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Abstract

Topics in Data Integration Methods for Neuroimaging and Generalized Additive
Mixed Models for Ambulatory Blood Pressure Curves and Psychosocial Stressors

By Raphiel J. Murden

Data integration methods, e.g., Joint and Individual Variation Explained (JIVE),
simultaneously explore and analyze similarities between two or more sets of measures
captured on the subjects. JIVE estimates shared and unique subspaces, which can be
challenging to interpret. Chapter 1 expands upon insights into AJIVE as a canonical
correlation analysis of principal component scores. This reformulation, which we call
CJIVE, provides an ordering of joint components, uses a computationally efficient
permutation test for the number of joint components, and can predict subject scores
for out-of-sample observations. Extensive simulations show that AJIVE and CJIVE
tend to select the joint rank correctly when true total signal ranks are provided. Using
JIVE to integrate functional and structural connectivity from the Human Connectome
Project, we find that joint scores from the first of two components are associated with
fluid intelligence.

CJIVE only improves interpretation for two datasets. Furthermore, it remains
unclear how to interpret JIVE decomposition for a single subject. Chapter 2 proposes
Probablistic JIVE (ProJIVE), a model-based method for conducting JIVE analysis.
ProJIVE provides a subject-level interpretation of the JIVE framework by modeling
subject scores as random effects. Simulation studies show that ProJIVE estimates
scores and loadings as well or better than existing methods. We applied ProJIVE to
brain morphometry and cognitive/behavioral measures from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI), which revealed associations between subject scores
and Alzheimer’s diagnoses. Variable loadings show that measurements of cortical and
subcortical volume are strongly related to cognition measures.

Chapter 3 examines the relationship between household financial responsibility
and ambulatory blood pressure (ABP) among black women in metro Atlanta. Pre-
vious studies of ABP use either a summary measure or inflexible parametric models.
However, these approaches may result in the loss of substantial variability or unnec-
essarily constrain profile shape. Furthermore, ABP profiles are non-linear in time.
We use generalized additive mixed models (GAMMs) to estimate ABP profiles for
participants who are primarily responsible for earning household finances versus those
who are not. GAMMs enable the assessment of periods during which the groups differ
significantly, which may lead to interventions to help prevent adverse cardiovascular
events.
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1

Chapter 1

Canonical JIVE

1.1 Introduction

Modern biomedical and scientific studies often collect multiple datasets in which the

number of variables may greatly exceed the number of participants. This phenomenon

is especially prevalent in neuroimaging studies, where multiple neuroimaging data

types, referred to as modalities, as well as behavioral and demographic data, are

often collected [17, 32]. The importance of such multi-dataset studies underscores

the urgent need for quantitative methods capable of simultaneous analysis of multi-

block datasets, i.e., data integration or multi-view data analysis.

A fundamental goal in neuroimaging is understanding the similarities between

structural connectivity (SC) and functional connectivity (FC), where FC can be quan-

tified by cross correlations between brain region time series revealed through func-

tional magnetic resonance imaging (fMRI) and SC by measures of anatomical con-

nections revealed using diffusion-weighted MRI (dMRI) [19]. Studies have reported

that brain regions with strong SC demonstrate more reliable functional connections

[19, 23], and incorporating SC information leads to more reproducible FC network

estimation [18]. However, additional research is needed to elucidate the information
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shared between measures of connectivity and the information unique to structural or

functional connectivity. Increasing attention has been paid to data integration and

data fusion methods [51], which may provide insight into shared structure without

imposing a priori spatial constraints.

Statistical approaches to data integration, which seeks to find shared structure

across multiple datasets collected on a common set of subjects, date back to the

1930s with canonical correlation analysis (CCA) [20]. Smith et al. [48] used principal

component analysis (PCA) and CCA to integrate functional MRI (fMRI) and behav-

ioral data from the Human Connectome Project (HCP). Recently, novel methods that

assess the shared structure between datasets have arisen [57, 25], including several

which also explore structure unique to each dataset [27, 8, 15, 46, 66].

Joint and Individual Variation Explained (JIVE) has been used in studies to inte-

grate genetic data [36], behavioral and brain imaging data [63], and other applications

[27]. Common and orthogonal basis extraction (COBE), which is closely related to

JIVE [66], was recently applied to multi-subject resting-state correlation matrices

where individual structure was used in connectome fingerprinting [22]. Throughout

the remainder of this chapter, we will refer to the JIVE implementation in Lock et al.

[27] and the follow-up paper in O’Connell and Lock [36] as R.JIVE. An alternative

algorithm and rank-estimation routine for JIVE were recently proposed in Angle-

based JIVE (AJIVE) [8]. AJIVE uses matrix perturbation theory (Wedin, 1972) to

determine when two similar directions of variation represent noisy estimates of the

same direction and proposed a novel non-iterative algorithm that can decrease com-

putational costs. Although there are a number of promising methods for analyzing

joint variation, in this paper we focus on R.JIVE and AJIVE, as they both have

R-packages and have been applied in the neuroimaging literature [63, 65].

Despite the advancement in statistical methodology, there are limitations that may

limit its widespread application. JIVE is formulated as a subspace decomposition,
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and the results can be difficult to interpret. For instance, singular value decomposi-

tion of joint matrices results in subject scores that differ across datasets. Moreover,

the components of the estimated joint subspace have no clear ordering. A related

problem is that there is currently no clear method for applying results to new study

participants/patients. If JIVE is used for biomarker development, as in Sandri et al.

[43], we may want to estimate a subject score for a new patient, which can then

be used to classify her or his risk. Additionally, simulation studies examining the

accuracy of the rank selection procedures and estimated components are needed to

provide guidance to scientific applications.

Our contributions are the following.

• We propose Canonical JIVE (i.e. CJIVE), an adaptation to AJIVE, which

improves interpretation of subspaces obtained via JIVE analysis.

• CJIVE also allows prediction of joint scores in new subjects.

• We conduct simulation studies that address important gaps in our understand-

ing of AJIVE versus R.JIVE.

• We apply JIVE to the integration of functional and structural connectivity using

a state-of-the-art pipeline applied to 998 subjects from the Human Connectome

Project. CJIVE reveals new insights into the shared variation, in particular

revealing relationships that go beyond conventional spatial priors.

Section 1.2 describes the statistical methodology employed in AJIVE, R.JIVE, and

sCCA, and introduces CJIVE. Section 1.3 conducts simulation studies. Section 1.4

analyzes the HCP data. We discuss our findings and recommendations in Section 1.5.
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1.2 Statistical Methodology

1.2.1 JIVE Decomposition

Consider a collection of K data blocks/matrices, {Xk ∈ Rn×pk : k = 1, . . . , K}, where

n is the number of subjects and pk the number of features or variables in the kth

dataset. Each data block can be written as Xk = Gk + Ek, where Gk represents

the rank-reduced signal (with rank rk << min(n, pk)) and Ek represents full-rank

isotropic noise. The JIVE model assumes that each Gk can be decomposed into a

subspace of Rn that is common across Xk (the joint subspace) and a subspace that

is unique to the kth dataset and orthogonal to the joint subspace (the individual

subspaces) [8]. In our presentation, we expand on one of three ways to represent

the joint subspace, called the “common normalized score” representation in [8]. We

emphasize this representation because it results in a correspondence between the

joint components of each dataset, whereas the other representations are arguably less

interpretable. The common basis, Z ∈ Rn×rJ , is derived from joint analysis of all data

blocks, and the other, Bk ∈ Rn×rIk from the part that remains after joint analysis,

where rIk = rk − rJ . Let Id be the d × d identity matrix and 0 a matrix of zeros.

Then the JIVE model corresponds to the matrix decomposition

Xk = Gk + Ek, (1.1)

Gk = ZWJk + BkWIk,

B>k Z = 0, Z>Z = IrJ , B>k Bk = IrIk . (1.2)

We call Z joint subject scores and WJk joint variable loadings. We also define the joint

and individual signal matrices of the kth data block as Jk = ZWJk and Ak = BkWIk,

respectively, with Gk = Jk + Ak. While the model holds for any integer K > 1, this

study focuses on the case K = 2.
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In this representation, we do not enforce orthogonality between Bk and Bk′ . Later,

we propose a permutation test for the joint rank, rJ , that determines when the corre-

lation between signal is sufficiently large to be deemed joint, but allows insignificant

correlation between individual subject scores. Our proposed approach will also result

in an intuitive ordering of components by the strength of evidence that they are joint.

Also note that in (1.1), the rows of the loadings matrices WJk are not orthogonal.

For the HCP network data that we examine in section 1.4, we can translate each

row of the score (Z,Bk) matrix into a low-dimensional vector summary of a par-

ticipant’s kth network data (e.g., FC). The joint scores Z surmise information that

is common across modalities, while Bk comprises information unique to an individ-

ual modality. The lth row of the loading matrix WJk exhibits the magnitude with

which network edges contribute to the lth column of the summary scores in Z. In

section 1.4.4 we examine variable loadings to develop insight into latent structures

which are common within both modalities and those which are unique to each. For

instance, section 1.4.3 shows that CJIVE joint scores are more strongly associated

with a measure of fluid intelligence than individual scores.

R.JIVE Estimation

R.JIVE uses an iterative algorithm that simultaneously estimates signal matrices

as well as their ranks. Assume each dataset is column-centered and scaled by its

Frobenius norm. Each iteration involves two steps: 1) estimating joint and individual

signal ranks, and 2) estimating signal matrices using the ranks from step 1. The

first iteration assumes that the joint signal matrix has the same column space as a

matrix formed by concatenating the data matrices. This procedure is iterated until

convergence; details are in the Web Appendix A.1.1. Two methods for choosing

the joint rank were proposed: a permutation test and Bayesian Information Criterion

(BIC). In the default R.JIVE implementation, the individual subspaces are orthogonal
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O’Connell and Lock [36].

AJIVE Estimation

In AJIVE, the joint rank rJ is determined using principal-angle analysis (PAA) and

requires user-specified signal ranks r1 = rJ + rI1 and r2 = rJ + rI2. The main idea is

to investigate when basis vectors in the signal subspaces should be considered ‘noisy’

estimates of the same direction. This problem can be translated into finding the

singular values of the concatenated signal bases that exceed a given threshold.

For the remainder of this paper, we standardize the columns of X1 and X2 to have

mean zero and variances equal to one, as commonly done in PCA.

First, the user specifies the ranks used in PCA of X1 and X2. Let Ũ1 and Ũ2

denote the r1 and r2 left singular vectors of X1 and X2. Define C = [Ũ1, Ũ2]. Let UC

denote the left singular vectors of C. Feng et al. [8] develop two bounds to determine

whether the jth column of UC represents a joint direction of variance. These bounds

are based on the principal angles between U1 and U2, which can be extracted from

the singular values of C. The first bound is based on Wedin’s theorem and several

corollaries thereof, as discussed in the Web Appendix A.1.2. The second is a random

direction threshold based on the principal angles between simulated noise subspaces.

1.2.2 Using CCA to Interpret JIVE: CJIVE

Equivalence of estimators

We review CCA and describe how it relates to the AJIVE algorithm. Given stan-

dardized data matrices X1, X2, and a number of joint components rJ , CCA aims to

solve

arg max
ω1j∈Rp1 ,ω2j∈Rp2

ω>1jX
>
1 X2ω2j, j = 1 . . . rJ ,

subject to ||ωkj|| = 1 and ω>kjωkj′ = 0, k = 1, 2, j 6= j′.

(1.3)
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The solutions to (1.3), which we denote as ω̂1j and ω̂2j, are given by the left and right

singular vectors of X>1 X2, which are unique up to a change in sign [20]. Additionally,

ρj = 1
n
ω̂1jX

>
1 X2ω̂2j is the jth canonical correlation.

Classic CCA can not be applied to pk > n. Sparse CCA is one alternative [57],

and it turns out JIVE is a reduced-rank alternative. [8] show that the jth joint subject

score from AJIVE is equivalent to the average of the jth canonical variables of the

CCA of the scores from the separate PCAs, up to scaling. Our theorem, below,

formalizes their finding. A proof is provided in the Web Appendix A.3.

Theorem 1.2.1. Let the columns of Ũ1 and Ũ2 represent orthonormal bases for the

signal matrices Ĝ1 and Ĝ2. Let ẑj be the jth joint subject score from AJIVE analysis.

Let ω̂1j ∈ Rr1 and ω̂2j ∈ Rr2 represent the canonical vectors from the CCA of Ũ>1 Ũ2.

Let σCj denote the jth singular value of [Ũ1, Ũ2]. Then

ẑj =
1√

2σCj

(Ũ1ω̂1j + Ũ2ω̂2j).

Additionally, the canonical correlation ρj = σ2
Cj − 1.

In summary, the jth joint scores from AJIVE are equivalent to a scaled average

of the jth canonical variables of the principal component scores. This perspective is

illustrated in Figure 1.1, and we define CJIVE (CCA JIVE) in the next section.

CJIVE: ordering, permutation test, and unique components

The CCA perspective on the signal subspaces provides a useful way to interpret the

joint components. We view the canonical correlations defined in Theorem 1.2.1 as

a measure of the strength of the corresponding joint component, which provides an

ordering.

This motivates the use of a permutation test of the canonical correlations of the

PCs. For b = 1, . . . , nperms, let Ũ
(b)
2 represent a copy of Ũ2 with the rows permuted
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Figure 1.1: Schematic of the CJIVE decomposition for obtaining joint subject scores
and loadings. Quantities specific to X1 are shown in blue; those specific to X2, orange.
Gray boxes illustrate scores, with a green outline for joint scores. Checked and dotted
boxes represent loadings. Steps are outlined in section 1.2.2.

so that they no longer represent the same ordering of participants as in Ũ1. We then

obtain the null distribution of the canonical correlations from the max of the singular

values of Ũ>1 Ũ
(b)
2 , b = 1, . . . , nperms. For each component, we calculate a p-value as

the proportion of maximal null correlations which exceed that component’s canonical

correlation. We then calculate rJ for a specified α-level. Once we have estimated rJ

via the permutation test, we calculate joint scores using the results of Theorem 1.2.1

and estimate the signal matrices Jk and Ak using the same procedure in AJIVE.

Here,we summarize the CJIVE procedure depicted in Figure 1.1.

CJIVE Procedure

1. For k = 1, 2 conduct PCA of Xk and determine total rank rk by examining the

scree plot. Obtain PC scores Ũk.

2. Calculate canonical correlations: ρj, j = 1 . . .min(r1, r2), as in Theorem 1.2.1;

use these to order joint components.

3. Use a permutation test to determine which canonical correlations are significant.
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4. Calculate joint scores Z as in Theorem 1.2.1.

5. Project data onto the orthogonal complement of the joint subspace to obtain

individual signal matrices AK = BkWIk.

6. Calculate loadings for joint structure and visualize.

7. Examine the scores for structure, e.g., associations with exogenous variables.

8. Calculate the variance explained for both joint and individual components,

which provide insight into the importance of joint and individual sources of

variation.

