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Abstract

CONSchema: Schema matching with semantics and constraints
By Kevin Wu

Schema matching aims to establish the correspondence between the attributes of
database schemas. It has been regarded as the most difficult and crucial stage in
the development of many contemporary database and web semantic systems. Manual
mapping is a lengthy and laborious process, yet a low-quality algorithmic matcher
may cause more trouble. Moreover, the issue of data privacy in certain domains,
such as healthcare, poses further challenges, as the use of instance-level data should
be avoided to prevent the leakage of sensitive information. To address this issue, we
propose CONSchema, a model that combines both the textual attribute description
and constraints of the schemas to learn a better matcher. We also propose a new
experimental setting to assess the practical performance of schema matching models.
Our results on 6 benchmark datasets across various domains including healthcare and
movies demonstrate the robustness of CONSchema.
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Chapter 1

Introduction

1.1 Motivation

Schema matching in relational databases can be viewed as one of the most essential

elements of data integration. The purpose is to identify correspondences among con-

cepts across heterogeneous and potentially distributed data sources (see Figure 1.1

for an identified match between two table attributes). This is important as a wide

variety of database systems are used to collect similar data and each system has been

customized for the company. This results in similar collections of data being stored in

different formats, terminologies, and even logically arranged ways. As such, data ex-

change and integration can be hindered by these customized databases. Thus, schema

matching becomes necessary across various domains including sharing health records

[11, 33, 37], linking datasets and entities for data discovery [17, 39, 41], identifying

related tables in data lakes [41], and merging documents with different formats [35].

Although schema matching is a well-studied field [2], the existing methods still entail

significant manual labor or fail to generalize across domains [41]. A recent study

found that data scientists still spend more than 80% of their time curating the data

for downstream analysis [12].
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Figure 1.1: Example of an identified schema match between the mimic admission
table and admittime source field in MIMIC-III and the omop visit table and preced-
ing visit time field in OMOP using both semantics and constraints.

Existing automating schema matching methods fall predominantly into three cat-

egories based on the level of information: schema-level, instance-level, and hybrid

[2]. Schema-level information only entails meta-data information (e.g., columns or at-

tributes in the table) whereas instance-level uses the contents of the schema (e.g., rows

or tuples of information). Hybrid-level information uses both schema and instance-

level information. Given the rising focus on privacy across various sectors such as

healthcare, there is a need to focus on schema-level rather than instance- or hybrid

levels (i.e., no exchange of information related to instance-level records). Under the

schema-level paradigm, only table and attribute information such as the name, de-

scription, meta-data, and summary statistics are shared. We note meta-data and

summary statistics pose fewer privacy risks and are often shared in the context of

federated databases and privacy-preserving learning [4, 25].

Within the schema-level matching methods, there are often two classifications.

Constraint-based approaches [15, 18, 35, 40] rely on database attribute information

such as data types (e.g., string, numeric, and character), the range of the values,

and keys (e.g., primary, secondary, uniqueness). The other common information

is linguistic-based approaches [20, 22, 26, 43], which use meta-data information in-
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cluding the attribute name and any available textual information. Despite the high

performance achieved by these methods in various domains, both approaches entail

background knowledge to manually define the mapping between the two relations.

Such methods assume the content of the elements will be the same across the two

schemas or fail to adequately capture the similarities between the field descriptions.

This can yield suboptimal performance for new domains.

Deep learning has been proposed as a new paradigm for tackling schema-level

matching given its success in other applications such as computer vision and natural

language processing. DITTO, a state-of-the-art entity matching model, utilizes a pre-

trained Transformer-based language model that can solve the entity matching clas-

sification problems [27]. It encodes text features in the form of token sequences and

introduces optimization methods such as summarizing the long text and emphasizing

important information using domain knowledge. However, DITTO may not perform

well across different domains, especially with abbreviations and short attribute text.

SMAT, another deep learning model, generates a schema-level embedding for the at-

tribute using the element names and descriptions [45]. The attribute embedding uses

attention-over-attention to capture the relationships between the attribute name and

description, thereby providing a better representation than the vanilla transformer

model. These two models demonstrate the potential of deep learning to encode the

textual information present in the attribute names and descriptions, yet ignore con-

straints such as data types, ranges, and key constraints.

