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Abstract 
 

Evaluating the performance of maximum likelihood estimation in a discriminant function 

framework to account for non-detectable exposure measurements in matched case-control studies 

By 

Huiqing Sun 

 

For matched case-control studies, conditional logistic regression is the typical approach to be applied. With 

multivariate normality unnecessary, it is possible to investigate the discriminant function approach as an 

alternative to conditional logistic regression in matched case-control studies. Particularly when few or small 

matched sets were involved, the approach was found to give a more precise and unbiased estimator of the 

log odds ratio associated with a continuous predictor of primary interest. The most common method in 

environmental chemistry to deal with non-detects is simply substituting the detection limit or some fraction 

of it in place of the unknown exposure, which very likely give an estimator that far from the true value. 

This thesis specifically focuses on evaluating the performance of maximum likelihood estimation in a 

discriminant function framework to account for non-detectable exposure measurements in matched case-

control studies. Compared with the expedient approach of plugging in the detection limit for non-detects 

and using regular or conditional logistic regression, the adjusted maximum likelihood estimation based on 

the discriminant function analysis shows less bias and the mean standard errors for ln(OR) are also 

noticeably reduced. Potential improvements could be sought to better adjust the MLE of the residual 

variance when using maximum likelihood accounting for nondetectable exposures in matched case-control 

studies. 

 

KEY WORDS: Discriminant function approach; Maximum likelihood estimation; Logistic 

regression; Non-detects; Bias. 
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Introduction 

When the response variable is binary and one or more explanatory variables are continuous, use of the 

logistic regression model is the most common and traditional way to estimate the adjusted odds ratios 

associated with the binary outcome. For matched case-control studies, conditional logistic regression is the 

typical approach to be applied. However, a fresh look at a discriminant function framework for estimating 

crude or adjusted odds ratios has been suggested that offers potential benefits. This includes the availability 

of a uniformly minimum variance unbiased (UMVU) estimator for the adjusted log odds ratio in 

multivariable analysis involving a continuous exposure of primary interest (Lyles et al., 2009). The 

approach requires the assumption of normally distributed errors in a multiple linear regression model for 

the exposure, but these are less stringent assumptions than those of multivariate normality that caused 

interest to wane in the discriminant function approach as originally proposed decades ago (Halperin et al., 

1971; Hosmer, Lemeshow and Sturdivant, 2003).    

 

With multivariate normality unnecessary, it is possible to investigate the discriminant function approach as 

an alternative to conditional logistic regression in matched case-control studies. Particularly when few or 

small matched sets were involved, the approach was found to give a more precise and unbiased estimator 

of the log odds ratio associated with a continuous predictor of primary interest (Li 2020). 

 

Non-detectable exposures (e.g., biomarker levels determined by laboratory assay) pose a very real challenge 

to many studies of environmental and infectious disease epidemiology. The most common method in 

environmental chemistry to deal with non-detects is simply substituting the detection limit or some fraction 

of it in place of the unknown exposure. However, this approach can produce inaccurate and irreproducible 

statistical summaries and inferences, resulting some estimates that are far from the true values and 

potentially obscuring patterns and trends in the data. Another common method is maximum likelihood 

estimation (MLE), which is a parametric, model-based method that can be used to estimate means and other 
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summary statistics with censored data (Lynn et al. 2001; Lyles et al., 2001). When data sets are small, for 

example, fewer than 30–50 detected values, in which one or two outliers throw off the estimation, or where 

there is insufficient evidence to know whether the assumed distribution fits the data well, maximum 

likelihood methods generally do not work well. For these cases, nonparametric methods that do not assume 

a specific distribution and shape of data might be preferred (Helsel, 2006). 

 

In this thesis, we consider using maximum likelihood estimation to account for non-detectable exposures 

in a case-control study where matching is performed. First, we use simulations to compare the 

performance of the MLE in a discriminant function framework with that based on standard logistic 

regression for complete datasets. For situations when matching is involved in the case-control study, we 

perform simulations and examine a real data example to compare the performance of the MLE in 

discriminant framework with that of conditional logistic regression and that of using the detection limit to 

replace exposure values under the limit. We use a previously proposed multivariable discriminant 

function approach to estimate the adjusted log odds ratio (Lyles et al., 2009), based on a likelihood 

designed to account for non-detects and introducing adjustments to reduce bias in the resulting estimates 

of residual variance. 

Motivating study 

To better illustrate the discriminant function framework when accounting for non-detectable exposure 

measurements in matched case-control studies, we now introduce a real-world data example. The Colorado 

Plateau uranium miners’ study conducted by Langholz, Thomas, Xiang, and Stram (1999) is a large 

occupational study of underground miners in which the exposure of primary interest, radon progeny, has 

been quantified for the individual miners. Other covariates include age, race, and smoking history. An 

incidence density matched case-control study was nested within the occupational cohort and the data set 

has already been prepared and shared by Dr. David Richardson. The radon exposure-lung cancer association 

is substantial in magnitude. 
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According to this previously published research based on this study, the relative risk of lung cancer 

associated with exposure to radon increases for around 8.5 years of exposure before decreasing and 

returning to background levels after roughly 34 years. The researchers strongly rejected the idea that the 

risk remains at its highest level with (p-value<0.001). Then they looked at how the effects varied across 

different subsets of the cohort based on factors like age, exposure level, exposure rate, and smoking. They 

found that only age had a significant impact on the results, with the decline in risk being much steeper 

among individuals over the age of 60 compared to younger individuals (Langholz et al., 1999). 

 

The authors highlight the importance of accounting for the latency period between exposure and disease 

onset and describe the statistical methods used to analyze the data. We wish to use this real matched case-

control dataset to illustrate the discriminant function approach. Specifically, we will use a randomly 

selected subset of the data, artificially produce some non-detectable exposures, and account for the non-

detects by means of maximum likelihood. 

