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Abstract

High-dimensional Universal Dependence Discovery

By Hesen Peng

The emergence of high-throughput data in biological science and computer networks

has generated novel challenges for statistical methods. Nonlinear relationships and

multivariate interactions are abundant. The sheer volume of high-throughput data

has limited the application for traditional case-by-case analysis methods, whose model

assumptions, like linearity, are often not supported in high-throughput scenarios.

To meet these challenges, we developed Mira score, a novel probabilistic associa-

tion statistic that accounts for high-dimensional universal dependence. Mira score

is defined as a function of observation graph, and thus circumvents the curse of di-

mensionality in high-dimensional data. The superior statistical property enjoyed by

Mira score has led to our development of an efficient network reverse-engineering

procedure for multivariate dependence. As an example, the procedure has been ap-

plied to celiac disease and lung cancer pathway interaction analysis, and has achieved

interesting findings.

Further more, in the supervised-machine learning scenario, we proposed SeMira pro-

cedure, an efficient variable selection procedure that accounts for high-dimensional

universal dependence. The SeMira procedure is capable of identifying universal proba-

bilistic association between multivariate response variables and high-dimensional pre-

dictors. The highly desirable statistical property of the SeMira procedure is discussed

and numerical study is conducted using both simulated and real genetic pathway data.
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Chapter 1

Introduction

1.1 High-dimensional nonlinear associations

The emergence of high-throughput data in biology and computer science has moti-

vated the proposal of universal dependence statistic. Universal dependence is defined

to be capable of accounting for probabilistic association of arbitrary type between ar-

bitrary number of variables. For example, association study in social network analysis

aims at identifying the factors that affects user behaviors in social network, whose in-

teractions involve the complicated interaction of multiple random variables and may

go well beyond linear functions (Boyd and Ellison [2008]). Functional MRI analy-

sis aims at locating interrelated brain regions connected to disease symptoms. The

response for each brain region is represented using multivariate time series through

fMRI observation. And major signals have been reported to follow nonlinear rela-

tionships with excitation input (Toyoda et al. [2008], Johnston et al. [2008], Gautama

et al. [2003]). Genetic pathway analysis aims at discovering higher-level gene expres-

sion interactions between pathways defined by existing biological findings. And gene

expression dependency between pathways may feature the co-regulation of multiple
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genes (Li [2002], Li et al. [2004]) and nonlinear relationships (Hasty et al. [2001],

Ritchie et al. [2003]).

A plethora of statistical methods have been proposed to meet the challenge of high-

dimensional nonlinear dependence, and might encompass the numerous fields of re-

search (see Hastie et al. [2009] for a comprehensive survey). Dimension reduction

extracts summary statistics through a linear combination of multiple variables (Zou

et al. [2006], Tamayo et al. [2007], Mashal et al. [2005]), but may discard relevant in-

formation by ignoring secondary components. Mutual information by Margolin et al.

[2006] has been widely applied in the discovery of nonlinear dependence, but suffer

from curse of dimensionality when the nonlinear dependence between more than two

variables are considered. Liquid association is an innovative method developed to

study the interaction involving three and more gene expressions (Li et al. [2004], Li

[2002]) of specific interaction types. Brownian covariate is able to account for univer-

sal types of dependencies (Szkely and Rizzo [2009]), but lacks the expandability into

efficient variable selection procedure.

Great advancement in variable selection strategy has been made in the recent decade.

The Lasso family and related penalized regression methods (Tibshirani [1996], Zou

[2006], Fan and Lv [2008], Fan and Li [1999], Hastie and Efron [2007]) are capable

of efficiently selecting variables of linear association in high-dimensional scenario.

Slice inverse regression is capable of conducting variable selection that accounts for

functional nonlinear association between response variable and linear combination

of predictors (Li [1991], Ferre [1998]). Numerous pairwise mutual-information-based

heuristic approach have been proposed to account for nonlinear association (Peng

et al. [2005], Durand et al. [2007], May et al. [2008]). However, no method upon

our literature survey has the capability of conducting variable selection for universal

dependence in high-dimensional data.
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1.2 Road map towards universal dependence dis-

covery

Before proceeding, we would like to give a more mathematically explicit definition of

the problem. Given random vectors (X1, . . . , Xp) and (Y1, . . . , Yq), we are interested

in making statistical inferences between these two random vectors given n pairs of

independent samples. In this dissertation, we endeavor to develop a suit of statistical

methods that is capable to

1. identify probabilistic dependence of arbitrary type,

2. detect probabilistic dependence of arbitrary dimension.

In this dissertation, we have focused on the development of universal dependence

discovery methods for continuous variables. Universal dependence discovery and in-

ference methods involving categorical variables has been briefly investigated during

our research and will be presented only in future essays. Our work can be outlines in

two stages.

In Chapter 2, we will present our work on Mira score. Mira score is a universal

dependence association statistic that is capable to identify continuous probabilistic

dependence of arbitrary type involving arbitrary number of variables. The Mira score

is defined as 1-nearest neighbor edge sum of the observation graph. This graph-based

definition will be capable of circumventing the curse of dimensionality, and account

for multivariate universal associations. Mira score enjoys asymptotic normality in

large samples. We proposed Gaussian plug-in permutation test of association test the

existence of universal association.

In Chapter 3, we extended out work on Mira score and proposed SeMira procedure

for variable selection. SeMira procedure is capable to conduct variable selection on
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high-dimensional predictors having universal association with multivariate responses.

SeMira has computational complexity of O(n2p), which means that the computational

burden of variable selection while accounting for universal dependence only increase

linearly with the number of predictors.

On the application side, the Mira score permutation test and SeMira procedure have

been applied to biological data. We developed network reverse engineering algorithm

based on Mira permutation test in Chapter 2 to investigate changes in pathway in-

teractions in disease state compared with normal state. The algorithm has been

applied to lung cancer data set (NCBI data set GDS2771) and celiac disease data

set (NCBI data set GDS3646) to reveal differentially interacting pathways in dis-

ease state. Our findings have been evaluated as consistent with biological mechanism

through literature survey. In Chapter 3, we applied the SeMira procedure to identify

genetic pathways that are associated with the white blood cell counts in primary acute

lymphoblastic leukemia (ALL) study with methotrexate treatment. The majority of

identified pathways are related to the protein creation process.
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Chapter 2

High-dimensional Universal

Dependence Statistic

2.1 Introduction

Given random vectors (X1, . . . , Xp) and (Y1, . . . , Yq), we are interested in testing the

existence of probabilistic dependence between these two vectors given n pairs of inde-

pendent samples. In this chapter we propose the Mira score, a universal dependence

statistic that is capable of

1. identifying probabilistic dependence of arbitrary type,

2. detecting probabilistic dependence of arbitrary dimension.

Universal dependence statistic has been motivated by the emergence of high-throughput

data in biology and computer science. Association studies in social network analysis

aims at identifying the factors that affects user behaviors in social network, whose

interaction may go well beyond linear functions (Boyd and Ellison [2008]). Func-

tional MRI analysis aims at locating interrelated brain regions connected to disease
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symptoms, where major signals have been reported to follow nonlinear relationships

with excitation input (Toyoda et al. [2008], Johnston et al. [2008], Gautama et al.

[2003]). Pathway analysis aims at discovering higher-level gene expression interac-

tions between pathways defined by existing biological findings. And gene expression

dependency between pathways may feature the co-regulation of multiple genes (Li

[2002], Li et al. [2004]) and nonlinear relationships (Hasty et al. [2001], Ritchie et al.

[2003]).

A plethora of statistical methods have been proposed to meet the challenge of high-

dimensional nonlinear dependence (see Hastie et al. [2009] for a comprehensive sur-

vey). Dimension reduction extracts summary statistics through a linear combination

of multiple variables (Zou et al. [2006], Tamayo et al. [2007], Mashal et al. [2005]), but

may discard relevant information by ignoring secondary components. Mutual infor-

mation by Margolin et al. [2006] has been widely applied in the discovery of nonlinear

dependence, but suffer from curse of dimensionality when the nonlinear dependence

between more than two variables are considered. Liquid association is an innovative

method developed to study the interaction involving three and more gene expressions

(Li et al. [2004], Li [2002]) of specific interaction types. Brownian covariate is able to

account for universal types of dependencies (Szkely and Rizzo [2009]), but lacks the

expandability into efficient variable selection procedure.

