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Abstract

Efficient and Adaptive Skyline Computation
By Jinfei Liu

Skyline, also known as Maxima in computational geometry or Pareto in
business management field, is important for many applications involving multi-
criteria decision making. The skyline of a set of multi-dimensional data points
consists of the points for which no other point exists that is better in at least
one dimension and at least as good in every other dimension. Although skyline
computation and queries have been extensively studied in both computational
geometry and database communities, there are still many challenges need to
be fixed, especially in this big data era. In this dissertation, we present several
efficient and adaptive skyline computation algorithms. First, we show a faster
output-sensitive skyline computation algorithm which is the state-of-the-art al-
gorithm from the theoretical aspect. Second, traditional skyline computation
is inadequate to answer queries that need to analyze not only individual points
but also groups of points. To address this gap, we adapt the original skyline
definition to the novel group-based skyline (G-Skyline), which represents Pare-
to optimal groups that are not dominated by other groups. Third, to facilitate
skyline queries, we propose a novel concept Skyline Diagram, which given a
set of points, partitions the plane into a set of regions, referred to as skyline
polyominos. Similar to kth-order Voronoi Diagram commonly used to facili-
tate k nearest neighbor (kNN) queries, any query points in the same skyline
polyomino have the same skyline query results.
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1

Chapter 1

Introduction

Skyline, also known as Maxima in computational geometry or Pareto in business

management field, is important for many applications involving multi-criteria

decision making. The skyline of a set of multi-dimensional data points consists

of the points for which no other point exists that is better in at least one

dimension and at least as good in every other dimension.

Assume that we have a dataset P of n points. Each point p of d real-valued

attributes can be represented as a d-dimensional point ppr1s, pr2s, ..., prdsq P Rd

where pris is the i-th attribute of p. Given two points p “ ppr1s, pr2s, ..., prdsq

and p1 “ pp1r1s, p1r2s, ..., p1rdsq in Rd, p dominates p1 if for every i, pris ď p1ris

and for at least one i, pris ă p1ris (1 ď i ď d). Given the set of points P , the

skyline is defined as the set of points that are not dominated by any other point

in P . In other words, the skyline represents the best points or Pareto optimal

solutions from the dataset since the points within the skyline cannot dominate

each other.

Figure 1.1(a) illustrates a dataset P “ tp1, p2, ..., p11u, each representing a

hotel with two attributes: the distance to the destination and the price. Figure
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Figure 1.1: A skyline example of hotels.

1.1(b) shows the corresponding points in the two dimensional space where the

x and y coordinates correspond to the attributes of distance to the destination

and price, respectively. We can see that p3p14, 340q dominates p2p24, 380q as

an example of dominance. The skyline of the dataset contains p1, p6, and p11.

Suppose the organizers of a conference need to reserve one hotel considering

both distance to the conference destination and the price for participants, the

skyline offers a set of best options or Pareto optimal solutions with various

tradeoffs between distance and price: p1 is the nearest to the destination, p11

is the cheapest, and p6 provides a good compromise of the two factors. p8 will

not be considered as p11 is better than p8 in both factors.

In this big data era, how to find skyline points is extremely important for

many applications involving multi-criteria decision making. Although skyline

computation and queries have been extensively studied in both computational

geometry and database communities [37] [36] [24] [49] [41], there are still many

challenges need to be fixed. From the theoretic aspect, the state-of-the-art

output-sensitive algorithm had not been improved in past 29 years, and there
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is no precomputation structure to enhance the queries of skyline. From the

application aspect, traditional skyline computation is inadequate to answer

queries that need to analyze not only individual points but also groups of

points. To address those challenges, in this dissertation, we present several

algorithms to efficiently and adaptively compute skyline as follows.

Faster Skyline Algorithm. We present the second output-sensitive skyline

computation algorithm which is faster than the only existing output-sensitive

skyline computation algorithm [24] in the worst case because our algorithm

does not rely on the existence of a linear time procedure for finding medians.

Traditional skyline computation algorithm achieves Opn log nq time complexity.

The only existing output-sensitive skyline algorithm achieves Opn log kq time

complexity, where k is the number of skyline points. However, this algorithm

had not been improved in past 29 years. For each iteration, our algorithm re-

quires 2nlogk comparisons which is much faster than 5.430 95n log k comparisons

in [24].

Group-based Skyline. Traditional skyline computation is inadequate to an-

swer queries that need to analyze not only individual points but also groups

of points. To address this gap, we adapt/generalize the original skyline defi-

nition to the novel group-based skyline (G-Skyline), which represents Pareto

optimal groups that are not dominated by other groups. In order to compute

G-Skyline groups consisting of k points efficiently, we present a novel struc-

ture that represents the points in a directed skyline graph and captures the

dominance relationships among the points based on the first k skyline layers.

We propose efficient algorithms to compute the first k skyline layers. We then

present two heuristic algorithms to efficiently compute the G-Skyline group-

s: the point-wise algorithm and the unit group-wise algorithm, using various
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pruning strategies. The experimental results on the real NBA dataset and

the synthetic datasets show that G-Skyline is interesting and useful, and our

algorithms are efficient and scalable.

Skyline Diagram. To facilitate skyline queries, we propose a novel concept

Skyline Diagram, which given a set of points, partitions the plane into a set

of regions, referred to as skyline polyominos. Any query points in the same

skyline polyomino have the same skyline query results. Similar to kth-order

Voronoi diagram that is commonly used to facilitate k nearest neighbor (kNN)

queries, skyline diagram can be used to facilitate skyline queries and many other

applications including reverse skyline queries, Private Information Retrieval

(PIR) based skyline queries, and authentication of skyline queries. While the

skyline diagram has many applications, it can be computationally expensive

to build the diagram. By exploiting interesting properties of the skyline, we

present several efficient algorithms for building the diagram with respect to

three kinds of skyline queries, quadrant, global, and dynamic skyline. The

experimental results on the real dataset and the synthetic datasets show that

our algorithms are efficient and scalable.

Organization. The rest of the dissertation is organized as follows. Chapter 2

shows a faster output-sensitive skyline computation algorithm. The adaptive

group-based skyline is presented in Chapter 3. Similar to kth-order Voronoi dia-

gram commonly used to facilitate k nearest neighbor (kNN) queries, we present

skyline diagram which can be used to facilitate skyline queries in Chapter 4.

Chapter 5 concludes the dissertation and discusses the future directions.
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Chapter 2

Faster Output-sensitive Skyline

Computation

2.1 Related Work

The skyline computation problem has been extensively studied in the computa-

tional geometry field. The best of existing worst-case algorithms [2] [3] [4] [26]

are based on divide-and-conquer paradigm which achieves Opn log nq time com-

plexity in two dimensional space, where n is the number of points. The only

existing output-sensitive skyline computation algorithm was presented in [24]

by Kirkpatrick and Seidel. [24] illustrated an algorithm that achieves Opn log kq

time complexity where k is the number of skyline points. Recently, Hu et al. [20]

extended the output-sensitive algorithm to external memory. Unfortunately,

both algorithms rely on the existence of a linear time median algorithm [5]

in the first step which lead to more than 5.430 95n log k comparisons. Recent-

ly, Chan and Lee [10] presented two output-sensitive algorithms that achieve

expected comparisons of n log k ` Opn
?
log kq.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 2.1: An example of Algorithm 2.1. (a) Step 1: partition P into subsets
P1, P2, ..., Prn{Ks randomly. (b) Step 2: compute skyline points of each subset.
(c) Step 3: choose candidate skyline points. (d) Step 4: obtain one skyline point.
(e) After eliminating non-skyline points (Step 5).

2.2 Output-Sensitive Skyline Computation Al-

gorithm

Let P Ă R2 be a set of n points and K be the number of skyline points we

expect. Since the number of skyline points k is not known in advance, we will

show later how to use a sequence of K values to find all k skyline points, that

is, increase K until K ě k. The algorithm given K is shown in Algorithm 2.1.

The overall algorithm to find all k skyline points is shown in Algorithm 2.2.

In Algorithm 2.1, Step 1 partitions the n points into rn{Ks subsets. Then

Step 2 computes the skyline points of each subset in rn{Ks ˆ OpK logKq “

Opn logKq time. We then find a global skyline point by selecting a candidate

skyline point in each subset (Step 3) and selecting the point with the global
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Algorithm 2.1: OpnlogKq SKYLINE(P,K)

1 Input: a set of n points in two-dimensional space
2 Output: k skyline points or H

1: /*Step 1: partition*/
2: partition P into subsets P1, P2, ..., Prn{Ks randomly, each of size at most K.
3: /*Step 2: compute skyline points of each subset*/
4: for j “ 1, 2, ..., rn{Ks do
5: compute the skyline points of Pj using worst-case Opn log nq skyline

algorithm [39].
6: end for
7: for i “ 1, 2, ..., K do
8: /*Step 3: choose the candidate skyline points*/
9: for j “ 1, 2, ..., rn{Ks do
10: choose point pj with smallest value on first dimension value as a

candidate skyline point.
11: end for
12: /*Step 4: obtain one skyline point*/
13: compute the point pi with smallest first dimension value from

pj, 1 ď j ď rn{Ks.
14: /*Step 5: eliminate non-skyline points*/
15: for j “ 1, 2, ..., rn{Ks do
16: perform a binary search to delete those points whose second

dimension value is equal to or greater than pir2s.
17: end for
18: if no point in P then
19: return SKYLINE={p1, p2, ..., pi}.
20: end if
21: end for
22: return H.

minimum value (Step 4). This point is used to eliminate all points dominated

by this point in Step 5. Because of this elimination, we can guarantee that a

skyline point is obtained in each subsequent iteration (Lemma 2.1). Step 3 to

Step 5 are repeated for K iterations or until there is no remaining point, in

which case all k (k ď K) skyline points will be returned. If k ą K, Algorithm

2.1 outputs an empty set since there are still remaining points after K skyline

points are found with K iterations.
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Example 2.1. Given 15 points in two-dimensional space, an example of Algo-

rithm 2.1 is shown in Figure 2.1. For simplicity, we assume k “ 5 is known in

advance. In (a), the 15 points are partitioned into 3 subsets (circle, box, and

cross) of 5 each. The skyline points of each subset are then computed, shown

in (b). Then we choose the point with smallest first dimension value from each

subset as the candidate skyline point, shown in (c). From these three candidate

points, we choose the point with smallest first dimension value as the skyline

point, highlighted in (d). Then all points that are dominated by this skyline

point, i.e. the points whose second dimension is equal to or greater than the

determined skyline point, are eliminated, shown in (e). Then the next skyline

point from the remaining points is selected in next iteration and used to elimi-

nate the dominated pointed, shown in (f). The algorithm continues until all 5

skyline points are found.

Lemma 2.1. We can obtain one skyline points in each iteration of Step 4.

Proof. It is easy to see that we can obtain a skyline point from the first iter-

ation because no point can dominate pi due to the smallest value in the first

dimension. For the second iteration, because all the points dominated by pi are

eliminated, the point with smallest first dimension value of remaining points

in P should be a skyline point as no other point can dominate it. The analysis

for all other skyline points follows similarly.

Theorem 2.1. Skyline can be computed in Opn logKq time in worst-case using

Algorithm 2.1 where n is the number of points.

Proof. Step 1 requires Opnq time to partition. Line 5 requires OpK logKq time,

hence, the total time of Step 2 is rn{Ks ˆ OpK logKq “ Opn logKq. Line 10

requires Op1q time since the skyline points of each subset are already sorted by
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the first dimension, thus, Step 3 requires rn{Ks ˆOp1q “ Oprn{Ksq time. Line

13 requires Oprn{Ksq time. Line 16 performs a binary search which requires

OplogKq time. This is possible because if the skyline points of each subset

are sorted in their first dimension, they are also sorted (reversely) in their

second dimension. Thus, the total time of Step 5 requires rn{Ks ˆOplogKq “

Oprn{Ks logKq time. In total, Step 3 to Step 5 require Oprn{Ksq`Oprn{Ksq`

Oprn{Ks logKq time. Since there are K iterations at most, the total time is

K ˆ pOprn{Ksq ` Oprn{Ksq ` Oprn{Ks logKqq

“ Opnq ` Opnq ` Opn logKq “ Opn logKq

Next, we extend Algorithm 2.1 by iteratively increasingK until all k skyline

points are found. The final worst-case optimal Opn log kq time is shown in

Algorithm 2.2. We note that Algorithm 2.2 is a classic paradigm for output-

sensitive algorithms [24] [9].

Algorithm 2.2: O(nlogk) 2-D SKYLINE(P)

1 Input: a set of n points in two-dimensional space
2 Output: k skyline points

1: for t “ 1, 2, ... do
2: TEMP=Opn logKq SKYLINE(P,K), where K=min{22t , n}.
3: if TEMP‰ H then
4: return TEMP.
5: end if
6: end for

Theorem 2.2. Algorithm 2.2 requires Opn log kq time in worst-case.

Proof. Algorithm 2.2 stops with the list of skyline points as soon as the value

of K in the for-loop reaches or exceeds k. The number of iterations in the loop
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is rlog log ks, and the tth iteration takes Opn logKq “ Opn log 22
t
q “ Opn2tq

time. Hence, the total running time of the algorithm is

Op

rlog log ks
ÿ

t“1

n2tq “ Opnp21 ` 22 ` ... ` 2rlog log ksqq

“ Opnp2rlog log ks`1 ´ 2qq “ Opn log kq.

2.3 Analysis

Although the proposed algorithm has the same big O time complexity as [24],

we analyze here that it has a significantly smaller constant factor and hence

faster than [24]. Because we used the similar paradigm for Algorithm 2.2

with [24] and [20], we just focus on Algorithm 2.1. As noted by Luccio and

Prparata [39], it is possible to find skyline by using no more than Spnq ` n

comparisons for n points in two dimensional space, where Spnq is the number

of comparisons for sorting nnumbers. If we use merge sort algorithm, then

Spnq “ n log n. Therefore, we can compute skyline points within n log n ` n

comparisons. For step 2 in our algorithm, it requires n
k

pk log k`kq “ n log k`n

comparisons. For step 4, we use n
k
comparisons each time which leads to the

total times for step 4 is k ˆ n
k

“ n. For step 5, we need log k comparisons

to maintain the ordered structure. Hence, it requires k ˆ n
k
log k “ n log k

comparisons. In total, it requires n log k ` n ` n ` n log k “ 2n log k ` 2n

comparisons which is less than [24] (more than 5.430 95n log k comparisons).
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Chapter 3

Group-based Skyline

3.1 Introduction

Skyline, also known asMaxima in computational geometry or Pareto in business

management field, is important for many applications involving multi-criteria

decision making. The skyline of a set of multi-dimensional data points consists

of the points for which no other point exists that is better in at least one

dimension and at least as good in every other dimension.

Assume that we have a dataset P of n points. Each point p of d real-valued

attributes can be represented as a d-dimensional point ppr1s, pr2s, ..., prdsq P Rd

where pris is the i-th attribute of p. Given two points p “ ppr1s, pr2s, ..., prdsq

and p1 “ pp1r1s, p1r2s, ..., p1rdsq in Rd, p dominates p1 if for every i, pris ď p1ris

and for at least one i, pris ă p1ris (1 ď i ď d). Given the set of points P , the

skyline is defined as the set of points that are not dominated by any other point

in P . In other words, the skyline represents the best points or Pareto optimal

solutions from the dataset since the points within the skyline cannot dominate

each other.



12

price

p1
p2

p3

p4

p7
p8

hotel distance price

p1
p2

p3

p4

p5

p6
p7

p8

(a) (b)
distance to the destination

10 20 30 40

100

200

300

400

p9
p10

p11

p6
p5

4 400
380

340

p9

p10

p11

36 300

24

26 280

260
200

180

140

120

60

8

20

28

34

40

14

16

Figure 3.1: A skyline example of hotels.