Methods 

When covariates are involved, a basic formula for estimating the odds ratio (OR) would be  

                                            𝑂𝑅 =
𝑃𝑟(𝑌 = 1|𝑋 = 𝑥 + 1, 𝑪)/𝑃𝑟(𝑌 = 0|𝑋 = 𝑥 + 1, 𝑪)

𝑃𝑟(𝑌 = 1|𝑋 = 𝑥, 𝑪)/𝑃𝑟(𝑌 = 0|𝑋 = 𝑥, 𝑪)
                                (1)  

where Y represents a binary outcome, X the exposure of interest, and C a vector of covariates. When 

thinking in terms of a case-control or a cross-sectional study, the OR can also be written as 

                                                            𝑂𝑅 =
𝑓𝑋|𝑌=1,𝑪(𝑥 + 1)/𝑓𝑋|𝑌=1,𝑪(𝑥)

𝑓𝑋|𝑌=0,𝑪(𝑥 + 1)/𝑓𝑋|𝑌=0,𝑪(𝑥)
                                                         (2)  

where the specific form for the conditional densities is typically unknown but might be assumed for 

modeling purposes. Equation (2) in the case of a continuous exposure (X) forms the basis of the 

multivariable discriminant function approach utilized here (Lyles et al., 2009).  
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Standard Logistic Regression 

The standard logistic model for the multivariable (covariate-adjusted) case is generally presented as  

                                           𝑙𝑜𝑔𝑖𝑡{𝑃𝑟(𝑌 = 1|𝑋 = 𝑥, 𝑪 = 𝒄)} = 𝛽0 + 𝛽1𝑋 + 𝜸′𝒄                                      (3) 

or 

                                                  𝑃𝑟(𝑌 = 1|𝑋, 𝑪) =
𝑒𝑥𝑝(𝛽0 + 𝛽1𝑋 + 𝜸′𝒄)

1 + 𝑒𝑥𝑝(𝛽0 + 𝛽1𝑋 + 𝜸′𝒄)
                                         (4) 

where Y is the binary outcome with values either 0 or 1, 𝑪 is a set of covariates and X is the continuous 

predictor of interest. The 𝑂𝑅 corresponding to a unit increase is 𝑒𝛽1, which could be calculated based on 

the MLE of 𝛽 (Hosmer, Lemeshow and Sturdivant, 2013).  

Conditional Logistic Regression 

Conditional logistic regression is a specialized type of logistic regression usually employed when case 

subjects with a particular condition or attribute are each matched with n control subjects without the 

condition. The form for the regression model is  

                                                                   𝑙𝑜𝑔𝑖𝑡{𝑃𝑟𝑘} = 𝛽0𝑘 + 𝛽1𝑋 + 𝜸′𝒄                                                   (5)         

where 𝑘 represents strata (matched sets), and 𝑃𝑟𝑘  is the probability that Y=1 in stratum k (Hosmer, 

Lemeshow and Sturdivant, 2013). To establish notation for the conditional likelihood for a 1-M 

matched case-control study, Hosmer, Lemeshow and Sturdivant (2013) write the conditional likelihood 

for the kth stratum as 

 

                                                               𝑙𝑘(𝜷) =
∏ 𝑒𝛽1𝑥𝑖+𝜸′𝒄𝒊

𝑛1𝑘
𝑖=1

∑ ∏ 𝑒
𝛽1𝑥𝑗𝑖𝑗

+𝜸′𝒄𝑗𝑖𝑗𝑛1𝑘
𝑖𝑗=1

𝑐𝑘
𝑗=1

                                                    (6)         

In equation (6), we assume the kth stratum contains 𝑛1𝑘 cases and 𝑛0𝑘 controls, 𝑐𝑘 is the number of 

possible assignments of cases and controls to the total number of subjects, and j denotes any one of these 
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𝑐𝑘 assignments. Estimators of the vector 𝜷 can be obtained by maximizing equation (6) with respect to 

those parameters. 

Discriminant Function Approach 

As noted previously, the discriminant function approach as studied by Lyles et al. (2009) was presented as 

an alternative to the standard logistic regression method for odds ratio estimation, which does not require 

multivariate normality. It leads us to a uniformly minimum variance unbiased (UMVU) estimator for a 

crude or adjusted log odds ratio. In the context of a matched case-control study, Li (2020) described that 

such a discriminant function approach can be based on the following multiple linear regression model: 

                                                   𝜇𝑖𝑗 = 𝐸(𝑋𝑖𝑗|𝑌 = 𝑦, 𝑪) = 𝛼∗ + 𝒶𝑖 + 𝛽1
∗𝑦𝑖𝑗 + 𝛾∗′

𝑪𝑖𝑗                                   (7) 

where the 𝒶𝑖s are fixed effects to index matched sets, and  𝑗 = 1, . . . , 𝑀𝑖  indexes individuals within the ith 

matched set. For the purposes of estimation, we make the further assumption of Gaussian errors in the 

linear model; that is, we assume that 𝑋𝑖𝑗  = 𝜇𝑖𝑗  +  𝜖𝑖𝑗 , where 𝜖𝑖𝑗 ∼
(𝑖𝑖𝑑)

N(0, 𝜎2). The basic discriminant 

function-based estimator of the odds ratio associated with a unit increase in 𝑋𝑖𝑗  is: 

                                                                        𝑂𝑅̂ = 𝑒𝛽1
∗̂/𝑀𝑆𝐸                                                             (8) 

where the MSE is the standard mean squared error which estimates the residual variance in the multiple 

linear regression model in equation (7). The UMVU estimator of the log odds ratio under this assumed 

model can be written as follows (Lyles et al., 2009):  

                                                           𝑙𝑛(𝑂𝑅̂)𝑢𝑚𝑣𝑢 =  (
𝑛 − 𝑇 − 4

𝑛 − 𝑇 − 2
) 𝛽1

∗̂/𝑀𝑆𝐸                                                 (9) 

where T represents the dimension of the covariate vector 𝑪. 

Handling Non-detectables 

For a detectable 𝑋𝑖𝑗 , the basic form of the likelihood contribution is 

                                                                       𝑓(𝑥𝑖𝑗) =
1

√2𝜋 𝜎
𝑒

−
1

2𝜎2(𝑥𝑖𝑗−𝜇𝑖𝑗)2

                                                         (10) 

For nondetectable exposures, the likelihood contribution is instead written as follows:  
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                           𝑃𝑟(𝑥𝑖𝑗 < 𝐿𝑂𝐷𝑥𝑖𝑗
) = 𝑃𝑟(

𝑥𝑖𝑗 − 𝜇𝑖𝑗

𝜎
<

𝐿𝑂𝐷𝑥𝑖𝑗
− 𝜇𝑖𝑗

𝜎
) =  𝚽(

𝐿𝑂𝐷𝑥𝑖𝑗
− 𝜇𝑖𝑗

𝜎
)                    (11) 

Sorting so that the first m of the n observations is detected, the likelihood function would be proportional 

to  

                                                     𝐿 = ∏ 𝑓(𝑥𝑖𝑗)𝑚
𝑖=1 × ∏ 𝚽(

𝐿𝑂𝐷𝑥𝑖𝑗
−𝜇𝑖𝑗

𝜎
)                                                 (12) 𝑛

𝑖=𝑚+1 ,  

which we find to be conveniently maximized by using a general likelihood specification available in the 

NLMIXED procedure in SAS (SAS, n.d.). 