This dissertation posits that schema-level matching can be further improved by

integrating both constraint and linguistic-based approaches. We introduce CON-

Schema to fuse the constraint information such as the data type, range, and key

constraints with the textual information by extending the SMAT model (Figure 1.1

shows an example of the schema-level information used for our model). The central

insight is that a lightweight classification model (i.e., random forest or multi-layer
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perception) can then learn the interaction between the attribute similarity and the

constraint relatedness, without requiring manual mapping.

Existing strategies for evaluating schema-level matching models also fail to assess

the generalizability of the model on unseen elements within the schema. Often, the

models have seen training samples involving either the source or target schema ele-

ments, thereby offering an optimistic assessment of the predictive performance. We

propose a new experimental setting where we evaluate the schema matching models

on unseen elements to better assess the practical performance of the model. Our ex-

periments on six datasets across various domains not only verify that this is a harder

problem but also demonstrate the robustness of CONSchema on unseen data.

1.2 Related Work

We briefly summarize the existing schema matching work focused on schema-level

information for relational databases. Instance-level and hybrid-level models require

additional privacy-preserving mechanisms for sensitive domains like healthcare and

are beyond the scope of this work. We also note the connection between schema

matching and data discovery, where the purpose is to identify datasets that can be

joined together [7, 19]. Yet, data discovery predominantly focuses on instance- or

hybrid-based approaches as the rich profiles used to represent the data are acquired

from inspecting the data itself. Existing methods can be classified into 2 different

approaches based on the level of information: linguistic and constraint [2].

Linguistic-level approaches calculate similarity based on the name of the attributes

and/or the description of the attributes. Yu et. al. [44] argued that the semantics of

attributes can be captured by consulting a prescribed dictionary to obtain the aggre-

gation among fields. However, consulting a synonym lexicon may not fully illuminate

the relationships in the case of attribute names that contain abbreviations (e.g., DOB
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for date of birth, SSN for Social Security number, etc.). Nguyen et al(2019)[32] pro-

posed a probabilistic graphical model to identify the most uncertain mappings and

guide the manual validation work. Recent deep learning models have been intro-

duced to perform linguistic matching. ADnEV proposed a deep learning technique to

post-process the matching results from other matchers and the results outperformed

existing models [38]. However, the reliance on the quality of the matchers can hinder

the model’s performance. DITTO utilizes pre-trained language models to generate to-

ken sequences to accomplish the entity-matching task. It uses optimization techniques

such as adding domain knowledge, summarying long text, as well as augmenting the

training data to better train the model to handle complex situations. It outperforms

other EM models on the EM benchmark datasets in terms of the F1-score. SMAT

[45] utilized attention-over-attention to pretrain a language model for the schema at-

tributes, and obtained state-of-the-art performance on several schema-level matching

benchmark datasets.

The constraint-based approach relies on the meta-data of the attributes such as

the data types and value ranges, uniqueness, optionality, relationship types, and car-

dinalities [2]. A measure of similarity can be determined by data types and domains,

key characteristics (e.g., unique, primary, foreign), and relationships [1, 16, 31]. How-

ever, these approaches require a sufficient amount of constraint information to provide

a precise match. Several recent works have focused on the hybrid approach which

combines constraint-based and instance-based approaches [3, 10] to achieve flexible

and more robust matchers. Unfortunately, instance-based approaches can result in

privacy leakage. An extension of constraints to incorporate both the internal and

external structure as well as the cardinality between the attributes is similar to the

constraint-based approach. The idea is to match elements that appear together in a

structure [23] and often takes the form of a graph matching problem [35]. Unfortu-

nately, partial matches from sub-schemas can cause problems for structural matchers
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[2]. As a result, recent systems have combined a variety of diverse matchers including

linguistic and instance-based approaches to achieve better performance [5, 10, 30, 46].
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Chapter 2

ConSchema

2.1 Problem Statement

Given two table descriptions STS and STT , two attributes’ names NF1 and NF2, their

descriptions SF1 and SF2, and their constraints CF1 and CF2 (i.e., data type, value

ranges, primary key, and foreign key) from the source and target schema respectively,

we construct two sets of sequences: (1) the source sequence set SS = {NF1, STS +

SF1, CF1}, and (2) the target sequence set ST = {NF2, STT + SF2, CF2}. For the

example in Figure 1.1, the source target is then the sequence set {“the admissions

table gives information regarding a patient’s admission to the hospital”, “admittime”,

“admittime provides the date and time the patient was admitted to the hospital”,

“date” and size 13}. For the training data, there is an annotated label L(SS, ST ) where

