proportion of SNPs in each 

bin found in the prioritized gene regions identified from the animal expression data. 

 



 9 

Polygenic Risk Score Modeling 

In order to inform prediction of nicotine-related phenotypes in an independent sample, 

we constructed a series of polygenic risk score (PRS) models generated from the GWAS 

summary statistics (p-values and OLS regression beta-coefficients) produced by the MLMA-

LOCO in the full UK Biobank sample. Using a reference sample from the 1000 Genomes 

Project24, effect sizes of variants were adjusted based on linkage disequilibrium patterns using 

the SBLUP method25. By re-estimating SNP effects by converting them into best linear unbiased 

predictors, the SBLUP method has demonstrated improved prediction accuracy over other 

common methods of building polygenic risk scores26.   

The independent target sample was composed of European-Americans with genotypic 

data at Wave IV of the Add Health data project27 (N = 4102, mean age = 28.9, SD = 1.7; 

proportion male = 0.469). The Add Health data project is a longitudinal study that has collected 

survey data on various health, economic, physiological, and psychosocial variables from a 

sample of individuals, beginning at grades 7-12 through adulthood, for a total of four waves27. 

The same phenotype we explored in the UK Biobank heritability estimation analysis – 

consumption (measured as cigarettes per day/CPD and referred to as the primary phenotype for 

the rest of this manuscript) – was examined in this sample, along with four other smoking-related 

phenotypes contained in the Add Health dataset. The total number of individuals in the full 

genotyped sample who answered the CPD item in the Add Health Wave IV survey was 1667 

(mean age = 28.9, SD = 1.7; prop. male = 0.506). The “frequency of use” item, asked to those 

who claimed to be a current or former smoker, was described as the number of days per month 

that the individual claimed to have smoked at least one cigarette (n = 1673; mean age = 28.9, SD 

= 1.7; prop. male = 0.507). The “age of first use” item, asked to all participants, was described as 
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the age at which the individual first smoked a whole cigarette (n = 2992; mean age = 28.9, SD = 

1.7; prop. male = 0.485). The “age of initiation” item, asked to self-identified current or former 

smokers, was described as the age at which the individual first began smoking cigarettes on a 

consistent basis (n = 2158; mean age = 28.9, SD = 1.7; prop. male = 0.475). The “Fagerström 

index”, compiled for self-identified current or former smokers, was a 10-point scale, meant to 

quantify nicotine dependence, that aggregated several items concerning cigarette craving, 

consumption, frequency, and heaviness of use (n = 2436; mean age = 28.9, SD = 1.7; prop. male 

= 0.475). For each phenotype, age and sex were regressed out as covariates, and the phenotype 

residuals were extracted for further analyses. Determination of how risk scores generated from 

summary statistics of nicotine consumption generalizes to other nicotine-related phenotypes 

would provide us with insights into the degree of overlap in genetic architecture among aspects 

of nicotine use.     

The first model harnessed all the SNP variants (nSNPs = 4656938) contained in the GWAS 

summary statistics produced by the UK Biobank consumption MLMA-LOCO (Model 1). Risk 

scores generated from SBLUP-adjusted variants from the base sample were regressed onto each 

phenotype in the target sample and assessed for strength of association (E1 estimate) and variance 

explained (partial R2). The first six principal components extracted from the genetic data of the 

Add Health sample were also included as covariates in all regression models to account for any 

confounding, which was also minimized using strict population homogeneity procedures 

described elsewhere28. A second model (Model 2), further partitioned the observed polygenic 

effect of all SNPs using the aforementioned regions of interest similarly examined in UKB (i.e., 

gene, “10kB buffer”, and “all other variants”). These PRS were treated as distinct predictors 

when regressed collectively onto each phenotype in Add Health. The 10kB buffer was chosen 
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because this was the largest buffer size used in our UK Biobank models29 before a drop in 

enrichment was observed. The variance in the phenotype accounted for by the risk scores of gene 

and buffer regions would indicate how well our findings from the UK Biobank analysis translate 

to a separate sample. As was done with the heritability estimations in the UK Biobank analyses, 