Adjustment of the MLE of 𝝈𝟐 

When maximum likelihood is applied to model (7), the issue of correcting the MLE for the residual 

variance (𝜎2) should be considered. Specifically, for an MLR model with p predictors, the usual unbiased 

estimator of the residual variance is  𝜎̂2 = 𝑀𝑆𝐸 =
𝑆𝑆𝐸

𝑛−𝑝−1
 , where n is the sample size, MSE stands for 

mean squared error and SSE is sum of squares error. In contrast, the MLE under the typical “HEIL 

GAUSS” assumptions (Kutner et al.,2004) is 𝜎̂2
𝑀𝐿𝐸 =

𝑆𝑆𝐸

𝑛
=

𝑛−𝑝−1

𝑛
𝑀𝑆𝐸. In most common MLE 

settings, n is large relative to 𝑝 so the MLE is not biased much. However, in our matched sets scenario, p 

can potentially be very large so that the MLE for 𝜎2 is biased downward. Therefore, an adjustment should 

be performed for this bias after we obtain the MLEs numerically from the SAS NLMIXED procedure. 

Originally, the method 𝜎̂2
𝑎𝑑𝑗 =

𝑁

𝑁−𝑝−1
∗ 𝜎̂2

𝑀𝐿𝐸 makes the obvious solution for datasets without non-

detects. We also apply this same simple adjustment when accounting for non-detects using the 

discriminant function approach as an alternative to regular logistic regression (i.e., without matching).  

 

When using the discriminant function approach as an alternative to conditional logistic regression with 

matching and in the presence of non-detectable exposures, we find that the standard adjustment is lacking 

as a bias correction to the MLE for 2, at least whenever there are any strata in which there are no 

detectable X values. After preliminary empirical investigations, we currently recommend the following 

adjusted estimator in the setting of k-to-1 matching: 
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                                                                  𝜎̂2
𝑎𝑑𝑗 =

𝑁−𝑎

(𝑁−𝑎)−𝑝−1
∗ 𝜎̂2

𝑀𝐿𝐸                                                     (13)  

where 𝑎 =  𝑘 ∗ 𝑚 and m is the number of strata containing all non-detects. While further work is needed 

to fully vet this adjustment and to explore the case of varying stratum-specific sample sizes, we note that 

it is equivalent to treating any stratum with all non-detects as if it provides only one effective observation. 

As such, we use that approach in our analysis of the motivating data (see Real Data Example).  

Delta method 

From the discriminant function approach, we use the estimator 𝑙𝑛(𝑂𝑅̂) =
𝛽1̂

𝜎̂2
 𝑎𝑑𝑗

 , which is a nonlinear 

function of  𝛽1̂ and 𝜎̂2
 𝑎𝑑𝑗 : 

                                                         𝑙𝑛(𝑂𝑅̂) = 𝑔 (𝛽1̂, 𝜎̂2
𝑎𝑑𝑗) = 𝛽1̂ ∗ (𝜎̂2

𝑎𝑑𝑗)−1                                     (14) 

The estimated derivatives of g with respect to 𝛽1 and 𝜎𝑎𝑑𝑗
2  are 

𝜕𝑔

𝜕𝛽1
= (𝜎̂2

𝑎𝑑𝑗)−1 and 
𝜕𝑔

𝜕𝜎̂2
𝑎𝑑𝑗

= −𝛽1 ∗

(𝜎𝑎𝑑𝑗
2 )−2 respectively. 

 

If the function of the random variables is differentiable with respect to each of its arguments and the 

random variables are approximately multivariate normal, the multivariate delta method allows us to 

estimate the distribution of the function of interest by taking the derivative of the function with respect to 

each of the random variables and using the covariance matrix of the random variables to calculate the 

variance of the function. Therefore, the variance of the function g is 𝑣𝑎𝑟[𝑔 (𝛽1̂, 𝜎̂2
𝑎𝑑𝑗)] ≐ 𝐷̂Σ̂𝐷̂′ , where 

𝐷̂ = [(𝜎̂2
𝑎𝑑𝑗)−1 , −𝛽1̂ ∗ (𝜎̂2

𝑎𝑑𝑗)−2 ]   and   Σ̂ = 𝑣𝑎𝑟̂ [ 𝛽1̂

𝜎̂2
𝑎𝑑𝑗

] , 

where we can obtain the latter matrix from SAS using the NLMIXED procedure. Hence,  

𝑣𝑎𝑟[𝑔 (𝛽1̂, 𝜎̂2
𝑎𝑑𝑗)] ≐ 𝑑1̂

2
∗ 𝜎1̂

2 + 𝑑2̂
2

∗ 𝜎2̂
2
, 

where 𝑑1̂ = (𝜎̂2
𝑎𝑑𝑗)−1, 𝑑2̂ = −𝛽1̂ ∗ (𝜎̂2

𝑎𝑑𝑗)−2 , 𝜎1̂
2 = 𝑣𝑎𝑟̂(𝛽1̂) , 𝜎2̂

2 = 𝑣𝑎𝑟̂(𝜎̂2
𝑎𝑑𝑗) . 
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Simulation Studies and Results 

We start with the setting where the typical approach would be standard logistic regression for complete 

data. The simulation studies were performed under the conditions of the one covariate case. Specifically, 

the binary outcome Y (1 if having the disease, 0 not having the disease) was generated randomly using 

binomial distribution with 0.2 prevalence. Age is the only covariate that was generated as normal with 

mean and variance equal 60 and 25 respectively, and the predictor of interest (X) is generated by 

discriminant function approach with true 𝜎2 =1. This process was repeated for 2000 independent 

simulated datasets using different sample sizes (n=50, 100, 500 respectively) and different log odds ratios 

(true ln(OR)=0, 1, 2 respectively) to see if the log odds ratio estimates from the discriminant function 

approach indeed reflect less bias than those from standard logistic regression.  