0 denotes two fields are not related (i.e., not mapped to each other), and 1 denotes

two sentences are related (i.e., corresponding attribute-to-attribute matching). Thus

the task objective is to classify the semantic relation of each sentence pair with data

types to reveal the attribute-to-attribute matching.
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2.2 Model

2.2.1 Textual similarity embedding

The textual embedding captures the relatedness between the two attributes’ names

and descriptions. The idea is that the semantic similarity between the two at-

tributes serves as the proxy for relatedness. For example, SMAT constructs two

sentence pairs where a sentence consists of the attribute name and description (e.g.,

{NF1, STS + SF1}). The model then learns the textual similarity between the two

sentence pairs and is trained using the labels without encoding domain knowledge

explicitly. SMAT uses a hybrid encoding to represent the word tokens and uses

Bidirectional LSTM to understand the hidden semantics. Then, the Attention-over-

Attention module is used to compute the attention scores for the source and target

by considering the relationship between the words in the attribute and the words in

the description. The classification task is performed by connecting the representation

to a fully-connected layer and a softmax layer. SMAT is chosen as it has been pre-

viously shown to outperform BERT and other schema matching models for various

datasets [45]. CONSchema uses the last layer of SMAT to serve as the attribute em-

bedding (a 2-dimensional vector) that captures the semantic similarity between the

two attributes.

2.2.2 Constraint encoding

The key idea behind CONSchema is to fuse the schema constraints (i.e., CF1 and CF2)

to the textual embedding. This is done by encoding the constraints into a numerical

vector format such that a downstream classifier can then learn the importance without

requiring previous knowledge. For the purpose of our experiments, we focus on the

data types (e.g., varchar, datetime, int, numeric), the data size for the contents

(2 versus 128 character length), and the primary and foreign key constraints. To
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Figure 2.1: Illustration of constraint encoding on MIMIC dataset.

represent the data type, we use a one-hot encoding where the value is 1 for the

corresponding feature and 0 elsewhere. For example, if the attribute type is a String,

then the isString feature will be set to be 1. Key constraints will also be encapsulated

using the one-hot encoding mechanism. The raw data size is captured as a numeric

element for the size feature. We note that this representation avoids the need to create

ad-hoc rules for each domain. Further constraints such as uniqueness, optionality,

and functional dependencies can be captured in a similar fashion using the one-hot

encoding representation, but such information is not readily available in the datasets

used for our experiments.

Figure 2.1 provides an example of the constraint encoding for the MIMIC “admit-

type” attribute and OMOP “preceding visit occurrence id” attribute (details of the

dataset are provided in Chapter 3). For MIMIC, the attribute is a date type with a

size of 22, thus the isDate feature for the source (i.e., isDate 2) is set to be 1 while

the other data types remain 0 (i.e., isVarchar 2, isInt2 2, isInt4 2). In addition, the
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Figure 2.2: Illustration of constraint encoding on IMDB dataset.

size is set to be 22 (i.e., size 2 = 22). Similarly, for the OMOP attribute, since it is

an integer of size 10, the vector representation is all zeroes except isInt4 1 = 1 and

size = 10.

Figure 2.2 provides another example of constraint representation for mapping

movies between two databases (IMDB and Sakila). For the “title type” attribute in

the IMDB table “title basics” (string type of size 70), the constraint representation

has isString set to be 1 and the size to 70. Similarly, the corresponding attribute

in Sakila, the “category id” attribute from the “film category” table, is of type in-

teger with a range of 20 and is a foreign key. Since the attribute is a foreign key,

the vector representation then consists of all zeros except for size=20, isInt=1, and

isForeignKey=1.
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Figure 2.3: Illustration of CONSchema’s structure.
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Final classification

The textual similarity embedding and the constraint encoding representations are

concatenated together to create the final vector representation. This fused vector

encapsulates the semantic relation and the constraints between the two attributes and

is then used with the annotated labels to train a relatively lightweight downstream

classifier. For the purpose of our experiments, we explore the use of the random

forest (RF) [8] and a simple multi-layer perception (MLP). RF can handle a variety of

features and is robust to outliers. It can also find non-linear interactions amongst the

features without necessitating a significant number of labeled samples. MLP consists

of multiple layers of neurons where the activation function is used before passing the

output to the following layer. With increased number of hidden layers, MLP is able to

capture more complex information, especially when the input is non-linear. Moreover,

both are relatively lightweight compared to an end-to-end deep learning model which

will incur significant training and inference overhead. Our preliminary experiments

with other simpler machine learning models such as logistic regression did not yield

better predictive performances. The whole architecture of CONSchema is shown in

Figure 2.3.
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Chapter 3

Experiment Setting

Our experiments are designed to evaluate the accuracy and robustness of the model

to unseen attributes. Existing evaluation strategies involves randomly partitioning

the attribute pairs into training, validation, and test datasets. Under this setting, it

is likely that every source attribute occurs in at least 1 pair sample in the training

dataset. Thus, evaluation of the test set provides an optimistic assessment of the

model performance as partial information on the test pairs has been seen by the

model.

