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Abstract

Assimilation of velocity data into fluid dynamic simulations,
an application to computational hemodynamics

By Marta D’Elia

Cardiovascular applications recently fostered the development of numerical meth-
ods for fluid dynamics. Furthermore, thanks to new precise measurement devices and
efficient image processing techniques, medicine is experiencing a tremendous incre-
ment of available data, inevitably affected by noise. Beyond validation, these data
can be combined with numerical simulations in order to develop mathematical tools,
known as data assimilation (DA) methods, of clinical impact. In the context of hemody-
namics, accuracy and reliability of assimilated solutions are particularly crucial in view
of possible applications in the clinical practice. Hence, it is fundamental to quantify the
uncertainty of numerical results.

In this thesis, we propose a robust DA technique for the inclusion of noisy velocity
measures, collected from magnetic resonance imaging, into the simulation of hemo-
dynamics equations, namely the incompressible Navier-Stokes equations (NSE). The
technique is formulated as a control problem where a weighted misfit between velocity
and data is minimized under the constraint of the NSE; the optimization problem is
solved with a discretize then optimize approach relying on the finite element method.
The control variable is the normal stress on the inflow section of the vessel, which is
usually unknown in real applications. We design deterministic and statistical estima-
tors (the latter based on a Bayesian approach to inverse problems) for the estimation
of the blood velocity and its statistical properties and of related variables of medical
relevance, such as the wall shear stress. We also derive conditions on data location that
guarantee the existence of an optimal solution.

Numerical simulations on 2-dimensional and axisymmetric 3-dimensional geome-
tries show the consistency and accuracy of the method with synthetic noise-free and
noisy data. Simulations on 2-dimensional geometries approximating blood vessels
demonstrate the applicability of the approach for hemodynamics applications.
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1 Introduction

Reliability of numerical methods and simulations is becoming a crucial issue as scien-

tific computing has an increasing role in different fields of engineering, science and,

more generally, society. The quality of numerical results needs to be certified not only

for the mathematical investigation of the different methods, but also for assessing its

impact in practice (see [1, 2]). As a matter of fact, scientific computing is exten-

sively used beyond traditional engineering studies (civil, aerospace, automotive), in

geophysics, sport, finance, medicine. A careful analysis of the impact of errors and

uncertainties is therefore not only needed for a theoretical understanding (and rank-

ing) of the methods but also for the reliability of numerical simulations as a tool for

supporting, for instance, the decision making of a medical doctor.

More specifically, in the last 20 years numerical methods for incompressible fluid

dynamics have been fostered by applications to the cardiovascular system (see e.g.

[3, 4, 5]). Mathematical and numerical models have been progressively used as a

tool for supporting medical research in the cardiovascular science. In this particular

field, whose social relevance is testified by the impact of cardiovascular diseases in the

industrialized Countries1, numerical simulations are increasingly considered as a valu-

able tool for investigating physio-pathological dynamics or even designing therapies

[3, 4, 6, 7, 8, 9]. In silico experiments can provide remarkable insights into a physio-

pathological process completing more traditional in vitro and in vivo investigations.

Numerical models have been playing the role of “individual based" simulators, able to
1According to the statistics reported by the Center for Disease Control

www.cdc.gov/nchs/data/nvsr/nvsr55/nvsr55_19.pdf.
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give a dynamical representation of the biology of a specific patient as a support to the

prognostic activity.

At the same time, the need for quantitative responses for diagnostic purposes has

strongly stimulated the design of new methods and instruments for measurements and

imaging. On the one hand, we can simulate large 3-dimensional portions of the cardio-

vascular system of a real patient properly including simplified models for the peripheral

sites (see e.g. [3, 5, 6, 7, 8]). On the other, images and measures nowadays provide

doctors and bioengineers with a huge amount of data. As an example, Figure 1.1

shows an MRI [10] of the ascending aorta where blood velocity measurements have

been collected. Obviously these data offer new possible benchmarks for the numerical

simulations (see e.g. [11]). However, beyond the validation, it is possible to merge sim-

ulations and measures by means of more sophisticated numerical techniques. A strong

integration of data and numerical modeling is expected to bring a great benefit to the

development of mathematical and computational tools with a clinical impact. This pro-

cedure is called data assimilation (DA) (see e.g. [12]). With this name we mean the

ensemble of methods for merging observed (generally sparse and noisy) information

into a numerical model based on the approximation of physical and constitutive laws.

In other words, the goal of DA is to merge together heterogeneous (in nature, quality,

and density) sources of information in order to retrieve a consistent state for phenom-

ena of interest. In particular, in hemodynamics, numerical simulations are improved

by the merging of data that allow to include effects otherwise difficult to model (at the

qualitative or quantitative level), such as the presence of tissues surrounding an artery

or the motion of the heart affecting the aortic dynamics. Also, since measures are

in general affected by noise, the assimilation based on physical and constitutive laws

introduces a sophisticated filter, forcing the consistency with basic principles. Even

though the term DA has often been used for time dependent phenomena, in this thesis

(as done in [11]) we consider also stationary phenomena and we refer to DA also as a
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Figure 1.1: View of blood measured velocities in MRIs of the ascending aorta.

technique for the inclusion of data which are sparse in space and collected at the same

instant of time. In the next sections we present a brief history of DA for fluid geophysics

applications (oceanography and meteorology) mainly based on the excellent review by

Blum et al. in [12] and we summarize the state of the art of DA in hemodynamics

applications.

1.1 Methods for DA in fluid geophysics

The mathematical modeling of geophysical flows has experienced a tremendous devel-

opment during the last decades, mainly due to the growth of the available computing

resources and to the improvement of networks of observations. Therefore, it is clear

that modeling and simulating have to take into account observations; these are irregu-

larly distributed in space and time, and they have different structures of random error.

Errors arise from various sources such as instrumental noise, environmental noise, sam-

pling, and interpretation of sensor measurements; according to the context, a different

confidence will be attributed to the measurements. For instance, all oceanic dynam-

ical models are imperfect, with errors due to the approximate physics (or biology or

chemistry) that governs the explicit evolution of the state variables and that parame-
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terizes the interaction of the state variables and the discretization of dynamics into a

numerical model [13].

Originally, the problem of DA was to determine the initial condition of a dynamical

system from observations. Since the same mathematical tools may be used, DA also

includes the estimation of model parameters, boundary conditions or the state itself.

The development of DA methodology has mainly experienced three stages: objective

analysis, statistical interpolation, stochastic methods and variational analysis. Simple

analysis methods were mostly used in the 50’s, when computers were unavailable or

at the beginning stage; these techniques were the earliest bases of DA. In the 60’s and

70’s, statistical considerations were introduced into the atmospheric DA. Based on these

considerations, some forms of optimal interpolation were used to assimilate observa-

tions into forecast models. In the same decades the Kalman filter was introduced and

efficiently improved (EKF, EnKF, UKF). In the 80’s and 90’s, atmospheric DA switched

to variational methods.

1.1.1 Objective analysis and optimal interpolation

Objective analysis, or interpolation, was introduced, in the context of meteorology, by

Panofsky [14] in 1949; the 50’s featured the advent of computers and the evolution

of numerical analysis. This method interpolates the measurements from the points

of observation toward the grid points. Specifically, it is based on a technique of 2-

dimensional least squares fitting; it consists in expanding the state variables in a series

of polynomials about the observation point, minimizing the square of their difference

with the observed values. This procedure was perfected by the idea of Bergthórsson

and Döös [15] in 1955, who claimed that it is not possible to get a reasonable estimate

only by interpolation of observations; thus, they included a mathematical model in the

assimilation process. The method is based on the assumption that some observations

are available prior to the assimilation instant (12 hours in advance); then, the estimate
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is a weighted mean of the current observations and the state forecast, i.e. the state field

obtained by advancing in time from the previous observations via a mathematical (nu-

merical) model. Even though the method is simple to implement, the retrieved fields

will not be necessarily consistent from the physical viewpoint. Despite this, these meth-

ods were the most commonly used in operational meteorology until the last decade.

Optimal interpolation, also referred to as statistical interpolation in meteorology,

can be seen as a simplification of the Kalman Filter (even though it was introduced

before it), described in the next section. The assimilated solution is a linear combina-

tion of the deterministic solution with the misfit between data and predicted state; as

opposed to Kalman approaches, the matrix weighting the misfits is empirically assigned

(see [16] for further details).

1.1.2 Kalman filter and its extensions

The Kalman filter1 (KF) was developed by Kalman in 1960 [17] as a new approach to

linear filtering and prediction problems. It is a recursive filter for the estimation of the

state of a dynamic system from incomplete and noisy measurements. Because of its

limitations in terms of models (designed for linear systems) and memory requirements

for the storage of structures involved, several modifications and improvements have

been developed, such as the Extended KF (EKF), the Ensemble KF (EnKF) and the

Unscented KF (UKF). We report briefly the formulation of the basic KF and we touch

on few details of its extensions.

The KF is a scheme designed for linear dynamic systems and it is based on Bayesian

estimation; it generates the sequential, unbiased, minimum error variance estimate

based on a linear combination of all past measurements and dynamics. Following the

formulation reported in [12], we summarize the procedure in four simple steps.
1Here, with filter we mean a process that removes from a signal some unwanted components, e.g. the

noise, as in our case.
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Consider a linear model representing the observation process:

yk = Hkuk + εk; (1.1)

here, k is a multiple of the number of time steps between consecutive observations, uk

is the vector of state variables, yk is the vector of the measures and εk is an additive

random noise representing the error; this is assumed to be white with zero mean and

correlation matrix Rk. For each time step we consider a discretized stochastic dynamic

system

uk = Mk−1uk−1 + ηk−1 (1.2)

where Mk describes the model dynamics and ηk is the random error associated with

model parameters. We assume that ηk is distributed as εk, with correlation matrix Qk.

Algorithm 1. advance in time:

 ufk = Mk−1u
a
k−1

P fk = Mk−1P
a
k−1M

T
k−1 +Qk−1

2. compute the Kalman gain: Kk = P fkH
T
k (HkP

f
kH

T
k +Rk)

−1

3. state update: uak = ufk +Kk(yk −Hku
f
k)

4. error correlation matrix update: P ak = (I −KkHk)P
f
k

(1.3)

Here, P fk = E{(uk−ufk)(uk−ufk)T} and P ak = E{(uk−uak)(uk−uak)T}; the superscripts

f and a stand for forecast and assimilated respectively and E refers to the mean value

for random variables.

This filter is limited to linear models, but in general many problems in fluid geo-

physics, including parameter identification, are nonlinear. This limitation explains the

introduction of the EKF for nonlinear processes. In this case, equations (1.1) and (1.2)

are to be substituted with

yk = h(uk, εk);

uk = f(uk−1, ηk).
(1.4)
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The KF, designed for linear problems, cannot be directly applied to equations (1.4). The

idea of the EKF is to consider, at each iteration, the linearization of (1.4) around the

previous state. In this way, matrices Hk and Mk in algorithm (1.3) are substituted with

the Jacobian of h and f respectively, evaluated at uk−1. This estimator is not optimal,

might underestimate the covariance matrices and has high memory requirements.

The extension to the EnKF avoids the latter using probability distributions repre-

sented by samples, i.e. covariance matrices are replaced by sample covariance matri-

ces.

When the state transition and observation models (f and h) are highly nonlinear the

EKF might give poor performance [18]. This is because the covariance is propagated

through linearization of the nonlinear model. The UKF represents a derivative-free

alternative to the EKF and provides better performance at an equivalent computational

complexity. In fact, in the UKF the state distribution is still Gaussian but it is specified

using a minimal set of “carefully chosen” sample points or snapshots which completely

capture the state mean and covariance. Furthermore, these points, when propagated

through the nonlinear system, capture the mean and covariance at the subsequent step

to the second order. Such sample points are chosen via Unscented transform of the state

at the current time step [19].

1.1.3 Nudging method

The nudging, or dynamic relaxation, method was introduced in 1977 by Davies and

Turner in [20] and it can be classified as a combination of Kalman filtering and a

variational approach.

According to [21], we can summarize the procedure in two simple steps. Given

some data at time t = t0, 1) specify an arbitrary but consistent initial condition at

time t = t0 − T (where T is the so called pre-forecast period); 2) solve the governing

equations during the pre-forecast, [t0 − T, t0], including a forcing term proportional to
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the difference between the predicted state at time t0 and the observation so to dynami-

cally relax the solution towards the observations. If we assume to have a mathematical

model, discretized in space (using e.g. finite differences, volumes or elements), the

time dependent problem reads:

dU

dt
= F (U) t ∈ (t0 − T, t0];

U(t0 − T ) = U0.
(1.5)

Here, U is the discretized state variable, and U0 the initial condition. If Ũ is a given

measure and U is a projection of the observation onto the discretization space, the

assimilation consists in the solution of the following initial value problem.

dU

dt
= F (U) + c (U−U) t ∈ (t0 − T, t0];

U(t0 − T ) = U0.
(1.6)

The relaxation coefficient c has to be chosen so to achieve an optimal compromise be-

tween model and observations; its choice might be based on statistical considerations.

If c is too large, the non-physical forcing term will dominate and the predicted state

would completely fit the noisy measures, amplifying the observational errors and com-

promising the consistency of the solution. When c is too small, the observation will

not significantly affect the estimate. In 1992, Zou, Navon and Le Dimet developed a

parameter estimation approach in order to obtain an optimal nudging coefficient [22].

1.1.4 Variational approaches

Control approaches consider the minimization of the misfit between the predicted state

and the observations under the constraint of the partial differential equations (PDEs)

governing the variables. Such optimization (or control) problem may be solved with a

large variety of numerical methods for PDE constrained optimization problems. In the
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context of fluid dynamics there is a huge literature for the solution of inverse problems,

among many others we mention [23, 24, 25, 26, 27, 28, 29].

In general, the main components in the formulation of a variational problem are a

state variable u, a deterministic model, a control variable h, a set of observations and a

cost function J(u, h; t). The model describing the evolution of the variables involved in

the process is, in general, a system of nonlinear differential equations

 A(u, h; t) = 0,

u(t0) = u0.
(1.7)

Here, A is a differential operator and u0 is the initial condition. Most of the time the

control variable h is the initial condition (e.g. in meteorology), but it might also consist

in model parameters or boundary conditions. In general, we assume that for a fixed

value of h the model is well-posed. Additional constraints on the control variable are

mandatory in relation to the physical quantities described. The measures, say Ũ, are

considered discrete in space and time and they do not belong to the same space of the

state variable. The cost function J measures the discrepancy between the state variable

and the measurements

J(u, h; t) =

T∫
0

dist(u; Ũ) dt+ R(h; t). (1.8)

The function dist will be specified later and it might include information on stochastic

properties of the field. The additional term R is usually introduced with regulariza-

tion purposes to prevent potential ill-posedness of the formulation and/or to impose

smoothness of the control variable; in fact, when the objective functions do not depend

explicitly on the control variable, the solution of the problem could lead to unbounded

control variables [23]. Optimization methods can be grouped in two main categories:

the optimize then discretize (OD) and the discretize then optimize (DO) approach.
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The OD approach We introduce the functional

J(u, h; t) =

T∫
0

‖u(h)− ũ‖ dt+ R(h; t). (1.9)

where ũ is a projection of Ũ into the state functional space H. In order to solve the

optimization problem we introduce the Lagrangian function L

L(u, h, λ) = J(u, h; t)− λ∗A(u, h; t). (1.10)

Here ∗ represents the inner product in H and λ is the Lagrange multiplier. The optimal-

ity is reached when we find u, h and λ such that L is stationary, i.e. when they solve

the system of first order necessary conditions [23]:



∂L

∂λ
= A(u, h; t) = 0 state equation,

∂L

∂u
=

(
∂A

∂u

)∗
λ−

(
∂J

∂u

)∗
= 0 adjoint equation,

∂L

∂h
=

(
∂A

∂h

)∗
λ =

(
∂J

∂h

)∗
= 0 optimality condition;

(1.11)

where we make the assumption that each argument is independent from the other. This

last system is typically huge and difficult to be numerically solved monolithically (the

so called “one-shot” approach); iterative procedures are usually preferred [23, 30].

In this case, given a guess for the control variable, state and adjoint are sequentially

solved and used in the optimality equation to update the control variable; this is to be

done until some criterion for the convergence is satisfied.
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The DO approach In this case we first discretize the functional and the state equa-

tions, getting 
J(U, H) = ‖Q(U)− Ũ‖+R(H);

A(U, H) = 0.

(1.12)

Here, U and H are the discretized state and control variables, Q is the operator that

maps the discretized state into the data space, R is a discrete regularizing operator and

A is the discretized differential operator. To solve this algebraic optimization problem

we introduce the discrete Lagrangian function

L(U, H, Λ) = J(U, H)−ΛTA(U, H), (1.13)

where Λ is the Lagrange multiplier. Optimality is reached when we find U, H and Λ

such that 

∂L

∂Λ
= A(U, H) = 0 state equation,

∂L

∂U
=

(
∂A

∂U

)T

Λ−
(
∂J

∂U

)T

= 0 adjoint equation,

∂L

∂H
=

(
∂A

∂H

)T

Λ−
(
∂J

∂H

)T

= 0 optimality condition.

(1.14)

As for system (1.11), there are plenty of methods for the solution of (1.14), see e.g.

[23, 30]. Note that, the DO approach allows to obtain the optimality system in a more

straightforward way than working with unknowns belonging to infinite-dimensional

functional spaces (for an extensive discussion see [23]). The following example de-

scribes how to apply both schemes to a simple PDE.
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Application to a simple differential problem We consider the following steady state

equation:  −µu
′′ = hf in Ω

u = 0 on ∂Ω;
(1.15)

where µ and f are a given functions defined on Ω, and the following objective function:

J(u, h) =
1

2

∫
Ω

(u− ũ)dx +
σ

2
h2. (1.16)

Here
σ

2
h2 is a penalization term introduced in order to limit the growth of the control

variable and ũ represents observed data assumed to belong to the same space of the

state variable u. The OD formulation reads

find u such that J is minimized subject to (1.15).

The Lagrangian of the problem reads:

L(u, h, λ) = J(u, h) +

∫
Ω

λ
(
µu′′ − h f

)
dx. (1.17)

In order to obtain the optimality solution, the system of necessary conditions (1.11) is

derived and then discretized (by means of any discretization technique).

The first step of the DO method is the discretization of both the objective function,

say J(U,H), and of the constraints, say AU = FH. Here, U and H are the discretized

state and control variable, A and F are the discretized differential and source operators.

The second step is the solution of the problem

find U such that J(U,H) is minimized subject to AU = FH;
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This is an algebraic optimization problem which can be solved by finding the stationary

points of the Lagrangian function, which reads:

L(U,H,Λ) = J(U,H)−ΛT (AU− FH) . (1.18)

1.2 Recent advances in DA for the cardiovascular system

The tremendous increase of data gathering and the massive change in computational

capabilities in the last few years make the DA problem a very challenging task and

stimulate the design of new, efficient and competitive computational tools for the pre-

diction of the state and the evolution of complex systems, such as the cardiovascular

one. The enormous amount of information available to us requires the combination

of advanced statistical techniques with precise and sophisticated mathematical models,

perfected and largely validated in recent years [3, 4, 5, 8, 9]. These new approaches

are developments of well-established DA techniques and, furthermore, they feature an

overlap between estimation theory, control theory and stochastic approaches. More-

over, they benefit from the continuous improvement of numerical methods for order

reduction [31, 32] and advanced discretization techniques [11, 33]. Among the oth-

ers, we mention and briefly describe the most relevant works.

Least-squares finite elements In 2010 Heys et al. propose a weighted least-squares

finite element (WLSFE) method for the inclusion of velocity data in fluid dynamics

equations, mainly inspired by hemodynamics applications [11]. They consider particle

imaging velocimetry that allows to collect noisy velocity data on 2-dimensional internal

layers in a 3-dimensional domain. On the basis of the LSFE method [34, 35, 36], which

features flexibility in the enforcement of various boundary conditions, they developed

a weighted formulation based on the level of accuracy with which the boundary values

are known. Given a system of discretized PDEs AU = F the WLSFE solution is the
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minimum of the functional

J = ‖AU− F‖Ω + ‖U−H‖∂Ω + ‖U− Ũ1‖Γ1 + ‖U− Ũ2‖Γ2 + ... (1.19)

where A is a discrete differential operator (corresponding generally to the NSE), F a

forcing term, H the boundary data and Ũi available noisy data on the layer Γi. Using

additional terms which penalize the difference between the numerical solution and the

experimental data, the assimilation is weakly enforced. Thus DA costs little more than

a standard LSFEM calculation. The method can be seen as nudging (for the modifi-

cation of the model residual), but also as a control approach (for the minimization of

a functional). Note that, LSFEM, originally designed for finding the solution of PDEs,

has been applied to inverse problems since the 90’s [37] for the numerical solution of

PDE constrained control problems; main developers have been Bochev and Gunzburger

[34, 35, 36]. In the application to the NSE, for recasting the system into a linearized

first order differential system, the authors consider a non-primitive variable set. This

approach, as opposed to primitive variables formulations, might be less conducive to

the straightforward inclusion of available “boundary” conditions.

Bayesian interpretation of the LSFEM In the same year Dwight [33] presents a

reinterpretation of the WLSFEM in terms of assimilation of data; in fact, Heys and

collaborators do not present their work in an inverse problem framework. Dwight

shows that the WLSFE solution can be interpreted as the maximum a posteriori (MAP)

estimator in a variational Bayesian approach to DA (an extensive description of the

Bayesian method is given in Chapter 4).

Reduced-order unscented Kalman filter In 2010, based on the UKF, presented in

the previous section, Moireau and Chapelle [31] propose a reduced-order (RO) UKF

applied to parameter identification in the context of cardiac biomechanics. Their filter-
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ing strategy, usable for any choice of sampling points distribution, provides a tractable

filtering algorithm that can be used with large-dimensional systems when the uncer-

tainty space is of reduced size. Such algorithm invokes the original dynamical and

observation operators, i.e. it does not require the computation of the tangent operator.

Specifically, the covariance matrices are factorized in a form such that the costly com-

putations are performed on a reduced-order matrix of the size of the uncertainty space.