 

Table 1 summarizes 2000 replications under the following conditions: n = 50/100/500, 𝜎2= 1 (true OR 

=1, true ln(OR)=0). Although the average estimations for log odds ratios are all close to 0 if rounded up to 

two-decimal places, the empirical SDs and the mean estimated standard errors for the discriminant 

function-based ln(OR) estimators are smaller than logistic regression-based ln(OR) and the reduction in 

variance leads to narrower CIs via the discriminant function approach. Similar steps were used when 

increasing the value of true OR to 2.718, yields a lager true ln(OR) of 1. Results can be seen in Table 2, 

note the roughly 20% up-ward bias evident in 𝑙𝑛(𝑂𝑅̂)𝑙𝑜𝑔 when sample size n is 50, which is the estimate 

of the ln(OR) [𝛽 in formula (3)] based on regular logistic regression with covariates. This bias is reduced 

when sample size became large, for example, the bottom section for Table 2 suggests a less than 1% bias 

in log odds ratio estimations. Table 3 considers cases of larger true OR 7.389, and true ln(OR) is 2. In this 

scenario, the advantages over traditional logistic regression really begin to stand out.  
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Tables 1-3 agree with results from Lyles et al. (2009), confirming that the UMVU estimator from 

discriminant function approach yields average values closer to the true log odds ratio as well as better 

precision when compared with the MLE of the log OR from regular logistic regression. 

Table1. Simulation results assessing alternative crude OR estimators based on 2000 replications with 
sample size n = 50/100/500 in each case; True OR=1 and True ln(OR)=0. 
 

𝒍𝒏(𝑶𝑹)̂  

 
Mean (SD) 

Mean 
Estimated SE 

95% CI 
Coverage % 

Mean CI Width (Median) 

n=50, True ln(OR)=0  

Regular logistic 0.00 (0.44) 0.40 95.8% 1.98 (1.60) 

Discriminant-UMVU 0.00 (0.39) 0.37 96.6% 1.76 (1.50) 

n=100, True ln(OR)=0  

Regular logistic 0.00 (0.27) 0.26 96.2% 1.12 (1.04) 

Discriminant-UMVU 0.00 (0.25) 0.26 96.5% 1.09 (1.01) 

n=500, True ln(OR)=0  

Regular logistic 0.00 (0.12) 0.11 94.4% 0.45 (0.44) 

Discriminant-UMVU 0.00 (0.12) 0.11 94.5% 0.45 (0.44) 

 

 
Table2. Simulation results assessing alternative crude OR estimators based on 2000 replications with 
sample size n = 50/100/500 in each case; True OR=2.718 and True ln(OR)=1. 
 

𝒍𝒏(𝑶𝑹)̂  

 
Mean (SD) 

Mean 
Estimated SE 

95% CI 
Coverage % 

Mean CI Width (Median) 

n=50, True ln(OR)=1  

Regular logistic 1.20 (1.00) 0.54 97.3% 1.2E29 (5.96) 

Discriminant-UMVU 1.00 (0.44) 0.43 95.8% 6.57 (4.68) 

n=100, True ln(OR)=1  

Regular logistic 1.07 (0.32) 0.32 96.3% 4.37 (3.62) 
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Discriminant-UMVU 1.00 (0.29) 0.29 95.6% 3.59 (3.21) 

n=500, True ln(OR)=1  

Regular logistic 1.02 (0.14) 0.13 94.2% 1.50 (1.46) 

Discriminant-UMVU 1.01 (0.13) 0.13 94.5% 1.42 (1.39) 

 
 

Table3. Simulation results assessing alternative crude OR estimators based on 2000 replications with 
sample size n = 50/100/500 in each case; True OR=7.389 and True ln(OR)=2. 
 

𝒍𝒏(𝑶𝑹)̂  

 
Mean (SD) 

Mean 
Estimated SE 

95% CI 
Coverage % 

Mean CI Width (Median) 

n=50, True ln(OR)=2  

Regular logistic 3.26 (4.58) 1.80 98.2% 3.5E150 (41.20) 

Discriminant-UMVU 1.99 (0.58) 0.56 94.5% 30.30 (17.37) 

n=100, True ln(OR)=2  

Regular logistic 2.27 (0.90) 0.57 97.1% 4.3E18 (19.04) 

Discriminant-UMVU 2.01 (0.38) 0.39 95.8% 14.41 (11.7) 

n=500, True ln(OR)=2  

Regular logistic 2.04 (0.22) 0.21 95.0% 6.71 (6.17) 

Discriminant-UMVU 2.00 (0.18) 0.17 94.6% 5.14 (4.94) 

 

Next, we consider accounting for non-detects in standard logistic regression. To conduct the simulation, we 

empirically calculated LODs to yield 10%, 25% and 50% non-detectable exposures based on the assumed 

simulation conditions. We used these different LODs to study variations in estimation performance as the 

percentage of non-detects increases.  

 

Simulation results from Tables 4-6 suggest that the performance of our adjusted maximum likelihood 

estimation (MLE_adj) in the discriminant function framework is more stable and yields average estimates 
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much closer to the true value than estimators from regular logistic regression, as well as those using the 

standard “plug in detection limit” (LOD) method. 

 

Table4. Results of simulation to assess performance of the maximum likelihood estimation in a 

discriminant function framework when accounting for non-detects. This process was repeated for 

2000 independent simulated datasets with sample size n = 50/100/500 in each case; True OR=1 and 

True ln(OR)=0; lod=6.99, 6.30, 5.69 in each case. 