We endeavor to address the problem of high dimensional universal probabilistic de-

pendence discovery from a graph theory approach. This computationally efficient

approach circumvents the necessity of joint probability density estimation and does

not suffer from the curse of dimensionality. Thus we name the statistic as “Mira”

score, short for the self-referential phrase Mira Is Really Adaptive.
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2.2 Theory

Denote n-pairs of random samples as {xi1, . . . , xip, yi1, . . . , yiq}, with i = 1, . . . , n

where xij, yik are the observation for Xj and Yk in the i-th pair of observation,

respectively. In the Rp+q space, we define a complete graph with n vertices where

the coordinates for the i-th vertex equals to (xi1, . . . , yiq). We define sample distance

matrixD = (dij) with inter-observation distance dij =
∑p

l=1 |xil−xjl|+
∑q

k=1 |yik−yjk|

for i, j = 1, . . . , n. Then Mira score is defined as the 1-nearest neighbor edge sum for

the observation graph. More specifically,

S =
n

∑

i=1

d(i) (2.1)

where d(i) = minj 6=i dij is the nearest neighbor edge length for the i-th observation.

To put each variable on a comparable scale, we assume that samples for each variable

have been standardized using the normal Gaussian score transformation with mean

0 and unit variance. The n observations of the i-th variable are compared to obtain

the ranks ri1, . . . , rin. And then each xij of the vector is replaced by Φ−1(rij/(n+1)) ,

where Φ(·) is the cumulative normal distribution (Yu et al. [2011]). Here dij is defined

using Manhattan distance for the ease of mathematical deduction of our working

paper, in which an efficient variable selection procedure for universal dependency is

proposed. We would like to point out that the definition of dij may be substituted

with Euclidean or any other reasonable distance metrics.

Given (X1, . . . , Xp) and (Y1, . . . , Yq) of fixed marginal distribution, samples from joint

distribution with inter-group probabilistic dependence may expect a smaller 1-nearest

neighbor edge sum than samples from the independent case. This inspiration for

Mira score comes from observing graphical distributions in 2-dimension cases. For

illustration consider a bivariate normal case where (X, Y ) follow bivariate normal

7
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Figure 2.1: Scatter plot of 400 random samples drawn from (X, Y ) with ρ = 0 (left,
Mira score S = 42.57) and ρ = 0.7 (right, Mira score S = 37.83). Dotted line connects
two observation points if one is the nearest neighbor of another.

distribution of mean 0 and variance 1, with correlation coefficient ρ. Figure 2.1 is

the scatter plot for 400 random samples drawn from (X, Y ) with ρ = 0 or ρ =

0.7. Samples for each variable were Gaussian standardized to have 0 mean and unit

variance. Both cases have identical marginal distribution. The Mira score, calculated

as the total edge length of the nearest neighbor connection, is observed to be smaller

for the ρ = 0.7 case than its independent counterpart.

Quantities similar to Mira score were first utilized to assess goodness of fit in literature

dating back to 1980s (Bickel and Breiman [1983], Penrose and Yukich [2001]). Nearest

neighbor based entropy estimate was also exploited the observational spatial property

to describe multivariate dependencies (Mnatsakanov et al. [2008], Leonenko et al.

[2008], Beirlant et al. [1997]). However, no efficient procedure has been proposed for

the discovery of high-dimensional dependency based on these valuable findings upon

our literature survey.

Mira score enjoys asymptotic normality following Bickel and Breiman [1983]. That

is, regardless of the joint distribution of (X1, . . . , Yq) or the norm used to define the

distance matrix D, if (xi1, . . . , yiq)
n

i=1 is a sample from the joint distribution whose

8



dependence is characterized by the Mira score S, then if we calculate the Mira score,

we will have

1√
n
(S − E(S)) → N(0, σ2) as n → ∞ (2.2)

where E(S) is the expectation of Mira score S, and σ is the asymptotic standard

deviation. This property leads to the proposal of Gaussian plug-in permutation test

in the next section, and dramatically reduces the computational burden of simulat-

ing the Mira score distribution under the null hypothesis of no dependence between

(X1, . . . , Xp) and (Y1, . . . , Yq).

2.2.1 Permutation test of association

We propose a Gaussian plug-in permutation test of probabilistic dependence between

(X1, . . . , Xp) and (Y1, . . . , Yq) give n pairs of independent samples {(xi1, . . . , yiq)}ni=1.

Test statistic is generated as follows:

1. Calculate sample Mira score S0. Set r = 1.

2. Permute the observation indeces for observations from Y , and generate new

permuted sample {(xi1, . . . , xip, y(i)1, . . . , y(i)q)}ni=1. Calculate new Mira score Sr

based on permuted sample.

3. Set r = r + 1

4. Repeat the above two steps R times.

5. Calculate µ̂ =
∑

Sr/R, σ̂2 =
∑

(Sr − S̄)2/(R− 1).

6. Test p-value equals to Φµ̂,σ̂(S0), where Φµ̂,σ̂(·) is the cumulative density function

for normal distribution with mean µ̂ and standard deviation σ̂.

9



By default the number of permutations R is set to 100. The advantageous asymptotic

normality of Mira score guarantees the performance of the test even with a small

number of permutations.

2.3 Numerical Study

In this section we conduct numerical study to investigate the power of the Gaussian

score permutation test. Three major aspect of comparison are considered. First,

we investigated the power trade-off in bivariate cases compared with linear regression

test of significance. Then we conducted simulation study in high-dimensional scenario

and power comparison was make with competing methods. Finally, we studied the

specificity of Mira score permutation test by evaluating the false positive rate under

numerous null hypothesis settings.

2.3.1 Comparison with linear regression test of significance

In order to identify probabilistic dependence of arbitrary type, Mira score has made

no distribution and functional assumptions. Thus the Mira score is expected to have

weaker power in the perfectly linear case compared with linear regression test of

significance. The study described is aimed at elucidating the trade-off between power

and universal identifiability for the Mira score permutation test.

For simulation we considered the following hybrid bi-variate normal setting. Con-

sider (X, Y ) following bivariate normal distribution with standard normal marginal

distribution and correlation coefficient ρ.

With probability θ, we assign Z = −Y , and let Z = Y otherwise. We observe n

samples from (X,Z) and set n = 100 in our simulation study. We conducted linear

10



regression significance test and Mira test for each combination of (θ, ρ) respectively

with 100 replications. Here θ ranged from 0 to 0.5 with steps of 0.05. ρ ranged from

0 to 1 with steps of 0.05. Finally, the power are compared using the median p-value

at each combination of (θ, ρ).

This simulation scenario is designed to compare the power of Mira score permutation

test against linear regression test of significance on bivariate association conditions

shifting with θ from perfectly linear correlation to mixed nonlinear association. X

and Z are perfectly linearly correlated hen θ = 0. In contrast, X and Z form a cross-

shaped association with theoretical correlation coefficient 0 on the R2 plane when

θ = 0.5. In addition, ranging ρ given fixed θ will compare the power between Mira

permutation test and linear regression test of significance under different noise levels.

Simulated power for each combination of (θ, ρ) in the simulation with significance

level 0.05 were plotted in Figure 2.2. In our study, Mira permutation test retained

the power of identify probabilistic dependence in scenarios with high levels of nonlin-

earity (θ ranging from 0.4 to 0.5) and strong signals, while linear association based

significance test fails to produce satisfactory results. However, Mira score permuta-

tion test do sacrifice the identification power in perfectly linear conditions (θ smaller

than 0.2, ρ ranging from 0.2 to 0.5).

2.3.2 High-dimensional Power comparison

A simulation study was conducted to evaluate the performance of the Mira score

permutation test. Power comparison was made with Brownian covariate (dCov) by

(Szkely and Rizzo [2009]). Two major scenarios were considered:

Log dependent: X is p-variate standard normal. Yi = log (X2
i ) for i = 1, . . . , p.

And n independent samples from (X, Y ) are observed. Mira permutation test and

11
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Figure 2.2: Power comparison for each combination of θ (prop) and ρ (rho) using
Mira permutation test and linear regression test of significance.

Brownian covariate test were conducted with p = 5 on sample size n = 20 to 150 with

step of 5. For each n, 10000 replications were made.

Normal Product: X and V are both p-variate standard normal random variables.

Yi = XiVi for i = 1, . . . , p. And n independent samples from (X, Y ) are observed.

Mira score permutation test and Brownian covariate bootstrap test was conducted

with p = 5 on sample size n = 20 to 150 with step of 5. 10000 replications were made

for each n.

Power comparison for the simulation study was made between Mira score and Brow-

nian covariate (Figure 2.3). For both scenarios, the Mira score permutation test

enjoyed higher power compared with Brownian covariate. Besides, Mira permutation

test enjoys power higher than 0.90 even with small sample size (n = 60).
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Figure 2.3: Power comparison of Mira permutation test and Brownian covariate test
in log-dependent (left) and normal product (right) scenarios.

2.3.3 Specificity study under null hypothesis

A study of false positive rate using the Mira score permutation test has been highly

recommended throughout the study. In an ideal statistical test, the false positive

rate is expected to be close or equal to the confidence level α. The investigation may

reveal the goodness of normal approximation used in generating null distribution for

the test statistic.

