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Abstract 
 

The Seasonality and Climatic Drivers of Cryptosporidiosis  
 

By Leigh M Tyndall 
 

Purpose: There is much uncertainty about the relationship between climate and diarrheal 
disease in the scientific literature, due to a lack of studies that target this question, a lack of 
studies of the relationships between climate and individual pathogens, and also true 
heterogeneity of effect. This study attempts to address these factors through an analysis of 
cryptosporidiosis specifically, and its relationship with temperature (°C) and rainfall (mm), 
testing for heterogeneity both within and between datasets. 

 
Methods: All US cryptosporidiosis cases reported monthly between 1997-2011 were 
obtained from the National Notifiable Disease Surveillance System (NNDSS). These data 
were analyzed with monthly temperature and precipitation data, using generalized linear 
model and generalized estimating equation regression analyses to calculate incidence rate 
ratios for each state, nine climate regions, and for the US as a whole. Heterogeneity of results 
was assessed using the I2 statistic. A systematic review of the literature was also performed, 
searching for studies worldwide that presented at least one full year of monthly data on 
cryptosporidiosis incidence. These data were extracted, matched with climate data for the 
same periods, and analyzed separately. The results were compared to the NNDSS analysis. 
  
Results: There is an overall positive relationship between temperature and cryptosporidiosis 
in the US—for every 1 °C increase in temperature, cryptosporidiosis case incidence increases 
by 2.51%. This is supported by the global literature review which reports a 2.96% increase in 
cryptosporidiosis for every 1 °C increase in temperature worldwide. There is much variability 
in the relationship between precipitation and cryptosporidiosis in the US, which may be due 
to local geographic and temporal factors. There was no significant heterogeneity in results 
between states, but considerable heterogeneity between climate regions.  
 
Conclusion: In general, there is a positive relationship between cryptosporidiosis and 
temperature, shown both in the US and worldwide. The relationship between 
cryptosporidiosis and precipitation is not as clear and is likely due to factors not considered 
in this study.  The relationship between these climatic variables and cryptosporidiosis cases 
was remarkably consistent across states and between the US and global analyses.  This 
suggests the temperature-disease relationship is robust to varying conditions.  
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INTRODUCTION  

Background 

Infectious diarrheal disease is a significant concern worldwide, with an estimated 1.7 

to 4 billion cases and 2.2 million deaths annually.1, 2 A vast majority of these cases occur in 

developing countries among children under the age of five and in immunocompromised 

populations. Diarrheal disease is also a significant cause of morbidity in developed countries 

such as the United States of America (US).2  

The exact burden of cryptosporidiosis worldwide is unknown, but a recent review of 

parasitic waterborne disease outbreaks worldwide found that 60% of the outbreaks were due 

to Cryptosporidium.3 In the US alone it is one of the top causes of recreational water illness 

and waterborne disease outbreaks, with average yearly attributable hospitalization costs of 

$45,770,572.4  This number does not include outpatient healthcare costs, the considerable 

number of individuals who do not seek care for gastro-intestinal (GI) illness, nor loss of 

economic productivity, which was estimated to be as high as $64 million in the case of one 

outbreak, in Wisconsin in 1993.5  In the recent Global Enteric Multicenter Study (GEMS), 

which followed 22,568 children in 7 countries in Sub-Saharan Africa and south Asia, 

Cryptosporidium species rank in the top four etiologies of moderate-to-severe diarrhea in 

children under five.6 

With climate change becoming an increasing concern, it is important to investigate 

the physical drivers that impact infectious diarrheal disease burden, namely ambient 

temperature and rainfall. The National Institute of Environmental Health Sciences (NIEHS) 

suggest, in their A Human Health Perspective on Climate Change Report, that research quantifying 

the relationship between change in temperature and precipitation and change in disease is 

necessary for adequate preventative measures to be taken.7 
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There is currently much uncertainty in the scientific literature concerning how 

climatic drivers affect diarrheal disease incidence. A study attempting to project change in 

temperature and the accompanying change in diarrheal disease found more uncertainties 

associated with diarrheal disease risk than climate projections. The authors highlight the lack 

of empirical data in this area of research, question current assumptions of a linear 

relationship, and argue for developing more than one model in such projects to reduce 

overall uncertainty.8  

The uncertainty in the literature is due in part to lack of studies that examine climate-

diarrheal disease relationships, but also to a lack of studies that examine these relationships 

for specific pathogens. Diarrheal disease seasonality depends on the etiological agent. Viral 

diarrheal disease, such as Norovirus and Rotavirus, peak during the cold winter months, 

whereas bacterial and parasitic diarrheal diseases have the opposite pattern, generally peaking 

during the warm summer months.9 Additionally, most diarrheal diseases have a single 

seasonal peak. Cryptosporidiosis is somewhat unique in that it displays a bi-modal 

seasonality in many, but not all countries and climate zones.10, 11 Given these differences 

between pathogens, pathogen-specific studies are key to understanding climate-disease 

relationships. 

Of course, there is also true heterogeneity within and between studies that causes 

uncertainty in the results. This study attempts to addresses all of these causes of uncertainty 

by performing a pathogen-specific analysis of the relationship between diarrheal disease 

incidence, temperature and rainfall, and specifically examining heterogeneity in effect for one 

dataset, and between two different datasets. 
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Purpose and Motivation for Study 

Research correlating cryptosporidiosis case incidence rates directly to degree change 

in temperature and millimeter (mm) change in rainfall is lacking in the currently published 

literature. While there is one published meta-analysis of cryptosporidiosis seasonality and its 

relationship to temperature and rainfall globally, the authors normalized data reported in 

various formats (prevalence, incidence, etc.) to build their model, and did not make direct 

degree and mm associations with case incidence.10 A thorough literature search yielded no 

studies attempting to compare seasonality results across different datasets. Similarly, no 

articles were found that compared models of surveillance data to models using data from a 

literature review. Several studies were found, however, comparing different models types 

built with the same data, but these comparisons used data from a single city and not over 

multiple climate regions.12-14 Overall, there is a lack of consensus regarding the relationships 

between Cryptosporidium incidence and climatological factors, including temperature and 

precipitation. This project seeks to address this gap in the literature by exploring 

cryptosporidiosis seasonality and its relationship with temperature and rainfall across a 

variety of climate regions in the US, and by comparing results for the US to those found 

using data from a global literature review. Results from this study could provide vital 

information for generating projections of cryptosporidiosis seasonality and incidence for 

various climate scenarios.  
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Literature Review 

Cryptosporidiosis 

Cryptosporidium Parasite 

The infectious agent of cryptosporidiosis, the coccidian parasite Cryptosporidium, has 

been a known cause of infectious diarrheal disease in humans since 1976.15 It can be found 

globally, making this disease and its associated morbidity and mortality ubiquitous.16, 17 The 

parasite Cryptosporidium has around 20 known species (spp.), of which two most commonly 

affect humans:  Cryptosporidium hominis, which is most often spread anthropomorphically, and 

Cryptosporidium parvum, typically found in young calves, which has a zoonotic transmission.18 

Other species found in human hosts include C. meleagridis, C. felis, C. canis, C. muris, and C. 

andersoni, indicating that Cryptosporidium is not entirely host-specific. It is only within the last 

decade that species typing has become possible with molecular typing techniques such as 

Polymerase Chain Reactions (PCR).17 Species other than C. hominis and C. parvum are most 

often seen in HIV-positive patients or in children from developing countries.19  

Cryptosporidiosis Epidemiology 

Cryptosporidium is spread largely via fecal-oral transmission routes, through contact 

with human or animal feces. It is highly resistant to chlorine due to its robust oocyst form. 

Coupled with a low infectious dose of 9-10 oocysts, a high density of up to 109 oocysts 

excreted per gram of stool, and persistent oocyst shedding up to two months post symptom 

resolution, this pathogen creates a difficult public health problem globally.17 Additionally, the 

GEMS study found that between 30-40% of cryptosporidiosis cases are asymptomatic, 

which makes controlling transmission more difficult.6 Children under five are most often the 

victims of the disease, though people of all ages are susceptible.20, 21 
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The two species of Cryptosporidium that most often infect humans appear to have 

slightly different epidemiologies, transmission patterns, and risk factors, though their clinical 

manifestations are the same.  

Clinical Symptoms of Cryptosporidiosis 

Symptomatically, cryptosporidiosis patients can present with prolonged diarrhea 

(over two weeks), vomiting, nausea, abdominal cramps, anorexia, and low fever.22 In an 

immunocompetent host, cryptosporidial diarrhea typically resolves itself within a few weeks 

and is fairly harmless. Immunocompromised individuals, however, are at a high risk of 

becoming malnourished, of wasting, and of death due to this opportunistic pathogen, 

making it a disease of high morbidity and mortality in that population.23 Young children in 

developing countries, particularly those already malnourished, are also at risk. For this 

population, diarrhea can last longer than 14 days, and can result in severe malnutrition, 

growth faltering, and developmental delays, particularly if they are infected during the first 

year of life.20, 24, 25 

Cryptosporidiosis Treatment and Prevention 

Treatment for cryptosporidiosis is largely symptomatic, prescribing fluid intake for 

dehydration and painkillers for pain management.22 A single FDA-approved drug, 

nitazoxanide, is available in the United States for children over one year of age and adults. 

Nitazoxanide has been shown to be the most effective drug in treating cryptosporidiosis in 

immunocompetent populations.26, 27 It is not commonly used in developing countries, 

however, and has shown no effect on the immunocompromised population, leaving those 

who suffer the highest morbidity and mortality from cryptosporidiosis with no recourse.28  
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Since no vaccine for cryptosporidiosis exists to date, current preventative measures 

are very general and similar to preventative measures for all waterborne disease. The notable 

exception is chlorine usage, which is highly ineffective against all Cryptosporidium spp. Several 

household water treatments are effective and cheap ways to neutralize the parasite in water 

used for drinking and cooking. These can range from using filters, especially those with pore 

diameters of less than 1 micron,29 to solar disinfection (SODIS),30 to simply boiling water for 

one minute.22 

 In more high-tech situations preventative measures include improving water and 

sanitation infrastructure, complex water filtration systems and more recently, UV light 

sterilization in drinking water treatment plants. In regards to recreational water, the main 

source of cryptosporidiosis cases in the US, CDC recommends: excluding anyone who has 

had diarrhea within the past 2 weeks from the pool, showering before swimming, washing 

children thoroughly with soap and water after they use the bathroom or their diaper is 

changed, checking diapers often and changing them in the bathroom and not by the pool.16 

Risk factors for Cryptosporidiosis 

Cryptosporidiosis is often studied in outbreak settings, particularly in developed 

countries where diarrheal disease is not endemic. Therefore a large portion of the literature 

on cryptosporidiosis risk factors only address outbreaks, a small portion of total cases. Some 

outbreak-associated risk factors are exposure to drinking water, recreational water, calves, 

and unpasteurized apple cider.31-33 Outbreaks are often related to unpredictable, localized 

point source contaminations of food or water that can be easily identified and eliminated. In 

contrast, endemic cryptosporidiosis appears more dependent on long-term environmental 

and social influences that are not easily managed. Several risk factors have been shown to be 

associated with sporadic cryptosporidiosis, namely drinking un-boiled water, international 
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travel, contact with cattle, swimming in fresh water, and contact with children suffering from 

diarrhea.34, 35 While these associations have been made, the epidemiology of sporadic 

cryptosporidiosis and the driving forces behind its seasonality are not yet fully elucidated.   

Seasonality  

In Temperate Regions  

The ‘temperate’ climates of the earth are between 23.5° and 66.5° latitude in both 

the northern and southern hemisphere. There are generally four seasons during the year in 

the temperate region: spring, summer, fall, and winter. 

The previously published global systematic review and meta-analysis of 

cryptosporidiosis found a slight spring peak in mid-latitude climates, and a slight fall peak in 

cold temperate climates.10 A systematic review of studies conducted specifically on 

developed countries in temperate regions demonstrated an overall dual-peak seasonality for 

cryptosporidiosis over all regions analyzed, and also separately in the United Kingdom (UK), 

Canada, and Oceania. These researchers did not find a dual peak in the US or mainland 

Europe, but this may have been due to a lack of studies in those areas that met their 

selection criteria.11  

Two studies from the US found a single summer/autumn peak without the 

additional spring peak. Naumova et al. report that their Massachusetts state data failed to find 

a secondary seasonal peak in the spring. They did, however, observe the strong late 

summer/autumn peak, noting that it was stronger in children than in adults.36 Naumova et al. 

suggest this pattern is due to their passive, and therefore under-reporting, surveillance 

system and patient population of more than 60% children, who are most likely to engage in 

swimming activities and poor hygiene than adults.37 Another study performed in one 

Massachusetts hospital found the same summer/autumn peak, and though they report cases 
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in February and March, their dataset is not continuous or large enough to be able to identify 

the slight increase as a second ‘peak’.38 In contrast, a similar state-wide study on 

cryptosporidiosis in Oregon did display dual peak seasonality, with a primary peak in late 

summer/autumn, and a secondary peak in early spring (February and March).39  

Studies in the UK report peaks in both the late summer/autumn time period and 

also strong spring peaks. Two studies, one performed in Liverpool, England and one in 

Galway, Ireland, both found a single strong peak in the spring months. Both studies suggest 

that this is due to the rural and largely agricultural nature of the studies’ catchment areas.40, 41 

Other studies from the UK show the more common dual peak seasonality.42-46 One study 

from Scotland that genotyped its cases attributes the dual peak seasonality to the two 

separate species (C. parvum – spring, C. hominis – fall) that make up most of cryptosporidiosis 

in humans.47 A study in Korea presents a similar dual peak, in the spring and fall.48 

In New Zealand (NZ), cryptosporidiosis seasonality is characterized by a large peak 

in the spring months, or August through October, and a peak in the autumn months of 

February through April that is about one third as large as the spring peak.49 This pattern is 

intriguing, as the NZ seasonality matches cryptosporidiosis seasonality in temperate areas of 

the Northern hemisphere where month is concerned, but the seasons are reversed. In the 

UK the autumn peak is 20% larger than the spring peak.50 In both locations the spring peak 

appears to be associated with calving season, when there is a sudden increase in young 

calves. This increase in calves effectively increases the number of carriers of the zoonotically-

transmitted C. parvum, which infects humans via direct contact with the calves or in 

agricultural run-off from manure.51, 52 Similarly, the autumn peak in both locations is 

associated with anthroponotically-transmitted C. hominis, and closely matches the swimming 
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season and warmer temperatures, which lends support for recreational water use as a 

potential means of transmission.37, 51  

A study performed in South Africa found a seasonal increase in the late summer and 

early autumn months of January through March, during which time it is also fairly rainy.53 

Another study performed on South African populations found similar results,54 although a 

different study found case incidence to be highest in the warm dry months of December to 

March.23 This discrepancy may be due to a difference in study location and therefore climate: 

Fripp et al. and Steel et al. both used patients from the same hospital near Pretoria, while Nel 

et al. performed the study on the Western Cape, on the opposite side of the country. Nel et 

al. also used a population of with high HIV prevalence, which could significantly affect their 

results. 