𝒍𝒏(𝑶𝑹)̂  

 
Mean (SD) 

Mean 
Estimated SE 

95% CI 
Coverage % 

Mean CI Width (Median) 

n=50, True ln(OR)=0, lod=6.99  

Regular_plug in LOD -0.51 (4.47) 1.76 97.4% 2.17E174 (3.28)  

MLE_adj 
 

-0.10 (0.90) 1.78 98.8% 7.18 (1.75) 

n=50, True ln(OR)=0, lod=6.30  

Regular_plug in LOD -0.01 (0.44) 0.40 96.0% 2.01 (1.59) 

MLE_adj 
 

0.00 (0.40) 0.38 96.7% 1.54 (1.49) 

n=50, True ln(OR)=0, lod=5.69  

Regular_plug in LOD -0.04 (0.48) 0.44 96.2% 2.17 (1.76) 

MLE_adj 
 

-0.02 (0.40) 0.39 97.3% 1.57 (0.28) 

n=100, True ln(OR)=0, lod=6.99  

Regular_plug in LOD -0.04 (0.51) 0.47 96.4% 2.15 (1.92) 

MLE_adj 
 

-0.02 (0.30) 0.30 97.0% 1.18 (1.16) 

n=100, True ln(OR)=0, lod=6.30  

Regular_plug in LOD 0.00 (0.28) 0.26 94.5% 1.13 (1.04) 

MLE_adj 
 

0.00 (0.27) 0.26 95.1% 1.03 (1.02) 

n=100, True ln(OR)=0, lod=5.69  

Regular_plug in LOD -0.02 (0.30) 0.29 95.5% 1.21 (1.13) 

MLE_adj 
 

-0.01 (0.26) 0.26 96.4% 1.04 (1.02) 
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n=500, True ln(OR)=0, lod=6.99  

Regular_plug in LOD -0.01 (0.20) 0.19 94.5% 0.77 (0.76) 

MLE_adj 
 

0.00 (0.13) 0.13 95.5% 0.49 (0.49) 

n=500, True ln(OR)=0, lod=6.30  

Regular_plug in LOD 0.00 (0.11) 0.11 94.9% 0.45 (0.44) 

MLE_adj 
 

0.00 (0.11) 0.11 95.0% 0.44 (0.44) 

n=500, True ln(OR)=0, lod=5.69  

Regular_plug in LOD 0.00 (0.13) 0.12 95.4% 0.49 (0.49) 

MLE_adj 
 

0.00 (0.12) 0.11 95.5% 0.45 (0.45) 

 

Table5. Results of simulation to assess performance of the maximum likelihood estimation in a 

discriminant function framework when accounting for non-detects. This process was repeated for 

2000 independent simulated datasets with sample size n = 50/100/500 in each case; True OR=2.718 

and True ln(OR)=1; lod=7.19, 6.46, 5.79 in each case. 

 

𝒍𝒏(𝑶𝑹)̂  

 
Mean (SD) 

Mean 
Estimated SE 

95% CI 
Coverage % 

Mean CI Width (Median) 

n=50, True ln(OR)=1, lod=7.19  

Regular_plug in LOD 1.46 (2.55) 0.95 94.3% 3.53E178 (12.29)  

MLE_adj 
 

1.06 (0.67) 0.55 96.0% 2.20 (2.07) 

n=50, True ln(OR)=1, lod=6.46  

Regular_plug in LOD 1.29 (0.82) 0.56 97.4% 2.40E24 (7.43) 

MLE_adj 
 

1.07 (0.50) 0.47 96.7% 1.90 (1.83) 

n=50, True ln(OR)=1, lod=5.79  

Regular_plug in LOD 1.20 (0.65) 0.52 96.7% 8.11E14 (6.24) 

MLE_adj 
 

1.05 (0.48) 0.45 95.5% 1.79 (1.74) 

n=100, True ln(OR)=1, lod=7.19  

Regular_plug in LOD 1.39 (0.45) 0.42 87.7% 8.96 (6.86) 

MLE_adj 
 

1.04 (0.35) 0.36 96.7% 1.43 (1.39) 
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n=100, True ln(OR)=1, lod=6.46  

Regular_plug in LOD 1.16 (0.37) 0.34 94.4% 5.35 (4.29) 

MLE_adj 
 

1.01 (0.32) 0.32 95.9% 1.26 (1.23) 

n=100, True ln(OR)=1, lod=5.79  

Regular_plug in LOD 1.09 (0.34) 0.32 95.8% 4.58 (3.73) 

MLE_adj 
 

1.02 (0.30) 0.30 94.9% 1.21 (1.19) 

n=500, True ln(OR)=1, lod=7.19  

Regular_plug in LOD 1.31 (0.18) 0.18 58.5% 2.68 (2.59) 

MLE_adj 
 

1.01 (0.15) 0.15 96.4% 0.61 (0.61) 

n=500, True ln(OR)=1, lod=6.46  

Regular_plug in LOD 1.11 (0.14) 0.14 89.6% 1.76 (1.70) 

MLE_adj 
 

1.00 (0.13) 0.14 96.2% 0.54 (0.54) 

n=500, True ln(OR)=1, lod=5.79  

Regular_plug in LOD 1.04 (0.14) 0.14 94.5% 1.54 (1.49) 

MLE_adj 1.00 (0.13) 0.13 95.6% 0.52 (0.52) 

 

Table6. Results of simulation to assess performance of the maximum likelihood estimation in a 

discriminant function framework when accounting for non-detects. This process was repeated for 

2000 independent simulated datasets with sample size n = 50/100/500 in each case; True OR=7.389 

and True ln(OR)=2; lod=7.30, 6.50, 5.83 in each case. 

 

𝒍𝒏(𝑶𝑹)̂  

 
Mean (SD) 

Mean 
Estimated SE 

95% CI 
Coverage % 

Mean CI Width (Median) 

n=50, True ln(OR)=2, lod=7.30  

Regular_plug in LOD 3.75 (5.61) 1.87 99.3% 8.11E112 (75.18)  

MLE_adj 
 

2.20 (0.78) 0.80 97.5% 3.21 (3.03) 

n=50, True ln(OR)=2, lod=6.50  

Regular_plug in LOD 3.38 (4.50) 1.86 98.7% 1.02E108 (46.01) 
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MLE_adj 
 

2.14 (0.67) 0.65 96.9% 2.63 (2.53) 

n=50, True ln(OR)=2, lod=5.83  

Regular_plug in LOD 3.26 (4.48) 1.92 97.9% 1.88E165 (45.59) 

MLE_adj 
 

2.12 (0.63) 0.60 96.2% 2.41 (2.33) 

n=100, True ln(OR)=2, lod=7.30  

Regular_plug in LOD 2.64 (0.75) 0.60 93.2% 4.13E14 (32.15) 

MLE_adj 
 

2.10 (0.50) 0.53 97.5% 2.12 (2.07) 

n=100, True ln(OR)=2, lod=6.50  

Regular_plug in LOD 2.34 (0.80) 0.55 96.9% 6.58E21 (21.00) 