In recent years many works investigated efficient and robust coupling algorithms

for fluid-structure interaction (FSI) in large vessels. To impact the clinical practice

such techniques have to be patient-specific; for this reason, model parameters have

to be adapted to available clinical measurements. Two methods for FSI parameter

estimation have been proposed in recent publications using Kalman filtering [32] and

control theory [38].

ROUKF applied to fluid-structure interaction problems In a very recent work by

Bertoglio et al. [32] the ROUKF is used for the estimation of constitutive parameters

in FSI systems. In particular, from wall displacement measurements extracted from

medical images, they predict the artery wall stiffness. Using this sequential algorithm,

the model prediction is improved at each time step analyzing the difference of the

measures and model output.

Control theory approach to the estimation of FSI parameters The same problem

has been addressed by Perego et al. in [38]. Here, the estimation of the Young mod-

ulus is pursued using an OD technique in control theory. The problem of assimilating

vessel displacements from registered medical images is formulated as the minimiza-

tion of the difference between observation and computed variables tuning the variable

representing the stiffness itself.
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1.3 Thesis outline

In this work we propose a DA approach for including noisy and sparse measurements of

the velocity into the simulation of the NSE, driven by hemodynamics applications. This

inverse, potentially ill-posed, problem is addressed using two approaches oriented to

finding point and spread estimates for the velocity field. The purpose is 1) recovering

an accurate and noise filtered approximation of the blood flow and 2) quantifying the

reliability of numerical results. The first goal is achieved by solving an optimization

problem where we use a DO technique to minimize the misfit between the recovered

velocity field and the data, subject to the incompressible NSE. The control variable is the

normal stress at the inflow boundary of the domain of interest, the vessel inlet section;

the reason for this choice resides in the biomedical application and will be specified in

Chapter 3. The DA procedure is a combination of the Newton method for handling the

nonlinear term of the NSE and the DA procedure designed and tested for the linearized

problem. Then, the uncertainty quantification is addressed using a Bayesian approach

to inverse problems recast in a variational formulation. The prediction of probability

density functions for velocity and normal stress allows us to estimate how likely are

those variables to take values in specific intervals. This approach, that accounts for

the nature of the measurement noise, is tested on 2-dimensional and axisymmetric

3-dimensional geometries and compared with deterministic approaches.

In Chapter 2, based on [39], we present preliminary results aimed at finding the

most accurate and efficient approach to the solution of the DA problem. Different meth-

ods presented in previous sections are considered and compared in terms of accuracy

with respect to reference solutions and computational time. The investigation is con-

ducted on the linearization of the NSE, namely the Stokes problem. This preliminary

analysis results in the choice of the DO method.

In Chapter 3, based on [40] and [41], we present the core of our methodology.
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We design a DA procedure where a DO approach is used to minimize the difference

between measures and assimilated solutions for the generalized Stokes problem. The

combination of such procedure with the Newton method for the solution of the forward

NSE yields an algorithm of assimilation for velocity data. We discuss conditions on the

location of measurements that guarantee the existence and uniqueness of an optimal

solution for the linearized problem and we give numerical proof of convergence of the

algorithm for the nonlinear case. Numerical results, with both noise-free and noisy

data, certify the theoretical analysis. Also, we investigate the sensitivity to the noise of

non-primitive variables of medical interest.

In Chapter 4 we introduce statistical inverse problems and the Bayesian variational

formulation for the discretized variables. This approach yields a probability density

function (PDF) for velocity and normal stress which can be used to estimate confidence

intervals for such variables. Moreover, statistical parameters of the PDFs are used as

point estimators for the control variable (the normal stress on the inflow boundary),

specifically the MAP and the maximum likelihood (ML) estimators. We also provide

details regarding a regularization technique based on the optimality result of Chapter

3 and we discuss how it affects statistical properties of the measurement noise. Then,

we show numerical results in 2-dimensional and 3-dimensional geometries for data

affected by Gaussian noise.

In Chapter 5 we propose two formulations for the unsteady (linearized and non-

linear) problem. Due to the hemodynamics application we consider time periodic phe-

nomena and we investigate possible techniques for addressing this issue. We show

numerical results on 2-dimensional and 3-dimensional geometries where we test the

accuracy of the assimilation with respect to reference solutions.

Concluding remarks, future work guidelines and insights are reported in Chapter 6.
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2 Preliminary analysis

In Chapter 1 we briefly presented the wide literature on DA for fluid geophysics and the

state of the art of emerging techniques for hemodynamics. As we approach the problem

of assimilating blood velocity from noisy measures, in this chapter we perform some

preliminary tests on candidate methods with the purpose of selecting the most suitable

in terms of accuracy and efficiency. Although limiting, for the sake of simplicity, we

focus on deterministic approaches and we refer to Chapter 4 for a deeper investigation

of stochastic methods.

We present our preliminary analysis, see [39], conducted on the Stokes problem, a

simplification of the NSE, where the nonlinearity is removed. At this stage we relax sev-

eral aspects of the original problem; in fact, the analysis is limited to the 2-dimensional

steady case on “toy” problems with synthetic data.

In Section 2.1 we introduce three approaches to the assimilation ranging from in-

terpolation techniques to least squares methods. We present their formulation adapted

to hemodynamics equations and we discuss potential advantages and drawbacks we

might incur in. In Section 2.2 we give details regarding numerical test cases, we com-

pare the quality of numerical results and we motivate the choice of the assimilation

method that we propose in this work. In Section 2.3 we present a more detailed error

analysis for the selected method, still on the Stokes problem.
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2.1 Candidate methods

In this section we present the assimilation problem for the Stokes model and we de-

scribe a typical data configuration for the problem we are interested in. We propose

three approaches and we highlight advantages and potential weaknesses.

Let us denote by Ω ⊂ R2 the domain of interest, i.e. the vessel; Γin and Γout the

inflow and outflow sections; Γwall the vessel wall. Let L2(Ω) be the Hilbert space of

square summable functions, H1(Ω) the space of vector functions whose components are

in L2(Ω) together with their first derivatives and, H1
Γ the corresponding space of H1

functions with null trace on the portion Γ of ∂Ω . We denote by u(x) ∈ H1
Γwall

(Ω) and

p(x) ∈ L2(Ω) velocity and pressure fields respectively. We assume to have Ns velocity

measures d available at some sites xmi ∈ Ω, for i = 1, ..., 2Ns; these measurement

points lie on some internal layers, which we denote Γd (see Figure 2.1), with Γin ⊂ Γd.

In this preliminary study, we assume sites to correspond to grid nodes, in Chapters 3, 4

and 5 this assumption is relaxed and we consider sites and nodes belonging to different

sets. Velocity and pressure are assumed to fulfill the Stokes equations



−ν∆u +∇p = 0 in Ω,

∇ · u = 0 in Ω,

u = 0 on Γwall,

−ν∇u n + pn = h on Γin,

−ν∇u n + pn = 0 on Γout.

(2.1)

Here, h(x) ∈ H−1/2(Γin) is the Neumann data at the inflow boundary, assumed un-

known; ν is the kinematic viscosity. We aim at solving the following problem: find u

and p so that u fits the available measures d (in some sense) under the constraints (2.1).

As discussed in the introduction, different methods can be devised for solving this



2. PRELIMINARY ANALYSIS 23

Figure 2.1: Domain splitting - Schematic representation of the domain with velocity
measures (left) and its sub domain splitting (right).

problem, with different ways of fitting the data. Here, we address in particular three

techniques, which we refer to as splitting, nudging (or dynamic relaxation) and control

based techniques. The former is specifically devised for this problem and relies upon the

assumption that available measures lie on internal layers of the domain of interest, i.e.

points xmi belong to a set of transversal sections of the vascular district at hand, as done

in [11] (see Figure 2.1). Although this is a quite restrictive assumption, it reflects the

way the measurements are collected and post processed (see Figure 1.1). The key idea

of this approach is the interpolation of available data. The second method is based on

a more general approach, that relies upon the theory of control for distributed systems.

The third one is a nudging technique reinterpreted for our specific problem.

2.1.1 Splitting techniques

We split the domain into sub domains (see Figures 1.1 and 2.1), where Γin, Γout and

the measurement sections act as domain boundaries. Measures are used as boundary

data for solving the global problem by sub domains. More precisely, let us assume to

have s sub domains Ωi (i = 0, . . . , s − 1), such that data lie on the interfaces. Let

us denote by Γi, with i = 0, . . . , s, the layers, so that Γ0 = Γin and Γs = Γout. Let

di, i = 0, . . . , s − 1, be the set of measures on Γi, or more precisely an interpolating

function (e.g. piecewise linear interpolation) over Γi of the data. In principle, we can

distinguish two approaches, according to the sequences split then discretize or discretize

then split.
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Discretize then split: matrix updating (MU) In this case, using P1bubble-P1 FE

spaces for velocity and pressure (inf-sup compatible spaces, see e.g. [42], chap. 9, 10)

respectively, we first discretize problem (2.1) to the form SV = F, where V is the vector

of the nodal unknowns; S is the Stokes matrix and F comes from the prescription of

boundary conditions. Then, the measurements are regarded as conditions in the form

V(xi) = di (2.2)

where i ranges over the nodes where measures are available. Conditions (2.2) are

forced into the linear system similarly to Dirichlet conditions (see [43], chapter 11), i.e.

i-th equations of the linear system corresponding to measurements points are replaced

by (2.2). In practice, we set the off-diagonal entries of the i-th rows to 0 and the

diagonal entry to 1. The corresponding entries of the right hand side, Fi are set equal

to di. Then, Fj , j 6= i are updated accordingly, by setting Fj = Fj −
∑

i[S]jidi, see

[43].

Clearly, in each sub domain, the incompressibility condition might be violated since

data at the inflow and outflow boundary might not fulfill the compatibility condition

∫
Γi

di · n dγ =

∫
Γi−1

di−1 · n dγ. (2.3)

A possible way to avoid this problem, which has not been investigated in this work, is

to “adjust” properly the data so to obtain (2.3), as a pre-processing step. Nevertheless,

the updated discretization matrix is not singular (though its conditioning is higher than

the original one). This can be explained by the fact that the incompressibility condition

is forced in a weak sense in the entire domain, therefore on each sub domain it can be

violated.
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Split then discretize: domain splitting In this case we first split the differential

problem in s sub domains Ωi, i = 0, ..., s− 1 and we consider each of them separately.

Then, we perform the discretization of each problem; in the first s − 1 sub domains

we have Dirichlet conditions over the entire ∂Ωi, in Ωs−1 we have a homogeneous

Neumann condition on Γs = Γout. Note that, while in Ωs−1 the pressure is uniquely

determined, in Ωi, i = 0, ..., s − 2, it is determined up to a constant (since we have a

Dirichlet problem). We set such constant prescribing continuity for the pressure in Ωi

with respect to the one in Ωi+1 for i = 0, ..., s− 2.

However, the presence of the noise has three important drawbacks:

• measurements errors affect the solution inside each domain, without filtering;

• the stress is not continuous across the sections;

• the divergence compatibility condition over the whole domain is violated.

Concerning the first point, it is known that perturbations on the boundary affect

the solution of a Stokes problem with a decay featuring an exponential dependence

on the distance from the boundary (see [44]). Therefore, the presence of noise on

the interfaces brings errors inside the domain, yielding inaccurate results. For this

reason we do not dwell any longer with this approach. As a matter of fact, preliminary

results show that the numerical error with respect to reference solutions is one order

of magnitude larger than for other methods, see [39].

2.1.2 Control based methods

In formulating control approaches we introduce the weak form of problem (2.1): for

all v ∈ H1
Γw

(Ω), q ∈ L2(Ω) velocity and pressure satisfy

∫
Ω
ν∇u · ∇v dx−

∫
Ω
p∇ · v dx−

∫
Ω
q∇ · u dx +

∫
Γin

h v dγ = 0. (2.4)
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We aim at finding the optimal boundary condition h, treated as control variable, such

that some distance (to be defined) between velocity and data is minimal. The choice

of h can be motivated by the medical application and will be discussed in Chapter 3.

According to the theory presented in Chapter 1, we consider the optimize then discretize

and the discretize then optimize approaches.

Optimize then discretize (OD) We define the distance between solution and data as

dist(u, d) =
1

2

∫
Γd

(
u− d

)2
v dγ, (2.5)

for all v ∈ H1
Γwall

(Ω). Here, with an abuse of notation, d is an extension (obtained,

for instance, by interpolation) of the vector data to a continuous functional space. We

solve the problem of minimizing the functional

J(u, h) = dist(u, d); (2.6)

under the constraint of (2.1). The Lagrangian of the problem reads

L(u, p,λu, λp,h) = J(u, h) +
∫

Ω ν∇u · ∇λudx +

−
∫

Ω p∇ · λudx−
∫

Γin
hλudγ +

∫
Ω λp∇ · u dx;

(2.7)

where λu and λp are the Lagrange multipliers associated with velocity and pressure.

According to [23], we derive the system of necessary conditions for optimality



∂L

∂[λu, λp]
=
∫

Ω ν∇u · ∇vdx−
∫

Ω p ∇ · vdx−
∫

Γin
hvdγ +

∫
Ωq ∇ · u dx = 0,

∂L

∂[u, p]
=
∫

Γd
(u− d) wdγ +

∫
Ω ν∇ · λu∇wdx +

∫
Ω λp∇ ·wdx−

∫
Ω r ∇ · λudx = 0,

∂L

∂h
=
∫

Γin
λus dγ = 0.

(2.8)
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These conditions are intended in the weak sense for all v ∈ H1
Γw
, q ∈ L2, w ∈ H1

Γw
, r ∈

L2 and s ∈ H1/2(Γin) respectively. In the discretization step we rely on the finite

element (FE) method. The discretization of (2.8) yields the linear system


S O N

J S O

O NT O




V

Λ

H

 = F (2.9)

where

S =

 C BT

B O

 ,V =

 U

P

 ,Λ =

 Uλ

Pλ

 . (2.10)

Here, U ∈ RNu and P ∈ RNp are the discretization of velocity and pressure belonging to

inf-sup compatible FE spaces (see e.g. [42], chap. 9, 10), H ∈ RNin is the discretization

of the control variable h, Nu and Np are the number of degrees of freedom (DOFs)

of velocity and pressure and Nin is the number of DOFs of the velocity on Γin. Let

N = RT
in,uMin, where Rin,u ∈ RNin,Nu is a restriction matrix which selects the DOFs of

the velocity on Γin. The generalization of Rin,u to velocity and pressure DOFs reads

Rin = [Rin,u O] , Rin ∈ RNin,Nu+Np . (2.11)

Let Min ∈ RNin,Nin be the discretization of the mass operator restricted to inlet

boundary nodes, specifically

[Min]kl =
∫

Γin

ϕjl
∣∣
Γin

ϕik
∣∣
Γin

dσ k, l = 1, ..., Nin, (2.12)

where ϕ are the Lagrangian basis functions associated with the velocity and {ik} and

{jl} are subsets of the velocity indexes, selecting DOFs on Γin.

Finally, let C ∈ RNu,Nu , and B ∈ RNp,Nu be the discretization of the diffusion and
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divergence operators.

[C]ij =
∫
Ω

ν∇ϕj∇ϕi dx, i, j = 1, ..., Nu,

[B]ij =
∫
Ω

∇ ·ϕj ψi dx, i = 1, ..., Np, j = 1, ..., Nu,
(2.13)

where ψ are the Lagrangian FE basis functions associated with the pressure.

Uλ and Pλ represent the discrete Lagrangian multipliers; J and F account for the

discretization of the term
∫

Γd
(u− d) wdγ.

Remark 1 As described in Section 1.1.4, when using control approaches a regulariza-

tion term may be added to the functional to prevent ill-posedness and improve the

convexity of the problem. For reasons discussed in Chapter 3, since the data vector is

projected into a continuous functional space, the optimization problem has a unique

solution; hence, here we drop the regularization term. For the same reasons we do not

consider any regularization also in the discretize then optimize case.

Discretize then optimize (DO) In this case, using the FE method we first discretize

the functional and the constraints; the result is an algebraic optimization problem with

linear constraints:

min
H

J(V, H) =
1

2
‖DV − d‖22

s.t. SV = NH;

(2.14)

where the notation is the same of the previous paragraph. We let Q ∈ R2Ns,Nu be a

matrix designed such that [QU]i is the numerical solution evaluated at the data sites

and corresponding to [d]i, for i = 1, ..., 2Ns. We extend Q to pressure DOFs introduc-

ing the matrix D = [Q O]. For the solution of this minimization problem, we write the

Lagrangian

L(V,H,Λ) =
1

2
‖DV − d‖22 + ΛT(SV −NH), (2.15)
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and we derive the induced system of optimality conditions, also known as KKT system

[45] 

∂L

∂V
= DT(DV − d) + STΛ = 0

∂L

∂Λ
= SV −NH = 0

∂L

∂H
= −NTΛ = 0.

(2.16)

Upon block elimination, we get the reduced system

ZTZ = ZTd; (2.17)

where Z = DS−1N is the so called sensitivity matrix. It is defined as Z = d(DV)
dH and it is

a measure of how much perturbations of the control variable may affect the output DV.

For this reason, spectral properties of Z determine the conditioning or well-posedness

of the problem. For insights on efficient techniques for the solution of problem (2.16)

see [30].

2.1.3 Dynamic relaxation

We propose a reinterpretation of the nudging method, or dynamic relaxation (DR), in

a weak sense and we discuss a possible choice of the relaxation parameter. In fluid

geophysics the initial condition of the forecast is the final solution of the pre-forecast

period (Section 1.1.3). Here, we consider the solution of the steady problem, which we

are interested in, as the stationary state of an unsteady problem with artificial terms

enforcing data fitting. The initial condition is chosen arbitrarily, but in such a way that

it is physically consistent. The formulation of the method in a weak form makes the

problem more amenable to a FE discretization.

We solve the problem of finding, for each test function v(x, t) and q(x, t) in the
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velocity and pressure spaces, u(x, t) and p(x, t) such that



∫
Ω ut vdx +

∫
Ω ν∇u∇vdx−

∫
Ω p ∇vdx +

∫
Ω q ∇ · udx

−
∫

Γin
(ν∇u n + pn) vdγ + c

∫
Γin∪Γd

(u− d)vdγ = 0

u(x, t = 0) = u0.

(2.18)

Here, the forcing term is a boundary inner product, between the test function and

the difference of data and predicted velocity, evaluated on measurement layers. We

note that this term embeds a weak prescription of boundary conditions on Γin; for

this reason the term
∫

Γin
(ν∇u n + pn) vdγ is added to the formulation. This fact

suggests a way for the selection of the nudging coefficient, which can be thought of

as a penalty parameter. We choose c according to the theory of artificial boundary

conditions presented in [46]. In the assumption of FE discretization, c is proportional

to Dmax, the largest triangle diameter, c = kνDmax, where k is a positive parameter

and ν the viscosity.

This approach is clearly related to the more sophisticated weighted least squares

FE (WLSFE) method for DA, introduced in [11] by Heys et al., already mentioned in

Chapter 1. Such method, designed for steady problems, consists in the minimization

of a functional given by the sum of the weak formulation of the state equations, weak

prescription of boundary conditions and weighted norm of the misfit between data

and velocity. The weights are chosen according to a measure of trust in the data.

The substantial difference, with respect to nudging, is in setting the method as an

optimization problem. This fact allows to account for the noise without altering the

nature of the problem since no artificial forcing terms are added to the state equations.

Details on the WLSFE can be found in Chapter 1 and in [11].
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Figure 2.2: Poiseuille flow - Horizontal velocity profile, vertical lines in correspondence
of x ∈ {0, 1, 2.5 4} show data location.

2.2 Numerical results

We report numerical results obtained testing the proposed approaches on a toy problem

with synthetic data. We consider the Poiseuille flow, a steady flow governed by the

Stokes equations in the rectangular domain Ω ⊂ R2, Ω = [0, L] × [−R,R] = [0, 5] ×

[−0.5, 0.5]. The exact solution reads

 uP (x, y) = [1− 4y2 , 0 ]T,

pP (x, y) = −8ν(x− L);
(2.19)

Figure 2.2 reports the horizontal velocity field computed by the FE solver FreeFem++1

on a fine unstructured grid. According to the problem presented in the introduction,

we assume data to be given on three internal layers and on the inflow boundary in cor-

respondence of discretization nodes, i.e. the space discretization step ∆ satisfies ∆ ∝

N−1
s . Precisely, in this configuration Γd = {(x, y) | x ∈ {0, 1, 2.5, 4}, y ∈ [−R,R] }.

Data are generated adding to the exact solution random noise, normally distributed

with zero mean and variance determined by the prescription of the signal-to-noise ra-

tio (SNR) defined as the ratio between the peak velocity and the level of noise.

Computational grids are unstructured triangulations generated with FreeFem++,

see Figure 2.3. We implement the FE method with choice of compatible FE spaces
1An open source C++ software for the numerical solution of two dimensional partial differential

equations with the FE method. http://www.freefem.org.
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Figure 2.3: Computational grid - Triangulation (80× 20) generated with FreeFem++.

P1bubble-P1 for the velocity and pressure fields respectively (see e.g. [42], chap. 9,

10). At this preliminary stage it is important to answer the question “is DA worth-

while?”. In fact, in principle, internal measures could be disregarded and data on Γin,

properly extended to grid nodes, could be used as Dirichlet condition and this would

lead to a (cheap) well-posed problem. Mathematically and physically DA is always

preferable since it takes into account the mathematical model and produces feasible

solutions. On the other hand, at a practical level, the issue is to find a good compro-

mise between accuracy and efficiency. For these reasons we compare the performance

of MU, OD, DO and DR with a direct approach, say Dirichlet (D), where the Stokes

equations are solved prescribing the noisy velocity data on the inflow as boundary con-

dition. Note that the DR method deserves a separate treatment; in fact, tuning the time

interval, the constant k and the discretization time-step different levels of accuracy can

be achieved.

We test the methods over a set of noise realizations and we consider the mean

relative error as accuracy index

EU =

Nr∑
i=1

‖Ui −UP ‖2
‖UP ‖2

, (2.20)

being UP the discretization of uP and Ui the solution computed in correspondence

of the i-th noise generation, out of Nr = 16 with SNR = 20 and 8; while the first

value is chosen for testing the methods, the second is a reasonable SNR for practical
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Figure 2.4: Comparison results for the OD, DO, D, MU and DR approaches in terms of
relative error EU with SNR = 20 (left) and 8 (right).

applications, e.g. for measures acquired via phase velocity encoded MRIs [10].