In Tropical Regions 

 The ‘tropical’ climates of the world are between the latitudes of 23.5° N and 23.5° S. 

Seasonality in this region is typically defined by two seasons, ‘wet’ and ‘dry’. 

The previously published global systematic review and meta-analysis of 

cryptosporidiosis found that cryptosporidiosis seasonality in moist tropical climates was 

highly varied. The authors found that arid regions, most of which are also in the ‘tropics’, 

had no seasonal peak in cryptosporidiosis rate.10  

In a Guatemala study the highest incidence of cryptosporidiosis among infants was 

at the end of the dry season, between February and May of the calendar year. Cruz et al. 

suggest this is due partly to the lack of water supplies and also to the increase of dust, which 

aerosolizes Cryptosporidium oocysts, leading to respiratory infections.55 Two studies in 

Bangladesh, where cryptosporidiosis peaks April through July, support this theory of part of 
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the cryptosporidiosis burden being due to airborne infection. In Bangladesh, April through 

July are hot and humid months of the year.56, 57  

A study conducted in Uganda indicates that in some tropical countries, the seasonal 

peak of cryptosporidiosis is during months of the wet, or rainy, season.58 In Nigeria as well, 

Cryptosporidiosis prevalence was found to be highly associated with the rainy season, 

particularly in HIV+ populations.59 This seasonal peak during the rainy season is also found 

in Burkina-Faso,60 and in Guinea-Bissau, where peak cryptosporidiosis occurs at the start of 

the rainy season.61 Results from studies in Brazil,62 The Gambia,63 Zambia,64 Malawi,65 

Mexico,66 Costa Rica,67 India68, 69 all show similar findings.   

A study in Kenya found the dual-peak Cryptosporidium seasonality, which is similar to 

that seen in temperate regions. In the case of Kenya, however, the two peaks were found in 

during the dry seasons after the rainy periods. The larger peak was found during the hottest 

and driest time of the year, after the short rainy season. The smaller peak was found during 

the cold, dry season after the long rainy season.70 This pattern is unusual, but the study only 

spanned two years, making it difficult discern whether or not this pattern is typical or due to 

unusual weather during those two years.  

Climatic Drivers 

Temperature and Rainfall as Climatic Drivers 

 The global surface temperature has risen 0.8 °C in the past century, with 0.6 °C of that 

in the past thirty years.71 Temperatures are expected to increase further, which will lead to an 

increase in the amount of energy in the atmosphere, causing more storms of increasing 

severity and more extreme weather events.72 Floods and droughts have become more 

prevalent and hurricanes as well as winter storms have become more powerful and 

devastating. Sea levels are also rising, having risen 8 inches in the past century, with an 
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expected rise of 1-4 feet in the next century.73 These changes will have an impact on human 

health, including waterborne diarrheal diseases such as cryptosporidiosis. 

In light of these environmental changes, there have been several studies that explore the 

relationship between infectious diarrheal disease and the aforementioned climatic drivers.  

Infectious Diarrheal Disease  

Temperature 

A World Health Organization (WHO) study associating degree temperature change 

with percent increase of diarrhea put forth a conservative estimate of a 5% increase in 

diarrhea per 1 °C increase in temperature.74 Another study projecting how diarrheal disease 

might increase with projected temperature increase found a predicted 8-11% increase in 

diarrheal disease depending on geographic location 8. In general the literature consensus 

seems to point to a significant association between increases in temperature and increases 

diarrheal disease, 75-79 though at least one study found significant correlation, but not 

significant predictive power.80 One exception to the rise of diarrheal diseases with rising 

temperatures is the set of viral diseases, such as Norovirus and rotavirus, which tends to 

show a significant inverse relationship with temperature that echoes the viruses’ winter 

seasonalities. 9, 81, 82  

Precipitation 

The literature is less unanimous on the association between diarrheal disease and 

precipitation, and can vary even within the same climate region. For example, several studies 

performed in the tropics, where there are wet and dry seasons, explored the relationship 

between diarrheal disease incidence and rainfall, each providing different results. A study of 

bacterial diarrheal diseases in Vietnam showed a weak positive association between rainfall 
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and disease incidence, with a strong difference in precipitation between ‘high’ and ‘low’ 

disease periods.83 Similarly a longitudinal study in Botswana revealed no relationship between 

precipitation and diarrheal disease incidence, but a weak positive association with the 

previous month’s precipitation after controlling for season.84 In Thailand there was no direct 

effect of precipitation on disease incidence, though the study does suggest that rainfall may 

impact various points on the fecal-oral contamination route. These points included change in 

water availability, change in water use patterns, and contamination of food.81 In Ecuador, the 

relationship between diarrheal disease incidence and heavy rainfall events differed based on 

pre-existing rainfall conditions. If the weeks preceding the rainfall event were dry, the 

extreme rainfall was positively associated with diarrheal disease. If the weeks preceding the 

rainfall were wet, diarrheal disease was negatively associated with disease incidence.85 

Members of the Ecology and Health Research Centre in Wellington, NZ attempted 

to incorporate disease and precipitation patterns over a larger geographic and temporal area 

in their 2001 study of diarrheal disease in the Pacific Islands. They found that rainfall below 

the 50th percentile was positively associated with an increase in diarrheal disease, while the 

relationship between diarrheal disease and rainfall above the 50th percentile was modified by 

a one-month lag. Diarrheal disease increased with high rainfall during the same month but 

decreased with high rainfall in the previous month.76 A study of non-cholera diarrheal 

disease performed in Bangladesh found similar results. Diarrheal disease increased by 

approximately 5% for every 10 mm of rainfall above the average monthly threshold of 52 

mm, but also increased by approximately 4% for every 10 mm of rainfall below an average 

monthly threshold of 52 mm. However, Hashizume et al. also found that when these 

estimates were adjusted by water level of a nearby river, nearly all of the association between 

rainfall and diarrheal disease incidence disappeared.75  
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The literature review failed to find studies performed on the incidence of diarrheal 

disease in general in relationship to rainfall in temperate regions. This lack of research is 

potentially due to the fact that many countries in temperate regions are developed and 

therefore have generally low incidence of diarrheal disease. A global study, which included 

temperate, tropical, and arid climate regions found that diarrheal disease decreased by 4% 

when average monthly precipitation increased by 10 mm.86 In this study, Lloyd et al. 

hypothesize that this decrease is due to low levels of precipitation in the long term causing 

water scarcity, and leading to poor hygiene behavior. Given the lack of consensus in the 

literature, it appears the relationship between rainfall and diarrheal disease is highly modified 

by surrounding geographic and temporal conditions.7, 85 

Extreme Precipitation 

An association often explored along with temperature and rainfall is the association 

between diarrheal disease and extreme weather events such as El Niño or flooding. 

A longitudinal study of the relationship of the effect of extreme precipitation on 

waterborne disease outbreaks in the US showed a significant association. Outbreaks caused 

by contaminated surface water was found to be correlated with extreme precipitation in the 

month prior to the outbreak, and outbreaks caused by contaminated ground water was 

found to be associated with extreme precipitation two months prior.87 Comparable studies 

performed on waterborne outbreaks caused by, or associated with extreme rainfall events in 

Canada, showed a similar relationship between extreme precipitation and diarrheal disease 

outbreaks.88, 89  

In terms of flooding, two studies in Bangladesh found a sharp increase in the 

number of patients presenting with diarrhea during flood conditions, with levels gradually 

reducing to normal by four weeks after flood conditions ended.90, 91  
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Cryptosporidiosis and Climatic Drivers 

Temperature 

Studies similar to those discussed in the previous section have attempted to explore 

the relationship between temperature and rainfall and cryptosporidiosis specifically. Jagai et 

al. reported in their global systematic review and meta-analysis that cryptosporidiosis 

incidence was strongly related to temperature in all climate regions: moist, tropical regions, 

arid and semiarid regions, mid-latitude regions, and cold temperate regions. However, 

temperature was only a significant predictor of cryptosporidiosis in tropical, mid-latitude, 

and cold temperate regions.10   

One study in NZ conducted a time series analysis of the relationship between disease 

incidence, temperature, rainfall, and the impact of the El Niño cycle. They found 

cryptosporidiosis case incidence to be positively associated with the average monthly 

temperature one month prior.92 This finding is similar to other research performed in NZ, 

which found that both current and previous month temperatures were associated with rate 

of cryptosporidiosis.49 This study, performed by Lake et al. on data from 1997-2005, only 

found such an association during the summer and autumn months, and not during the 

spring. A contradictory study of NZ data from 1997-2006 found that an increase in 

temperature was connected with a decrease in cryptosporidiosis cases.93 The authors of this 

contradictory study, Britton, et al. attribute this difference to the utilization of different 

geographic resolutions of the data: Britton et al. analyzed data at the census area units, while 

Lake et al. analyzed data at the national level.  

Studies from Australia have also found a strong relationship between temperature 

and cryptosporidiosis case incidence. One study in Brisbane estimated that an increase of 1 

°C could lead to an increase of up to 50 additional cases per year.12 The other two studies 
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built several different models and found similar strong, positive relationship between 

temperature and cryptosporidiosis incidence.13, 14 

In the Northern hemisphere, a study of cryptosporidiosis cases from Massachusetts, 

US found that case incidence was strongly associated with the prior month’s ambient 

temperature. Naumova et al. attribute this association to recreational water use and other 

outdoor activities, such as camping, which encourage poor hygiene and keep people in 

confined spaces like tents.37 In contrast, a study done in Korea found no correlation between 

temperature and case incidence.48 A tri-location study in India found a positive relationship 

between temperature and case incidence in one city, Delhi, but not in the other two cities of 

Vellore and Trichy.94  

Precipitation 

 Similar to diarrheal disease in general, the relationship with precipitation and 

cryptosporidiosis is vague. The global systematic review and meta-analysis reports the 

following for the relationship between precipitation and cryptosporidiosis: in moist tropical 

areas, cryptosporidiosis was only correlated with one of two annual precipitation peaks, and 

is marginally associated with precipitation in cold, temperate regions. Cryptosporidiosis was 

only accurately predicted by precipitation in the moist tropical climate regions.10 

Studies in NZ found no relationship between cryptosporidiosis case incidence and 

precipitation. Lake et al. hypothesize this lack of relationship is due to the inability of a 

singular precipitation measurement to be representative of the entire country.49 Lal et al. 

suggests the relationship between precipitation and cryptosporidiosis is likely modified by 

drinking water quality, something they did not account for in their study.92 Another study in 

NZ utilized a ‘rainfall to evaporation ratio’, and found that for every unit increase of the 

ratio (every increase in rainfall or decrease in evaporation rate), cryptosporidiosis increased 
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by 1%. It is difficult to discern whether or not this information is comparable to Lake et al. 

or Lal et al.93  

A set of studies based on a dataset from Brisbane, Australia gave contradictory 

results. One set of models did not find a relationship between precipitation and case 

incidence,12 while another set of models found an inverse association, indicating that 

cryptosporidiosis decreased with increasing rainfall.13 A third set of models built with this 

dataset found that precipitation created a weak interaction in the relationship between socio-

economic status and cryptosporidiosis incidence.14 

Turning to the northern hemisphere, a study in the northwestern part of England 

found a positive association between cryptosporidiosis and rainfall, with an increase of 27% 

when the rainfall of the previous week was over the 75th percentile.43 Similarly, a South 

Korean study found a weak association between monthly rainfall and monthly case 

prevalence.48 

In the subtropical regions of Africa and South America, it can be assumed that there 

is exists some relationship between cryptosporidiosis and rainfall given that many studies 

indicate rainy season seasonal peaks.58, 60-67 However, since these studies did not examine 

direct associations between incidence and rainfall, it is difficult to quantify or qualify that 

relationship. 

In India the relationship between precipitation and cryptosporidiosis is unclear. One 

study in Kolkata found a positive relationship between case incidence and precipitation.69 

Three other studies in India, one in Kolkata,95 one in Varanasi,68 and one in Vellore,96 found 

an association between cryptosporidiosis and the rainy season, which implies some 

relationship with rainfall. However, another study, that took place in three locations (Delhi, 

Trichy, and Vellore), found no relationship between precipitation and case incidence in any 
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of the cities.94 This difference in relationship could potentially be due to differing climates in 

each study’s site, although the opposite relationship between case incidence and rainfall in 

the two studies in Vellore would be interesting to explore. 

Extreme Precipitation 

The largest cryptosporidiosis outbreak documented in the United States was an 

outbreak preceded by extreme precipitation, where the excessive turbidity of the water 

overwhelmed the local drinking water treatment plant.97 One study in Peru have linked 

diarrheal disease in general and cryptosporidiosis specifically with the 1997-1998 El Niño 

weather event. Bennett et al found a 55% increase in general diarrheal incidence during an El 

Niño event, and a 52% increase in cryptosporidial diarrhea incidence specifically.98  

With the exception of a few studies,10, 76 most of the studies on the relationships 

between cryptosporidiosis case incidence, temperature and rainfall were performed in a 

single geographic location. This study attempts to encompass a much larger and more varied 

group of climate locations, both around the world and across the US. This study seeks to 

explore the relationship between cryptosporidiosis seasonality and temperature and rainfall 

only. Data pertaining to extreme weather events such as El Niño, drought, or flooding were 

not searched for explicitly, nor were they included in analysis.  

National Surveillance Data 

According to the WHO, public health surveillance data is the “continuous, 

systematic collection, analysis and interpretation of health-related data needed for the 

planning, implementation, and evaluation of public health practice”.99 Many countries are 

now capable of collecting infectious disease case data on a national level, including Scotland, 

Germany, England, France, whose data was included as part of the systematic literature 

review. Data can be collected at a higher level as well: a surveillance center sponsored by the 
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EU and run by Swedes collects data from multiple European countries 

(http://www.ecdc.europa.eu/). This data centralization allows for analysis on a larger scale 

than studies collecting data from one or more point locations, creating a broader picture of 

disease patterns. In practice, disease incidence reports are collected on a local level first—it is 

the obligation of the physician or laboratory staff that discovers the case to notify their local 

health authority. The quality and quantity of data is dependent on whether or not the data is 

actively or passively collected. Active surveillance systems seek out case data in healthcare 

settings such as hospitals and are more resource-intensive. Passive systems do not require 

state or local entities to report case data the cases come to them, only collecting cases that 

seek healthcare and get reported. In general, active systems yield more cases than passive 

systems, which are more likely to under report cases.   