In the real world, the algorithm should be able to determine the mapping for

an entirely unseen element. To mimic this scenario, we propose an unseen partition

evaluation strategy. Instead of randomly dividing the dataset based on the pairs,

we randomly partition the source attributes and then pair them with all the target

attributes. Thus the source attributes that occur in test will never appear in train or

validation. As an example from 1.1, the admittime attribute from MIMIC admission

table and all its pairs appear in the training set and would not be seen in the validation

or the test set.

Our experiments evaluate the schema-matching models under both strategies: the

existing random partition and our unseen partition. For both scenarios, we maintain
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a similar partition ratio of 80-10-10 for train, validation, and test, respectively. We

measure the performance of the models using precision, recall, and F1 score for the

positive class. The calculations for the three measures are as follows.

Precision =
TP

TP + FP
(3.1)

Recall =
TP

TP + FN
(3.2)

F1 =
2 ∗ Precision ∗ Recall
Precision + Recall

(3.3)

Since the deep learning based models are sensitive to the initialization of the parame-

ters, we train 5 versions of the model using different initialization weights and report

the mean value across the 5 models.

3.1 Datasets

We assess the models on the OMAP benchmark, a schema-level matching healthcare

dataset [45], and 3 popular schema matching benchmark datasets, IMDB, Real Estate,

and Thalia, used for several existing studies [34, 13, 6]. OMAP maps three different

healthcare databases to the Observational Medical Outcomes Partnership (OMOP)

Common Data Model standard to facilitate evidence-gathering and informed decision-

making [33]. The description of each dataset is provided below.

• MIMIC-III [24]: A publicly available intensive care unit (ICU) relational database

from the Beth Israel Deaconess Medical Center.

• Synthea [42]: An open-source dataset that captures the medical history of over

1 million Massachusetts synthetic patients.

• CMS DE-SynPUF [9]: A set of realistic claims data generated from 5% of

Medicare beneficiaries in 2008.
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Table 3.1: Summary statistics of the 6 datasets used in our experiments. The top
4 rows capture the conversion statistics, the next 10 rows represent the data type
distribution of the schema, and the last 3 rows provide the character length of the
textual descriptions.

MIMIC Synthea CMS Real Estate IMDB Thalia

# tables 25 12 5 3 23 21
# attributes 240 111 96 76 129 167
# related 129 105 196 66 45 52
# pairs 64080 29637 25632 1323 2350 1002

Varchar/String% 47 77 53 46 33 70
Date/Time% 19 14 14 - 19 14
Bool% - - - 14 3 -
Int2% 9 4 12 - - -
Int4% 15 1 21 29 33 16
Float% - - - 11 5 -
Array% - - - - 7 -
Primary Key% - - - - 16 -
Foreign Key% - - - - 20 -
Other% 10 4 0 - - -

Min length 64 45 64 4 63 14
Avg length 255 219 232 12 132 22
Max length 688 688 688 20 306 35

• Real Estate [14]: A set of data with information about the houses for sale as

well as the sales agents.

• IMDB [36]: A collection of movies and shows information to map between the

IMDB dataset and the target schema Sakila can be found in this file.

• Thalia [21]: The Test Harness for the Assessment of Legacy Information Inte-

gration (Thalia) is a publicly available set of university course catalogs that are

standardized for benchmarking data integration approaches.

For each dataset, the element table name with its descriptions, attribute column

name with its descriptions, attribute data type, and attribute key constraints are

used to construct the sequence ({N,SS+F , C}). The label annotation is based on the

final extract, transform and load design. If the table-column in the source schema

was mapped to a table-column in the target schema the label is 1, otherwise it is 0.

The summary statistics for the 6 datasets are summarized in Table 3.1.
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3.2 Baseline Methods

The two versions of CONSchema (i.e., CONSchema-RF and CONSchema-MLP) are

compared against four other schema-level matching baseline models.

• DITTO [27]. A state-of-the-art entity matching model based on the pre-trained

Transformer model. It casts entity matching as a sequence-pair classification

problem. For the experiments, only the schema-level information and the asso-

ciated tokens are used as input.