The simulation was constructed based on testing the association between indepen-

dent p-vector (Xi, . . . , Xp) and (Yi, . . . , Yp), both of which follow multivariate normal

distribution with 0 mean vector and standard normal marginal distribution. Two

covariate settings were considered. In the first setting, {Xi} and {Yi} are mutually

independent. In the second setting, both random vectors feature exchangeable co-

variate matrix with 0.2 correlation coefficient. In the simulation, p ranged for each

setting from 5 to 20 with steps of 5. The sample size n ranged from 100 to 500 with

steps of 100. Each combination of covariate matrix, n and p has been repeated 1000

times and the false positive rate at 0.05 significance level was evaluated.

Figure 2.4 shows the simulated false positive rate under each simulation setting at
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Figure 2.4: False positive rate in each scenario with identity covariate (left) and
exchangeable covariate (right) matrix.

0.05 significance level. The false positive rates ranged between 0.04 and 0.07. And no

trend with respect to sample size n or variable size p has been observed. Moreover,

even with the presence of probablistic dependence within each random vectors, the

false positive rates in the exchangeable covariate case are still around 0.05.

2.4 Differential pathway interaction network dis-

covery

The change of pathway interactions under different cell status is of crucial interest

in biomedical study. For example, certain interactions between pathways may be

amplified or suppressed in disease state compared with healthy states. These changes

in interaction may facilitate the discovery of cell regulatory mechanism.

We applied a Mira-score-based network reverse engineering procedure for pathway

interaction to celiac disease data (NCBI data set GDS3646) and lung cancer data

14



(NCBI data set GDS2771), in which we are specifically interested in identifying path-

way interactions that are amplified or suppressed in the disease state.

The celiac disease data consists of gene expression levels of untouched primary leuko-

cytes from 132 unrelated celiac disease individuals and 22185 probes(Heap et al.

[2009]). Of the 132 individuals, 110 have sustained celiac disease, and 22 are healthy

control individuals. Illumina HumanWGv2 annotation data (Dunning et al.) was

used to group probe reads into 214 KEGG pathway groups, covering 5201 genes

(23.4%) of the data set. The lung cancer data consists of gene expression levels of

large airway epithelial cells from cigarette smokers without cancer, with cancer, and

with suspect lung cancer (Spira et al. [2007]). The probe reads were grouped into 214

KEGG pathways using Affymetrix Human Genome U133A database (Carlson et al.).

The amplified/suppressed pathway interactions were identified using the following

procedure:

1. For each pair of non-overlapping pathways i and j, a Mira permutation test of

association was applied for the disease group and control group, respectively.

Denote the test p-value for disease group as pDij , and pCij for control group.

2. Rank {pDij} and {pCij} in ascending and obtain {rDij} and {rCij}, respectively.

3. Calculate between state rank differences dij = rDij − rCij .

4. Pathway pairs with rank change dij smaller than the 1% quantile in {dij} are

identified as amplified in association at the disease state. Pairs with dij greater

than 99% quantile are identified as suppressed in association in disease state.

The identified pathways interactions are then checked for their biological meanings

and discussed in the result.
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2.4.1 Celiac Disease Pathway Interaction

The newly developed method was used to analyze the Gene Expression Omnibus

(GEO) data set GDS 3646. GDS3646 record is an expression analysis of untouched

primary leukocytes from unrelated celiac disease individuals (Heap et al. [2009]). In

the study, the gene expression in untouched primary leucocytes from individuals with

celiac disease were compared with an EBV-transformed HapMap B cell line data.

Celiac disease , a multifactorial disorder with complex genetics, is an enteropathy

caused by autoimmune response against wheat gluten, the protein component of the

cereals wheat, rye and barley in genetically susceptible individuals (Alaedini and

Green [2005]). Patients with celiac disease have a wide spectrum of gastrointestinal

and extraintestinal manifestations, characterized by intestinal malabsorption and at-

rophy of intestinal villi (Malandrino et al. [2008], Rubio-Tapia and Murray [2010]).

Celiac patients experience altered carbohydrate, lipid, pipetide/protein, metabolism

levels (Townley [1973], Pumarino et al. [1985], Vuoristo et al. [1993]). Untreated celiac

patients oxidize more carbohydrates as energy substrate compared to treated subject

(Malandrino et al. [2008]).

The identified pathways are dominantly related to nutrition absorption and metabolism

(Figure 2.5). Other pathways potentially linked with celiac disease were also iden-

tified. For example, the 04062 chemokine signaling pathway appears 6 times on the

list. Chemokines are small peptides that provide directional cues for the cell traffick-

ing and thus are vital for protective inflammatory immune response that responses

to requires the recruitment of leukocytes to the site of inflammation upon foreign in-

sult. Celiac disease is known to be an inflammation disease caused by dietary gluten.

In genetically predisposed people, gliadin peptides (derivatives of gluten) provokes

immune response, which leads to the production of pro-inflammatory cytokines and

subsequent damage to, and increased permeability of the intestinal epithelium (De
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Figure 2.5: Network interaction for celiac disease pathways. Red edge indicates that
the interaction between connected pathways are amplified in disease individuals. Grey
edge indicates the interaction suppressed in disease individuals.
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Carolis et al. [2004], Meresse et al. [2009], Bianchi [2010]).

Another example is the 02010 ABC transporters pathway. The results show that

the interaction between ABC transporter pathway and nitrogen metabolism pathway

is suppressed in the celiac disease patients. The ATP-binding cassette (ABC) trans-

porters are protein families that couple ATP hydrolysis to activate transport of a wide

variety of substrates such as ions, sugars, lipids, sterols, peptides, proteins, and drugs

(Teodori et al. [2006], Linton [2007]). ABC transporters have been confirmed to be

related to celiac disease. It has been reported that a close association exists between

polymorphism of TAP1 and TAP2 (ABC transporter gene) and disease susceptibility

among southern european populations (Tighe et al. [1994]). The products of TAP1

and TAP2 are ABC transporters, which are believed to transport antigenic peptides

from the cytoplasm into the endoplasmic reticulum. It was reported that nitrogen

balance was modulated in celiac patients (Caughey et al. [1955]). In addition, both

nitrate/nitrite are transported by ATP-binding cassette (ABC) transporters (Maeda

and Omata [2009]).

In addition, the correlation between 04370 VEGF signaling pathway and several path-

ways is found to be modulated in celiac patients, including 04340 hedgehog signaling,

510 N-Glycan biosynthesis, 00860 porphyrin and chlorophyll metabolism, 00120 pri-

mary bile acid biosynthesis. Vascular endothelial growth factor (VEGF) family and

its receptor systems have been demonstrated to be the fundamental regulator in the

cell signaling of angiogenesis. Angiogenesis is an essential biological process involved

in the progression of a variety of major diseases such as cancer, diabetes and inflam-

mation (Shibuya [2001]). It was reported that small-bowel mucosal vascular network

was altered in untreated coeliac disease. The study found that on a gluten-containing

diet the mucosal vasculature in the small intestine of untreated coeliac disease pa-

tients was altered in overall organization as well as in the number and maturity of

the vessels when compared to healthy subjects. In patients on a gluten-free diet, the
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vasculature normalized parallel to mucosal recovery (Myrsky et al. [2009]). Angio-

genesis is reported to be related to hedgehog signaling (Koyama et al. [2007], Chen

et al. [2011]), bile acid (Soma et al. [2006]), glycan biosynthesis (Banerjee [2007]),

porphyrin (Aviezer et al. [2000], Lee et al. [2011]). 04210 apoptosis pathway, the

programmed cell death, also frequently appears on the list. Much evidence showed

increased small intestinal apoptosis in celiac disease (Moss et al. [1996]). Some other

study demonstrated that enterocyte apoptosis induced by activated intraepithelial

lymphocytes is increased in celiac disease (Giovannini et al. [2000]).

2.4.2 Lung Cancer Pathway Interaction

The newly developed method is also tested on GDS2771 data set, which is the mi-

croarray data of large airway epithelial cells from cigarette smokers without cancer,

with cancer, and with suspect lung cancer. Many studies demonstrated the corre-

lation of altered metabolism with lung cancer, including basal metabolism (Tokovoi

and Matytsin [1967], Kurgan [1970, 1969]), carbohydrate metabolism (Heber et al.

[1982], Giovacchini et al. [2009]), amino acid metabolism (Heber et al. [1982], Gabazza

et al. [1995], Koukourakis et al. [2007]), lipid metabolism (Dessi et al. [1992]), and

xenobiotic metabolism (Kiyohara et al. [2002]).