CJIVE provides a unique decomposition of Ĵ1 and Ĵ2 (up to sign) when the

canonical correlations differ across components, as expected to occur in data. In

the JIVE model given by (1.1), it is assumed that the subject score subspaces are

equivalent. Then, the components are not unique. To see this, let Z ∈ Rn×rJ denote

the joint scores. Let O denote any orthogonal matrix of dimensions rJ × rJ . Then

J1 = ZOO>WJ1 and J2 = ZOO>WJ2. Consequently, the basis ZO also provides a

set of joint subject scores.

Although we focus on the case of K = 2 datasets here, CJIVE also generalizes

to K > 2, where the size of the singular values denotes the amount of information

shared between the datasets. For K > 2, the interpretation becomes more nuanced.

For example, a joint component with canonical correlation equal to one between two

datasets but zero with a third dataset (i.e. partially shared structure), could be a

larger source of joint variation than a component which is weakly correlated across

the three datasets. Partially shared structure is modeled in [15]. We note that

examining the variance explained by each component provides insight into partially

shared structure, but additional investigation lies beyond the scope of this study.
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Predicting joint scores in new participants

An important problem is how to apply the results from JIVE analysis to a new

participant. For example, if JIVE is used for biomarker development, we may want

to estimate a subject score for a patient, which can then be used to classify their risk.

One straightforward way of using JIVE to predict new joint scores is to regress each

new pair of observations onto the generalized inverse of joint loadings to obtain block-

specific joint scores and then compute their average. Let ŴJk, k = 1, 2, represent

joint loadings from applying JIVE on the data blocks X1 and X2. Let xi ∈ Rp1 and

yi ∈ Rp2 be data for a new participant. Then define predicted joint scores as

ẑ>i = (x>i1Ŵ
−
J1 + x>i2Ŵ

−
J2)/2,

where Ŵ−
Jk represents the g-inverse of ŴJk.

An alternative approach is based on the canonical variables given in Theorem

1.2.1. First, we predict the PC scores for a new subject; second, we estimate the

canonical variables of the PC scores from each dataset; third, we sum the canonical

variables and normalize to length one. Recall the rank r1 and r2 approximations to

X1 and X2: Ĝ1 = Ũ1D̃1Ṽ
>
1 , Ĝ2 = Ũ2D̃2Ṽ

>
2 . Using CCA on Ũ1 and Ũ2 yields

a matrix of canonical vectors: Ω̂1 = [ω̂1j, . . . , ω̂1rJ ] and Ω̂2 = [ω̂2j, . . . , ω̂2rJ ]. The

predicted estimate for each canonical variable is given by ĉ1i = x>i Ṽ1D̃
−1
1 Ω̂1 and

ĉ2i = y>i Ṽ2D̃
−1
2 Ω̂2j. Then the jth joint score is

ẑij =
ĉ1ij + ĉ2ij√

2(1 + ρj)
,

for j = 1, . . . , rJ . We apply and evaluate the proposed method in both the simulation

study of section 1.3 and analysis of the HCP data, section 1.4.
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1.3 Simulation study

1.3.1 Simulations comparing JIVE methods

We conduct simulation studies to address the following gaps in the current under-

standing of the performance of R.JIVE and AJIVE: 1) accuracy when the joint signal

strength is low versus high; 2) rank selection when the number of joint components

is greater than 1; and 3) the impact of the initial signal rank selection on joint rank

selection. We use a full factorial design with the following factors:

1. The number of features in X2: with levels (a) p2 = 200 and (b) p2 = 10000,

2. Joint Variation Explained in X1: with levels (a) R2
J1 = 0.05 and (b) R2

J1 = 0.5,

3. Joint Variation Explained in X2: with levels (a) R2
J2 = 0.05 and (b) R2

J2 = 0.5.

The joint rank was 3 in all settings. The entries of the error matrices E1 and E2 were

randomly drawn from a standard Gaussian distribution. The number of features in

X1 and the individual variation explained for both data blocks were held constant at

p1 = 200 and R2
I1 = R2

I2 = 0.25, respectively.

Experimental factor (b) (i.e., p2) allows us to assess the impact of pk on the

accuracy of rJ estimates. Factors three and four (i.e., R2
J1 and R2

J2) allow us to

examine the impact of the joint signal’s magnitude within each dataset.

The joint and individual signals, defined as Jk = ZWJk and Ak = BkWIk, were

constructed by generating score matrices (Z, Bk) and loading matrices (WJk,WIk)

in the following manner. For each simulation, the subject score matrix [Z,B1,B2] was

drawn from a Bernoulli distribution, with probability 0.2 for Z and 0.4 for Bk. The

use of two values is similar to the toy examples from [8], which used ±1. Next, we

defined diagonal matrices LJk = diag(rJ , . . . , 1) and LIk = diag(rIk, . . . , 1). Then we

defined MJk and MIk with entries from independent standard multivariate Gaussian

distributions. Then we initially set WJk = LJkMJk, WIk = LIkMIk. Note that this
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set-up results in approximately orthogonal A1 and A2. In R.JIVE, we use the option

enforcing this orthogonality. This set-up favors the rank-selection procedure in AJIVE

since principal angles between A1 and A2 are large and corresponding singular values

are unlikely to exceed the Wedin and random bounds described in 1.2.1.

In order to achieve the desired values of R2
Jk and R2

Ik, we rescale the joint and

individual matrices such that Xk = dkJK+ckAk+Ek for appropriate constants ck and

dk. R2
Jk and R2

Ik can be expressed as equations which are quadratic in ck and dk, as

described in Web Appendix B. We approximated solutions for ck and dk numerically.

The chordal subspace norm is a distance metric for linear subspaces that has

been generalized to matrices, say F1,F2, of possibly different ranks [62] and can be

calculated as

δ(F1,F2) =

√√√√ q∑
m=1

sin2 θm, (1.4)

where q = mink(rank(Fk)) and θm are the principal angles between the column space

of F1 and F2. We use this metric in our simulation studies to describe the accuracy of

JIVE estimates. Note when the column space of F1 is contained in the column space

of F2, δ(F1,F2) = 0. Therefore comparing results from different methods requires

examination of rank estimates and subspace estimates.

We performed 100 simulations using three methods: (1) R.JIVE, with its permu-

tation based algorithm for choosing ranks; (2) AJIVE-Oracle, where we used the true

number of components rk (joint rank + individual rank) as input; and (3) AJIVE-

Over, where the total number of components was chosen to retain 95% of the variance.

We also defined CJIVE-Oracle and CJIVE-Over using the same approach for total

signal ranks and selecting the joint rank using our permutation test with nperms = 500

and α = 0.05.

Results from different methodologies are not all directly comparable. Note that

AJIVE and CJIVE both return a single joint subject score per observation for each
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component found in the joint subspace. On the other hand, R.JIVE returns signal

matrices, from which we can derive block-specific joint scores. To compare R.JIVE

results to those from AJIVE/CJIVE, we apply SVD to each joint signal matrix es-

timated via R.JIVE using the selected joint rank, concatenate left singular values,

apply SVD and then use the first r̂J left singular vectors as estimates of subject

scores.

To investigate the prediction methods outlined in section 1.2.2, each pair of repli-

cate datasets was randomly divided into a pair of training datasets and a pair of test

datasets, both with sample sizes n/2 = 100. AJIVE-Oracle and CJIVE-Oracle were

applied on the pair of training datasets. Subject scores were predicted for “new sub-

jects”, represented by the test datasets. We then assessed performance by calculating

the Pearson correlation coefficient between predicted joint scores for the test datasets

and true joint scores for the same datasets for each of the rJ joint score components.

1.3.2 Simulation Results

Figures 1.2(a) and (b) show that CJIVE-Oracle and AJIVE-Oracle chose the correct

joint rank in nearly 100% of simulations in all settings except for the low-signal lower-

dimensional case, in which AJIVE-Oracle selected the correct rank more frequently

than CJIVE-Oracle (approximately 85% versus 75% of the simulations). AJIVE-Over

and CJIVE-Over both routinely underestimated the number of joint components in

all scenarios except the high joint variation with lower dimensional matrices (R2
J1 =

R2
J2 = 0.5, p1 = p2 = 200). When an estimate of rk is very large, the correlation

between permuted datasets can be very large, such that zero joint components are

significant. The joint rank estimated in R.JIVE tends equal 2 when the joint signal

in both datasets is relatively large (bottom-right panels in both sub-figures of Figure

1.2: R2
J1 = R2

J2 = 0.5), while it is mostly 0 or 1 in the other scenarios.

Figure 1.3 shows that the chordal distances between true score subspaces and
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Figure 1.2: Results of simulation studies: (a) p2 = 200, (b) p2 = 10000. Sub-figure
show proportions of values chosen as rank of the joint signal space for each method
and combination of simulation settings. True rank equals 3 in all simulations. Color
key: Orange = AJIVE-Oracle. Light Blue = AJIVE-Over. Green = CJIVE-Oracle.
Yellow = CJIVE-Over. Red = R.JIVE.
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Figure 1.3: Results of simulation studies: (a) p2 = 200, (b) p2 = 10000. Each sub-
figure exhibits boxplots of chordal norms for each of the post-JIVE measurements
described in section 1.2.1. Methods that are not shown had median chordal norms
of 1. Color key: Orange = AJIVE-Oracle. Light Blue = AJIVE-Over. Green =
CJIVE-Oracle. Yellow = CJIVE-Over. Red = R.JIVE.
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their estimates. CJIVE-Oracle and AJIVE-Oracle score subspaces trended less than

the same distances for R.JIVE, CJIVE-Over and AJIVE-Over in all settings. In

AJIVE-Over, all detected signal components are allocated to the individual subspace

since the estimated joint rank is almost always 0. Since the true individual signal

components are likely to lie mostly within the over-estimated individual signal sub-

spaces, their chordal distance is small. Similarly, although the chordal distances for

loading subspaces from R.JIVE trended less than those from AJIVE-Oracle, the lack

of accurate joint rank estimates from R.JIVE may indicate that estimated subspaces

partially lie within true subspaces.

To summarize, we find that CJIVE-Oracle and AJIVE-Oracle choose the joint

rank correctly in most simulations. For both CJIVE-Over and AJIVE-Over, including

too many initial signal components results in a noise-contaminated signal for each data

matrix, which increases the chance of finding angles between noise components that

are near zero and thus results in too few joint components or none at all.
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Figure 1.4: Results of simulation studies: (a) p2 = 200, (b) p2 = 10000. Boxplots
of absolute Pearson correlations between predicted joint scores and true joint scores
in simulation study for settings where rJ = 3. Color key: Orange = AJIVE-Oracle.
Green = CJIVE-Oracle

Lastly, Figure 1.4 exhibits that out-of-sample subject scores can be predicted more
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accurately across joint components using the CJIVE method when compared to the

straightforward method using results of AJIVE. The Pearson correlation coefficients

tend to be close to 1, on average, for the first joint component of subject scores

across all simulation settings with. Neither method does very well at predicting joint

scores for the third component when the joint signal is small, i.e. R2
J1 = R2

J2 =

0.05.. Recall data were simulated so that the proportion of variance attributable

to the jth joint component in Xk, k = 1, 2, j = 1, 2, 3 is given by R2
Jk

(
3−(j−1)

6

)
.

Therefore components are ordered (from highest to lowest) by the proportion of joint

variation that they contribute, which may contribute to the poor prediction at higher

components.

1.4 Joint Analysis of Structural and Functional

Connectivity in HCP Data

1.4.1 Human Connectome Project

Our data application uses measures of FC and SC from n = 998 study participants

(532 females) in the young adult Human Connectome Project (HCP). Web Appendix

Table 4 provides demographics. We applied R.JIVE, AJIVE, CJIVE, and sCCA to

examine multivariate relationships across brain networks as measured by Fisher z-

transformed correlations from rs-fMRI (FC) and log-transformed streamline counts

from dMRI (SC).

Data preprocessing

HCP rs-fMRI data comprise two left-right phase encoded and two right-left phase

encoded 15-minute eyes-open rs-fMRI runs [17]. Each run used 2-mm isotropic voxels

with 0.72s repetition time. For each run, we calculated the average time series for
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each of the 68 cortical regions of interest (ROIs) from Desikan et al. [3] plus the

19 subcortical gray-matter ROIs from Glasser et al. [17]. For each participant and

pair of ROIs, the Pearson correlation was calculated, Fisher z-transformed, and then

averaged across the four runs. The lower diagonal of each subject’s connectivity

matrix was vectorized, resulting in p1 = 3,741.

For each HCP participant, three left-right and three right-left phase-encoded runs

of dMRI from three shells of b = 1000, 2000 and 3000 s/mm2 with 90 directions and

6 b0 acquisitions interspersed throughout were acquired [17]. Whole-brain tractogra-

phy for each participant was conducted using probabilistic tractography as detailed

in Zhang et al. [64]. On average, around 105 voxels occurring along the white mat-

ter/gray matter interface were identified as seeding regions for each participant. Six-

teen streamlines were initiated for each seeding voxel, resulting in approximately 106

streamlines for each participant. Nodes of the SC networks were defined from the

same ROIs as the rs-fMRI. Edges were represented by the number of viable stream-

lines between ROIs, with viability determined by three procedures: (1) each gray

matter ROI is dilated to include a small portion of white matter region; (2) stream-

lines connecting multiple ROIs were cut into pieces such that no streamlines pass

through ROIs; and (3) apparent outliers were removed. Finally, edges where at least

99% of subjects had zero streamlines were removed, and the remaining streamline

counts were log transformed. There were p2 = 3,330 edges in the resultant SC data

matrix.

1.4.2 Dimension Selection and Joint and Individual Varia-

tion Explained

Three methods were employed to choose total signal ranks: 1) visually determining

the elbow in eigenvalue scree plots, 2) 95% variance, and 3) R.JIVE permutation tests.

Joint ranks were also chosen using three methods: 1) AJIVE, 2) the permutation test
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Table 1.1: Joint, Total Signal Ranks Chosen and Joint, Individual Variation Ex-
plained in the dMRI data (Streamline Counts) and functional connectivity data (Pear-
son correlations) from the HCP.

Method Chosen Rank Variation Explained
Jnt Ttl Jnt Ttl FC Ttl SC Jnt FC Ind FC Jnt SC Ind SC

AJIVE
Scree plot 2 7 10 0.113 0.499 0.032 0.216
95% Var. 1 225 683 0.005 0.945 0.002 0.948

CJIVE
Scree plot 2 7 10 0.113 0.499 0.032 0.216
95% 0 225 683 0 0.950 0 0.950

R.JIVE
Perm. 1 54 98 0.042 0.794 0.012 0.507
Scree Plot 2 7 10 0.074 0.569 0.012 0.224

in R.JIVE and 3) CJIVE. In sCCA, permutations tests resulted in sparsity parameters

equal to 0.1 using the PMA R package [57].

The total ranks estimated from the three methods are in Table (1). Both AJIVE

and CJIVE with the scree-plot method estimated 2 joint components, which implies

that results from these methods are equivalent. Similar to results of our simulation

study, AJIVE estimated 1 and CJIVE estimated 0 when each was combined with the

95% variation method. R.JIVE estimated 1 joint component. Guided by these results,

we also estimated two pairs of canonical variables with sCCA. Lastly, CJIVE-Scree

plot ranks were used as input for R.JIVE and vice versa.