Figure 3.1(a) illustrates a dataset P “ tp1, p2, ..., p11u, each representing a

hotel with two attributes: the distance to the destination and the price. Figure

3.1(b) shows the corresponding points in the two dimensional space where the

x and y coordinates correspond to the attributes of distance to the destination

and price, respectively. We can see that p3p14, 340q dominates p2p24, 380q as

an example of dominance. The skyline of the dataset contains p1, p6, and p11.

Suppose the organizers of a conference need to reserve one hotel considering

both distance to the conference destination and the price for participants, the

skyline offers a set of best options or Pareto optimal solutions with various

tradeoffs between distance and price: p1 is the nearest to the destination, p11

is the cheapest, and p6 provides a good compromise of the two factors. p8 will

not be considered as p11 is better than p8 in both factors.

Motivation. While the skyline definition has been extended with different

variants and the skyline computation problem for finding the skyline of a given

dataset has been studied extensively in recent years, most existing works focus
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on skyline consisting of individual points. One important problem that has

been surprisingly neglected to the large extent is the need to find groups of

points that are not dominated by others as many real-world applications may

require the selection of a group of points.

Hotels Example. Consider our hotel example again, suppose the organizers

need to reserve a group of hotels (instead of one) considering both distance to

the conference destination and the price for participants. In contrast to the

traditional skyline problem which finds Pareto optimal solutions where each

solution is a single point, we are interested in finding Pareto optimal solutions

where each solution is a group of points. One may use the traditional skyline

definition, and return all subsets from the skyline points p1, p6, and p11. If the

desired group size is 2, group tp1, p6u, tp1, p11u, and tp6, p11u can be returned.

However, we show that this definition does not capture all the best groups.

For example, tp11, p10u should clearly be considered a Pareto optimal group to

users who use price as the main criterion, e.g. Ph.D. students with low travel

budget, since p11 provides the best price and p10 the second best price. Note

that p10 is only second best to p11 which is also part of the group, hence no

other groups are better than this group in terms of price. As another example,

tp6, p3u also presents a Pareto optimal group, as both p6 and p3 provide a good

tradeoff and no other groups are better than this group considering both price

and distance. On the other hand, group tp3, p8u is not a best group because

p11pp6q is better than p8pp3q, i.e., group tp3, p8u is dominated by group tp6, p11u.

NBA Example. Consider another real example with NBA players. Table

1 shows the top five players on attribute PTS (Points). For other attributes,

please see the experimental section 3.6 for detailed explanations. Suppose the

coaches of NBA teams need to choose five players to compose a team. While
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Table 3.1: Top five players on Attribute PTS.

Player PTS REB AST STL BLK
Michael Jordan 33.4 6.4 5.7 2.1 0.9
Anthony Davis 30.5 8.5 2 1.5 3
Kyrie Irving 30 3 2 1 1
Allen Iverson 29.7 3.8 6 2.1 0.2
Jerry West 29.1 5.6 6.3 0 0

... ... ... ... ... ...

the traditional skyline will compute best players that are not dominated by

other players, we need to compute best teams that are not dominated by other

teams. For example, a coach may prefer PTS as the main selection criteria when

building a team in order to maximize the overall points that can be earned by

the team. In this case, the top five players on PTS, {Michael Jordan, Anthony

Davis, Kyrie Irving, Allen Iverson, Jerry West}, should be considered a best

team. However, if we only build groups from skyline players, this team will

not be captured because Kyrie Irving is not a skyline player being dominated

by Anthony Davis. In essence, taking only skyline players will not capture

those teams which may include non-skyline players who are only dominated by

another player in the team but are not dominated by any other players outside

the team. In summary, we argue that there is a need to define a group skyline

notion for group-based decision making such that we can find Pareto optimal

groups.

Contributions. In this chapter, we formally define a novel group-based sky-

line, G-Skyline, for finding Pareto optimal groups. In order to find the best

groups, i.e., groups not dominated by other groups, we will first define the

dominance relationship between groups, group dominance. Given two different

groups G and G1 with k points, we say G g-dominates G1, if for any point p1
i in

G1, we can find a distinct point pi in G, such that pi dominates p1
i or pi “ p1

i,
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and for at least one i, pi dominates p1
i. The G-Skyline are those groups that are

not g-dominated by any other group with same size. Intuitively, if we consider

the points in each group as a set of dimensions orthogonal to the attributes

of each point, the definition of G-Skyline groups with the group dominance is

in spirit similar to skyline definition, in that a group is a skyline group if no

permutation of any other group exists that is better for at least one point and

at least as good for every other point.

G-Skyline not only captures groups of points from traditional skyline points

but also groups that may contain non-skyline points. Back to our hotel exam-

ple, tp11, p10u is a G-Skyline group as we discussed earlier even though p10 is

not a skyline point. Group tp6, p3u is also a G-Skyline. On the other hand,

group tp1, p3u is not as it is dominated by {p1, p6}. Group tp3, p8u is also not as

it is dominated by tp6, p11u. In summary, the G-Skyline in this example consist

of all groups composed of skyline points, tp1, p6u, tp1, p11u, tp6, p11u, as well as

groups that contain non-skyline points, tp6, p3u, tp11, p8u, and tp11, p10u.

It’s non-trivial to solve G-Skyline problem efficiently. To find k-point G-

Skyline groups from n points, there can be
`

n
k

˘

different possible groups. Unfor-

tunately, the G-Skyline problem is significantly different from the traditional

skyline problem, to the extent that algorithms for the latter are inapplicable.

A brute force solution is to enumerate all
`

n
k

˘

possible groups, then for each

group, to compare it with all other groups to determine whether it cannot be

dominated. So there are
`

n
k

˘2
comparisons. For each comparison, there are k!

possible permutations of the points, and for each permutation, it requires k

comparisons. Therefore, the time complexity is in the order of Op
`

n
k

˘2
ˆk!ˆkq.

In this chapter, we present a novel structure that represents the points in a

directed skyline graph and captures all the dominance relationship among the
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points based on the notion of skyline layers. Using the directed skyline graph,

the G-Skyline problem can be formulated as the classic search problem in a set

enumeration tree. We exploit the properties of G-Skyline groups and propose

two algorithms with efficient pruning strategies to compute G-Skyline groups.

We briefly summarize our contributions as follows.

• For the first time, we generalize the original skyline definition (for indi-

vidual points) to permutation group-based skyline (for groups) which is

useful for finding Pareto optimal groups in practical applications.

• We present a novel structure for finding k-point G-Skyline groups by

representing the points as a directed skyline graph based on the first k

skyline layers. This directed skyline graph is significant as we show that

we only need the points in the first k skyline layers (k is far less than n

in the usual case) rather than the entire n points to compute k-point G-

Skyline. We design efficient algorithms for computing the first k skyline

layers with time complexity Opn log nq for two- and Opn log n ` nSkq for

higher-dimensional spaces, where Sk is the number of points in the first

k skyline layers. This can be also of independent value and used as a

preprocessing step for other skyline algorithms.

• Given the directed skyline graph, we present two efficient algorithms: the

point-wise and the unit group-wise algorithms, to efficiently compute G-

Skyline groups. We introduce a novel notion of unit-group for each point

which represents the minimum number of points that have to be included

with the point in a G-Skyline. Both algorithms employ efficient pruning

strategies exploiting G-Skyline properties.

• We conduct comprehensive experiments on real and synthetic datasets.
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The experimental results show that G-Skyline is interesting and useful,

and our proposed algorithms are efficient and scalable.

• We also briefly discuss two variants of G-Skyline definition: One is AG-

Skyline based on a more restrictive all-permutation group dominance.

The other one is PG-Skyline based on a less restrictive partial group

dominance, which can address the potential problem of large number of

output groups of G-Skyline.

Organization. The rest of the chapter is organized as follows. Section 3.2

presents the related work. Section 3.3 introduces our G-skyline definitions as

well as their properties. The algorithms of constructing directed skyline graph

are shown in Section 3.4. Two algorithms for finding G-Skyline groups based

on the directed skyline graph are discussed in Section 3.5. We report the

experimental results and findings for performance evaluation in Section 3.6.

Section 3.7 discusses two extensions to our work. Section 3.8 concludes the

chapter.

3.2 Related Work

The problem of computing skyline (Maxima) is a fundamental problem in com-

putational geometry field because the skyline is an interesting characterization

of the boundary of a set of points. The skyline computation problem was firstly

studied in computational geometry [26] which focused on worst-case time com-

plexity. [24,35] proposed output-sensitive algorithms achieving Opn log vq in the

worst-case where v is the number of skyline points which is far less than n in

general. Several works [3,4,7,14] in both computational geometry and database
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fields focused on how to achieve the best average-case time complexity. For a

detailed survey both for worst-case and average-case, please see [19].

Since the introduction of the skyline operator by Börzsönyi et al. [7], sky-

line has been extensively studied in the database field. Many algorithms are

proposed in the context of relational query engine and external memory model,

for example, [19,49]. Based on the traditional skyline definition, [1,25] studied

the parallel algorithms for skyline.

Many works also studied extensions or variants of the classical skyline defi-

nitions. Papadias et al. [42] studied group-by skyline which groups the objects

based on their values in one dimension and then computes the skyline for each

group, and k-skyband which computes objects dominated by at most k objects

(the case k “ 0 corresponds to the conventional skyline) based on individual

dominance relationship. Skyline in subspace, i.e., a subset of the dimensions or

points, was studied in [8,45,46,51]. [17,52] discussed the reverse skyline prob-

lem which is similar to the reverse k-nearest neighbor problem. [16] presented

skyline-based statistical descriptors for capturing the distributions over pairs

of dimensions. Some works defined and studied the skyline on different data

types/domains. For example, [47] and [13] studied the spatial skyline and a

more general metric skyline, respectively. [21] proposed the skyline for moving

objects. [18,29,37,44,56] studied the skyline problem for uncertain data.

The most related works to our group-based skyline are [22, 28, 40, 55].

[22,28,55] formulated and investigated the problem of computing skyline group-

s. However, the notion of dominance between groups in these works is defined

by the dominance relationship between an “aggregate” or “representative”

point of each group. More specifically, they calculate for each group a single

aggregate point, whose attribute values are aggregated over the corresponding
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attribute values of all points in the group. The groups are then compared by

their aggregate points using traditional point dominance. While many aggre-

gate functions can be considered in calculating aggregate points, they focus

on several functions commonly used in database applications, such as, SUM,

MIN, and MAX. In addition to the fact that it is difficult to choose a good or

meaningful function, more importantly, it will not capture all the Pareto opti-

mal groups. This is essentially similar to the multi-objective optimization or

multi-attribute skyline problem where an aggregate function, such as weighted

average, can be used to combine the multiple criteria to find a single optimal

solution, but it also fails to capture all the Pareto optimal solutions.

In fact, the result of skyline groups under SUM dominance [22, 28, 55] is a

subset of our G-Skyline groups. If group G is dominated by G1 in G-Skyline

definition, then G must be dominated by G1 under SUM function, but not vice

versa. Consider our hotel example, group tp1, p11u dominates tp3, p6u based

on SUM function. However, we cannot conclude group tp1, p11u is better than

tp3, p6u because the assumption of skyline is that we do not know users’ at-

tribute weights in advance. For users who consider both distance and price in

their selection criteria, they may prefer group tp3, p6u, because tp3, p6u provides

a good compromise of distance and price, and neither p1 or p11 can dominate

p3 or p6. Hence, some Pareto optimal solutions are not captured by SUM

dominance.

The work in [40] also defines a group dominance notion. However, their

definition is based on the uncertain skyline definition by Pei et al. [44]. In our

work, we define a deterministic dominance relationship between two groups in

order to find “optimal” groups of objects.
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3.3 G-Skyline Definitions

In this section, we introduce our G-Skyline definition and related concepts

as well as their properties which will be used in our algorithm design. For

reference, a summary of notations is given in Table 2.

Table 3.2: The summary of notations.

Notation Definition
P zlayeri points in P but not in layeri
p ĺ p1 p dominates or equals to p1

G-Skyline(i) G-Skyline group with i points
pi.layer the skyline layer of pi
|S|ppuq the point(unit group) size of set S

Definition 3.1. (Skyline). Given a dataset P of n points in d-dimensional

space. Let p and p1 be two different points in P , p dominates p1, denoted by

p ă p1, if for all i, pris ď p1ris, and for at least one i, pris ă p1ris, where pris is

the ith dimension of p and 1 ď i ď d. The skyline points are those points that

are not dominated by any other point in P .

G-Skyline. The key of skyline is that it consists of all the “best” points that

are not dominated by other points. While a linear weighted sum function can

be used to combine all the attribute values of each point as a scoring function

to find the best points, the relative preferences (weights) for different attributes

are not known in advance. The skyline essentially covers all the best points

on all linear functions. Following this notion, in order to find all the “best”

groups of points that are not dominated by other groups, we introduce group

dominance definition as follows.

Definition 3.2. (Group Dominance). Given a dataset P of n points in a

d-dimensional space. Let G “ tp1, p2, ..., pku and G1 “ tp1
1, p

1
2, ..., p

1
ku be two
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different groups with k points of P , we say group G g-dominates group G1,

denoted by G ăg G
1, if we can find two permutations of the k points for G and

G1, G “ tpu1 , pu2 , ..., puk
u and G1 “ tp1

v1
, p1

v2
, ..., p1

vk
u, such that pui

ĺ p1
vi
for all

i (1 ď i ď k) and pui
ă p1

vi
for at least one i.

Given the group dominance definition, we define group-based skyline, G-

Skyline, as follows.

Definition 3.3. (G-Skyline). The k-point G-Skyline consists of those groups

with k points that are not g-dominated by any other group with same size.

Example 3.1. Consider the dataset in Figure 3.1 and k “ 3. For group

G “ tp8, p10, p11u and group G1 “ tp4, p5, p7u, G g-dominates G1 because we

can find two permutations, G “ tp8, p10, p11u and G1 “ tp5, p4, p7u such that

p8 ă p5, p10 ă p4, and p11 ă p7. Therefore, G
1 “ tp4, p5, p7u is not a G-Skyline

group. G is one of the G-Skyline groups as no other group with 3 points can

g-dominate G.

Next, we present a few properties of G-Skyline groups and related concepts

that will be used in our algorithm design for computing G-Skyline groups.

Property 3.1. (Asymmetry). Give two groups G and G1 with same size. If

G ăg G
1, then G1 ćg G.

Property 3.2. (Transitivity). Given three groups G1, G2, and G3 with same

size. If G1 ăg G2 and G2 ăg G3, then G1 ăg G3.

Lemma 3.1. A point in a G-Skyline group cannot be dominated by a point

outside the group.

Proof. By contradiction, assume a point pi in a G-Skyline groupG is dominated

by a point pj outside the group. If we use pj to replace pi in G, the new group
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will g-dominate G since pj dominates pi and all the other points are the same,

which contradicts the G-Skyline definition.

Skyline Layers. Motivated by Lemma 3.1, we present a structure representing

the points and their dominance relationships based on the notion of skyline

layers. A formal definition is presented as follows.

Definition 3.4. (Skyline Layers). Given a dataset P of n points in a d-

dimensional space. The set of skyline layer layer1 contains the skyline points

of P , i.e., layer1 “ skylinepP q. The set of layer2 contains the skyline points of

P zlayer1, i.e., layer2 “ skylinepP zlayer1q. Generally, the set of layerj contains

the skyline points of P z
Ťj´1

i“1 layeri, i.e., layerj “ skylinepP z
Ťj´1

i“1 layeriq.

The above process is repeated iteratively until P z
Ťj´1

i“1 layeri “ H.