enrichment values were calculated for each region of interest to determine whether the observed 

effect of the corresponding PRS was greater than the value we would expect by chance. To 

calculate enrichment for a particular component, we randomly sampled, without replacement, the 

same number of SNPs housed in that region of interest from all markers across the genome 1000 

times. We then used the selected SNPs to create corresponding risk scores and regressed each 

onto the phenotype to generate a distribution of standardized beta-values. Squaring these beta-

values would subsequently provide a distribution of R2-values; the mean of this sampling 

distribution would thus constitute the expected variance in the phenotype explained by that 

region of interest if markers were culled at random across the genome. Enrichment can then be 

assessed by the ratio of the observed to the expected effect sizes. A distribution p-value was also 

determined for each region of interest based on the proportion of permuted standardized beta 

values that were as much or more extreme than the observed E1 estimate. In this sense, the 

distribution p-value represented the probability of obtaining the observed E1 estimate given the 

distribution of permuted standardized beta values.  

 

Results 

Estimation of SNP Heritability of Human Nicotine Consumption Across Regions-of-Interest 

The total R2 accounted for by each model, in which the three regions of interest (gene, 

buffer, and “all others”) were fit to the phenotypic data of the individuals, represented the 
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estimate of the total SNP heritability (i.e. the effect of additive genetic elements across the entire 

genome – h2SNP). The total h2SNP of nicotine consumption in the UK Biobank sample ranged from 

7.5% to 9.5%, depending on the fold of individuals examined (see Table 2 for all estimates, as 

well as h2meta values). SNP variants housed in the prioritized genes (gene region-of-interest) 

accounted for approximately 0.2% to 0.4% of the total observed variance in nicotine 

consumption (Table 2). Variants around the prioritized genes (buffer region-of-interest) 

accounted for approximately 0.4% to 3.1% of the variance, while variants across the remainder 

of the genome (all others region-of-interest) accounted for 5.0% to 7.8% (Table 2). Interestingly, 

the R2 of the buffer components across all models was greater than that of the gene components, 

despite the smaller buffer lengths housing fewer SNPs than the gene region.  

The variance accounted for by the gene region-of-interest demonstrated little association 

with buffer length, as the relatively small changes in R2 observed across models do not correlate 

with increasing buffer length (Table 2). However, a notable trend can be seen in the variance 

explained by the buffer and “all others” regions. As represented in Figure 4, the variance in 

nicotine consumption captured by the buffer region dramatically increases as buffer length in the 

models increases from 5kB to 50kB (0.4% to 3.1%, Table 2). Moreover, the variance captured by 

the “all others” region decreases with increasing buffer length (Figure 4), indicating that markers 

contributing to the phenotype are being repositioned into the buffer component of the model. 

This finding is consistent with previous work correlating variance explained with length of DNA, 

implicating a polygenic model in these data30. 

Significant enrichment was seen in variants clustered within genes (gene region-of-

interest) and around genes (buffer region-of-interest) in nearly all models examined (Table 3). 

No enrichment was seen in the “all others” component of any of the six models (Table 3). 
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Enrichment values calculated for the gene region indicated that the observed effect contributed 

by our prioritized gene set was nearly twice as large as would be expected by randomly sampling 

the same number of SNPs across the length of the genome. The buffer region showed even 

greater values of enrichment (2.0 to 21.4) than the gene region, a result that was consistent with 

our earlier observation of the buffer region yielding a greater h2SNP estimate than the gene region 

despite the smaller buffer lengths housing fewer markers. While our earlier heritability 

estimation results demonstrated the effect size of the buffer component increased with increasing 

buffer length, we can also see an exponential decay in enrichment value at buffer lengths greater 

than 10kB (Figure 5). This finding would suggest that trait-associated variants are more enriched 

close to genes likely to be undergoing transcriptional regulation in both humans and mice.  