The canonical correlations were ρ1 = 0.31 and ρ2 = 0.21 using 1000 permutations.

The proportion of variation attributable to joint component 1 was 0.094 in FC and

0.017 in SC (Table 1). For component 2, the values were 0.018 and 0.015, respectively.

1.4.3 Subject scores

Note subject scores are equal in AJIVE-Scree plot and CJIVE-Scree plot because they

selected the same ranks; hereafter, we refer to these results as CJIVE-Scree plot. In

order to compare results from sCCA to CJIVE, we averaged canonical variables across

datasets to obtain a single subject score vector for each joint component. Next, joint

subject scores from CJIVE, R.JIVE, and sCCA, and individual scores from CJIVE
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Table 1.2: Multiple regression of gF onto joint subject scores estimated with sCCA,
AJIVE, R.JIVE, sCCA. Here, AJIVE and CJIVE are equivalent as both methods
selected two joint components.

Partial Correlation Coefficients
Joint Signal Indiv FC Signal Indiv SC Signal Total Signal

CJIVE-Scree plot 0.251 0.091 0.080 0.278
R.JIVE 0.210 0.364 0.369 0.559
sCCA 0.200 – – 0.200

and R.JIVE were examined for associations with fluid intelligence (gF), measured in

the HCP as the number of correct responses to the Penn Progressive Matrices Test.

Among the joint scores, CJIVE-Scree plot resulted in the highest partial correla-

tion coefficient. Partial correlation coefficients for individual scores and total scores

(joint + individual) were highest in R.JIVE (Table 2). However, R.JIVE contained

a total of 151 components while CJIVE included 15 components. Moreover, in all

three methods, only the first joint component and no individual components were

significantly associated with gF (CJIVE: p < 10−13, Bonferroni-α ≈ 0.003; R.JIVE:

p < 10−9, α ≈ 0.0003; sparse-CCA: p < 10−4, α = 0.025).

1.4.4 Variable Loadings

Since edges from FC and SC networks comprise the features in our input data blocks,

loadings are imposed onto symmetric matrices. The sign indeterminacy of the joint

loadings for each component was chosen to result in positive skewness. In Figure

1.5a, we see that there were strong positive loadings throughout the FC. Overall,

there was not clear spatial correspondence between FC and SC, and the correlation

between loadings was -0.04. Instead, overall higher FC was associated with higher

SC in many regions, particularly subcortical and frontal, with SC loadings in the

opposite direction in certain connections between occipital, parietal, temporal, and

subcortical.

Taking the L1 norm of each row within each loading matrix reduces the num-
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Figure 1.5: (a) Variable loadings for the first component of the joint signal space
estimated by CJIVE and displayed on heatmaps. Sub-figure (b) displays the top 25th

percent of L1 norms of the variable loadings related to each cortical ROI for joint
component 1. L1 norm for an ROI equals the sum of the absolute values of the rows
of (a), excluding subcortical regions.

ber of features to the number of nodes, which provides a more detailed examination

of the patterns. In this analysis, we are particularly interested L1 norms that are

large in both the left and right hemispheres, which suggests the loadings are captur-

ing meaningful biological structure. In the FC loadings, Figure 1.5b shows that the

most prominent cortical regions in the first joint component correspond to ROIs from

the frontal, occipital and temporal lobes, with extensive left-right hemispheric corre-

spondence. In the SC loadings, we again see left-right hemispheric correspondence,

this time in the parietal and temporal lobes, as well as regions that did not exhibit

hemispheric correspondence. L1 norms of subcortical regions (not shown) were large

in the left and right accumbens, left caudate, and left putamen in both modalities.

Additionally, the right putamen and right caudate were prominent in FC, while both

left and right hippocampus were prominent in SC.
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1.4.5 Reproducibility and prediction of new subjects

Subjects from the HCP data were split into two sets to examine the reproducibility

of our results. We will refer to the first sub-sample as ‘sample A’ and the second as

‘sample B’. CJIVE with total signal ranks from scree plots (see Table 1) found rJ = 1

for both samples, while AJIVE found rJ = 2 for sample A and rJ = 1 for sample B.

The correlations between the joint loadings from sample A and B were equal to 0.61

for FC and 0.65 for SC. When a second joint component was estimated, as in analysis

of the full sample, the correlation of the FC loadings was 0.29 and the SC loadings

was 0.38.

CJIVE canonical vectors from sample A were used to predict joint subject scores

for sample B. We then compared the predicted joint scores to those from the CJIVE

analysis of sample B (Figure 1.6). Pearson correlations between sample A subject

scores and predicted sample B subject scores were 0.68 and 0.20, for components 1

and 2, respectively. We used a permutation test to examine whether the observed

correlations were significantly different from 0. P-values were 0 for both components

using 10,000 permutations. Similar results were achieved when CJIVE canonical

scores from sample B data were used to predict subject scores for sample A. In our

simulation study, the joint subspace components with higher indices had reduced

predictive power (Figure 1.4).

1.5 Discussion

We propose CJIVE, an adaptation to AJIVE which improves interpretation: 1) the

joint scores are an average of the canonical variables of the principal component scores

of each dataset; 2) joint scores are ordered by canonical correlations; 3) p-values from

permutation tests indicate the significance of each joint component; 4) the proportion

of variance explained for each of the joint and individual components complements
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Figure 1.6: Joint subject scores predicted for sample B using CJIVE of sample A
versus joint subject scores estimated from the full CJIVE analysis of sample B with
prediction interval. Note only one joint component was selected in sample A.

this information. Simulation study results indicate that when total signal ranks are

accurately estimated, AJIVE/CJIVE generally choose a more appropriate number of

joint components and provide more accurate estimates of the subspaces of interest

compared to R.JIVE.

We apply CJIVE to obtain novel insight into the relationship between structural

and functional connectivity. Interestingly, we did not find much spatial correspon-

dence between prominent communities in FC and those in SC. However, the bio-

logical relevance of subject scores was revealed by their association with gF, and

reproducibility through the data splitting and prediction of the joint scores. Recent

studies suggest that the correlation between the weighted edges in FC and SC is

roughly 0.20 [26], which is much lower than a landmark study that contained just five

subjects [19]. In the current analyses, correlation between mean FC and mean SC

was 0.22, with canonical correlations of 0.31 and 0.21. Note these approaches treat

the edge as the unit of observation, averaged across subjects, and the correlations are

not comparable to the variation explained in Table 1.1. Some models assume that

higher SC for a given edge leads to higher FC [18]. CJIVE allows the extraction of

patterns of covariation to provide novel insight not provided by spatial assumptions.
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We found that CJIVE joint scores were more strongly related to gF than joint

scores from R.JIVE or sCCA. The overall correlation from R.JIVE was higher than

CJIVE (0.56 versus 0.28), but used many more components (151 versus 15), and

individual components were not significant in R.JIVE or CJIVE. When examining

gF and all pair-wise correlations (i.e., FC only) in the Web Explorer “HCP820-

MegaTrawl”, no edges survive corrections for multiple comparisons, and using the

elastic net, r = 0.21. Initial studies with a subsample of the HCP rs-fMRI subjects

found correlations between predicted and observed gF ranging from r = 0.4 to r = 0.5

[48, 10]. Brain wide association studies with hundreds of subjects may have inflated

effect sizes relative to larger cohorts [30]. Moreover, previous studies did not examine

the relationship between gF, FC and SC. Interestingly, CJIVE individual scores were

not related to gF. This may suggest that FC and SC are simultaneously associated

with gF in a manner that neither is independently. This result combined with the

ability to predict out-of-sample subject scores via CJIVE suggests that results from

JIVE methods may be a promising direction for biomarker development.

In practice, choosing the total signal rank remains a challenge. In simulations, the

total signal rank chosen for a data block via R.JIVE permutation tests varied with

the level of joint signal and the number of features within that block (Web Figure

1), and the number of components was relatively large in the real data. Additionally,

scree plots of simulated data provide a much clearer distinction between eigenvalues

that correspond to signal and those lying outside the signal subspace when compared

to scree plots of real data. Most pertinent to our analyses is the result that both the

CJIVE and AJIVE methods for estimating the joint rank are sensitive to estimates of

the total signal ranks. If rk approaches n, the maximum correlation between permuted

datasets is very high, which leads to the estimation of zero joint components. In fact,

when rk = n, the correlation between permuted datasets equals one, and hence zero

components are selected by CJIVE. The same issue occurs in AJIVE. Erring on the
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side of a smaller total signal rank tends to result in more powerful tests of joint rank.

Further research is needed to explore connections between CJIVE and AJIVE

estimates for more than two datasets. Multiset CCA (mCCA) [25] extends CCA to

multiple datasets by maximizing the sum of pairwise correlations. A CJIVE variant

on mCCA may provide novel insights into individual structure. A related issue is that

for more than two datasets, joint signal may be shared by a subset of datasets [15].

When combining more than two datasets, future research should examine optimal

ways of combining the canonical variables of the PC scores.
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Chapter 2

Probabilistic JIVE

2.1 Introduction

Data integration encompasses a large framework of statistical and other methods de-

signed to simultaneously explore and analyze multiple collections of features collected

from the same observational units e.g., patients. Such collections of data have become

nearly universal in many large- and moderate-size neuroimaging studies [32, 44, 39].

Statistical approaches to data integration date as far back as the 1930s, with the

introduction of Canonical Correlation Analysis (CCA) [20]. While CCA focuses on

exploring structure that is shared (i.e., joint) within two datasets, more recently

methods, such as JIVE (Joint and Individual Variance Explained) [27] add to the

data integration framework by teasing out structure that is unique (.i.e., individual)

within a collection of datasets.

The current manuscript develops a probabilistic, model-based method to imple-

ment JIVE, which integrates differing modes of data on a common set of subjects

in order to find low-rank approximations of the datasets’ joint variability as well as

low rank approximations of the variability unique to each dataset. Decomposition is

generally achieved in two steps, both of which involve singular value decompositions
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(SVD). JIVE has been used to explore the relationship between microRNA and gene

expression in patients with a fatal form of malignant brain tumors in Lock et al. [27].

This approach was also employed to integrate behavioral and imaging data from the

Human Connectome Project [63]. Several data integration methods have been devel-

oped in recent years. R.JIVE [36] is an iterative method that finds initial estimates

of both the joint and individual variability, and iteratively uses each to re-estimate

the other until convergence. AJIVE [8] uses matrix perturbation theory [56] to de-

velop a non-iterative method for JIVE analysis. More recently, Canonical JIVE, or

CJIVE, interprets joint scores (subject-level summaries of shared information) as a

linear combination of canonical variables that arise from canonical correlation anal-

ysis of PC scores (Chapter 1). Other data integration methods published in recent

years include robust-JIVE, which utilizes an L-1 norm minimization technique [42];

Common and Orthogonal Basis Extraction, which is similar to JIVE [66]; Structural

Learning and Integrative Decomposition, which allows for partially shared structure

[16]; Decomposition-based Canonical Correlation Analysis, a CCA method that de-

composes data based on the L2 space of random variables rather than Euclidean

space [47]; and Simulatneous Non-Gaussian Component Analysis, derived specifically

for neuroimaging data.

While much progress has been made in data integration studies, the previous

methods do not propose a statistical model. Interpreting their results can be quite

challenging, whereas a likelihood-based approach may improve efficiency and inter-

pretability. JIVE was formulated as a framework for decomposing data subspaces.

However, data subspaces do not easily translate into fields of application where JIVE

might be employed. For example, it is unclear what a JIVE decomposition means

for a single observation, whereas a model-based framework posits the observation is a

realization of a random variable. Moreover, the quantities of interest often discussed

in post-analysis (i.e., subject scores and variable loadings) must be derived from JIVE
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results and may require additional interpretation.

Principal Components Analysis (PCA) is closely related to JIVE: both methods

involve SVD of datasets and define subject scores and variable loadings as left and

right singular vectors, respectively, when the datasets have the form n × p. Proba-

bilistic PCA [52] formulates a statistical model for PCA in which subject scores are

normally distributed random effects and variable loadings are fixed parameters. We

generalize the PPCA framework to two datasets and develop a probabilistic approach

to JIVE decomposition. We call our proposed method Probabilistic JIVE or ProJIVE.

ProJIVE models sources of joint variation as subject random effects shared between

datasets and sources of individual variation as subject random effects unique to each

dataset. Such an MLE-based approach increases interpretability by directly mod-

elling quantities of interest and may be more efficient than a two-step decomposition

process that could introduce error at each step.

In this chapter, we propose a likelihood-based JIVE decomposition that may be

more statistically efficient than SVD-based approaches. We evaluate the effective-

ness of ProJIVE via simulation studies and an analysis of data obtained from The

Alzheimer’s Disease Neuroimaging Initiative (ADNI). Our simulation study shows

that ProJIVE estimates subspaces at least as accurately as R.JIVE and AJIVE,

whether or not our model assumptions requiring Gaussianity hold. In applying Pro-

JIVE to the ADNI data, we combine measures of brain morphometry (i.e., thick-

ness, surface area, and volume), and estimate their joint sources of variation. Results

demonstrate the utility of ProJIVE: joint subject scores strongly associate with exoge-

nous variables such as AD diagnosis and the presence of genetic marker apolipoprotein

E4 (ApoE4).

In section 2.2, we describe the ProJIVE model and derive an EM algorithm to

estimate its parameters. Section 2.3 conducts a simulation study comparing ProJIVE

to existing JIVE methods. Our analysis of ADNI data in section 2.4 exhibits the
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utility of ProJIVE in a real data setting. Finally, section 2.5 discusses our findings.

2.2 Methods

2.2.1 The original JIVE decomposition

Suppose features arising from the same set of n observational units (e.g., subjects)

are collected in different datasets, Xk for k = 1, . . . , K, such that each datablock

(i.e., dataset) has dimension n × pk. For simplicity, we focus on the the case K =

2 here. The intuition underlying JIVE states that each data matrix Xk can be

additively decomposed into a joint signal, Jk, and individual signal, Ak, and noise

Ek where E (Ek) = 0n×pk and entries are mutually independent. We use the notation

C(G) to denote the vector subspace spanned by the eigenvectors of G. The JIVE

framework assumes that joint and individual signals lie in orthogonal vector subspaces

(i.e. C(Jk) ⊥ C(Ak) for k = 1, 2); and that both joint signals lie in the same vector

subspace (i.e. for C(J1) = C(J2)). The vector subspaces of the individual signal

matrices can either be mutually orthogonal or assumed to have null intersection. The

formal model is given as (2.1):

Xk = Jk + Ak + Ek, subject to

C(Jk) = C(Jk′), C(Ak) ∩ C(Ak′) = 0, and JkI
>
k = 0

(2.1)

2.2.2 Probabilistic JIVE

We propose a probabilistic model by first writing the kth dataset as Xk = [x>1k, . . . ,x
>
nk]>,

where n is the number of subjects/observations in the study and each vector xik ∈ Rpk
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contains the pk features captured on subject i in datablock k. Without loss of gen-

erality, assume E(x>i1,x
>
i2)
> = 0. If the data are not mean 0, demean the columns

of each dataset prior to analysis. JIVE applications usually focus on factors of the

joint and individual signal matrices instead of the matrices themselves. To that end,

let Jk = ZWJK and Ak = BkWIK . We call the quantities Z = (z>1 , . . . , z
>
n )> and

Bk = (b>1k, . . . ,b
>
nk)> subject scores, which, respectively, represent subject-specific

summaries of the joint variance, and variance unique to the kth block (i.e. individual

variance). Loading matrices WJk,WIk represent variable-specific summaries of joint

and individual variance, respectively, for the kth data-block. Our model is given by

xik = WJkzi + WIkbik + εik,

where (z>i ,b
>
i1,b

>
i2)
> iid∼ N(0, I) and εik ∼ N(0, σ2

kI) for k = 1, 2. (2.2)

The dimension of each zi, rJ , describes the number of latent components giving

rise to the joint variability within each dataset. Similarly, the number of individual

components, rIk, equals the dimension of bik. Since the joint and individual scores are

assumed independent and the latent components are unobserved, careful considera-

tion must be given to choosing values for rJ and rIk. Hereafter, we refer to rJ and rIk

as joint and individual rank, respectively, and their sum rJ + rIk as the signal rank.