MLE_adj 
 

2.06 (0.43) 0.44 96.1% 1.75 (1.73) 

n=100, True ln(OR)=2, lod=5.83  

Regular_plug in LOD 2.28 (0.82) 0.55 97.4% 7.11E18 (18.68) 

MLE_adj 
 

2.05 (0.41) 0.41 95.5% 1.62 (1.59) 

n=500, True ln(OR)=2, lod=7.30  

Regular_plug in LOD 2.43 (0.24) 0.23 55.5% 11.34 (10.48) 

MLE_adj 
 

2.02 (0.21) 0.23 97.4% 0.90 (0.90) 

n=500, True ln(OR)=2, lod=6.50  

Regular_plug in LOD 2.11 (0.21) 0.21 94.8% 7.16 (6.53) 

MLE_adj 
 

2.01 (0.19) 0.19 96.2% 0.75 (0.75) 

n=500, True ln(OR)=2, lod=5.83  

Regular_plug in LOD 2.05 (0.22) 0.21 94.7% 6.83 (6.26) 

MLE_adj 
 

2.01 (0.18) 0.18 94.9% 0.70 (0.70) 
 

Further simulations were also conducted to assess ln(OR) estimators under the matched case-control 

study setting. Specifically, we used 2 to 1 matching to illustrate the stable performance of the discriminant 

function method. We start with the complete data to perform similar simulations as the regular logistic 
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regression but including the stratum indicator 𝒶𝑖 this time, which is generated randomly from 𝑁(0,1) 

distribution. The binary outcome Y is generated randomly from binomial distribution but with prevalence 

related to 𝒶𝑖. The way that we set covariate Age and the predictor of interest (X) is as same as the first 

simulation study. Results were summarized under 2000 replications using different number of matched 

sets (k=25, 100 respectively) and different log odds ratio (true ln(OR)=0, 1, 2 respectively) to compare 

the log odds ratio estimators from both conditional logistic regression and discriminant function. 

 

Tables 7-9 show that the UMVU estimator again provides estimates closer on average to the true log odds 

ratio compared with the estimator obtained by conditional logistic regression. The mean standard errors 

for ln(OR) are also noticeably reduced when we move from conditional logistic regression to the 

discriminant function analysis. Variance reduction leading to narrower CIs via discriminant function 

analysis can also be seen in Tables 7-9. These results agree in spirit with empirical studies presented by Li 

(2020). 

Table7. Simulation results assessing alternative crude OR estimators under 2 to 1 matched study 
based on 2000 replications with number of matched sets k = 25/100 in each case; True OR=1 and True 
ln(OR)=0. 
 

𝒍𝒏(𝑶𝑹)̂  

 
Mean (SD) 

Mean 
Estimated SE 

95% CI 
Coverage % 

Mean CI Width (Median) 

k=25, True ln(OR)=0  

Conditional logistic 0.01 (0.27) 0.26 95.8% 1.13 (1.02) 

Discriminant-UMVU 0.00 (0.25) 0.25 96.4% 1.07 (0.98) 

k=100, True ln(OR)=0  

Conditional logistic 0.00 (0.12) 0.12 95.7% 0.50 (0.49) 

Discriminant-UMVU 0.00 (0.12) 0.12 95.7% 0.49 (0.48) 
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Table8. Simulation results assessing alternative crude OR estimators under 2 to 1 matched study 
based on 2000 replications with number of matched sets k = 25/100 in each case; True OR=2.718 and 
True ln(OR)=1. 
 

𝒍𝒏(𝑶𝑹)̂  

 
Mean (SD) 

Mean 
Estimated SE 

95% CI 
Coverage % 

Mean CI Width (Median) 

k=25, True ln(OR)=1  

Conditional logistic 1.14 (0.50) 0.39 97.2% 2517074.71 (4.22) 

Discriminant-UMVU 1.00 (0.34) 0.33 94.5% 4.34 (3.43) 

k=100, True ln(OR)=1  

Conditional logistic 1.03 (0.17) 0.17 95.4% 1.98 (1.84) 

Discriminant-UMVU 1.00 (0.16) 0.16 95.0% 1.77 (1.70) 

 
Table9. Simulation results assessing alternative crude OR estimators under 2 to 1 matched study 
based on 2000 replications with number of matched sets k = 25/100 in each case; True OR=7.389 and 
True ln(OR)=2. 
 

𝒍𝒏(𝑶𝑹)̂  

 
Mean (SD) 

Mean 
Estimated SE 

95% CI 
Coverage % 

Mean CI Width (Median) 

k=25, True ln(OR)=2  

Conditional logistic 7.79 (36.29) 2177.98 90.4% 4.6E239 (40.16) 

Discriminant-UMVU 2.01 (0.50) 0.49 94.0% 25.38 (14.97) 

k=100, True ln(OR)=2  

Conditional logistic 2.04 (0.22) 0.21 95.0% 6.71 (6.17) 

Discriminant-UMVU 2.00 (0.18) 0.17 94.6% 5.14 (4.94) 

 

Last but not least, we conducted simulations accounting for non-detectables in X in the matched case-

control setting. Simulations were conducted with 2000 replications for each case with 2 to 1 matching 

where the number of matched sets is set to 25, 100 and the true log odds ratio is set to 0, 1 and 2, 

respectively. In the same manner as when accounting for non-detects for standard logistic regression, we 

determined and used LODs consistent with 10%, 25% and 50% non-detectables.  
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Simulation results from Tables 10-12 suggest that the adjusted maximum likelihood estimation based on 

discriminant function analysis shows less bias compared to the expedient approach of plugging in the 

detection limit for non-detects and using conditional logistic regression. The mean standard errors for 

ln(OR) are also noticeably reduced when we move from the conditional logistic regression plug-in 

method to the discriminant function approach.  

 

Table10. Results of simulation to assess performance of the maximum likelihood estimation in a 

discriminant function framework when accounting for non-detects in 2 to 1 matching. This process 

was repeated for 2000 independent simulated datasets with number of matched sets k = 25/100 in 
each case; True OR=0 and True ln(OR)=1; lod=7.14, 6.18, 5.34 in each case. 