 

Proportion of Gene SNPs Observed in UK Biobank MLMA P-value Distribution 

The association analysis using the full sample of 123,844 current and former smokers 

identified in the UK Biobank dataset largely confirmed regions of the genome associated with 

cigarette consumption previously identified by the large-scale meta-analysis conducted by Liu 

and colleagues15; this was expected as UKB contributed a majority of samples to the paper. We 

identified 770 signals that reached genome-wide significance (p < 5 x 10-8), most of which were 

clustered on chromosomes 15, 19, 8, 7, 4, 3, and 1 (see Figure 6 for Manhattan plot).  

Across the p-value distribution produced by the MLMA analysis, SNP markers from the 

prioritized genes were present in the highest proportion (0.074) among the variants found in the 

genome-wide significant bin (p <= 5 x 10-8) (Figure 7). The proportion of SNPs from the 

prioritized genes found in each bin gradually declined with increasing p-value, with the steepest 
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drop-offs occurring from p <= 5 x 10-6 to p <= 5 x 10-5 and from p <= 5 x 10-5 to p <= 5 x 10-4 

(Figure 7).  

 

Application of Genomewide Polygenic Effects and Gene Sets in Add Health Replication Sample 

Model 1accounted for approximately 3.5% of the total variance in the primary phenotype 

(R2 = .035, 90% CI [.026, .044], p < .0005) (Table 4). This suggested that consumption was 

under additive genetic influences in the Add Health study. The “all variants” PRS used in Model 

1 was found to be significantly associated with CPD (E1 = .174, 95% CI [.127, .221], p < .0005) 

and explained a large majority of the variance in nicotine consumption captured by the full 

model (partial R2 = .030) (Tables 4 and 5).  

Among the other four smoking-related phenotypes examined, the “all variants” PRS was 

found to be significantly associated with smoking frequency (E1 = .122, 95% CI [.073, .171]), 

age of initiation (E1 = -.079, 95% CI [-.131, -.028]), and the Fagerström Test of nicotine 

dependence (E1 = .164, 95% CI [.115, .213]) (Table 5). The risk score did not inform prediction 

of age of first use.  

Model 2, in which the total genomewide effect was partitioned into three separate 

polygenic scores, accounted for approximately 3.8% of the total variance in the primary 

phenotype (R2 = .038, 90% CI [.029, .047], p < .0005) (Table 6). The polygenic scores generated 

from the gene region (E1 = .079, 95% CI [.025, .132], p = .004) and the “all others” region (E1 

= .164, 95% CI [.116, .212], p < .0005) were significantly associated with the primary phenotype 

(Tables 6 and 7). Interestingly, the PRS generated from the 10kB buffer was not found to be 

associated with the primary phenotype in this sample.  
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The PRS generated from the gene region explained a small proportion of the total 

variance in the primary phenotype in the Add Health sample (R2 = .0062) (Table 7), a magnitude 

that lies relatively in line with the h2SNP estimates for nicotine consumption gleaned from the 

gene region in the UK Biobank sample. Along with CPD, the PRS generated from gene region 

variants was significantly associated with smoking frequency (E1 = .068, 95% CI [.013, .124], 

partial R2 = .0046) and the Fagerström index (E1 = .059, 95% CI [.004, .115], partial R2 = .0035) 

(Table 7). The risk score generated from the “all others” region, was associated with CPD, 

smoking frequency, the Fagerström index, and age of initiation (E1 = -.071, 95% CI [-.123, 

-.018], partial R2 = .0050) (Table 7). 

Enrichment calculation to determine whether the observed variance in the primary 

phenotype explained by the PRS constructed from our prioritized gene set was greater than 

expected by agnostic sampling of the same number of SNPs from across the genome illustrated 

significant enrichment in the gene region (E = 5.88, p = .02) (Table 7). An expected R2 value 

was similarly calculated for the buffer region based on the number of SNPs housed in the 10kB 

buffer; however, since the observed R2 found for the PRS generated from this region was not 

significantly different than zero, enrichment was not significant (Table 7). Despite a significant 

association between the “all others” PRS and the primary phenotype, no significant enrichment 

was found for this region (E = 0.90, p = 0.61) (Table 7). 