For DR simulations we set c = k νDmax with k = 104, ν = 0.035, a value featured

by blood, ∆t = 10−2, u0(x) = 10−5uP (x). Here, ∆t is the time-step used in the

time discretization scheme; in this case we use the Backward-Euler (BE) method [47].

Accuracy results are reported in Figure 2.4; for each method we report the relative

error EU . The diagram on the right also displays the error associated with the DR

method after 150 time steps. Even if much cheaper in terms of computational effort,

the MU method is not accurate enough; this is due to the sensitivity to the noise, which

makes this approach unreliable. The DR method has a poor accuracy and, furthermore,

requires the solution of an unsteady problem, which makes it computationally more

expensive. Table 2.1 reports results obtained for SNR = 8 with different number of

iterations. In Figure 2.5 we report the horizontal velocity at different iterations of the

process: during the transient we notice that we do not have a physical solution due

to the prescription of the data at the internal layers. These results show that even

with 150 steps the DR approach is much less accurate than other methods. While DR



34 2.2 Numerical results

iter EU
50 1.416e-1

100 1.249e-1
150 1.225e-1

Table 2.1: Relative errors in correspondence of SNR = 8 for the DR technique with differ-
ent number of iterations.

does not require an adjoint operator computation, the high number of iterations and

the poor accuracy make this method not competitive. We note that the choice of c has

not been investigated in this work; we do not exclude that an optimal choice of this

parameter might yield more accurate results.

Selection of the DA method The four candidate methods, MU, OD, DO and DR,

present significant differences in terms of accuracy and time saving.

The MU method is computationally cheap, costs a forward solve, but its accuracy

is poor. In fact, the reference method, Dirichlet approach, can achieve more accurate

results. This is somehow expected since data are incorporated without taking care of

the presence of the noise and no filtering mechanism is active. With the same purpose

of using measures as boundary data, a valid alternative would be a weighted weak

prescription of boundary conditions where weights depend on how much we trust the

measures. This approach results in a modified weak formulation, with additional terms

of the form ∫
Γd

w (u− d) v dγ (2.21)

where w is the weight function. Methods of this sort can be considered a combination

of splitting and nudging techniques. A sophisticated formulation of this approach is the

WLSFE approach [11], already mentioned in Section 2.1.3. Here, boundary penalty

terms as in (2.21) are added to the weak formulation; the minimizer of the resulting

functional is the assimilated solution. Modification, improvement, and comparison of
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Figure 2.5: Numerical solutions for the horizontal velocity field obtained at different iter-
ations, specifically, 0, 20 and 150 of the DR process.

splitting techniques is part of future work. Nevertheless, it is important to recall that

these approaches have a limiting feature; in fact, they are suitable only for problems

where data are located on internal slices and do not allow for generalization to sparse

data.

On the other hand, DR is not reliable in terms of accuracy and requires the solution

of a time-dependent problem, which makes the method computationally expensive.

Nevertheless, these facts qualify DR to be considered as a candidate method for ap-

proaching the assimilation problem for time dependent data.

Control approaches are the most accurate; however they require higher computa-

tional effort. In average, the computational time required by OD is 1.4 times larger

than DO’s. With the purpose of improving computational aspects we consider the DO

approach as the most promising; in fact, we believe that accuracy has a primary im-
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portance in biomedical applications. Besides that, current techniques for optimization

problems allow fast and efficient solution of inverse problems [30]; improving the

computational efficiency of the DO approach is part of the current work and it is fun-

damental in treating real data.

2.3 Further analysis of the DO method

We conduct a deeper investigation of the DO approach applied to the Stokes equa-

tions. In particular, we analyze the behavior of the error with respect to the analytic

solution (still the Poiseuille flow) versus the discretization error, the number of data

and the SNR. We discuss implementation issues and we report numerical results which

highlight the promising filtering properties of our approach. At this stage we utilize

lifeV1, an efficient and flexible open source C++ FE library.

2.3.1 The software

The FE library lifeV is a software for scientific computing, whose development started

in 1999 as a joint work project involving Ecole Polytechnique Fédérale de Lausanne

(CMCS) in Switzerland, Politecnico di Milano (MOX) in Italy, INRIA (REO) in France.

Since 2008 Emory University (Department of Mathematics and Computer Science) in

Georgia, US, has become part of the developers community. lifeV is a free software,

subject to the LGPL license, and it is compilable on Unix-like systems. This software im-

plements in C++ language algorithms and data structures to approximate numerically

systems of PDEs, that arise from mathematical modeling applied to fluid-dynamics,

fluid-structure interaction, flow in porous media and electrocardiology. lifeV has

been employed in joint collaborations with medical and industrial partners (for in-

stance Emory University, School of Medicine (GA - USA); Policlinico di Milano (Italy).
1www.lifev.org.

file:www.lifev.org
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The library is composed of a core part which provides an abstract framework for the

implementation of Galerkin FE methods, and of a set of solvers for specific applica-

tions. Although the library was originated as a serial software, recently the developers

community implemented a parallel version of the library (in this work we use the se-

rial version). Moreover, the software interfaces with external libraries like Boost for

containers, basic algorithms and smart pointers, BLAS and LAPACK for standard linear

algebra tools, Aztec or Trilinos for matrix manipulation and linear systems solution.

Results obtained by the solvers can be post processed using lifefilters methods

which take care of writing results on files, in a format compatible with common visual-

ization software like Paraview1, Ensight2 or Medit3.

2.3.2 Implementation issues

The core of the data assimilation solver is the solution of the reduced system (2.17).

The bottleneck of the computations is the Stokes system, corresponding to either S−1

or S−T; for its solution we do not consider a monolithic solver, instead, we perform an

exact algebraic factorization and we split the original matrix into two block-triangular

matrices. We rewrite the matrix S as

S =

 C BT

B O

 =

 C O

B −BC−1BT


 I C−1BT

O I

 . (2.22)

1http://www.paraview.org
2http://www.ensight.com/
3http://www.ann.jussieu.fr/ËIJfrey/publications/RT-0253.pdf

http://www.boost.org/
http://www.netlib.org/
http://www.cs.sandia.gov/CRF/aztec1.html
http://trilinos.sandia.gov/
http://www.paraview.org/
http://www.ensight.com/
http://www.ann.jussieu.fr/˜frey/publications/RT-0253.pdf
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In this way we can solve separately the two following block triangular systems:

 CŨ = b1

BŨ− BC−1BTP̃ = b2;
(2.23)

 CU = b1 − BTP

P = P̃;
(2.24)

where P̃ and Ũ are two auxiliary variables; these systems are solved with iterative

approaches, namely GMRES-type solvers.

2.3.3 Numerical results

Using FreeFem++ we generate unstructured triangulations of dimension n (number

of edges on the longest side of Ω), we set n = 40, 60, 80, 120, 160. We do not add any

regularization term to the formulation; also in this case, we assume to have measures

on each grid node on Γin, this assumption ensures the existence and uniqueness of a

minimizer for the problem as we will see Chapter 3.

In Figure 2.6 we report, for ∆ = 1/40, the assimilated pressure and velocity fields

with noise-free data; in correspondence of the internal layers the velocity matches the

data (the exact solution). Figure 2.7 reports computed velocity and noisy data with

SNR = 10. The noise mainly affects the vertical components of the field (zero in the

analytic solution); in the assimilated velocity such vertical the noise is filtered; see the

zoomed area on the right.

We consider the behavior of the discretization error versus the discretization step

∆ using noise-free data. This is a consistency check; numerical results, displayed in

Figures 2.8 (left) are consistent with the FE theory (for the specific choice of FE spaces),

i.e. EU = ‖U−UP ‖2
‖UP ‖2 = O(∆2) and EP = ‖P−PP ‖2

‖PP ‖2 = O(∆).

In Figure 2.9 we report in logarithmic scale EU versus ∆ for SNR =20 (left) and
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SNR n = 40 n = 60 n = 80 n = 120 n = 160
∞ 1.1874e-02 5.1610e-03 3.0476e-03 1.3949e-03 8.1229e-04
20 3.5414e-02 2.9724e-02 2.4532e-02 2.0646e-02 1.7957e-02
8 7.4238e-02 6.7801e-02 5.8876e-02 4.6559e-02 4.1652e-02

Table 2.2: Velocity relative errors in correspondence of different values of the discretiza-
tion step for different choices of SNR.

Figure 2.6: Computed pressure on the background, computed velocity and the noise-free
data (black vector field).

8 (right). We observe a behavior proportional to ∆0.5 (see Table 2.2 for the complete

report of the test case). To understand this result we note that, at this initial stage, the

number of data on Γin is mesh dependent, more precisely Ns ∝ ∆−1; hence, EU ∝

N−1
s . This is coherent with statistical theory: the standard deviation of the sample

mean of N random variables is proportional to N−0.5. In Chapter 3 further results

confirm this interpretation.

Figure 2.8 (right) reports in a logarithmic scale EU versus SNR−1; here, the error

increases linearly with the amount of noise, which is reasonable in the case of linear

problems.
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Figure 2.7: Computed pressure on the background, computed velocity and the noisy data
with SNR = 10 (black vector field).
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Figure 2.8: Left: relative errors for velocity and pressure versus ∆ with noise-free data.
Right: mean relative errors, over 20 realizations, versus SNR−1 = 0.03, 0.05, 0.07, 0.10,
0.12, 0.15, 0.17, n = 60.
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Figure 2.9: Mean relative errors, over 20 realizations, for the velocity field versus ∆ =
1/8, 1/12, 1/16, 1/24, 1/32, with SNR = 20 (left) and SNR =8 (right).
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3 A deterministic approach to DA

Preliminary results on the Stokes problem reported in Chapter 2 provide the ground

for the design of a robust, noise filtering method for the estimation of blood flow from

noisy velocity measures and numerical simulations. The discretize then optimize (DO)

technique is the basis for the development of a flexible and reliable assimilation tool.

Objectives are challenging: we want to construct an accurate estimator which works

in case of highly noisy data and complex geometries regardless (as much as possible)

of the dynamics, turbulent or laminar, of the flow. We want to provide conditions

that guarantee good mathematical properties to the estimator, including existence and

uniqueness and its stability with respect to data perturbation.

In this chapter, mainly based on [40] and [41], we present the core of the assimi-

lation procedure. We show how our estimator is able to accomplish such goals, funda-

mental in the design of a prediction tool for the medical practice. We introduce a robust

and noise filtering DO method for the linearized Navier-Stokes equations (NSE) and we

provide a possible alternative to common Tikhonov-like regularization methods. The

latter are in general mandatory in the treatment of ill-posed inverse problems, and,

however, might be computationally demanding. Our regularization approach is based

on an optimality result for the control problem; we find conditions on the number and

location of the data which ensure the existence of a unique estimator. The extension of

the method to the NSE is an iterative algorithm that still features the desired proper-

ties, also in presence of advection dominated phenomena, i.e. high Reynolds number.

The application to non-trivial domains approximating cardiovascular geometries gives
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promising results in both the prediction of the flow and of flow related variables of high

medical interest, namely the wall shear stress.

In Section 3.1 we present the continuous formulation of the DA problem for the

NSE; in Section 3.2 we describe in detail the discrete formulation applied to the lin-

earization of the NSE, we prove the existence and uniqueness of the assimilated so-

lution under a condition on the location of the measurements. Moreover, we discuss

the sharpness of this condition and introduce the associated regularization technique.

Numerical results for noise-free data are consistent with the theory. With noisy data

results point out the noise-filtering action of the assimilation procedure. In Section

3.3 we generalize the technique to the steady NSE; numerical results show the robust-

ness of the proposed iterative algorithm. In Section 3.4 we use the DA estimator on

more complex test cases; simulations on 2-dimensional non-trivial domains and ax-

isymmetric geometries show the flexibility, accuracy and reliability of the method in

the prediction of velocity and velocity related variables.

3.1 Mathematical formulation of the DA problem

Following the results obtained in Chapter 2 we formulate the assimilation technique

as a control problem where the misfit between the predicted velocity and the data is

minimized.

Let us denote by Ω a domain in Rd (d = 2, 3; in real applications d = 3). We assume

(see Figure 1.1 and 3.1) that the domain of interest Ω features an inflow boundary Γin,

an outflow boundary Γout and the physical wall of the vessel Γwall. Γin and Γout can

possibly consist of several sections. Variables of interest are velocity u(x) ∈ H1
Γwall

(Ω)

and pressure p(x) ∈ L2(Ω) which are assumed to obey the NSE in Ω. Also, we assume

to have Ns velocity measures d available at some sites1 xmi ∈ Ω, for i = 1, ..., dNs. We

1Notice that we use the word “sites” for the location of measurements, as opposed to the word “nodes”
for points where velocities are computed. In general sites and nodes are different, but we do not exclude
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Figure 3.1: Possible 2-dimensional and 3-dimensional domains with associated measured
sparse data.

formulate the DA problem as an inverse problem of the form

min
h

J(u, h) = dist(f(u), d) + R(h)

s.t.



−ν ∇ · (∇u +∇uT) + (u · ∇)u +∇p = s in Ω,

∇ · u = 0 in Ω,

u = 0 on Γwall,

−ν (∇u +∇uT)n + pn = h on Γin,

−ν (∇u +∇uT)n + pn = g on Γout.

(3.1)

Here, dist(·, ·) is a distance which will be specified later on; f is an observation op-

erator for the velocity field; s ∈ H−1(Ω) is the source term; g ∈ H−1/2(Γout) is the

Neumann boundary condition on the outflow section; R is a regularization term added

to improve properties of the functional to be minimized (as we will see later). A New-

that the intersection of sites set and nodes set in non-empty.
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tonian rheology is supposed to hold, since it is a common assumption in large and

medium blood vessels [3]; ν is the kinematic viscosity. The choice of homogeneous

Dirichlet boundary conditions on Γwall is due to the fact that we consider fixed geome-

tries. We use the inflow normal stress data h ∈ H−1/2(Γout) as control variable; this

choice is arbitrary but can be justified by the fact that an accurate knowledge of inflow-

outflow boundary conditions is quite problematic in real applications, since these are

“artificial” boundaries (see [48, 49]). We present the method for the linearized equa-

tions at first; here, the nonlinear convection term (u · ∇)u is replaced with (β · ∇)u,

where β is a known advection field. Then, we proceed by treating the nonlinear case

in Section 3.3.

3.2 Discretize then optimize method for the linear problem

For the numerical solution of the optimization problem we focus on the linearized

problem introduced in the previous section. The choice of the optimization scheme

relies upon the comparison analysis presented in Chapter 2 and in [39] where the DO

technique proved to be the most efficient method. In this procedure we first discretize

the continuous formulation by means of the finite element (FE) method; this yields the

following algebraic optimization problem (for α ≥ 0)

min
H

J(V, H) =
1

2
‖DV − d‖22 +

α

2
‖LH‖22

s.t. SV = RT
inMinH + F.

(3.2)

For α > 0, the term α
2 ‖LH‖22 has a regularization purpose (Tikhonov regularization,

see [50]) and it is intended to improve the convexity of the functional to be minimized.

More in general, it improves the conditioning of the problem, that can be affected by the

presence of noise. L is selected such that LTL is positive definite. Different techniques

can be used for an optimal choice of the regularization parameter α; among the others,
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we mention the discrepancy principle (DP) and the generalized cross validation (GCV)

[50]. V = [U P] ∈ RNu+Np is the vector of discretized velocity U ∈ RNu and pressure

P ∈ RNp belonging to inf-sup compatible FE spaces (see e.g. [42], chap. 9, 10).

H ∈ RNin is the discretization of the control variable h; Nin is the number of degrees

of freedom (DOFs) of the velocity on Γin. We introduce the matrix S, a modification of

the matrix introduced in Chapter 2.

S =

 C + A BT

B O

 . (3.3)

Here, we let C, A ∈ RNu,Nu and B ∈ RNp,Nu be the discretization of the diffusion,

advection and divergence operators.

[C]ij =
∫
Ω

ν(∇ϕj +∇ϕT
j ) · ∇ϕi dx, i, j = 1, ..., Nu,

[A]ij =
∫
Ω

β · ∇ϕjϕi dx i, j = 1, ..., Nu,

[B]ij =
∫
Ω

∇ ·ϕj ψi dx, i = 1, ..., Np, j = 1, ..., Nu,

(3.4)

where ϕ and ψ are the Lagrangian FE basis functions associated with velocity and

pressure respectively.

Let us recall some notations introduced in the previous chapter. We let Q ∈ RdNs,Nu

be a matrix such that [QU]i is the numerical solution evaluated at the data sites and

corresponding to [d]i, for i = 1, ..., dNs. When measurement sites coincide with DOFs

[QU]i is simply the corresponding entry of U; when measurement sites do not corre-

spond to DOFs points, [QU]i is the value of the FE numerical solution evaluated at xmi

obtained by a weighted sum of the FE Lagrangian basis functions. As an example, let us

consider the grid of Figure 3.2, with a P1bubble-P1 discretization for the velocity and

pressure. Two possible sites location on Γin are illustrated. The row of the matrix Q

(relative to the first velocity component, denoted by Qx) in correspondence of the site
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Figure 3.2: Possible choices of sites location and corresponding rows for the matrix Q
(only Qx is reported) in correspondence of site x∗ . Left: sites coincident with grid nodes.
Right: sites non-coincident with grid nodes.

x∗, is also reported for each case. While in the first case at row ∗ we have one non-zero

entry, in the second case, we have two non-zero entries corresponding the grid nodes of

the edge x∗ belongs to. We extend the selection matrix to pressure DOFs, introducing

the matrix D = [Q O].

We let Rin,u ∈ RNin,Nu be a restriction matrix which selects the DOFs of the velocity

on Γin. The generalization of Rin,u to velocity and pressure DOFs reads

Rin = [Rin,u O] , Rin ∈ RNin,Nu+Np . (3.5)

We let Min ∈ RNin,Nin be the discretization of the mass operator restricted to inlet

boundary nodes, specifically

[Min]kl =
∫

Γin

ϕjl
∣∣
Γin

ϕik
∣∣
Γin

dσ k, l = 1, ..., Nin, (3.6)

where ϕ are the Lagrangian basis functions associated with the velocity and {ik} and

{jl} are subsets of the velocity indexes, selecting DOFs on Γin. For the solution of prob-

lem (3.2), we use the reduced Hessian method to solve the system necessary conditions

for optimality induced by the Lagrangian

L(V,H,Λ) =
1

2
‖DV − d‖22 +

α

2
‖LH‖22 + ΛT(SV − RT

inMinH− F), (3.7)

where Λ ∈ RNu+Np is the discrete Lagrange multiplier. The set of necessary conditions
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for optimality is given by the KKT system (see e.g. [45]).



∂L

∂V
= DT(DV − d) + STΛ = 0

∂L

∂H
= αLTLH−MT

inRinΛ = 0

∂L

∂Λ
= SV − RT

inMinH− F = 0.

(3.8)

By defining Z = DS−1RT
inMin and W = ZTZ + aLTL the reduced system reads

WH = ZT(d−DS−1F), (3.9)

where W is the reduced Hessian associated with L and Z = d(DV)
dH is the so-called

sensitivity matrix [45]. Spectral properties of Z determine the conditioning and well-

posedness of the problem.

3.2.1 Non-singularity of the reduced Hessian

Sufficient and necessary conditions for the existence of a unique minimizer of problem

(3.2) are based on optimization theory.

Sufficient and necessary conditions

We analyze the existence of a unique minimizer for the optimization problem (3.2) un-

der suitable assumptions on number and location of the data. It is worth mentioning

that the results we present are strictly related to the specific choice of the control vari-

able; a different choice (e.g. the pressure drop, the inflow/outflow velocity, the outflow

Neumann boundary condition, etc...) would imply different optimality conditions.

According to the formulation presented in Section 3.2 the DO technique yields an

algebraic optimization problem; necessary (sufficient) conditions for optimality are sat-

isfied when the reduced Hessian matrix W is positive semi-definite (definite). In our
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case, it is enough to show that W is non-singular, i.e. system (3.8) has a unique solu-

tion.

Let v ∈ RNu+Np be the vector such that

v = S−1RT
inMinx, (3.10)

where x ∈ RNin is a generic non-null vector. Then, we can write

xTWx = vTDTDv + αxTLTLx. (3.11)

Since x 6= 0, DTD ≥ 0 and LTL > 0, we conclude that using a regularization term, i.e.

α > 0, always yields the well-posedness of the problem, no matter how the measures

are located in the domain. Since regularization might be computationally expensive in

searching the optimal regularization parameter, we prove a non-singularity result also

for α = 0.

From now on, we assume α = 0 and we focus on the first term in (3.11).

Proposition 3.2.1 For α = 0, W is non-singular⇔

Null(D) ∩Range(S−1RT
inMin) = {0}. (3.12)

Proof⇐ Take x 6= 0; then, v = S−1RT
inMinx 6= 0 since Min and S are non-singular and

Rin is full rank. Under the condition (3.12) Dv 6= 0; hence, xTWx > 0 for all x 6= 0.

⇒ By contradiction, assume (3.12) does not hold. Then, there exists v 6= 0, defined as

in (3.10), such that Dv = 0, which implies that ∃x 6= 0 such that xTWx = 0, so W

has a non-trivial kernel.

We need to analyze how the fulfillment of (3.12) is subordinated to the reciprocal

location (and number) of sites and nodes. In view of Proposition 3.2.3, we prove the

following Lemma.
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Lemma 3.2.2 For v defined as in (3.10), Rinv 6= 0 ∀ x ∈ RNin such that x 6= 0.

Proof Let w = RT
inMinx; then, definition (3.10) implies Sv = w. Without loss of

generality, assume that inflow DOFs are numbered in the first Nin entries such that

w =

 Minx

0

 . (3.13)

We rewrite matrix S and vector v accordingly as

S =

 A11 A12

A21 A22

 , v =

 v1

v2

 , (3.14)

where A11 ∈ RNin,Nin and v1 ∈ Nin. Note that A22 is the matrix of a generalized Stokes

problem with homogeneous Dirichlet boundary conditions on Γin∪Γwall and Neumann

conditions on Γout, so it is non-singular [42]. Assume by contradiction that Rinv = 0.