• SMAT [45]: A schema matching model that utilizes attention-over-attention

to generate embeddings from the attribute name and description and then feeds

the embedding to a multi-layer perceptron to conduct the classification task.1

• CON-RF: A random forest model that only uses the constraint encoding from

Sec. 2.2.2 as an input.

• CON-MLP: An multi-layer perceptron model that only uses the constraint

encoding from Sec. 2.2.2 as an input.

• SMAT-RF: A random forest model that only uses the textual similarity em-

bedding from Sec. 2.2.1 as an input. The main difference between SMAT

and SMAT-RF is the classification model (i.e., multi-layer perceptron versus a

random forest).

The optimal random forest and multi-layer perceptron hyperparameters are de-

termined using grid search and evaluation on the validation dataset.

1Code available at https://github.com/JZCS2018/SMAT

https://github.com/JZCS2018/SMAT
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Chapter 4

Results

4.1 Random Partition Evaluation

Table 4.1 summarizes the results for the 6 datasets under the common random parti-

tion strategy. For illustrative purposes, we present the RF-version of CONSchema(i.e.,

CONSchema-RF). CONSchema-RF achieves the highest F1 score across all 6 datasets,

with an increase ranging from 1.3− 14.2. Most notably, our model can offer up to a

2× improvement in precision. CONSchema also yields the best performance across

all three metrics for Thalia and Real Estate. However, there is a trade-off in terms of

recall for the substantial lift in precision when compared to SMAT. There is a con-

siderable decrease for MIMIC and CMS, whereas there is a slight drop for Synthea

and IMDB.

The DITTO and SMAT results on the Real Estate dataset demonstrate that

textual embeddings can work even without long descriptions, as it has the smallest

average length of characters (12 per attribute). The results also illustrate the im-

portance of using SMAT as the textual similarity embedding module as it achieves

better F1 performance than DITTO for all 6 datasets.



18

Table 4.1: Comparison of precision (P), recall (R), and F1 (F) on the 6 datasets under
the random partition strategy. The best performance is bolded and the second best
is underlined.

Datasets
DITTO SMAT CONSchema-RF

P R F1 P R F1 P R F1

MIMIC 0.003 0.462 0.006 0.115 0.846 0.202 0.242 0.550 0.242
Synthea 0.007 0.636 0.013 0.244 0.909 0.385 0.527 0.822 0.527
CMS 0.298 0.334 0.315 0.339 0.950 0.500 0.432 0.633 0.513
IMDB 0.626 0.695 0.659 0.687 0.933 0.728 0.778 0.880 0.801
Real Estate 0.872 0.772 0.819 0.914 0.857 0.883 0.971 0.857 0.910
Thalia 0.108 0.332 0.163 0.141 0.314 0.191 0.207 0.457 0.282

Table 4.2: Comparison of precision (P), recall (R), and F1 (F) on the 6 datasets
under the unseen partition evaluation strategy. The best performance is bolded and
the second best is underlined.

Datasets
DITTO SMAT CONSchema-RF

P R F1 P R F1 P R F1

MIMIC 0.002 0.323 0.004 0.261 0.467 0.284 0.297 0.525 0.341
Synthea 0.004 0.282 0.008 0.409 0.720 0.457 0.452 0.460 0.452
CMS 0.156 0.321 0.210 0.289 0.821 0.426 0.382 0.811 0.513
IMDB 0.149 0.203 0.172 0.107 0.125 0.110 0.171 0.125 0.133
Real Estate 0.138 0.109 0.122 0.900 0.167 0.279 0.357 0.267 0.297
Thalia 0.117 0.269 0.163 0.120 0.400 0.181 0.223 0.720 0.328

4.2 Unseen Partition Evaluation

4.2.1 CONSchema-RF

Table 4.2 summarizes the results under the unseen evaluation strategy, where source

attributes in the test dataset are guaranteed not to be seen during training. First, we

highlight the noticeable performance drop for DITTO across all but Thalia datasets

under this evaluation strategy when compared to the results in Table 4.1. SMAT and

CONSchema-RF also experience performance degradation, although it is not uniform

across all measures and datasets. Recall and precision are consistently impacted on 4

of the 6 datasets except for Synthea and Thalia. This suggests the performance under

random splits tends to overestimate the recall performance as having seen some of

the pairings with the attributes can help the model generalize better on the test set.