National Notifiable Disease Surveillance System 

The US national surveillance data was chosen for this study since the US has a large 

geographic area that is easily subdivided and a wide variety of average temperatures and 

rainfalls that are representative of the many of the world’s climates. This variety of climates 

and the size of the US make the National Notifiable Diseases Surveillance System (NNDSS) 

dataset an appropriate comparison to a systematic-review based meta-analysis. Currently all 

50 states, New York City, and Washington D.C. report cryptosporidiosis cases to the 

Centers for Disease Control and Prevention (CDC).100 In the US each state is responsible for 

its own surveillance system rules and requirements, which vary based on the budget and time 

constraints of each state. State-level reporting is required, but reporting to the Federal level is 

voluntary, making the NNDSS data ‘passively’ collected data, even if the cases are actively 

collected on the state level.101 It should also be noted that it is not currently required to test 
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for Cryptosporidium in stool samples submitted for routine examination, making it even more 

likely that cases are being underreported.16 
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Methods 

Hypothesis 

 We hypothesized that there is a correlation between change in overall cryptosporidiosis 

incidence and change in temperature and rainfall, while controlling for latitude, 

demographics, and season. Additionally, the effects of data type and data collection 

methodology on our primary hypothesis of interest were explored. Secondarily, we 

hypothesized that the two datasets, the literature review data and surveillance system data, 

would produce similar models of the effect that climate factors have on cryptosporidiosis 

incidence. 

Outcome Variables  

Systematic Review  

Relevant studies were obtained through a literature search using the PubMed 

database, using search string ‘cryptosporidium or cryptosporidiosis’ coupled with the 

following search terms: ‘ambient temperature’, ‘climate’, ‘rain’, ‘relative humidity’, ‘season*’, 

and ‘weather’. ‘Season*’ was used to search all variants of season (seasons, seasonality, etc.) 

simultaneously. There were no language restrictions on the search. All PubMed articles were 

imported into EndNote X6 (Thomson Reuters; New York, NY) and duplicate articles were 

removed. Two reviewers separately examined the title and abstract of each article and studies 

were excluded based on the following exclusion criteria:  

 Non-human studies  

 Studies of fewer than 25 cases 

 Studies on biology or lab methods 

 Studies that only included HIV+ patients 
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 Studies that did not include a full year (12 months) of data  

 Studies on outbreak data only 

Examination of the reference lists of key cryptosporidiosis literature reviews 102-109 provided 

additional studies, and a dataset from a previously published meta-analysis on 

cryptosporidiosis seasonality was obtained with permission of the author.10 These additional 

two sources were also scanned for duplicates and assessed based on the above exclusion 

criteria. All papers with titles and abstracts appearing to meet criteria were downloaded for 

full review. A more detailed description of the search protocol is provided in Appendix A.  

In order to maintain data consistency and properly correlate number of cases to 

degree temperature and rainfall, only studies presenting monthly count data were used. For 

articles that were not in English, appropriate text and figure/table titles were translated and 

data was extracted if the paper met the inclusion criteria. For articles that did not present 

monthly case numbers but presented graphs or tables with monthly prevalences or 

incidences, the monthly case count was back-calculated if possible. Authors were contacted 

to request monthly case numbers for each year for studies that did not display monthly case 

numbers of human cryptosporidiosis cases for each year of the study, or for which back-

calculation of case numbers was not possible, if the studies appeared to meet all other 

criteria. Authors were also contacted if their published graph was not well enough resolved 

for extraction. Outbreak and immunocompromised cases were included in the analysis if 

they came from a surveillance dataset where outbreak or immune status was recorded, but 

not specifically selected for. Datasets used in multiple studies were only added to the final 

dataset once. Any studies that used FoodNet Data or data from the NNDSS were also 

excluded to prevent overlap with the comparison NNDSS dataset. 
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The flow chart of inclusion/exclusion is shown in Appendix B. Meta-data were 

collected from the included studies, and monthly case numbers were extracted from tables 

and graphs using Plot Digitizer.110 

 The predictor variables analyzed with the above literature review outcome data were 

obtained and analyzed by a second analyst, and the results are included in this study as a 

comparison to the NNDSS data. For details pertaining to predictor variable compilation and 

data analysis please refer to the methodology described by Ahmed et al.9  

National Notifiable Diseases Surveillance System 

The cryptosporidiosis case data from the NNDSS data was requested from the 

Division of Integrated Surveillance Systems and Services (DISSS) in the National Center for 

Public Health Informatics (NCPHI) at the CDC using a Registration Information and Data 

Use Restrictions Agreement (RIDURA) form (included in Appendix C). Access was given to 

the public aggregate monthly count files of total counts of confirmed and probable 

cryptosporidiosis by state for each year available. More geographically detailed data was not 

available for access.   

 Cryptosporidiosis has been a national notifiable disease since 1995, when 24 states 

began reporting cases voluntarily to the CDC.111 Cryptosporidiosis data was available from 

1997-2011. The 2012 data was unavailable for public analysis, as the CDC had not published 

it at the time of this analysis. Data from 1995 and 1996 were also unavailable, as they remain 

unpublished. Cryptosporidiosis cases are initially collected by healthcare providers and 

laboratories, which are required to report cases to the state and local level within a number 

of days, depending on each state. Currently, all 50 states and two metropolitan areas 

(Washington DC and New York City (NYC)) voluntarily report cryptosporidiosis cases to 

the CDC. 
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While reporting systems can vary from state to state, the CDC, collaborating with the 

Council of State and Territorial Epidemiologists (CSTE), first published a set of case 

definitions for notifiable diseases in 1990, to make the reporting process more uniform and 

comparable across state surveillance systems. Cryptosporidiosis was first added to the list in 

the 1997 report, where probable cases were defined as ‘a clinically compatible case that is 

epidemiologically linked to a confirmed case’ and confirmed cases were defined with 

laboratory confirmation. The clinical symptoms have been described previously in the 

introduction of this paper. Laboratory criteria include evidence of Cryptosporidium oocysts or 

antigens in stool samples or biopsy specimens. This definition was updated in 1998 to 

include laboratory-confirmed asymptomatic cases and identification of antigens by 

polymerase chain reaction (PCR) techniques, in 2009 to include evidence of 

Cryptosporidium nucleic acid and to require reporting of molecular characterization and 

species when available.112, 113 In 2011, laboratory criteria for diagnosis was delineated into 

probable and confirmed when the rapid immunological assays were found to produce false 

positives 44% of the time.114 Thereafter, a case that was diagnosed by rapid assay was 

considered probable unless further testing was done using an established laboratory method 

(direct fluorescent antibody testing (DFA), PCR, or enzyme-linked immunosorbent assay 

(ELISA)).115  

Given the passive nature of the NNDSS, and the fact that cryptosporidiosis is not 

routinely tested for in stool samples, it is highly likely that the dataset under represents the 

actual number of cases. Hawaii and Alaska, for example, only report 7 and 15 cases total and 

were therefore excluded from analysis. In addition, PCR techniques have only been used 

recently to identify Cryptosporidium species and species is not recorded in the NNDSS, 

therefore, it is impossible to analyze the distinct epidemiologies of each parasite species. 
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 As NYC data is recorded separately from New York State in the NNDSS, NYC cases 

were added to the New York State cases for easier analysis. The other metropolitan area to 

collect cases is the District of Columbia (D.C.), which from here forward shall be referred to 

as a ‘state’. Months of data that were available prior to when a state declared 

cryptosporidiosis nationally notifiable were deleted so as not to confuse between a 0 case 

count from non-reporting, and a 0 case count from a month where there were no cases. 

Additionally, the NNDSS case data was log10-transformed to meet the ‘variance = mean’ 

assumption of the Poisson distribution regression analysis.  

Predictor Variables 

Climate-related Variables 

The primary predictors of interest in this study were monthly average temperature, in 

degrees Celsius (°C), and monthly average precipitation in millimeters (mm). These weather 

data were obtained from the National Climatic Data Center’s (NCDC) Climate Data Online 

monthly summaries database. These data are averaged from the Global Historical 

Climatology Network-Daily (GHCN-D) data collected from weather stations across the 

world116. Monthly temperature and precipitation data was obtained from the city of largest 

population in each state, as determined by the 2010 census. For cities with data available 

from several weather stations, the station that encompassed the complete time series (1997-

2011) was used. Weather station latitude was also downloaded from the source to be used as 

a predictor. 

The NCDC presents data in the format of tenths of degrees Celsius for temperature 

and tenths of millimeters for rainfall. Temperature and rainfall data were divided by 10 to 

obtain results in whole degrees and whole millimeters. In order to observe general patterns 

beyond the climatologically arbitrary state boundaries and to put the data into a regional 
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context, each state was assigned to one of nine US Climate Regions, as defined by the 

NCDC.117 A map of the US Climate Regions is available in Appendix D. These Climate 

Regions only cover the contiguous US, therefore Alaska and Hawaii were assigned to their 

own separate climate regions for this study. 

The climates of states that span many degrees in latitude would be inadequately 

described by a measure of temperature or rainfall from only one city. Therefore, Alaska, 

California, Florida, and Texas, were excluded from regression analysis, though summary 

weather statistics and season strength were still calculated for these states.  

Demographic Variables 

To account for various demographics and suspected cryptosporidiosis risk factors, 

secondary covariates were obtained from three different sources: the American Community 

Survey (ACS), an annual survey performed by the U.S. Census Bureau to record various 

economic and social statistics about the American people that are no longer included in the 

decennial census; the 1990 decennial census, the last census to collect water and sanitation 

data at the household level; and the 2003 Rural-Urban Continuum Codes (RUCCs), a system 

used by the Office of Management and Budget (OMB) to define metropolitan (metro), 

urban, and rural counties by size and adjacency of urban/metro area.  

 Statewide percentages of families and people whose income in the past 12 months 

was below the poverty level were obtained from the 2010 ACS five-year estimates.118 

Statewide percentages of total well use (drilled and dug wells combined) were obtained from 

the 1990 decennial census.119 Statewide percentages of urban counties were calculated using 

RUCC data,120 by counting the number of counties in the state considered ‘urban’ (counties 

with urban populations of 20,000 or more and adjacent to or part of a metropolitan area), 

and dividing by the total number of counties in the state. The ‘urban’ classification was used 
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instead of the OMB’s ‘metro’ classification in order to include counties that are not 

considered metro but have large populations and highly developed infrastructure indicative 

of non-rural areas. 

Methods of Analysis  

The general methods of analysis used in similar studies of infectious diarrheal disease 

agents such as Rotavirus and Norovirus have been described previously9, 82 and was 

performed separately for the literature review dataset. This analysis was adapted and 

expanded for the NNDSS data and performed using SAS version 9.3 (SAS Institute Inc.; 

Cary, NC). These methods are described below. 

Summarizing Data and Seasonality Analysis 

 The monthly case, temperature, and precipitation data were averaged over all years to 

create the monthly mean for each month for each state, and for each climate region. These 

monthly means were averaged to obtain yearly average temperature estimates, or summed to 

obtain yearly average precipitation or case count estimates for each state and climate region. 

Monthly temperature, precipitation, and case averages were normalized by peak 

values, allowing for comparison of an average year across regions. The normalized monthly 

averages of cases, temperature, and rainfall were then plotted by month to obtain a long-

term seasonal curve for each climate region. 

Season strengths, defined as the peak-to-mean ratio, of cryptosporidiosis, 

temperature, and precipitation were calculated using the ratio of monthly averages to their 

respective averages per month. A heat map of cryptosporidiosis season strength was created 

using ArcGIS version 10.1 (Environmental Systems Research Institute; Redlands, CA) in 

order to visualize spatial variability in season strength. Season strengths of cryptosporidiosis 
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were plotted against the season strengths of temperature and rainfall as an initial test of 

association. 

Correlation between each of the demographic variables was assessed in order to 

prevent multicollinearity in the model. 

Statistical Analysis 

Generalized log-linear Poisson regression models (GLM) were used to test the 

association between monthly cryptosporidiosis incidence and temperature and precipitation. 

Cryptosporidiosis case counts were transformed by log base-10 in order to meet the Poisson 

assumption of an equal mean and variance. For each state, two sets of GLM models were 

created: one presenting case counts as a function of temperature, and one presenting case 

counts as a function of precipitation. Incidence rate ratios (IRRs) from these models were 

plotted in a forest plot organized by climate region in order to visualize heterogeneity across 

states. The same modeling process and forest plot graphing was performed at the climate 

region level in order to asses heterogeneity across climate regions.  

Heterogeneity between states and between climate regions was assessed visually by 

examining the forest plots for overlap of confidence intervals, and statistically with I2  

statistics. These statistics were assessed at α=0.05 using a method described by Neyeloff et al. 

and modified for this study.121    

All state data were also pooled to assess the overall relationship between 

cryptosporidiosis and temperature and precipitation for the United States. This was 

performed with a generalized estimating equation (GEE) model, using a Poisson distribution 

and the auto-regressive correlation structure and clustering by state. Cryptosporidiosis cases 

were initially modeled as a function of both monthly temperature and one month lagged 

monthly temperature, as well as precipitation and one month lagged precipitation. The IRR, 
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Wald Statistic, and p-value were used to evaluate which of the lagged data (0 or 1-month) 

had the largest effect on cryptosporidiosis incidence. Cryptosporidiosis cases were also 

modeled univariately as a function of each of the three demographic covariates: percent well 

use, percent poverty, and percent urban. This variable selection was done to avoid 

collinearity among the demographic variables and to include the variable with the largest 

effect on cryptosporidiosis incidence in the model. A backwards selection model was used to 

select the final model, starting with all variables of interest (lagged temperature, precipitation, 

latitude, percent well use, percent urban, percent poverty) and removing variables with p-

values of greater than 0.05 until only significant variables remained in the model. 

Upon review of the GEE modeling results, the well use variable was divided into 

deciles, and the same regression techniques were used to obtain IRRs for temperature and 

precipitation in each well use decile. These IRRs were also plotted in forest plots in order to 

examine patterns, and heterogeneity was assessed using the same methodology previously 

mentioned.   

The forest plots of GLM models and the results of the final GEE model were 

compared with similar models built with the literature review data to observe the differences 

across datasets.  Two models were built with the literature review data: one using all studies 

and one using only studies from developed countries in the northern hemisphere for a more 

appropriate comparison to the US.  