In many applications, joint subject-scores, {zi : i = 1, . . . , n}, or individual

subject-scores {bi1,bi2 : i = 1, . . . , n} are of particular interest as they can be used

a potential biomarkers, prodromes, or discriminating factors among subgroups, by

borrowing information from both datasets, as in Lock et al. [27]. On the other hand,

examination of the joint and individual variable loadings {WJk,WIk : k = i, 2} can

lead to discovery of multivariate relationships between features of each dataset or

unique patterns within datasets, as in Yu et al. [63] and Kashyap et al. [21].
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The distribution of the data, conditioned on the latent variables, is given by

xik|zi,bik ∼ N(WJkzi + WIkbik, σ
2
kIpk). (2.3)

By stacking the two data vectors from a subject, we rewrite (2.2) as

xi1

xi2

 =

WJ1

WJ2

 zi +

WI1

0

bi1 +

 0

WI2

bi2 +

εi1
εi2

 .

Then, the covariance of the JIVE model is

Cov

xi1

xi2

 =

WJ1W
>
J1 + WI1W

>
I1 + σ2

1I WJ1W
>
J2

WJ2W
>
J1 WJ2W

>
J2 + WI2W

>
I2 + σ2

2I

 . (2.4)

As the latent variables and errors follow marginal Gaussian distributions, we also

obtain a marginal Gaussian distribution for the data captured on subject i:

xi1

xi2

 ∼MVN(0,C), (2.5)

where C is given by equation (2.4) above. The corresponding log-likelihood of the

data is

L = −n
2
{(p1 + p2) log(2π) + log(|C|) + tr(C−1S)} (2.6)

where S = 1
n
Σn

i=1xix
>
i .

2.2.3 Model identifiability

Here we discuss identifiability of the parameters in our model. Specifically, the log-

likelihood is completely determined by the data and loading matrices, which are
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unique up to orthogonal rotations.

Lemma: Suppose K data blocks, Xk ∈ Rn×pk , all satisfy the model (2.2), and the

set of matrices {WIk,WJk : k = 1, . . . , K} maximize the likelihood function, L, given

in equation (2.6). Consider some orthogonal matrices OJ ∈ RrJ×rJ and Ok ∈ RrIk×rIk

and define W∗
Jk = WJkOJ and W∗

Ik = WIkOk. Then L(W) = L(W∗), where W

and W∗ are defined in 2.7.

Proof: The ProJIVE model relies on an underlying Gaussian distribution with

mean 0. Thus, the log-likelihood, is completely determined by the data covariance

matrix C and the data matrices themselves. Now, for any C 6= C̃, we have L(C) =

L(C̃) ⇐⇒ |C| = |C̃| and tr(C−1S) = tr(C̃−1S). This produces an equivalence class

of covariance matrices which return identical values for the log-likelihood.

By their definitions, O>J OJ = OJO>J = IrJ and O>k Ok = OkO
>
k = IrIk , which

implies W∗
JkW

∗
Jk
> = WJkW

>
Jk, W∗

IkW
∗
Ik
> = WIkW

>
Ik, and W∗

J1W
∗
J2
> = WJ1W

>
J2.

Then for any i = 1, . . . , n and k = 1, 2

Cov (xik) = WJkW
>
Jk + WIkWIk + σ2

kI

= W∗
JkW

∗
Jk
> + W∗

IkW
∗
Ik
> + σ2

kI.

Let W and W∗ be defined as

W =

WJ1 WI1 0

WJ2 0 WI2

 W∗ =

W∗
J1 W∗

I1 0

W∗
J2 0 W∗

I2

 (2.7)

Then C = WW> + D = W∗W∗> + D, where D =

σ2
1Ip1 0

0 σ2
2Ip2

. Thus,

L(W) = L(W∗), which defines an equivalence class of loadings matrices via right-

multiplication by an orthogonal matrix. When the joint and individual signals each

consist of only one component (i.e., rJ = rIk = 1), variable loadings are identifiable
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up to sign changes.

2.2.4 Expectation-Maximization Algorithm for ProJIVE

We now develop an Expectation-Maximization, or EM, algorithm to estimate the

variable loadings and error variances. Subject scores will be estimated using their

BLUPs (Best Linear Unbiased Predictors), given by E[θi|xi].

Consider the latent subject sores, {θi = (z>i ,b
>
i1,b

>
i2)
> : i = 1, . . . , n}, as “miss-

ing” data, so that the “complete” data include the latent scores and the observed

variables {xi = (x>i1,x
>
i2)
> : i = 1, . . . , n}. Using notation from (2.7), equation (2.2)

is equivalent to

xi = Wθi + Ei. (2.8)

Let p =
∑K

k=1 pk represent the total number of variables/features in both datasets

and r = rJ +
∑K

k=1 rIk the total number of latent components. Then, we can write

the complete-data likelihood as

LC(W,D) =− n

2
((p+ r) log(2π) + log(| det(D)|)

− 1

2

n∑
i=1

{
(xi −Wθi)

>D−1(xi −Wθi) + θ>i θi
}
.

(2.9)

Recall from section 2.2.3, Cov (xi) = C = WW> + D. Since the complete data

likelihood can be written as a product of Gaussian likelihoods, we also obtain a

multivariate normal distribution for the complete data vector (θ>i ,x
>
i )> ∼ N(0,Σ)

where,

Σ =

 Ir W>

W C

 .

Thus, the mean and covariance of the conditional latent scores are
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E(θi|xi) = W>C−1xi,

Cov (θi|xi) = Ir −W>C−1W,

E(θiθ
>
i |xi) = Ir −W>C−1W + W>C−1xix

>
i C−1W.

(2.10)

Define loadings and scores for block k as Wk = (WJk,WIk) and θik = (zi,bik),

and “selection matrices” Lk = (0pk×p1 . . . Ipk×pk . . .0pk×pK ) and Mk =

 IrJ×rJ . . .0 . . .0

0 . . . IrIk×rIk . . .0

.

With this parameterization, xik = Lkxi, θik = Mkθi, and LkW = WkMk, so that

the conditional expectation of the log-likelihood is

E{LC} =− n

2

(
(p+ r) log(2π) +

K∑
k=1

pk
2

log σ2
k

)

− 1

2

n∑
i=1

K∑
k=1

σ−2k

[
x>ikxik + W>

k WkE(θikθ
>
ik|xi)− 2x>i WkE(θik|xi)

]
+ E(θ>ikθik|xi).

(2.11)

Note that the first and second conditional moments of the scores take the form

E(θik|xi) = MkE(θi|xi) = MkW
>C−1xi,

Cov (θik|xi) = MkCov (θi|xi)M
>
k = Mk(Ir −W>C−1W)M>

k ,

E(θikθ
>
ik|xi) = Mk(Ir −W>C−1W + W>C−1xix

>
i C−1W)M>

k .

(2.12)

Differentiating the conditional expected log-likelihood with respect to the param-
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eters Wk, σ
2
k, then setting each equal to 0 yields closed form solutions given by

W̃k =

(∑
i

xiE(θ>i |xi)

)(∑
i

E(θikθ
>
i |xi)

)−1
,

σ̃2
k =

1

npk

∑
i

tr{LkL
>
k xix

>
i + WE(θikθ

>
ik|xi)W

> − 2WE(θik|xi)x
>
i }.

(2.13)

We initiate the EM algorithm with CJIVE estimates, described in chapter 1.

2.3 Simulation study

2.3.1 Simulations comparing JIVE methods

Simulation studies assessed the utility of ProJIVE by comparing its results to those

obtained via AJIVE and R.JIVE. The simulation studies examine two issues: 1) accu-

racy of estimates when the joint signal strength is low versus high, and 2) robustness

against model misspecification. We use a full factorial design with the following

factors:

1. The number of features in X2: with levels (a) p2 = 20 and (b) p2 = 200,

2. Joint Variation Explained in X1: with levels (a) R2
J1 = 0.05 and (b) R2

J1 = 0.5,

3. Joint Variation Explained in X2: with levels (a) R2
J2 = 0.05 and (b) R2

J2 = 0.5,

4. Data generating distributions: with levels (a) Gaussian scores and loadings

and (b) mixture of Gaussian joint scores and Rademacher loadings (joint and

individual).

The joint rank was 3 and individual ranks were 2 in all settings. A simulation study

with joint rank equal to 1 showed results similar to those described here. The sample

size, number of features in X1, and proportions of individual variation explained for

both data blocks were held constant at p1 = 20 and R2
I1 = R2

I2 = 0.25, respectively.
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Lastly, entries of the error matrices E1 and E2 were randomly drawn from a standard

Gaussian distribution.

Simulated data were generated in a manner similar to that described in 1.3.1 for

setting (a) of experimental factor 4, i.e. with subject scores and variable loadings

from Gaussian distributions. For setting (b) of experimental factor 4, joint subject

scores are drawn from a mixture of Gaussian distributions with unit variance: 20%

with mean −4, 50% mean 0, and 30% mean 4.

For each combination of settings, we performed 100 simulations using three meth-

ods of JIVE analysis: ProJIVE, AJIVE [8], and R.JIVE [27]. True signal ranks were

used as input for each method, since rank selection was not a target for evaluation

in the current study. The chordal norm between true and estimated parameters

(equation 1.4) evaluated the accuracy of estimated of each method.

2.3.2 Simulation Results

Figure 2.1 shows the chordal distances between true score/loading subspaces and their

estimates when simulated data conform to model assumptions, i.e. setting (a) of the

4th experimental factor. For these simulations, ProJIVE score subspaces distance

from the true score subspaces trended less than the same distances for R.JIVE and

AJIVE, especially in settings with p2 = 200. Variable loadings estimated via ProJIVE

were more accurate than those form AJIVE and R.JIVE in the low joint variation

settings (i.e., R2
J1 = R2

J2 = 0.05). Figure 2.2 shows chordal distances for simulations

in setting (b) of the 4th experimental factor. These results provide evidence that

ProJIVE is robust against failure to satisfy the Gaussianity assumptions in equation

(2.3). Although the chordal distances between estimated and true loadings are more

variable in these settings, ProJIVE estimates are closer to the truth, on average,

than those from other methods when the joint variation in at least one data block is

relatively small, i.e. R2
Jk = 0.05 for at least onek = 1, 2.
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Figure 2.1: Results of simulation studies with data generated from the ProJIVE
model using subject scores and variable loadings generated from standard Gaussian
distributions: (a and b) p2 = 20, (c and d) p2 = 200. Each sub-figure exhibits
boxplots of chordal norms for subject scores (a and c) and variable loadings (b and
d). Color key: Orange = ProJIVE. Light Blue = AJIVE. Green = R.JIVE.
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Figure 2.2: Results of simulation studies with data generated from the ProJIVE
model using joint subject scores generated from a mixture of Gaussian and individual
subject scores from standard Gaussian distributions. Variable loadings (joint and
individual) were generated from Rademacher loadings. Sub-figures (a and b) show
results when p2 = 20; in (c and d) p2 = 200. Each sub-figure exhibits boxplots of
chordal norms for subject scores (a and c) and variable loadings (b and d). Color
key: Orange = ProJIVE. Light Blue = AJIVE. Green = R.JIVE.
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To summarize, we find that ProJIVE performs at least as well at estimating

subject scores when compared to other methods. Estimation of both subject scores

and variable loadings was markedly than better AJIVE in nearly all settings. When

the number of variables in the second data block exceeded that of the first, joint

subject scores from ProJIVE were more accurate in settings with mixed proportions

of joint variation.

2.4 Joint Analysis of Brain Morphometry and Cog-

nition in ADNI Data

Our data application examines shared variability in cognitive/behavioral measures

and measures of brain structural integrity. Both sets of measures were residualized

after regressing out age and sex to avoid confounding. We applied ProJIVE, AJIVE,

and R.JIVE using total ranks. Joint ranks were chosen via the permutation test

outlined in section 1.2.1.

Specifically, the data used in preparation of this chapter were obtained from

the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.

edu). The ADNI is an ongoing, longitudinal study that uses neuroimaging tech-

niques, cognitive assessments, and other biomarkers (e.g., the number of ApoE4 sin-

gular nucleotide polymorphisms or SNPs) to better understand the natural history

of Alzheimer’s disease (AD) and improve the way that AD is diagnosed. After the

baseline visit, ADNI participants have follow-up visits every three months during the

first year, every six months during the second year, and annually after that. [32]

2.4.1 TADPOLE Challenge

The Alzheimer’s Disease Prediction Of Longitudinal Evolution (TADPOLE) Chal-

lenge (https://tadpole.grand-challenge.org/Home/) was an open competition

adni.loni.usc.edu
adni.loni.usc.edu
https://tadpole.grand-challenge.org/Home/
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to predict the onset of AD in the next phase of ADNI recruitment and retention,

ADNI-3. We exhibit the utility of ProJIVE with an application to data from n = 587

older adults participating in ADNI, obtained via TADPOLE. Although there are

data available for more than n = 1600 in the TADPOLE datasets, the data analyzed

herein comprise participants for whom the full battery of cognitive/behavioral assess-

ments was available. The battery includes 22 scales and sub-scales, given to those in

the ADNI-GO and ADNI-2 phases of the study. We limit our analysis to observa-

tions taken at the participants’ 6-month follow-up visit to minimize missingness and

maximize sample size.

Both ADNI-2 and ADNI-GO limit newly recruited participants to those between

55-90 years of age (inclusive) and require that each has an English- or Spanish-

speaking study partner to provide independent evaluation of patient functioning.

ADNI-GO inclusion criteria required that participants who rolled over from ADNI-1

were either diagnosed as cognitively normal (CN) or having mild cognitive impair-

ment (MCI) at baseline. Newly recruited participants in ADNI-GO were all diag-

nosed with early mild cognitive impairment (EMCI). ADNI-2 participants were ei-

ther rolled-over from ADNI-1/ADNI-GO or newly recruited participants diagnosed

as CN, EMCI, LMCI (late mild cognitive impairment), or AD. For the remainder of

this manuscript, we combine EMCI and LMCI participants as MCI and only use diag-

noses from the 6-month follow-up visit, as participants were diagnosed again at each

follow-up visit. Table 2.1 provides summary statistics for age, gender, and ApoE4

SNP counts stratified by diagnosis.