The result show that many correlations between metabolism related pathways are

regulated (Figure 2.6). Take the TCA pathway as an example, the citrate cycle

(TCA cycle, Krebs cycle) is an important aerobic pathway for the final steps of the

oxidation of carbohydrates and fatty acids. Modulation of TCA cycle enzymes have

been demonstrated in lung cancer. Decreased activities of TCA cycle key enzymes

were observed in lung cancer bearing animals (Senthilnathan et al. [2006]). Some

specific pathways that have been demonstrated to relate to lung cancer are also caught

on the list: It is showed that the correlation between pathway 00072, the synthesis
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Figure 2.6: Network interaction for lung cancer pathways. Red edge indicates that the
interaction between connected pathways are amplified in disease individuals. Grey
edge indicates the interaction suppressed in disease individuals.
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and degradation of ketone bodies pathway and 04145, the phagosome pathway is

amplified in lung cancer patients. Phagocytosis is the cellular process of engulfing

solid particles by the cell membrane to form an internal phagosome, which is a central

mechanism in both immune and apotosis responses. There is a broad accepted view

that bronchial neoplasms or its products suppress phagocytic functions of alveolar

macrophages (Sulowicz [1983]).

The alveolar macrophage is believed to be of central importance in the immune re-

sponse against infection and tumour. It has been reported that there are type-specific

alterations in phagocytosis ability of alveolar macrophage in lung cancer patients,

which may result in an inability to stimulate anti-tumour immunity and subsequently

cause observed differences between lung cancer subgroups. Altered blood monocyte

(BM) phagocytosis ability was also observed in patients with lung cancer (Hosker and

Corris [1991], Pouniotis et al. [2006]). More importantly, some studies also proved

that ketone bodies affect the phagocytic activity of macrophages and leukocytes (Klu-

cinski et al. [1988]).

Another interesting example is that the correlation between 00232, the pathway of

caffeine metabolism, and 00760, the nicotinate and nicotinamide metabolism, ampli-

fied in smokers with lung cancer. First of all, both caffeine and nicotine metabolism

are generally believed to related to the risk of lung cancer. Cigarette smoking is a

clear risk factor for lung cancer. Even though nicotine, one of the major ingredients

and the causative agent for addiction of cigarette smoking, is generally believed not a

carcinogen by itself. However, several studies have shown that nicotine can induce cell

proliferation and angiogenesis (Puliyappadamba et al. [2010]). Nicotine metabolism

by cytochrome P450 2A6 (CYP2A6) varies across ethnicity and race, which is indi-

cated to be related to smoking behavior and lung cancer risk (Derby et al. [2008],

Murray et al. [2009]). The same as smoking, the consumption of coffee is a very old

and popular habit. Coffee contains catechins and flavonoids, which exhibit anticar-
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cinogenic properties. Conversely, caffeine may elevate cancer risk through a variety

of mechanisms (Martinet and Debry [1992], Baker et al. [2005]). Caffeine, an envi-

ronmentally prominent phosphodiesterase, has been proved to selectively stimulate

the growth of pulmonary adenocarcinoma and small airway epithelial cells (Al-Wadei

et al. [2006]). Not only are both nicotine and caffeine related to lung cancer, but also

many evidences suggested that the metabolism of caffeine and nicotine are closely

correlated. Caffeine is mainly metabolized by cytochrome P450 1A2 (CYP1A2). Ac-

tually caffeine metabolism has been used as an in vivo marker of CYP1A2 activity,

which has been clearly demonstrated to be induced by cigarette smoking(Zevin and

Benowitz [1999]). The difference of caffeine intake and plasma concentrations among

smokers and nonsmokers was reported (de Leon et al. [2003]). The results from 69 US

samples showed that smokers had significantly higher caffeine intake than nonsmokers

and the ratio of concentration/dose of caffeine was approximately four-fold higher in

nonsmokers than in smokers (de Leon et al. [2003]). In animal studies, nicotine have

been proved to induce the activity of several enzymes, including CYP1A2 (Carrillo

and Benitez [1996]). It explains why nonsmokers have high plasma caffeinine concen-

tration after intake of the same dose of caffeine compared to smokers. Some other

research articles reported that the combined NAT2/CYP1A2 status was related to

lung adenocarcinoma (Murray et al. [2009]).

2.5 Discussion

In this chapter we have proposed the Mira score, a novel association statistic for

universal probabilistic dependencies. The Mira framework is very versatile and open

to future possibilities of development. The definition of the Mira score is a special
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case of functions defined on observation graphs

S =
∑

i,j

dijwij

where wij = 1(dij ≤ dik, ∀k 6= j, k 6= i). Future improvement is possible through

the development of different forms of wij’s as functions of distance matrix D. For

example, we may define W = (wij)n×n as k-nearest neighbor connectivity matrix to

incorporate more information around each observation point. Asymptotic normality

is a straight forward result from existing literature (Bickel and Breiman [1983]). And

gaussian plug-in permutation test for universal dependence can still be applied.

Bayesian inference can further expand the application of Mira score into the incor-

poration of information from multiple sources. For example, biological researchers

may boost the power of association test for new experiments using the Mira scores

of pre-existing experiments as prior. The prior distribution can be approximated us-

ing normal distribution with mean S̄ and standard deviation σ̂ both calculated from

historical Mira scores.

The most exciting extension of the Mira score is the efficient variable selection pro-

cedure for supervised machine learning scenario proposed in the next chapter. Con-

sider the situation where we have response variable Y = (Y1, . . . , Yq) and predictors

X = (X1, . . . , Xp). We are interested selecting a subset of variables from X that

are most highly associated with Y based on n independent samples from (Y,X). In

our working paper, we have proposed a very efficient procedure for universal depen-

dency variable selection in high-dimensional data analysis scenario. Simulation study

has shown very satisfactory statistical property. And the procedure has generated

findings that are consistent with biological results in pathway analysis study.

23



Chapter 3

High-dimensional Universal

Dependence Variable Selection

3.1 Introduction

Given random vectors Y = (Y1, . . . , Yq) and X = (X1, . . . , Xp), we are interested in

identifying a subset of {Xi} that are probabilistically associated with (Y1, . . . , Yq). In

this chapter we introduce SeMira, a variable selection procedure for high-dimensional

universal association that is capable of accounting for probabilistic dependence of

arbitrary dimension and arbitrary forms of association.

The proposal of a high-dimensional universal dependence variable selection proce-

dure is motivated by the emergence of high-throughput data in biology and computer

science. For example, in genetic pathway analysis, biologists are interested in discov-

ering a small set of genes associated with the expression level of a pathway, which

usually involves the interrelated expression of multiple genes. In functional magnetic

resonance imaging (fMRI) studies, physicians are curious about the brain regions

that are associated with the signal of a specific brain region, which may consists
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of multivariate magnetic resonance signals from each brain regional. These practical

challenges involve abundant nonlinear associations and high dimensional interactions,

which has been the holy grail of a plethora of statistical methods in the recent decade

(see Hastie et al. [2009] for a comprehensive review).

On the theory side, multiple nonlinear association measures have been developed.

Dimension reduction extracts summary statistics through a linear combination of

multiple variables (Zou et al. [2006], Tamayo et al. [2007], Mashal et al. [2005]),

but may discard relevant information by ignoring secondary components. Mutual

information by Margolin et al. [2006] has been widely applied in the discovery of

nonlinear dependencies, but suffer from curse of dimensionality when the nonlinear

dependency between more than two variables are considered. Liquid association is an

innovative method developed to study the interaction involving three and more gene

expressions (Li et al. [2004], Li [2002]) of specific interaction types. The Brownian

covariate method is able to account for universal types of dependencies (Szkely and

Rizzo [2009]), but lacks the expandability into efficient variable selection procedure.

Great advancement in variable selection strategy has been made in the recent decade.

The Lasso family and related penalized regression methods (Tibshirani [1996], Zou

[2006], Fan and Lv [2008], Fan and Li [1999], Hastie and Efron [2007]) are capable

of efficiently selecting variables of linear association in high-dimensional scenario.

Slice inverse regression is capable of conducting variable selection that accounts for

functional nonlinear association between response variable and linear combination

of predictors (Li [1991], Ferre [1998]). Numerous pairwise mutual-information-based

heuristic approach have been proposed to account for nonlinear association (Peng

et al. [2005], Durand et al. [2007], May et al. [2008]). However, no method upon

our literature survey has the capability of conducting variable selection for universal

dependence in high-dimensional data.
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In our original proposal in the last chapter, we developed the Mira score, a universal

dependence statistic that is capable to discover probabilistic association of any type

involving arbitrary number of variables. The Mira score is defined as

S =
n

∑

i=1

d(i) (3.1)

where d(i) = minj 6=i dij is the nearest neighbor edge length for the i-th observation.

The Mira score has desirable statistical properties. Its extension to network reverse-

engineering has been capable of finding meaningful biological patterns for subsequent

research.

The application of the Mira score alone as a universal dependence statistic is limited

in the high-throughput data analysis scenario given the huge number of parameters

and the exponentially growing combination of predictors. Based on the Mira score,

we propose SeMira procedure for high-dimensional nonlinear dependency variable

selection.