Permission has been granted to utilize all data not publically available. Institutional 

Review Board (IRB) approval was declared unnecessary for this study, as it failed to meet the 

definition of human research. The Letter of Declaration from the IRB stating the above can 

be found in Appendix E.  
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RESULTS:  

Systematic Review 

The literature review search produced 970 articles, 353 of which were duplicates. Of 

the 617 remaining articles, 535 were excluded based on their title and abstract not meeting 

the exclusion criteria. Examination of the reference lists of eight cryptosporidiosis literature 

reviews provided an additional 113 studies. The dataset from the published meta-analysis on 

cryptosporidiosis seasonality provided 66 additional studies, all of which were subject to the 

same reviewing process as the articles from PubMed and the literature review reference 

lists.10 Of all 718 articles screened by title and abstract, 183 articles were downloaded for full 

review. Of these 183, 70 were excluded for the following reasons: 18 contained fewer than 

25 cases, 12 collected data from too large of an area to accurately match temperature and 

rainfall (low geospatial resolution), 3 were water quality studies, 3 only studied HIV+ 

patients, 9 were not about cryptosporidiosis or addressed modeling and not cases, 18 did not 

span 12 months, 3 exclusively studied outbreak data, and 4 were reviews or letters to the 

editor. Of the 61 authors contacted to provide useable data, 10 authors were unable to share 

data due to it being unavailable to them, 23 authors could not be contacted by email, and 28 

authors did not respond to email contact.  

The final dataset included the 42 studies with at least one of the following 

characteristics: the study met all necessary inclusion criteria, the authors shared original data 

that met criteria,36, 39, 48, 94, 98, 122-126 or the authors shared an alternate data source from which 

we were able to extract data.49, 127  

 There were 46,522 cases of cryptosporidiosis reported from 1982-2012, spanning six 

continents, and coming from a variety of sources including hospitals, labs, community-based 

studies, and countrywide surveillance systems. Study designs included cross-sectional studies, 



   

30 

cohort studies, case-control studies, and surveillance studies. Methods of detection varied as 

well, including several different staining techniques, ELISA, and PCR. Further meta-data 

describing these studies are shown in the Appendix F.  

National Notifiable Disease Surveillance System Data 

There were 49,045 cases of cryptosporidiosis with an associated symptom onset date 

reported to the CDC through the NNDSS between 1997 and 2011. Total counts of 

cryptosporidiosis cases in each state range from seven cases (Hawaii) to 6,369 cases 

(Wisconsin). For each climate region, total numbers ranged from 291 cases in the West 

climate region, including Nevada and California, to 11,013 cases in the Upper Midwest 

climate region, which includes Iowa, Michigan, Minnesota, and Wisconsin. For the entire 

country there was an average of 3,270 cases per year.    

Descriptive statistics and characteristics are displayed in Table 1, in which the states 

are organized by climate region. Average yearly temperature ranged from 5.87 °C in North 

Dakota to 23.10 °C in Arizona. Average yearly rainfall ranged from 125 mm in Nevada to 

1,495 mm in Louisiana. Latitudes and names of the cities where the NCDC weather stations 

are located and demographic variables for each state and climate region are also displayed in 

Table 1. 

Season Strength 

 The distribution of season strength, or peak-to-mean ratio, across the US is displayed 

visually in Figure 1 and numerically in Table 1. Season strength varies across the states, with 

higher peak-to-mean ratios seen in the middle and western parts of the country, and lower in 

the eastern regions. Overall, the US has cryptosporidiosis season strength of 2.72. 

Connecticut, Kansas, and Missouri showed the greatest season strength of the states, with 

peak-to-mean ratios of 4.89, 4.10 and 3.96 respectively. The lowest season strength was seen 
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in Georgia, Maryland, and Washington with peak to mean ratios of 1.57, 1.62, and 1.64 

respectively. Of climate regions, the South showed the strongest season strength at 3.41, and 

the Southeast states showed the weakest season strength at 1.94. Plots of cryptosporidiosis 

peak-to-mean ratio against temperature and precipitation peak-to-mean ratio showed no 

definitive pattern. These plots are available in the Appendix G. 

Seasonality across US Climate Regions 

 The average monthly case distribution of cryptosporidiosis in the United States is 

shown in Figure 2, along with average monthly temperature and precipitation distributions. 

Cryptosporidiosis displays clear summer seasonality in the US as a whole. A large peak 

begins in June and last until October, reaching its height in August. The cryptosporidiosis 

case peak falls one month after the temperature peak (July), and two months after the 

precipitation peak (June) (Figure 2).  

In Figure 3 the distribution of average cases, temperature, and precipitation per 

month is displayed for each US climate region. The large peak of cases in the summer/early 

autumn months (July-October) is evident in all climate regions shown in Figure 3. These 

peaks reach maximum height in August, similar to the countrywide peak in Figure 2. The 

West, Northwest, and Northern Rockies and Plains regions all show a second, distinct, much 

smaller, seasonal peak during the spring months.  

Temperature seasonality shows consistent summer-peak seasonality across the US, 

with highest temperatures in July and August in all regions. Northern regions show slightly 

colder temperatures on average, and southern regions slightly warmer temperatures on 

average, as expected. The seasonal cryptosporidiosis case curves seem to be positively related 

to the temperature curves in all regions. This is supported by the GLM relationship values 

displayed in Table 1.  
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Precipitation seasonality is more varied across the regions. The Ohio Valley, Upper 

Midwest, South, the Northern Rockies and Plains, and Southwest show a seasonal peak in 

the late spring/early summer months of April – June. The Northwest and West regions have 

seasonal precipitation peaks in the winter months of November- February. The Northeast 

region shows little variation in precipitation across the year, and the Southeast region shows 

peak precipitation in late summer, early autumn, similar to the temperature curve. The 

relationship between cryptosporidiosis and precipitation is similarly variable across climate 

regions. The West and Northwest regions seem to show a negative relationship between 

precipitation and cryptosporidiosis, while the Southeast seems to show a positive association. 

Most of the remaining regions seem to have a positive relationship with the precipitation of 

two months prior. These visual relationships are supported by those found through GLM 

modeling that are reported in Table 1, even though not all are statistically significant. 

Generalized Linear Modeling 

United States and US Climate Regions 

 The log-linear Poisson regression analyses for each state show a clear positive 

relationship between temperature and cryptosporidiosis case incidence in all states, with 27 

of the 46 states analyzed (59%) showing a statistically significant relationship between 

temperature and cryptosporidiosis incidence. IRRs for the contiguous US range from 1.01 in 

Georgia (95% CI 0.99, 1.03), Kentucky (95% CI 0.96, 1.06), and Washington, D.C. (95% CI 

0.95, 1.08) to 1.11 (95% CI 0.98,1.25) in Connecticut. Temperature IRRs with 95% 

confidence intervals for each state, grouped by climate region, are displayed in Figure 4a.  

The same individual GLM analyses of each state show weak, highly variable 

relationships between cryptosporidiosis and precipitation. Of the 46 states analyzed, 34 show 

a positive relationship between cryptosporidiosis and precipitation, of which two (6%) are 
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statistically significant. Twelve states show negative relationships between cryptosporidiosis 

and precipitation, none of which are significant. One state, Tennessee, shows no relationship 

between cryptosporidiosis incidence and precipitation (IRR=1.000, 95% CI 0.997, 1.004). 

No positive IRRs exceeded the 1.010 (95% CI 0.999, 1.021) value of Wyoming, and none of 

the negative IRRs exceeded the 0.994 (95% CI 0.973, 1.016) of Nevada. Precipitation IRRs 

with 95% confidence intervals for each state, grouped by climate region, are displayed in 

Figure 4b.  

 The log-linear Poisson regression analyses on data aggregated to the US climate region 

level show similar results as the analyses on the state level data. All nine climate regions show 

a statistically significant positive relationship between cryptosporidiosis and temperature, 

with IRRs ranging from 1.01 (95% CI 1.001-1.020) in the Ohio Valley, the Southwest, and 

the Southeast to 1.04 (95% CI 1.004-1.083) in the West. The temperature IRRs for each 

climate region are shown in Figure 5a. 

Five of the nine climate regions show a positive relationship between 

cryptosporidiosis incidence and precipitation, of which three (Northeast, Upper Midwest, 

Upper Rockies and Plains) are statistically significant. Of the four climate regions showing 

negative relationships between cryptosporidiosis incidence and precipitation (Ohio Valley, 

South, Northwest, and West), none are statistically significant. Positive precipitation IRRs 

range from 1.0004 (95% CI 0.999, 1.002) in the Southwest to 1.005 (95% CI 1.004, 1.007) in 

the Northern Rockies and Plains. Negative precipitation IRRs range from 0.994 (95% CI 

0.973, 1.016) in the West to 0.9995 in the South and the Ohio Valley (95% CI 0.998, 1.001 

for both). The precipitation IRRs for each climate region are shown in Figure 5b. 
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Heterogeneity between States and Climate Regions 

Upon visual examination, all confidence intervals of the state-level temperature IRRs 

overlapped the other IRR confidence intervals in their climate region and in other climate 

regions. Visually, therefore, there is little evidence of homogeneity among the state 

temperature IRRs within or between climate regions. The associated I2 was negative (I2=-

93.6), and therefore set to zero, which also indicates a lack of heterogeneity between states.128 

The confidence intervals for precipitation were very narrow. Shown at the same scale 

as the temperature estimates, it was very difficult to assess heterogeneity between 

precipitation confidence intervals visually. However, the negative I2 statistic (I2=-37.8) was 

set to zero, indicating no heterogeneity between states. 

When the data is aggregated to climate region, all temperature IRR confidence 

intervals are overlapped by the confidence intervals of at least four other IRRs, but not by all 

IRRs. This indicates some visual heterogeneity among the data when aggregated to climate 

region. Statistically, the heterogeneity analysis yielded an I2 value of 68.5. The I2 informs that 

68.5% of the total variation across the climate regions is due to heterogeneity between them.  

Similarly to the temperature IRRs, all climate region precipitation IRR confidence 

intervals are overlapped by at least two other IRR confidence intervals. However, like the 

state-level precipitation IRRs, heterogeneity is difficult to assess visually due to the 

narrowness of most of the confidence intervals. Statistical analysis found heterogeneity to be 

responsible for 82.1% of the total variation across climate regions (I2= 82.1). 

Temperature and precipitation IRRs were also calculated for each percentage well 

use decile. These IRRS are displayed in Figure 6, a and b. The temperature IRRs show some 

visual heterogeneity between well use deciles, but there is no obvious pattern. However, the 

I2 value indicates that 74.1% of the variation between well use deciles is accounted for by 
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heterogeneity. The precipitation IRRs also show visual heterogeneity, which accounts for 

87.0% of the variation between well deciles.  

Generalized Estimating Equations Modeling 

In the single variable, unadjusted GEE models, the one-month lagged temperature 

(unadjusted IRR 1.024, 95% CI 1.021-1.027) was found to have a marginally stronger 

relationship with cryptosporidiosis incidence than zero-month lagged temperature 

(unadjusted IRR 1.022, 95% CI 1.020-1.025). Precipitation was also significant in the single 

variable models, with an unadjusted IRR of 1.0002 (95% CI 1.0000, 1.0004). Latitude, 

precipitation, temperature, and lagged temperature all show a significant association with 

cryptosporidiosis when modeled univariably. Unadjusted Incidence Rate Ratios for all 

variables are shown in Table 2.  

There was no correlation found between the demographic variables, percent well 

use, percent urban counties, and percent individuals under poverty. Correlation output and 

plots are shown in Appendix H. 

The final, adjusted model included lagged temperature, precipitation, latitude, 

percent total well use, percent urban counties, and percent individuals below the Federal 

Poverty Line. Analysis of NNDSS data across all states, shows a 2.5% increase in log10 

cryptosporidiosis incidence in the United States for every 1 °C increase in temperature (IRR 

1.025, 95% CI 1.22-1.028). A very weak positive association was found between 

cryptosporidiosis incidence and precipitation, but this was not statistically significant (IRR 

1.0001, 95% CI 0.9999-1.0003). A statistically insignificant 3.9% increase in log10 

cryptosporidiosis incidence was found to occur for every degree increase in latitude (IRR 

1.039, 95% CI 0.988-1.093). None of the other variables showed significant relationships 

with cryptosporidiosis incidence. Of interest, however, is the relationship between well use 
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and cryptosporidiosis. While not significant, the pooled analysis model predicted an increase 

of over 232% in log10 cryptosporidiosis cases for every 1% increase in well use (IRR 2.32 

95% CI 0.34-16.04, p =0.39).  
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DISCUSSION AND RECOMMENDATIONS: 

 This study of NNDSS data shows clear late summer seasonality for cryptosporidiosis in 

the US. There are several findings of note from this analysis. First, seasonality differed across 

climate regions, with some regions showing the dual peak seasonality described in the 

literature, and others showing only a single seasonal peak. Season strength also differs across 

the states. Second, the relationship between temperature and cryptosporidiosis is positive 

across all states individually and overall for the entire country, with cryptosporidiosis 

incidence increasing on average by 2.5% for every 1 °C increase in temperature. Third, the 

relationship between precipitation and cryptosporidiosis is weak overall, and not statistically 

significant in most states. Fourth, temperature and precipitation IRRs show little 

heterogeneity between states, but do show heterogeneity across climate regions that accounts 

for 68% of variation among temperature IRRs and 82% of variation among precipitation 

IRRs. Finally, these relationships are similar to the relationships found in the analysis of the 

global literature review data.  

Season Strength and Seasonality  

 The season strength of cryptosporidiosis varies across the states, likely due to varying 

distributions of risk factors and climate factors. Visual comparison to maps of temperature 

and precipitation peak-to-mean ratios across the US did not show any obvious similarities in 

patterns (Temperature and Precipitation Season Strength maps are available in Appendix I). 

There are several states that have unusually high season strengths compared to the states that 

surround them, namely Connecticut (4.89), Delaware (3.43), and Ohio (3.37). Connecticut 

and Delaware’s season strengths could be spurious results driven by low numbers of 

reported cases (27 and 35 total cases, respectively). However Ohio, which has about 250 
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cases yearly, has statistically relevant season strength significantly higher than the 

surrounding states.  