2.4.2 Dimension Reduction, Preprocessing, and Summary

Cognition

Cognitive and behavioral measures, hereafter cognitive measures or the cognition

dataset, included the following assessments:
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Table 2.1: Summary statistics for selected covariates of participants in ADNI-GO and
ADNI2.

AD (N=88) MCI (N=340) CN (N=159) Total (N=587) p value
Mean (S.D.) or N (%)

Age 0.006
74.0 (7.92) 71.5 (7.57) 72.8 (5.85) 72.2 (7.25)

Gender 0.006
Female 28 (31.8%) 150 (44.1%) 84 (52.8%) 262 (44.6%)

ApoE4 <0.001
0 21 (23.9%) 178 (52.4%) 111 (69.8%) 310 (52.8%)
1 45 (51.1%) 126 (37.1%) 46 (28.9%) 217 (37.0%)
2 22 (25.0%) 36 (10.6%) 2 (1.3%) 60 (10.2%)

• Clinical Dementia Rating - Sum of Boxes (CDR-SB) [31]

• Alzheimer’s Disease Assessment Scale - Cognition (ADAS) [40]

– The 11-item and 13-item scores used as separate variables

• The Mini-Mental State Exam (MMSE) [11]

• Rey’s Auditory Verbal Learning Test (RAVLT) [37, 38]

– Forgetting, Immediate, and Learning sub-scales used as separate variables

• Montreal Cognitive Assessment (MOCA) [33]

• Everyday Cognition (ECOG) [6]

– 7 pairs of sub-scales used: each pair includes a response from participant

(PT) and their study partner (SP)

Summary statistics for each cognition measure used in JIVE analyses are shown in

table 4. All cognitive assessments were associated with diagnosis. However, we note

that some cognitive measures were used to inform diagnoses (e.g. ADAS13, MOCA,

and MMSE) and, thus, are expected to correspond strongly with diagnosis.

The scree plot in figure 2.3 shows rank choices based on three methods: 1) choosing

the ‘elbow’ of the scree plot (rank=5), 2) the number of eigenvalues that account for at
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least 90% of total variability (rank=9), and 3) the number of eigenvalues accounting

for at least 95% of total variation (rank = 13). Our final analysis uses total rank of

rC = 5.

Brain Morphometry

Brain morphometry is used here as a catch-all to describe measures of volume, thick-

ness, and surface area of regions of interest (ROIs) within the brain. Cortical ROIs

in the TADPOLE dataset largely reflect those described in Desikan et al. [3], which

calls for 34 gray matter ROIs within each hemisphere. The morphometry contains

measures of cortical thickness (CT) and cortical surface area (SA) for each of ROI.

Inter-cranial volume is also included as a measure of cortical volume (CVol) for a total

of 69 measures. The volumes of subcortical ROIs (both gray matter and white matter

regions/structures) are labelled as white matter volumes (WMVol) in the TADPOLE

Challenge dataset. These include 17 subcortical gray matter structures, 16 of which

form eight hemispheric left-right pairs. The unpaired subcortical gray matter ROI

is the brainstem. There are 13 remaining WMVol measures which include the ven-

tricles, CSF, optic chiasm, corpus callosum, and others. In total, 245 measures of

brian morphometry are included. A complete list along with descriptive statistics are

included in Appendix 2.

Morphometry measures in TADPOLE were preprocessed using the cross-sectional

Freesurfer pipeline, which is documented and freely available online (http://surfer.

nmr.mgh.harvard.edu/). MRI scans were skull-stripped, corrected for B1 field bias,

and segmented into gray matter, white matter, and CSF. Next, image reconstruction

ensured correspondence to cortical surface models, i.e. gray-white matter boundary

and pial surfaces. Finally, cortical and subcortical regions were labelled and registered

to a standardized template via nonlinear transformations.

As with the cognition dataset, three methods were applied for choosing the total

http://surfer.nmr.mgh.harvard.edu/
http://surfer.nmr.mgh.harvard.edu/
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Figure 2.3: Scree plots shows which values were chosen as total signal ranks. Choices
depended the ‘elbow’ of the scree plot or by accounting for at least 80%, 90% ,or 95%
of total variance.

signal rank. With brain morphometry, two values were proposed as the ‘elbow’ of

the scree plot (rank = 10 or 22). The other two ranks were chosen to account for at

least 80% (rank = 53) and at least 95% (rank = 113) of total variability. Figure 2.3

shows the scree plot, each chosen rank and their corresponding percentage of total

variation. Our final analysis uses total rank of rB = 10.

2.4.3 Joint Subspace

Our permutation test for joint rank found rJ = 1 component in the subspace shared

by cognition and brain morphometry measures. Recall that section 2.2.3 shows model

parameters are identifiable up to orthogonal orthogonal transformation. For rJ = 1,

this result reduces to identifiability up to a sign flip for both joint subject scores and

joint variable loadings.

Subject Scores

We examined joint subject scores for their associations with 6-month diagnosis using

a multinomial logistic regression model. Z-transformed regression coefficients and p-
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values were zMCI = βMCI/SE(βMCI) = 6.45, p < 1−9, and zAD = βAD/SE(βAD) =

11.41, p < 1−10 for MCI vs CN and AD vs CN, respectively. The residual deviance

was 892.02, with edf = 4 effective degrees of freedom. These results indicate that the

joint subject scores capture a summary of the subspace shared between cognition and

brain morphometry and that subspace strongly associates with diagnoses. The graph

in figure 2.4 illustrates this point by showing that the spread of scores within each

diagnosis category has a distinctive center and inter-quartile range. The association

between joint subject scores and ApoE4 SNP counts was also statistically significant

with normalized coefficients zApoE4=1 = 5.53, p < 1−7, and zApoE4=2 = 4.54, p < 1−5,

for 1 vs 0 and 2 vs 0 SNP counts, respectively. The residual deviance was 1060.07,

edf = 4.

0.0

0.1

CN MCI AD
Diagnosis

Jo
int

 Sc
ore

s

Figure 2.4: Joint subject scores estimated via ProJIVE show separation by diagnosis
at 6-month follow-up.
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Variable Loadings

Joint loadings for a dataset exhibit the extent to which each measure in that dataset

contributes to the shared subspace. To aid interpretation, we normalized joint load-

ings to the interval [−1, 1], then sign-corrected to result in positive skewness. Of

particular interest are measures with normalized loadings near the interval bound-

aries. Therefore, we focus on the top 10 absolute cognition loadings and the 90th

percentile of absolute brain loadings. Figure 2.5 shows that ADAS and MMSE mea-

sures were most prominent among cognition loadings. Measures of cortical thickness

(CT) and (WMVol) were prominent in morphometry. The 90th percentile of loadings

occur mostly within left-right hemispheric pairs, within each type of morphometry

measurement. Of the five CVol measures present, however, three appear in the left

hemisphere only. No SA measurements were present in the 90th percentile.

The signs of the joint cognition loadings were consistent with the interpretation

of the related measures within each data block. For example, the scoring schema

for MOCA/MMSE have opposite interpretations for diagnosing AD when compared

to the scoring schema for ADAS/CDRSB. Brain loadings were also consistent with

associations between certain ROIs and AD in the literature. Both enlargement of

ventricles and atrophy of gray matter structures (e.g., hippocampus, amygdala) have

been shown to associate with increased risk of AD. [34, 13] Note that ADAS and

CDRSB load in opposite directions of MOCA and MMSE. Similarly, only the ven-

tricles (which are not gray matter structures) load in the opposite direction of the

remaining 90th of joint loadings.

2.5 Discussion

We propose ProJIVE, a method for conducting JIVE analysis that builds on the

CJIVE methodology presented in Chapter 1 and the well-known PPCA methodology
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joint brain loadings estimated via ProJIVE.
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[52] to provide a probabilistic model for the JIVE framework. Our proposed model

is conceptually consistent with JIVE and improves interpretation by explicitly mod-

elling parameters of interest. Results from simulations studies indicate that ProJIVE

improves estimation of joint subject scores when compared to AJIVE and R.JIVE

and estimation of variable loadings when compared to AJIVE.

We apply ProJIVE to examine shared information captured via measures of cogni-

tion and brain structure in a cohort of older adults participating in the ADNI. Results

of our analysis demonstrate ProJIVE’s utility as a data reduction method, which un-

covers multivariate relationships across datasets. Biological relevance was revealed

by the strong association between diagnoses and joint subject scores. Extreme vari-

able loadings show patterns of variation that are consistent with association found

in the literature between measures of cognition, brain morphometry, and Alzheimer’s

disease.

Our proposed method is limited in its increased computational costs due to appli-

cation of the EM algorithm to estimate model parameters. ProJIVE run-times varied

form twice to one-hundred times as long as R.JIVE and AJIVE run-times. Addition-

ally, ProJIVE does not currently consider rank selection. In the future, we consider

using the Bayesian Information Criterion (BIC) to inform rank choice, modifying the

model to allow for structure that is shared between multiple but not all datasets in

settings where K > 2, and using EM to incorporate variables with missingness. We

also plan to address inference and prediction, two aspects that are not addressed in

the current methodology.
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Chapter 3

Generalized Additive Models of

Ambulatory Blood Pressure

Profiles

While the previous two chapters focused on data integration methods, chapter 3 ex-

amines the use of another set of multivariate methods, namely generalized additive

models, or GAMs. Here we focus on the use of GAMs to model differences in ambula-

tory blood pressure profiles from a cohort of young to middle-aged Black women living

in the metropolitan area surrounding Atlanta, GA, based on psychosocial exposures.

3.1 Introduction

The U.S. has seen steady declines in age-specific cardiovascular disease (CVD) during

previous decades. Decreased smoking rates, the treatment and control of elevated

blood pressure, and an increased focus on preventative healthcare are leading factors

in the decline [12, 54]. Recently, however, rates of CVD mortality have begun to

plateau and even increase in some sub-populations. Black Americans (especially those

with hypertension) and adults aged 35-64 years are both populations at increased
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risk for CVD and related adverse events such as stroke, myocardial infarction, heart

disease, and death [61]. Simultaneously, CVD remains the leading cause of death

among women in the U.S. This burden disproportionately impacts Black women and

appears to persist after accounting for traditional risk factors such as diet, waist

circumference, and smoking [7]. These factors prompt additional research into the

sources of such disparities and strategies to alleviate them.

The impacts of psychological stress on blood pressure and other biological mecha-

nisms involved in CVD have been documented in laboratory settings and mechanistic

studies in real-life settings [24]. Specifically, stress has shown to be moderately as-

sociated with CVD risk in, mostly White, study populations. However, studies that

examine these associations within Black women are sparse [7]. The Mechanisms Un-

derlying Stress and Emotions (MUSE) in African-American Women’s Health Study

aims to address gaps in the current understanding of relationships between CVD risk,

psychosocial stressors, and sociodemographics. in Black women. The study follows a

cohort of young- to middle-aged black women living in the metropolitan area in and

around Atlanta, GA.

MUSE brings a comprehensive, state-of-the-art approach to examining CVD risk

using ambulatory blood pressure measurements (ABPM), carotid intima-media thick-

ness, and pulse wave velocity. ABPM has been recommended over blood pressure

(BP) measurements taken in a clinical setting for at least two reasons. First, the

so-called “white coat” effect can lead to elevated BP in people with anxiety about

doctors’ visits. Second, the ability to capture nighttime BP, which can be indicative

of increased CVD risk and other adverse outcomes [35]. In the MUSE Study, par-

ticipants are asked to wear an ABPM device for 48 hours. During which time, the

device will record BP and heart rate (HR) measurements every 30–minutes from 8

am - 6pm, and every 60-minutes. Our objective is to examine differences in these

profiles as functions of exposure to psychosocial stressors.
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Some previous analyses of ABP have used summary measures such as the mean/median

BP, 24-hour or daytime/nighttime, as the outcome in statistical models [55, 9, 1].

Others have used trigonometric models [14, 28]; generalized linear mixed models [45];

linear mixed models with orthonormal polynomials [5]; and smoothing techniques

[49, 4] to analyze the longitudinal profiles arising from ABPM. Streitberg et al. [50]

concluded that Fourier smoothing or spline smoothing, combined with a robust es-

timation, method were preferable for analysis of ABP when compared to summary

measures.

To that end, we use Generalized Additive Mixed Models (GAMMs) [59, 58] with

penalized cyclic cubic splines to develop a statistical model of ABPM that compares

two groups within the MUSE cohort, while controlling for important covariates, cir-

cadian rhythm, and within-person variability. Penalized splines enable one to balance

between model fit and smoothness. Other methods essentially model ABP as curves,

which constrains the shape of the estimated profiles. Additionally, using GAMMs to

model ABP profiles allows for inference on particular times of day during which ABP

differs between groups. This offers additional insight into the physiological impacts

of psychosocial stressors not available from conventional linear mixed models.

3.2 Ambulatory Blood Pressure in MUSE

The MUSE study follows a cohort of Black women ages 30-45 who live in the metro

area of Atlanta, GA. The study examines associations between biological indicators

of cardiovascular disease, socio-demographic characteristics, and exposures to social

and psychological stressors. Potential recruits were excluded if they had a history

of cardiovascular disease, diabetes, were pregnant or lactating, diagnosed with any

chronic illness known to influence atherosclerosis (e.g., autoimmune or chronic inflam-

matory diseases such as HIV/AIDS, lupus, rheumatoid arthritis, renal disease, liver
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disease), currently receiving treatment for psychiatric disorders, currently using illicit

drugs (i.e., marijuana, cocaine), or dealt with alcohol abuse. Women who reported

working overnight shifts were also excluded because of the known impact of shift work

on diurnal rhythms and ambulatory blood pressure. Of the 422 MUSE participants,

we examine the profiles of n = 408 with non-missing ABP and covariate data.

MUSE provided participants with a wearable electronic device that measures ABP

and heart rate (HR) at pre-determined intervals. They were asked to wear the device

for 48 hours and received financial compensation if at least 70% of the intended

measurements were attained. The cuff was scheduled to take ABP/HR readings once

every 30-minutes during “waking” or “daytime” (DT) hours (8 am - 9:59 pm) and

once per hour during “nighttime” (NT) hours (10 pm - 7:59 am).

We dichotomized participants into two groups for the present analyses based on

whether they held primary financial responsibility for their household, i.e., breadwin-

ners (BWs) and non-breadwinners (non-BWs). Financial responsibility was deter-

mined by the survey question: “Are you the primary breadwinner in your household?”

We consider participants who answer affirmatively to be financially responsible. BW-

status is a primary explanatory variable for the remainder of this manuscript.

3.3 Statistical Methods

We utilized the GAMM framework to estimate average 24-hour ABPM profiles for

each group and examined the profiles for time intervals over which they differed

significantly between groups. MUSE recorded ABP for each participant over a 48-

hour period. However, we consider a model of 24-hour ABP here. Our models assign

t = 0 to 12 pm on the first day that ABPM readings were obtained. The time of

subsequent readings are assigned values t ∈ (0, 1]. The resulting models treat each day

as a replicate and therefore borrow information across both days to use in estimating
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Figure 3.1: 48-hour ABPM data overlaid onto a 24-hour period for n = 408 partici-
pants in the MUSE study, stratified by BW status.