 

 𝒍𝒏(𝑶𝑹)̂  

 
Mean (SD) 

Mean 
Estimated SE 

95% CI  
Coverage % 

k=25, True ln(OR)=1, lod=7.14    

Regular_plug in LOD 1.48 (0.93) 0.57 97.6% 

MLE_adj 1.17 (0.49) 0.42 95.5% 

k=25, True ln(OR)=1, lod=6.18    

Regular_plug in LOD 1.24 (0.53) 0.43 97.2% 

MLE_adj 1.08 (0.38) 0.18 94% 

k=25, True ln(OR)=1, lod=5.34    

Regular_plug in LOD 1.18 (0.50) 0.40 97.5% 
MLE_adj 1.06 (0.34) 0.17 93.3% 

k=100, True ln(OR)=1, lod=7.14    

Regular_plug in LOD 1.30 (0.27) 0.24 82.5% 

MLE_adj 1.09 (0.21) 0.20 94.2% 

k=100, True ln(OR)=1, lod=6.18    

Regular_plug in LOD 1.12 (0.20) 0.19 93.2% 

MLE_adj 1.04 (0.18) 0.16 93.2% 

k=100, True ln(OR)=1, lod=5.34    

Regular_plug in LOD 1.06 (0.18) 0.18 95.9% 

MLE_adj 1.02 (0.17) 0.15 93.4% 
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Table11. Results of simulation to assess performance of the maximum likelihood estimation in a 

discriminant function framework when accounting for non-detects in 2 to 1 matching. This process 

was repeated for 2000 independent simulated datasets with number of matched sets k = 25/100 in 
each case; True OR=1 and True ln(OR)=0; lod=7, 6.12, 5.32 in each case. 

 

 𝒍𝒏(𝑶𝑹)̂  

 
Mean (SD) 

Mean 
Estimated SE 

95% CI  
Coverage % 

k=25, True ln(OR)=0, lod=7    

Regular_plug in LOD -0.01 (0.50) 0.45 96.4% 

MLE_adj 0.01 (0.33) 0.25 98.1% 

k=25, True ln(OR)=0, lod=6.12    

Regular_plug in LOD 0.00 (0.35) 0.34 95.8% 

MLE_adj 0.00 (0.28) 0.20 96.2% 

k=25, True ln(OR)=0, lod=5.32    

Regular_plug in LOD 0.01 (0.30) 0.29 95.7% 

MLE_adj 0.01 (0.27) 0.17 94.8% 

k=100, True ln(OR)=0, lod=7    

Regular_plug in LOD 0.00 (0.20) 0.20 95.5% 

MLE_adj 0.00 (0.15) 0.15 97.0% 

k=100, True ln(OR)=0, lod=6.12    

Regular_plug in LOD 0.00 (0.15) 0.15 95.6% 

MLE_adj 0.00 (0.13) 0.13 95.9% 

k=100, True ln(OR)=0, lod=5.32    

Regular_plug in LOD 0.01 (0.14) 0.13 94% 

MLE_adj 0.00 (0.13) 0.12 94% 

 

 

Table12. Results of simulation to assess performance of the maximum likelihood estimation in a 

discriminant function framework when accounting for non-detects in 2 to 1 matching. This process 

was repeated for 2000 independent simulated datasets with number of matched sets k = 25/100 in 
each case; True OR=7.39 and True ln(OR)=2; lod=7.14, 6.17, 5.33 in each case. 

 

 𝒍𝒏(𝑶𝑹)̂  

 
Mean (SD) 

Mean 
Estimated SE 

95% CI  
Coverage % 

k=25, True ln(OR)=2, lod=7.14    

Regular_plug in LOD 4.95 (21.08) 553.62 94.9% 

MLE_adj 2.47 (0.84) 0.19 91.3% 

k=25, True ln(OR)=2, lod=6.17    
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Regular_plug in LOD 6.80 (31.19) 1881.87 92.7% 

MLE_adj 2.22 (0.60) 0.18 92.5% 

k=25, True ln(OR)=2, lod=5.33    

Regular_plug in LOD 6.39 (30.82) 1598.23 92.3% 
MLE_adj 2.10 (0.52) 0.44 91.3% 

k=100, True ln(OR)=2, lod=7.14    

Regular_plug in LOD 2.66 (0.61) 0.47 83.0% 

MLE_adj 2.33 (0.35) 0.29 82.0% 

k=100, True ln(OR)=2, lod=6.17    

Regular_plug in LOD 2.27 (0.46) 0.39 96.3% 

MLE_adj 2.10 (0.27) 0.23 91.3% 

k=100, True ln(OR)=2, lod=5.33    

Regular_plug in LOD 2.16 (0.43) 0.38 97.3% 

MLE_adj 2.04 (0.25) 0.22 91.2% 

 

Real data example 

For a real-life application of (9) and (12), we use data originally described in the Colorado Plateau 

uranium miners’ study (Langholz et al., 1999), which had 263 matched sets with one case each and an 

average of 40 controls. Usually, the potential bias and precision gains of the discriminant approach are 

better highlighted when the study is not extremely large. At the same time, the sample residuals from the 

linear model look relatively bell shaped but are a bit left-skewed if we use the full data, but this problem 

is less pronounced based on the randomly subsetted data. Therefore, we randomly selected 100 of those 

sets, and within each one we randomly sampled controls with 1/8 selection probability, leading to varying 

stratum sizes but an average of close to 8 controls per matched set. For the exposure variable, we used the 

natural log of the total radon exposure, which is referred to as "totrdn". At the same time, we control for 

total cumulative smoking ("totsmk"), and for the number of years exposed ("numyrsexposed", which we 

calculated as the difference between two variables, "rendage" minus "rdnstar"). With the case-control 

indicator denoted as “ccind_k”, the applicable conditional logistic regression model is presented as the 

following: 

𝑙𝑜𝑔𝑖𝑡(𝑐𝑐𝑖𝑛𝑑_𝑘) = 𝛽0𝑘 + 𝛽1 ∗ 𝑙𝑜𝑔_𝑡𝑜𝑡𝑟𝑑𝑛 + 𝛽3 ∗ 𝑛𝑢𝑚𝑦𝑟𝑠𝑒𝑥𝑝𝑜𝑠𝑒𝑑 + 𝛽4 ∗ 𝑡𝑜𝑡𝑠𝑚𝑘 
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 We logged the total radon exposure variable because the alternative approach we want to use assumes 

normality of the errors in a multiple linear regression model that flips the problem around, with the 

exposure as the outcome and the set indicators, case status, and the control variables as the predictors. The 

normality approximation when looking at the model residuals appears much better if we first log the 

exposure variable. The estimated coefficient for exposure in the standard conditional logistic regression 

model is 0.336, which represents the estimated ln(OR) for a one natural log increase in the total radon 

exposure as estimated using conditional logistic regression.       