The US’s single seasonal peak spans the months of June to October (Figure 2). Aside 

from a slight increase in normalized cases in March and April, there is no evidence of 

Cryptosporidium’s dual peak seasonality when looking at the US as a whole. These 

observations parallel the results from Lal et al.’s systematic review.11 Considering that the 

large summer/autumn peak aligns almost exactly with the swim season, it could be that most 

of the sporadic cases of Cryptosporidium in the US are due to anthroponotic transmission 

of C. hominis through recreational water during swim season. This hypothesis is supported by 

data from the CDC’s Molecular Epidemiology Lab looking at outbreaks of Cryptosporidium 

over 10 years, from 1993 to 2003. Several cases from each outbreak were analyzed to see 

which species might have produced the outbreak. Of the 20 US outbreaks listed, only five 

had a majority of C. parvum cases, indicating that most outbreaks of cryptosporidiosis are due 

to C. hominis, which is typically transmitted anthroponotically through recreational water 

venues.129  

When the NNDSS data was broken into climate regions (Figure 3), all of the regions 

showed the same strong summer seasonality as the entire US did in Figure 2. The West, 

Northwest, and Northern Rockies and Plains regions were the only regions to show the 

second, smaller peak in the spring. This dual seasonality in the northwestern states of the US 

is consistent with cryptosporidiosis seasonality results from a study in Oregon performed in 

the late 1980s.39 The Northeast region did not show dual peak seasonality, which echoes the 

single, summer peak seasonality Naumova et al. found in Massachusetts.36 The seasonal peak 

in the West is the only one that has such high percentages of cases in July and September. 

The West climate region produces a more logarithmic-shaped curve from May to August, 
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which is unique among all climate regions, though what factors cause this strange seasonal 

shape are unknown.   

Temperature 

The positive relationship between temperature and cryptosporidiosis is an important 

finding in this study. In the NNDSS data, for every 1 °C increase of temperature, the log10 of 

cryptosporidiosis incidence increased by 2.5%. This is markedly similar to the results 

obtained from the pooled analysis of literature review studies from countries in the northern 

hemisphere, which found a 2.6% increase in cryptosporidiosis incidence for every 1 °C 

increase of temperature (Levy et al. unpublished data). In the pooled analysis of all global 

literature review data, for every 1 °C increase of temperature, cryptosporidiosis incidence 

increased by 2.96%. The lagged-temperature parameter estimates of our models are 

significantly smaller than those of a previously published cryptosporidiosis meta-analysis by 

Jagai et al.10 They do not present IRRs, therefore only model parameter estimates could be 

compared. For a closer comparison with the NNDSS model, we looked at Jagai et al.’s 

models that included both lagged temperature and an adjustment for latitude (Model 4). 

Categorizing studies from the US into the humid mid-latitude climate (C) and the cold 

temperate climate (D), Jagai et al. found lagged temperature parameter estimates of 0.379 and 

-0.220, respectively, though neither was significant. The NNDSS model in our study found 

the lagged-temperature parameter estimate of 0.025, an order of magnitude smaller than 

Jagai et al.’s estimate values. Similarly, model of northern hemisphere studies produced an 

estimate of 0.026. The relationship between temperature and cryptosporidiosis is the same, 

but the magnitude of effect is much smaller in the NNDSS and northern hemisphere 

literature review models. Lagged temperature had a slightly higher effect than non-lagged 
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temperature in our NNDSS model and Jagai et al.’s climate C model, but not in either of the 

literature review models. 

The pooled analysis of the ‘all studies’ literature review data estimated an increase in 

cryptosporidiosis cases of 2.96% with every 1 °C increase in temperature, from a parameter 

estimate of 0.029 (Levy et al. unpublished data). For Jagai et al.’s ‘all studies’ model, 

comparable to our study’s global literature review model, the temperature estimate is 0.167, 

again an order of magnitude higher than our estimate. A potential reason for this difference 

may be that this review only included studies with case counts for individual months, 

whereas Jagai et al. used any study with 12 months of data regardless of whether the numbers 

were prevalences or incidences, aggregate or averaged.10  

The individual GLM analyses on studies from the global literature review found 

results similar to the NNDSS, particularly in the studies that took place in developed 

countries in the northern hemisphere. Temperature IRRs with their confidence intervals for 

each study are presented in Figure 7a (Levy et al. unpublished data). Some studies included in 

the systematic review were excluded from GLM analyses because there was no weather data 

available for the study location. Globally, there is a trend of increasing dependency on 

temperature with increasing proximity to the equator, according to the temperature IRRs. 

The relationship between temperature and cryptosporidiosis incidence increases in 

magnitude in the studies that are from areas in or geographically near to the tropics. 

However, the widening confidence intervals indicate that uncertainty in these estimates also 

increases in or near the tropics. 

Studies from Brisbane also found higher increases in case incidence, from 9% to 

17% for every 1 °C increase in temperature, depending on what type of model was used.13, 14 

A longitudinal study from NZ found a parameter estimate of 0.057 for both temperature 
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and lagged temperature.49 This estimate from NZ is more similar to the NNDSS and global 

literature review parameter estimates. Other studies have found a positive relationship with 

one month lagged temperature and cryptosporidiosis,37, 92 but few others thus far have 

attempted to quantify this relationship.  

While the literature disagrees on the magnitude of temperature’s effect on 

cryptosporidiosis incidence, almost all studies find that cryptosporidiosis incidence will 

increase with rising temperatures. Based on their review of climate variability on 

cryptosporidiosis, Lal et al. suggest that this increase could be due to the lengthening of the 

transmission season and introduction of pathogens into areas that had previously been too 

cold.130 One notable exception is Britton et al., who found a 2% decrease in cryptosporidiosis 

incidence with every 1 °C increase in temperature,93 which others attributed to the influence 

of local factors.130 Overall, the positive relationship between temperature and 

cryptosporidiosis seems to be a stable phenomenon worldwide. 

 An increase in case incidence as small as 2.5% could substantially increase the 

burden of cryptosporidiosis across a population as large as the United States’, where the 

disease already creates high monetary strain on the healthcare system.4 For several reasons it 

may be assumed that the NNDSS under-reports cases: many people are not willing or able to 

seek care, the doctors of those who do seek care may not send a stool sample to a lab for 

testing, and of those doctors that do send a sample, many will not specify a test for 

Cryptosporidium. The NNDSS, therefore, only records the tip of the proverbial iceberg of 

actual cryptosporidiosis incidence. These same considerations apply to an increase of 2.96% 

across the world, especially in developing countries where there is already such a high 

burden of disease due to cryptosporidiosis.  
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Precipitation  

Precipitation was found to have a significant relationship with cryptosporidiosis in 

the unadjusted pooled analysis NNDSS model, which showed a very small increase in 

cryptosporidiosis incidence of 0.02% for each 1 mm increase in precipitation. When placed 

in the final adjusted model, however, precipitation was no longer significant (IRR=1.0001, 

95% CI 0.993-1.007). One month lagged precipitation showed no significance either in the 

unadjusted model or the adjusted model (Table 2). This was different from the comparable 

‘northern hemisphere’ model that found lagged precipitation to be significant (IRR=1.007, 

95%CI 1.003-1.011), but the same as the ‘all studies’ literature review model that found 

neither precipitation or lagged precipitation to be significant (IRR=1.004, 95% CI 1.000-

1.006). (Levy et al. unpublished data). 

Similar to the temperature estimates, our precipitation estimates are significantly 

smaller than those found by Jagai et al. in their meta-analysis. In their non-lagged model 

adjusted for latitude, Jagai et al. found precipitation parameter estimates of 0.168 and -0.280 

for climate regions C and D respectively.10 The parameter estimate for precipitation in the 

NNDSS was 0.0001, several orders of magnitude smaller. The parameter estimates for 

lagged precipitation in the literature review models were similarly small at 0.007 (northern 

hemisphere) and 0.004 (all studies). Jagai et al.’s parameter estimate for the lagged ‘all studies’ 

model was much larger, at 0.091. Both the northern hemisphere literature-review analysis 

and Jagai et al. found the lagged-precipitation estimate to be statistically significant, in 

contrast to the NNDSS and ‘all studies’ literature review results.   

Precipitation had very few significant relationships with cryptosporidiosis in the 

GLM models as well, with only Iowa and North Dakota showing a significant positive 

relationship between cryptosporidiosis incidence and precipitation, and no definitive pattern 
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in the states across climate regions. The literature review GLM forest plots in Figure 7b 

show a similar lack of association (Levy et al. unpublished data). The seven studies that do 

show significant positive relationships between precipitation and cryptosporidiosis incidence 

are Scotland (Study 1, IRR=1.39), Germany (Study 6, IRR=1.09), Kuwait (Study 24, 

IRR=1.26), Pakistan (Study 26, IRR=1.06), Bangladesh (Study 27, IRR=1.02), India (Study 

28, IRR=1.05), and South Africa (Study 39, IRR= 1.04). Given this wide range of latitudes, 

and climate regions, it appears that the relationship between precipitation and 

cryptosporidiosis is likely not strong, and modified by other factors. In terms of NNDSS 

data aggregated to climate region, only the Northeast, the Upper Midwest, and the Northern 

Rockies and Plains showed significant but weak positive relationships.   

Other studies have found significant positive relationships between cryptosporidiosis 

and precipitation. One study in the North-West of England found a 27% increase in the 

weekly rate of cryptosporidiosis if the preceding week’s rainfall had been in the 75th 

percentile.43 A similar study in New Zealand found only a 2% increase in cryptosporidiosis 

incidence with increasing rainfall to evaporation ratio.93 Neither of these attempted to 

correlate case incidence with mm of rainfall. However, both of these studies had a much 

higher geographic resolution in their data than our study did and also used specific exposure 

metrics, such as rainfall to evaporation ratio, that were more appropriate than total or 

average rainfall. These two factors may have enhanced their ability to find significant 

associations between precipitation and cryptosporidiosis. 

It should be noted that the rainfall measurements used in this study are in volume 

(mm) and not in frequency. There is a difference between a climate of frequent, low volume 

rainfall such as the Northwest region (yearly average of 782 mm) and a climate with 

infrequent high volume rainfall such as the Southeast region (yearly average of 1218 mm). It 



   

44 

is possible that the relationship between cryptosporidiosis and precipitation depends less on 

the average and more on the frequency of rainfall or environmental conditions prior to 

heavy rainfall.85 This is another possible explanation as to why our analysis of precipitation, 

found null results.  

The seasonality over time for each climate region, shown in Figure 3, provides 

another possible explanation as to why the literature conclusion on the relationship of 

cryptosporidiosis with precipitation is so varied. The seasonality of precipitation is highly 

variable across climate regions, dependent on many factors, including latitude, local 

geography, and variation in gulf stream strength and position, to name a few. This variability 

motivates the present study—our results show that the relationship between 

cryptosporidiosis seasonality and precipitation seasonality varies by climate region, implying 

that a single study from one location is cannot necessarily be generalized, and perhaps that 

data needs to be of a higher geographic resolution for the most accurate results. It is 

interesting however, than the seasonality curves show stronger regional differences in 

precipitation than the GLM models. 

Well Use  

 While not statistically significant, the adjusted IRR for well use was significantly higher 

than any other variable in the pooled analysis model, including temperature (IRR = 2.51, 

95% CI0.356 - 17.635). It has been suggested that use of private water supplies, such as 

wells, are a risk factor for cryptosporidiosis.47, 131, 132 However, when the temperature and 

precipitation IRRs were aggregated and presented by well use (Figure 6 a & b), there was no 

discernible pattern apparent, although it did appear that the states that represented the 70th-

80th percentile in well use (Connecticut, Delaware, South Carolina, and West Virginia) 

seemed to be driving the temperature-cryptosporidiosis incidence relationship, (IRR= 1.07, 
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95%CI 1.04-1.09).  The Cochrane’s Q values of 33.9 and 68.3, for temperature and 

precipitation respectively, indicate considerable heterogeneity between results, though there 

is no trend among these differences. 

Heterogeneity within NNDSS Data 

The nature of surveillance data collection across the US makes it a good candidate 

for comparison to a meta-analysis. Each state reports cases differently depending upon the 

amount of time and resources they are willing to invest. Similarly, studies in a meta-analysis 

have differing designs and methods of data collection. Therefore, both can be tested for 

heterogeneity between the different data sources (states and studies).  

The I2 was ideal for analyzing heterogeneity statistically between states as it can be 

used regardless of outcome data type or effect measure, and can calculate the effect of any 

heterogeneity in the analysis. In the literature, an I2 value below 25% is considered low 

heterogeneity, between 50% and 75% is considered moderate heterogeneity, and over 75% is 

considered a high amount of heterogeneity.128 Therefore, the I2 value for temperature IRRs 

between climate regions of 68.49% is considered ‘moderate’ heterogeneity, and the I2 value 

of 82.10 for the precipitation IRRs between climate regions would be considered high. I2 

values for both temperature and precipitation IRRs of states were rounded up to 0 and 

indicate no heterogeneity at all between states. This is also visually apparent in the forest 

plots, particularly in the temperature plots (Figure 4a and 4b).  

Comparison between NNDSS and Meta-analysis 

Pooled Analysis GEE Model 

Both the NNDSS analysis and literature review meta-analysis found an overall 

positive relationship between temperature and cryptosporidiosis, of approximately the same 

magnitude: The NNDSS analysis showed a 2.5% increase in cases and the literature review 
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showed a 2.6% increase in cases in developed countries in the northern hemisphere, and a 

3.0% increase in cases in all studies, with 1 °C increase. The similarity between the NNDSS 

model estimate and the estimate from the northern hemisphere countries in the literature 

review indicate generalizability of results across the two datasets. The increases in effect of 

temperature on cryptosporidiosis incidence in the ‘all studies’ model suggests that 

temperature may have more of an impact on disease incidence in countries that do not fall 

into the ‘developed countries in the northern hemisphere’ category.  This result is supported 

by the GLM forest plots of the literature review data shown in Figure 7a (Levy et al. 

unpublished data).  

Both pooled analysis models from the literature review found that zero-month-

lagged temperature was more strongly associated with cryptosporidiosis incidence than one-

month-lagged temperature. As the NNDSS lagged-temperature effect was only marginally 

larger than the non-lagged temperature effect, this was not cause for concern. Adjusted IRRs 

for each variable in both literature review models are shown in Table 3. 

The overall relationship with precipitation differed between models. Precipitation 

was not significant in the NNDSS model, lagged or not, and found only a very small 

association of 0.02% increase with one mm increase of precipitation. The global literature 

review models found the relationship between one-month-lagged precipitation and 

cryptosporidiosis significant, with a 0.38% increase of cryptosporidiosis with one mm 

increase in precipitation in the prior month in the ‘all studies’ model and an increase of 0.7% 

per one mm precipitation increase in the prior month in the ‘northern hemisphere’ model. 

This difference could be attributed to the different climate regions included in each analysis. 