ABP profiles. The data are structured to preserve the order in which they were

recorded. The number of ABP readings per participant ranged [6, 88], with median

73 and interquartile range (66, 76). We examined results using all available data and

compared those to a dataset restricted to participants with at least 70% of intended

readings (Appendix 3). Graphical summaries of the intervals between readings are

also shown in Appendix 3. We consider differences in systolic BP (SBP) independent

from differences in diastolic BP (DBP).

Before examining associations between ABP and exposures, we build a ‘time

model’ to ensure a good fit to the overall mean SBP and DBP profiles. Additional

details about model selection and diagnostics are described in Appendix 3. The time
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model is given by

BPij = β0 + f(tij) + bij + εij, (3.1)

where BPij is the ith individual’s ith ABP reading, which occurs at time point tij ∈

[0, 24); f(·) = c1φ1(·) + · · · + ckφk(·) is a smooth function of time constructed using

penalized cyclic cubic splines of rank k = 58; φ1, . . . , φk and c1, . . . , ck are the basis

functions and coefficients, respectively, which build f(·); bij ∼ N(0, σ2
b ) is a subject-

specific random effect with autocorrelation-1 structure, e.g. Corr(bij, bij′) = ρ|j−j
′|;

and εij
iid∼N(0, σ2

e).

The components of f are determined by minimizing the objective function
∑

i,j{BPij−

f(tij)} + λ
∫
f ′′(x)2dx. The tuning parameter λ determines balance between the

smoothness of the estimated function f(·) and its fit to the observed data. Larger

values of λ lead to smoother estimates and smaller values result in a function which fits

the data more closely. We used the restricted maximum likelihood method (REML)

to estimate λ. This method treats the basis functions as random effects to select

λ. Basis coefficients and remaining parametric coefficients are then estimated using

penalized iteratively re-weighted least squares (PIRLS).

For a cyclic cubic spline, the basis functions have the form

φj(t) = 1 + (hjcj)
−1
{

(cj+1 − cj)t+
(tj+1 − t)3 − h2j(tj+1 − t)

6
Fjc

+
(t− tj)3 − h2j(t− tj)

6
Fj+1c

}
,

where t1, . . . , tk are ‘knots’ chosen to span the interval [0, 1], hj = tj+1 − tj, c =

(c1, . . . , ck), and Fj is the jth column of F = [0, D>(B−1)>, 0]>. Square matrices
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B and D have non-zero elements

Bi−1,i = Bi,i−1 = hi−1/6, Bi,i = (hi−1 + hi)/3,

Di−1,i = Di,i−1 = 1/hi−1, Di,i = −1/hi−1 − 1/hi, for i = 2, . . . , k − 1,

B1,k−1 = Bk−1,1 = hk−1/6, B1,1 = (hk−1 + h1)/3,

D1,k−1 = Dk−1,1 = 1/hk−1, and D1,1 = −1/h1 − 1/hk−1.

The exposure model incorporates our primary predictor variable, i.e., BW-status

Hereafter, BWi is an indicator variable with BWi = 1 for BWs and BWi = 0 for non-

BWs and βl are unknown parameters to be estimated. We examine differences be-

tween these groups by modelling the average ABP profile for each separately,indicated

by the functions fBW (·) and fnon−BW (·). The model is given by

BPij = β0 + β1BWi +BWifBW (tij) + (1−BWi)fnon−BW (tij) + bij + εij. (3.2)

Next we refine our analyses by adjusting for several time-invariant covariates such

as age, body mass index (BMI), depressive symptoms as measured by the Beck De-

pression Inventory (BDI) score [2], cigarette smoke, and others. For each pair of

models, we computed simulation-based 95% simultaneous confidence bands (CBs) for

each estimated average ABP curve. CBs are shown as the shaded areas in figures 3.2

-3.4. Simultaneous confidence bands are produced by sampling from the posterior

distribution of the GAMMs using 10,000 simulations.

Descriptive statistics were calculated for each covariate used in the fully adjusted

model and for mean daytime (DT) and nighttime (NT) values of ABP (table 3.1).

We examined each of these for associations with BW-status, using chi-square tests for

categorical covariates and two sample t-tests for continuous variables. All statistical

analyses were performed and plots created using RStudio 1.3 [41]. The type-I error

rate α = 0.05 was used to indicate statistical significance. GAMM models were fit
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Figure 3.2: Fitted ABP profiles from the ’Stage 1’ time model.

using the mgcv package [60] and visualization performed with the package itsadug

[53].

3.4 Results

Table 3.1 shows that average DT and NT ABP were significantly associated with

BW-status. ABP for BWs was approximately 3.5/2 mm Hg (systolic/diastolic) higher

than non-BWs, on average during both daytime and nighttime hours. Income, partner

status, and family size were also significantly associated with BW-status.

Figure 3.2 shows the fitted values from our time model, and importantly, that

the time model captures the non-linear nature of the ABP profiles. The dip in the

profiles reflects the diurnal patterns seen in the raw profiles (figure 3.1).
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Table 3.1: Summary statistics for selected variables, stratified by BW-status, show a
statistically significant association between DT/NT ABP and BW-status

Breadwinner Status
No (N=154) Yes (N=254) Total (N=408) p value

Mean (SD) or Count (%)
DT SBP 0.005

119.3 (11.3) 122.8 (12.7) 121.5 (12.3)
NT SBP 0.005

109.3 (11.3) 112.7 (11.9) 111.4 (11.7)
DT DBP 0.020

76.3 (7.8) 78.4 (9.4) 77.6 (8.8)
NT DBP 0.006

67.1 (7.9) 69.5 (8.9) 68.6 (8.6)
BMI 0.746

32.5 (8.1) 32.7 (8.0) 32.6 (8.1)
Age 0.153

37.5 (4.4) 38.1 (4.1) 37.9 (4.3)
BDI Score 0.744

6.1 (7.0) 5.8 (6.8) 5.9 (6.9)
Family Size <0.001

4.3 (1.8) 3.1 (1.6) 3.6 (1.8)
Current Smoking 0.774

No 139 (90.3%) 227 (89.4%) 366 (89.7%)
Yes 15 (9.7%) 27 (10.6%) 42 (10.3%)

Anti.HTN 0.100
No 134 (87.0%) 205 (80.7%) 339 (83.1%)
Yes 20 (13.0%) 49 (19.3%) 69 (16.9%)

Partner Status <0.001
No partner 54 (35.1%) 203 (79.9%) 257 (63.0%)
Partnered 100 (64.9%) 51 (20.1%) 151 (37.0%)

Education 0.076
H.S. or less 49 (31.8%) 78 (30.7%) 127 (31.1%)
Some college 41 (26.6%) 46 (18.1%) 87 (21.3%)
College or higher 64 (41.6%) 130 (51.2%) 194 (47.5%)

Income <0.001
<35k 20 (13.0%) 79 (31.1%) 99 (24.3%)
35k-50k 25 (16.2%) 60 (23.6%) 85 (20.8%)
50k-75k 34 (22.1%) 57 (22.4%) 91 (22.3%)
>75k 69 (44.8%) 56 (22.0%) 125 (30.6%)

Refused or Don’t
Know

6 (3.9%) 2 (0.8%) 8 (2.0%)
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In figure 3.3 the top panels exhibit estimated curves from the exposure model.

Consistent with the differences in means (table 3.1), the fitted GAMM results show

that BWs have higher systolic and diastolic ABP, on average, compared to non-BWs.

The bottom row exhibits the differences in ABP profiles over time. Dotted vertical

lines and colors overlaid on the x-axes delineate time intervals during which BWs’

ABP was significantly higher than non-BWs. Intervals during which systolic ABP

differed significantly between groups in the exposure model (figure 3.3) were much

wider than those from the covariate-adjusted model (figure 3.4).

The exposure model shows that, marginally, BWs on average had significantly

higher systolic ABP approximately 8:15 am - 12 pm and 7:30 pm - 11 pm. Dias-

tolic ABP was higher for BWs during the hours of approximately 8:45 am - 10:45

am and for a short time around 10 pm. After adjusting for covariates, significant

fixed-effect predictors of SBP were BW-status (β(SE) = 3.0(1.33), p = 0.024), BMI

(β(SE) = 0.18(0.07), p = 0.018), Family Size (β(SE) = −0.81(0.35), p = 0.020), and

use of anti-hypertensive medication (β(SE) = 8.5(1.58), p < 0.001). Time intervals

of significantly higher systolic ABP occurred around 9 am - 11 am and during a short

period around 10 pm. Significant fixed-effect predictors of DBP were BW-status

(β(SE) = 2.5(0.98), p = 0.010), Partner Status (β(SE) = 2.2(1.08), p = 0.039), and

use of anti-hypertensive medication (β(SE) = 6.8(1.17), p < 0.001). Time intervals

for higher DBP in breadwinners were about the same as those for SBP.

We used the same models to analyze data from participants who completed at least

70% of the intended ABP readings. This restricted the sample to observations from

n = 365 women. There was no statistically significant difference in the proportion of

BWs versus non-BWs with fewer than 70% of the intended readings. Findings in this

group were similar to those in the overall sample for ABP profiles (Appendix 3.3).
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Figure 3.3: Fitted ABP profiles from the exposure model (top row) exhibit the es-
timated average ABP profiles for BWs vs non-BWs. Estimated difference curves
with simultaneous confidence bands (bottom row) show time intervals during which
average ABP is significantly different for the two groups.
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Figure 3.4: Fitted ABP profiles from the ’Stage 3’ (covariate-adjusted) model (top
row) exhibit the estimated average ABP profiles for BWs vs non-BWs. Estimated dif-
ference curves with simultaneous confidence bands (bottom row) show time intervals
during which average ABP is significantly different for the two groups.
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3.5 Discussion

We proposed a model of mean ABP profiles for BWs versus non-BWs using recent sta-

tistical methodology to capture curvilinear relationships in a regression setting. Previ-

ous statistical analyses of ABP have used summary measures, which precludes detect-

ing differences within time intervals, or used shape-constrained parametric methods,

which may not accurately capture the diurnal patterns of ABP. The proposed GAMMs

provide additional nuance when compared to the use of summary measures. It allows

for detection of time intervals during which average ABP differed significantly. While

other methods can also achieve this goal, many do not allow the flexibility of GAMMs

as they constrain the profile shape to be piece-wise linear, polynomial, or sinusoidal.

The penalized spline approach used in GAMM avoids this issue.

Results confirm that the differences in ABP profiles are mostly time-invariant, as

indicated by the differences in means. However, results from analyses of mean do not

capture the additional difference that occurs specifically during late morning hours.

Specifically, the largest differences between BWs and non-BWs occurred during morn-

ing hours. Mornings surges in BP have been identified as a potential risk factor for

adverse cardiovascular events which occur in the morning [28]. Results suggest that

interventions which aim to dampen mornings surge might be helpful for Black women

BWs.

Our study examines relationships between BW-status and average ABP profiles

but does not model individual ABP profiles. BP is quite variable from person to

person and within each person. Including only subject-specific random intercepts,

not subject-specific smooths of ABP profiles, misses a substantial source of variability.

Results presented here apply to the averages BWs and non-BWs. More modelling is

needed to address the expected difference between individuals.
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Appendix 1: Canonical JIVE

This appendix provides additional details and supplementary information about in-

terpreting AJIVE analysis by using canonical correlation analysis on the estimated

signal matrices (i.e. CJIVE). In Section A, we describe the AJIVE and R.JIVE al-

gorithms for model estimation and the equivalence between AJIVE joint scores and

CJIVE joint scores. In Section B, additional information about and results from

the simulation study described in the main article are provided. Section C presents

additional information related to the JIVE analysis of HCP data in the main article.

CJIVE Appendix 1.1: Statistical Methodology

Here we outline the algorithms of R.JIVE and AJIVE. Cursory descriptions of each

method are given in the main article. R.JIVE employs permutation tests to estimate

the joint and individual signal ranks within each of the datasets analyzed. Principal-

angle analysis (PAA) is used in the AJIVE method to determine joint rank. Scree

plots are recommended for choosing total rank in AJIVE, although other options are

explored in the main article.

CJIVE Appendix 1.1.1: JIVE Methods

For a collection of K data matrices JIVE decomposes each matrix Xk, k = 1, . . . , K

into a joint signal, Jk, individual signal, Ak, and additive noise Ek. Let Xk ∈ Rn×pk ,
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where n is the number of subjects and pk the number of features or variables. Let

C(G) define the column space of a matrix A, i.e., C(G) = {v ∈ Rn : ∃t ∈

Rp such that v = Gt}.

Xk = Jk + Ak + Ek, where

C(Jk) = C(Jk′), for all k, k′ ⊂ 1, . . . , K,

C(Jk) ⊥ C(Ak) for k = 1, . . . , K,

E(Ek) = 0n×pk .

(3)

Let rk denote the signal rank of the kth dataset, rJ denote the joint rank, and rIk

denote the rank of the individual subspace. Because we assume that the joint and

individual signals are orthogonal, rk = rJ + rIk. In this study, we focus on K = 2.

CJIVE Appendix 1.1.2: R.JIVE Estimation

In addition to the assumptions in (3), R.JIVE requires the error matrices Ek to have

independent entries. In Lock et al. [27], two automated methods were proposed for

choosing the joint rank. One of these is a permutation test; the other, a strategy

that utilizes Bayesian Information Criterion (BIC). In the case that either of the

automated rank choice methods is used, R.JIVE will also compute the mean squared

error (MSE) between consecutive estimates of the total signal matrices Gk = Jk +Ak

in an iterative process which simultaneously chooses ranks and estimates signals.

Algorithm:

1. Calculate the centered/scaled matrices X1,cs, X2,cs:

Xk,cs = ||Xk||−1F (In − n−11n1
>
n )Xk, k = 1, 2

where || · ||F denotes the Frobenius norm and 1n is an n× 1 vector of ones.
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2. Estimate ranks rJ , r1 and r2 with nperm permutations and significance level α ∈

(0, 1) (e.g., nperm = 100 and α = 0.05):

(a) Estimate rJ :

i. Let λj be the jth singular value of X = [X1,cs,X2,cs] for j = 1, . . . ,min(n, p1+

p2)

ii. Permute the rows within each Xk,cs and calculate the singular values

of the resultant concatenated matrix. Repeat nperm times.

iii. Let λpermj be the 100(1−α) percentile calculated from the nperm sam-

ples of the jth singular value from permuted data.

iv. Choose rJ to be the largest integer such that ∀j ≤ rJ , λj > λpermj .