An example of skyline layers of Figure 3.1 is shown in Figure 4.5. It is easy

to see from Definition 3.4 that for a point p, if there is no point in layeri´1

that can dominate p, p should be in layeri´1 or a lower layer.

Property 3.3. For a point p in layeri, where 2 ď i ď l and l is the maximum

layer number, there must be at least one point in layerj p1 ď j ď i ´ 1q that
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dominates p.

We then make an observation that in order to compute k-point G-Skyline

groups, we only need to examine the points from the first k skyline layers. We

formally present the theorem below.

Theorem 3.1. If a group G “ tp1, p2, ..., pku is a k-point G-Skyline group,

then all points in G belong to the first k skyline layers.

Proof. We prove by contradiction. Assume a point of G is from the jth skyline

layer where j ě pk ` 1q. Without loss of generality, we assume this point is

pk. Since there are k points in G, there is at least one layer layeri, 1 ď i ď k,

that has no point in G. According to Property 3.3, pk should be dominated

by at least one point in layeri, denoted by t. Then it is easy to see that

group G1 “ tp1, p2, .., pk´1, tu by replacing pk in G with t can dominate group

G “ tp1, p2, ..., pk´1, pku. Then group G is not a G-Skyline group which is a

contradiction.

We note that the skyline layers are closely related to the k-skyband [42]

we discussed in the related work. In fact, pk ´ 1q-skyband is the subset of

the points in the first k skyline layers. We can alternatively compute k-point

G-Skyline groups from the pk´1q-skyband, as versus the entire set of n points.

The reason we use skyline layers instead of skyband in our preprocessing is

that we can design efficient algorithms to compute the skyline layers as we will

show in Section 3.4 and we can leverage the layers to compute skyline groups

efficiently as we show in Section 3.5.

Directed Skyline Graph. We now present a definition of directed skyline

graph, a data structure we use to represent the points from the first k skyline



24

layers as well as their dominance relationships, in order to compute k-point

G-Skyline groups.

Definition 3.5. (Directed Skyline Graph (DSG)). A directed skyline

graph is a graph where a node represents a point and an edge represents a

dominance relationship. Each node has a structure as follows.

rlayer index, point index, parents, childrens

where layer index ranging from 1 to k indicates the skyline layer that the point

lies on, point index ranging from 0 to Sk ´ 1 uniquely identifies the point and

Sk is the number of points in the first k skyline layers, parents include all the

points that dominate this point, and children include all the points that are

dominated by the point.

Example 3.2. Figure 4.6 shows the DSG corresponding to the skyline layers

in Figure 2. Note that p6 ă p5 and p5 ă p4 imply p6 ă p4. For visualization

clarity, we omit all indirect dominance edges such as p6 ă p4.

Lemma 3.2. Given a point p, if p is in a G-Skyline group, p’s parents must

be included in this G-Skyline group.

Proof. By Lemma 3.1, a point p in a G-Skyline group cannot be dominated by

a point outside the group, i.e., all the points that dominate p must be included

in this G-Skyline group.

Verification of G-Skyline. Motivated by Lemma 3.2, we define a concept of

Unit Group and then formally state a theorem for verifying whether a group

is a G-Skyline group based on unit group.
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Definition 3.6. (Unit Group). Given a point p in DSG, p and its parents

form the unit group for p.

Example 3.3. The unit group of p5 in Figure 4.6, denoted by u5, contains p5

and its parents p6, p11, p8. Thus, u5 “ tp6, p11, p8, p5u.

Based on Lemma 3.2, we have the verification of G-Skyline theorem as

follows.

Theorem 3.2. (Verification of G-Skyline). Given a groupG “ tp1, p2, ..., pku,

it is a G-Skyline group, if its corresponding unit group set S “ u1 Yu2 Y ...Yuk

contains k points, i.e., |S|p “ k.

This theorem is significant because given a group G, in order to check

whether it is a G-Skyline group, we do not need to compare G with all oth-

er candidate groups any more. Instead, we only need to check whether its

corresponding unit group set S has k points.

3.4 Constructing Directed Skyline Graph

In this section, we first present our algorithms for computing the first k skyline

layers in two- and higher-dimensional space, and then briefly discuss how to

construct the DSG based on skyline layers. In next section, we will present our

algorithms for finding G-Skyline groups using DSG.

A straightforward way of computing skyline layers is to iteratively compute

(and remove) the skyline points of each layer using any Opn log nq time com-

plexity skyline algorithms [26]. Since a dataset may exhibit a linear number of

layers, this leads to an Opn2 log nq worst-case running time. Existing work pro-

posed space-efficient algorithms for computing all skyline layers simultaneously
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with Opn log nq time complexity for two dimensions [6] and Opn2q for higher

dimensions [38]. In this chapter, we present an efficient Opn log nq algorithm

for two dimensional space based on the ideas briefly mentioned in [6] (they did

not provide any algorithm details as their focus is on designing in-place algo-

rithms). In addition, since we only need the first k skyline layers for computing

k-point G-Skyline groups, as we have shown in Theorem 1, we present more

efficient output-sensitive algorithms with Opn ` Sk log kq time complexity for

two- and OpnSkq for higher-dimensional space after the points are sorted.

Computing Skyline Layers for Two Dimensions. For two dimensional

space, the main intuition of the algorithm is motivated by the monotonic prop-

erty of skyline points in two dimensional space, that is, if we sort the skyline

points with increasing x-coordinate, their y-coordinates decrease monotonical-

ly, since they cannot dominate each other. This applies to each skyline layer

as shown in Figure 4.5. We refer to the point with minimum y-coordinate in

layeri as the tail point of layeri. We derive the following two properties for

skyline layers in a two dimensional space which will motivate our algorithm

design.

Property 3.4. Given a skyline layer layeri with its tail point denoted as

playeri , and a point p, if prxs ě playerirxs and p is not dominated by playeri , then

p cannot be dominated by any other point in layeri.

Proof. For a point p with prxs ě playerirxs, if it is not dominated by playeri , then

we have prys ă playerirys. Because playeri has the smallest value on y-coordinate

in layeri, then all other points in layeri cannot dominate p.

Property 3.5. Given l layers for the n points in P with their tail points

denoted as player1 , player2 , ..., playerl , the y-coordinates of those points are in
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ascending order, i.e., player1rys ď player2rys ď ... ď playerirys.

Proof. We prove by contradiction. Suppose playerirys ă playeri´1
rys. Since

playeri´1
is the tail point in layeri´1, we know that the y-coordinates of all

the points in layeri´1 are larger than playeri´1
rys, hence no points of layeri´1

can dominate the tail point of layeri. This is contradictory to the skyline layer

definition.

As an example for Property 3.4 in Figure 4.5, we can see that layer1 has

tail point p11, given a point p with x-coordinate greater than p11, if p is not

dominated by p11, then p cannot be dominated by p1 and p6. For Property 3.5,

we can see that the tail points p11, p10, p9, and p7 are in ascending order on

their y-coordinates.

Algorithm 3.1: Skyline layers algorithm in two-Ds.

input : a set of n points in two dimensional space.
output: l skyline layers.

1 If the points are not sorted already, sort the n points on the first
dimension in ascending order P “ tpu1 , pu2 , ..., punu;

2 pu1 .layer “ 1;
3 maxlayer “ 1;
4 tail point of layer1 “ pu1 ;
5 for i = 2 to n do
6 if the tail point of layer1 cannot dominate pui

then
7 pui

.layer “ 1;
8 tail point of layer1 “ pui

;

9 else if the tail point of layermaxlayer dominate pui
then

10 pui
.layer “ ` ` maxlayer;

11 tail point of layermaxlayer “ pui
;

12 else
13 use binary search to find layerj (1 ă j ď maxlayer) such that

the tail point of layerj cannot dominate pui
and the tail point of

layerj´1 dominates pui
;

14 pui
.layer “ j;

15 tail point of layerj “ pui
;
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Based on the above properties, our key idea of the algorithm, shown in

Algorithm 3.1, is to sort all the points in ascending x-coordinates if they are

not sorted already and process them in that sequence by either adding them

into an existing layer it belongs to or starting a new layer. Line 2-4 adds the

first point (with minimum x value) into the first skyline layer. For each new

point pui
, its x-coordinate is larger than all the points in existing layers. Based

on Property 3.4, we only need to compare point pui
with the (current) tail point

of each layer to determine if it cannot be dominated by any of the points in

that layer. Based on Property 3.5, the tail points are sorted by y-coordinates

in ascending order so we can perform a binary search to quickly find the layer

that the point belongs to. If the tail point of the first layer cannot dominate

pui
(line 6), we insert the point to the first layer. If the tail point of the last

layer dominates pui
(line 9), we add a new layer for the point. Line 13 performs

such a binary search and finds layerj to insert the point, i.e., the tail point of

layerj cannot dominate pui
but the tail point of layerj´1 dominates pui

. Once

the point is inserted, it becomes the new tail point of that layer.

Since we just need the points in the first k skyline layers (Theorem 3.1), we

can slightly modify the algorithm as follows. Once the kth layer is established,

for each of the remaining points p, we can compare p with the tail point of the

kth layer. If p is dominated by it, it means p lies outside the first k layers, and

we can drop p directly. If not, we can then use binary search on the first k

layers.

Running time. For each point in the first k skyline layers, we need at most

Oplog kq time to determine its layer because we only need to maintain k layers.

This part costs OpSk log kq. For those points not in the first k layers, we only

need to compare it with the tail point of the kth layer. Therefore, the algorithm
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requires Opn`Sk log kq time in total for computing the first k skyline layers in

two dimensional space after the points are sorted in one dimension.

Higher dimensional space. For a higher dimensional space, we can use

an algorithm similar to Algorithm 3.1. It processes each point in order and

finds an existing skyline layer to insert it or starts a new layer. However, the

difference is that Properties 3.4 and 3.5 do not hold for the higher dimensional

case anymore. So in order to find an existing skyline layer the point belongs to,

we need to compare the point with all existing points, as versus only the tail

points in each layer in two-dimensional case. For each point, we need at most

OpSkq time to determine its position because there are at most Sk points in the

first k layers. Therefore, the algorithm for computing the first k skyline layers

in higher dimensional space requires OpnSkq time after the data are sorted in

one dimension.

Constructing Directed Skyline Graph. Once we build the skyline layers,

we can build a DSG to capture all the dominance relationships between the

layers which will then be used to compute G-Skyline groups. Building DSG

using the skyline layers is straightforward: the points are processed in the order

of their skyline layers. For each point pi, we scan all points in the previous layers

and find those points that dominate pi, add pi to their children list, and add

those points that dominate pi as pi’s parents. It is easy to see such an algorithm

takes OpSk
2q time.

3.5 Finding G-Skyline Groups

In this section, we present our algorithms for efficiently finding G-Skyline group-

s given the DSG built from the first k skyline layers. We first present a point-
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wise algorithm which builds G-Skyline groups from points (adding one point

at a time), then present a unit group-wise algorithm which builds G-Skyline

groups from unit groups (adding one unit group at a time). Before beginning

the discussion of the two algorithms, we first show a preprocessing step similar

to that in [22,28,55] to further prune points from the first k skyline layers.

Preprocessing. Theorem 3.2 shows that a k-point group is a G-Skyline group,

if for each point pi in the group, its parents are also in the group, i.e., the unit

group ui is a subset of the group. Therefore, for a point pi, if the point size of

its unit group is greater than k, i.e., |ui|p ą k, it will not be in any k-point G-

Skyline group, and we can remove pi directly from the DSG without having to

consider it. If |ui|p “ k, we can output ui as one of the G-Skyline groups, and

pi will not be considered either as it will not contribute to any other G-Skyline

groups.

Example 3.4. If we set k “ 4 (we will use k “ 4 in all the remaining examples

of the chapter), the node p2, p4, p7 in Figure 4.6 can be removed directly because

|u2|p “ 5, |u4|p “ 7, |u7|p “ 5. Unit group u5 “ tp6, p11, p8, p5u can be output

as a G-Skyline group. As a result, p2, p5, p4, p7 will not be considered in our

algorithms.

3.5.1 The Point-Wise Algorithm

The problem of finding G-Skyline groups can be tackled by the classic set

enumeration tree search framework. The idea is to expand possible groups

over an ordered list of points as illustrated in Figure 4.12. Each node in the set

enumeration tree is a candidate group. The first level contains the root node

which is the empty set, while the ith level contains all i-point groups. Naively,
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we can enumerate all
`Sk
k

˘

candidates and employ Theorem 3.2 to check each

candidate. However, this baseline method is too time-consuming which will be

verified in our experiments.

The main idea of our algorithm is to dynamically generate the set enumer-

ation tree of candidate groups one level at a time while pruning the non-G-

Skyline candidates as much as possible without having to check them. For

each node, we store a tail set that consists of the points with point index larger

than the points in current node. Each node can be expanded to create a set

of new nodes at the next level, each by adding a new point from its tail set.

The root node contains an empty set with a tail set composed of all remaining

points from the first k skyline layers after the preprocessing. We present our

tree expansion and pruning strategies in detail below.

Subtree Pruning. We observe a property of superset monotonicity which

allows us to do subtree pruning when a node is not a G-Skyline group.

Theorem 3.3. (Superset Monotonicity). If a group Gi with i points is not

a G-Skyline group, by adding a new point from its tail set, the new group Gi`1

with i ` 1 points is not a G-Skyline group either.

Proof. If Gi is not a G-Skyline group, there is a group G1
i with i points that

dominates Gi. For any superset of Gi with a new point pj added from Gi’s

tail set, we denote it by Gi Y pj. Since the points are ordered by skyline layers

in our DSG, and any point in Gi’s tail set has a larger point index than the

points in Gi, hence pj will not dominate any points in Gi, and will not be

in G1
i. It is then easy to see that the group G1

i Y pj dominates Gi Y pj, i.e.,

G1
i Y pj ă Gi Y pj.

This theorem implies that if a candidate group G is not a G-Skyline group,
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we do not need to expand it further or check its subtree.

Tail Set Pruning. Each node in our tree can be expanded to a set of new

nodes by adding a point from its tail set. However, not all tail points need

to be considered. Recall Lemma 3.1, a point in a G-Skyline group cannot be

dominated by a point outside the group. In other words, if a point p is to be

added to a group G to form a new group that is a G-Skyline group, its parents

must be in the group already. This means that p must be either a skyline

point (with no parent), or a child of some points in G. Note this is a necessary

condition but not sufficient. Once the candidate group is built, we still need to

check whether p’s parents are all in G (Theorem 3.2). However, this necessary

condition allows us to quickly prune those points from the tail set of G that are

not skyline points or not a child of points in G. In addition, given a candidate

group G, if all its points are in the first i skyline layers, p must come from

the first i ` 1 skyline layers. Otherwise, we can find a point outside G that

lies on the pi ` 1qth layer to dominate p. Hence we can also prune the points

beyond the pi ` 1qth layer. Once a point is pruned from the tail set, it will not

be used to expand the current node. This is because based on the superset

monotonicity, any node in the subtree of the new node will not be a G-Skyline

group either.

Algorithm. Given the above two pruning strategies, we show our complete

point-wise algorithm in Algorithm 2.2. Line 1 initializes the root node and its

tail set. Tail set pruning is implemented in Line 4 to Line 10. For each node

Gj at level i, it is expanded with a new point p from its tail set to form a new

candidate group only if p is a child of some points in the current node or a

skyline point and p is in the first i ` 1 layers. The for loop in Line 4 and Line

6 can be finished in linear time Op|CS|q and Op|CS| ` |TS|q, respectively, by
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Algorithm 3.2: The point-wise algorithm for computing G-Skyline
groups.

input : a DSG and group size k.
output: G-Skyline(k) groups.