The US and the ‘northern hemisphere’ models do cover a variety of temperate climate 

regions, but cannot legitimately be compared to tropical climates, whereas the ‘all studies’ 
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literature review model did include studies from tropical areas. The larger impact of 

precipitation on northern hemisphere countries than both the ‘all studies’ and the NNDSS 

results is puzzling. Regardless, all precipitation associations are very weak.  

Temperature 

In terms of individual effect sizes estimated using GLM, non-US studies in the 

literature review analysis tended to present IRRs of a much larger effect size than the 

NNDSS IRRs. However, the US studies from the literature review showed similar 

magnitudes in the effect of temperature on cryptosporidiosis incidence (IRR range 1.01-1.09) 

to the NNDSS analysis (IRR range 1.01-1.11). 

Results from two studies of state-level surveillance data from the literature review 

provide an interesting comparison to the NNDSS data results. The temperature IRRs from 

Naumova et al.’s data from Boston, Lowell, and Worcester, Massachusetts were 1.03 (95% 

CI 0.99-1.06), 1.03 (95% CI 0.96-1.11), and 1.09 (95% CI 1.05-1.13), respectively. This is 

almost exactly the same as the NNDSS temperature IRR for Massachusetts (IRR=1.04, 95% 

CI 0.99-1.09) in both magnitude and significance. The results from Oregon in both the 

literature review and the NNDSS data were similar as well. Oregon (Skeels et al.: IRR=1.09, 

95% CI 1.01-1.18; NNDSS: IRR=1.04, 95% CI 0.9925-1.0862). These similarities legitimize 

the comparison of the NNDSS data to data from other studies performed in the US, as far 

as the relationship between temperature and cryptosporidiosis is concerned. 

Comparing the NNDSS state GLM estimates with other developed countries in the 

northern hemisphere reveals that most studies from such countries also show a positive 

relationship between temperature and cryptosporidiosis. Corbett-Feeny et al., is the only 

study in that category that found a negative relationship, with cryptosporidiosis incidence 
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decreasing 2% with every 1 °C increase in temperature. This result was statistically 

insignificant, however.  

Other countries that present temperature IRRs of less than one are Kuwait (both 

studies), and Costa Rica, both of which have different climates than the US and sit at 

latitudes closer to the equator. This difference, along with the trend of increasing 

dependency on temperature with proximity to the equator, suggests comparison between 

temperate and tropical climates may not be legitimate. Both New Zealand studies also report 

IRRs of less than one. These New Zealand IRRs, while insignificant, echo Britton et al., who 

also found a negative relationship between temperature and cryptosporidiosis incidence in 

New Zealand.93 

Precipitation 

In general, precipitation IRRs from the literature review show smaller effect sizes 

than the temperature IRRs, like they do in the NNDSS analysis. Many more precipitation 

IRRs than temperature IRRs are insignificant, again, similar to the NNDSS results. The only 

statistically significant relationships are the positive ones, again like the NNDSS results. In 

the US studies specifically, the range of IRRs is 0.94 to 1.03. The literature review IRRs show 

a much greater effect than the NNDSS IRRs, which hover around the null, but none of the 

literature review IRRs for US studies are significant.  

The comparison between the studies in Oregon and Massachusetts to their 

respective NNDSS data found results similar to those found for the relationship between 

cryptosporidiosis and temperature. Both datasets show a negative relationship between 

precipitation and cryptosporidiosis in Oregon (Skeels et al. IRR=0.94, 95%CI 0.87-1.01 and 

NNDSS IRR=0.996, 95% CI 0.991-1.001), but neither are statistically significant. The 

NNDSS results are closer to the null. In Massachusetts, the NNDSS IRR is closer to the null 
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at 1.001 (95% CI 0.997-1.004) than the values from Naumova et al.’s data (Boston IRR=1.01, 

95% CI 0.97-1.05; Lowell IRR=0.94, 95% CI 0.85-1.03; Worcester IRR=1.03, 95% CI 0.95-

1.12). There is disagreement among the estimates from the Naumova data as to the 

relationship between cryptosporidiosis and precipitation, but all of the IRRs are statistically 

insignificant. 

The precipitation IRRs from the literature review studies, like the precipitation IRRs 

in the NNDSS analysis, have much smaller effect sizes than the temperature IRRs and are 

more varied. With the exception of Study 1 in Scotland (IRR 1.39, 95% CI1.27-1.52) and 

Study 24 in Kuwait (IRR=1.26, 95% CI1.07, 1.47) all precipitation IRRs fall between 

England’s IRR of 0.89 (Study 3, 95% CI0.79, 1.01) and Spain’s IRR of 1.10 (Study 20, 95% 

CI 1.00, 1.20). Developed countries in the northern hemisphere made up 14 of the studies, 

eight of these studies showed a positive relationship (57.1%) and six showed a negative 

relationship (42.8%). These are a slightly more even distributions of negative and positive 

relationships than was seen in the NNDSS data, where 74% of the states showed a positive 

relationship, and 26% showed a negative relationship. 

The stronger effect sizes in the literature review data are possibly due to having fewer 

zero counts in the literature review data. The literature review specifically included studies 

that had continuous monthly data for one year or more. The NNDSS data, however, had 

many months where zero cases were reported for a particular state. This is a function of the 

data being passively collected. The excess zeros and highly right-skewed counts per month in 

the NNDSS caused the variance to be unequal to the mean. This unmet assumption was 

accounted for by log10 transforming the NNDSS data, which may have biased IRRs closer to 

the null. Another possible explanation is that the weather data for the literature review was 

localized to the city in which the study took place, or one very close by. The NNDSS data 
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was aggregated to the state level, but monthly temperature and precipitation was only 

representative of a single city in that state and not the state as a whole.  

 

Limitations 

 Limitations are inherent in any observational data collection process, and the data in this 

study are no exception.  

Any literature review that does not include ‘grey literature’ has a publication bias 

against insignificant results. This literature review only included published articles, and is 

therefore at risk of excluding data from null results, which might change the outcome of this 

study. However, as the data collected was cryptosporidiosis case counts and not odds ratios 

or rate ratios, the potential of excluding truly null results is low. The ‘case-count per month’ 

inclusion criteria excluded many viable studies from our analysis, including reports with 

monthly averages and prevalence data.  

The NNDSS data was not available at a higher geographic resolution than state level, 

affecting the representativeness of the temperature and precipitation data, which were taken 

from a single city in the state. We attempted to reduce this source of bias by supporting our 

state level data with results from data aggregated and averaged to climate regions defined by 

the NCDC as being historically climatically consistent.117 Additionally, the NNDSS case 

definitions of probable and confirmed have changed from 1997 to 2011, meaning that, data 

reporting may not have been consistent over time. A recent change in case definition, stating 

that any case diagnosed by rapid immunological assay test is only probable and not 

confirmed, is also not necessarily relevant as we did not differentiate between probable and 

confirmed cases in our models. The variable defining outbreak status is also questionable. 

This study only excluded cases known to be related to outbreaks, which left the sporadic and 
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‘outbreak status unknown’ cases. As there is no way of knowing, without molecular 

subtyping, whether the supposedly sporadic cryptosporidiosis cases are related to other 

cases, it is possible that some of the cases used in this dataset were associated with an 

undetected outbreak.  The weather data is from a single city in each state and does not 

necessarily represent the weather of that state as a whole. This limitation was lessened by the 

exclusion of states with ranges of latitudes too wide for weather data from one location to be 

representative of the entire state. It is likely, however, that some misrepresentation remains. 

However, the GLM and GEE modeling results still show a significant positive relationship 

with temperature in all states and climate regions. These results indicate that the relationship 

between temperature and case incidence is robust, as the relationship exists despite these 

limitations. Lastly, the results from the NNDSS specifically can only be generalized to other 

developed countries in temperate climate regions and cannot be reliably compared to studies 

conducted in tropical developing countries, though the results found from the literature 

review analysis were comparable.  

A recent review of cryptosporidiosis showed that prevalence estimates vary widely 

across different study designs, different methods of detection, and population immune 

status.17 These are important considerations for both datasets in this study. The literature 

review studies range across continents and time, therefore, the study designs and the 

methods of detection are highly varied. Study designs include hospital-based case-control 

studies, community-based cohort studies, and countrywide laboratory surveillance, among 

others. The NNDSS receives data from the individual and independently run state health 

departments, whose methods of data collection differ according to funding availability and 

state priorities.133  Methods of detection mentioned in the studies include microscopy with a 

variety of stains (Giemsa, modified Kinyoun acid-fast, and safranin-methylene-blue stains 
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among others), PCR, and rapid immunoassays. In many of the surveillance datasets, 

including the NNDSS data, method of detection was not presented. This limits the ability to 

compare across states in a similar way that the different study designs incorporated into a 

meta-analysis limits cross-study comparison. Immune status is a key determiner of 

cryptosporidiosis frequency and severity. However, immune status is not reported in 

NNDSS,100 nor is it specified in many of the literature review studies. This lack of important 

data makes it difficult to see the impact of cryptosporidiosis on the general population and 

creates some uncertainty in the results. This lack of generalizability/comparability was 

lessened by the inclusion of known immune-compromised cases from literature review data 

in which immune status was collected but not specifically selected for.  

Perhaps most importantly, many of these studies predate the discovery that 

cryptosporidiosis is caused by several genetically different, yet phenotypically 

indistinguishable species, not just one species (C. parvum). Of the studies performed after this 

discovery, very few presented monthly case counts by species, choosing instead to present 

total numbers of cryptosporidiosis. The scientific community is now realizing that not only 

are the species different genetically, they are also different epidemiologically, which leads to a 

dual peak seasonality50-52, and difficulty in fitting models that probe both sets of risk factors. 

This same limitation is true of the NNDSS data. Genotype is not yet captured in the 

surveillance system, and therefore the models built with the NNDSS data and with the 

literature review data likely only capture risk factors for the larger summer/fall month peak, 

and even then the models may not fit as well. There is a major need in this area specifically 

for studies and data that take Cryptosporidium species into account when modeling in order to 

better understand the dynamic relationships between cryptosporidiosis and climatological 

factors.  
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Recommendations 

 The greatest need in Cryptosporidium research at this time is molecular epidemiology and 

species genotyping. Given the different and complex transmission patterns and seasonalities 

of each species, knowledge of species type is key for modeling risk factors and 

understanding sporadic cryptosporidiosis epidemiology. This study would have benefited 

from species-specific data, particularly in interpreting the dual peak seasonality of 

cryptosporidiosis and in fitting a model to describe Cryptosporidium’s complex relationships 

with climatological factors. The lack of species-specification in this data could have 

contributed to some of the heterogeneity in the results. Species type is also important for 

developing appropriate preventative measures and risk communication tools.  

Molecular typing will also increase the ability to detect and differentiate between 

outbreaks, an ability that is currently restricted due to the similarities in Cryptosporidium spp. 

morphology and lack of testing. Cryptosporidium species genotyping is performed in the US 

through the Molecular Epidemiology lab in the Waterborne Disease Prevention Branch of 

the CDC, though not on a large scale. However, the CDC is currently developing a 

molecular tracking surveillance system called CryptoNet, the first parasite infection tracking 

system of its kind, in order to capture species-level information throughout the US. Setting 

up systems similar to CryptoNet or the United Kingdom’s Cryptosporidium Reference Unit, 

in other countries around the world would be highly beneficial to this cause, although, it 

would be difficult to find resources for such systems in developing countries. Countries with 

laboratories that currently perform molecular analysis, however, would need no additional 

resources to perform the required molecular typing.134   

Tantamount to species typing is including testing for Cryptosporidium in routine stool 

examinations, something that is currently not done in the US. At present Cryptosporidium is 
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only tested for by request, leading to a high level of under-reporting in the NNDSS.16 

Knowing the actual burden of disease in the US would both increase awareness of risk and 

help epidemiologists and public health practitioners understand how to mitigate risks of 

infection. 

 Until Cryptosporidium is routinely tested for and molecular genotyping is well 

established, the following recommendations may be useful in further research: 

1. A proxy variable could be substituted for Cryptosporidium species, segmenting the 

data, and building separate models for both categories. C. hominis is transmitted 

by human-to-human contact, typically in chlorinated recreational water facilities, 

which would be more highly utilized in population dense urban centers. C. 

parvum is usually transmitted by young calves, which are much more prevalent in 

rural communities. A study in Scotland found that increasing population density 

was protective against C. parvum, and C. hominis was prevalent much more 

frequently in densely populated areas.47 Therefore, a variable that differentiates 

between urban and rural areas might be a good approximation of species type. 

2. Different predictor variables could be used to more fully describe risk factors. 

This study would benefit from data on the number of recreational water sources, 

or cattle density first, known risk factors for C. hominis and C. parvum, 

respectively.47, 135 It is reasonable to conjecture that the secondary spring seasonal 

peak may have been more pronounced in areas of high cattle density, if data were 

available for this analysis. This inference is supported by the fact that Naumova 

et al.’s Massachusetts data did not have a double peak,36 being largely urban 

(85.7%) but Oregon, with 44.4% urban counties, did display dual peak 

seasonality in Skeels, et al. Skeels et al. also state the plausibility of contamination 
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of Oregon surface water by dairy cattle.39 The seasonal distributions of 

cryptosporidiosis in the Northeast (no second peak) and Northwest (distinct 

second peak) climate regions also support this (Figure 3).  

3. Use of weather data that is more representative of the state as a whole instead of 

one city would be beneficial. 

4. Separating the NNDSS data into a finer geographic resolution, such as county or 

census block instead of state, would also provide more accurate associations 

between cases and climate factors. Alternatively, separating data into groups that 

are classified according to climate rather than political boundaries, such as US 

EPA climate zone designations, would likely accomplish the same goal. 

5. Lastly, it would be interesting to look at cryptosporidiosis data from Australia, a 

similarly large and developed country in the Southern hemisphere, to see if the 

relationships between cryptosporidiosis, temperature and rainfall parallel 

observations in the US and other developed countries in the Northern 

hemisphere.  

In terms of elucidating the complex relationships between climatic drivers and 

infectious diarrheal disease, this study has several implications for future research: 

1. The relationship between temperature and cryptosporidiosis is robust across the 

United States, and other countries in temperate regions. However, studies 

performed in countries closer to the equator saw an increase in the effect of 

temperature on cryptosporidiosis incidence. This implies that the relationship 

between temperature and cryptosporidiosis is affected by latitude, and whether 

or not the study is done in a temperate or tropical climate. Considering that 

developed countries tend to be in temperate climates and developing countries 
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tend to be in tropical climates, future research must also evaluate these climate-

disease relationships with an eye to populations most at risk. 