(b) Estimate r1 and r2:

i. Let λjk be the jth singular value of Xk for k = 1, 2 and jk = 1, . . . ,min(n, pk)

ii. Permute the rows separately within each column of Xk and calculate

the singular values of the resultant matrix. Repeat nperm times.

iii. Let λpermjk
be the 100(1 − α) percentile among the jthk singular values

after permutation.

iv. Choose rk to be the largest integer such that ∀jk ≤ rk, λjk > λpermjk

3. Use the estimates of rJ , r1, and r2 found with the permutation tests above to

estimate the signal matrices J = [J1,J2] and G = [A1,A2]. Loop until M̂SE =∑n
k=1

∑p1+p2
l=1

(Ĝnew[k,l]−Ĝold[k,l])2

n(p1+p2)
is less than a given threshold:

(a) Initialize XJ = [X1,cs,X2,cs] and estimate Ĵ as a rank rJ SVD of XJ .

Ĵ = UrJDrJV>rJ = [Ĵ1, Ĵ2],

(b) For k = 1, 2, set X̂k = Xk,cs − Ĵk and estimate Âk with a rank rk SVD of
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(In −UrJU>rJ )X̂k

Âk = UrIkDrIkV
>
rIk
.

(c) Set X̂J = [X1,cs,X2,cs]− [Â1, Â2]

(d) Use procedure (i) in step (b) above to re-estimate rJ using the concatenated

matrix X̂J from step iii. Similarly, re-estimate r1 and r2 by procedure (ii)

in step (b) above using the the matrices Xk,cs − Ĵk, k = 1, 2.

(e) Repeat (c) loop with XJ = X̂J

CJIVE Appendix 1.1.3: AJIVE Estimation

AJIVE imposes additional constraints on the model given in equation (3). The error

matrices Ek both follow an isotropic error model, which implies that the energy of

projection is invariant to the direction in both row and column spaces. The standard

multivariate Gaussian distribution and the multivariate student t-distribution with

shape matrix equal to the identity matrix are both examples of isotropic models ([8]).

Furthermore, individual signals’ vector subspaces have null intersection: A1∩A′2 = 0.

The number of joint components rJ (i.e. the joint rank) is determined using

principal-angle analysis (PAA). Define Uk as the orthonormal left singular vectors of

matrices Gk, k = 1, 2. Then we can write an SVD of their inner product as U>1 U2 =

U cos(Θ)V>, where Θ = (θ1, . . . , θq) is the vector of principal angles between C(U1)

and C(U2), and U,V are the left- and right- singular vectors, respectively of the inner

product U>1 U2. The following theorem and subsequent lemma are used to develop

a bound on the angle between two common subspaces perturbed by isotropic error,

which is complimented by a random direction bound.

Theorem .0.1 ([56]). For k = 1 . . . K, let θk be the largest principal angle between

the subspace spanned by G and that spanned by G̃k = Gk + Ek and denote the SVD



64

of G̃k = ŨkD̃kṼ
>
k . Then

sin(θk) ≤ max(||EkṼk||, ||E>k Ũk||)
σmin(D̃k)

,

where σmin(D̃k) is the minimal non-zero singular value of G̃k

Lemma, Feng et al. [8] Let φ be the largest principal angle between two subspaces

that are each a perturbation of the common column space within C(G̃1) and C(G̃2).

Suppose θ1, θ2 are the respective angles for G̃1, G̃2 from Theorem .0.1. Then φ is

bounded by

sin(φ) ≤ sin(θ1 + θ2).

Below we outline the algorithm employed by the AJIVE method.

1. Data blocks are centered,

Xk,c = (In − n−11n1
>
n )Xk, k = 1, 2

2. Let rk = rJ + rIk represent the total signal rank of data matrix Xk,sc, (k = 1, 2).

Take the Singular Value Decomposition (SVD) of each data block and obtain

Xk = UkDkV
>
k . Concatenate the first rk left-singular vectors of both datasets

to form J = [Ũ1, Ũ2] ∈ Rn×(r1+r2).

3. Principal Angle Analysis:

(a) Denote the residual left singular vectors from each SVD in step 2 above

as U⊥k ∈ Rn×(min(pk,n)−rk). Similarly, let V⊥k ∈ Rpk×(min(pk,n)−rk). be the

residual right singular vectors from the SVDs in step 1 above.

(b) To estimate the unobserved values ||EkṼk|| and ||E>k Ũk||, sample from di-

rections orthogonal to the signal space and project the data block onto
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those sampled directions. For each k, sample rk non-zero columns with-

out replacement from Ũk, denoted U∗k and compute ||X>k U∗k||. Perform

this sampling and computation 1000 times to approximate the distribu-

tion of ||E>k Ũk||. Similarly, approximate the distribution of ||EkṼk|| with

a random sampling of ||XkV
∗
k|| values.

(c) (Wedin bound) Obtain a full-rank, min(n, r1 + r2), SVD of J ≈ UJDJV>J .

Let dJ,i represent the ith singular value of J; i.e. the ith of entry of diag(DJ).

Then the Wedin bound is estimated by the distribution of

2−
2∑

k=1

(
max(||XkU

∗
k||, ||X>k V∗k||)

σmin(D̄k)

)2

,

where sampled values of ||X>k U∗k|| and ||XkV
∗
k|| are used to approximate

the unobserved values ||EkŨk|| and ||E>k Ṽk||, respectively, as in the pro-

cedure explained in step (b) above. The 95th percentile is used as the

bound.

(d) (Random direction bound) The random direction bound aims to assess

whether angles between directions in the proposed signal space correspond

to random directions driven by noise. The distribution of principal angles

generated by random subspaces is simulated as follows. Each Ũk is right-

multiplied by an independent orthonormal matrix to obtain U∗∗k . The 95th

percentile of replicates of the principal angle derived from the maximum

eigenvalue of [U∗∗1 ,U
∗∗
2 ] gives the second bound. The joint rank rJ is then

chosen as the number of eigenvalues dJ,i exceeding both bounds.

4. The first rJ left singular vectors of J (corresponding to the rJ singular values

obtained in PAA) represent a basis of the data matrices’ estimated joint column

space. Use them to form an orthogonal projection operator, MJ = UJU>J , and

project each dataset onto the estimated joint column space spanned by UJ to
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obtain estimates of the joint signal matrices.

Ĵk = MJXk,c.

5. Lastly, the column space for each individual signal is found by computing an

orthogonal projection operator onto the orthogonal complement of the joint

column space with respect to the data’s column space. The estimated individual

signals are then given by:

Âk = (UkU
>
k −MJ)Xk,c.

CJIVE Appendix 1.1.2: Post AJIVE/R.JIVE Representations

As discussed in [8], joint scores and loadings can be computed to represent data-

specific information or common information across datasets.

Let Ĵk(R), Âk(R) and Ĵk(A), Îk(A), for k = 1, 2 represent the signal matrices esti-

mated using the R.JIVE and AJIVE methods, respectively. Take their SVDs:

Ĵk(·) = UĴk(·)
ΣĴk(·)

V>
Ĵk(·)

, Îk(·) = UÎk(·)
ΣÎk(·)

V>
Îk(·)

.

Estimates of data-specific joint and individual subject scores are defined as UĴk(·)
ΣĴk(·)

,UÎk(·)
ΣÎk(·)

,

respectively. Data-specific joint and individual variable loadings are VĴk(·)
,VÎk(·)

, re-

spectively.

For AJIVE estimates, define C(A) = [U1,U2] as in section A.1.1. For R.JIVE, let

C(R) = [Ĵ1(R), Ĵ2(R)]. Compute the rank rJ SVD of C(·):

C(·) = UJ(·)ΣJ(·)V
>
J(·)
.

The common normalized joint scores are defined as UJ(·) . The common normalized
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variable loadings for each dataset are given by J>k(·)UJ(·) .

CJIVE Appendix 1.1.3: Proof of Equivalence between AJIVE

and CCA Estimators

The main article formalizes the result showing equivalence between CCA estimators

of joint subject scores and joint subject scores derived from AJIVE in the following

theorem:

Theorem .0.2. Let the columns of U1 and U2 represent orthonormal bases for the

signal subspaces of Rn for X1 and X2, respectively. The ith joint subject score from

AJIVE analysis, uJi, is given by the ith column of UJ, the left singular vectors of

C = [U1,U2] with singular value σJi. Let ω1,i and ω2,i, represent the canonical

loadings of the signal subspaces, respectively. Then

uJi =
1√
2σJi

(U1ω1,i + U2ω2,i).

That is, AJIVE estimates of joint subject scores are equivalent to a scaled average of

the jth canonical variates of the signal subspaces.

Proof. Let Ĝk = UkΣkV
>
k , where Ĝk is the estimated signal matrix for the kth

dataset with rank = rk < min(n, pk). Note that Uk represents the scores from the

PCA of the kth dataset. We first consider the first canonical variables. Define the

first canonical loadings of the PC scores:

{ω̂1,1, ω̂2,1} = arg max
ω1∈Rr1 ,ω2∈Rr2 ,||ω1||=||ω2||=1

ω>1 U>1 U2ω2.

Since U1 and U2 are both column centered and orthonormal, their variance-covariance

matrices are given by Σ11 = U>1 U1 = Ir1 and Σ22 = U>2 U2 = Ir2 , respectively, where

Im represents the m×m identity matrix. Similarly, their covariance is given by Σ12 =
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U>1 U2. Mardia et al. [29] provides a closed form solution for the loadings ω̂1,1, ω̂2,1 as

the first left and first right singular vectors, respectively, of Σ
−1/2
11 Σ12Σ

−1/2
22 = U>1 U2,

up to sign. That is, ω̂1,1 is equivalent to the first left singular vector of U>1 U2, and

ω̂2,1 is equivalent to the first right singular vector, where their signs are chosen so that

the singular values of U>1 U2 are all positive. Then the canonical variables are ĉ1,1 =

U1ω̂1,1 and ĉ2,1 = U2ω̂2,1, and note ||ĉ1,1|| = 1. Define the first canonical correlation

ρ1 = ĉ>1,1ĉ2,1. Consider the matrix of concatenated PC scores [U1,U2] ∈ Rn×r1+r2 .

Then define

â1 = [U1,U2][ω̂
>
1,1, ω̂

>
2,1]
> = ĉ1,1 + ĉ2,1.

Next we show that â1 is equivalent to the JIVE solution by showing â1 is the first left

singular vector of C = [U1,U2] up to scaling. Let ω∗ = [ω̂>1,1, ω̂
>
2,1]
>. Since ω̂1,1 and

ω̂2,1 are left and right singular vectors of U>1 U2, respectively, we have U>1 U2ω̂2,1 =

ρ1ω̂1,1 and U>2 U1ω̂1,1 = ρ1ω̂2,1. Additionally, C>C =

 I U>1 U2

U>2 U1 I

 = I +

 0 U>1 U2

U>2 U1 0

 . Thus,

C>Cω∗ = ω∗ +

U>1 U2ω̂2,1

U>2 U1ω̂1,1


= (1 + ρ1)ω

∗.

Hence, ω∗/||ω∗|| = ω∗/
√

2 is the first normalized eigenvector of CTC, which is the

first right singular vector of C. Let C = UJΣJV
>
J be the SVD of C, wherein the

first rJ columns of UJ are the joint components from the JIVE decomposition and

ΣJ has diagonal elements σj. Let ûJ,1 be the first joint component. Note the first
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row of V>J is equal to ω∗. Then

C
ω∗√

2
=

1√
2

[U1,U2][ω̂
>
11, ω̂

>
21]
>

=
ĉ1,1 + ĉ2,1√

2

= σ1ûJ,1

=
√

(1 + ρ1)ûJ,1

which corresponds to the first joint component form the AJIVE decomposition and

therefore leads to the following equivalence between common scores and canonical

variables:

ûJ,1 =
ĉ1,1 + ĉ2,1√

2(1 + ρ1)
.

A similar argument applies to the other joint components.

CJIVE Appendix 1.2: Simulation study

A simulation study was conducted according to a 23 full factorial design, in order to

examine the effectiveness of AJIVE and R.JIVE for estimating the JIVE model and

our proposed method for estimating the number of joint components the JIVE model.

In order to achieve the pre-described proportions of variance explained via joint

and individual signals, we derive numerical solutions to:

R2
Ik =

c2ktr(AkA
>
k )

c2ktr(AkA>k ) + 2cktr(AkE>) + d2ktr(JkJ>k ) + tr(EkE>k ) + 2dktr(JkE>k )

R2
Jk =

d2ktr(JkJ
>
k )

d2ktr(JkJ>k ) + 2dktr(JkE>) + c2ktr(AkA>k ) + tr(EkE>k ) + 2cktr(AkE>k )
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Web Figure 5: Total rank estimates from R.JIVE. The sub-figures (a) and (b) each
exhibit results for rJ = 3, which implies that total ranks are r1 = r2 = 5.

Web Table 2: Computation Run-times (in minutes)
R.JIVE CJIVE-Over CJIVE-Oracle AJIVE-Over AJIVE-Oracle

R2
J2 R2

J2 p2 Mean (S.D.)
0.05 0.05 200 0.4 (1.18) 0.2 (0.05) 0 (0) 1.7 (0.45) 0 (0.01)
0.5 0.05 200 6.6 (3.18) 0.1 (0) 0 (0) 1.2 (0.02) 0 (0)
0.05 0.5 200 5 (2.36) 0.1 (0) 0 (0) 1.2 (0.03) 0 (0)
0.5 0.5 200 1.5 (2.41) 0.1 (0.01) 0 (0) 0.9 (0.06) 0 (0)
0.05 0.05 10000 4.2 (0.75) 0.3 (0.09) 0.1 (0.01) 21.1 (2.95) 0.5 (0.06)
0.5 0.05 10000 11.1 (4.64) 0.2 (0.03) 0.1 (0.01) 21.4 (2.45) 0.5 (0.07)
0.05 0.5 10000 8.3 (3.88) 0.3 (0.01) 0.1 (0.01) 18 (1.69) 0.5 (0.03)
0.5 0.5 10000 7.2 (2.79) 0.2 (0.03) 0.1 (0.02) 17.5 (2.17) 0.5 (0.08)

Accuracy of joint rank selection is discussed and examined closely in the primary

manuscript. However, R.JIVE also chooses individual signal ranks, and therefore

total ranks. Web Figure 5 exhibits the total ranks chosen via R.JIVE, which are

nearly always accurate when R2
J1 = R2

J2 = 0.5. When p2 = 10, 000 (sub-figure (a)),

total rank selection is most accurate for cases with R2
J2 = 0.5. Notably, total ranks

are nearly always underestimated when joint variation is small in both datasets.

Computation times (Web Table 1) show that CJIVE Computes solutions between

twice and 100 times as faster than AJIVE or R.JIVE.
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Web Figure 6: Mean functional connectivity (Fisher z-transformed correlations, left)
and structural connectivity (log streamline counts, right) for the n = 998 HCP par-
ticipants with data from both DTI and rs-fMRI available.