The results in Table 4.2 are generally consistent with the findings on the random
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Table 4.3: Comparison of precision (P), recall (R), and F1 (F) on the 6 datasets
under the unseen partition evaluation strategy (continued from Table 4.2). The best
performance is bolded and the second best is underlined.

Datasets
Con-RF SMAT-RF

P R F1 P R F1

MIMIC 0.249 0.500 0.286 0.168 0.200 0.128
Synthea 0.077 0.300 0.122 0.381 0.220 0.271
CMS 0.208 0.278 0.238 0.374 0.856 0.520
IMDB 0.053 0.150 0.078 0.022 0.125 0.035
Real Estate 0.177 0.800 0.289 0.466 0.167 0.232
Thalia 0.104 0.960 0.187 0.114 0.560 0.189

partition evaluation. CONSchema achieves the highest precision across 5 of the 6

datasets and second best for the Real Estate dataset. It yields the best F1 score

for MIMIC, Real Estate, Thalia, and CMS while also obtaining the second-best F1

score for Synthea and IMDB. The drop in recall is less than on the random partition

evaluation for both MIMIC and CMS when compared to SMAT. Moreover, even

under the harder evaluation strategy, CONSchema outperforms DITTO’s predictive

performance for the easier evaluation strategy.

Table 4.3 summarizes the results for the RF model using only constraints or

SMAT embeddings (i.e., Con-RF and SMAT-RF, respectively). The Con-RF results

illustrate the importance of our constraint vector representation. Without any tex-

tual similarity information, the model achieves better F1 scores across all but IMDB

datasets when compared with DITTO. The F1 score is also better than SMAT for

MIMIC, Real Estate, and Thalia. This provides evidence that the constraints offer

further information that can be utilized to achieve more precise correspondences.

From the results, we observe that RF can result in overfitting and poor general-

ization of unseen data without the additional constraint representations. Generally,

passing the 2-dimension representation from the last layer of SMAT to the RF (SMAT-

RF) results in a decrease in performance for MIMIC, Synthea, IMDB, and Real Estate

across all three measures. This suggests that the RF model memorizes the training

data and thus is unable to generalize well to the unseen data. Surprisingly, CMS and
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Thalia are the exceptions to this as the results for SMAT-RF are better than that of

SMAT.

As shown in Table 4.2, the F1 score of CONSchema-RF is smaller than SMAT

on Synthea but not on the other datasets. To delve into the potential cause of this

performance degradation, we analyze the constraint representation itself. The middle

rows of Table 3.1 summarize the mean, or frequency, of each encoded column for its

corresponding dataset. We observe that Synthea has the highest proportion of the

Varchar datatype when compared to the other datasets while being the second largest

dataset. Given the prevalence of varchar in the dataset, we posit that CONSchema-

RF cannot learn the mapping to the other data types as the constraint offers little

additional information. On the other hand, Real Estate, IMDB, MIMIC, and CMS

have a diversity of data types across the different categories, thereby yielding better

representations as observed by the improved F1 score compared to SMAT. For Thalia,

its better performance may be a result of the reduced dimension to avoid overfitting.

Thalia contains the least amount of samples in our experiments. The constraint

statistics also illustrate the importance of appropriately specifying the data type

and data range in the database schema. Ambiguous information is likely to hurt

CONSchema-RF more than helping it to achieve better results.

4.2.2 CONSchema-MLP

Table 4.4 summarizes the result under unseen partition using CONSchema-MLP and

CON-MLP. The results under the MLP classifier illustrate a significant improvement

in terms of F-1 score in all datasets except MIMIC compared to the results under RF

from Table 4.2. The drop in performance for the MIMIC dataset may be attributed to

the low performance of passing solely the constraint features to the MLP classifier as

observed in the results in Con-MLP. For MIMIC, using only the constraints as features

makes the MLP classifier overestimate the number of positive samples, leading to a
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Table 4.4: Comparison of precision (P), recall (R), and F1 (F) on the 6 datasets
under the unseen partition evaluation strategy using MLP classifier.

Datasets
Con-MLP CONSchema-MLP

P R F1 P R F1

MIMIC 0.041 1.000 0.079 0.247 0.550 0.298
Synthea 0.077 0.300 0.122 0.430 0.680 0.510
CMS 0.214 0.333 0.261 0.416 0.933 0.575
IMDB 0.079 0.375 0.130 0.224 0.150 0.162
Real Estate 0.214 1.000 0.353 0.470 0.400 0.352
Thalia 0.167 1.000 0.286 0.252 0.760 0.374

low precision score (but a perfect recall) and a low F1 score. It is also a general trend

in Table 4.4 that Con-MLP achieves a high recall and low precision. The addition

of SMAT score helps CONSchema-MLP to grasp the semantic similarity between the

columns, therefore boosting the precision of every dataset and making more accurate

positive predictions than Con-MLP.