1 initialize the G-Skyline(0) group at root node as an empty set and its
tail set as all points from DSG after preprocessing;

2 for i=1 to k do
3 for each G-Skyline(i-1) group G do
4 for each point pl in G do
5 add pl’s children to Children Set CS;

6 for each point pj in Tail Set(TS) of G do
7 if pj is not in CS && pj is not a skyline point then
8 delete pj;

9 if pj.layer ´ maxltpl.layeru ě 2 then
10 delete pj;

11 for each remaining point p in tail set of G do
12 add p to G to form a new candidate G-Skyline(i) group;
13 if the new candidate group is not a G-Skyline group then
14 delete;

employing the idea of merge sort, where |CS| and |TS| are the size of children

set and tail set. The candidate group is verified in Line 13. If it is not a

G-Skyline group, it will be pruned from the tree (subtree pruning).

Example 3.5. We show a running example of Algorithm 2.2 in Figure 4.12

based on Figure 4.6. The root node at level |S|p “ 0 has an initial tail set

tp1, p6, p11, p3, p8, p10, p9u. Points p3, p8, p10, p9 can be pruned immediately be-

cause they are not skyline points, i.e., their parents are not in the root n-

ode. The remaining points p1, p6, p11 are used to create the new nodes at

level |S|p “ 1. Similarly, for node tp1, p11u at level |S|p “ 2, its tail set is

tp3, p8, p10, p9u. Point p3 can be pruned because p3 is not a child of either p1

or p11. Point p9 also can be pruned as p9.layer ´maxtp1.layer, p11.layeru “ 2.

Hence, the remaining points p8, p10 are used to create the new candidate group-
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s at level |S|p “ 3, namely tp1, p11, p8u and tp1, p11, p10u. As a result, level

|S|p “ 4 shows all candidate 4-point groups that need to be checked. After

checking, the ones with blue slash are not G-Skyline groups while the remain-

ing ones are G-Skyline groups. Based on our pruning strategies, only 31 can-

didate groups are generated and checked while the baseline approach needs to

enumerate and check
`

8
4

˘

“ 70 candidate groups.

{p1} {p6} {p11}

{p1, p6} {p1, p11} {p6, p11} {p6, p3} {p11, p10}{p11, p8}

{p1, p6, p11}

{p1, p6, p3}

{p1, p11, p8}

{p1, p11, p10}

{p6, p11, p3}

{p6, p11, p8}{p6, p11, p10}

{p11, p8, p10}{p11, p10, p9}

{p1, p6, p11, p3}
{p1, p6, p11, p8}
{p1, p6, p11, p10} {p1, p11, p10, p9}

{p6, p11, p3, p8}
{p6, p11, p3, p10}

{p6, p11, p10, p9} {p11, p8, p10, p9}{p1, p11, p8, p10}

{∅}

{p6, p11, p8, p10}

|S|p = 0

|S|p = 1

|S|p = 2

|S|p = 3

|S|p = 4

{p1, p11, p8, p9}
{p6, p11, p3, p9}

{p6, p11, p8, p9}

Figure 3.4: The point-wise algorithm for finding G-Skyline groups when k “ 4.

3.5.2 The Unit Group-Wise Algorithm

The point-wise algorithm expands candidate groups one point at a time. We

already showed (in Lemma 3.1) that a point in a G-Skyline group cannot be

dominated by a point outside the group. In other words, for a point in a G-

Skyline group, its unit group must be in the group. This motivates our unit

group-wise algorithm which expands candidate groups by unit groups, adding

one unit group at a time. Similar to the point-wise algorithm, we can represent

the entire search space of candidate groups as a set enumeration tree, where
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each node is a set of unit groups. We can dynamically generate the tree while

pruning as much non-G-Skyline groups as possible. We can use similar pruning

strategies as in the point-wise algorithm.

Superset Pruning.

Given a candidate group G with at least k points, the candidate groups in

G’s subtree will have more than k points. Hence, we can prune G’s subtree

directly.

Example 3.6. Figure 3.5 shows the dynamically generated set enumeration

tree for the unit group-wise algorithm. At level |S|u “ 2, |u3 Yu8|p “ 4, hence

we do not need to check the candidate groups in its subtree, e.g., u3 Yu8 Yu10.

This is because |u3 Yu8 Yu10|p= |tp6, p11, p3, p8, p10u|p “ 5.

Tail Set Pruning.

For a candidate group G at Level |S|u “ i, we do not need to add the

children of the unit groups in G to form a new candidate group at Level |S|u “

i ` 1. Therefore, the children of the unit groups in G can be pruned from the

tail set.

Example 3.7. We show a running example for the unit group-wise algorithm

with the two pruning strategies in Figure 3.5. The number on each candidate

group represents the number of points in this candidate group. All candidate

groups with one unit group are checked at Level |S|u “ 1. For candidate

group u6 at Level |S|u “ 1, its tail set is tu11, u3, u8, u10, u9u. However, u3

can be pruned by Tail Set Pruning because u3 is the child of u6. From Level

|S|u “ 2 to Level |S|u “ 3, candidate group u3 Yu8’s subtree does not need

to be checked since |u3 Yu8|p “ 4, thanks to Superset Pruning. Based on the

two pruning strategies, only 35 candidate groups need to be checked as shown.
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The resulting G-Skyline(4) groups are shown in red (solid) boxes and we can

see that they come from different levels while the point-wise algorithm outputs

all G-Skyline(4) groups at Level |S|p “ 4.

{∅}
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Figure 3.5: The basic unit group-wise algorithm for finding G-Skyline groups
when k “ 4.

In addition to the above strategies, we show a few additional refinements

that further improve the algorithm.

Unit Group Reordering.

We observe that Superset Pruning is important to reduce the candidate

groups. This motivates us to reorder the unit groups in order to increase the

effectiveness of Superset Pruning. Recall that Superset Pruning can be applied

when a candidate group G has |G|p ě k. Therefore it would be beneficial if we

build large candidate groups first which allows us to prune more non-G-Skyline

candidate groups at an early stage. A good heuristic for accomplishing this is to

reorder the unit groups for each point in the reverse order of their point index.
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This is because a point with a larger index, i.e., at a higher skyline layer, tends

to have more parents, and hence a larger unit group size. By ordering the unit

groups this way, they are likely in the (although not monotonically) decreasing

order in their unit group size. We simply need to modify the Tail Set Pruning

strategy such that for each node G, the parents (instead of the children) of the

unit groups of G are pruned from its tail set.

Subset Pruning.

Given a candidate group Gi, if |Gi|p ď k, then any candidate groups that

are Gi’s subset have at most k points. This motivates us to employ Subset

Pruning. For each candidate group Gi with |Gi|p ă k at Level |S|u “ 1, we

can check a new candidate group by adding the entire tail set of Gi to Gi, i.e.,

the last or deepest leaf candidate group Glast
i in Gi’s subtree. If |Glast

i |p ď k,

the entire subtree of Gi can be pruned directly and Glast
i can be output if

|Glast
i |p “ k. Furthermore, we do not need to check those candidate groups

in the subtree of Gi’s right siblings Gsib because the last candidate group in

Gsib’s subtree, Glast
sib , is a subset of Glast

i , hence, |Glast
sib |p ă k too. While both

depth-first and breadth-first expansion of the tree will work equally well for

Superset Pruning, Subset Pruning benefits from a depth-first expansion such

that more siblings can be pruned.

Algorithm.

Given the Superset Pruning, Unit Group Reordering, Subset Pruning, and

Tail Set Pruning strategies, the complete unit group-wise algorithm is shown in

Algorithm 3. Line 1 applies Unit Group Reordering. Subset Pruning is applied

to the 1-unit groups in Lines 3 and 6. We also note that while Subset Pruning

can be employed at every node, it also adds additional cost for checking the

leaf node. So we only apply them at Level |S|u “ 1 to gain the most pruning



38

benefit, as k is far less than n in the usual case. Tail Set Pruning is applied

in Line 11 to Line 14 to prune those candidate groups that do not need to be

checked. Line 19 applies Superset Pruning to prune those candidate groups

with more than k points.

Example 3.8. We show a running example of Algorithm 3 in Figure 3.6. The

1-unit groups are built in reverse order of point index at Level |S|u “ 1. For

candidate group u9, we first check the last candidate group (linked by red (thin)

arrow) which has |u9 Yu10 Yu8 Yu3 Yu11 Yu6 Yu1|p “ |u9

Yu8 Yu3 Yu1|p “ 7 ą 4. So Subset Pruning cannot be applied, and we

still need to check u9’s subtree. We build each branch with a depth-first s-

trategy. At candidate group u3, the last candidate group of its subtree has

|u3 Yu11 Yu6 Yu1|p “ |u3 Yu11 Yu1|p “ 4, so it is a G-Skyline(4) group. Based

on the Subset Pruning strategy, the algorithm is terminated because there are

no more candidate groups that need to be checked. As a result, only 27 candi-

date groups need to be checked as shown in Figure 3.6.

3.6 Experiments

In this section, we present experimental studies evaluating our approach.

3.6.1 Experiment Setup

We first present a small user study using the example hotel dataset (as shown in

Figure 1) to verify the motivation of G-Skyline. We then evaluate the algorithm

for computing the skyline layers, and then perform an extensive empirical study

to examine the point-wise and unit group-wise algorithms using both synthetic

and real datasets.
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Figure 3.6: The enhanced unit group-wise algorithm for finding G-Skyline
groups when k “ 4.

Since this is the first work for group-based skyline with the new definition of

G-Skyline, our performance evaluation was conducted against the enumeration

method as a baseline. We implemented the following algorithms in Java and

ran experiments on a machine with Intel Core i7 running Ubuntu with 8GB

memory.

• PWise: Point-wise algorithm presented in Subsection 3.5.1.

• UWise: Basic unit group-wise algorithm with Superset Pruning and Tail

Set Pruning.

• UWise+: Refined unit group-wise algorithm with Unit Group Reorder-

ing and Subset Pruning.

• BL: We enumerate all
`Sk
k

˘

candidates, and use Theorem 3.2 to verify

each candidate.
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We used both synthetic datasets and a real NBA dataset in our experi-

ments. To study the scalability of our methods, we generated independen-

t (INDE), correlated (CORR), and anti-correlated (ANTI) datasets follow-

ing the seminal work [7]. We also built a dataset that contains 2384 N-

BA players who are league leaders of playoffs. The data was extracted from

http://stats.nba.com/leaders/alltime/?ls=iref:nba:gnav on 04/15/2015. Each

player has five attributes that measure the player’s performance. Those at-

tributes are Points (PTS), Rebounds (REB), Assists (AST), Steals (STL), and

Blocks (BLK).

3.6.2 Case Study

We performed a small user study using the hotel example dataset (Figure 1).

We posted a questionnaire using the conference scenario to ask 38 students

and staff members in our department and 30 workers from Amazon Mechanical

Turk. We asked them to answer with groups of 2 hotels that they think are

the best and provide the reasons of their selections when possible. We received

61 responses in total. Table 3 shows the number of answers for each hotel

combinations. The results indeed showed that our group skyline definition

covers all the returned groups, while taking any k-skyline points and other

existing SUM based group skyline definitions [22,28,55] will miss a number of

groups that are perceived relevant by the users, such as tp6, p3u and tp11, p10u.

3.6.3 Computing Skyline Layers

We first evaluate our algorithms for computing skyline layers. A baseline ap-

proach (BL) is to iteratively compute and then remove the skyline points for

each layer. We compare our binary search algorithm (BS) that builds all skyline
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(c) time cost of ANTI
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Figure 3.7: Computing G-Skyline groups on synthetic datasets of varying n.
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Figure 3.8: Computing G-Skyline groups on synthetic datasets of varying d.
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Figure 3.9: Computing G-Skyline groups on synthetic datasets of varying k.

layers simultaneously for two dimensional space to the baseline approach.

Figure 3.10 shows the runtime of our binary search algorithm and the Base-

line algorithm for varying group size k on the three different datasets (n=10k)

respectively. The runtime for the baseline algorithm is not significantly differ-

ent for the three datasets because the number of skyline points (which differ

in the three datasets) has minimal impact on the skyline algorithms in two-

dimensional space. For each dataset, the time of the baseline algorithm almost

linearly increases with the increase of group size k because the algorithm iter-
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Figure 3.10: Computing skyline layers on synthetic datasets of varying k.

atively computes the skyline points for each layer. Different from the baseline

algorithm, the running time of our binary search algorithm is affected by the d-

ifferent datasets and shows little growth from CORR to INDE, and from INDE

to ANTI dataset. The reason is, in our algorithm, only the points in the first

k skyline layers will trigger the binary search on the existing layers while the

points not in the first k skyline layers are dropped directly. Because of the dis-

tribution or correlation patterns of the datasets, the average number of points in

each skyline layer (a) for the datasets follows CORR.a ă INDE.a ă ANTI.a,

which explains the runtime difference among the datasets. Finally, our bi-

nary search algorithm significantly outperforms the baseline algorithm on all

datasets. We also implemented and evaluated the higher dimensional case.

Even though both algorithms are sensitive to the data distribution in higher-

dimensional space, BS still significantly outperforms BL. We did not report

them here due to limited space.

3.6.4 G-Skyline Groups in the Synthetic Data

In this subsection, we report the experimental results for computing G-Skyline

groups based on synthetic data.

Figures 3.7(a)(b)(c) present the time cost of UWise, UWise+, PWise, and
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BL with varying number of points n for the three datasets (d “ 2, k “ 4).

Figure 3.7(d) shows the output size with varying n on the three datasets.

Because only the points in the first k skyline layers (total number is Sk) are

used to compute G-Skyline groups and Sk ! n in general, we can see that

the time cost and output size are not significantly impacted by n. Figures

3.7(a)(b)(c)(d) show that the time cost and output size grow approximately

linearly with n.

Figures 3.8(a)(b)(c) show the time cost of UWise, UWise+, PWise, and BL

with varying number of dimensions d on the three datasets (n “ 10000, k “ 3).

Figure 3.8(d) shows the output size with varying d on the three datasets. The

time cost and output size increase exponentially with respect to the increasing

d. This is largely due to the increasing number of points in the first k skyline

layers. We did not report the result of the PWise algorithm in some figures

due to the high space cost of PWise since it needs to generate much more

candidates than UWise.

Figures 3.9(a)(b)(c) show the time cost of UWise, UWise+, PWise, and BL

with varying group size k on the three datasets (n “ 10000, d “ 2). Figure

3.9(d) shows the output size with varying k on the three datasets. We did not

report the result of the BL algorithm in some figures due to the high cost when

k is big. The time cost increases exponentially with respect to the increasing

k. Furthermore, the group size k has a significant impact on the output size

because there are
`Sk
k

˘

« Sk
k candidate groups. Empirically, the result shows

that the output size also grows exponentially with k as shown in Figure 3.9(d).

From the viewpoint of different datasets, the time cost and output size are

in increasing order for CORR, INDE, and ANTI, due to the increasing number

of points in the first k skyline layers. Comparing different algorithms, UWise,
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UWise+, and PWise significantly outperform BL, which validates the benefit

of our pruning strategies. PWise is better than UWise when k is small but

worse when k is big. Furthermore, PWise is highly space-consuming. Both

UWise and UWise+ outperform PWise when k is big, which shows the benefit

of the unit group notion. UWise+ outperforms UWise, thanks to the Unit

Group Reordering and Subset Pruning strategies.