 

Based on the discriminant function approach applied to the complete data (100 matched sets), our 

continuous predictor log_totrdn would be estimated based on the following fitted model: 

𝐸̂(𝑙𝑜𝑔_𝑡𝑜𝑡𝑟𝑑𝑛) =  𝑎𝑖 + 0.00014 ∗ 𝑡𝑜𝑡𝑠𝑚𝑘 +  0.18 ∗ 𝑛𝑢𝑚𝑦𝑟𝑠𝑒𝑥𝑝𝑜𝑠𝑒𝑑 + 0.311 ∗ 𝑐𝑐𝑖𝑛𝑑 +  𝜖 

where 𝑎𝑖 denotes the stratum indicators and i=1, 2, …, 99. From SAS output, the MSE for log_totrdn 

is 1.03, and the point estimate of the ln(OR) for a one log increase in total radon exposure based on the 

subsetted datasets is calculated as 0.311/1.03=0.302 based on (8). We note the similarity between this 

estimate and the estimate (0.336) that was obtained via conditional logistic regression. 

 

Then LODs at 10%, 25% and 50% of the overall exposure distribution were set. These are 4.13, 5.26, and 

6.11, respectively, allowing us to demonstrate results accounting for the non-detects by means of 

maximum likelihood in this example. There are 2 matched sets with all non-detects (yielding values of 𝜎̂2 

and adjusted 𝜎̂2 equal to 0.52 and 0.64, respectively), when LOD is 6.11. There is 1 matched set with all 

non-detects, yielding 𝜎̂2 = 0.57 and adjusted 𝜎̂2 = 0.70 if the LOD is 5.26. With LOD=4.13, there were 

no matched sets with all non-detects, and estimaes of 𝜎̂2 and adjusted 𝜎̂2  were 0.69 and 0.85, 

respectively. 

Table13 summarizes the results of evaluating adjusted OR estimators corresponding to the continuous 

predictor 𝑙𝑜𝑔_𝑡𝑜𝑡𝑟𝑑𝑛 accounting for non-detects using the subsetted data from the Colorado Plateau 
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uranium miners’ study, where the ln(OR) estimate for the complete data without non-detects is 0.302 

under the discriminant function analysis (corresponding to an estimated OR of 1.35). Compared with the 

traditional plug-in detection limit method under conditional logistic regression, the adjusted MLE appears 

to reflect less bias with reduced associated standard errors. At the same time, the proposed method 

provides accompanies the point estimates with narrower 95% confidence intervals. 

Table 13. Colorado Plateau uranium miners’ study results assessing alternative crude OR 

estimators based on random subset data with detection limit lod=6.11 /5.26/4.13 in each case; 

subsetted data using discriminant function: OR=1.35 and ln(OR)=0.302 ;  

subsetted data using conditional logistic regression: OR=1.40 and ln(OR)=0.336 

 

      𝒍𝒏(𝑶𝑹)̂ 

 
Mean  

Mean 
Estimated SE 

95% CI  

 
Conditional Logistic_complete data 0.34 0.13 (0.09, 0.58) 

Discriminant Fuction_complete data 0.30 0.12 (0.07, 0.53) 

Lod=6.11    

Plug in LOD 0.59 0.20 (0.19, 0.98) 

MLE_adj 
 

0.48  0.17 (0.14, 0.81) 

Lod=5.26 

Plug in LOD 0.48  0.16 (0.17,0.79) 

MLE_adj 
 

0.46 0.15 (0.17, 0.74) 

Lod=4.13 

Plug in LOD 0.40 0.14 (0.13, 0.67) 

MLE_adj 
 

0.36 0.13 (0.10, 0.61) 

 



 22 

Discussion 

A fresh look at the discriminant function approach for multivariable analysis with fewer strict 

requirements was proposed by Lyles, Guo and Hill (2009) and the UMVU estimator they derived yields a 

more precise estimate of odds ratio for a continuous exposure of interest (relative to logistic regression) 

when the assumed model holds. Similarly, Li (2020) showed that the discriminant function approach 

performs better when estimating a covariate-adjusted odds ratio relating to a continuous predictor in 

matched case-control studies compared with conditional logistic regression, especially when logistic 

regression is unstable or fails due to separation problems. Based on these related prior works, this thesis 

specifically focuses on evaluating the performance of maximum likelihood estimation in a discriminant 

function framework to account for non-detectable exposure measurements in matched case-control 

studies.  

 

We first used simulation studies to confirm that the UMVU estimator provides estimates closer on 

average to the true log odds ratio compared with the estimators obtained by either regular logistic 

regression in an unmatched study or by conditional logistic regression in a 2 to 1 matching case; the latter 

is consistent with the results presented by Li (2020).  

 

To account for non-detectables in X, we outlined the necessary likelihood contributions and discussed the 

need for adjustments to the MLE for the residual variance that is utilized in the discriminant function 

approach. We conducted simulations for both regular logistic regression and the matched case-control 

setting (2 to 1 specifically). For each case, we used different sample sizes or different numbers of 

matched sets, different true log odds ratios and different LODs that were consistent with 10%, 25% and 

50% non-detectables. Simulation results all suggest that compared with the expedient approach of 

plugging in the detection limit for non-detects and using regular or conditional logistic regression, the 

adjusted maximum likelihood estimation based on the discriminant function analysis shows less bias and 

the mean standard errors for ln(OR) are also noticeably reduced. We conducted an analysis of a real data 
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example involving matched sets, and the discriminant function approach continued to show potential 

performance benefits compared to the expedient approach when accounting for non-detects.  

 

For future work, potential improvements could be sought to better adjust the MLE of the residual variance 

when maximum likelihood is applied to the discriminant function model in matched studies involving 

nondetectable exposures. The original obvious adjustment applies naturally for datasets without non-

detects or when accounting for non-detects using the discriminant function approach without matching 

involved. However, the MLE for 𝜎2 cannot be corrected for bias through this simple adjustment, 

particularly in cases where there are strata with all non-detectable X values. Although we currently 

propose a new adjustment (13) in the setting of k-to-1 matching, we believe this method can still be 

improved and we also would like to further explore the case of varying stratum-specific sample sizes.  
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