This implies that v1 = 0. System Sv = w reads:

 A11 A12

A21 A22


 0

v2

 =

 Minx

0

 . (3.15)

We get A22v2 = 0 so that v2 = 0, which implies that Minx = 0. This is a contradiction

since Min is non-singular and x 6= 0.

Remark 2 Note that Lemma 3.2.2 is not strictly specific for the Stokes problem; in fact,

it typically holds also for FE discretization of several differential problems, e.g. elliptic

PDEs. As a matter of fact, we only require that the discretization matrix corresponding

to the homogeneous Dirichlet problem on Γin is non-singular. Despite this, numeri-

cal experiments in Section 3.2.3 show that the sufficient condition, in the subsequent
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Proposition 3.2.3, is sharp.

Proposition 3.2.3 A sufficient condition for the existence of a unique minimizer for

problem (3.2) is that there exists a subset of sites such that the restriction Qr of Q to

such sites fulfills

Qr(I − RT
in,uRin,u) = O and rank(Qr) = Nin. (3.16)

Proof Notice that (3.16) implies that QrR
T
in,u, where Rin,u ∈ RNin,Nu , has full rank; in

fact

Nin = rank(Qr) = rank(QrR
T
in,uRin,u) ≤ min{rank(QrR

T
in,u), rank(Rin,u)}

= min{rank(QrR
T
in,u), Nin},

(3.17)

hence rank(QrR
T
in,u) cannot be less than Nin. Let us denote by Dr the sub-matrix of D

corresponding to Qr, so that Dr = [Qr O].

We prove that, under condition (3.16), for v = S−1RT
inMinx and x 6= 0, Drv 6= 0.

As a consequence of Lemma 3.2.2, we have that Rinv 6= 0, this implies Rin,uvu 6= 0,

where vu is the restriction of vector v to velocity DOFs. Consequently,

Drv = Qrvu = Qr(I − RT
in,uRin,u + RT

in,uRin,u)vu = QrR
T
in,u Rin,uvu. (3.18)

Since QrR
T
in,u has rank Nin, Drv 6= 0 and the thesis follows.

Proposition 3.2.3 corresponds to design the selection matrix D such that its restric-

tion to sites on Γin has Nin independent rows. As an example, in Figure 3.3, we report

two possible configurations of sites selection using P1bubble FE for the velocity. Note

that, with this choice of FE spaces, sufficient conditions are satisfied when we have sites

on each DOF on Γin. This fact opens the question of mesh refinement. For ∆ → 0 we
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gain accuracy but, in the limit, we loose well-posedness (since ∆ = 0 corresponds to

having an infinite number of sites on Γin). However, the presence of the noise makes

the refinement, after a certain level, unnecessary since the accuracy is determined by

the amount of noise only. More in general, this suggests that the selection of the pa-

rameter α for the regularizing term should depend on ∆.

Remark 3 Conditions for the existence and uniqueness of the optimal solution might

be unexpected. However, we notice that in the limit case of data given on DOFs of Γin

only (i.e. D = Rin) the problem is equivalent to the solution of the linearized NSE

where Dirichlet boundary conditions on the inflow section are prescribed in a weak

sense.

Remark 4 Proposition 3.2.3 states that it is mandatory to have velocity measures at the

inflow section; in our application this is not prohibitive. In fact, it is always possible to

collect velocity data on internal layers transversal to the blood flow. Nevertheless, we

cannot expect data to satisfy sufficient conditions for optimality (i.e. to be located on

velocity DOFs); in the next section we present a technique to overcome this problem.

Remark 5 Lemma 3.2.2 shows that, given a non-homogeneous Neumann boundary

condition on Γin, the corresponding computed velocity restricted to inflow DOFs, vin,

has at least one non-zero entry. In order to relax conditions (3.16) (i.e. Rank(Qr) = N ,

N < Nin), an upper bound to the number of zero entries of vin would be needed.

However, this is not possible since we can always find a Neumann condition on Γin

such that the corresponding vin has only one non-zero entry (consider the Dirichlet-to-

Neumann map with v|Γin
= vin).
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Figure 3.3: Example of sites location sufficient for theoptimality on grid nodes (left) and
not on grid nodes (right) using P1bubble FE for the velocity.

3.2.2 Forcing optimality via interpolation

The existence of a unique minimizer with a regularization term α > 0 does not suffer

from any constraint on sites and nodes. Despite this, there can be some drawbacks,

among which we mention the fact that it alters the solution of the problem (especially

when α � 1). Also, Tikhonov regularization requires the choice of the optimal pa-

rameter α, which might be computationally expensive, e.g. the DP, see next section,

requires the iterative solution of linear systems of the form WH = ZT(d − DS−1F)

[50]. There is however another possible way for forcing the optimality, exploiting the

result of Proposition 3.2.3.

Let us assume that some data are available at the inflow, not necessarily fulfill-

ing sufficient conditions. We can extend the given data to the entire set of DOFs on

the inflow boundary by interpolation (e.g. piece-wise linear) of available data and

Dirichlet boundary conditions on Γwall. In this way, inflow data are virtually extended

to inflow DOFs and condition (3.16) is automatically fulfilled. More specifically, if

we assume data d̃ to be given, then, after interpolation, we can write d = Πd̃, where

Π ∈ RNs+Nin,Ns is the interpolation matrix associated with piece-wise linear Lagrangian

polynomials.
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Example Assume Γin to be parallel to the y axis in the reference plane (x, y), then,

Π is defined as follows.

[Π]i,j = −
ymj+1 − yDOFi

∆j
; [Π]i,j+1 =

ymj − yDOFi

∆j

for yDOFi ∈ [ymj , y
m
j+1] i = 1, ..., Nin, j = 1, ..., Ns,in;

[Π]i+Nin,i
= 1 i = 1, ..., Ns.

(3.19)

Here, ymi is such that xmi = (xmi , y
m
i ) lies on Γin; Ns,in is the number of sites on Γin

and ∆j = ymj+1 − ymj . Also, yDOFi such that xDOFi = (xDOFi , yDOFi ) corresponds to a

DOF on Γin.

The interpolated data are clearly affected by the interpolation error. More precisely,

if we assume that

d̃ = dsparse = uexact + ε, (3.20)

where ε is the random noise; then, on boundary DOFs the interpolated data can be

written as

dinterp = uexact + ηε, (3.21)

where ηε is a linear combination of noise and exact velocity on the original sites. More

precisely, the statistical features of ηε are affected by the interpolation error and the

additional error that occurs when interpolating noisy data [51].

In this way, the functional to minimize reads

1

2
‖DsparseV − dsparse‖22 +

1

2
‖DinterpV − dinterp‖22, (3.22)

where Dsparse and Dinterp select respectively components of the velocity field on sparse

sites and DOFs on Γin. Representation (3.22) highlights the role of interpolation as
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a regularizing technique. In Section 3.2.3 we investigate this strategy and compare it

with the classical Tikhonov regularization. A careful investigation of the effect of the

interpolation error in statistical terms will be carried out in Chapter 4.

3.2.3 Numerical results

In this section we test our technique on 2-dimensional cases. We consider both noise-

free and noisy data, the former for a consistency analysis, the latter for a discussion on

the reliability of the DA process. At this preliminary stage data are synthetic, i.e. they

do not come from measures, but from a given analytical solution suitably perturbed

with additional noise. We present results for a validation of Proposition 3.2.3.

Implementation details We implement the FE method with choice of compatible FE

spaces P1bubble-P1 for velocity and pressure respectively. The mesh is generated with

the software FreeFem++. For Tikhonov regularization we use L = ∇d, the discretized

gradient, and we generate the optimal parameter α by means of DP [50]. Here, the

optimal ᾱ is such that ‖DVᾱ − d‖22 − τ2 is minimized, being Vᾱ the optimal solution

computed with ᾱ and τ2 = ‖ε‖22, the norm of the noise. In practical applications, the

DP method is not commonly used for the search of the optimal parameter since the

norm of the noise, τ2, is usually unknown. Since we have an estimate of the noise

variance σ2 (for each component of the noise vector), we use τ2 ∼= dNsσ
2.

For the solution of the reduced system (3.9) and of the state and adjoint systems we

use inexact Krylov subspace iterations; more specifically, we solve the reduced Hessian

matrix W with the GMRESR method [52, 53], which allows to change the precondi-

tioner at each iteration, and the matrices S and ST with the GMRES method (inner

iterations). For such nested iterations it is possible to bound the inner tolerance so that

the global residual norm falls below a prescribed tolerance. This issue has been investi-

gated in [54] and [55] for several applications in scientific computing. In the numerical
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simulations presented in this work outer and inner tolerances are chosen empirically;

in view of applications to real data we plan to take into account an adaptive choice of

the inner tolerance.

The bottleneck is the solution of linear systems associated with S and ST where

an efficient preconditioner is required; we solve these systems monolithically with the

pressure-convection-diffusion (PCD) preconditioner proposed by Kay in [56] and by

Silvester et al. in [57]. Table 3.1 reports stopping criteria used for each linear system

involved. P(S) stands for the preconditioned system, rk is the residual at iteration k

and rhs is the right hand side of the current system. Note that these parameters refer

to the solution of problems featuring non-trivial geometries or low viscosity values; in

fact, such problems require an accurate solution of inner systems.

The PCD preconditioner exploits an approximation of the Schur complement based

on considerations on the continuous operators involved. We report its formulation,

details regarding motivation and performance can be found in [58]. We define the

preconditioner P as follows:

P = LpF
−1
p Mp. (3.23)

Here, Lp is the FE discretization of the pressure Laplacian

[Lp]i,j =

∫
Ω

∇ψj · ∇ψi; (3.24)

being ψ the pressure basis functions. Fp is the discretization of the momentum equation

for the pressure variable

[Fp]i,j = µ

∫
Ω

∇ψj · ∇ψi +

∫
Ω

(β · ∇ψj)ψi. (3.25)

Mp is the pressure mass matrix and β is the advection field. Note that, using an iterative

solver, we only specify the matrix-vector product for P−1v; hence, we only require
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linear system solver tol stopping criteria
C + A GMRES 1.e-9 ‖rk‖/‖r0‖
P(S) GMRES 1.e-9 ‖rk‖/‖rhs‖
W GMRESR 1.e-6 ‖rk‖/‖rhs‖

Table 3.1: Parameters setting for the iterative solvers (implemented in the AZTEC library).

solvers for the pressure Laplacian and the mass matrix. As reported in [58] we can

assemble these matrices prescribing natural boundary conditions on all boundaries but

the inflow section, where a Dirichlet boundary condition is required. When solving the

adjoint operator ST, we prescribe Dirichlet boundary conditions on the outflow section.

Numerical results are obtained with the C++ FE library lifeV and post-processed

with ParaView, see Section 2.3.1.

Analytic test case Simulations presented in this section are based on the 2-dimensional

Navier-Stokes flow in the domain Ω = [−0.5, 1.5]× [0, 2] whose analytic solution, uanl,

reads 
[u]1(x, y) = 1− eλx cos(2πy),

[u]2(x, y) =
λ

2π
eλx sin(2πy),

p(x, y) =
1

2
e2λx − 1

4λ
e2λ.

(3.26)

Here, the kinematic viscosity of the fluid is ν = 0.035, a value featured by blood

(lower parameters induce advection-dominated problems, see Figure 3.4, right). The

adimensional parameter λ is such that λ = 1
2(ν−1 −

√
ν−2 + 16π2). In Figure 3.4 we

report the analytical velocity computed on a fine grid in correspondence of ν = 0.035

(left) and 0.005 (right). In these test cases the index of accuracy is the relative error

with respect to the analytic solution, EU = ‖U−Uanl‖2
‖Uanl‖2 , where Uanl is the discretization

of uanl.
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Figure 3.4: Exact velocity field in correspondence of ν = 0.035 (left) and ν = 0.005
(right).

Data Generation We assume data to be given on the inflow boundary and on some

internal points in the computational domain, not necessarily in correspondence of grid

points. In the case of noise-free measures the data vector coincides with the exact

solution, for the noisy case data are generated by adding Gaussian noise to the exact

solution.

Noise-free data We consider the linearized problem with β = uanl and we analyze

the error with respect to the exact solution. In this test case we set α = 0 and we

consider data on DOFs on Γin and on three internal layers (in correspondence of grid

nodes at x = 0, 0.5, 1). In Figure 3.5 we report the relative error EU in logarithmic

scale versus the discretization step ∆. Here, Uanl is the discretization of the analytic

solution. Consistently with the Céa Lemma [42] we observe the expected convergence

rate (for the chosen FE spaces), EU = O(∆2).

Verification of the optimality condition With the purpose of validating and testing

the sharpness of Proposition 3.2.3, we focus on the conditioning of the problem and

we inspect singular values of W. We choose ∆ = 0.076 and SNR = 20. This value

corresponds to adding a low amount of noise and it is chosen for testing the method.
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Figure 3.5: Relative error versus ∆ for noise-free data, a reference curve, ∆2, is reported.

BS IS K1 EU it K1(reg) EU(reg) it(reg)
27 0 3.1e+05 0.0500 19 1.1e+04 0.0492 16
13 0 1.3e+20 0.0756 13 9.7e+03 0.0567 13
9 0 7.9e+19 0.1957 15 9.8e+03 0.1050 17
27 100 1.3e+06 0.0367 15 3.0e+04 0.0354 12
13 114 1.1e+11 0.0443 11 4.6e+04 0.0379 11
9 118 1.5e+11 0.0478 13 6.1e+04 0.0348 12

Table 3.2: Condition number, relative error and number of iterations for different choices
of sites with SNR = 20.

Later on in the chapter realistic values, such as SNR = 8, are also considered. In

this set of simulations Nin = 27. In Table 3.2 we report the condition number K1 of

W, for α = 0 and α = 1e-2, for different values of Ns; on the inflow boundary sites

(BS) correspond to grid nodes, while inside the domain they do not necessarily. The

value of the regularization parameter is fixed a priori on an empirical basis. In Figures

3.6 and 3.7 we report in a semilogarithmic scale the singular values of the reduced

Hessian W, properly rescaled, with and without regularization. Let us focus on the

case of data not satisfying optimality conditions. When the number of internal sites

(IS) = 0 and α = 0 the distribution of the singular values features a gap and we can

classify the problem as rank-deficient (see [50]). In these cases it is not worth using
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Figure 3.6: Singular values of W with α = 0 for IS =0 and 60 and BS = 27 and 13.

Tikhonov regularization; in fact, in a certain sense, regularization induces a shift of the

eigenvalues (see Figure 3.7, top right). It is rather effective to identify such gap using

methods such as truncated singular value decomposition (TSVD) or modified TSVD,

see [50]. In our case the system is solved by means of the GMRES method setting

empirically a tolerance so to stop iterations before the gap. When conditions are not

satisfied, IS 6= 0 and α = 0 there is no gap in the singular values distribution and the

problem can be classified as discrete ill-posed [50]. Also, the addition of internal data

does not improve significantly the condition number and the relative error.

We also investigate the behavior of the procedure for different values of the kine-

matic viscosity ν, i.e. for different Reynolds number. The choice of ν1 = 0.1 and
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Figure 3.7: Singular values of W with α = 1e-2 for IS = 0 and 60 and BS = 27 and 13.

ν2 = 0.01 is driven by the fact that ν2 induces ill-conditioning of the forward problem

associated with the matrix S.

From results reported in Table 3.3 we can infer two considerations. With high

Reynolds number the accuracy of the recovered solution is worse, this is due to nu-

merical instability which arises with problems dominated by advection phenomena.

Despite this, the condition number of the control problem is lower than in the stable

case. This is consistent with the theory presented by Lions in [59] and by Gunzburger in

[23], Chapter 1. In these works the key idea is that the more a system is unstable (and

more sensitive to perturbations), the simplest, or the cheapest, it is to achieve exact or
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BS IS K1 EU it
27 0 1.3e+06 0.0380 17
13 0 2.0e+21 0.0802 12
9 0 5.7e+21 0.2566 15
27 27in 2.5e+06 0.0303 15
27 27out 1.6e+06 0.0348 14
27 27mid 1.9e+06 0.0331 14

BS IS K1 EU it
27 0 1.8e+05 0.0616 21
13 0 4.0e+19 0.0877 17
9 0 7.1e+19 0.1372 14

27 27in 3.7e+05 0.0574 19
27 27out 3.7e+05 0.0498 19
27 27mid 3.7e+05 0.0461 18

Table 3.3: Condition number, relative error and number of iterations with SNR = 20 for
different choices of sites and viscosity: ν = 0.1 (left) and ν = 0.01 (right). Subscripts in,
out and mid refer respectively to IS close to the inflow, outflow and middle of the domain.

approximate controllability. Also, results of Table 3.3 are consistent with the result re-

ported in [60] which states that the noise affecting the data decays exponentially with

respect to the distance from the inflow boundary. With a low Reynolds number the in-

troduction of sites located close to Γin improves the accuracy; for high Reynold number

the solution of the forward problem has a slower decay as we move far form Γin; this

fact implies that internal sites significantly determine the accuracy of the solution.

Remark 6 When the value of the kinematic viscosity induces advection-dominated

phenomena we can stabilize the formulation adding artificial terms to the weak form

of the problem, see [42] chap. 6. These terms modify the matrix and in some cases

they might also circumvent the inf-sup condition so to allow the choice of incompatible

FE spaces. Using a simple and straightforward method we stabilize the problem and

check possible effects on the DA process. We consider the Streamline Diffusion method;

we add artificial viscosity in the predominant direction of the advection field. Formally

we add the term

s(u,v) = ξ(∆,β)

∫
Ω

(β · ∇u) (β · ∇v) dx; (3.27)

where the stabilization coefficient ξ is defined as ξ(∆,β) = ∆
2‖β‖2 . According to the

Strang Lemma for generalized Galerkin methods (see [42]), the expected convergence

rate for the velocity discretization error is only linear. Figure 3.8 displays results ob-
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Figure 3.8: Relative errors versus ∆ for noise-free (left) and noisy data (right) problem.
Reference curves, ∆2 and ∆ (left) and

√
∆ (right), are reported for a comparison.

tained with ν = 0.005, SNR =∞ (left) and SNR = 8 (right) and data on Γin satisfying

well-posedness conditions. In case of noise-free data, the discretization error EU versus

∆, as expected, has linear convergence rate. In the noisy case, convergence rate is of

the order of O(
√

∆) ∼ O(
√
N−1
s ), as observed for the Stokes problem in Chapter 2.

Again, we note that, for a given set of N independent identically distributed random

variables, the standard deviation is proportional to N−0.5; this explains our results. We

conclude that including artificial stabilizing term does not compromise the assimilation

process, indeed it improves the conditioning of the forward problem.

The interpolation strategy We report numerical results on the interpolation tech-

nique addressed in Section 3.2.2; our main aim is to investigate its reliability and com-

petitiveness with respect to the usual Tikhonov regularization. Also, we point out some

facts related to the dependence of the conditioning of the problem on sites location as

a further confirmation of results presented in Section 3.2.1.

In Table 3.4 in correspondence of different choices of location and number of sites

we report the relative error and the number of GMRES iterations for two different grids.

Here, in the first column, “grid” stands for “points located on grid nodes”, i.e. on DOFs;
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note that Nin = 12 (right) and 27 (left). The case where neither Tikhonov regulariza-

tion or interpolation are performed is reported as a reference test. αDP is the optimal

regularization parameter obtained using DP. The activation of the interpolation process

is determined by the flag i: when 0 no interpolation is performed and d corresponds

to given data; when 1, d corresponds to both the original data and the interpolated

values on grid nodes. From these results, we can infer the following considerations.

The interpolation process has the effect of yielding the well-posedness of the prob-

lem, moreover, interpolation can improve both the conditioning and the accuracy of the

computed solution. We note that interpolation is a competitive technique with respect

to common regularization methods in terms of accuracy. Tikhonov regularization is not

a consistent technique, even in absence of noise; in fact, it modifies the nature of the

problem adding an artificial term to the formulation. As opposed to this, using inter-

polation with noise free data, the assimilated solution is as accurate as a FE solution of

the forward problem with exact boundary conditions. Furthermore, it requires much

less computational time. In fact, we recall that the DP requires the iterative solution of

reduced systems for retrieving the optimal parameter αDP .

In order to get the picture of what has been implemented, in Figure 3.9 we re-

port the sparse and interpolated data (left) and the corresponding assimilated solution

(right).

3.3 Iterative procedure for the nonlinear problem

We consider the nonlinear advection term (u · ∇)u and we solve a nonlinear PDE con-

strained optimization problem. In literature several methods are available for the so-

lution of the discretized problem; among those we mention the Newton method [45]

and its variants (common optimization methods will be addressed in future works with

comparison purposes). Here, we address this issue by combining the DA procedure for
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BS i αDP EU it
11 (grid) 0 - 0.108 14
5 (grid) 0 - 0.831 9
6 0 - 0.182 10
6 0 0.047 0.150 11
6 1 - 0.167 14
3 (grid) 0 - 0.888 6
4 0 - 0.312 8
4 0 0.056 0.214 14
4 1 - 0.262 13

BS i αDP EU it
27 (grid) 0 - 0.050 19
13 (grid) 0 - 0.076 13
14 0 - 0.068 14
14 0 0.021 0.061 15
14 1 - 0.059 18
9 (grid) 0 - 0.196 15
8 0 - 0.199 11
8 0 0.038 0.137 18
8 1 - 0.139 17

Table 3.4: Relative error and number of GMRES iterations (GMRES tolerance tol=1.e-6)
in correspondence of ∆ = 1/6 (left) and 1/14 (right). IS = 0 and SNR = 20.