Discussion. We note that the large output size is indeed a challenging prob-

lem for our G-Skyline definition as well as the other group skyline definitions

and even the original skyline definition, especially for the ANTI datasets. We

provide some discussions as follows. First, the essence of skyline is arguably

not to fully help users to choose points given the assumption that the users’

attribute weights or preferences are unknown in advance. Rather skyline can

be particularly useful to prune those points that are certain to be inferior or

dominated by others given any attribute weights. Hence, in a way, we can con-

sider skyline as a preprocessing step for multi-criteria decision making. In this

regard, the (relative) output ratio in our results is significantly small compared

to the number of all possible groups. Second, if the output size is too large to

be consumed by users, additional steps can be performed to choose meaningful

representative points. Several existing works [8, 33, 50] investigated this chal-

lenging problem. Finally, we also show a weaker group dominance relationship

definition, PG-Skyline, which alleviates this issue in Section 3.7.

3.6.5 G-Skyline Groups in the NBA Data

In this subsection, we report the experimental results on the NBA real data.

Figure 3.11(a) shows the time cost with varying n when d “ 5, k “ 5. For

each value of n “ 500, 1000, 1500, 2000, we took the average result based on
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100 experiment runs and for each experiment, we randomly chose n out of 2384

players. UWise, UWise+, and PWise again significantly outperform BL due

to the efficient pruning strategies and UWise+ performs the best. However,

varying n does not have a significant impact on the runtime and output size, as

shown in Figure 3.11(b). The reason is that only the number of points in the

first k layers is used to compute the G-Skyline groups and Sk ! n in general.

Figures 3.12(a) and (b) show the time cost and output size for different d

when n “ 2384, k “ 5. We took the average result of all possible dimension

combinations. We see the number of dimensions d has a large impact on both

the runtime and output size which increase with increasing d.

Figure 3.13 shows the time cost and output size for different k when n “

2384, d “ 5. k also has a large impact since the number of points in the first

k skyline layers increases significantly as k increases while our approaches are

less impacted than the Baseline.

We also report a sample of the final G-Skyline groups in Table 3. There are
`

2384
5

˘

« 6.4 ˆ 1014 candidate groups, but our algorithm only returns 4865073

G-Skyline groups, i.e., 1 out of 1.3 ˆ 108. We can see the sample groups are

formed by elite players with different strengths. For example, G3 is excellent

in PTS, REB, AST, STL, and BLK while G1 excels in PTS, and G4 is a good

balanced group.

3.7 Extensions

In this section, we discuss two interesting extensions of our proposed work:

1) an AG-Skyline definition based on a more restrictive all-permutation group

dominance than G-Skyline, and 2) a PG-Skyline definition based on a less
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Figure 3.11: G-Skyline on NBA dataset of varying n.
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Figure 3.12: G-Skyline on NBA dataset of varying d.
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Figure 3.13: G-Skyline on NBA dataset of varying k.

restrictive partial group dominance.
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3.7.1 AG-Skyline

Our G-Skyline definition is based on the group dominance defined between a

pair of permutations of the points in each group. We formulate an alternative

definition AG-Skyline as follows.

Definition 3.7. (AG-Skyline). Given a dataset P of n points in a d-dimensional

space. Let G “ tp1, p2, ..., pku and G1 “ tp1
1, p

1
2, ..., p

1
ku be two different groups

with k points, we say group G ag-dominates group G1 if for all pi, jq pairs,

pi ĺ p1
j, and for at least one pair pi, jq, pi ă p1

j. The AG-Skyline are those

groups that are not ag-dominated by any other groups with same size.

While g-dominance only requires point-wise domination between two groups

for one permutation of the points in each group (one-to-one point domination),

ag-dominance requires each point in one group dominates all points in the other

group (one-to-all point domination). In other words, ag-dominance requires

point-wise domination between two groups for all permutations of the points.

Because the ag-dominance relationship of AG-Skyline is more strict than G-

Skyline, less candidate groups can be dominated by other groups, that is, the

output of AG-Skyline is a superset of the output of G-Skyline with same group

size on the same input dataset.

3.7.2 PG-Skyline

A potential limitation of our proposed definition is the large number of output

groups. As the number of dimensions and group size increase, the chance for one

group to g-dominate another group is low. As such, the number of G-Skyline

groups becomes significantly large, especially for anti-correlated datasets. A

potential solution to circumvent this issue is to define an alternative, more
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relaxed group-dominance relationship. We define PG-Skyline which is similar

to the notion in [8] for individual skyline points. The key idea is to relax the

dominance requirement from point-wise dominance for all points in each group

to (partial) p points where p ď k.

Definition 3.8. (PG-Skyline). Given a dataset P of n points in a d-dimensional

space. Let G “ tp1, p2, ..., pku and G1 “ tp1
1, p

1
2, ..., p

1
ku be two different groups

with k points of P , we say groupG pg-dominates groupG1 if for p points (p ď k)

in G andG1, we can find two permutations of the p points, G “ tpu1 , pu2 , ..., pupu

and G1 “ tp1
v1
, p1

v2
, ..., p1

vpu, such that pui
ĺ p1

vi
, for all i p1 ď i ď p) and pui

ă p1
vi

for at least one i. The PG-Skyline are those groups that are not pg-dominated

by any other group with same size.

Because the dominance relationship of PG-Skyline is less strict than G-

Skyline, more candidate groups can be dominated by other groups, that is, the

output of PG-Skyline is a subset of the output of G-Skyline with the same

group size on the same input dataset.

3.8 Conclusions

In this chapter, we proposed the problem of G-Skyline groups for finding Pareto

optimal groups, instead of finding Pareto optimal points in the classic definition

of skylines. Our definition is based on a dominance relationship between groups

with same number of points. This is the first work to extend the original

skyline definition to group level which captures the quintessence of original

skyline definition. To compute the G-Skyline groups efficiently, we presented

a novel structure based on skyline layers that not only partitions the points

efficiently but also captures the dominance relationship between the points.
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We then presented point-wise and unit group-wise algorithms to compute the

G-Skyline groups efficiently. A comprehensive experimental study is reported

demonstrating the benefit of our algorithms. We also discussed two alternative

dominance definitions, AG-Skyline and PG-Skyline, which are the superset and

subset of G-Skyline, respectively.
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Algorithm 3.3: The unit group-wise algorithm for computing G-Skyline
groups.

input : a DSG and group size k.
output: G-Skyline(k) groups.

1 build 1-unit group as candidate groups following reverse order of point
index;

2 for each candidate group G in 1-unit groups do
3 if |Glast|p “ k then
4 output Glast;
5 break;

6 else if |Glast|p ă k then
7 break;

8 i=2;
9 while the set of candidate group G1, such that |G1|u “ i ´ 1, is not

empty do
10 for each G1 do
11 for each unit group ui in G1 do
12 add ui’s parents to Parents Set PS;

13 for each unit group uj in tail set of G1 do
14 delete uj if uj is in PS;

15 for each remaining unit group u in tail set of G1 do
16 add u to G1 to form a new candidate group G2 that

|G2|u “ i;

17 delete G1;
18 output G2 if |G2|p “ k;
19 delete G2 if |G2|p ěk;
20 i++;

Table 3.3: Results of case study.

tp11, p8u tp6, p11u tp11, p10u tp6, p3u tp1, p11u tp1, p6u

10 14 12 10 8 7

Table 3.4: Sample of G-Skyline groups on the NBA dataset.

G1 Michael Jordan Anthony Davis Kyrie Irving Allen Iverson Jerry West high PTS
G2 Magic Johnson John Stockton Isaiah Thomas Chris Paul Rajon Rondo high AST
G3 Michael Jordan Bill Russell Magic Johnson Lance Blanks Hakeem Olajuwon high PTS,REB,AST,STL,BLK
G4 Maurice Cheeks Rich Barry Slick Watts Baron Davis Brad Daugherty very balanced
G5 Julius Erving Elvin Hayes Michael Jordan Khris Middleton Alvin Robertson high STL,BLK
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Chapter 4

Skyline Diagram

4.1 Introduction

Similarity queries is a foundational problem in many application domains which

retrieves similar objects given a query object. One of the important similarity

queries, kNN queries, has been extensively studied which retrieves the k nearest

(or most similar) objects based on a predefined distance or similarity metric.

For objects with multiple attributes, the similarity or distance on different

attributes are typically aggregated with a predefined weight. In many scenarios,

it may not be clear how to define the relative weights in order to aggregate

the attributes. Skyline, also known as Maxima in computational geometry or

Pareto in business management field, is important for multi-criteria decision

making or multi-attribute similarity retrieval. Without assuming any relative

weights of the attributes, the skyline of a set of multi-dimensional data points

consists of the points for which no other point exists that is better (or more

similar) in at least one dimension and at least as good (as similar) in every

other dimension. In other words, skyline provides all pareto-similar objects to
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the given query object that are not dominated by any other objects.

Running Example. There are many example applications that such skyline

queries may be desired. For instance, a physician who is treating a heart dis-

ease patient may wish to retrieve similar patients based on their demographic

attributes and diagnosis test results in order to enhance the treatment for the

patient. A car dealer who wishes to price a used car competitively may at-

tempt to retrieve all similar (competitor) cars on the market based on a set of

attributes such as mileage and year. For simplicity, we use the running exam-

ple below to illustrate the skyline definition as well as algorithm descriptions

throughout the chapter.
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Figure 4.1: A skyline example of hotels.

Assuming a hotel manager wishes to retrieve all competitor hotels that are

similar to the hotel with respect to price and distance to downtown. Figure

4.1(a) illustrates a dataset P “ tp1, p2, ..., p11u, each representing a hotel with

two attributes: the distance to downtown and the price. Figure 4.1(b) shows

the corresponding points in the two dimensional space where the x and y co-

ordinates correspond to the two attributes respectively.

Given a query hotel q “ p10, 80q, if we only consider the hotels with higher

price and longer distance to downtown, i.e., the points in the first quadrant with
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q as the origin, the skyline are p3, p8, p10 as shown in Figure 4.1(b) (we refer to

this as quadrant skyline). If we consider all hotels, we can compute the skyline

in each quadrant independently and take the union which is p3, p8, p10, p6, p11

(we refer to this as global skyline). Alternatively, if only absolute difference

for each dimension matters, we can map all data points to the first quadrant

with q as the origin and the distance to q as the mapping function, and then

compute the skyline from all the mapped points (we refer to this as dynamic

skyline). The mapped points with tirjs “ |pirjs´qrjs|`qrjs on each dimension

j are shown in Figure 4.1(c) and (d). It is easy to see that t6 and t11 are skyline

in the mapped space, which means p6 and p11 are the dynamic skyline with

respect to query q. We note that dynamic skyline result is always a subset of

global skyline result since the mapped points may dominate some points that

are otherwise global skyline.
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Figure 4.2: Voronoi diagram.
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Figure 4.3: Skyline diagram of quad-
rant skyline queries.

Motivation. Given the importance of such skyline queries, it is desirable to

precompute the skyline for a random query point to facilitate and expedite

such queries in real time. Voronoi diagram [11] is commonly used to compute

and facilitate kNN queries. Therefore, inspired by the Voronoi diagram which
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captures the regions with same kNN query results, we propose a fundamental

structure in this chapter, referred to as skyline diagram, to capture the query

regions with the same skyline result and to facilitate skyline queries.

Given a set of points (or seeds), Voronoi diagram (as shown in Figure 4.2)

partitions the plane into a set of polygons corresponding for each seed, each

point in the region is closer to the seed than to any other seeds. These regions

are called Voronoi cells. In other words, the points in the same Voronoi cell

have the same nearest neighbor which is the seed in the cell. For example, the

query points in the shaded region have p5 as the nearest neighbor. kth-order

Voronoi diagram can be built for kNN queries where the points in each Voronoi

cell has the same kNN results (may not correspond to the seed in the cell as in

the Voronoi diagram).

Analogously, given a set of points (or seeds), our proposed skyline diagram

partitions the plane into a set of regions, which we call skyline polyominos,

and the points in each skyline polyomino have the same skyline results. Figure

4.3 shows an example skyline diagram for quadrant skyline queries given the

same seeds. The query points in the shaded region have the same skyline result

of p8, p10. In addition to facilitating skyline queries, skyline diagram also has

many other applications.

PIR based Skyline. Skyline diagram can be used to enable efficient Private

Information Retrieval (PIR) based skyline queries, similar to using Voronoi di-

agram for PIR based kNN queries [53]. To protect user privacy or the query

object (such as which patient the physician is treating), PIR technique based

on cryptography [15] can be used to retrieve items from a server in possession

of a database without revealing which item is retrieved. A straightforward PIR

implementation for skyline queries requires a large number of computational-
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ly expensive PIR retrievals to get potential candidate skyline points and then

evaluate which ones are skyline, which becomes computationally prohibitive.

Skyline diagram can be used to precompute the skyline for each skyline poly-

omino, such that PIR retrievals are only employed to retrieve the actual skyline

points based on which skyline polyomino the query point belongs to.

Reverse Skyline. Skyline diagram can be used to facilitate the computation

of reverse skyline queries [17, 23, 43, 52], similar to using Voronoi diagram for

reverse knearest neighbor (RkNN) queries [48]. Given a dataset P , a Reverse

Skyline Query given a query point q retrieves all points pi P P where q is the

skyline of pi. Given the skyline diagram, each skyline polyomino R has the

same skyline results QR. All points in R are the reverse skyline of the points

in QR. For example, in Figure 4.3, any point in the shaded polyomino have

skyline tp8, p10u, and they will be the reverse skyline of p8 and p10.

Authenticating Skyline. Skyline diagram can be used to authenticate skyline

results from outsourced computation, similar to using Voronoi diagram for

authenticating kNN queries [54]. Before outsourcing the dataset to the cloud

server, the data owner needs to build an authenticated data structure of the

dataset, which is an index structure with its root signed by the data owner.

After receiving the query from client, the cloud server sends query results, root

signature, and verification object to the client. The client can authenticate the

query results by the root signature, verification object, and the public key of

data owner [32]. Using the skyline diagram will enable efficient construction of

the authenticated data structure.

Challenges. While there are many applications of skyline diagram, it is non-

trivial to compute the diagram. For quadrant or global skyline queries, a

straightforward approach is to draw vertical and horizontal grid lines crossing
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each point, which divides the plane into Opn2q cells. We can easily show that

each of these cells has the same skyline since there are no points within the

cell that would change the dominance relationship of the points. Thus, we can

compute the skyline for each cell, each requiring Opn log nq time. The time

complexity of such a baseline algorithm is Opn3 log nq which is not efficient.

For computing the skyline diagram for dynamic skyline, the time complex-

ity can be significantly higher. Because of the mapping function, a straight-

forward approach is to draw horizontal and vertical bisector lines of each pair

of points on each dimension, in addition to the grid lines crossing each point.

These resulting subcells are guaranteed to have the same dynamic skyline since

there are no points or mapped points in each subcell that would change the

dominance relationship of the points. Since the plane is divided into Op
`

n
2

˘2
q

subcells, such a baseline algorithm requires Opn5 log nq complexity which is

prohibitively high.

Contributions. In this chapter, we formally define a novel structure, skyline

diagram, which enables precomputation of skyline queries as well as other ap-

plications. We study the skyline diagram with respect to three different skyline

query definitions, quadrant, global, and dynamic skyline, and propose efficient

algorithms. For conciseness and due to the limited space, we only focus on two

dimensional space in this chapter, but we note that all our proposed algorithms

are directly adaptable to high dimensional space. We briefly summarize our

contributions as follows.

• For the first time, we define a novel structure, skyline diagram, to enable

precomputation of skyline queries. The skyline diagram consists of sky-

line regions, referred to as skyline polyominos, each of them corresponding

to the same set of skyline result. Similar to Voronoi diagram for kNN
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queries, skyline diagram has many applications including computation of

skyline queries, reverse skyline queries, PIR based skyline queries, and

authentication of outsourced skyline queries.