The pattern of enrichment seen in smoking frequency mirrors that of the pattern seen in 

consumption, with the gene region exhibiting significant enrichment (E = 4.22, p = .031), the 

buffer region’s enrichment fixed to zero, and the “all others” region demonstrating no significant 

enrichment (E = 0.90, p = .451) (Table 7). Regressions of the partitioned risk scores onto the 

Fagerström index phenotype also yielded a similar pattern, with the enrichment seen in the gene 
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region approaching statistical significance (E = 3.00, p = .059) and no significant enrichment in 

the “all others” region (E = 0.83, p = .305) (Table 7).     

 

Discussion 

Our findings indicate that cross-species expression data harnessed from model organism 

studies are a viable resource that can be used to improve our ability to characterize the genetic 

underpinnings of drug dependence phenotypes, such as nicotine consumption. Variants selected 

based on the a priori set of genes were determined to be significant contributors to smoking 

using only a third of the UK Biobank sample. The total h2SNP meta estimate of ~8% for nicotine 

consumption in the UK Biobank smoker sample corroborates estimates found in other studies 

examining similar phenotype15; 18. Partitioning this total genetic variance demonstrated that 

variants in and around genes shown to be differentially expressed as a function of nicotine 

exposure in model organisms account for a greater proportion of the total trait variance in the UK 

Biobank sample than would be expected by chance. The relatively large percentage of the 

genetic variance (4.2% to 39.5%, depending on buffer length considered) attributable to these 

regions, presumably involved in mRNA transcription, suggests that much of the heritability of 

nicotine consumption is driven by neuro-epigenetic changes in the brain upon exposure to the 

pharmacodynamic effects of the drug. Indeed, studies examining the neurobiology of other drugs 

have concluded that their biochemical and behavioral effects on the individual are induced by 

changes in gene expression levels in trait-relevant neurons in the central nervous system31; 32. 

Taken in light of the typical pathway of development towards drug dependence, it can be 

inferred that individuals with a higher genetic risk of excess nicotine use are more susceptible to 

a physiological response at the molecular level upon exposure that precipitates increased 
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susceptibility to greater future consumption33. Given that we were able to discern sizable neuro-

molecular associations between our prioritized set of loci and the phenotype of interest, it stands 

to reason that leveraging functional data across species alongside traditional genome-wide 

association designs would enhance our ability to identify causal markers and neurochemical 

pathways related to nicotine consumption. The genetic loci supplied by cross-species exposure 

studies could serve to elucidate more of the specific pharmacodynamic mechanisms of nicotine 

in the brain; however, many of these loci tend to become buried under the stringent genome-wide 

significance threshold placed on human GWAS discovery findings. As evidenced by the 

proportions of SNPs from our prioritized subset found at various levels of the p-value 

distribution of our UK Biobank association analysis, our prioritized subset, built from animal 

expression data, draws from both significant and non-significant sources of variation to 

aggregate small effect sizes across the genome. Given the enrichment seen in our localized 

regions, it can be posited then that the most robust model attempting to characterize the genetic 

variance seen in nicotine consumption would be one that integrates cross-species expression data 

with genome-wide significant findings. 

The second aim of the present study was to assess the translatability of the effects of the 

enriched regions in predicting nicotine use phenotypes in an independent sample of individuals. 

Using the SBLUP method of constructing polygenic risk scores, we found that a risk score 

created from the weighted sum of all SNPs genotyped in our Add Health target sample could 

account for ~3.5% of the variance in cigarettes smoked per day. This value is in line with the R2 

estimate determined by Liu et al15, who created a polygenic risk score via the LDPred method 

using nearly identical discovery and target samples. We were also able to see that the risk score, 

which was generated from the summary statistics of a CPD GWAS, was able to capture 
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significant proportions of the variance in other nicotine use phenotypes, including smoking 

frequency, age of initiation, and the Fagerström index of nicotine dependence. This finding 

suggests that, while nicotine dependence remains a fundamentally multidimensional 

phenotype18, the molecular pathways underlying each construct may still possess substantial 

genetic overlap.  