Figure 3.9: On the left, actual data used in the DA process (original and interpolated). On
the right, pressure and velocity regularized solution and data.

the linear case presented in the previous section with classical fixed point linearization

schemes. In particular, we refer to Picard and Newton methods [42]. The DA assimi-

lation problem is solved iteratively as follows. Let Uk be a given guess for the velocity

field at iteration k + 1. The discrete iterative procedure reads

min
Hk

1

2
‖DVk+1 − d‖22 +

α

2
‖LHk+1‖22

s.t. SkVk+1 = RT
inMinHk+1 + Fk

(3.28)
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up to fulfillment of a convergence criterion (typically ‖Vk −Vk+1‖ ≤ δ, being δ a user

defined tolerance chosen empirically in our case). We use the following notation

Sk =

 C + Ak BT

B O

 , and Fk = F + wYk. (3.29)

Here, Ak comes from the discretization of (uk ·∇)uk+1+w(uk+1 ·∇)uk (w = 0 for Picard

method, 1 for Newton); Yk is the discretization of (uk · ∇)uk. Here uk is defined as

ϑuk−1 +(1−ϑ)uk, being ϑ ∈ [0, 1], w is a relaxation parameter, also chosen empirically.

A necessary condition for the convergence of algorithm (3.28) is the existence of a

unique solution, at each iteration of the optimization problem, which has been proved

in Section 3.2.1. In Figure 3.10 (left) we show numerical evidence of the convergence:

in a logarithmic scale we report, at each iteration of algorithm (3.28) with w = 0.8, the

relative error, with respect to a reference solution, defined as EU = ‖Uk−Uanl‖2
‖Uanl‖2 , Uanl

being as in (3.26). For increasing number of iterations the graph shows a convergence

to a limit value in correspondence of different values of SNR. Also, numerical tests show

that the number of iterations is almost ∆-independent, where ∆ is the discretization

step used for the FE approximation. Figure 3.10 (right) reports relative errors EU and

number of iterations it for different values of ∆. In the table SNR and Ns are fixed.

Due to the local convergence of the Newton method for the forward problem, a

common procedure is to perform a few Picard iterations and use the resulting velocity

as initial guess (we refer to this method as Picard-Newton). The activation of the

Newton method is driven by the parameter w ∈ [0, 1].

3.3.1 Numerical results

In this Section we test the DA procedure for the NSE on 2-dimensional and axisym-

metric cases. With noise-free and noisy data, we conduct a consistency analysis, and

we discuss the filtering properties of the method on an analytic test case. Synthetic



68 3.3 Iterative procedure for the nonlinear problem

∆ EU it
1.7e-1 0.0534 9
7.1e-2 0.0288 9
5.0e-2 0.0241 9

Figure 3.10: Left: relative error EU versus number of iterations in correspondence of
different values of SNR. Right: Relative error EU and number of iterations of algorithm
(3.28) for SNR = 20 and Ns = 160.

data are generated either from a given analytical solution or a numerical solution of

the forward problem. We also show results obtained on 2-dimensional non-rectangular

domains, retrieving from the assimilated velocities a flow-related variable of medical

relevance, namely the wall shear stress (WSS). Finally, we present results obtained with

an axisymmetric formulation of the problem in a cylindrical domain.

Noise-free data We analyze the error with respect to the analytic solution. We set

α = 0 and consider data on DOFs on Γin and on three internal layers (x = 0, 0.5, 1).

In Table 3.5 (left) we report for the Picard-Newton method the error EU and the

number of Picard-Newton iterations (the number of Newton iterations to get conver-

gence is reported in brackets) in correspondence of different mesh sizes ∆. Same re-

sults are reported in Figure 3.11 (left) in a logarithmic scale with a reference quadratic

curve, the expected FE convergence rate is recovered. Moreover, we observe that the

number of iterations needed for the convergence is almost mesh independent.

Noisy data We investigate the dependence of the relative error EU on the number

of available measures and on the amount of noise. Regularization parameter and data
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∆ EU it
0.160 4.97e-2 5 (3)
0.072 9.49e-3 4 (2)
0.050 4.73e-3 4 (2)

Ns EU it
22 (11+11) 9.01e-2 7 (3)
44 (22+22) 6.01e-2 9 (5)
88 (44+44) 4.52e-2 7 (3)

Table 3.5: On the left results for noise-free simulations; on the right results for SNR =20
and ∆ = 0.160, in the first column Ns = (BS + IS). In the third column, in brackets, the
number of Newton iterations.

Figure 3.11: Left: relative errors versus ∆, Picard-Newton iterations with noise free data.
Right: assimilated velocity with noisy data (black) for SNR =20 in a region with horizontal
analytical solution.

are set as in the previous paragraph. In Table 3.5 (right) we report the discretization

error and the number of iterations for the Picard-Newton method in correspondence of

SNR = 20 and ∆ = 0.160 for different number of sites Ns = BS + IS, where BS and

IS are the number of boundary and internal sites. In this case w = 0.8. In Figure 3.12

(left) we report the average discretization error over 100 noise realizations, E100, and

a reference curve O(N−0.5
s ). Same statistical considerations reported in Section 2.3.3

and 3.2.3 may be inferred. In Figure 3.12 (right) we report in a logarithmic scale the

average error versus the inverse of SNR for SNR = 33.3, 20, 10, 8.3 and ∆ = 0.072.

We can notice a linear behavior by a comparison with the dashed reference curve. In

Figure 3.13 we report the relative error EU of the sample mean of the velocity over Nr

noise realizations: U = 1
Nr

∑Nr
i=1 Ui, where Ui is the velocity corresponding to the i-th
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Figure 3.12: Relative errors EU versus ∆ with noisy data (left); relative errors EU versus
SNR−1 (right) for Picard-Newton iterations.

noise realization. As expected, the error converges with rate -0.5 to the discretization

error for noise-free data.

In Figure 3.11 (right) we report a zoom of the computed field and the noisy data

in a region with horizontal analytical solution; the presence of the noise is evident

in the vertical components and in low magnitude velocities; this happens since the

amount of noise does not depend on the local magnitude of the velocity vector field. In

correspondence of these low magnitude values the recovered assimilated field differs

significantly from the data and it is closer to the exact solution. This pinpoints the role

of the assimilation procedure as a sophisticated way for filtering noise from the data,

based on the mathematical model of the process at hand.

3.4 Towards real geometries

In this section we consider more complex geometries, which are intended to resemble

vessels of medical interest. In Test case I and II we reproduce in 2-dimensional curved

computational domains a section of the carotid and of the aorta respectively. In test

case III we consider a 3-dimensional cylindrical domain treated with an axisymmetric

formulation.
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Figure 3.13: Relative error of U versus number of noise realizations Nr.

Test case I We assume that some measurements of the blood velocity are available

on Γin and on sparse internal sites, see Figure 3.14 (left) for domain and data. In real

applications the SNR is strongly determined by the biomedical tools used to observe

the data; when using data processed from a scan of the aorta, it can be as low as 10 for

flow measures (personal communication of Dr. M. Brummer, Emory CHOA). In Figure

3.14 (left) a comparison between reference velocity and noisy data is reported. Data

on Γin do not satisfy conditions for the well-posedness, consequently interpolation is

performed. In this test case, since we are not provided with real data and an analytic

solution is not available, we consider synthetic data generated from a reference solu-

tion, UFE. This is a FE solution computed on very fine grid (300% of nodes used for the

test case) where the discretization error is considered fairly small. For the computation

of UFE we prescribe the following boundary conditions:

u = 0 on Γwall, −ν (∇u +∇uT)n + pn = 0 on Γout, u = [0 g(x)]T on Γin, (3.30)

where g(x) = k x (2r − x), ν = 3.5 mm2

s , 2r = 7mm (Γin length) and k = 12ms−1.
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In the generation process, we introduce a projection matrix, P from the fine to the

coarse grid. Data are generated adding random noise to PUFE on selected sites. The

reference solution is affected both by the FE approximation error and the projection

one; however, this fact does not penalize the reliability of results since approximation

and projection errors can be regarded as part of the noise. As index of accuracy we

consider the ratio EU = ‖U−PUFE‖2
‖PUFE‖2 .

In Figure 3.14 (center) we report the magnitude of velocity field assimilated from

noisy data with SNR = 20. In this case, with Tikhonov regularization (α = 0.1), EU =

8.074e-2 after 60 Picard-Newton iterations. We note that the noise mainly affects the

components of the velocity which are transversal to the flow; despite this, the recovered

field is close to the reference solution. This fact confirms the noise-filtering property of

the proposed method. It is interesting to observe the streamlines in the bulb area (see

Figure 3.14, right) where we expect to have recirculation and vortex formation.

To test the competitiveness of the DA procedure we compare the relative error of

the assimilated velocity with the one of the velocity obtained from a forward simu-

lation (here, Dirichlet boundary conditions are prescribed using the interpolated data

retrieved from sparse sites on Γin) in this case EU = 15.957e-2. This comparison con-

firms the reliability of the DA procedure and the gain, in accuracy, that we obtain with

respect to solving a forward problem, even if computationally expensive.

The wall shear stress We consider the computation of the WSS τ which is a quantity

of medical interest. An accurate approximation of the WSS is fundamental in the inves-

tigation of cardiovascular pathologies since it is an index of the possibility of rupture of

the vessel wall and formation of stenosis [3]. It is defined as the tangential component

of the stress exerted by the fluid (blood in this case) on the wall, formally

τ = ν(∇u +∇uT)n− ν
((

(∇u +∇uT)n
)
· n
)
n, (3.31)
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Figure 3.14: Left: actual data used in the DA process (original, in black, and interpolated).
Center: magnitude of the velocity vector field. Right: detail of the stream lines.

where n is the normal vector in correspondence of the wall. Approximations of the

WSS retrieved from indirect measurements are in general unreliable because of the

post-processing numerical errors and the noise affecting the measures. Including mea-

surements in simulations is a way for improving the reliability of computed solutions.

In fact, the introduction of the numerical blood flow model results in noise filtering:

thanks to the assimilation process, the recovered WSS catches accurately the behav-

ior of the reference one. These preliminary results pinpoint again the role of DA as

a way for filtering and eventually computing hemodynamics indexes with good ac-

curacy. In order to have a quantitative comparison with the reference solution we

introduce an index of accuracy of the magnitude of the WSS vector field on Γwall,

EWSS = ‖WSS−WSSFE‖2
‖WSSFE‖2 ; where WSSFE is the value retrieved from the reference solution

PUFE.

Table 3.6 (left) reports, in correspondence of decreasing SNR, errors obtained with

the assimilated velocity field, EWSS,DA, compared with those obtained from a forward

simulation on the same grid with Dirichlet boundary conditions (interpolating function

retrieved from sparse data) on Γin, EWSS,FW. With high SNR the gain obtained with

DA process is not significant, as we decrease SNR we can obtain up to the 50% of gain
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SNR EWSS,DA EWSS,FW

100 0.2536 0.2667
20 0.2591 0.3030
10 0.2738 0.3861
5 0.3149 0.6114

slices S EU
none 0 0.01600
s1 5 0.00985
s1, s2 5 0.00576
s1, s2, s3 5 0.00992
s1 10 0.00554
s1, s2 10 0.00535
s1, s2, s3 10 0.00647
s4, s5 10 0.00724

Table 3.6: Left: comparison of relative errors for the WSS computed with DA and forward
solution for test case I. Right: relative errors for different s and S for test case II.

with respect to the forward simulation. The accuracy in the computation of the WSS

can be improved; nevertheless, the comparison with results from a forward simulation

highlights the strength of the assimilation procedure and the relevance of internal data.

Also, numerical tests proved that, as we increase the number of internal data, we obtain

more accurate solutions.

Test case II We consider a 2-dimensional computational domain approximating a

section of the aortic arc. We assume to have velocity measurements on Γin and on

three internal layers Γd, as shown in Figure 3.15 (left), with the purpose of mimicking

Figure 1.1. Data are synthetic and, as in test case I, they are generated from a reference

solution, UFE, computed on a very fine grid (300% of nodes used for the test case).

For its computation we prescribe the following boundary conditions

u = 0 on Γwall; −ν(∇u+∇uT)n+pn = 0 on Γout; u = [ 0 (x−r1)(r2−x) ]T on Γin,

(3.32)

where r1 = 2 and r2 = 6. In Figure 3.15 (right) we report the computed pressure,

the velocity vector field and noisy data (SNR = 10). The noise mainly affects the

components of the velocity which are transversal to the flow; in the recovered field

such components are filtered. Here, E∗U = 5.12e-2 after 40 Picard-Newton iterations.
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Figure 3.15: On the left, computational mesh reproducing the aortic arc and noise free
data. On the right, pressure and velocity fields recovered from noise free data.

In Figure 3.16 we report a comparison between the WSS computed using the reference

solution PUFE and the one computed upon assimilated velocities; the assimilated WSS

approximate the reference WSS with EWSS,DA = 0.2401.

Test case III We consider a 3-dimensional cylindrical domain with radius r and height

h. Exploiting symmetry, we formulate the problem in an axisymmetric formulation and

we solve it problem in a rectangular domain, the shaded area in Figure 3.17 (left). We

assume to have data on the inflow boundary not satisfying optimality conditions and

we perform interpolation. We also assume that additional internal data are available.

More precisely, we consider s internal slices (sections) with S data per slice, with the

purpose of reproducing the setting of Figure 1.1. Data are generated adding to the

Poiseuille flow random noise with SNR = 20. In Figure 3.17 (right) we report, for r

= 1.5 cm, h = 6 cm, s = 5 and S = 10, the data and the recovered vector field. The

relative error with respect to the Poiseuille reference solution is EU = 0.007793. In

Figure 3.18 we report, for s = 5 and S = 17, a 3-dimensional visualization the data

and the assimilated velocity: the magnitude of the velocity is displayed in three sections

in the lower part of the cylinder, the vector field in the upper ones.
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Figure 3.16: Comparison between the map of the stress exerted by the blood in the arterial
wall recovered from the reference solution, on the left, and from noisy velocity data of
Figure 3.15 (left), on the right.

We investigate the accuracy of the assimilated solution using fixed SNR and ∆, re-

sults are reported in Table 3.6 (right). In this test case we consider s slices such that

each slice sk, k = 1, ..., s is placed at distance k cm from Γin. The non-monotonic be-

havior of the error as a function of s might be surprising. The explanation resides in the

presence of the noise, which has two different effects on the accuracy of the solution.

On one hand additional data help the well-conditioning and accuracy (in absence of

noise) of the problem, no matter their location. On the other hand, coherently with the

result in [60], the incidence of noise in distal sections is supposed to be more relevant

than in proximal sections. As a confirmation of this fact, we observe that using s1 and

s2 gives a more accurate solution than s4 and s5.
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Figure 3.17: Left: in the axisymmetric formulation a rectangle is selected to be the com-
putational domain. Right: data and assimilated vector field for s = 5 and S = 10.

Figure 3.18: 3-dimensional visualization the data and the assimilated velocity.
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4 A statistical approach to DA

The deterministic approach to DA presented in Chapter 3 provides an accurate and

noise filtering estimator of the velocity of the fluid retrieved from noisy measures. A

weak point of such approach is that, relying on a specific realization of noise it produces

a single estimate of the state which might not be representative of the whole state

distribution. Moreover, in the deterministic approach measures are considered as if

they were independent. In the context of hemodynamics, which is characterized by

complex phenomena, this is a limiting feature since additional a priori information

regarding the noise is not taken into account.

In medical applications an evaluation of reliability of simulations and numerical

results is mandatory; for our method to be a valid tool supporting medical practice it

is important to quantify the credibility of predictions in statistical terms. These include

computing the most likely value for the velocity or a set of values which the state is

most likely to belong to. These goals are achieved when we determine the statistical

distribution of the velocity and related variables; this task requires prior information

about the variables involved and of the noise affecting the observations.

In this chapter, based on [61] (in preparation), we present a Bayesian approach to

DA; the purpose is to find a probability distribution for the state variable, treated as

random. Parameters of the probability density function (PDF), such as mean value and

variance, and induced confidence regions allow to quantify the uncertainty of numeri-

cal simulations.

In Section 4.1 we introduce basic statistical notation and properties of normal ran-
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dom vectors which are useful in dealing with our application. In Section 4.2 we intro-

duce the mathematical formulation of the Bayesian method applied to the linearized

NSE and we extend the formulation to the nonlinear case using the algorithm for

the nonlinear equations introduced in Chapter 3. Then, we present point estimators,

namely the maximum a posteriori (MAP) and the maximum likelihood (ML) estima-

tors, and spread estimators (confidence regions) based on the PDF of the normal stress

on the inflow boundary. In Section 4.3 we recall the regularization technique based on

interpolation developed in Chapter 3 and we show how it affects the statistical formu-

lation. In Section 4.4 we present numerical results in correspondence of the same test

cases used to test the deterministic formulation in Chapter 3. We compare statistical

and deterministic point estimators and we compute confidence regions for the velocity

ans the wall shear stress WSS.

4.1 The multivariate normal distribution

In this section we report basic concepts regarding the normal distribution for random

vectors and we introduce properties and results specifically related to our application.

In particular, we focus on statistical properties of affine transformations of normal ran-

dom vectors which are used in Section 4.2.3 to derive the velocity PDF.

4.1.1 The multivariate normal PDF

The multivariate normal distribution is a generalization to dimensions d ≥ 2 of the

univariate normal distribution. For the univariate case, a Gaussian random variable X

with mean µ and variance σ2 has PDF

f(x) =
1√

2πσ2
exp

{
−(x− µ)2

2σ2

}
∀ x ∈ (−∞, ∞), (4.1)

and it is denoted X ∼ N(µ, σ2).
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In the multivariate case the formula is generalized to a d-dimensional vector; in

particular, the exponent has the form

(x− µ)TΣ−1(x− µ) (4.2)

where µ ∈ Rd represents the expected value of the multivariate random variable X

and Σ is the symmetric positive definite covariance matrix of X, i.e. Σi,i = var(Xi)

and Σi,j = Σj,i = cov(Xi, Xj) for i, j = 1, ..., d. The normalizing constant 1/
√

2πσ2

has to be generalized to a constant such that the volume under the density surface is

unitary. It can be shown, see [62] that such constant is

1√
(2π)ddet(Σ)

. (4.3)

Thus, the multivariate normal PDF has the form

f(x) =
1√

(2π)ddet(Σ)
exp

{
−(x− µ)TΣ−1(x− µ)

}
∀ xi ∈ (−∞, ∞), i = 1, ..., d

(4.4)

and we say X ∼ N(µ, Σ). It is easy to show that µ is the point of maximum density,

mode and expected value [62].

Contour lines Contours of constant density c play a central role in determining con-

fidence regions for multivariate normal variables. For the d-dimensional distribution

these are ellipsoids generated by the equation

(x− µ)TΣ−1(x− µ) = c2; (4.5)

these ellipsoids are centered in µ and have axes±c
√
λjej , where λj are the eigenvalues

of Σ and ej the associated eigenvectors for j = 1, ..., d.
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4.1.2 Properties of the multivariate normal distribution

In this section we report a few properties which are relevant for results discussed in

this chapter and we introduce the chi-squared, χ2, distribution.

For a d-dimensional normal random vector X ∼ N(µ, Σ) we have the following

properties:

P1 Affine transformations of X are normally distributed. In particular, given A ∈ Rq×d

and b ∈ Rq, then Y = AX + b ∼ Nq(Aµ+ b, AΣAT).

P2 All subsets of the components of X have normal distribution. If we rearrange the

vector as

X =

 X1

X2

 , µ =

 µ1

µ2

 , Σ =

 Σ1,1 Σ1,2

Σ2,1 Σ2,2

 , (4.6)

where X1 ∈ Rq and X2 ∈ Rd−q; then, X1 ∼ Nq(µ1, Σ1,1) and X2 ∼ Nd−q(µ2, Σ2,2).

P3 We first introduce the chi-squared distribution.

The chi-squared distribution The chi-squared distribution with d degrees of

freedom is the distribution of a sum of the squares of d independent standard

normal random variables. If X1, ..., Xd are independent, standard, normal ran-

dom variables, then the sum of their squares,

Z =
d∑
i=1

X2
i , (4.7)

is distributed according to the chi-squared distribution with d degrees of freedom.

This is usually denoted as

Z ∼ χ2
d. (4.8)
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The PDF of Z is given by

f(z; d) =


1

2d/2Γ(d/2)
zd/2−1e−z/2, z ≥ 0;

0, otherwise

(4.9)

where Γ denotes the Gamma function defined as Γ(n) = (n − 1)!, for an integer

n, and as Γ(
n

2
) = π

(n− 2)!!

2(n−1)/2
for a half-interger

n

2
.

The third property relates normal vectors and the chi-squared random variable

and allows us to draw confidence regions for Gaussian vectors.

• (X−µ)TΣ−1(X−µ) is distributed as χ2
d, where χ2

d denotes the chi-squared

distribution [62] with d DOFs.

• The N(µ, Σ) distribution assigns probability (1 − α) to the ellipsoid {x :

(x − µ)TΣ−1(x − µ) ≤ χ2
d(α)} where χ2

d(α) denotes the upper (100α)-th

percentile of the χ2
d distribution.

4.2 Mathematical formulation

In this section we formulate the assimilation problem as a statistical inverse problem

using the Bayesian approach; an extensive introduction to statistical inverse problems

can be found in the book by Kaipio and Somersalo [63]. As done in Chapter 3 we

present the formulation for the linearized NSE and then we extend it to the nonlinear

formulation. Then, we derive statistical estimators for the velocity U in Ω.

The purpose of statistical inversion is the prediction of stochastic features of the

variables of interest in order to quantify the credibility of numerical methods and simu-

lations. The prediction of the uncertainty affecting the variables is based on the knowl-

edge of (i) the measurement process; (ii) deterministic models of the unknowns [63].
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In formulating the inverse problem we assume to deal with discretized variables,

all treated as random. The randomness is in the degree of information of their realiza-

tions and such degree resides in the probability distributions. The entities involved are

PDFs; in this respect, statistical approaches are different from deterministic ones which

produce a single estimate of the unknown. Here the method delivers a distribution. In

the following sections the bold variables denote random vectors while the capital plain

variables a specific realization. With an abuse of notation we introduce the random

variable H which describes the normal stress of the fluid at the inflow section; M is the

random variable that describes the measures and ε the noise perturbing the measure-

ments. We let πpr(H) be the PDF of H, usually called prior, and πnoise(ε) the one of ε;

these distributions are assumed to be known. The likelihood function π(M |H) denotes

the PDF of the measurement conditioned on a realization of H. The distribution of

H conditioned on a realization of M, π(H|M) = πpost(H), is usually called posterior.