4.3 Explaining CONSchema Matching Decisions

To better understand the predictions of CONSchema-RF, we investigate the impor-

tance of the features and how they differ across the three datasets. Our analysis is

based on the SHapley Additive exPlanations (SHAP) framework [29] to better under-

stand the impact with respect to the label. SHAP is a popular explainable artificial

intelligence framework that is model-agnostic. It is an additive feature attribution

method and explains the change in the expected model prediction when conditioning

on that feature. Although RF provides feature importance, SHAP has been shown

to have the following useful properties: local accuracy, missingness, and consistency

[28]. Moreover, SHAP provides the capability to tease out the feature differences with

respect to the class.

The SHAP analysis is performed on the best-performing model from the 5 different

versions. Figure 4.1 provides the summary plots of the 6 datasets where the features

are sorted in descending order of their overall impact on the model output. The Y-
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(a) IMDB (b) Synthea

(c) Real Estate (d) Thalia

(e) Mimic (f) CMS

Figure 4.1: Illustration of the SHAP values to explain the impact of the features in
CONSchema-RF.
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axis labels with 1 (i.e., size 1) represent the constraints of the source dataset, whereas

the 2 denote the constraints of the target dataset. The plots illustrate that the SMAT

output score is one of the most important features across all datasets, which is not

surprising given the results from Table 4.2.

For the IMDB dataset (Figure 4.1a), we observe that the size of the data, the

array data type, and whether or not the entry is a primary key all play an important

role in making the prediction. IMDB has the richest constraints compared to all

the other dataset, therefore CONSchema is able to outperform SMAT in terms of

F1 and precision. On the Real Estate dataset (Figure 4.1c), the data types play

an important role as boolean, integer, and string have the top SHAP values outside

of the SMAT score. This illustrates that diversity of constraints can also improve

performance, especially with respect to recall. However, in the process of improving

recall, CONSchema sacrifices on precision (as SMAT achieves a high precision with

low recall). In Thalia (Figure 4.1d), we observe that the data types that matter are

integer and time as the string type is common and thus offers limited information.

SHAP also allows us to assess the impact of the features on individual training

instances. Figure 4.2 provides more details of the Shapley values for the positive and

negative correspondences from the MIMIC dataset. In the case of both positive and

negative, the output score plays an essential role in the prediction as they typically

have high Shapley values (i.e., redder). More interesting is the difference in impor-

tance in the constraint type between the two classes. For the positive label (Figure

4.2b), the model learns to differentiate based on whether the data type on the source

schema is an integer (isint4 1) versus the data type of the target schema is a date (is-

Date 2) or integer (isint4 2). This can be contrasted with the negative label (Figure

4.2a), where the determination is based on whether both data types are date. The

summary plot also illustrates some of the limitations of a constraint-based only ap-

proach, as having matching data types does not necessarily mean the two attributes
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(a) Negative (b) Positive

Figure 4.2: Illustration of the SHAP values for the positive and negative instances in
MIMIC.

should be matched. Instead, fusing the semantic similarity and the constraints allows

CONSchema to better identify whether there is a correspondence.

Figure 4.3 demonstrates the difference between the SHAP scores of CONSchema us-

ing Random Forest (RF) and Multi-Layer Perceptron (MLP). As observed in Figure

4.3b for Random Forest, the outputscore feature (i.e., SMAT score) has high impor-

tance whereas the other features have minimal impacts on the predictions. For the

model using Multi-Layer Perceptron (Figure 4.3a), all the constraints except the size

features contribute noticeably to making the positive and negative predictions. Since

MLP involves non-linear activation functions as well as multiple layers of hidden lay-

ers, it is able to learn the weights of each feature through training and validation.

Random Forest depends significantly on the SMAT score to make its predictions while

MLP is able to take advantage of the data type constraints that yield more accurate

results as shown in Table 4.2 and 4.4.
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(a) MLP (b) RF

Figure 4.3: Illustration of the SHAP values for the Real Estate dataset using MLP
and RF.