• To compute the skyline diagram for quadrant and global skyline, we

present a baseline algorithm with Opn3q time complexity and define an

important notion of skyline cell. Furthermore, based on the observa-

tion of some interesting properties of the skyline results of neighboring

cells, we propose an improved Opn3q algorithm utilizing the directed sky-

line graph, which performs much better than the baseline algorithm in

practice. Finally, we quantify the exact relationship between the skyline

results of neighboring cells, and present two scanning algorithms which

further improves the performance.

• To compute the skyline diagram for dynamic skyline, we first present a

baseline algorithm with Opn5q time complexity and define an important

notion of skyline subcell. Furthermore, based on the observation that

dynamic skyline query result is a subset of global skyline, we present an

improved subset algorithm utilizing the skyline diagram of global skyline,

which requires Opn5q but is better in practice. Finally, based on the

relationship of the skyline results of neighboring subcells, we present a

scanning algorithm which achieves Opn4 log nq time.

• We conduct comprehensive experiments on real and synthetic datasets.

The experimental results show our proposed algorithms are efficient and

scalable.

Organization. The rest of the chapter is organized as follows. Section 4.2

presents the related work. Section 4.3 introduces some background knowledge
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and formally define skyline diagram. The algorithms for computing the skyline

diagram for quadrant/global skyline and dynamic skyline are presented in Sec-

tion 4.4 and 4.5 respectively. We report the experimental results and findings

for performance evaluation in Section 4.6. Section 4.7 concludes the chapter.

4.2 Related Work

The problem of computing skyline (Maxima) is a fundamental problem in com-

putational geometry field because the skyline is an interesting characterization

of the boundary of a set of points. The skyline computation problem was firstly

studied in computational geometry [26] which focused on worst-case time com-

plexity. [24,35] proposed output-sensitive algorithms achieving Opn log vq in the

worst-case where v is the number of skyline points which is far less than n in

general. Several works [3,4,7,14] in both computational geometry and database

fields focused on how to achieve the best average-case time complexity. For a

detailed survey both for worst-case and average-case, please see [19].

Since the introduction of the skyline operator by Börzsönyi et al. [7], sky-

line has been extensively studied in the database field. Many algorithms are

proposed in the context of relational query engine and external memory model,

for example, [19,49]. Based on the traditional skyline definition, [1,25] studied

the parallel algorithms for skyline.

Many works also studied extensions or variants of the classical skyline defi-

nitions. Papadias et al. [42] studied group-by skyline which groups the objects

based on their values in one dimension and then computes the skyline for each

group, and k-skyband which computes objects dominated by at most k objects

(the case k “ 0 corresponds to the conventional skyline) based on individual
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dominance relationship. Skyline in subspace, i.e., a subset of the dimensions or

points, was studied in [8,45,46,51]. [17,52] discussed the reverse skyline prob-

lem which is similar to the reverse k-nearest neighbor problem. [16] presented

skyline-based statistical descriptors for capturing the distributions over pairs

of dimensions. Some works defined and studied the skyline on different data

types/domains. For example, [47] and [13] studied the spatial skyline and a

more general metric skyline, respectively. [21] proposed the skyline for moving

objects. [18,29,37,44,56] studied the skyline problem for uncertain data.

The most related works to our skyline diagram are the “safe zone” for

location-based skyline queries [12, 21, 27, 31]. Huang et al. [21] presents the

first work on continuous skyline query processing. Given a set of n data points

ă xi, yi; vxi, vyi; pi1, ..., pim ą pi “ 1, ..., nq, where xi and yi are positional co-

ordinates in two dimensional space, vxi and vyi are the velocity in the X and

Y dimensions, while pijpj “ 1, ...,mq are the m static nonspatial attributes,

which will not change with time. For a query point q starting from pxq, yqq

moving with pvqx, vqyq, q poses continuous skyline query while moving, and the

queries involve both distance and all other static dimensions. Such queries

are dynamic due to the change in spatial variables. In their solution, they

compute the skyline for xq, yq at the start time 0. Subsequently, continuous

query processing is conducted for each user by updating the skyline instead of

computing from scratch. Lee et al. [27] studies a similar problem to [21]. Both

of them rely on the assumption that the velocities of the moving points are

known. Generally speaking, they compute the skyline for query points moving

on a line segment. Lin et al. [31] studies a problem of computing the skyline

for a range. They employed the similar idea for authenticating skyline queries

in [30] [32]. Cheema et al. [12] proposes a safe zone for a query point q. A safe
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zone is the area such that the results of a query q remain unchanged as long

as the query lies inside the area. Both [31] and [12] study the location-based

skyline problem with m static attributes and one dynamic attribute, which is

the distance to the query point.

The main difference between the above work and our work is that they only

consider one dynamic attribute, while in our case all attributes can be dynamic.

The skyline polyomino can be considered as a generalization of the safe zone in

two or multidimensional space. Furthermore, it is non-trivial to extend these

query techniques from one dynamic attribute to two or multi-dimensional case,

as fundamentally these algorithms convert the problem to nearest neighbor

queries for the single dynamic attribute and utilize Voronoi diagram.

4.3 Preliminaries and Problem Definitions

In this section, we introduce our skyline diagram definition and related concepts

as well as their properties which will be used in our algorithm design. For

reference, a summary of notation is given in Table 4.1.

Table 4.1: The summary of notations.

Notation Definition
P dataset of n points

pirjs the jth attribute of pi
q query point
n number of points in P
Ci,j Cell with bottom left corner coordinate pi, jq

SkypCi,jq the skyline of Cell Ci,j

SCi,j Subcell with bottom left corner coordinate pi, jq

SkypSCi,jq the skyline of Subcell Ci,j

Definition 4.1. (Skyline). Given a dataset P of n points in d-dimensional

space. Let p and p1 be two different points in P , we say p dominates p1, denoted
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by p ă p1, if for all i, pris ď p1ris, and for at least one i, pris ă p1ris, where pris

is the ith dimension of p and 1 ď i ď d. The skyline points are those points

that are not dominated by any other point in P .

Definition 4.2. (Dynamic Skyline Query [17]). Given a dataset P of

n points and a query point q in d-dimensional space. Let p and p1 be two

different points in P , we say p dominates p1 with regard to the query point q,

denoted by p ă p1, if for all i, |pris ´ qris| ď |p1ris ´ qris|, and for at least one

i, |pris ´ qris| ă |pris ´ qris|, where pris is the ith dimension of p and 1 ď i ď d.

The skyline points are those points that are not dominated by any other point

in P .

The traditional skyline computation is a special case of dynamic skyline

query where the query point is the origin. On the other hand, computing

dynamic skyline given a query point q is equivalent to computing the traditional

skyline after transforming all points into a new space where q is the origin and

the absolute distances to q are used as mapping functions. Take Figure 4.1

as an example, given a query point q “ p10, 80q, p6 dominates p1 because

p6’s corresponding point t6 in the mapped space dominates p1’s corresponding

point t1. Because no other points can dominate t6 and t11, the result of dynamic

skyline query given q is tp6, p11u.

The dynamic skyline query consider the dominance among all points. Given

a query point, if we consider each quadrant divided by the query point indepen-

dently, i.e., only consider dominance among points within the same quadrant,

we can define global skyline query below.

Definition 4.3. (Global Skyline Query [17]). Given a dataset P of n points

and a query point q in d-dimensional space. The query point q divides the d-

dimensional space into 2d quadrants. Let p and p1 be two different points in
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the same quadrant of P , we say p dominates p1 with regard to the query point

q, denoted by p ă p1, if for all i, |pris ´ qris| ď |p1ris ´ qris|, and for at least one

i, |pris ´ qris| ă |p1ris ´ qris|, where pris is the ith dimension of p and 1 ď i ď d.

The skyline points are those points that are not dominated by any other point

in P .

Given a query point, we refer to the global skyline from a single quadrant

as Quadrant Skyline Query. In other words, the global skyline is the union

of the quadrant skyline from all quadrants. Back to Figure 4.1, given the query

point q, the quadrant skyline is tp3, p8, p10u in the first quadrant, tp6u in the

second quadrant, H in the third quadrant, and tp11u in the fourth quadrant.

The global skyline is the entire set of tp3, p6, p8, p10, p11u. It is easy to see that

the dynamic skyline is a subset of the global skyline. This property will be

used to design algorithms for skyline diagram of dynamic skyline.

Similar to the definition of Voronoi cell and kth-oder Voronoi diagram for

kNN query, we define the skyline polyomino and skyline diagram for skyline

query as follows.

Definition 4.4. (Skyline Polyomino). A polyomino SPi is a skyline poly-

omino (short for skymino), if given any two query points qa and qb in SPi, qa’s

skyline result Skypqaq equals to qb’s skyline result Skypqbq, meanwhile for any

query point qc outside SPi, the skyline result Skypqcq of qc does not equal to

Skypqaq.

Definition 4.5. (Skyline Diagram). Given a dataset P of n points p1, ..., pn.

We define the Skyline Diagram of P as the subdivision of the plane into a set

of polyominos with the property that any points in the same polyomino have

the same skyline query result.
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Problem Statement. Given n points, in this chapter, our goal is to compute

the skyline diagram for quadrant/global skyline queries and dynamic skyline

queries efficiently.

4.4 Skyline Diagram of Quadrant and Global

Skyline

In this section, we present algorithms for computing skyline diagram of quad-

rant and global skyline. We first show a baseline algorithm and define an impor-

tant notion of skyline cell, which will be used by all our proposed algorithms.

We then present an improved algorithm using directed skyline graph. Both

algorithms have Opn3q time complexity but directed skyline graph algorithm

is much faster than the baseline in practice. We then present an important

property of the skyline of neighboring cells and present two faster algorithms

based on the property, scanning algorithm and aggressive scanning algorithm.
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Figure 4.4: Quadrant skyline query.
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4.4.1 Baseline Algorithm

We first show a baseline algorithm for computing skyline diagram and introduce

an important notion, skyline cell. The key for computing skyline diagram is

to find regions such that any query points in the same region have the same

skyline result. Intuitively, we can find small regions that are guaranteed to

have the same result and then merge them to form bigger regions.

Skyline Cell. If we draw one horizontal and one vertical line over each point,

these Opnq grid lines divide the plane into Opn2q cells. For example, in Figure

4.4, the horizontal and vertical lines over each of the 11 points divide the plane

into 144 cells. It is clear that any query points inside each cell are guaranteed

to have the same quadrant and global skyline because there are no points in the

cell that would change the dominance relationship of the points with respect

to the query point. We name the cell as Skyline Cell.

Definition 4.6. (Skyline Cell). The horizontal and vertical lines over each

point divide the plane into skyline cells. Any query points in the same skyline

cell have the same skyline results for quadrant and global skyline.

Finding skyline for each skyline cell. Since we know that query points

in each skyline cell have the same skyline results, we can employ any skyline

algorithm to compute the skyline for each cell. Given a cell Ci,j, we denote

SkypCi,jq as its skyline result (the notation is also shown in Table 1). We can

then merge the skyline cells with the same results to form skyline polyominos.

Since the skyline computation of n points for each cell takes Opn log nq time

and there are Opn2q skyline cells, the total time complexity is Opn3 log nq. If

the n points are sorted on x-axis, we can compute the skyline for one cell in

Opnq time. Therefore, the total time can be reduced to Opn3q. This baseline
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algorithm is shown in Algorithm 4.1. After the points are sorted (Line 1), the

steps for computing skyline in Opnq based on ordered points are shown in Lines

5-12 where gi,j is the left lower intersection of skyline cell Ci,j.

Algorithm 4.1: The baseline algorithm for skyline diagram of quadrant
skyline queries.

input : a set of n points and skyline cells Ci,j.
output: skyline of each skyline cell SkypCi,jq.

1 sort the points in ascending order on x-axis;
2 for i=0 to n do
3 for j=0 to n do
4 for k=1 to n do
5 if pkrxs ą gi,jrxs&&pkrys ą gi,jrys then
6 add pk to the candidate list;

7 choose the first element pfirst as the first skyline;
8 ptemp “ pfirst;
9 for l=2 to |candidate list| do

10 if plrys ă ptemprys then
11 add pl to skyline pool;
12 ptemprys “ plrys;

13 return skyline pool as SkypCi,jq;

Merging skyline cells into skyline polyominos. Once we have the skyline

results for each cell, we can merge the cells with same results to form skyline

polyominos. For each skyline cell, we search its upper and right cells and

combine those cells if they share the same skyline. The entire merging requires

Opn2q time.

Example 4.1. In Figure 4.4, the skyline cells C4,0, C4,1, and C3,1 share the same

skyline result tp8, p10u, and hence are combined to form a skyline polyomino.

Complexity. Finding skyline phase requires Opn3q time, and merging phase

requires Opn2q time. Therefore, the total time for the baseline algorithm (

Algorithm 4.1) is Opn3q.
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4.4.2 Directed Skyline Graph Algorithm

In the baseline algorithm, we need to compute skyline for each skyline cell from

scratch which is costly. In this subsection, based on the observation of some

interesting relationships of the skyline results of neighboring cells, we propose

an incremental algorithm utilizing the directed skyline graph for computing

skyline for neighboring cells. Note that the merging step of the skyline cells

remains the same as the baseline.

Our algorithm is based on the key observation that when moving from one

cell to its neighboring upper or right cell, the only point that will cause the

skyline result to change is the point on the crossed grid line. For example, in

Figure 4.4, given cell C0,0, the skyline is tp1, p6, p11u. When moving to its right

cell C1,0 across the p1 grid line, the new result is the skyline of the remaining

points after removing p1, that is tp6, p11u. Similarly, when moving from C0,0 to

its upper cell C0,1 across the p11 grid line, the new result is the skyline of the

points after removing p11, that is tp1, p6, p10u. Based on this observation, we

propose to use a data structure called the directed skyline graph to facilitate

the incremental computation of the skyline from one cell to its neighboring cell.

We first briefly describe the directed skyline graph (DSG) adapted from [34]

and explain how it can be used to facilitate the incremental skyline computation

and then present our algorithm utilizing the graph for computing the skyline

for all skyline cells.

Given n points, we first compute its skyline layers by employing the skyline

layer algorithm from [34]. The skyline layers of our running example is shown

in Figure 4.5. The first skyline layer consists of all skyline points in the original

dataset. The second skyline layer consists of all skyline points of the remaining

points after removing the points from the first skyline layer. And similarly for
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Figure 4.6: Directed skyline graph.

the remaining skyline layers. There are several properties for skyline layers:

1) the points on the same layer cannot dominate each other, 2) the points on

a lower layer may dominate the points on a higher layer, and 3) the points

on a higher layer cannot dominate the points on a lower layer. Based on

these skyline layers, we obtain the directed skyline graph which captures all

the direct dominance relationships between the points as shown in Figure 4.6.

For example, p6 directly dominates p3 and p5. We note that the directed

skyline graph algorithm from [34] includes both direct and indirect dominance

relationships (e.g. p6 dominates p4 indirectly). We adapted it such that we

only include the direct links which is needed to solve our problem.

We now show how we can incrementally compute the skyline from one cell

to its neighboring cell utilizing the skyline graph. When moving from one cell

to its right neighboring cell across the grid line over p, there are two changes

in the skyline result caused by the point p: 1) p is no longer a skyline, 2) new

skyline points may appear since they are not dominated by p anymore with

respect to the query point in the new cell. So all we need to do is to remove

p as well as its dominance links from the skyline graph, any of the children
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Algorithm 4.2: The directed skyline graph algorithm for skyline diagram
of quadrant skyline queries.

input : a set of n points and skyline cells Ci,j.
output: skyline of each skyline cell SkypCi,jq.