The content of this chapter is structured as follow: in Section 3.2, we will introduce

the SeMira procedure and discuss its mathematical relevance with the Mira score. In

Section 3.3, we will compare the SeMira procedure with existing variable selection

methods and evaluate their performance in numerous scenarios. The SeMira proce-

dure is applied to genetic pathway interaction discovery in clinical gene expression

data set in Section 3.4. And we point out directions for future research in Section

3.5.

3.2 SeMira procedure for variable selection

In this section we develop the SeMira procedure, an efficient variable selection proce-

dure based on Mira score for universal types of probabilistic dependence.
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Denote observation as {yi1, . . . , yiq, xi1, . . . , xip}ni=1, where (yi1, . . . , yiq) are the multi/uni-

variate response variable, and (xi1, . . . , xip) are the predictors. We define p-vector

v = (v1, . . . , vp), with vi ∈ [0, 1] as the presence indicator for the variable Xi. Here

vi = 1 indicates the inclusion of the Xi in the model and 0 otherwise. We redefine

the inter-sample distance as dij =
∑p

l=1 |xil − xjl|vl +
∑q

k=1 |yik − yjk|. Then we se-

lect a subset of the variables {Xi} as probabilistically relevant to response variable

(Y1, . . . , Yq) with

v̂ = argmin
v

∑

i,j

dijwij

s.t. |v|1 ≥ s (3.2)

where s > 0 is a tuning parameter and W = (wij)n×n is the 1-nearest neighbor

connectivity matrix for the distance matrix D = (d′ij)n×n defined using

d′ij =
s

p

p
∑

l=1

|xil − xjl|+
q

∑

k=1

|yik − yjk| (3.3)

Given tuning parameter s, the computation of solution to SeMira procedure 3.2 is

straight forward:

1. Calculate distance matrix D and corresponding 1-nearest neighbor connectivity

matrix W .

2. Calculate ul =
∑

ij |xil − xjl|wij for l = 1, . . . , p.

3. Set vl = 1 if ul has the ascending rank in {ul} no larger than s. vl = 0 otherwise.

It should be noted that the procedure above has computationally complexity of

O(n2p), which is very suitable for large p, moderate n problems in high-dimensional

biological study.
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This algorithm offers unprecedented computational efficiency. The daunting task of

variable selection problem for probabilistic dependence with universal type and arbi-

trary dimension is reduced to three simple steps of matrix manipulation, which can

be further accelerated using GPU computing or Map Reduce distributed computing

facilities.

3.2.1 Geometry of Minimum Mira score Estimate

The proposal of SeMira procedure is based on Minimum Mira score Estimate, a

computationally challenging estimator that we will discuss in detail in this section.

Minimum Mira score estimator is worth mentioning here for its connection with Mira

score and potential expansion into other forms of universal variable selection proce-

dures. Under regularity conditions (Appendix .1), the result of SeMira procedure is

identical to Minimum Mira score estimator.

Continuing the notations in last section, we define the Minimum Mira score Estimator

as

v̂ = argmin
v

∑

i,j

dijwij (3.4)

s.t. |v|1 ≥ s and vi ∈ [0, 1]

wij = 1{dij ≤ dik, ∀k 6= i}

dij =

p
∑

l=1

vl|xil − xjl|+
q

∑

k=1

|yik − yjk|

where s > 0 is a tuning parameter for the estimate. A short comparison with SeMira

procedure defined in Equation 3.2 can show that in SeMira, 1-nearest neighbor con-

nectivity matrix remained static throughout the calculation. However, in Minimum

Mira score Estimate, the connectivity matrix is updated with any updated v.

The design of MinimumMira-score Estimate was inspired by Lasso (Tibshirani [1996]),
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and the intuition is straight forward: for any given s, variables with higher depen-

dence with response variable Y tend to generate a smaller sample Mira score. Thus we

can select the relevant variables by minimizing the Mira score
∑

i dijwij with respect

to v.

Estimator 3.4 can be reduced to an optimization problem which requires gradient

search in Rp+n(n−1) parameter space. High-throughput data problems with large n

and p will pose tremendous computational challenge to the Minimum Mira score Esti-

mator. However, we have proved that under regularity condition defined in Appendix

.1, the solution to Minimum Mira score Estimator is identical to the SeMira proce-

dure result defined in Equation 3.2. The intuition of this is straight forward: when

the signal from the group of predictors are strong enough, the 1-nearest neighbor con-

nectivity matrix we obtain using distance matrix defined by Equation 3.3 becomes

identical to what we get with only the selected predictors defined in Equation 3.4.

3.2.2 Parameter tuning

Parameter tuning on s for SeMira procedure is challenging due to the fact that we

do not have an explicit model for outcome prediction. Thus there is no traditional

method to follow based on predictive error. Thus we resorted to tune s based on the

penalty term
∑

dijwij.

The tuning process is defined below:

1. Given s, and it’s corresponding 1-nearest neighbor connectivity matrix W ob-

tained using Equation 3.3, we calculate the contribution of the k-th parameter

using Ck =
∑

ij d
k
ijwij, where dkij is the distance between observation i and j

based on variable Xk. That is, d
k
ij = |xik − xjk|.

2. We ascend sort {Ck}pk=1 and calculate the increase of penalty contribution from
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each predictor as Ek = Ck+1 − Ck for k = 1 . . . k − 1.

3. Then we identify the largest increase in penalty term argmaxEk and calculate

its absolute difference with s, denoted as As = | argmaxk Ek − s|.

4. We iterate the above steps for all s and use the s corresponding to the smallest

As as the optimum s.

The intuition for the procedure is based on the fact that if any given variable is not

associated with the response variable, then its contribution to the penalty term should

be larger compared with the variables that are associated with Y . Thus if we assume

s as the optimum tuning parameter, then we may simply expect a jump of penalty

contribution on the s+ 1-th smallest element in {Ck}.

3.3 Numerical study

In this section we conduct simulation studies to investigate the statistical property

of SeMira procedure. The SeMira procedure does not make functional assumptions

between response variable and predictor set. And the performance is evaluated using

false discovery rate and false negative rate. As has been discussed in Section 3.2.2, the

choice of tuning parameter s is heuristic at current stage. Thus two major scenarios

are considered. First, we evaluated the performance of SeMira in Section 3.3.1 by

using the tuning paramter selection procedure. Second, in Section 3.3.2 we evaluated

the SeMira performance assuming that we have the right choice of s, and the heuristic

tuning procedure was not used in the process.
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3.3.1 SeMira procedure performance

Simulation study was conducted to investigate the power of variable selection of

SeMira procedure in different scenarios, ranging from multivariate linear to more

complicated nonlinear interactions with multivariate response variables. For each

scenario, n independent random samples were generated from (Y,X) where X is a

p-variate random vector following i.i.d. standard normal distribution, and Y is a

q-vector response variable. In the simulation study, n ranged from 100 to 1000 with

steps of 100. p ranged from 50 to 100 with steps of 5. q ranged from 3 to 6. Three

major settings were considered:

Multivariate Additive Normal model is simulated to investigate the performance

of SeMira in linear scenario. For the i-th sample, Yij = Xij + eij for j = 1 . . . q. Here

{eij} is i.i.d. standard normal independent of X.

Multivariate variance dependent model is simulated to investigate the perfor-

mance of SeMira when the predictors only have functional effect on the variance of

response variables. For the i-th sample, Yij follows normal distribution with mean 0

and variance |Xij| for j = 1 . . . q.

Multivariate triple interaction model is simulated to investigate the performance

of SeMira in situations where variables are marginally independent but jointly depen-

dent. For the i-th sample, Yij = |eij|sign(XijXi(j+q)) for i = 1 . . . n, j = 1 . . . q. Here

{eij} are i.i.d. standard normal independent of {Xi}.

Simulation for each scenario and the combination of (n, p, q) is repeated 1000 times.

Simulation results are evaluated using median false discovery rate and false negative

rate for each setting with corresponding combination of (n, p, q).

False discovery rates presented in Figure 3.1 demonstrate the trade-off of specificity

between different scenarios. The SeMira procedure has apparently good performance
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Figure 3.1: False discovery rate (FDR) for multivariate additive normal (add), vari-
ance dependent (var), and triple interaction (teaser) settings from the variable selec-
tion simulation study under different combinations of sample size (n), predictor size
(p), and response variable size (q).
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Figure 3.2: False negative rate (FN) for multivariate additive normal (add), variance
dependent (var), and triple interaction (teaser) settings from the variable selection
simulation study under different combinations of sample size (n), predictor size (p),
and response variable size (q).

given large sample size (n > 300) across all three settings (fdr < 0.1). While it

performs well with small sample size in linear additive setting, it suffers high false

discovery rate with at variance dependent and multivariate triple dependent setting

when sample size n is smaller than 200. In addition, we only observe a slight increase

in FDR with growing number of unrelated predictors p.