4.4 CMS Case Study

To better understand the benefits and limitations of CONSchema, we performed a

qualitative study on the CMS dataset by assessing three different scenarios. The first

is a positive pair that maps the CMS icd9 dgns cd attribute from table inpatientclaims

(varchar type of size 100 with a description of “claim diagnosis code 1 - claim diagnosis

code 10”) to the OMOP cause source concept id element from table death (int4 type

of size 10 with a description of “a foreign key to the concept that refers to the

code used in the source. note this variable name is abbreviated to ensure it will be

allowable across database platforms.”). CONSchema correctly identifies the mapping

over SMAT even though the description is not quite similar (claim diagnosis code to

foreign key referring to death). However, the type and constraint size provide some

indication that they might be potentially related.

The second is a negative pair where the CMS clm from dt attribute from the

inpatientclaims table (date type of size 13 with the description “claims start date”)

does not map to the OMOP condition start datetime element from the condition

occurrence table (date type of size 296 with the description “the date and time when

the instance of the condition is recorded”). CONSchema incorrectly identifies a match
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but SMAT does not. We observe that the text (the start date of a claim and the start

time of a medical condition) and the two constraints (date types) are similar, which

causes CONSchema to predict a higher probability of a match.

The last scenario is a positive pair that matches the CMS sp cncr attribute from

the beneficiary summary table (int2 type of size 5 with the description “chronic

condition: cancer”) and the OMOP cohort definition id element from the cohort

table (int4 type of size 10 with description “a foreign key to a record in the cohort

definition table containing relevant cohort definition information”). Both SMAT and

CONSchema incorrectly classify this sample as the textual description of OMOP is

too broad (no text related to the chronic condition cancer), and the constraint type

encoding does not convey enough information.

4.5 Precision Recall Analysis

To better understand the trade-off in precision and recall, Figure 4.4 and Figure

4.5 plot the precision-recall curve for MIMIC and Synthea datasets. As can be ob-

served for MIMIC, the precision of SMAT is lower than CONSchema-RF for recall

< 0.25. However, for recall between 0.25 and 0.5, SMAT precision is identical to

ConSchema-RF, before dropping below CONSchema-RF and CONSchema-MLP for

the remaining recall values. Although there isn’t a significant difference, the two

CONSchema methods using RF and MLP demonstrate the usefulness of adding con-

straints to the features. It can be observed on this curve that CONSchema-MLP

does not perform as well as CONSchema-RF in MIMIC dataset as its precision lies

generally below CONSchema-RF except for recall between 0.15 and 0.25. Part of

the reason is that as observed in Table 4.4, the precision score for CON-MLP is the

worst in MIMIC among all the dataset. It suggests that the constraints themselves

have limited importance when performing classification using Multi-Layer Perceptron



27

Figure 4.4: Precision Recall Curve for the MIMIC dataset.

compared to Random Forest.

A similar trend can be observed for the Synthea dataset shown in Figure 4.5

as well. For recall between 0.2 and 0.3, ConSchema-RF and CONSchema-MLP

outperform SMAT in terms of precision. However, for recall between 0.3 and 0.5,

CONSchema-MLP performs significantly better than all other models. For recall

larger than 0.5, there is no consistent trend as for some points SMAT provides better

precision whereas, for others, CONSchema-RF and CONSchema-MLP yield the same

or higher precision. These results highlight that at the lower recall rates, the con-

straints help better differentiate the positive matches from the negative matches when

using textual embeddings. This can also be seen using the Con-RF and Con-MLP

results, which can yield comparable precision at lower recall rates.
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Figure 4.5: Precision Recall Curve for the Synthea dataset.
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Chapter 5

Conclusion

This dissertation proposes CONSchema, a model that incorporates schema constraints

to improve the predictive performance of an existing schema-level matching model.

As it does not require instance-level information and avoids directly encoding domain

knowledge regarding the source and target systems, CONSchema can be used for

privacy-sensitive applications. We also propose a new evaluation strategy to better

understand the generalizability of existing models. The experiments on 6 datasets

illustrate that CONSchema can serve as the new state-of-the-art model for schema-

level matching tasks.

There are several limitations of our work. First, the F1 scores are too low to

be used in practice. Yet, the improvement in precision can facilitate less manual

matching by prioritizing the predicted positive cases. Another limitation is the need

for sufficient labels. We posit that contrastive learning techniques and data aug-

mentation approaches may reduce the need for annotations and improve predictive

performance. Finally, CONSchema has only been demonstrated for relational schemas

and should be extended to encompass a variety of data (e.g., nested data models and

unstructured data) and data discovery tasks.
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