Creating partitioned risk scores based on regions of enrichment localized by cross-species 

expression data demonstrated that our prioritized gene set carried significant predictive value, 

accounting for a larger proportion of the trait variance in the primary phenotype than would be 

expected by chance. The translatability of this gene set from the UK Biobank sample to the 

independent Add Health sample augments the viability of utilizing functional data across species 

in conjunction with genome-wide findings to better capture genetic variance in similar drug use 

phenotypes. In evaluating the application of the risk score generated from our prioritized gene set 

to other nicotine use phenotypes, the PRS managed to capture a similar proportion of the 

variance in smoking frequency as it did in consumption. However, it captured notably less 

variance in the Fagerstrom index, and it failed to capture any variance in age of initiation. These 

differences in partial R2 indicate that our prioritized subset was specific to loci involved in the 

neuro-molecular changes associated with nicotine consumption and was therefore not wholly 

translatable to other nicotine-related constructs. Similar observations have been made with 

respect to alcohol consumption and problems stemming from use in the UK Biobank34, as well as 

in the twin literature with respect to generalized drug dependence35. Given that the cross-species 

paradigms used to assemble our prioritized subset did not model the behavioral criteria evident in 

the Fagerstrom index and in age of initiation, the lack of direct applicability is perhaps not 

entirely surprising.  
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The findings of the present study should be interpreted in the context of some limitations. 

Firstly, the body of cross-species expression data generated through drug exposure remains 

rather narrow, limiting our understanding of the functional consequences of nicotine 

consumption to the results of available DNA microarray studies. As such, we cannot say for 

certain whether the pharmacodynamic effects of the nicotine exposure paradigm are the same 

across species. Additional work using post mortem human brains is necessary. Additionally, 

changes in gene expression levels as a result of exposure may differ across brain regions. While 

the integrative approach we have put forth has demonstrated promise and a necessary proof of 

concept, these considerations must be addressed by increasing the volume of model organism 

literature to maximize its utility. Secondly, we did not consider the specific regulatory elements 

involved in the differential expression of corresponding genes. We attempted to address this 

limitation by modeling flanking buffer regions of varying lengths, with the expectation that these 

regions housed transcription factor binding sites, upstream and downstream cis-acting enhancers 

and silencers, and methylation sites. While we were able to observe significant enrichment in 

these regions in the UK Biobank sample, the lack of association between risk scores generated 

from these regions and nicotine use phenotypes in an independent sample suggests that this 

method of modeling regulatory elements is not entirely generalizable and may require additional 

steps to identify and model the effects of regulatory elements by cell type (e.g., Hi C coupled 

MAGMA36). It remains to be seen to what degree regulatory mechanisms for specific loci are 

conserved across species.  

In conclusion, our research puts forth a promising approach towards unraveling polygenic 

variants involved in the neuro-molecular physiology of drug use phenotypes, such as nicotine 

consumption. We show that incorporating a priori evidence from cross-species expression data 
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into traditional genome-wide findings in human populations can not only capture a greater share 

of the genetic variance in the trait, but also potentially offer improved clinical risk prediction. 

This integrative framework therefore represents a worthwhile approach to characterizing the 

genetic underpinnings of nicotine consumption.        
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Collection of Tables 
 

Table 1. Identification of Empirical Studies Used to Assemble a Prioritized Subset for Further Analyses 

Author(s)  GeneWeaver 
ID 

Model 
Organism 

Nicotine 
Consumption/Exposure 

Paradigm 

Experimental 
Design Brain Region 

Number of 
Genes 

Contributed 

Chen et al. GS87128 Mus musculus 

Subcutaneous acute 
nicotine treatment 

(expression changes 
measured at time-

points of 1, 2, 4, and 6 
hrs) 

Microarray 
Analysis, 
WGCNA 

VTA 184 

Polesskaya et 
al. GS14885 Rattus 

norvegicus 

Subcutaneous chronic 
nicotine treatment (at 
ages p25, p35, p45, 

and p55) 

Microarray 
Analysis, 
qRT-PCR, 
Principle 
Cluster 

Analysis 

PFC, Ventral 
Striatum, 
Hippo. 