The purpose of the Bayesian procedure is to estimate the posterior exploiting the Bayes

formula (see e.g. [63])

π(H|M) = πpost(H) =
π(M |H)πpr(H)

π(M)
; (4.10)

where π(M) is the PDF of the measures. Since we are interested in finding the vari-

able H, that maximizes the posterior distribution, the denominator does not affect the

optimization process and we can simply consider the relation

π(H|M) = πpost(H) ∝ π(M |H)πpr(H). (4.11)

Also, let us consider the linearized model that relates H and M,

ZH + ε = M. (4.12)
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Here, Z = DS−1RinMin is the matrix introduced in Section 3.2, which relates the ran-

dom variable representing the velocity measures to the variable H according to the

deterministic model introduced in the previous section. This relation holds in the lin-

earized case and takes into account the presence of the noise. The random variable

ε accounts for the discrepancy between ZH and M. Models in the form (4.12) are

referred to as additive noise and they are used with the assumption of mutual indepen-

dence of H and ε. This assumption implies that the PDF of ε is independent of any

realization of H, say H. Hence, the likelihood function can be expressed as

π(M |H) = πnoise(M − ZH). (4.13)

If we consider M = d, a specific realization of M, we rewrite (4.11) as

πpost(H) ∝ πnoise(d− ZH)πpr(H). (4.14)

When we consider Gaussian random variables we can derive an explicit form for πpost(H).

We introduce the PDFs of H and ε, according to the notation reported in Section 4.1:

πpr(H) ∝ exp
{
−1

2
(H −H0)TΣ−1

pr (H −H0)

}
,

πnoise(ε) ∝ exp
{
−1

2
(ε− ε0)TΣ−1

noise(ε− ε0)

}
;

(4.15)

where H0 and ε0 are the expectation values and Σpr and Σnoise are the correlation

matrices for H and ε respectively. In the Gaussian assumption, using Theorem 3.7,

Chapter 3 of [63], we can write (4.14) as

πpost(H) ∝ exp
{
−1

2
(H −Hpost)

TΣ−1
post(H −Hpost)

}
; (4.16)
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where the correlation matrix and the expectation value read

Σpost = (Σ−1
pr + ZTΣ−1

noiseZ)−1,

Hpost = Σpost(Z
TΣ−1

noise(d− ε0) + Σ−1
pr H0)⇒

(Σ−1
pr + ZTΣ−1

noiseZ)Hpost = ZTΣ−1
noise(d− ε0) + Σ−1

pr H0.

(4.17)

Using this result one can calculate point and spread estimates. As an example, we can

answer questions like “how likely is the unknown inside a set of values?”.

4.2.1 The formulation for the nonlinear NSE

In treating the nonlinearity we do not replace (4.12) with a nonlinear model; instead,

we consider an iterative approach inspired by the deterministic one. Also in this case,

we rely on the Newton method for the NSE; the algorithm reads as follows. Given a

guess for the velocity at iteration k + 1, we find Hpost,k+1 solving

Hpost,k+1 = (Σ−1
pr + ZT

k Σ−1
noiseZk)

−1(ZTΣ−1
noise(d− ε0) + Σ−1

pr h0). (4.18)

Here, Zk is defined as in 3.3, i.e. Zk = DS−1
k RT

inMin where

Sk =

 C + Ak BT

B O

 . (4.19)

Ak is the discretization of the advection operator with advection field Uk, the velocity

vector associated with the normal stress Hpost,k. We perform iterations (4.18) until a

convergence criterion is satisfied. Since in our application the variable of interest is the

velocity, we check the convergence using ‖Uk − Uk+1‖ ≤ δ, a user defined tolerance.

Note that with this formulation H and U, at each iteration, are related by a linear

model and, for this reason, U can still be considered normally distributed.
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4.2.2 Statistical point estimators

One of the most common point estimators is the maximum a posteriori (MAP) estima-

tor. We let HMAP be the MAP estimator for H. It is defined as the most likely value of

H given d, formally

HMAP = arg max
H

πpost(H). (4.20)

In the Gaussian assumption HMAP corresponds to Hpost, the expected value of the

posterior distribution and can be found by solving

(Σ−1
pr + ZTΣ−1

noiseZ)Hpost = ZTΣ−1
noise(d− ε0) + Σ−1

pr H0. (4.21)

This leads to a computational problem similar to classical deterministic regularization

methods; nevertheless, the estimate comes from different motivation and relies on

different information.

Another common estimator is the maximum likelihood (ML) estimator; this is the

value of H which is most likely to produce the data d. It is defined as

HML = arg max
H

π(M |H). (4.22)

For the Gaussian distribution, combining (4.13) and (4.15), this corresponds to solving

arg max
H

exp

{
−1

2
(d− ZH − ε0)TΣ−1

noise(d− ZH − ε0)

}
(4.23)

or, equivalently

arg min
H
−1

2
(d− ZH − ε0)TΣ−1

noise(d− ZH − ε0). (4.24)
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This leads to the solution of the following linear system

(ZTΣ−1
noiseZ)HML = ZTΣ−1

noise(d− ε0). (4.25)

It is important to note that this is not a Bayesian estimator since it does not rely on

the Bayes formula; it only requires the knowledge of stochastic features of the mea-

surement process, i.e. the likelihood function. Note that, when the matrix of system

(4.25) is singular the estimator is not well-defined. This happens when either Σnoise is

singular or Z is rank-deficient. In the latter case, as proved in Chapter 3, Proposition

3.2.3, singularity is due to data location. When sites on Γin do not satisfy optimality

sufficient conditions we can prevent singularity of ZTZ using interpolation, see Section

3.2.2. This process alters the noise; in Section 4.3 we provide details on how statistical

properties of the noise are affected by data interpolation.

MAP and ML estimators are strictly related and the choice between the two depends

on the level of prior knowledge on the variable of interest; HML corresponds to reject-

ing (or not trusting) our prior belief on H, while the MAP estimation pulls the estimate

towards the prior.

In a certain sense the HML can be considered as the limit case of HMAP [64].

Consider the following iterative algorithm. Let πj−1 be an estimate of the PDF of H at

iteration j − 1; then,

1. set πpr = πj−1;

2. compute πpost and Hpost using (4.17);

3. set πj = πpost, HMAP,j = Hpost, j = j + 1;

It is possible to show that, regardless of how we choose π0 and H0, iterating the proce-

dure we have lim
j→∞

HMAP,j = HML [64].
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In using the MAP estimator some knowledge on the distribution of H must be as-

sumed. For this reason, we introduce the “Gaussian smoothness” priors [63]; they

correspond to prior models with structural information on H. When (4.12) comes

form the discretization of PDEs, as in our case, it is a common assumption to consider

H having smoothness properties (e.g. second order differentiability). In this work we

choose Σ−1
pr = 1

σ2 LTL, where L corresponds to the discretization of a differential oper-

ator. As an example, when L is the identity operator and σ2 = 1, we are assuming H to

be corrupted by white noise.

4.2.3 Statistical spread estimators

Beyond point estimates, much broader information is carried by the posterior distri-

bution. In this section we define credibility regions for the velocity vector, i.e. set of

values the variable belongs to with a certain probability.

Using properties of affine transformations of random variables and the theory of

confidence regions for the multivariate normal distribution, see Section 4.1.2, we in-

troduce the PDF of U (the random variable associated with the discretized velocity)

and credibility regions for components of the velocity vector in each DOF.

For the linearized NSE, an affine transformation relates the normal stress H and

the velocity field U, i.e. the discretization of the state equation: SV = RT
inMinH + F.

Solving for V, where V = [U P], we have

V = S−1RT
inMinH + S−1F. (4.26)

This is equivalent to

U = E(S−1RT
inMinH + S−1F); (4.27)

where E is the matrix that extracts the velocity, i.e. such that EV = U. From now on

we set T = ES−1RT
inMin. This affine transformation maps the Gaussian variable H ∼
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Figure 4.1: Confidence region associated with χ2
2(α).

N(Hpost, Σpost) into the Gaussian variable U ∼ N(U, ΣU ) where U = THpost + ES−1F

and ΣU = TΣpostT
T, since we do not consider F affected by uncertainties. Our goal is

to have a measure of how likely the velocity, or one of its components, falls within a set

of values, or, conversely, how large is the set of values corresponding to probability α

for the velocity to belong to such set. To this end, we introduce confidence regions for

the velocity field; more specifically, we focus on credibility regions for the horizontal

and vertical velocity in each DOF of the computational grid, i.e. [Ui Ui+Nu/2]T ∈ R2,

for i = 1, ..., Nu/2. Note that we assume horizontal velocities to be stored in the first

half of the vector. This 2-dimensional vector has a bivariate normal distribution;

 Ui

Ui+Nu/2

 ∼ N


 Ui

Ui+Nu/2

 ,
 ΣU ; i,i ΣU ; i,i+Nu/2

ΣU ; i+Nu/2,i ΣU ; i+Nu/2,i+Nu/2


 (4.28)

For the sake of notation, we use the same notation of Section 4.1 and we rewrite

(4.28) as X ∼ N(µ, Σ). Confidence intervals for U can be found using property P3
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Figure 4.2: Confidence region for the standardized variable corresponding to percentile 1.

(see section 4.1.2) for the 2-dimensional case. Since (X − µ)TΣ−1(X − µ) has a chi-

squared distribution with 2 degrees of freedom, probability of 1−α can be assigned to

the ellipsis {x : (x−µ)TΣ−1(x−µ) ≤ χ2
2(α)} in the (x, y) plane, where χ2

2(α) denotes

the upper (100α)-th percentile of the distribution. Using this result, for a fixed value

of α, we can draw regions in the 2-dimensional plane as shown in Figure 4.1. Spectral

properties of the correlation matrix Σ play a fundamental role; the eigenvectors of Σ

are the directions of the main axes and the eigenvalues are a relative measure of the

variability of the velocity components. On the other hand the ellipsis in Figure 4.2 is a

rotation and translation of the previous one and corresponds to the equation

x2

λmax
+

y2

λmin
= 1, or xTΛ−1x = 1, (4.29)

where, Λ is the diagonal matrix of the eigenvalues of the correlation matrix. Note that

xTΛ−1x still has a chi-squared distribution with two DOFs; moreover 1 ∼= χ2
2(40%).

Thus, λmax represents the maximum deviation from the mean for the components of X
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in a 60% confidence region. In our investigation we consider a map, over the computa-

tional grid, of the max eigenvalue of the correlation matrix for the bivariate distribution

and, for selected DOFs, an 80% confidence region.

Remark 7 When using the posterior distribution to infer statistical properties of the

variable it is important to understand the meaning of confidence regions. In fact, the

result of Bayesian inversion is not the real distribution of the state (or related vari-

ables); it is rather an estimate of such PDF based on two assumptions: the knowledge

of the noise distribution and of the prior. For this reason, finding a confidence re-

gion based on the posterior does not correspond to finding the set of values the “true”

unknown belongs to, but just an estimate of that [63]. In fact, it can happen that a

significant part of “true” values lies outside a 90% confidence region (see [63] Section

3.5 for a formal explanation).

4.3 Interpolation of data

In Chapter 3 on the basis of Proposition 3.2.3, we introduced a form of regulariza-

tion alternative to Tikhonov techniques. Such result states that, in order to have the

warranty of a unique minimizer without using Tikhonov regularization, the selection

matrix, restricted to inflow boundary site, should have rank Nin. Using available data

on Γin not satisfying sufficient conditions, we build an interpolating function to be

evaluated on DOFs on Γin, now considered part of the sites set. More specifically, if

we assume data d̃ to be given, then, after interpolation, we can write d = Πd̃, where

Π ∈ RNs+Nin,Ns is the interpolation matrix associated with piece-wise linear Lagrangian

polynomials (see Section 3.2.2 for a 2-dimensional example).

It is important to note that the interpolation process alters the noise distribution

(specifically Σnoise) introducing additional correlation among the data. Let us assume

to know the correlation matrix of ε, say Σε, this is associated with data d̃ on available
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sites. After interpolation we write (4.12) as ZH + η = M. Here, the random vector

η = Πε is associated with a new set of sites: the given ones and the DOFs on Γin. In

the Gaussian assumption, η is still normally distributed with mean Πε0 and correlation

matrix Ση = ΠΣεΠ
T, see Section 4.1.2. Note that Ση is singular by construction;

this fact makes HML, in equation 4.25, not well-defined and, as anticipates above,

Gaussian smoothness priors or modified interpolation matrices should be considered;

more details are given in the following section.

4.4 Numerical results

In this section we present numerical results obtained testing the Bayesian formulation

on 2-dimensional and axisymmetric 3-dimensional geometries for both the linearized

and nonlinear NSE. In order to test the effectiveness of this approach we compare the

MAP and ML estimators with deterministic estimates obtained using the formulation of

Chapter 3. In particular, we compare accuracy and number of iterations in the solution

of linear systems. The index of accuracy is related to the velocity fields retrieved from

HMAP , HML and Hdet (the deterministic estimate); it is defined as EU = ‖U−Uanl‖2
‖Uanl‖2 ,

where Uanl is the discretized analytic solution, see equation (3.26), assumed known.

We also define an average error over a set of noise realizations, EU = 1
n

∑n
i=1EU,i

where EU,i is associated with the i-th realization. In addition, we consider a measure

of the gain, γ, in using statistical estimators as opposed to deterministic ones: γ =

1− EU,stat

EU,det
where stat stands for either MAP or ML.

Statistical spread estimators for the velocity and for the WSS are derived and pos-

sible interpretations are discussed.

We test two possible sites configurations on Γin and we discuss numerical results

in terms of accuracy and statistical interpretation. We consider the solution of the

linearized problem first; then, we treat the nonlinear case.
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Implementation details We implement the FE method with choice of compatible

FE spaces P1bubble-P1 for velocity and pressure respectively. Numerical results are

obtained with the C++ FE library lifeV and post-processed with ParaView. For the

solution of the linear system (4.17) we refer to the GMRESR method [52, 53]; for the

matrix S we consider the PCD preconditioner proposed by Kay in [56] and by Silvester

et al. in [57].

As smoothness prior we use Σ−1
pr = αLTL, α ≥ 0, where L is the discrete gradi-

ent. This is a common choice for PDE constrained problems and it is not based on

any physical consideration. Nevertheless, we note that in hemodynamics applications

some prior knowledge of the velocity and pressure distribution can be derived from the

anatomy of the human body; this might be used to infer statistical properties of the

control variable H using the relation between flow and boundary stress.

Data generation We assume to have sites on Γin and in Ω either on selected layers

(featuring the configuration of Figure 3.1) or uniformly distributed in the domain. At

this preliminary stage data are synthetic, i.e. generated adding random noise to a

known analytic solution (see equation (3.26)). Moreover, we set the available data

(the specific realization of M) d = QUanl + ε, Q being the selection matrix introduced

in Chapter 3. Here, the Gaussian random vector ε is generated coloring white noise:

ε = Gw, where w ∼ N(0, I) and G is such that GGT = Σε, the correlation matrix for

the noise on sites, assumed known. We compute G as the Cholesky factor of Σε.

The likelihood function In the choice of the noise expected value it is reasonable to

consider ε0 = 0 (personal communication of Dr. Brummer, Emory CHOA). We assume

that the noise correlation depends on the mutual distance between sites. In particular,

we assume that close data highly affect each other, and that data significantly far from

each other are almost independent. For this reasons, we consider an exponential decay
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Hdet HML HMAP

IS EU α EU α γ EU α γ

0 0.08077 0.1 0.06290 0 22% 0.06296 0.001 22%
100 0.03080 0 0.03033 0 2% 0.04170 0.15 -35%
200 0.06868 0.15 0.03751 0 41% 0.04853 0.15 29%
300 0.08837 0.15 0.02049 0 77% 0.02662 0.2 70%

Table 4.1: Accuracy results for statistical and deterministic solutions.

with respect to the mutual distance. Formally,

[Σnoise]ij = [Σε]ij = exp

{
− 1

l2
‖xmi − xmj ‖22

}
; (4.30)

l being a reference distance for the domain of interest. In this way Σnoise is a symmetric

positive definite matrix. As mentioned in the previous section, when we perform inter-

polation the correlation matrix is of the form Σnoise = Ση = ΠΣεΠ
T and, in general, it

is singular.

4.4.1 Point estimators

Test case I In the square domain Ω = [−0.5, 1.5] × [0, 2] we consider the ana-

lytic solution (3.26). Data on the inflow boundary satisfy the conditions for optimality

(specifically, one measurement per grid node, which ensures well-posedness using the

FE pair P1bubble-P1), IS internal data are sparse in Ω and the reference distance is l =

1.

Table 4.1 reports EU and α, fixed a priori, for Hdet, HML and HMAP ; with SNR

set to 20. Note that the most accurate solution corresponds to the ML estimator. In

fact, system (4.25) is non-singular and we do not make any assumptions on the prior

probability. In this case, we can observe that the gain increases as we increase the

number of internal data; the more noisy information we have, the better we can get

from the statistical solution. Furthermore, the number of iterations required by the
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GMRESR for convergence is approximately 8 for both the approaches.

4.4.2 Test case II

In this case, using the same analytical solution and reference distance l = 1, we con-

sider data on the inflow boundary not satisfying sufficient conditions for optimality and

additional internal data located on internal slices parallel to Γin (with the purpose of

imitating Figure 3.1). We want to compare statistical and deterministic estimators and

to investigate the role of interpolation.

We first focus on the regularized case without interpolation and we compare HMAP

and Hdet. The regularization parameter α is strongly data dependent; since we want

to test the estimators over a set of noise realizations, finding the optimal α would

be highly time consuming. For this reason, we compare deterministic and statistical

approaches in correspondence of three fixed values of α.

In Table 4.2 (top) we report relative errors EU , for Hdet and HMAP in correspon-

dence of α = 0.5, 0.05, 0.005. In this case we consider 300 internal data distributed

on 10 slices (30 sites per slice, not in correspondence of grid nodes); also, SNR = 20

and 10, the number of noise realizations is n = 20, ∆ = 0.076, and the number of sites

on Γin is Ns,in = 14.

From these results we infer the following facts. Compared to the deterministic

estimator, HMAP is always more accurate since it takes into account additional infor-

mation brought by statistical properties of the data. We stress that, since synthetic data

are generated using the matrix G, the noise correlation matrix is exact.

In average the number of GMRES iterations is higher for HMAP (1.3 times bigger

than the one required by Hdet); this is due to the presence of Σ−1
noise in the formulation.

As mentioned above, since using regularization is computationally expensive, we

also want to compare HML and Hdet without the additional regularizing term (i.e. α

= 0 for both of them) and using interpolation. We recall that when interpolating the
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SNR α EU,det EU,MAP γ

20 0.5 0.0665 0.0530 24%
20 0.05 0.0666 0.0550 17%
20 0.005 0.0706 0.0579 18%
10 0.5 0.1272 0.0946 26%
10 0.05 0.1514 0.1032 32%
10 0.005 0.1256 0.1059 28%

SNR EU,det EU,ML, (mod) γ

20 0.0709 0.0552 22%
10 0.1518 0.1256 17%

Table 4.2: Accuracy results for statistical and deterministic solutions for the linearized
NSE.

induced correlation matrix Ση is singular by construction making the problem poten-

tially ill-posed. In our numerical results we consider two options: the first consists in

solving the correlation matrix Ση in a least-squares sense, i.e. ΣT
η Σηx = ΣT

η y where

x is the unknown and y is a right hand side. The second option consists in using a

modified correlation matrix constructed with the assumption of independent and iden-

tically distributed interpolated data. This is equivalent to setting the diagonal block

of Ση corresponding to DOFs on Γin equal to σ2I, where I is the identity matrix of

dimension Nin, which avoids singularity. Since the statistical information associated

with interpolated data is redundant, the modification to the correlation matrix does

not compromise the accuracy of the statistical estimator; in fact, the statistical surplus

value is brought only by statistical properties of measurements. In Table 4.2 (bottom)

we report results obtained in correspondence of the same 20 noise realizations used in

the regularized case. Using the modified matrix Ση, system (4.25) is well-posed and

the additional knowledge brought by the noise correlation matrix makes the statisti-

cal estimator more accurate than Hdet. On the other hand, the number of iterations

in solving for HML is 1.5 times bigger than the one required by Hdet. As mentioned

above, the higher number of iterations is expected and it is due to the presence of



98 4.4 Numerical results

SNR EU,det EU,MAP γ

20 0.0822 0.07371 10%
10 0.1394 0.1041 25%

SNR EU,det EU,ML γ

20 0.0855 0.0579 6%
10 0.1675 0.1363 18%

Table 4.3: Accuracy results for statistical and deterministic solutions for the NSE.

Σ−1
noise; nevertheless, we believe that the gain in accuracy makes the computational

effort worthwhile.

4.4.3 Test case III

We present numerical results obtained solving the NSE using the same analytic solution

and reference distance of test case I and II. We consider data on Γin not satisfying

sufficient conditions for optimality and internal data located on 10 internal slices (with

30 data/slice). The numerical problem is solved using algorithm (3.28). In Table 4.3

we report results obtained in correspondence of ∆ = 0.076 and SNR = 20 and 10.

In the computation of HMAP the regularization parameter is chosen relying on results

obtained in the linearized case; we choose α = 0.5 since it corresponds to the most

accurate numerical solution. The poor gain in correspondence of SNR = 20 means that

statistical information associated with a low amount of noise is not significant enough

to make a considerable difference with respect to deterministic estimates in terms of

accuracy. In the other cases statistical estimators are significantly more accurate and

yield a gain up to the 25% in correspondence of low values of SNR.

4.4.4 Test case IV

We consider an axisymmetric formulation for the numerical solution of the 3-dimensional

Poiseuille flow in a cylinder of length L =6, diameter D =3 and viscosity ν = 1 in a

2-dimensional structured grid of dimension 80×20. Data on the inflow boundary do

not satisfy sufficient conditions and internal data are located on 5 internal slices with
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SNR EU,det EU,MAP γ

20 0.0396 0.0308 22%
10 0.1423 0.0978 31%

Table 4.4: Accuracy results for statistical and deterministic solutions for the axisymmetric
case.

test case I
SNR α EU,MAP λMAX

20 0.5 0.06003 0.09759
10 0.5 0.07754 0.1744

test case II
SNR α EU,MAP λMAX

20 1.e-5 0.01720 0.3759
10 1.e-5 0.02565 0.7024

Table 4.5: Accuracy results and maximum deviation for different values of SNR.