False negative rate presented in Figure 3.2 demonstrate the trade-off of sensitiv-

ity between different scenarios. The SeMira procedure has small false negative rate

(fn < 0.1) give relatively large number of samples (n > 200) in multivariate ad-

ditive setting. However, the procedure suffered large false negative rate in variance

dependent and triple interaction settings. We consider this a result of incomplete use

of information from the observation graph that has originated from the definition of
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Mira score. Recall that the Mira score is defined as the sum of 1-nearest neighbor

edge length, which is only utilizing the information of each observation and its small-

est neighborhood. Thus the contribution of variables related to Y might be buried

under noise given small sample size and complicated dependence.

3.3.2 SeMira performance with known s

In this section we conducted numerical study to evaluate the statistical performance of

SeMira procedure with known s, the number of variables involves with the interaction

with response variables. The simulation settings were identical to Section 3.3.1, except

that the tuning parameter s is set to equal to the true number of predictors associated

with the response variable. On special consideration for situations with known s is

that the inclusion of a variable unassociated with response in the underlying model

will result in the exclusion of an associated variable. Thus the false discovery rate

equals to false negative rate in this case. And the SeMira procedure is evaluated only

using false discovery rate.

Simulation result is shown in Figure 3.3. Compared with simulation results using the

heuristic tuning procedure in Figure 3.1, false discovery rate has increased in vari-

ance dependence, and triple interaction case. Meanwhile, the false negative rate has

decreased with known s compared with Figure 3.2. Thus we can see that the heuris-

tic parameter tuning procedure has been too conservative in selecting the associated

variables.

Meanwhile, we can observe that even with known s, the number of variables associated

with the response, we still need sufficiently large number of observations (n > 800)

in order to achieve good selection result (FDR ¡ 0.10). This suggests that sample

information may not have been fully utilized for the identification of relevant variables,

as we will discuss in detail in Section 3.5.
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Figure 3.3: Mean false discovery rate (FDR) with different combinations of (n, p, q)
and settings using SeMira procedure with known s.
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3.4 Clinical outcome pathway interaction analysis

We applied the SeMira procedure to identify genetic pathways that are related to

clinical response in the primary acute lymphoblastic leukemia (ALL) study with

methotrexate (MTX) treatment using GEO data set GS10255 by Sorich et al. [2008].

The predictors in the data includes 12704 gene expression in primary acute lym-

phoblastic leukemia cells from 161 children diagnosed with childhood acute lym-

phoblastic leukemia. Log-transformed white blood cell counts at the beginning of

MTX treatment and 3 days after the treatment are identified as clinical outcomes.

Samples of each variable from the data was preprocessed with standard normal

inverse-Gaussian transformation.

To elucidate the pathways that are associated with the white blood cell outcome, we

selected top 1% genes that are associated with the outcome variables using SeMira

procedure. Hypergeometric test for over-concentration using KEGG pathway terms

with HGU133a annotation was used to identify the pathways enriched in the selected

gene set. And 7 pathways were identified as significantly over-concentrated with

p-value smaller than 0.01 (Table 3.4).

The set of enriched pathways are primarily focused on DNA transcription(Spliceosome

pathway), protein degradation related to cell cycles. This has coincided with the

findings that methotrexatec an inhibit the synthesis of DNA, RNA, thymidylates,

and proteins.

3.5 Discussion

The SeMira procedure we proposed in this chapter is designed to give efficient solu-

tion to variable selection problems concerning probabilistic dependence of arbitrary
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KEGGID p-value Term
03040 5.25× 10−6 Spliceosome
04120 7.27× 10−5 Ubiquitin mediated proteolysis
03050 1.55× 10−3 Proteasome
04141 1.80× 10−3 Protein processing in endoplasmic reticulum
05110 2.96× 10−3 Vibrio cholerae infection
00020 4.95× 10−3 Citrate cycle (TCA cycle)
00970 5.99× 10−3 Aminoacyl-tRNA biosynthesis

Table 3.1: Pathways identified as associated with white blood cell counts at the
beginning of the MTX treatment, and 3 days after the treatment. Cutoff p-value
0.01.

dimension involving arbitrary types of associations. The procedure is defined based

on Mira score, a very nascent universal dependence measure. We would like to point

out that, as the definition of Mira score evolves, the corresponding SeMira proce-

dure may also improve with its versatile forms. For example, we may define sum of

K-nearest neighbor edge length in the observation graph as a new measure of proba-

bilistic dependence. And the corresponding variable selection procedure is expected

to be:

v̂ = argmin
v

∑

i,j

dijwij

s.t. |v|1 ≥ s (3.5)

where wij = 1 only when j-th observation is one of the k-nearest neighbors of i-

th observation, and wij = 0 otherwise. Though the above procedure has not been

formally studied, it is expected to have even better statistical property thanks to its

ability to utilize more local information around each observation.

The computational complexity for the procedure is O(n2p). We would like to point

out that, as though the method is capable of handling large p, moderate n problems,

the method can be further modified to adapt to even greater number of observations

and get reduced to O(np). The intuition is comes from the fact that a random m
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subset of n observations from interrelated variables tend to be closer to each other

than subset of samples from independent variables. Then instead of calculating the

complete distance matrix with computational burden of O(n2), we can simply fix

m, the subset size, and calculate 1-nearest neighbor distance for each variable in its

specific random subset. Thus the computational complexity of this problem can be

reduced to O(np), which is very suitable for problems with large n and p.
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Chapter 4

Quantification and Deconvolution

Of Asymmetric LC-MS Peaks

Using The Bi-Gaussian Mixture

Model And Statistical Model

Selection

4.1 Introduction

Liquid chromatography-mass spectrometry (LC-MS) is one of the major techniques

in metabolomics (Issaq et al. [2009], Dettmer et al. [2007], Dunn [2008], Griffin and

Kauppinen [2007]), as well as a key component in MS-based proteomics (Chen and

Pramanik [2009], Ahmed [2009]). The pre-processing of LC-MS data involves a com-

plex workflow including noise reduction, peak identification and quantification, reten-

tion time correction, peak alignment and weak signal recovery (Katajamaa and Oresic
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[2007], Smith et al. [2006]). We have previously reported the apLCMS package which

carries out the entire workflow with new algorithms specifically designed for LC-MS

data with high mass resolution (Yu et al. [2009]). High-resolution mass spectrometry,

such as Fourier transform mass spectrometry (FT-MS), allows the separation of m/z

values at or below 10 ppm level (Ahmed [2008]), resulting in good separation between

metabolites. The high resolution facilitates the use of empirical peak shape models

to accurately quantify peaks, which is critical in biomarker studies where the relative

quantities of metabolites are compared across samples. Currently, LC-MS peaks are

quantified either by summation of ion count, or using symmetric peak shape models,

such as the Gaussian function (Katajamaa and Oresic [2007], Smith et al. [2006],

Yu et al. [2009]). Both methods have serious drawbacks. The method of ion count

summation results in biased quantification when the ion trace has missing intensities,

which often occurs in high-resolution LC-FTMS data. The Gaussian peak model can

result in bias in peak location estimation and peak quantification when the peaks

are asymmetric. Hence asymmetric peak models are necessary for the accurate quan-

tification and identification of metabolites. In addition, some metabolites may share

m/z and partially overlap in retention time, which necessitates the development of

deconvolution procedures. A large number of empirical peak shape models have been

developed for asymmetric peaks in chromatography, most of which were summarized

in Di Marco and Bombi [2001]. For a few of the models, advanced deconvo- lu-

tion procedures are available (Felinger [1994], Johansson et al. [1993], Papai and Pap

[2002], Youn et al. [1992], TorresLapasio et al. [1997b], Caballero et al. [2002]). Ex-

amples include the non-linear deconvolution based on Powells method (Powell [1965])

for the polynomial-modified Gaussian (PMG) model (TorresLapasio et al. [1997b,a])

regression-based methods for the parabolic-Lorentzian modified Gaussian (PLMG)

model (Caballero et al. [2002]), and various deconvolution methods for the exponen-

tially modified Gaussian (EMG) model (Felinger [1998], Johansson et al. [1993]).
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The estimating procedures for asymmetric peak models in chromatographic data gen-

erally assume low noise level. In LC-MS data, the noise level is magnitudes higher,

and the intensity observations are obtained at much fewer time points. Thus a simple,

robust model that can be fitted using a limited number of intensity observations is

necessary. The bi-Gaussian peak model (Figure 1a) has been described in the context

of chromatography (Ahmed [2008], Felinger [1998]).