66 

Lee et al. 
GS225897, 
GS225899, 
GS225900 

Mus musculus Intravenous nicotine 
self-administration 

Microarray 
Analysis, 
qRT-PCR, 
WGCNA 

Medial and 
Lateral 

Habenula 
40 

Wang et al. 

GS14888, 
GS14889, 
GS14890, 
GS14891, 
GS14892, 
GS14893 

Mus musculus 

Nicotine 
administration in 

drinking water in two 
selectively bred mouse 

strains 

Microarray 
Analysis, 
qRT-PCR, 
WGCNA 

Amygdala, 
Hippo., nAcc, 

PFC, VTA 
651 

Kily et al. GS14902, 
GS14903 Danio rerio 

Nicotine-induced 
conditioned place 

preference 

Microarray 
Analysis, 
qRT-PCR 

Whole Brain 158 

Sharp et al. GS128167 Rattus 
norvegicus 

Chronic nicotine self-
administration 

Microarray 
Analysis, RT-

PCR 
nAcc 188 

Piechota et al. GS355715 Mus musculus 

Gene-expression 
changes (measured at 
time-points of 1, 2, 4, 
and 8 hrs) following 

acute nicotine injection 

Microarray 
Analysis, 
qRT-PCR, 

WGCNA, In 
situ 

hybridization, 
Western 
blotting 

Striatum 121 

Note: GeneWeaver IDs can be used to review the full complement of genes supplied by each study 
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Table 3. Calculated Enrichment Values of Model Components 

Model Component Number of 
SNPs Observed h2meta  Expected h2meta  Enrichment 

Gene (0kB buffer model) 81453 0.0041 0.0015 2.82 

Gene (5kB buffer model) 81453 0.0027 0.0015 1.88 

Gene (10kB buffer model) 81453 0.0018 0.0015 1.21 

Gene (25kB buffer model) 81453 0.0016 0.0015 1.10 

Gene (35kB buffer model) 81453 0.0018 0.0015 1.24 

Gene (50kB buffer model) 81453 0.0035 0.0015 2.41 

          

Buffer 0kB N/A N/A N/A N/A 

Buffer 5kB 10815 0.0041 0.0002 21.37 

Buffer 10kB 21288 0.0082 0.0004 21.53 

Buffer 25kB 53341 0.0102 0.0010 10.70 

Buffer 35kB 74436 0.0104 0.0013 7.82 

Buffer 50kB 841092 0.0306 0.0150 2.04 

          

All Other Variants (0kB buffer 
model) 4575485 0.0784 0.0817 0.96 

All Other Variants (5kB buffer 
model) 4564670 0.0758 0.0816 0.93 

All Other Variants (10kB 
buffer model) 4554197 0.0733 0.0814 0.90 

All Other Variants (25kB 
buffer model) 4522144 0.0714 0.0808 0.88 

All Other Variants (35kB 
buffer model) 4501049 0.0709 0.0804 0.88 

All Other Variants (50kB 
buffer model) 3734393 0.0496 0.0667 0.74 

          

Total  4656938 0.0832     
Note: E >= 1.96 consitutes statistically significant enrichment at a 95% CI 
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Table 4. Polygenic Model 1 Standardized Results for Cigarettes Per Day 

  β1 Estimate S.E. Estimate/S.E. P-value 
PC1 -0.040 0.024 -1.656 0.098 
PC2 0.032 0.024 1.319 0.187 
PC3 -0.058 0.024 -2.374 0.018 
PC4 0.012 0.024 -0.499 0.618 
PC5 0.006 0.024 0.260 0.795 
PC6 0.003 0.024 0.133 0.894 

All Variants 
Score 0.174 0.024 7.258 <0.001 

       
  R-squared S.E. Estimate/S.E. P-value 

Full Model 0.035 0.009 3.92 0.000 
 
 
 
 

Table 5. Strength of Associations and Variance Explained by PRS of All Variants  
Observed Phenotype β1 Estimate Upper 2.5% Lower 2.5% S.E. Partial R2 