10 data per slice. Here, the reference distance is l = 1.5. We perform interpolation

and, in order to prevent potential ill-conditioning, we add a regularization term (or

smoothness prior) with α = 1e-7. Results for SNR = 20 and 10 are reported in Table

4.4; in both cases we have a significant gain in accuracy. Also, the number of iterations,

in average, is the same.

4.4.5 Spread estimators

Test case I We consider the square geometry [0.5, 1.5]× [0, 2] and the analytic solu-

tion (3.26); data on Γin satisfy conditions for optimality in Proposition 3.2.3. For this

test case the computational grid is sufficiently small to allow explicit computation and

storage of correlation matrices; matrix operations are performed in Matlab. In partic-

ular, for the computation of Σ−1
post = Σpr + ZTΣ−1

noiseZ and ΣU = TΣ−1
postT

T we rely on

the conjugate gradient method for matrix inversion. For each sub matrix of ΣU defined

as in (4.28), corresponding to horizontal and vertical velocities on one DOF, say the j-

th DOF, we compute the square root of the maximum eigenvalue, λmax, j; as described

in Section 4.2.3 this is the maximum deviation from the mean in a 60% confidence

region. In Figure 4.3 (top left) we report the map of
√
λmax, j over the computational
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Figure 4.3: Standard deviation map (top left) and ellipses corresponding to node 1 (top
right), 2 (bottom left) and 3 (bottom right).

grid for SNR = 20. We observe a peak on the inflow boundary, this is due to the fact

that the noise of data on Γin has high influence on the solution, the result is a higher

uncertainty for the velocity components. In correspondence of three areas featuring

different values of deviation we compute a 80% confidence region corresponding to

the set

(Uj − Uj)TΣ−1
U (Uj − Uj) ≤ χ2

2(20%) ∼= 3.219, (4.31)
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Figure 4.4: Standard deviation map.

where Uj corresponds to the vector of horizontal and vertical velocities on the j-th

DOF and Uj is the corresponding mean value. Such ellipses are reported in Figure 4.3.

Results for SNR = 20 and SNR = 10 are reported in Table 4.5 (left). Here λMAX =

maxj(λmax, j) is the maximum deviation over the computational grid.

Far from being realistic, this test case highlights the fact that Bayesian inversion is

capable of reducing the standard deviation of the noise affecting observed measures,

0.1467 for SNR = 20 and 0.2953 for SNR = 10.

Test case II We consider the 3-dimensional axisymmetric formulation and data on Γin

not satisfying conditions for optimality; thus, we perform interpolation. Recall that, in

this case, Σnoise = ΠΣεΠ
T, where Σε is the correlation matrix for the measures. Ma-

trices operations are treated as in the previous test case. In Figure 4.4 we report the

map of
√
λmax, j in each DOF for SNR = 20. Here, the peak is located in the lower left

corner. This result is reasonable and it is related to boundary conditions. On the wall

and on the outflow section we prescribe exact boundary data; for this reason, we do not

have uncertainty. As we move far from such boundaries, i.e. towards the axis of sym-

metry and the inflow section we have a higher deviation from the mean. This behavior

is enhanced by the fact that the boundary condition on Γin is the control variable which
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Figure 4.5: Ellipses corresponding to node 1 (left) and 2 (right).

SNR n EU,det EU,ML γ

20 20 0.05273 0.03617 31%

Table 4.6: Comparison results between deterministic and ML estimator: accuracy with
respect to the reference solution.

is highly affected by the measurement noise. Nevertheless, we observe that except for

the bottom left corner the deviation is lower that the one of the data, 0.325 for SNR =

20 and 0.65 for SNR = 10. As in Test case I, we compute the 80% confidence region

in areas featuring different behavior. Results for SNR = 20 are reported in Figure 4.5;

note that in this case we have a horizontal flow, this explains the low deviation from

the mean for vertical components of the velocity.

4.4.6 Towards real geometries

In this section we consider a more complex geometry as done in Chapter 3, Section

3.4. We reproduce a 2-dimensional section of the carotid. We compare statistical and

deterministic estimators and we compute confidence intervals for the velocity and for

the WSS.
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Figure 4.6: Data configuration and magnitude of the velocity field.

Data are located as reported in Figure 4.6 (left), internal data lie on four layers

in correspondence of grid nodes. These are generated adding Gaussian noise to a

reference solution UFE, the numerical solution obtained solving, with FE, the forward

problem on a very fine grid (see Section 3.4, test case I, for implementation details).

The correlation matrix for the Gaussian noise is defined as in the previous test cases,

i.e. as in equation (4.30). The indexes of accuracy are the average relative error

EU = 1
n

∑n
i=1EU,i where EU,i is associated with the i-th realization and it is defined as

EU = ‖U−UFE‖2
‖UFE‖2 , and the gain γ = 1− EU,stat

EU,det
.

In Table 4.6 we report comparison results between statistical and deterministic esti-

mators; since data satisfy conditions for optimality we set the regularization parameter

α = 0, which corresponds to computing the ML estimator in the statistical formula-

tion. These results show that also for more complex geometries statistical estimators

are robust with respect to the noise and they are significantly more accurate than the

deterministic ones. As en example, in Figure 4.6 we report the magnitude of the as-

similated velocity field; in Figure 4.7 the difference between statistical and reference

solution, and between deterministic and reference solution. It is interesting to note
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Figure 4.7: Comparison results between deterministic and ML estimator. Map of the differ-
ence between statistical and reference solution, and between deterministic and reference
solution

that far from the inflow boundary the two estimators are very similar, while close to

Γin the statistical solution is more accurate. This shows that the ML estimator is more

robust with respect to the noise that significantly affects the numerical solution on Γin.

In view of the application to real cardiovascular problems we want to estimate

the confidence intervals for the velocity. In Figure 4.8 we report the map of
√
λmax,

see Section 4.2.3, over the computational grid; consistently with previous results we

observe that the standard deviation increases far from the wall since we work in a

rigid assumption and we prescribe homogeneous Dirichlet conditions on the walls.

Furthermore, since close to Γin the solution is more sensitive to the noise in this area

we have the highest deviation from the mean.

The wall shear stress In medical practice other than estimating the flow and assess-

ing its statistical properties it is fundamental to estimate other flow related variables as

the WSS since, as a matter of fact, they are crucial for predicting the occurrence of dis-

eases or even the rupture of a blood vessel. At the moment [10] the WSS is computed
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Figure 4.8: Standard deviation map.

using the observed velocity data (either projected onto the whole grid or collected on

each node); these estimators are not accurate enough and are more sensitive to the

presence of the noise. Using point and statistical estimators for the velocity we com-

pute statistical parameters of the WSS distributions; also in this case we assume this

random vector to be normally distributed, WSS ∼ N(WSS, ΣWSS), mean and corre-

lation matrix are determined by the PDF of the velocity. In fact, velocity and WSS are

related by the linear transformation

WSS = TwU; (4.32)

where Tw ∈ RNu,Nw maps the discretized velocity into the discretized WSS; Nw being

the number of DOFs of the WSS. According to property P1 in section 4.1.2, WSS

has a Gaussian distribution with mean WSS = TwU and covariance Σw = TwΣUTT
w.

Furthermore, according to P2 the vector of horizontal and vertical components of the
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Figure 4.9: WSS on a selected wall; on the left the vector field, on the right the magnitude
as a function of the x-coordinate.

WSS on each DOF is distributed as follows WSSi

WSSi+Nw/2

 ∼ N


 WSSi

WSSi+Nw/2

 ,
 ΣWSS; i,i ΣWSS; i,i+Nu/2

ΣWSS; i+Nu/2,i ΣWSS; i+Nu/2,i+Nu/2


 .

(4.33)

In Figure 4.9 (left) we report the WSS computed on the left inner wall of the bifurca-

tion; the relative error, in norm l2 with respect to the reference solution is of the order

of the 15% with SNR = 20. On the right, the magnitude of the vector in each DOF of

the selected boundary is displayed as a function of the horizontal coordinate. As we

did for the velocity, we can compute in each DOF
√
λmax, where λmax is the maximum

eigenvalue of the 2-dimensional correlation matrix in (4.33), this is a measure of the

maximum variation from the mean in a confidence region of the 60%. In Figure 4.10

(left) we report on such selected wall the value of
√
λmax for each DOF; on the right

we report the same quantity for a “non-assimilated” WSS. More specifically we assume

WSS = TwUobs, where Uobs is the vector of observed velocities. Thus, it features the
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Figure 4.10: Standard deviation of the assimilated and non-assimilated WSS as a function
of the x-coordinate.

correlation matrix

[Σobs]ij = exp

{
− 1

l2
‖xmi − xmj ‖22

}
; (4.34)

where xmi , i = 1, ... Nu, are observation sites (here corresponding to DOFs of the veloc-

ity). According to these relations, WSS ∼ N(TwUobs, Σobs). From the results we note

that the maximum deviation from the mean is much higher than the assimilated one;

note that the flat configuration of the non-assimilated WSS in the interval (−6, −1)

is due to the grid-structure, very regular in correspondence of that area. Even if the

result is preliminary and depends on the data configuration, the huge reduction in the

standard deviation obtained using DA, lead us to conclude that we can effectively filter

the noise.
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5 DA for the unsteady NSE

In previous chapters we focused our attention on the assimilation of data collected at

the same time instant and we developed an assimilation procedure for steady phenom-

ena. In the context of hemodynamics this is clearly limiting; during one heartbeat the

flow dynamics might vary significantly. If we want to capture the whole behavior of

blood circulation we need to account for snapshots of the blood velocity in different

stages of the cardiac cycle. As an example, in the case study discussed in Chapter 1

(presented in [10] by Dr. Brummer and collaborators) using phase-velocity encoded

MRIs of the aorta, 20 time points per cardiac cycle were collected on several internal

slices of the vessel.

As anticipated in Chapter 1 there are plenty of methods to treat time dependent

data. In this chapter we consider variational approaches inspired by the steady formu-

lation presented in Chapter 3; in this context it is worth spending a few words on the

issue of solving the adjoint problem (see Section 1.1.4 on variational approaches). In

fact, the treatment of adjoint equations is one of the major issues in using control-based

methods for unsteady problems. These methods are formulated as the minimization of

the misfit between data and velocity subject to the state equations. When we solve this

problem finding the stationary points of the Lagrangian functional we have to deal with

a coupled system involving the state and adjoint equations and the optimality condi-

tion. The most important observation is that the adjoint equations are posed backward

in time, while the state ones are forward in time. This means that, when discretizing

the system, it is not possible to “march in time” [23]; thus, solutions to the optimality



110

system at all time levels are coupled to each other. This fact makes the monolithic

solution to the system, the so called one-shot method [23], in general prohibitively

expensive, even for simple differential equations.

In this chapter we first work on simple test cases where one-shot methods are still

affordable and, then, we propose a variational method formulated so to circumvent

the solution of the unsteady adjoint problem, we will refer to this method as intermit-

tent DA meaning that the optimization is intermittent in time and, hence, local. In

literature several strategies are available; the simplest is to introduce iterative meth-

ods for uncoupling the state and adjoint equations. In this case, given a guess for the

control variable, state and adjoint are sequentially solved and used in the optimality

equation to update the control variable. This is to be done until some criterion for the

convergence is satisfied; this process might be very slow or even diverge. Other meth-

ods include sensitivity-based and adjoint-based optimization methods, see [23] for an

extensive discussion.

This chapter is organized as follows. In Section 5.1 we treat the unsteady linearized

NSE. For non-periodic problems we propose two variational formulations, one-shot and

intermittent; while in the periodic case we consider a one-shot method. In Section 5.1.3

we show numerical results stressing consistency and accuracy of the proposed schemes.

In Section 5.2 we present an intermittent algorithm for the non-periodic unsteady NSE

and we propose a generalization to the periodic case. Also, on the basis of such al-

gorithms, we propose a statistical approach to DA relying on schemes introduced in

Chapter 4. In Section 5.2.1 we compare the performance of deterministic and statisti-

cal estimators and we test consistency ad accuracy of the periodic approach. Numerical

results in this chapter are preliminary and represent a first attempt to the solution of

this complex problem. The aim is to conduct a preliminary investigation which may

guide the choice of effective methods.
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5.1 The linearized problem

We consider the unsteady Stokes flow in Ω, a domain in Rd (d = 2, 3) featuring an

inflow section Γin, an outflow section Γout and a wall Γwall. Variables of interest are ve-

locity u(x, t) ∈ L2((t0, T ]; H1
Γwall

(Ω)) and pressure p(x, t) ∈ L2((t0, T ];L2(Ω)), which

satisfy the unsteady Stokes equations. We assume to have Ns · Nt velocity measures

dn ∈ RNs available at some sites xmi,n ∈ Ω for i = 1, ..., Ns at time tn, n = 1, ..., Nt. We

formulate the unsteady assimilation problem as a control problem of the form

min
h

J(u, h) = dist
(
un, dn; n = 1, ..., Nt

)
+ R(hn; n = 1, ..., Nt)

s.t.



ut − ν ∇ · (∇u +∇uT) +∇p = s in Ω, for t ∈ (t0, T ],

∇ · u = 0 in Ω, for t ∈ (t0, T ],

u = 0 on Γwall, for t ∈ (t0, T ],

−ν (∇u +∇uT)n + pn = h on Γin, for t ∈ (t0, T ],

−ν (∇u +∇uT)n + pn = g on Γout, for t ∈ (t0, T ],

u(x, t0) = u0(x) in Ω.

(5.1)

Here un = u(x, tn) and hn = h(x, tn); in this case, the distance function dist(·, ·)

depends on velocity and data at measurement instants and will be specified later on.

Other functions and parameters are defined as for the steady case. For the reasons

specified in Chapter 3 we use the normal stress h as the control variable.

One of the major issues in dealing with time dependent phenomena is the prescrip-

tion of the initial condition; in fact, in practical applications the velocity at time t0 is

not available. Thus, we proceed following two strategies. The first consists in using a

reasonable and feasible guess on the initial data; the second in assuming periodicity

in time, setting u0 = u(x, τ), τ being the period. The latter stems from the physics
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of the problem; in fact, it is known that the cardiovascular system is characterized by

periodic phenomena and in such cases τ is the the length of the cardiac cycle. Another

possibility, often used in meteorology, is to include the initial condition in the set of

control variables.

5.1.1 Non-periodic formulation

As in the steady case, we consider a DO technique (see Chapters 2 and 3); the space

discretization is performed by means of the FE method and the time discretization by

means of the backward Euler (BE) scheme [47]. Let Mu,p ∈ RNu+Np,Nu+Np be the

matrix that extends the velocity mass matrix, M, to the entire set of DOFs,

Mu,p =

 M O

O O

 . (5.2)

In this context we assume the velocity mass matrix M to account for the time step, i.e.

[M]ij =
1

∆t

∫
Ω

ϕiϕj dx i, j = 1, ..., Nu; (5.3)

where, ϕ is the Lagrangian FE basis function for the velocity. The space-time discretiza-

tion of the constraints in (5.1), for all n = 1, ..., Nf reads

SVn + Mu,p(Vn −Vn−1) = RT
inMinHn + Fn. (5.4)

where, Nf = T
∆t , ∆t being the time discretization step. Vn and Hn are the discretiza-

tion of velocity and pressure and of normal stress at time tn. Matrices S, Rin and Min

have been introduced in Section 3.2. For the sake of simplicity we assume that the

set of measurement instants Imeas is contained in the set of time discretization instants

Idiscr, i.e. Imeas = {tj}Nt
1 ⊆ Idiscr = {tn}

Nf

1 ; this assumption, in general, is also realis-
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tic. In the solution of the non-periodic assimilation problem we consider two possible

cases: Imeas = Idiscr and Imeas ⊂ Idiscr.

Formulation I When discretization and measurement instants coincide we consider

a one-shot method solved with a DO approach; here, the constraints are the state

equations discretized in space and time. We formulate the problem as follows,

min
Hn=1,...,Nf

Nf∑
n=1

1

2
‖DnVn − dn‖22 +

α

2
‖LHn‖22

s.t. (S + Mu,p)Vn = RTMinHn + Mu,pVn−1 + Fn, ∀n = 1, ..., Nf .

(5.5)

Here, the subscript n corresponds to the time instant tn in Idiscr. We rewrite (5.5) in a

more compact form

min
H

1

2
‖DV − d‖22 +

α

2
‖LH‖22

s.t. SV = RH + F,
(5.6)

where

S =



S + Mu,p O ...

−Mu,p S + Mu,p O ...

...

...

... −Mu,p S + Mu,p


; (5.7)

R =



RT
inMin O ...

O RT
inMin O ...

...

...

... RT
inMin


; (5.8)
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D = diag (D1, ...,DNt) ;

L = diag (L, ...,L) ;

d = [d1 d2 ... dNt ]
T ;

V = [V1 V2 ... VNt ]
T ;

H = [H1 H2 ... HNt ]
T ;

F = [F1 + Mu,pV0 F2 ... FNt ]
T .

(5.9)

Here, Dn is a selection matrix such that DnVn corresponds to the evaluation of the

velocity vector at time tn on the measurement sites xmi,n, for i = 1, ..., Ns; L is the

discretization of the gradient.

Problem (5.6) is an algebraic optimization problem with linear constraints; it has

the same form of problem (3.2) introduced in Chapter 3 for the steady case. For this

reason, we solve it using the same approach, i.e. the reduced Hessian method. Matrix

dimensions in this extended formulation might be large; nevertheless, S is lower block

triangular, with same diagonal and off-diagonal blocks. Thus, memory requirements

and computational effort are affordable.

Formulation II When measurement instants are a subset of time discretization steps

we refer to an intermittent assimilation technique consisting in two stages: assimilating

and advancing in time. This formulation has affordable memory requirements and it

is easy to be implemented. The following algorithm summarizes the two steps. For

n = 1, ..., Nf , given a guess for velocity and pressure at time t = t0, say V0

if (tn ∈ Imeas) solve (with the reduced Hessian method):

min
Hn

1

2
‖DnVn − dn‖22 +

α

2
‖LHn‖22

s.t. SVn + Mu,p(Vn −Vn−1) = RT
inMinHn + Fn;

(5.10)

else solve the unsteady Stokes problem (5.4) using suitable boundary conditions.
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The choice of boundary conditions for the advancing stage depends on how much we

trust available measures. We consider the following options at time tn ∈ Idiscr, such

that tn ∈ [tj−1, tj ], where tj and tj−1 ∈ Imeas, are two subsequent measurements

instants.

1. Dirichlet with data Φ(dj , dj−1) =
tn−tj−1

tj−tj−1
dj−1 +

tj−tn
tj−tj−1

dj on Γin.

2. Neumann with data Hj−1, the value of the control variable resulting from the

previous assimilation step.

The choice of 1. corresponds to assuming that data are not significantly affected

by noise. On the other hand the choice of 2. corresponds to assuming that the normal

stress does not vary considerably between two subsequent measurement instants. This

assumption might be reasonable especially in applications where data are collected

frequently.

Remark 8 The optimality result in Proposition 3.2.3, Chapter 3, is promptly extended

to this unsteady formulation at each optimization step, i.e. equation (5.10). It is easy

to show that Lemma 3.2.2 is applicable to this optimization problem. In fact, as stated

in Remark 2, such lemma is not specific for the steady Stokes problem but for any PDE

whose discretization matrix corresponding to a homogeneous Dirichlet problem on Γin

is non-singular; which is the case for equation (5.10).

5.1.2 Periodic formulation

If a guess on the initial velocity is not available, we considere a periodicity constraint,

in view of our application. For the sake of simplicity we assume Imeas = Idiscr; thus,

the formulation is a modified version of problem (5.6) with constraint

SpV = RH + F, (5.11)
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where

Sp =



S + Mu,p O ... −Mu,p

−Mu,p S + Mu,p O ...

...

...

... −Mu,p S + Mu,p


. (5.12)

As opposed to S, this matrix is not block triangular; the system is coupled. This fact

makes the numerical solution of the problem more challenging. In the following section

we provide details for the choice of suitable preconditioners, which are mandatory for

the numerical solution of the system, and we discuss difficulties caused by the complex

structure of the problem.

Remark 9 Another possibility for forcing periodicity is to consider formulation (5.6)

adding to the functional the penalizing term β‖U0 − Uτ‖, τ being the length of the

period and β a penalizing parameter chosen a priori.

5.1.3 Numerical results

We present numerical results obtained for non-periodic and periodic problems. For

Formulation I, we consider different choices of ∆t; for Formulation II we compare

different choices of boundary conditions on Γin. For the periodic case we discuss the

choice of suitable preconditioners and we present comparison results.

Non-periodic case

We consider 2-dimensional rectangular geometries as in Figure 5.1, computational

grids are generated with FreeFem++, see Section 2.2. We choose s = 0, Ω = [0, 5] ×

[−0.5, 0.5], g = 0, u0(x) = 0 and we assume that data are available on three internal

layers {x = 1, x = 2.5, x = 4} in correspondence of grid nodes.
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Figure 5.1: Rectangular triangulation on Ω.

Space discretization is performed by means of the FE method using compatible FE

spaces P1bubble-P1 for velocity and pressure. For the time discretization we rely on

the BE scheme.

For data generation and error analysis we consider a reference solution, say UFE,

as done in Section 3.4. This is a FE solution computed on a very fine grid (240×48

structured triangulation generated with FreeFem++) using ∆t = 0.02 and FE spaces

P1bubble-P1 for velocity and pressure. On Γwall we prescribe a homogeneous Dirichlet

condition, on Γout a homogeneous Neumann condition and on Γin a time dependent

Dirichlet condition given by u|Γin(t) = [5t(1−4y2) , 0 ]T|Γin . Data are generated adding

uniform random noise to UFE with SNR = 100. The choice of such small amount of

noise is due to the fact that, at this stage, our investigation is mainly focused on the

consistency of the methods.

Error analysis The index of accuracy used in these test cases is the velocity relative

error at time T = tNf
with respect to the reference solution UFE; this is defined as

EU (Nf ) =
‖UNf

−UFE,Nf
‖2

‖UFE,Nf
‖2 . The assimilation problem is solved in the time interval

[t0, T ] = [0, 1].