1 compute the directed skyline graph DSG;
2 SkypC0,0q “ SkypP q;
3 for i=1 to n do
4 delete the point pi between Ci´1,0 and Ci,0 from DSG;
5 delete the link between pi and its directed children;
6 SkypCi,0q = SkypCi´1,0q - pi + the children of pi without any

remaining parent;

7 for i=0 to n do
8 for j=1 to n do
9 delete the point pj between Ci,j´1 and Ci,j from DSG;

10 delete the link between pj and its directed children;
11 SkypCi,jq = SkypCi,j´1q - pj + the children of pj without any

remaining parent;

points of p without remaining parents will be a new skyline (since it is no

longer dominated by any points).

Example 4.2. Given C0,0, its skyline is the set of points on the first skyline

layer, tp1, p6, p11u. When moving from C0,0 to its right neighboring cell C1,0

across the p1 grid line, to compute the new skyline, all we need to do is to

remove p1 (p1 does not have any direct dominance links), hence the skyline for

C1,0 is simply tp6, p11u after removing p1 from the skyline set. When we move

further to C1,0’s right neighboring cell C2,0 across the p6 grid line, we just need

to remove p6 and remove the dominance links from p6 to p3 and p5. Since p3

is no longer dominated by any points after p6 is removed, it becomes a new

skyline. Hence the skyline for C2,0 consists of the remaining skyline p11 and

the new skyline p3, i.e. tp3, p11u.

Given any cell, we can also compute its upper neighboring cell in a similar

way. Hence our algorithm starts from the origin cell C0,0, and incrementally
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computes the first row of cells from left to right. Then it incrementally com-

putes all the rows from bottom to up. The algorithm is shown in Algorithm

2.2. The directed skyline graph is computed in Line 1 and the skyline for C0,0

is computed in Line 2. The skyline for the first row is computed in Lines 3-6.

Lines 7-11 compute the skyline of the remaining rows.

Complexity. As we iterate through all the cells in one row, we are removing

dominance links from the skyline graph. Each link costs one update and the

total number of links is Opn2q as shown in Figure 4.6. Therefore, it requires

Opn2q time to compute the skyline of cells in one row. Since there are n rows

that need to be computed, the time complexity for the directed skyline graph

algorithm (Algorithm 2.2) is Opn3q. We note that in practice, the number of

links is much smaller than n2. Hence the algorithm is much faster than the

baseline algorithm in practice.

4.4.3 Scanning Algorithm
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Figure 4.7: Scanning algorithm.
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The previous algorithm still involves computation of skyline, ideally we

would like to avoid the computation as much as possible. We observed earlier

that the skyline results for neighboring cells are different only due to the point

on the shared grid line. For example, in Figure 4.7, SkypC1,2q and SkypC2,2q

are different due to p6, same for SkypC1,3q and SkypC2,3q. Similarly, SkypC1,2q

and SkypC1,3q are different due to p9, same for SkypC2,2q and SkypC2,3q. In

this subsection, we observe an interesting property of the exact relationship

between the skyline results of neighboring cells, and present a new Opn2q time

algorithm utilizing this property for computing skyline for all cells. Again, the

merging of cells into skyline polyominos stays the same as the baseline.

Theorem 4.1. Given any skyline cell Ci,j (except the ones that have a point

as its upper right corner), and its right cell Ci`1,j, upper cell Ci,j`1, and upper

right cell Ci`1,j`1, their skyline results have a relationship as follows:

SkypCi,jq “ SkypCi`1,jq ` SkypCi,j`1q ´ SkypCi`1,j`1q1

Proof. Given a cell Ci,j, we define the following. pR (pC) denotes the point that

lies on the upper (right) grid line of Ci,j. Range A is the rectangle formed by

the grid lines crossing pR and pC (excluding the two points). Range B is the

right rectangle of A. Range C is the upper rectangle of A. And Range D is

the upper right rectangle of A. An example is shown in Figure 7.

Consider Ci,j’s upper right cell Ci`1,j`1, we denote SkyP pAq as the set of

points in range A contributed to SkypCi`1,j`1q. And similarly for SkyP pBq,

SkyP pCq, and SkyP pDq. Note that SkyP pDq will be empty if SkyP pAq is not

empty which will dominate all points in D.

1multiset operation.
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We can compute the skyline results of the four cells as follows:

SkypCi,jq “ tpRu Y tpCu Y SkyP pAq

SkypCi`1,jq “ tpRu Y SkyP pAq Y SkyP pCq

SkypCi,j`1q “ tpCu Y SkyP pAq Y SkyP pBq

SkypCi`1,j`1q “ SkyP pAq Y SkyP pBq Y SkyP pCq Y SkyP pDq

Then we have:

SkypCi`1,jq ` SkypCi,j`1q ´ SkypCi`1,j`1q

“ ptpRu Y SkyP pAq Y SkyP pCqq ` ptpCu Y SkyP pAq Y SkyP pBqq

´pSkyP pAq Y SkyP pBq Y SkyP pCq Y SkyP pDqq

“ tpRu Y tpCu Y SkyP pAq “ SkypCi,jq

Example 4.3. In Figure 4.7, given cell C1,2, pR on its upper grid line is p9

and pC on its right grid line is p6. Consider the skyline result of its upper

right cell C2,3, we have SkyP pAq “ tp8u, SkyP pBq “ H as p7 is dominated

by p8, SkyP pCq “ tp3u as p2, p5 are dominated by p8, and SkyP pDq “ H

as p4 is dominated by p8. We have skyline result for the upper right cell

SkypC2,3q “ tp3, p8u, the upper cell SkypC1,3q “ tp6, p8u, and the right cell

SkypC2,2q “ tp3, p8, p9u. It is easy to see that the skyline for the given cell is

SkypC1,2q “ SkypC2,2q ` SkypC1,3q ´ SkypC2,3q “ tp6, p8, p9u.

We note that the above property holds for all skyline cells except the ones
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that have a point as its upper right corner. For these cells, their skyline is the

upper right point because this point dominates all the upper right region. For

example, in Figure 4.7, SkypC4,3q “ tp8u, and SkypC6,6q “ tp5u.

Based on these properties, we present a scanning algorithm as shown in

Algorithm 4.3. The basic idea is to start from the top and rightmost cell,

and scan the cells from top down and right to left, then utilizing the property

in Theorem 1 to compute the skyline for each cell. We first initialize the

skyline results for the skyline cells on the top row and rightmost column to

H (Lines 1-3). Then for each cell Ci,j, if there is a point p on its upper

right corner, we set SkypCi,jq “ tpu (Line 7). Otherwise, we use SkypCi,jq “

SkypCi`1,jq ` SkypCi,j`1q ´ SkypCi`1,j`1q to compute the skyline of Ci,j (Line

9).

Algorithm 4.3: The scanning algorithm for skyline diagram of quadrant
skyline queries.

input : a set of n points and skyline cells Ci,j.
output: skyline of each skyline cell SkypCi,jq.

1 for i=0 to n do
2 SkypCi,nq “ H;
3 SkypCn,iq “ H;

4 for i=n-1 to 0 do
5 for j=n-1 to 0 do
6 if there is a point p on the upper right corner of Ci,j then
7 SkypCi,jq={p};
8 else
9 SkypCi,jq “ SkypCi`1,jq ` SkypCi,j`1q ´ SkypCi`1,j`1q;

Complexity. There are Opn2q cells, each cell requires Opnq time for multiset

computation. Therefore, Algorithm 4.3 requires Opn3q time in total.
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4.4.4 Aggressive Scanning Algorithm

All previous algorithms involve computing skyline for each skyline cell (divided

by the grid lines) and then merging them into skyline polyominos. Ideally, if

we can find the skyline polyominos directly rather than combining the skyline

cells, we can save the cost of computing skyline for each skyline cell. In this

subsection, we show an aggressive scanning algorithm that achieves this goal.
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Figure 4.8: Aggressive scanning algorithm.

We observed previously that when we move from one cell to its right cell,

the only change in the skyline result is caused by the point on the crossed

grid line. In fact, we can further observe that if the point on the crossed grid

line lies below the cell, then the skyline result does not change at all. This is

because we are only considering the points in the cell’s upper right quadrant.

For example, C3,1 has skyline result tp8, p10u. When we move from C3,1 to C4,1

crossing point p11, the skyline remains the same because p11 is below the cells

and does not affect the result. Similarly, when we move from one cell to its

upper cell, if the point on the crossed grid line is to the left of the cells, the
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skyline result does not change either. In other words, each point only affects the

skyline result of its lower and left cells, not its upper or right cells. Motivated

by this observation, instead of drawing grid lines over each point to divide the

plane into skyline cells, we can draw two half-open grid lines starting from each

point, one downward and another leftward. These Op2nq grid line segments

divide the plane into a set of polyominos, each containing one or more cells.

Since we know that each point will not affect the skyline result of its upper

and right cells, we can show that any query points in such formed polyominos

have the same skyline results. We have a theorem as follows.

Theorem 4.2. Given a set of points, if we draw two half-open grid lines s-

tarting from each point, one downward and another leftward, each polyomino

formed by these Op2nq lines is a skyline polyomino and any query points inside

have the same first quadrant skyline query results.

Proof. Given a skyline polyomino formed by these half-open grid lines, if we

consider the upper right corner query point for each of the skyline cells in the

polyomino, they have the same set of points in their upper right quadrant, thus

they have the same skyline results. We have showed earlier all points in the

same skyline cell have the same quadrant skyline results, hence all query points

in the same polyomino have the same first quadrant skyline results.

Example 4.4. In Figure 4.8, the red polyomino contains three cells, C3,1, C4,0,

and C4,1. SkypC3,1q “ SkypC4,0q “ SkypC4,1q “ tp8, p10u.

While it is straightforward to visually see the skyline polyominos from the

figure (e.g., Figure 4.8), we need to represent the skyline polyominos computa-

tionally by its vertices, which are the intersection points of the half-open grid
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Algorithm 4.4: The aggressive scanning algorithm for skyline diagram
of quadrant skyline queries.

input : a set of n points.
output: skyline polyominos.

1 /*compute all the intersection points and link them by left and right
neighbors in Lines 2-8*/;

2 sort the points in descending order on y-axis, p1 (pn) is the point with
highest (lowest) y-coordinate;

3 p1.left “ p0, p1rysq;
4 for i=2 to n do
5 insert pi into sorted queue X by x-axis and its new index is j;
6 pi.left “ ppj´1rxs, pirysq;
7 ppj´1rxs, pirysq.right “ pi;
8 for j=i to 1 of sorted queue X do
9 ppj´1rxs, pirysq.left “ ppj´2rxs, pirysq;

10 ppj´2rxs, pirysq.right “ ppj´1rxs, pirysq;

11 /*similarly, we can compute the lower neighbor of each intersection
point which is omitted due to space limit*/;

12 for each intersection point g0 do
13 skyminog = {g0}; g= g0;
14 skyminog.append(g.left); g “ g.left;
15 while grxs! “ g0rxs do
16 skyminog.append(g.lower); g “ g.lower;

skyminog.append(g.right); g “ g.right;

17 return skyminog;

lines including the points themselves. We now show how to compute the coor-

dinates of these vertices and then how to find the vertices for each polyomino.

We observe that for each point p, its horizontal grid line only intersects

with the vertical grid lines from its upper points, i.e. with larger y coordinates.

Hence, given a point ppx, yq, we can compute all the intersection points on its

horizontal grid line as gpxj, yq where xj is the x coordinate from those points

with larger y coordinates than p. For each intersection point, we record its

left and right neighbor, so we can retrieve the vertices for each polyomino.

Similarly, for each point, we compute the intersection points on its vertical
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grid line, and record the lower and upper neighbor for each intersection point.

The detailed algorithm is shown in Algorithm 4.4.

Example 4.5. For p4, its horizontal line intersects with the vertical lines of

p2, p3, p1, hence the intersection points on its horizontal line are pp2rxs, p4rysq,

pp3rxs, p4rysq, pp1rxs, p4rysq, and p0, p4rysq. For each point, it has a left/right

and upper/lower neighbor, e.g. pp3rxs, p4rysq.right “ p4.

Once all the intersection points are computed and linked by their left/right

and lower/upper neighbors, we can retrieve the sequence of vertices for each

polyomino. We can see that each intersection point has a uniquely correspond-

ing polyomino with the point as its upper right corner. Therefore, for each

intersection point g, we find the sequence of vertices forming its correspond-

ing polyomino. The polyominos are either rectangles or half-rectangles with

lower left side shaped like steps. Hence we first retrieve g’s left neighbor. We

then repeatedly find the next lower neighbor and right neighbor until the right

neighbor reaches the same y coordinate as the original intersection point g.

Example 4.6. For the intersection point g1pp8rxs, p10rysq, we first find its left

vertex g2pp3rxs, p10rysq. We then find the lower vertex g3pp3rxs, p11rysq, and the

right vertex g4pp11rxs, p11rysq in the first iteration. Because g4 is not meeting

the grid line at g1 yet, it continues to find the next lower vertex g5pp11rxs, 0q

and the right vertex g6pp8rxs, 0q. Now the algorithm stops as g6 reaches the y

grid line of g1. The sequence of vertices for the skymino corresponding to g1 is

hence g1, g2, g3, g4, g5, g6.

Complexity. The computation of intersection points requires Opn2q time.

Because each grid line segment between two neighboring intersection points
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will be used at most twice for constructing skyminos, the skymino constructing

step requires Opn2q time. Therefore, Algorithm 4.4 requires Opn2q time.

4.4.5 Skyline Diagram of Global Skyline

To compute the skyline diagram of global skyline, we just need to compute the

quadrant skyline for the four quadrants independently and then take the union

of the results. In this subsection, we show an important result on the lower

bound for the number of skyminos in a skyline diagram of global skyline.

Theorem 4.3. (Lower Bound). Given a dataset P of n points in the plane,

there are at least pn`1q2{9 skyminos if there is no two points sharing the same

x and y coordinates.

Proof. We first prove that at most three adjacent skyline cells in the same

column can belong to the same skymino. Consider any two skyline cells C1

and C2 in the same column, if they belong to the same skymino, i.e., the

skyline results for C1 and C2 are the same, we will show: 1) there is at most

one cell between C1 and C2, i.e., there are at most two points (two grid lines)

between C1 and C2, and 2) there are at most one point on the left of this

column and at most one on the right. We prove this by contradiction.

Assume there are two points pa and pb on the left of this column at the

same time. W.l.o.g., we assume C2 is lower than C1, and parys ą pbrys, for

the x coordinate, there are three cases: parxs ă pbrxs, parxs ą pbrxs, and

parxs “ pbrxs. For the first case parxs ă pbrxs, the skyline in third quadrant for

C1 contains pa, pb. However, the skyline in second quadrant for C2 contains pb,

and pa cannot be a skyline for C2 because it is dominated by pb. The similar

analysis applies to the second case. For the third case parxs “ pbrxs, the skyline
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in third quadrant for C1 contains pa. However, the skyline in second quadrant

for C2 contains pb. Therefore, C1 and C2 have different skyline results and do

not belong to the same skymino.

By contradiction, we conclude at most three adjacent skyline cells in the

same column can belong to the same skymino. Similar analysis applies to the

row case. Therefore, at most 3ˆ3 skyline cells can belong to the same skymino.

Hence there are at least pn ` 1q2{9 skyminos.

4.5 Skyline Diagram of Dynamic Skyline

In this section, we study the algorithms for skyline diagram of dynamic skyline.

We first present a baseline algorithm and define an important notion of skyline

subcell. Then based on the observation that dynamic skyline query result is

a subset of global skyline, we present an improved subset algorithm utilizing

the skyline diagram of global skyline. Finally, based on the relationship of the

skyline results of neighboring subcells, we present a scanning algorithm with

improved complexity.

4.5.1 Baseline Algorithm

Similar to the skyline diagram of quadrant and global skyline, we can first find

small regions that are guaranteed to have the same dynamic skyline, and them

merge them to form skyline polyominos.