CPD 0.174 0.221 0.127 0.024 0.0303 
Frequency 0.122 0.171 0.073 0.025 0.0148 

Age of First Use -0.039 0.011 -0.089 0.025 ~0 
Age of Initiation -0.079 -0.028 -0.131 0.026 0.0063 
Fagerstrom Index 0.164 0.213 0.115 0.025 0.0268 
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Table 6. Polygenic Model 2 Standardized Results for Cigarettes Per Day 

  β1 Estimate S.E. Estimate/S.E. P-value 
PC1 -0.039 0.024 -1.612 0.107 
PC2 0.034 0.024 1.424 0.154 
PC3 -0.057 0.024 -2.337 0.019 
PC4 -0.013 0.024 -0.552 0.581 
PC5 0.008 0.024 0.316 0.752 
PC6 0.004 0.024 0.152 0.879 

Gene Score 0.079 0.027 2.884 0.004 
Buffer Score -0.023 0.028 -0.840 0.401 
Others Score 0.164 0.025 6.669 0.000 

       
  R-squared S.E. Estimate/S.E. P-value 

Full Model 0.038 0.009 4.113 0.000 
 
 



 33 

Table 7. Regression Coefficients and Variance Explained by Partitioned Risk Scores 
Observed Phenotype β1 Estimate Upper 2.5% Lower 2.5% Number of SNPs Observed R2 Expected R2 Enrichment Distribution P-value 

CPD (Gene) 0.079 0.132 0.025 81453 0.0062 0.0011 5.88 0.020 
CPD (Buffer) -0.023 0.031 -0.078 21288 ~0 0.0007 0.00 0.380 

CPD (All Others) 0.164 0.212 0.116 4554197 0.0269 0.0300 0.90 0.610 
Freq. (Gene) 0.068 0.124 0.013 81453 0.0046 0.0011 4.22 0.031 
Freq. (Buffer) -0.031 0.025 -0.087 21288 ~0 0.0007 0.00 0.125 

Freq. (All Others) 0.116 0.166 0.066 4554197 0.0134 0.0150 0.90 0.451 

Age of First Use (Gene) -0.045 0.011 -0.101 81453 ~0 0.0013 0.00 0.105 

Age of First Use (Buffer) -0.007 0.050 -0.063 21288 ~0 0.0007 0.00 0.391 

Age of First Use (All 
Others) -0.029 0.022 -0.080 4554197 ~0 -0.0388 0.00 0.366 

Age of Initiation (Gene) -0.009 0.049 -0.066 81453 ~0 0.0013 0.00 0.418 

Age of Initiation (Buffer) -0.032 0.026 -0.090 21288 ~0 0.0008 0.00 0.865 

Age of Initiation (All 
Others) -0.071 -0.018 -0.123 4554197 0.0050 0.0069 0.73 0.383 

Fagerstrom (Gene) 0.059 0.115 0.004 81453 0.0035 0.0012 3.00 0.059 
Fagerstrom (Buffer) 0.015 0.071 -0.041 21288 ~0 0.0008 0.00 0.302 

Fagerstrom (All Others) 0.148 0.199 0.098 4554197 0.0220 0.0265 0.83 0.305 
*See Methods section for full description of dependent variables     
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Collection of Figures 
 
 
 

 
Figure 1. Theoretical integrative genomics approach to assessing translatability of expression data from model organisms to capturing 
genetic variance of nicotine consumption in human populations.  
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Figure 2. Distribution of genes identified via GeneWeaver query. 
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Figure 3. Visualization of each region-of-interest used as a model component in statistical analyses. 
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Figure 4. Visualization of partial R2 accounted for by regions of interest across various multivariate models. 
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Figure 5. Enrichment decay of flanking buffer region seen with increasing buffer size. 
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Figure 6. Manhattan plot of UK Biobank MLMA for nicotine/tobacco consumption.
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Figure 7. Proportion of SNPs across successive bins of UK Biobank GWAS p-value distribution that are found in the 
prioritized subset of genes obtained from animal model expression data. 
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