2. The relationship between precipitation and cryptosporidiosis is highly variable 

across all states and climate regions, and also across all studies. This suggests that 

simply examining precipitation in volumetric measures such as mm will not 

explain the relationship. Other confounders and effect modifiers, such as local 

geography, demographics, or weather conditions must be taken into account to 

fully understand the interaction between precipitation and diarrheal disease. 

Future research would benefit from studies that take a more detailed longitudinal 

view of precipitation patterns. 

3. Both datasets found the same relationships between temperature and 

precipitation and cryptosporidiosis incidence when looking at United States data. 

This indicates that climate, more so than data collection methods drives the 

relationship between cryptosporidiosis and temperature and rainfall.  

There is also a pressing need for practical measures to be taken to prevent the spread 

of cryptosporidiosis and other infectious diarrheal diseases. Given Cryptosporidium’s positive 

relationship with temperature and the fact that global temperature appears to be increasing, 

the burden of disease will likely become larger over time.7 Preparations must be made in 

order to reduce cryptosporidiosis incidence, including but not limited to better methods of 

oocyst inactivation, structural barriers that break the connection between agricultural runoff 

or fecal waste and drinking water sources, as well as education on appropriate sanitation and 

hygiene. Such prevention methods are useful not only to prevent cryptosporidiosis but also 

to prevent diarrheal disease in general, reducing much morbidity and mortality with a few 

practical solutions.  
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Conclusions  

Current estimates state that approximately 5% of global disease burden and 

approximately 4% of environmentally-attributed global mortality is due to diarrheal 

disease.136 The NIEHS has called for studies such as the present one, and others that seek to 

understand how waterborne disease will change with changing climate conditions.7 More 

studies are needed that directly investigate the relationship between specific pathogens and 

temperature and precipitation in a quantifiable and easily communicated manner. This 

present study has explored some of the uncertainty in the relationship between climatic 

drivers and cryptosporidiosis specifically, but uncertainty and lack of precision still remain. 

This uncertainty is due to lack of specific pathogen research in general, but this study 

especially demonstrates the need of species identification even between Cryptosporidium spp.  

Our data suggests that the potential impacts of climate change, particularly the 

impacts of increasing temperature, are important and preventative measures must be 

considered. Cryptosporidiosis is one of the top four etiologies of moderate-to-severe 

diarrheal disease in children under five in developing countries and is the top cause of 

recreational water outbreaks in the US.6, 134 The robust, positive relationship with 

temperature that was shown across all states in the US and most studies in the literature 

review, is cause for concern. The influence of precipitation on cryptosporidiosis in particular 

and on diarrheal disease in general likely varies depending on location and precipitation 

extremity, frequency and prior conditions. More research is needed concerning the impact of 

these factors on the infectious diarrheal disease-precipitation relationship. As precipitation 

events become more extreme, more frequent, and more unpredictable, it would behoove 

governments and communities to take precautionary measures to protect themselves and 

their people against diarrheal diseases spread by water. Implications are graver for 
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immunocompromised populations and children under five, who bear the majority of the 

morbidity and mortality, given Cryptosporidium’s opportunistic nature. Education about 

appropriate hygiene and sanitation is necessary in all countries, along with structural barriers 

to break the cycle of disease caused by fecal-oral contamination. At the very least, the US 

healthcare and public health infrastructure, and healthcare systems around the world, must 

adapt to accommodate large increases in absolute numbers of cases of Cryptosporidium-

attributable diarrheal disease that would follow the suspected global rise in temperature.  
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Tables  
Table 1: Characteristics of States and Regions included in study 
Tabulated monthly and yearly temperature and rainfall data, season strength, urban and economic metrics, and well usage. Urban counties were defined as 
having 20,000 or more residents and being adjacent to or part of a metropolitan  area. Poverty was defined as percentage of individuals under the Federal 
Poverty Line, and well use was estimated by the 1990 US decennial census. The Temp and Rain columns represent GLM-calculated associations between 
cryptosporidiosis incidence rates, and temperature and precipitation, respectively. A '+' indicates a positive relationship between the two and a '-' indicates a 
negative relationship. Statistically significant relationships (p<0.05)  are shown in bold and marked with '*'. 
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Table 2: Regression results for overall Generalized Estimating Equations analysis of NNDSS data 
Unadjusted IRRs show increase in cryptosporidiosis incidence for a one-unit increase for each variable with no other variables in 
the model. Adjusted IRRs show increase in cryptosporidiosis incidence for a one-unit increase for each variable, controlling for all 
other variables in the model. The one-unit increase for temperature and lagged temperature is 1 °C. The one-unit increase for 
precipitation and lagged precipitation is 1 mm. The one unit increase for percent well use, percent urban, and percent below 
poverty is 1%. Data is clustered by state to account for association between cases in each state. Temperature and lagged 
precipitation are included at the bottom of the table for comparison purposes, but were not included in the final model. 

 
Unadjusted Incidence Rate Ratio Adjusted Incidence Rate Ratios 

Parameter  IRR 
95% Confidence 

Limits 
 p-value  IRR 

95% Confidence 
Limits 

 p-value 

Lagged Temperature 1.024 1.021-1.027 <.0001 1.025 1.022-1.028 <.0001 

Precipitation 1.0002 1.0000-1.0004 0.0471 1.0001 0.9999-1.0003 0.3238 

Latitude 1.029 0.990-1.069 0.144 1.0391 0.988-1.093 0.1347 

Percent Total Well Use 3.431 0.512-22.983 0.2038 2.3216 0.336-16.037 0.393 

Percent Urban Counties 0.999 0.992-1.006 0.7815 0.999 0.932-1.071 0.9768 

Percent of Individuals below 
Poverty Line 

0.978 0.924-1.035 0.4384 0.999 0.992-1.007 0.8059 

Temperature 1.022 1.0197-1.0247 <.0001 Temperature was not included in the final model 

Lagged Precipitation 1.0001 0.9999-1.0003 0.4857 Lagged Precipitation was not included in the final model 
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Table 3: Regression results for overall Generalized Estimating Equations analysis of global literature review 
data, developed countries in the northern hemisphere and all studies 
Adjusted IRRs show increase in cryptosporidiosis incidence for a one-unit increase for each variable, controlling for all other 
variables in the model. The one-unit increase for temperature and lagged temperature is 1 °C. The one-unit increase for 
precipitation and lagged precipitation is 1 mm. Data is clustered by study to account for association between cases from each study 
location. 

 
Developed countries, Northern hemisphere All studies/Global 

Parameter  IRR 
95% Confidence 

Limits 
 p-value  IRR 

95% Confidence 
Limits 

 p-value 

Temperature 1.026 1.018-1.035 <0.0001 1.030 1.021-1.038 <0.0001 

Lagged precipitation 1.007 1.003-1.012 0.00059 1.003 1.000-1.006 0.0649 

Population Density  1.004 1.000-1.009 0.07562 1.003 1.000-1.005 0.0288 
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Figures  

 
Figure 1.  
Cryptosporidiosis Season Strength in the United States: Season strength is defined as the peak to mean ratio, which was calculated 
using the month with the highest average number of cases over the average number of cases per month for each state and each 
climate region. NCDC Climate regions are outlined in bold and labeled. 
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Figure 2.  
Average normalized proportion of cryptosporidiosis cases, temperature, and rainfall by 
month in the United States, 1997-2011. 

  



   

82 

 
Figure 3. 
Average normalized proportion of cryptosporidiosis cases, temperature, and rainfall by 
month for each US climate region, 1997-2011.
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Region State IRR 95% CI 
West  Nevada 1.04 1.00-1.08 

Northwest 
  

 
Washington 1.02 0.98-1.06 

 
Oregon 1.04 0.99-1.09 

 
Idaho 1.03 1.00-1.06 

Southwest 
  

 
Utah 1.03 1.00-1.06 

 
New Mexico 1.03 1.00-1.06 

 
Colorado 1.03 1.00-1.05 

 
Arizona 1.04 1.00-1.08 

Northern Rockies and Plains 
  

 
Wyoming 1.03 0.98-1.08 

 
South Dakota 1.02 1.01-1.04 

 
North Dakota 1.05 1.02-1.07 

 
Nebraska 1.04 1.01-1.06 

 
Montana 1.04 1.01-1.07 

South 
   

 
Oklahoma 1.03 1.00-1.05 

 
Mississippi 1.05 0.96-1.14 

 
Louisiana 1.04 1.00-1.09 

 
Kansas 1.03 1.00-1.07 

 
Arkansas 1.03 0.98-1.08 

Upper Midwest 
  

 
Wisconsin 1.02 1.01-1.03 

 
Minnesota 1.02 1.01-1.04 

 
Michigan 1.02 1.00-1.03 

 
Iowa 1.03 1.01-1.05 

Ohio Valley 
  

 
West Virginia 1.04 1.00-1.09 

 
Tennessee 1.04 1.01-1.07 

 
Ohio 1.02 1.00-1.04 

 
Missouri 1.03 1.01-1.04 

 
Kentucky 1.01 0.96-1.06 

 
Indiana 1.02 1.00-1.04 

 
Illinois 1.02 1.00-1.03 

Southeast 
  

 
Virginia 1.03 1.00-1.05 

 
South Carolina 1.04 1.00-1.09 

 
North Carolina 1.02 1.00-1.05 

 
Georgia 1.01 0.99-1.03 

 
Alabama 1.02 0.99-1.05 

Northeast 
  

 
Vermont 1.03 1.01-1.05 

 
Rhode Island 1.07 1.01-1.13 

 
Pennsylvania 1.02 1.00-1.04 

 
New York 1.02 1.00-1.04 

 
New Jersey  1.03 1.00-1.06 

 
New Hampshire 1.02 0.99-1.06 

 
Massachusetts 1.03 1.01-1.06 

 
Maryland 1.02 0.99-1.05 

 
Maine 1.03 1.00-1.06 

 
D.C. 1.01 0.95-1.08 

 
Delaware 1.05 0.97-1.14 

 
Connecticut 1.11 0.98-1.25 

     

Figure 4a.  
Results of Individual State analysis. a. Temperature: Incidence Rate Ratios in each state for a 
1 °C change in temperature are shown with their 95% Confidence intervals, displayed by 
climate region.  



   

84 

Region State IRR 95% CI 

West  Nevada 0.994 0.973-1.016 

Northwest   

 
Washington 1.000 0.996-1.003 

 
Oregon 0.996 0.991-1.001 

 
Idaho 0.995 0.988-1.003 

Southwest   

 
Utah 0.996 0.984-1.009 

 
New Mexico 1.002 0.992-1.013 

 
Colorado 1.003 0.996-1.010 

 
Arizona 1.003 0.991-1.015 

Northern Rockies and Plains   

 
Wyoming 1.010 0.999-1.021 

 
South Dakota 1.004 1.000-1.007 

 
North Dakota 1.006 1.001-1.010 

 
Nebraska 1.003 1.000-1.006 

 
Montana 1.005 0.998-1.012 

South 
 

  

 
Oklahoma 1.001 0.998-1.005 

 
Mississippi 0.998 0.989-1.008 

 
Louisiana 1.000 0.997-1.002 

 
Kansas 1.003 0.999-1.006 

 
Arkansas 1.002 0.997-1.008 

Upper Midwest   

 
Wisconsin 1.001 0.999-1.004 

 
Minnesota 1.003 1.000-1.006 

 
Michigan 1.000 0.996-1.005 

 
Iowa 1.004 1.001-1.006 

Ohio Valley   

 
West Virginia 1.002 0.995-1.009 

 
Tennessee 1.000 0.997-1.004 

 
Ohio 1.001 0.997-1.004 

 
Missouri 1.002 0.999-1.004 

 
Kentucky 1.004 0.997-1.010 

 
Indiana 1.001 0.998-1.004 

 
Illinois 1.001 0.999-1.004 

Southeast   

 
Virginia 1.002 0.999-1.004 

 
South Carolina 0.999 0.994-1.004 

 
North Carolina 1.001 0.997-1.004 

 
Georgia 1.001 0.998-1.003 

 
Alabama 0.999 0.996-1.002 

Northeast   

 
Vermont 1.003 0.999-1.007 

 
Rhode Island 1.000 0.992-1.007 

 
Pennsylvania 1.001 0.999-1.003 

 
New York 1.001 0.999-1.003 

 
New Jersey  1.001 0.998-1.005 

 
New Hampshire 1.002 0.997-1.007 

 
Massachusetts 1.001 0.997-1.004 

 
Maryland 1.001 0.997-1.005 

 
Maine 1.003 1.000-1.007 

 
D.C. 0.998 0.987-1.010 

 
Delaware 1.001 0.991-1.012 

 
Connecticut 1.005 0.990-1.019 

 
Figure 4b. 
Results of Individual State analysis. b. Precipitation: Incidence Rate Ratios in each state for a 
1 mm change in rainfall are shown with their 95% Confidence Intervals, displayed by climate 
region. 
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Figure 5 a and b. 
Results of Climate Region analysis. a. Temperature: Incidence Rate Ratios in each climate 
region for a 1 °C change in temperature are shown with their 95% Confidence Intervals, 
displayed by climate region. b. Precipitation: Incidence Rate Ratios in each climate region for 
a 1 mm change in rainfall are shown with their 95% Confidence Intervals, displayed by 
climate region.   
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Figure 6 a and b.  
Results of Well Use analysis. a. Temperature: Incidence Rate Ratios in each decile of 
percentage well use for a 1 °C change in temperature are shown with their 95% Confidence 
Intervals, displayed by well use decile. b. Precipitation: Incidence Rate Ratios in each decile 
of percentage well use for a 1 mm change in rainfall are shown with their 95% Confidence 
Intervals, displayed by well use deciles.  
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Figure 7 a and b. 
Results of Analysis of Literature Review Dataset (Levy et al. unpublished data). Temperature: 
Incidence Rate Ratios for each study for a 1 °C change in temperature are shown with their 
95% Confidence Intervals, displayed by latitude. b. Precipitation: Incidence Rate Ratios for 
each study for a 1 mm change in rainfall are shown with their 95% Confidence Intervals, 
displayed by latitude.  
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Appendices 
Appendix A. Detailed search protocol  
 
Creating the Complete (“No Deletes”) Pathogen Library 
1) Go into EndNote > File > Save As > Title “Cryptosporidium_No_Deletes” > Hit 

Enter 
2) Right-click on “My Groups” on left-hand side >Create Group > Title “[Climate-Related 

Term].”  Create a group for each of these terms. 
a) Climate-related term list: 

i) Season* (wild-card to encompass all variations on ‘season’ and ‘seasonality’) 
ii) Rain 
iii) Ambient Temperature 
iv) Relative Humidity 
v) Climate 
vi) Weather 

3) Access PubMed through Emory Libraries website  
4) In the “Search” bar at the top of the page, type in the following string: ‘ 

“cryptosporidium” OR “cryptosporidiosis” AND [climate-related term] ’ 
5) Under the ‘Send to’ link on the right hand side of the page, choose ‘Citation manager’ as 

the destination 
a) Select the number of citations to send. This is based on how many citations the 

search found.  
i) If there are fewer than 200 citations, set ‘200’ as number to send and click create 

file 
ii) If there are more than 200 citations, set ‘200’ as number to send and click create 

file. Repeat the process, but this time make sure the ‘start from citation’ number 
is updated to 201, 401, etc 

b) Clicking ‘create file’ will download all the citation information in one file. 
6) Open the file with EndNote and the citations will import 
7) Click on the “Unfiled” or ‘Imported” group at the top of the left column.  Highlight all 

references and drag into the [climate-related term] group.  Note date, time, and number 
of hits for each search. 