Empirical and theoretical results have shown that the bi-Gaussian model is well suited

for asymmetric peaks (Buys and De Clerk [1972], Felinger [1998]). With four parame-

ters and a simple functional form thats amenable to maximum likelihood estimation,

the bi-Gaussian model is suitable for LC-MS data. A parameter estimation method

for the bi-Gaussian model has been developed in the openMS environment (Sturm

et al. [2008]). The method relies on the observed maximum intensity for the determi-

nation of the peak summit location, which could lead to inaccurate estimates when

the signal-to-noise ratio is low. Currently no deconvolution method is available for

the bi-Gaussian mixture model.

In this paper, we first develop a new algorithm to fit the bi-Gaussian function to

noisy ion traces. Simulation study is then conducted to compare the performance of

proposed procedure with competing methods. All the algorithms described here have

been implemented to improve the apLCMS package for high-resolution LC-MS data

analysis (Katajamaa and Oresic [2007]).
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4.2 Methods

4.2.1 The bi-Gaussian peak model

The model involves four parameters – the location of the peak summit α, the standard

deviation of the half Gaussian function to the left of the summit σ1, the standard

deviation of the half Gaussian function to the right of the summit σ2, and the scaling

factor δ. The intensity as a function of retention time is modeled by:

g(t) =
δ√
2π

exp{−(t− α)2

2
[
1(t ≤ α)

σ2
1

+
1(t > α)

σ2
2

]} (4.1)

The areas of the two regions to the left/right of the peak summit are δσ1/2 and δσ2/2,

respectively.

4.2.2 Likelihood-based estimation method

Assuming we have observation {(ti, xi)}ni=1, where ti is the retention time for i-th ob-

servation, xi is the corresponding intensity (weight). Continuing notations in Section

4.2.1, and scaling out δ with σ1 + σ2, the likelihood function is defined as

L(σ1, σ2, α) ∝
1

(σ1 + σ2)
∑

xi

exp {−
∑

xi(ti − α)2[
1(ti ≤ α)

σ2
1

+
1(ti > α)

σ2
2

]}

Then the problem is identifying (σ1, σ2, α) is converted to the estimation based on

the above likelihood function. The profile likelihood estimation procedure below is

then used to generate estimation in an iterative manner:

1. Set i = 0. Generate initial estimation with α̂(0) = t(0), where the corresponding

x(0) has the greatest intensity among observations.
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2. Given α̂(i), we define u =
∑

xt(ti − α̂(i))21(ti ≤ α(0)), v =
∑

xt(ti − α̂(i))21(ti >

α(i)), and s =
∑

xi. Then maximizing L(σ1, σ2, α̂
(i), the estimation for bi-

gaussian spans are calculated as:

σ̂
(i+1)
1 =

√

u

s
(1 + 3

√

v/u)

σ̂
(i+1)
2 =

√

v

s
(1 + 3

√

u/v)

3. Given (α̂(i), σ̂
(i+1)
i , σ̂

(i+1)
2 ), we define w = 1

σ̂
(i+1)
1

∑

xi1(ti ≤ α̂(i))+ 1

σ̂
(i+1)
2

∑

xi1(ti >

α̂(i)), and r = 1

σ̂
(i+1)
1

∑

xiti1(ti ≤ α̂(i)) + 1

σ̂
(i+1)
2

∑

xiti1(ti > α̂(i)). the estimation

for α is updated as

α̂(i+1) = r/w

4. Increase i+ 1 and repeat the previous steps until the estimation converges.

Finally, Since log-likelihood function given α is concave, we and get consistent esti-

mate for σ1 and σ2 if we have correct starting point of α.

4.2.3 Choosing the number of components of the mixture by

statistical model selection

In the previous subsection, the kernel smoother is employed to obtain an initial es-

timate of the number of components and the parameters. When the data is noisy,

changing the window size of the kernel smoother could result in different numbers of

components of the mixture. To find the best model to explain the data, we utilize sta-

tistical model selection based on the Bayesian information criterion (BIC) (Schwarz

[1978]). BIC is one of the most popular criteria for the selection among a set of para-

metric models with different number of parameters. It penalizes the number of free
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parameters. The model with lower BIC value is preferred. First, a reasonable range of

the window-size parameter is determined based on biological/chemical considerations

about potential peak width. It can be quite lenient to cover a wide range of potential

values. Several window size values spanning the range are selected. Starting from

each of the window-size value, we compute the kernel smoother, and run the EM-

like algorithm described in the previous sub-section. The corresponding BIC value is

computed by:

N log (
1

N

∑

i

(xi −
∑

j

ẑij)
2) + 4J logN

where N is the total number of time points with observed intensities, and J is the

number of bi-Gaussian components in the model. The model with the lowest BIC

value is selected. In the setting of LC-MS data, this is a heuristic criterion, because the

data we observe are not random samples, and the Gaussian error assumption of BIC

may not be satisfied. We justify the usage of the criterion by extensive simulations.

4.3 Numerical Simulation

To assess the performance of the proposed method, extensive simulations were con-

ducted. The bi-Gaussian mixture model with BIC model selection was compared with

two other methods - the Gaussian mixture model (Yu et al. [2009]) with BIC model

selection, and the peak quantification based on kernel smoother and signal summa-

tion. The data were generated from a 3-component bi- Gaussian mixture model, with

different levels of peak asymmetry, noise and peak overlap. Given the parameters,

the data from each component are generated from the bi-Gaussian functions:

gj(t) =
δj√
2π

exp{−(t− αj)
2

2
[
1(t ≤ αj)

σ2
j1

+
1(t > αj)

σ2
j2

]}
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After summing the intensities from the components, multiplicative noise was added

to the data. In addition, a portion of the values were turned into zero to mimic the

behavior of real high-resolution LC-MS data:

xi =
∑

gj(ti) exp (ǫi)µi

ǫi ∼ N(0, η)

µi ∼ Binom(θ)

The parameter η is the standard deviation of the noise added at the log-scale. Three

levels of η were used in the simulations (0.2, 0.4, 0.6). At the high noise level of

η = 0.6, 50% of the intensity values were changed by 1.5 fold or more, and 25% were

changed by two fold or more. The parameter θ controls the percentage of values

turned into zero using random samples from the binomial distribution. Three levels

of were used (0, 0.25, 0.5). The value of θ directly corresponds to the proportion

of intensities turned into zero. In addition, various levels of peak asymmetry and

overlap were considered. In total 864 parameter combinations were tested. At each

parameter setting, the simulation was performed 100 times.

4.4 Results

First, we compared the rate of successfully selecting the correct number of components

between the bi-Gaussian mixture model and the Gaussian mixture model (Figure 4.1).

The method of kernel smoother combined with signal summation was not compared

because no BIC model selection could be performed using this method, which is a

shortcoming in itself. In summarizing the results, the level of peak overlap is defined

by the ratio r between the lowest point of the valley between two peaks and the lower

of the peak summits, before noise is intro- duced. Because two valleys exist between
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the three simu- lated peaks, the larger r value is taken for each simulation setting. For

the purpose of plotting, we roughly divide the amount of overlap into four categories:

little overlap (r < 0.2), moderate overlap (0.2r < 0.5), strong overlap (0.5r < 0.75),

and severe overlap (r0.75). The level of overlapping is color-coded. The point size

corresponds to the three levels of noise added to the data (η = 0.2, 0.4, 0.6). The

fill of the point represents the proportion of missing values (0%, 25%and50%). When

the peaks were symmetric (Figure 4.1, upper-left panel), the Gaussian mixture model

showed a slight advantage when the overlapping was strong (red and magenta points).

When the peaks were asymmetric (Figure 4.1, upper-right and lower-left panels), the

bi-Gaussian mixture model showed a clear advantage. When the peak overlapping

was not strong (blue and green points), the success rate of the bi-Gaussian mix-

ture model was mostly higher than 90%, even when thenoise level was high. When

there was strong peak overlapping and the noise level was high (larger sized red and

magenta points), the rate of successfully selecting the correct number of components

was reduced for both the bi-Gaussian mixture model and the Gaussian mixture model.