Skyline Subcell. In skyline diagram of quadrant and global skyline, each

point contributes a horizontal and vertical grid line to divide the plane into

skyline cells which are guaranteed to have the same result for quadrant skyline

queries. For dynamic skyline, all points will be mapped to the first quadrant
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Figure 4.9: Skyline subcells for dynamic skyline (solid grid lines for cells and
dotted lines for subcells).

with respect to the query point and may dominate the points who are otherwise

global skyline points. Hence the points in the skyline cell are not guaranteed

to have the same dynamic skyline. Therefore, to account for mapped points,

in addition to the grid lines over each point, we draw a vertical and horizontal

bisector line between each pair of points. In total, we have O
`

n
2

˘

horizontal

lines and O
`

n
2

˘

vertical lines which leads to Op
`

n
2

˘2
q regions. Figure 4.9 shows

an example with 4 points. The
`

4
2

˘

bisector lines between each pair of points

and the 4 grid lines over each point divide the plane into 121 regions. We can

see that these regions are guaranteed to have the same dynamic skyline, since

there are no points or mapped points in each of these regions that would change

the dominance relationship of the points. To distinguish with skyline cell for

quadrant and global skyline, we name these regions skyline subcells for dynamic

skyline. The algorithm for computing skyline subcells is very straightforward

as shown in Algorithm 4.5.

Definition 4.7. (Skyline Subcell). The vertical and horizontal bisectors of

each pair of points divide the plane into skyline subcells. Any query points in

the same skyline subcell have the same dynamic skyline.
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Algorithm 4.5: The algorithm for computing skyline subcells.

input : a set of n points.
output: skyline subcell SkypSCi,jq.

1 for i=0 to n-2 do
2 for j=i+1 to n-1 do

3 pipjrxs “
pirxs`pjrxs

2
;

4 pipjrys “
pirys`pjrys

2
;

Finding skyline for each skyline subcell. Once we have the skyline sub-

cells, we can compute the skyline for each subcell. A baseline algorithm is

trivial and similar to the skyline computation for skyline cells as shown in Al-

gorithm 4.6. For each subcell SCi,j, it first maps all the points to the first

quadrant with respect to the subcell (Line 4-5). It then computes the skyline

of the mapped points. Since skyline can be computed in Opnq time if the points

are sorted on one dimension, and there are Opn4q subcells, the entire algorithm

(Algorithm 4.6) can be finished in Opn5q.

Algorithm 4.6: The baseline algorithm for skyline diagram of dynamic
skyline.

input : skyline subcells SCi,j.
output: skyline of each skyline subcell SkypSCi,jq.

1 for i=0 to mx do
2 for j=0 to my do
3 for k=1 to n do
4 pkrxs1 “ |pkrxs ´ SCi,jrxs|;
5 pkrys1 “ |pkrys ´ SCi,jrys|;

6 employ skyline algorithm on p1
k for k “ 1, ..., n to compute the

skyline as the output of SCi,j;
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4.5.2 Subset Algorithm

As we discussed earlier, the mapped points may dominate additional points

that would have been global skyline points. As a result, the dynamic skyline of

each subcell SCi,j is a subset of the global skyline of the skyline cell it belongs

to. For example, in Figure 4.9, SkypSC3,1q is a subset of SkypC1,1q. Therefore,

we can first use the algorithms in previous section to compute the skyline of the

skyline cells, and then compute the exact skyline of each subcell from this set

rather than the entire n points. The detailed algorithm is shown in Algorithm

4.7 which is very similar to the baseline algorithm. The only difference is we just

need to consider the output of skyline results of each skyline cell rather than

the entire n points. Although the worst case time complexity is the same as the

baseline algorithm Opn5q, on average, the number of skyline for n points is only

Oplog nq. Therefore, the amortized time complexity for the subset algorithm

is reduced to Opn4 log nq. We will show that the subset algorithm is indeed

significantly faster than the baseline algorithm in practice in Section 4.6.

Algorithm 4.7: The subset algorithm for skyline diagram of dynamic
skyline.

input : global skyline result of each skyline cell SkypCi,jq.
output: dynamic skyline result of each skyline subcell SkypSCi,jq.

1 for k=0 to mx do
2 for l=0 to my do
3 find Ci,j such that SCk,l P Ci,j;
4 SkypSCk,lq = dynamic skyline of the points in SkypCi,jq

4.5.3 Scanning Algorithm

The baseline and subset algorithms compute the skyline for each subcell from

scratch. To further improve the efficiency, in this subsection, we propose an in-
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cremental scanning algorithm based on the relationship of the dynamic skyline

results of neighboring subcells. This is due to the observation that as we move

from one subcell to its neighboring subcell on the right, the only difference of

the skyline result is caused by the two points that contributed to the bisector

line between the two subcells. We just need to consider these two points in

addition to the skyline result of the previous subcell. So similar to the scan-

ning algorithm for quadrant skyline queries, we first compute SkypSC0,0q for

the lower left subcell. We then scan the subcells from left to right on the first

row and compute the skyline incrementally. We then compute each of the re-

maining rows from bottom up. The detailed algorithm is shown in Algorithm

4.8.

Example 4.7. In Figure 4.9, SkypSC4,2q “ tp3u, for SC4,1, we only need to

check tp3u Y tp3, p4u “ tp3, p4u. Because p3, p4 cannot dominate each other,

therefore, SkypSC4,1q “ tp3, p4u.

Algorithm 4.8: The scanning algorithm for skyline diagram of dynamic
skyline.

input : a set of n points and skyline subcells SCi,j.
output: skyline of each skyline subcell SkypSCi,jq.

1 employ skyline algorithm to compute the skyline of Subcell SC0,0;
2 for i=1 to mx do
3 SkypSCi,0q = SkypSCi´1,0q

Ť

the points contributing to the bisectors
between SCi´1,0 and SCi,0;

4 for i=0 to mx do
5 for j=1 to my do
6 SkypSCi,jq = skyline from SkypSCi,j´1q

Ť

the points
contributing to the bisectors between SCi,j´1 and SCi,j;

The key step in the above algorithm is to compute the updated skyline

given the skyline result of the previous cell and the new points contributing
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to the bisectors (line 3 and line 8). When adding a new point, there are two

cases: 1) the new point becomes a skyline point which may dominate some

existing skyline points, or 2) the new point is dominated by existing skyline

points. To determine if the new point is dominated by existing skyline points,

we can do a binary search to find the skyline point pi such that pirxs ď prxs

and prxs ď pi`1rxs. If pirys ě prys, the new point is a skyline point, otherwise,

the new point is dominated by pi. This can be finished in Oplog nq time. If

the new point is a skyline point, we need to remove those points dominated by

the new point. If we sort the skyline points in ascending order on x-axis and

descending order on y-axis, we can delete those points in Oplog nq time.

Complexity..

Since the computation of updated skyline for each subcell only costsOplog nq

time, and there are Opn4q subcells, the overall worst case time complexity for

the scanning algorithm (Algorithm 8) is Opn4 log nq.

4.6 Experiments

In this section, we present experimental studies evaluating our proposed algo-

rithms .
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Figure 4.10: The impact of non skyline diagram of quadrant skyline queries.
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Figure 4.11: The impact of non skyline diagram of global skyline queries.

4.6.1 Experiment Setup

We first evaluate the algorithms for computing skyline diagram of quadrant

and global skyline, and then the algorithms for dynamic skyline. Since this

is the first work for skyline diagram with the new definition, our performance

evaluation was conducted against the baseline algorithms. We implemented all

algorithms in Python. We ran experiments on 1) a computation server with

Intel Xeon E5-4627 v3 ˚ 4 CPUs with 1024GB RAM running Ubuntu 14.04 for

parallel implementations, and 2) a desktop with Intel Core i7 running Ubuntu

14.04 with 64GB RAM for serial implementations.

We compare the following four algorithms for skyline diagram of quadrant

and global skyline, respectively.

• QBase/GBase: Baseline algorithm

• QGraph/GGraph: Skyline graph algorithm

• QScan/GScan: Scanning algorithm

• QAggScan/GAggScan: Aggressive scanning algorithm

We compare the following three algorithms for skyline diagram of dynamic

skyline.

• DBase: Baseline algorithm
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• DSubset: Subset algorithm

• DScan: Scanning algorithm

We used both synthetic datasets and a real NBA dataset in our experiments.

To study the scalability of our methods, we generated independent (INDE),

correlated (CORR), and anti-correlated (ANTI) datasets following the seminal

work [7]. To study the main features of the algorithms on different dataset

distributions, for the synthetic datasets, we make sure no two points lie on the

same x-axis or y-axis. We also built a dataset2 that contains 2384 NBA players

who are league leaders of playoffs. Each player has two attributes (Points

and Rebounds) that measure the player’s performance. To study the effect of

dataset domain sizes, we generated datasets with small domain size (104) and

large domain size 108.

4.6.2 Skyline Diagram of Quadrant Skyline

In this subsection, we report the results for computing skyline diagram of quad-

rant skyline queries.

Figures 4.10(a)(b)(c) present the time cost of QBase, QGraph, QScan, and

QAggScan with varying number of points n for the three synthetic datasets.

The results of QBase algorithm on CORR, INDE, and ANTI dataset are al-

most the same which means the data distribution has no impact on baseline

algorithm. We did not report the result of the baseline algorithm in some fig-

ures due to the high cost when n is big. All the proposed algorithms scale well

with the increasing number of points.

We first examine each algorithm and compare its performance on difference

2Extracted from http://stats.nba.com/leaders/alltime/?ls=iref:nba:gnav on 04/15/2015.
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datasets. For the QGraph algorithm, the time on INDE dataset is higher than

CORR and ANTI datasets. This is because the number of links between parent

and children nodes in the directed skyline graph is larger for INDE dataset.

For the QScan algorithm, the time on ANTI dataset is much higher than INDE

dataset which is much higher than CORR dataset. This is because the number

of skyline in each cell in ANTI dataset is much more than INDE and CORR

datasets. Therefore, it requires more time to do the multiset operation on

ANTI dataset. For the QAggScan algorithm, it is much faster than QGraph

and QScan on CORR dataset because there are much fewer intersections thus

fewer polyominos on CORR dataset. However, the performance of AggScan is

not so good on ANTI dataset due to the huge number of intersections on ANTI

dataset.

Comparing different algorithms, QGraph, QScan, and QAggScan signifi-

cantly outperform QBase, which validates the effectiveness of our algorithms.

QAggScan outperforms QScan on all datasets thanks to its combined steps of

finding skyline polyominos directly (but we will see an opposite result on real

NBA dataset later). For CORR and INDE datasets, QAggScan is the most

efficient out of all algorithms, while for ANTI dataset, QGraph has the best

performance due to the reason we explained earlier.

Figure 4.10(d) reports the time cost of QBase, QGraph, QScan, and QAg-

gScan with varying number of points n for the real NBA dataset. The dif-

ference between synthetic datasets and NBA dataset is that there are some

points sharing the same x-axis or y-axis on NBA dataset which leads to fewer

cells. Herein, the time cost of 2100 points on NBA is significantly smaller than

that of 2000 points on synthetic datasets. Comparing different algorithms, the

performances of QScan and QAggScan are similar and QScan is a little better
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than QAggScan which is opposite to the performances on synthetic datasets.

The reason is that on NBA dataset, the number of cells is much smaller but the

number of intersections is similar. But both QScan and QAggScan outperform

QGraph.

4.6.3 Skyline Diagram of Global Skyline

In this subsection, we report the experimental results for computing skyline

diagram of global skyline queries.

Figures 4.11(a)(b)(c)(d) present the time cost of GBase, GGraph, GScan,

and GAggScan with varying number of points n for the three synthetic datasets

and the NBA dataset. The performances of all algorithms on CORR and ANTI

dataset are similar. The reason is that for global skyline queries, we compute

the quadrant skyline from four quadrants. CORR (ANTI) dataset is correlated

(anti-correlated) on the first and third quadrant while ANTI (CORR) dataset is

correlated (anti-correlated) on the second and fourth quadrant. The total time

cost of global skyline queries is about four times of quadrant skyline queries on

INDE dataset. For CORR and ANTI datasets, the total time of global skyline

queries is about twice of the sum of quadrant skyline on CORR and ANTI

datasets.

Comparing different algorithms, on CORR and ANTI datasets, the perfor-

mance of GAggScan is similar to GGraph, both are better than GScan. For

INDE dataset, the performances of GScan and GAggScan are similar and both

are better than GGraph. In summary, GAggScan is the best for all datasets.

For NBA dataset, the time cost of global skyline is about 5 times of the quad-

rant skyline which suggests that the real NBA dataset is somewhat correlated.
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4.6.4 Skyline Diagram of Dynamic Skyline

In this subsection, we report the experimental results for computing skyline

diagram of dynamic skyline. To study the impact of dataset domain, we run

our dynamic skyline experiments on two datasets with domain size 104 and

108, respectively. A bigger domain means a smaller probability of bisectors of

any two points overlapping with each other, hence a larger number of skyline

subcells.
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Figure 4.12: The impact of non skyline diagram of dynamic skyline.

Figures 4.12(a)(b)(c)(d) present the time cost of DBase, DSubset, and D-

Scan with varying number of points n for the three synthetic datasets and

the NBA dataset. Similar to the global skyline, all algorithms have the same

performances on CORR and ANTI datasets. Again, DSubset and DScan sig-

nificantly outperform DBase, which verifies the effectiveness of our algorithms.

For the dataset with smaller domain size, DSubset significantly outperforms

DScan. For the dataset with bigger domain, DScan is better than DSubset

due to the larger number of subcells. The time cost of all algorithms on N-

BA dataset is much smaller than synthetic datasets because there are a large

number of points on the same x-coordinate and y-coordinate which leads to a

small number of subcells.
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4.6.5 Performance Improvements through Parallel Im-

plementation

In order to reduce the skyline query processing time, we demonstrate that our

algorithms can be parallelized by dividing and assigning tasks to each core. For

subset algorithm, we distribute the workload of computing the global skyline

for each cell evenly. Similarly, for the scanning algorithm, after determining

the points contributing to the bisectors, we assign the computation of different

cells to different cores. We run the experiments on the computation server with

40 cores and the results are shown in Figures 4.13(a)(b). The figures show the

parallel algorithms are much more efficient and provide almost linear speedups.
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Figure 4.13: The impact of parallel.

4.7 Conclusions

In this chapter, for the first time, we proposed a novel concept called skyline

diagram. Given a set of points, it partitions the plane into a set of skyline

polyominos where query points in each polyomino have the same skyline query

results. We studied skyline diagram for three kinds of skyline queries, name-

ly, quadrant, global, and dynamic skyline. We then presented several efficient
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algorithms to compute the skyline diagram motivated by interesting proper-

ties of skyline. Each algorithm illustrates its corresponding advantages and

disadvantages based on different distributions of input datasets. The experi-

mental results on the real NBA dataset and the synthetic datasets showed our

algorithms are efficient and scalable.

As future work, we are interested in implementing the skyline diagram based

solutions for the various applications, including PIR based skyline queries, re-

verse skyline queries, and authentication of skyline queries.
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Chapter 5

Conclusion and Future

Directions

In this dissertation, We illustrated a state-of-the-art output-sensitive skyline

computation algorithm and a precomputation structure, skyline diagram, to

efficiently compute skyline. For finding Pareto optimal groups, we adapted the

original skyline definition to the group level which captures the quintessence of

original skyline definition.

For future work, we list several potential directions as follows.

• k-nearest neighbors queries can be used for classification, and kNN clas-

sification is one of the most popular classification algorithm due to its

simplicity. Similar to kNN classification, can we adapt a “skyline clas-

sification”? And what are the advantages and disadvantages of skyline

classification?

• Differential privacy has recently become a de facto standard for private

computation. How to design a differential private skyline queries algo-

rithm is significant.
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