8) Repeat for each climate-related term 
9) Click on “All References” at the top of the left column. Go to References > Find 

duplicates > press CANCEL > all duplicates will be highlighted > right-click and move 
duplicate references to Trash. Note number of duplicates and number of “All 
References” after deleting duplicates. 

10) After deleting duplicate > Right-click on trash > Empty Trash 
 
Creating the “Deletes” Library 
1) Go to the “Cryptosporidium_No_Deletes” library.  File > Save a Copy > rename it 

“Cryptosporidium_Deletes” 
2) Right click on “My Groups” on the left-hand side > Delete Group Set 

a) This removes all studies from their groups and puts them back in ‘Unfiled’ 
3) Right click on “My Groups” > Create New Group > title “Based on Time” 
4) Repeat step 3: title “Based on Title/Abstract” 
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5) Begin excluding irrelevant references from the main library based on examining titles and 
abstracts ONLY at this point 
a) Reject based on Title/Abstract if the subject matter is not appropriate  

i) water quality studies 
ii) animal studies 
iii) lab studies 
iv) studies on HIV+/immunocompromised populations only 
v) no mention of cryptosporidiosis 
vi) outbreak-only data 
vii) review 

b) Reject based on Time if study: 
i) Has less than one full year of data (12 months) 
ii) Does not report weekly or monthly incidence of diarrheal disease/pathogen 

incidence   
6) Click and drag each reference that is being excluded into the appropriate group based on 

the reason for exclusion.   
 
Creating the Combined Library 
1) File > New > Library. Then File > Save As > “Cryptosporidium_Compare” 
2) Right-click on “My Groups” > Create New Group > create groups with the following 

titles: 
a) “Agree-Include” 
b) “X includes, Y does not” 
c) “Y includes, X does not” 
d) “Pending/Ask PI” 

3) Compare individuals’ initial libraries and place the references into the appropriate 
category 
a) create a new library called “Common Papers b/w X & Y” and copy all references 

from the “Common Papers b/w X & Y” group into this library 
b) Copy all of the references from individual X’s library into the “Common Papers b/w 

X & Y” library 
c) Search for duplicates, delete these, and file the remaining references into the 

“Differences b/w X & Common Papers” group in the 
“Cryptosporidium_Combined” library 

d) Delete duplicates in the “Cryptosporidium_Combined” library 
e) Repeat steps a-d for individual Y 

4) Both partners should go through the two “Differences” groups and decide to include or 
exclude the references.  Move included references into ‘Agree’, create a new group for 
excluded references (‘Exclude’), and move references you disagree on into the “Conflict” 
group. 

5) Go through the “Conflict” library with the PI, and move references into ‘Include’ or 
‘Exclude’ as appropriate. 

 
PDF Search 
1) File > New Library. Then File > Save As > title “Cryptosporidium_PDF_Search” 
2) Copy citations for all articles agreed upon for full review into this library. 
3) When a pdf is found, save the document in a separate folder, and also attach it to the 

reference in EndNote. 
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4) Select all citations agreed upon for full review. Right click> Find Full Text > Find Full 
Text. This will occasionally bring up the pdfs, more often will bring up a URL, and most 
often will be unable to find the pdf. 

5) Search through Pubmed through the Emory library system.  This works best on campus, 
logged into the University network, and logged into the library system.  

6) When articles are not available online, manually search the Emory library system using 
reference information from the EndNote library. 

7) For articles that are only available in print, go to the library and make photocopies of the 
relevant articles.  Scan these copies, save them as pdf’s, and upload them to the 
appropriate Endnote reference. 

8) For articles that are not available at Emory, go to 
http://www.library.emory.edu/uhtbin/nph-illiad > sign in using Emory username and 
password > under Create New Request, click on “Copy of Article.”  Fill out the request.  
Be sure to use the full name of the journal, not the abbreviation 

 
PDF Exclusions 
1) In the library “Cryptosporidium_PDF_Search _X” create the following group sets and 

groups: 
a) Set “Exclude” 

i) Not_full_year 
ii) Not_monthly_data 
iii) No_data 
iv) Outbreak (depending on pathogen) 
v) Under 25 cases 
vi) HIV/immunocompromised populations 
vii) Non-human studies 

b) Set “Use” 
i) To Extract 
ii) Maybe 
iii) Have Extracted 
iv) Can’t Extract 

2) Go through each pdf.  Place excluded references in the appropriate group based on why 
it was excluded, and place all included references in the “To Extract” group 

3) Go to the separate folder of all pdf’s.  Create the following sub folders: 
a) Cryptosporidium_Yes 
b) Cryptosporidium_No 
c) Cryptosporidium_Maybe 
d) Cryptosporidium_Can’t Extract 

4) Transfer all pdf’s into the appropriate subfolder.   
a) All references from the “Exclude” set group get placed in the 

“Cryptosporidium_No” folder 
b) All references from the “To Extract” group get placed in the 

“Cryptosporidium_Yes” folder 
c) All references from the “Maybe” group get placed in the “Cryptosporidium_Maybe” 

folder 
5) Send the “Cryptosporidium_Maybe” folder to the PI for final review and shift references 

and pdf’s to appropriate groups and subfolders  

http://www.library.emory.edu/uhtbin/nph-illiad
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Appendix B. PRISMA flow diagram  
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Appendix C. Registration Information and Data Use Restrictions Agreement  
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Appendix D. Map of NCDC climate regions 
 

      
Image obtained from: National Oceanic and Atmospheric Administration, National Climatic Data Center: 

Thomas R. Karl and Walter James Koss, 1984: "Regional and National Monthly, Seasonal, and Annual Temperature 
Weighted by Area, 1895-1983." Historical Climatology Series 4-3, National Climatic Data Center, Asheville, NC, 38 pp.  
http://www.ncdc.noaa.gov/monitoring-references/maps/us-climate-regions.php 
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Appendix E. IRB Declaration Letter 
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Appendix F. Meta-data table for studies 
 

  

Study ID Author City Country Latitude Zone Altitude (m) Avg. yearly 

rainfall (mm)

Avg. yearly 

temp (C) 

Period of 

Study

Total Months 

of Study

Total # crypto 

cases

Ages included (years) Study setting Temp Rain

34 Achi Canton de Puriscal, San Jose, Heredia Costa Rica 09 59N tropics 920 1790 20 01/82-12/84 24 56 < 2.5 Community and hospital based - +

25 Ajjampur-Delhi Delhi India 28 35N tropics 215 700 25.2 12/05-12/08 37 34 < 5 Hospital based +* +

33 Ajjampur-Trichy Trichy India 10 49N tropics 73 886.4 26.9 12/05-12/08 37 16 < 5 Hospital based

29 Ajjampur-Vellore  Vellore India 12 55N tropics 252 945 26.3 12/05-12/08 37 20 < 5 Hospital based

10 ANOFEL NA -( data from Paris) France 48 44N N 96 637.4 12.4 01/06-12/09 48 407 all Country level surveillance

41 Assadamongkol Perth Australia 31 56S S 20 800 18 01/86-12/88 36 100 < 5 Hospital based +* -

37 Bennett Lima Peru 12 00S tropics 13 --- 20 06/95-08/98 39 133 < 12 Community based +*

44 Biggs Melbourne Australia 37 48S S 33 680 14 11/84-10/86 24 55 all Community based + -

22 Chai Hwasun-gun - data from Chungnim Korea 35 01N N 74 1477 12 11/96-10/97 12 77 all Community based

7 Chalmers NA - (data from London) UK 51 09N N 61 750 10.3 01/00-12/06 84 12,208 all Country level surveillance

4 Corbett-Feeney NA - (data from Dublin) Ireland 53 26N N 85 758 9.8 02/85-02/86 24 41 < 12 Lab based study - -

23 Daoud Kuwait City Kuwait 29 13N N 54 --- 26 01/88-06/89 18 35 < 8 Hospital based - +

28 Das Kolkata India 22 34N tropics 12 1585.7 26.7 01/03-12/04 24 40 < 5 Hospital based +* +*

35 Duong Libreville Gabon 00 27N tropics 14 2100 26 10/89-09/90 12 70 < 2 Community based +*

39 Fripp Pretoria South Africa 25 44S S 1299 700 18 10/85-09/89 48 289 all, most < 3 Hospital based +* +*

5 Garvey NA - (data from Dublin) Ireland 53 26N N 85 758 9.8 01/04-12/06 36 1369 all Country level surveillance +* -*

3 Goh 

Allerdale and Copeland (North Cumbria) -data from 

Keswick England 54 37N N 81 1521 9.4 03/96-02/00 48 152 all Community based +* -*

26 Haider Karachi Pakistan 24 54N tropics 21 210 26 01/07-12/07 12 37 all Lab based +* +*

1 HPS_2008-2011(2015?) NA - (data from Glasgow) Scotland 55 52N N 7 901.7 9.6 01/06-12/10 60 378 all Country level surveillance +*

21 Huh Gyeonggi-do Province - data from Uijongbu South Korea 37 43N N 71 111 12 01/04-12/06 36 29 all Hospital based +* +

24 Iqbal Kuwait City Kuwait 29 13N N 54 --- 26 09/95-08/97 24 51 3 months-13 years Hospital based -* +*

36 Katsumata Surabaya Indonesia 07 13S tropics 3 1470 28 08/92-07/93 12 41  mostly <5 Hospital and Community based

43 Lake (ESR data substituted) NA - (data from Auckland) New Zealand 37 01S S 6 1150 15.5 01/96-12/12 204 13310 all Country level surveillance -*

8 Laupland Calgary Health Region Canada 51 06N N 1083 418.8 4.4 05/99-04/02 36 173 all Lab based +* +

45 Learmonth 

Wellington, Hamilton, Hawkes Bay, Southland, Bay 

of Plenty, Hutt Valley  (data from Wellington) New Zealand 41 17S S 128 1220 12.9 08/00-08/03 49 6056 all Lab based -*

11 Mai Nguyen Bern Switzerland 46 55N N 509 1028 7.9 01/86-12/86 12 31 all Hospital based +*

13 Majowicz Ontario - data from Toronto Canada 43 40N N 172 852.9 7.7 01/96-12/97 24 451 all Province level surveillance +*

9 Mann Winnipeg, Manitoba Canada 49 54N N 238 510 2 10/83-10/84 11 39 all Lab based +* +

20 Merino Madrid Spain 40 27N N 581 450 14.1 11/85-02/88 28 41 all Hospital based + +

40 Miller Durban South Africa 29 58S S 7 1050 21 08/85-07/86 12 29 < 2 Hospital based + +

30 Molbak Bissau Guinea Bissau 11 53N S 35 --- 27 04/87-03/90 36 239 < 4 Community based +* +*

32 Nacro Bobo Dioulasso Burkina Faso 11 10N tropics 459 1088 27 01/95-12/95 12 72 < 3 Hospital based +* +*

17 Naumova-Boston Boston United States 42 22N N 1 1071 10.7 01/93-12/02 48 102 all State level surveillance +* +

16 Naumova-Lowell Lowell United States 42 39N N 33 1101 9.4 01/93-12/02 48 18 all State level surveillance + -

19 Naumova-Worchester Worchester United States 42 16N N 299 1061 8.9 01/93-12/02 48 58 all State level surveillance +* +

42 Nel Cape Town South Africa 33 59S S 42 580 17 06/04-05/05 24 63 < 18 Hospital based -

38 Peng Blantyre Malawi 15 40S tropics 777 880 22 08/97-03/99 20 69 < 2.5 Hospital based +

31 Perch Bissau Guinea Bissau 11 53N S 35 --- 27 01/91-12/97 84 351 < 5 Community based +* +*

15 Pintar Waterloo region, Ontario (data from Waterloo) Canada 43 29N N 328 940 --- 04/05-12/07 33 36 all Region level surveillance +*

27 Shahid Dhaka Bangladesh 23 46N tropics 9 2148 26.1 01/84-12/84 12 71 all Hospital Based +* +*

2 Shepherd Paisley (data from Erskine) Scotland 55 52N N 8 1165 7.8 01/86-12/87 24 83 all Lab based +* -

12 Skeels Oregon (data from Portland) United States 45 36N N 6 914.4 12.5 01/85-12/88 48 32 all Lab based +* -*

6 Terletskaia (RKI data substituted) NA - (data from Berlin) Germany 52 23N N 47 566 9 01/01-12/06 72 9044 all Country level surveillance +* +*

14 Vrbova Ontario - (data from Toronto) Canada 43 40N N 172 852.9 7.7 01/07-12/12 36 473 all Province level surveillance +*

18 Wolfson Boston, MA United States 42 22N N 1 6.4 10.7 02/83-01/84 12 43 all Lab based + +
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Appendix G. Plot of Cryptosporidiosis Season Strength against Temperature 
and Precipitation Season Strengths 
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Appendix H. Correlations between demographic variables and plots  
 

Scatterplots of each demographic variable against the others: 
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Table of Pearson Correlation Coefficients 

 Percent Well Use Percent Individuals 
Below FPL 

Percent Urban 

Percent Well Use 1.0 -0.23201 -0.26677 

  <0.0001 <0.0001 

Percent Individuals 
Below FPL 

-0.23201 1.0  

 <0.0001   

Percent Urban -0.26677 -0.08640 1.0 

 <0.0001 <0.0001 <0.0001 
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Appendix I. Supplementary Maps of Temperature and Precipitation Season 
Strength 

 

     
Precipitation Season Strength in the United States. Season strength is defined as the peak to 
mean ratio, which was calculated using the month with the highest average precipitation over the 
average precipitation per month. NCDC Climate regions are outlined in bold and labeled. 
 

         
Temperature Season Strength in the United States. Season strength is defined as the peak to 
mean ratio, which was calculated using the month with the highest average temperature over the 
average temperature per month. NCDC Climate regions are outlined in bold and labeled. 
 