Secondly, we compared the percentage error in peak area quantification between the

three methods, when all three methods were able to identify the correct number of

components (not necessarily the best BIC value). Compared to the Gaussian mixture

model, the biGaussian mixture model yielded much smaller errors when the peaks

were asymmetric (Figure 4.2, upper-right and lower-left panels). Compared to the

method of kernel smoother combined with signal summation, the bi-Gaussian mixture

model showed a clear advantage when some of the intensity values were missing (filled

points) (Figure 4.3). When the peak overlapping was not strong (blue and green

points), the error of the bi- Gaussian mixture model was mostly under 15%. The bi-

Gaussian mixture model also clearly out-performed the other two methods in those

aspects.
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Figure 4.1: Comparison of the rate of successfully selecting the correct number of
components between the bi-Gaussian mixture model and the Gaussian mixture model.
Each sub-plot corresponds to a different degree of asymmetry, as shown in the titles
of the sub-plots (ratios between the right- and left- standard deviations). Each dot
represents a simulated situation. The values were obtained by averaging the results
from 100 simulations. The color represents the level of overlaps between the simulated
peaks. The size of the dot represents the amount of noise added to the data. The fill
of the dot represents the percentage of values missing in the ion trace.
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Figure 4.2: Comparison of the accuracy in peak size quantification between the bi-
Gaussian mixture model and the Gaussian mixture model. Each sub-plot corresponds
to a different degree of asymmetry, as shown in the titles of the sub-plots (ratios
between the right- and left- standard deviations). Each dot represents a simulated
situation. The values were obtained by averaging the results from 100 simulations.
The color represents the level of overlaps between the simulated peaks. The size of the
dot represents the amount of noise added to the data. The fill of the dot represents
the percentage of values missing in the ion trace.
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Figure 4.3: Comparison of the accuracy in peak size quantification between the bi-
Gaussian mixture model and the method of kernel smoother combined with signal
summation. Each sub-plot corresponds to a different degree of asymmetry, as shown
in the titles of the sub-plots (ratios between the right- and left- standard deviations).
Each dot represents a simulated situation. The values were obtained by averaging
the results from 100 simulations. The color represents the level of overlaps between
the simulated peaks. The size of the dot represents the amount of noise added to the
data. The fill of the dot represents the percentage of values missing in the ion trace.
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4.5 Discussion

In this manuscript, we presented a method to fit the bi-Gaussian curve to noisy

LC-MS ion traces, as well as an EM-like algorithm paired with BIC model selection

for the deconvolution of partially overlapping peaks. Currently, the methods were

implemented in the apLCMS package for the pre-processing of high-resolution LC-

MS data. The same modeling procedure can be adapted easily into other pipelines

for the quantification of both metabolites and peptides.

Compared to the Gaussian peak shape model, which has been used in some model-

based data processing pipelines (Smith et al. [2006], Yu et al. [2009]), the bi-Gaussian

model provides extra flexibility to fit asymmetric peaks, while suffering little disad-

vantage when the true peak shape is symmetric. Compared to the method of kernel

smoother combined with signal summation, fitting a bi-Gaussian mixture model dis-

entangles partially overlapping peaks, and copes with the issue of missing intensities in

high-resolution LC-FTMS data much better. The bi-Gaussian model is among many

asymmetric peak models in chromatographic peak modeling. A large number of other

models could potentially be used for the processing of LC-MS data (Di Marco and

Bombi [2001]). Advanced deconvolution methods already exist for a few of the models

(Felinger [1998], Johansson et al. [1993], Papai and Pap [2002], Youn et al. [1992],

TorresLapasio et al. [1997b], Caballero et al. [2002], TorresLapasio et al. [1997a]).

However, modifications to the existing estimation procedures may be necessary to

suit the characteristics of LC-MS data, i.e. sparser data points and much higher

noise.

In related study, the parameter estimation for a single peak is done by numerically

solving an equation that involves the zero and second moments of the truncated

distribution functions. This is an alternative route compared to the maximum likeli-

hood method proposed in this chapter. We its performance with the moment-based
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method in simulations. The likelihood-based algorithm was slower in computation

due to its iterative nature, and it did not achieve better estimation accuracy over the

moment-based method. And we would like to recommend using the moment-based

method introduced by Yu and Peng [2010]. Under the settings of our simulations,

five window size values were used for the initiation of the model selection process.

With both methods programmed in R, using a single core of a 2.26 GHz Xeon CPU,

the median CPU time for solving the three-component mixture was 0.15 second for

the moment-based method, and 0.33 second for the likelihood-based method.

51



Chapter 5

Summary

In the dissertation we have pinpointed the necessity of universal dependence discov-

ery amongst the emergency of high-throughput data, and developed novel statistical

methods to utilize information that might include probabilistic association for con-

tinuous variables involving arbitrary number of variables and of arbitrary types of

interaction.

Our work make two major contributions to the discovery of universal probabilistic

dependence. First of all, we proposed Mira score, a universal association statistic that

is capable of identifying probabilistic dependence of arbitrary type involving arbitrary

number of variables. The Mira score permutation test enjoys superior power compared

with existing method (Brownian co variate), and has been applied to the discovery

of genetic network interaction in clinical pathways.

Second, we proposed SeMira procedure for variable selection based on probabilis-

tic association of arbitrary dimension and of arbitrary type. The SeMira procedure

is the first procedure capable of conducting the aforementioned task. Besides, the

SeMira procedure allows variable selection for multivariate response variables with-

out dimension reduction, a valuable feature to fully preserve sample information in
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variable selection process.

The proposal of Mira score and SeMira procedure has opened up a brand new area

of statistical research in universal dependence discovery and statistical inference. We

would like to point out that, in addition to the prospective development mentioned

in Section 2.5 and Section 3.5, endless opportunities for expansion awaits for the

Mira-based methods.

One very desirable feature is the the capacity to conduct prediction of based on pre-

dictor x0 = (x01, . . . , x0p) with the constructed Mira based model. In our preliminary

research, we proposed a predictor aimed at minimizing the prediction Mira score

through

ŷ0 = argmin
y

i
∑

i=0

d(0)

where d(0) is the distance of between predicted observation (ŷ0, x0) and its nearest

neighbor. This is identical as taking the 1-nearest neighbor estimate based on predic-

tors. And we find, through numerical study, that the performance of this method is

poor in high-dimensional scenario. The poor performance comes partly from the “hub-

ness” of high-dimensional data. That is a few observation points have high-probability

of becoming the k-nearest neighbor of other observations in high-dimensional space

(Radovanović et al. [2010]). And our numerical study has found that in problems

involving 1000 predictors and 100 samples, the majority of predictions of ŷ0 are con-

centrated on the yi of one single observation even if the predictor x0 may scatter

around the predictor space. We would like to admit that, although we boast that

Mira score and SeMira procedure has circumvented the curse of dimensionality in pre-

vious chapter, the curse of dimensionality is actually taking effect on the Mira-based

methods in prediction scenario.

On the other hand, endless possibilities exists for the development of even more pow-

erful methods that better overcome the curse of dimensionality. We would like to
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point out that the Mira-based method does not make any functional assumptions

about random interactions. However, through our research, we have found that in

very complex probabilistic interactions, local functional interaction may still be uti-

lized in the solution of the problem.
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Appendices
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.1 Regularity condition for SeMira procedure

Continuing the notation in Section 3.2, we denote the 1-nearest neighbor connectivity

matrix using distance matrix D = (dij)n×n with dij = s
p

∑p

l=1 |xil − xjl| + |yi − yj|

as Ŵ = (ŵij)n×n. Denote the vectorized n(n − 1)-vector for W as W ∗, and matrix

Ep×n(n−1) where each row of E is the vectorized distance matrix for the i-th variable.

In this section we prove that under regularity condition, the set of variable what

we select using SeMira procedure is consistent with the set of variables we select

using Minimum Mira score Estimator. This consistency can be intuitively explained

by evaluating in the Rp+n(n−1) space the gradient of objective function f(v,W ) =
∑

i,j dijwij at O′, the projection of origin in the hyperplane C = {(v,W ) : |v|1 =

s,
∑

i 6=j wij = 1, ∀j}. The projection of ∂f

∂(v,W )
|O′ on the hyperplane C is

∂f

∂v
|O′ = 0

∂f

∂W
|O′ =

s

p
1pE + F

which suggests that for gradient search starting at O′ on hyperplane C, one should

first follow the direction of 1-nearest neighbor connectivity matrix defined by Equation

3.3, and then update on v. This direction of search is identical as the direction to

solution defined as the Minimum Mira score estimate. Or more mathematically,

Definition 1 (Regularity condition). Given p ≥ s > 0, regularity condition is satis-

fied when

vTE(W ∗ −W ) ≤ s

p
1pE(W ∗ −W )

for vectorized 1-connectivity matrix W , and any v = (v1, . . . , vp) such that |v|1 = s

and vi ∈ [0, 1]∀i.
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To prove the claim in Section 3.2.1 that the SeMira procedure result defined in Equa-

tion 3.2 is identical to Minimum Mira score Estimate defined in 3.4 under regularity

condition, we use the prove by contrary procedure.

Assume that there exists a p-vector v and vectorized 1-connectivity matrix W such

that the corresponding objective function value at (v,W ) is smaller than that of MME

(v∗,W ∗), that is:

vTEW + F TW < v∗TEW ∗ + F TW ∗

where F is the vectorized distance matrix for response observations {yi}ni=1. Making

use of the fact that

s

p
(1T

pE + F T )W ∗ ≤ s

p
(1T

pE + F T )W

v∗TEW ∗ ≤ vTEW

we have

vTE(W ∗ −W ) >
s

p
1pE(W ∗ −W )

which contradicts with the aforementioned regularity condition.
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