Concerning the choice of the regularization parameter α we utilize the DP method

introduced in Chapter 3 (see Section 3.2.3) and the generalized cross validation (GCV)

method. The main idea behind GCV is that if one data point is removed from the
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set of observations, then a good regularized solution should predict that missing point

considerably well [50].

More precisely, we let G(α) be the so called influence matrix defined, in our case,

as G(α) = Z(Z
T

Z + NsαL
T

L)−1Z
T, where Z = DS

−1
R. The GCV choice of α is the

minimizer of the GCV function

G(α) =
N−1
s ‖(I−G(α))d‖22
N−1
s tr(I−G(α))

. (5.13)

Here, I is the identity matrix and tr( · ) is the trace operator. The function G can be

expressed as the weighted sum of squared misfits between data and predicted velocity

DkVkdk, where Vk is the regularized solution obtained leaving out the k-th data point

(site), for k = 1, ..., Ns. Note that while DP requires the norm of the noise to be

available, GCV does not.

However, values of the regularization parameter are quite low (see Table 5.1) and

the smallest eigenvalue of the reduced Hessian is of the order of 10−2; even though

we did not prove an optimality result for Formulation I, this fact might be due to data

location, which satisfies conditions of Proposition 3.2.3.

Accuracy results for Formulation I are shown in Table 5.1. Here, we report relative

error EU (Nf ) and optimal values of α (αDP and αGCV for DP and GCV respectively)

for different choices of time steps. We consider ∆t = 0.1 and 0.2, hence, Nt = Nf

= 5 and 10 respectively; recall that in this case Imeas = Idiscr. In correspondence

of DP solutions are slightly more accurate, which is consistent with the fact that exact

information about the noise is used. As we decrease the time step (increase the number

of data in the time interval) we obtain a better accuracy; the improvement is due both

to the smaller time-step and to the higher number of data.

For Formulation II we consider ∆t = 0.1 and Nt = 5; this corresponds to perform-

ing one advancing step between two consecutive measurement instants. Comparison
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∆t αDP αGCV EU,DP (Nf ) EU,GCV (Nf )

0.2 3.5918e-7 5.6266e-8 8.2962e-2 8.3021e-2
0.1 1.1391e-6 1e-9 5.4405e-2 6.3660e-2

Table 5.1: Relative errors and regularization parameters for Formulation I.

Advancing EU (T )

Dirichlet 5.7602e-2
Neumann 5.6641e-2

Table 5.2: Relative errors for Formulation II in correspondence of Dirichlet and Neumann
boundary conditions.

results between options 1. and 2. for the boundary condition on Γin are reported in Ta-

ble 5.2. Since solutions have the same accuracy, this test case does not provide enough

evidence to discard one of the two approaches. Furthermore, the accuracy is of the

same order of results obtained with Formulation I with ∆t = 0.1; this fact suggests that

accuracy might be mainly related to time discretization.

Clearly, this analysis is still preliminary, but it shows that these methods are consis-

tent in case of a low amount of noise. For drawing reasonable conclusion and choosing

the most efficient technique it is fundamental to conduct a deeper investigation of the

sensitivity to the noise and to the time discretization step.

Time periodic solution

In this test case we use same computational grid and software as for the non-periodic

case. The reference solution is given by the following analytic solution on Ω:

uanl(x, t) = η(1 + sin(100πt))[5t(1− 4y2) , 0 ]T, x ∈ Ω, t > 0. (5.14)

Here η = 0.01, the period is τ = 0.02 and the source term is defined as s(x, t) =

100πη cos(100πt)[5t(1− 4y2) , 0 ]T.
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We want to stress important numerical issues concerning the solution of the linear

system induced by necessary conditions for optimality; we recall that matrix Sp has a

complex structure; hence, the choice of an effective preconditioner is a non-trivial task.

We consider two options: the first consists in computing the incomplete Cholesky (IC)

factorization, it requires the explicit computation of the reduced Hessian and it is used

only for comparison purposes. The other option does not require explicitly the matrix

of the system and it is based on approximations of Sp featuring a simpler structure. We

propose two preconditioners: the first consists in using the non-periodic problem as a

preconditioner for the periodic one. The second consists in building a block triangular

matrix as follows. Let us rewrite matrix Sp as

Sp =

 S1,1 S1,2

S2,1 S2,2

 ; (5.15)

where the first block row corresponds to time steps from 1 to Nf − 1 and the second

block row accounts for velocity and pressure at the last time step. Then, the solu-

tion of system in Sp is equivalent to solving a system (with right hand side modified

accordingly) in S̃p defined as

S̃p =

 S1,1 S1,2

O S2,2 − S2,1(S1,1)−1S1,2

 . (5.16)

Despite the block triangular structure, using (5.16) is still not affordable; in order

to reduce the computational effort we approximate S1,1, in that block, with S̃1,1 =

diag(Mu,p, ..., Mu,p).
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Error analysis and computational cost In this test case we use the following index

of accuracy, the relative error in space and time with respect to the analytic solution

EU =

√√√√∑Nf

n=1 ‖Un −Uanl,n‖2∑Nf

n=1 ‖Uanl,n‖2
; (5.17)

where Un and Uanl,n are the computed velocity and discretized analytic velocity at

time tn. We choose SNR = 100, Nt = Nf = 5 and ∆t = 0.004, so to make the one-shot

method affordable, as well as the Cholesky factorization. In Table 5.3 we report the

relative errors in correspondence of the solution of a forward problem with exact initial

condition obtained with a direct solver (EU,ref , used as a reference value of accuracy)

and the one obtained with the the preconditioned conjugate gradient (PCG) method

(EU,PCG). In solving with PCG we use three different preconditioners: the identity,

the incomplete Cholesky factor and the preconditioner induced by the approximation

of Sp with S. EU,PCG refers to all of them since they deliver the same solution. In

Table 5.4 we report CPU times for matrix assembling and solution of the linear system

in correspondence of PCG with the identity, IC and S. The comparison between the

second and the last column shows that the preconditioner S does not bring a significant

improvement.

For testing the preconditioner S̃p we consider the GMRES method. In Table 5.5 we

report relative errors, number of iterations and CPU times using the non-preconditioned

and preconditioned GMRES; in correspondence of different grids the methods deliver

solutions with the same level of accuracy, which is mainly affected by time discretiza-

tion. On the other hand, using the preconditioned GMRES method the number of

iterations and the computational time is halved compared to the non-preconditioned

case. However, performance is still not satisfactory and more investigation is required.
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mesh EU,ref EU,PCG
(40× 10) 4.4e-2 8.03e-2
(60× 15) 4.2e-2 7.88e-2
(80× 20) 4.3e-2 7.74e-2

Table 5.3: Relative errors for the reference solution and the assimilated one.

stage CG PCG, IC PCG, S

assembling 0 99 0
solving 3e+3 55 2e+3

Table 5.4: Computational times in seconds, in correspondence of a 80×20 triangulation.

5.2 Formulation for the nonlinear problem

We consider the same problem setting as in the linearized case and we add the nonlin-

ear term to the momentum equation (5.1), which now reads

ut − ν ∇ · (∇u +∇uT) + (u · ∇)u +∇p = s in Ω, for t ∈ [t0, T ]. (5.18)

We design a scheme for treating both periodic and non-periodic phenomena; for the

latter we assume a feasible guess on u0 to be available. Our formulation is similar to the

one introduced for the non-periodic linearized case and can be classified as intermittent

DA. We consider a DO approach where space discretization is performed by means of

the FE method and time discretization by means of a semi-implicit method [42], which

reads as follows: for n = 1, ..., Nf

Sn−1Vn + Mu,p(Vn −Vn−1) = RT
inMinHn + Fn. (5.19)

Here,

Sn =

 C + An BT

B O

 ; (5.20)
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mesh EU,G itG CPUG EU,PG itPG CPUPG
(40×10) 8.22e-2 51 116 8.22e-2 32 86
(60×15) 7.95e-2 75 657 7.951e-2 38 394
(80×20) 7.76e-2 92 1984 7.761e-2 39 867

Table 5.5: Relative errors, number of iterations and CPU times for the non-preconditioned
GMRES (G) and the preconditioned one (PG) with preconditioner S̃p.

where An is the discrete advection operator associated with advection field Vn, defined

as in equation (3.4). Other matrices are defined as in the linearized case.

Non-periodic case In this case, even though not realistic, we assume that an initial

velocity, V0, is available. The following formulation is based on the assumption that

data are available at each time instant of the time discretization, i.e. Imeas = Idiscr. Let

V0 be the vector of velocity and pressure at time t = t0, then for n = 1, ..., Nf we solve

min
Hn

1

2
‖DnVn − dn‖22 +

α

2
‖LHn‖22

s.t. Sn−1Vn + Mu,p(Vn −Vn−1) = RT
inMinHn + Fn.

(5.21)

In our test cases we assume to have an analytic expression for velocity and pressure,

say Vanl, and we set V0 = Vanl. This algorithm is formally similar to (3.28), in Section

3.3, which is designed for the steady case; hence, same numerical techniques are used

for its numerical solution. Note that, with this approach we avoid the costly solution of

the adjoint problem; nevertheless, the optimization in time is only local.

Periodic case We assume that the solution is periodic with period τ and that a guess

for V0 is not available. We propose an algorithm based on the same iterative procedure
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as for the non-periodic case: set V0 = VNf
= 0 and Nf = τ

∆t , then

do

V0 = VNf
; n = 1;

for n = 1, ..., Nf , solve

min
Hn

1

2
‖DnVn − dn‖22 +

α

2
‖LHn‖22

s.t. Sn−1Vn + Mu,p(Vn −Vn−1) = RT
inMinHn + Fn

while (‖V0 −VNf
‖2 < δ)

(5.22)

This algorithm corresponds to solving repeatedly the non-periodic problem in [0, τ ],

each time improving the guess on V0 using VNf
, resulting from the previous simula-

tion, until a convergence criterion is satisfied. As already stressed in Remark 9, another

possible approach is to add the periodicity condition V0 = VNf
to the set of constraints.

Remark 10 It is straightforward to generalize these algorithms to the case of Imeas ⊂

Idiscr. One option is to perform interpolation of data in time in order to have approx-

imated data at each step of the time discretization. This approach sounds promising

on the basis of results obtained with interpolation in space, see Chapter 3, Section

3.2.2. A second option is to proceed as in Formulation II: adding advancing steps of

the form (5.19) between two measurement instants, i.e. in [tj−1, tj ], tj−1 and tj being

two consecutive measurement instants. The formulation would read as follows. For

n = 1, ..., Nf , given a guess for velocity and pressure at time t = tn−1, say Vn−1

if (tn ∈ Imeas) solve (with the reduced Hessian method):

min
Hn

1

2
‖DnVn − dn‖22 +

α

2
‖LHn‖22

s.t. SnVn + Mu,p(Vn −Vn−1) = RT
inMinHn + Fn;

(5.23)
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else solve the unsteady NSE using suitable boundary conditions.

Bayesian approach The formulation presented in this sections can be generalized to

a Bayesian approach to unsteady DA. In fact, it is enough to compute either the MAP or

ML estimator (see Chapter 4, Section 4.2.2), instead of the deterministic one, at each

time step in (5.21). This corresponds to solving the following algorithm (for simplicity

we report the non-periodic case only). Given a guess for the initial velocity V0, for

n = 1, ..., Nf compute the MAP estimator (as in equation (4.20)) solving

(Σ−1
pr + ZT

nΣ−1
noiseZn)Hn,MAP = ZT

nΣ−1
noise(dn − bn). (5.24)

Here, bn = (Sn−1 + Mu,p)
−1(Mu,pVn−1 + Fn), Zn = Dn(Sn−1 + Mu,p)

−1RT
inMin, Σprior

and Σnoise are the correlation matrices for the random variables for normal stress and

measurement error. In the next section, deterministic and statistical estimators are

compared.

5.2.1 Numerical results

In this section we consider the unsteady Navier-Stokes flow in a 3-dimensional cylindri-

cal domain and we solve the problem using an axisymmetric formulation. The compu-

tational domain is a structured rectangular triangulation on the domain [0, 1.5]× [0, 6]

corresponding to a section of a cylinder with radius 1.5 and height 6. Details on imple-

mentation and solvers can be found in Section 3.2.3.

For data generation and accuracy analysis we consider the Womersley flow [65]

with period τ = 1 and viscosity ν = 1. We consider data on Γin not satisfying sufficient

conditions for optimality and we perform interpolation; 55 data are equally distributed

along 5 internal slices not corresponding to grid nodes. Measurement noise is assumed

to be normally distributed with correlation matrix defined as in (4.30), see Section
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SNR EU,det EU,ML γ

20 0.0935 0.0633 32%
10 0.1608 0.105 35%

Table 5.6: For different values fo SNR, we report comparison results for statistical and
deterministic estimators.

4.4. The time discretization step is ∆t = 0.1 and the computational grid is a 60×15

unstructured triangulation.

For testing the accuracy of the solution we consider the following indexes

Eabs,n = ‖Un −Uanl,n‖2;

EU =

√√√√∑Nf

n=1 ‖Un −Uanl,n‖2∑Nf

n=1 ‖Uanl,n‖2
;

(5.25)

where Un and Uanl,n are the computed velocity and discrete analytic velocity at time

t = tn.

Non-periodic solution In this test case we set V0 = Vanl,0, the analytic solution at

time t = 0, and we solve the problem in [0, τ ] with τ = 1. As an example, in Figure 5.2

we report data and assimilated velocity field for t = 0, 0.3, 0.7.

In Table 5.6 we report EU for the deterministic solution and for the ML estimator

in correspondence of SNR = 20 and 10; in the third column γ is defined as 1− EU,ML

EU,det
.

The choice of the ML estimator is due to the fact that, since we perform interpolation,

the problem is well-posed and no regularization (or smoothness priors, see 4.2.2) is

required. In Figure 5.3 we report Eabs,n at each time step for both deterministic and

statistical solutions. From these results we can infer that the additional information

brought by the knowledge of the noise yields more accurate results. Furthermore, we

observe that the statistical solution features a smoother error behavior.
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Figure 5.2: Assimilated velocity field and noisy data (SNR = 10) at time t = 0, 0.3, 0.7 of
a Womersley simulation.

Periodic solution In this case we want to compare the solution obtained using V0 =

Vanl,0 and V0 = 0. In Table 5.7 we report Eτ obtained after 3 iterations of algorithm

(5.22); recall that we set the initial velocity equal to the final velocity of the previous

period. For the same simulations we report in Figure 5.4 for 3 subsequent iterations

values of the absolute errors Eabs,0 and Eabs,anl corresponding, respectively, to the so-

lution obtained with V0 = 0 and V0 = Vanl,0. This means that the assimilation is

able to capture the solution in a very small amount of time (at most two iterations of

algorithm (5.22)).

These results, although satisfactory and promising, are based on the assumption

that Imeas = Idiscr; this is definitely not realistic. Future work includes the implemen-

tation of the techniques proposed in Remark 10.
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Figure 5.3: Eabs,n for n = 1, ..., Nf in [0, 2τ ] for the deterministic and statistical solution
for SNR = 20 and 10.

SNR it EU , V0 = 0 EU ,V0 = Vanl,0

20 1 0.1318 0.09985
2 0.09456 0.09456
3 0.09314 0.09314

10 1 0.1928 0.1711
2 0.1533 0.1533
3 0.1512 0.1512

Table 5.7: For different values of SNR we report accuracy results obtained comparing
approach (5.22) with (5.21) using V0 = Vanl,0.
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Figure 5.4: Eabs,n for n = 1, ..., Nf in [0, τ ] for V0 = 0 and V0 = Vanl,n for SNR = 20
and 10.
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6 Conclusion

Recent advances in measurement tools for the cardiovascular system and the establish-

ment of numerical techniques for cardiovascular mathematics motivated in this work

the design of a reliable and robust technique for the inclusion of velocity data into

hemodynamics simulations. Our goal is the estimation of blood flow filtering the noise

affecting the data and the quantification of the uncertainty and credibility of numerical

results.

Current clinical methods for the estimation of such variable are based on simple

interpolation techniques or manipulation of data [10] and they do not rely on any

constitutive law for the phenomena of interest. Thus, results are not accurate and they

might not even be feasible; for this reason they may fail in guiding clinical intervention.

The added value of our technique is to force the numerical solution to satisfy the equa-

tions governing the system; in fact, our estimator is based on the solution of a control

problem where the misfit between velocity data and numerical solution is minimized

under the constraint of the fluid dynamics equations (the NSE).

Another important aspect that makes our technique valuable is the inclusion of the

additional knowledge regarding the measurement process and the statistical features

of the measurement noise. When data are characterized by high correlation (which is

very likely in case of complex systems as the cardiovascular one) this factor cannot be

neglected as it significantly determines the statistical properties of the flow.

Moreover, on the basis of the analysis of mathematical properties of the optimiza-

tion problem we are able to establish conditions on the number and location of data



132

that ensure existence and uniqueness of the estimate. This result is the groundwork

of a “regularization” technique to treat the case in which available data do not satisfy

such conditions; based on data interpolation, this procedure proves to be competitive

with current regularization techniques and it is parameter-free.

Our assimilation method is robust and consistent in case of noise-free data; its

performance is not affected by the nature of the flow (low or high Reynolds number)

and it works nicely combined with stabilization techniques for advection dominated

phenomena.

The noise filtering properties Throughout this work we pointed out the filtering

properties of this method. In this paragraph we would like to summarize this aspect in

the case of 2-dimensional non-trivial geometries approximating vessels of interest.

In Chapter 3, Section 3.4, we tested the deterministic estimator on a 2-dimensional

approximation of the carotid. Here the assimilated solution is compared to the one ob-

tained from a forward simulation prescribing noisy velocity on the inflow boundary as

Dirichlet condition and disregarding internal data. Our results are 50% more accurate

than the non-assimilated ones. The same solutions are compared in the computation

of the WSS; for decreasing values of SNR out estimator is up to the 50% more accurate

than the forward simulation with respect to a reference solution.

For the same test case in Chapter 4, Section 4.4.6, comparison results show that

statistical estimators are more accurate than deterministic ones in case of correlated

data. In fact, the Bayesian estimation exploits the knowledge of the noise stochastic

properties and yields a gain in accuracy of the 30% with respect to the deterministic

estimates. Furthermore, the analysis of the standard deviation of the velocity reveals

that, except for the area close to the inflow boundary, the deviation from the mean of

the assimilated solution is at most half the one of the given data. This fact implies that

the uncertainty of the WSS computed using the assimilated solution is lower than the
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one obtained using given data only.

Future developments Although promising and potentially of great impact, DA in

computational hemodynamics is still at its beginning stage and has some weaknesses.

For the DA estimator to be applicable to 3-dimensional test cases with real geometries

and data several computational issues have to be considered in order to improve the

efficiency of the method.

As discussed in Chapter 2 and 3 the bottleneck of the optimization process is the

solution of the state equation and its adjoint. Besides the PCD preconditioner, other

effective preconditioners for the steady and unsteady problem should be considered.

Among the others we mention the works by Benzi et al. [66, 67] and Elman et al. [58]

for the steady case and the ones by Veneziani et al. [68, 69, 70, 71] and Cahouet-

Chabard [72] for the unsteady one. For the solution of the nonlinear optimization

problem we propose a nonlinear procedure that stems from the combination of the DA

method for linear problems and fixed point iterative methods for the NSE. In literature

there is plenty of methods for the solution of problems of this sort. For reasons related

to the FE library, lifeV, that we utilize we plan to adopt the NOX package1, which is

part of Sandia’s Trilinos project. NOX is short for Nonlinear Object-Oriented Solutions,

and its objective is to enable the robust and efficient solution of nonlinear equations

using globalized Newton methods such as line search and trust region methods. It can

be easily customized and it is designed to work with any linear algebra package.

Another important issue is to be competitive with other assimilation approaches,

such as the Kalman filter methods [32] which do not require the solution of the adjoint

equation. A way to speed up the computation is to combine efficient optimization

strategies with model reduction. In doing this it is important to find a good compromise

between accuracy and efficiency; in medicine this is a delicate issue. On one hand
1http://trilinos.sandia.gov/packages/nox/
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fast simulations allow fast clinical intervention, on the other hand, inaccurate results

may fail in guiding correctly medical doctors’ decisions. Several methods are available,

among these we mention the reduced basis (RB) method for parameter-based reduction

and the proper orthogonal decomposition [73, 74]. A very good review of the RB

method can be found in [75] by Patera and Rozza focused on formulation, analysis,

and computational procedures for reduced basis approximation and a posteriori error

estimation for parametrized PDEs. Se [76] and [77] for applications of the RB method

to Stokes and Navier-Stokes equations. Concerning the POD method we refer to [78,

79] for applications to fluid dynamics and to [80] for applications to PDE constrained

optimization problems.

The author is currently working in collaboration with Prof. Haber (University of

British Columbia, Vancouver, CA) and Dr. Horesh (IBM, T. J. Watson Research Center,

Yorktown, NY) on the design of optimal reduced basis [81] obtained as the solution of

an inverse problem. More specifically, the optimal basis is the control variable of a PDE

constrained optimization problem where the misfit between reduced and non-reduced

solution is minimized subject to the state and reduced-state equations. Our plan is to

combine the DA method with this technique, now designed for elliptic PDEs only.

Concerning the unsteady formulation presented in Chapter 5 there are still many

open issues which deserve further and deeper investigation. For the nonlinear problem

we developed a DO iterative procedure based on the assimilation, at each time step,

via solution of an optimization problem. This is limiting for two reasons: optimality

in time is only local and the assumption of data availability at each time step is not

feasible.

The first issue can be assessed exploiting different assimilation methods which are

based on “global” optimization in time. In doing this we have to deal with the solution

of the unsteady adjoint problem which may be highly computationally expensive as we

already discussed in the introduction to Chapter 5. Additionally, we might also consider
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an OD approach to be formulated in a way similar to the one presented in [38].

For the second issue, the generalization to sparse data in time can be managed by

either interpolating the data in time or performing advancing steps between assimila-

tion instants.

Furthermore, as we did for space discretization in the steady case, it is important

to test the consistency and the sensitivity of the method with respect to the time step

and for different time discretization schemes. In this work the choice of the BE method

is dictated by its unconditional stability; an analysis of stability properties of the re-

sulting assimilation scheme might allow the employment of more accurate and/or less

expensive methods.
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