Web Table 3: Demographics of HCP Imaging Data
Descriptive Statistics (n = 998)

Age Sex Fluid Intelligence (gF)
21-25 : 218 (21.8%) Female: 532 (53.3%) Mean: 17.04
26-30 : 429 (43.0%) Male: 466 (46.7%) S.D : 4.70
31+: 351 (35.2%) Median: 18.0

CJIVE Appendix 1.3: Human Connectome Project

The main article uses JIVE to simultaneously examine functional connectivity aris-

ing from resting-state fMRI scans and structural connectivity from diffusion-weighted

MRI scans in the Human Connectome Project. Specifically, we used resting-state

scans of the name rfMRI REST1 LR Atlas hp2000 clean.dtseries.nii with subject-

specific Desikan labels from <subj>.aparc.32k fs LR.dlabel.nii. Additional details

are in the main manuscript. Here we present the images of mean SC and FC net-

works (Web Figure 6) and a summary of demographics (Web Table 2).
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CJIVE Appendix 1.3.1: Dimension Selection

Total signal ranks (the total number of joint and individual components) were chosen

using three methods: 1) “elbow” method of scree plot, 2) the number of eigenvalues

which account for 95% of the sum of eigenvalues, and 3) R.JIVE permutation tests.

Joint ranks were also chosen using with three methods: 1) PAA in AJIVE, 2) the per-

mutation test presented above in R.JIVE, and 3) canonical correlation permutations,

presented in the main article. Both the total signal rank chosen for each dataset and

the joint signal rank are shown in the main article. It is notable that the joint rank

chosen by AJIVE and CJIVE depends on the total rank chosen initially. In practice,

more total signal components generally leading to fewer joint signal components.

CJIVE Appendix 1.3.2: CJIVE Variable Loadings

Web Figure 3 displays heatmaps and L1 norms of loadings onto the second component

of the joint subspace for each data block. The second joint component was not sta-

tistically associated with fluid intelligence (gF). However, the hemispheric symmetry

of the 75th percentile of the loadings’ L1 norms reveal biological relevance.

Web Figure 4 displays individual loadings for FC. The first component’s largest

values occur for edges connecting cortical regions, while the largest values for com-

ponents 2 and 3 occur for edges connecting cortical and subcortical ROIs.

Individual loadings for SC, displayed in Web Figure 5, are much more sparse than

loadings onto the first component of the joint subspace.
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Web Figure 7: (a) Variable loadings for the second component of the joint signal
space estimated by CJIVE and displayed on heatmaps. Sub-figure (b) displays the
top 25th percent of L1 norms of the variable loadings related to each cortical ROI for
joint component 1. L1 norm for an ROI equals the sum of the absolute values of the
rows of (a), excluding subcortical regions.
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subspace.



74

C
om

p. # 1
C

om
p. # 2

C
om

p. # 3
C

om
p. # 4

0e+00
1e+05
2e+05
3e+05

0e+00
1e+05
2e+05
3e+05

0e+00

1e+05

2e+05

3e+05

0
50000

100000
150000
200000L1

 N
or

m
 o

f L
oa

di
ng

 R
ow

s

Web Figure 9: Heatmaps of variable loadings for each component of the SC individual
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Appendix 2: Probabilistic JIVE

This appendix provides additional details and supplementary information about from

the analyses conducted in Chapter 2.

ProJIVE Appendix 2.1: Summary Statistics for Brain

Morphometry and Cognition/Behavior

Table 4 provides summary statistics for the cognitive measures that were included

in our ProJIVE analyses of TADPOLE/ADNI data. Tables5 - 8 provide summary

statistics for the measures of brain morphometry that were used. These tables are split

by the type of measure being presented. Respectively, tables5 - 8 present summaries

for cortical thickness, cortical volume, cortical surface area, and volume of subcortical

and white-matter structures. For all five tables, we computed the mean and standard

deviation for the entire sample and stratified by diagnosis. P-values are from an

ANOVA that tests for differences in each measure by diagnosis, ignoring the ordinal

nature of the diagnosis variable.



76

Table 4: Summary statistics for Cognition Measures.
AD
(N=88)

MCI
(N=340)

CN
(N=159)

Total
(N=587)

Cognition Score Mean (SD) p value
CDRSB 4.8 (1.84) 1.4 (0.97) 0.1 (0.33) 1.6 (1.79) <0.001
ADAS11 20.4 (6.52) 9.1 (4.69) 5.5 (2.76) 9.8 (6.60)
ADAS13 30.8 (8.06) 14.3 (7.03) 8.5 (4.35) 15.2 (9.63) <0.001
MMSE <0.001
MMSE 23.1 (3.05) 27.8 (2.00) 29.0 (1.14) 27.4 (2.74) <0.001
RAVLT (immediate) 20.5 (6.18) 34.7

(10.84)
42.9 (9.35) 34.8

(12.08)
<0.001

RAVLT (learning) 1.3 (1.75) 4.4 (2.51) 5.5 (2.19) 4.3 (2.67) <0.001
RAVLT (forgetting) 4.0 (1.61) 4.7 (2.45) 4.2 (2.80) 4.46 (2.46) 0.019
MOCA 17.8 (4.36) 23.5 (3.26) 25.9 (2.45) 23.3 (4.12) <0.001
EcogPTMem 2.4 (0.75) 2.2 (0.74) 1.6 (0.46) 2.0 (0.74) <0.001
EcogPTLang 1.9 (0.79) 1.8 (0.64) 1.4 (0.39) 1.7 (0.65) <0.001
EcogPTVisspat 1.7 (0.71) 1.4 (0.54) 1.1 (0.22) 1.4 (0.53) <0.001
EcogPTPlan 1.6 (0.72) 1.5 (0.53) 1.1 (0.26) 1.4 (0.54) <0.001
EcogPTOrgan 1.8 (0.75) 1.6 (0.61) 1.3 (0.34) 1.5 (0.60) <0.001
EcogPTDivatt 1.98 (0.81) 1.90 (0.76) 1.45 (0.58) 1.79 (0.75) <0.001
EcogPTTotal 1.91 (0.66) 1.74 (0.53) 1.33 (0.30) 1.65 (0.54) <0.001
EcogSPMem 3.32 (0.63) 2.09 (0.78) 1.29 (0.36) 2.06 (0.92) <0.001
EcogSPLang 2.63 (0.75) 1.65 (0.68) 1.11 (0.21) 1.65 (0.77) <0.001
EcogSPVisspat 2.47 (0.85) 1.41 (0.54) 1.07 (0.19) 1.48 (0.69) <0.001
EcogSPPlan 2.66 (0.90) 1.55 (0.68) 1.10 (0.32) 1.60 (0.81) <0.001
EcogSPOrgan 2.90 (0.85) 1.63 (0.78) 1.12 (0.26) 1.68 (0.88) <0.001
EcogSPDivatt 3.09 (0.84) 1.88 (0.79) 1.24 (0.46) 1.89 (0.93) <0.001
EcogSPTotal 2.84 (0.62) 1.71 (0.61) 1.15 (0.22) 1.73 (0.75) <0.001

Table 5: Summary statistics for Cortical Thickness

AD (N = 88) MCI (N=340) CN (N=159) Total

(N=587)

ROI name Mean (SD) p value

L Bankssts 4704.5 (313) 3900.7

(1046.92)

4395.8

(388) 4155.3

(887.58)

L Caudal Anterior

Cingulate

2.2 (0.19) 2.3 (0.17) 2.3 (0.18) 2.3 (0.18) 0.01
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L Caudal Middle

Frontal

2.5 (0.34) 2.7 (0.33) 2.7 (0.25) 2.6 (0.32) <0.001

L Cuneus 2.4 (0.2) 2.4 (0.15) 2.5 (0.15) 2.4 (0.16) <0.001

L Entorhinal 2.5 (0.23) 2.5 (0.21) 2.6 (0.22) 2.5 (0.22) 0.003

L Frontal Pole 2.2 (0.17) 2.3 (0.15) 2.3 (0.15) 2.3 (0.16) 0.005

L Fusiform 1.5 (0.15) 1.5 (0.13) 1.5 (0.12) 1.5 (0.13) 0.069

L Inferior Parietal 1.8 (0.14) 1.9 (0.14) 1.9 (0.14) 1.9 (0.14) <0.001

L Inferior Tempo-

ral

2.4 (0.2) 2.5 (0.17) 2.5 (0.19) 2.5 (0.18) 0.01

L Insula 2.3 (0.19) 2.3 (0.18) 2.4 (0.16) 2.3 (0.18) <0.001

L Isthmus Cingu-

late

2.1 (0.18) 2.3 (0.15) 2.3 (0.14) 2.2 (0.16) <0.001

L Lateral Occipi-

tal

2.8 (0.27) 2.8 (0.27) 2.8 (0.27) 2.8 (0.27) 0.828

L Lateral Or-

bitofrontal

2.1 (0.14) 2.2 (0.12) 2.2 (0.13) 2.2 (0.13) 0.001

L Lingual 2.4 (0.17) 2.5 (0.15) 2.5 (0.15) 2.5 (0.16) <0.001

L Medial Or-

bitofrontal

2 (0.16) 2.1 (0.16) 2.1 (0.16) 2.1 (0.16) <0.001

L Middle Tempo-

ral

2.4 (0.21) 2.6 (0.19) 2.6 (0.18) 2.6 (0.2) <0.001

L Paracentral 2.3 (0.19) 2.4 (0.16) 2.4 (0.16) 2.4 (0.17) <0.001

L Parahippocam-

pal

3.2 (0.53) 3.5 (0.44) 3.7 (0.32) 3.5 (0.46) <0.001

L Pars Opercu-

laris

2.2 (0.25) 2.3 (0.26) 2.3 (0.23) 2.3 (0.25) 0.002

L Pars Orbitalis 2.8 (0.2) 2.9 (0.19) 3 (0.17) 2.9 (0.19) <0.001

L Pars Triangu-

laris

2.8 (0.22) 2.9 (0.18) 3 (0.18) 2.9 (0.19) <0.001

L Pericalcarine 2.2 (0.21) 2.3 (0.2) 2.4 (0.17) 2.3 (0.2) <0.001

L Postcentral 2.7 (0.35) 2.7 (0.33) 2.7 (0.32) 2.7 (0.33) 0.537

L Posterior Cin-

gulate

2.3 (0.2) 2.4 (0.16) 2.4 (0.16) 2.4 (0.17) <0.001
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L Precentral 1.8 (0.16) 1.8 (0.14) 1.8 (0.14) 1.8 (0.15) 0.084

L Precuneus 2.6 (0.54) 3.3 (0.48) 3.5 (0.33) 3.2 (0.53) <0.001

L Rostral Anterior

Cingulate

2.5 (0.34) 2.6 (0.28) 2.7 (0.25) 2.6 (0.28) <0.001

L Rostral Middle

Frontal

2.4 (0.23) 2.6 (0.19) 2.7 (0.16) 2.6 (0.21) <0.001

L Superior Frontal 2.1 (0.22) 2.3 (0.16) 2.3 (0.15) 2.3 (0.18) <0.001

L Superior Pari-

etal

2.5 (0.26) 2.7 (0.2) 2.7 (0.16) 2.7 (0.22) <0.001

L Superior Tem-

poral

2.3 (0.23) 2.4 (0.23) 2.5 (0.21) 2.4 (0.23) <0.001

L Supramarginal 2 (0.2) 2.1 (0.17) 2.1 (0.16) 2.1 (0.17) <0.001

L Temporal Pole 2.4 (0.2) 2.5 (0.16) 2.5 (0.16) 2.5 (0.17) <0.001

L Transverse

Temporal

1.8 (0.15) 1.9 (0.14) 1.9 (0.13) 1.9 (0.14) <0.001

R Bankssts 2.3 (0.21) 2.3 (0.17) 2.4 (0.16) 2.3 (0.18) <0.001

R Caudal Ante-

rior Cingulate

2.5 (0.26) 2.7 (0.19) 2.8 (0.16) 2.7 (0.22) <0.001

R Caudal Middle

Frontal

2.2 (0.2) 2.3 (0.17) 2.3 (0.16) 2.3 (0.17) 0.052

R Cuneus 2.4 (0.36) 2.7 (0.39) 2.8 (0.33) 2.7 (0.38) <0.001

R Entorhinal 2.3 (0.19) 2.4 (0.14) 2.4 (0.13) 2.4 (0.15) <0.001

R Frontal Pole 2.5 (0.29) 2.6 (0.21) 2.6 (0.25) 2.5 (0.23) 0.006

R Fusiform 2.2 (0.19) 2.3 (0.16) 2.3 (0.17) 2.3 (0.17) <0.001

R Inferior Parietal 1.5 (0.17) 1.5 (0.14) 1.5 (0.14) 1.5 (0.14) 0.783

R Inferior Tempo-

ral

1.9 (0.15) 1.9 (0.14) 1.9 (0.15) 1.9 (0.15) <0.001

R Insula 2.4 (0.21) 2.5 (0.16) 2.5 (0.16) 2.5 (0.17) 0.004

R Isthmus Cingu-

late

2.3 (0.21) 2.4 (0.18) 2.4 (0.18) 2.4 (0.19) <0.001

R Lateral Occipi-

tal

2.1 (0.18) 2.2 (0.16) 2.3 (0.15) 2.2 (0.16) <0.001
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R Lateral Or-

bitofrontal

2.8 (0.28) 2.9 (0.26) 2.9 (0.28) 2.8 (0.27) 0.027

R Lingual 2.1 (0.16) 2.2 (0.12) 2.2 (0.14) 2.2 (0.14) <0.001

R Medial Or-

bitofrontal

2.4 (0.2) 2.5 (0.16) 2.6 (0.16) 2.5 (0.17) <0.001

R Middle Tempo-

ral

2 (0.19) 2.1 (0.16) 2.1 (0.16) 2.1 (0.17) <0.001

R Paracentral 2.4 (0.23) 2.6 (0.21) 2.6 (0.17) 2.6 (0.22) <0.001

R Parahippocam-

pal

2.2 (0.21) 2.4 (0.16) 2.4 (0.16) 2.4 (0.18) <0.001

R Pars Opercu-

laris

3.1 (0.5) 3.5 (0.39) 3.6 (0.31) 3.5 (0.42) <0.001

R Pars Orbitalis 2.1 (0.25) 2.2 (0.25) 2.2 (0.23) 2.2 (0.25) 0.001

R Pars Triangu-

laris

2.4 (0.22) 2.5 (0.18) 2.5 (0.18) 2.5 (0.19) <0.001

R Pericalcarine 2.6 (0.34) 2.6 (0.3) 2.6 (0.3) 2.6 (0.31) 0.944

R Postcentral 2.3 (0.19) 2.4 (0.16) 2.4 (0.17) 2.4 (0.18) <0.001

R Posterior Cin-

gulate

1.8 (0.17) 1.8 (0.15) 1.8 (0.14) 1.8 (0.15) 0.397

R Precentral 2.8 (0.62) 3.4 (0.54) 3.6 (0.35) 3.4 (0.57) <0.001

R Precuneus 2.5 (0.33) 2.5 (0.25) 2.5 (0.25) 2.5 (0.26) 0.675

R Rostral Ante-

rior Cingulate

2.5 (0.22) 2.6 (0.2) 2.7 (0.17) 2.6 (0.21) <0.001

R Rostral Middle

Frontal

2.2 (0.2) 2.4 (0.16) 2.4 (0.15) 2.3 (0.18) <0.001

R Superior

Frontal

2.6 (0.23) 2.7 (0.2) 2.8 (0.17) 2.7 (0.21) <0.001

R Superior Pari-

etal

2.3 (0.21) 2.4 (0.23) 2.4 (0.23) 2.4 (0.23) <0.001

R Superior Tem-

poral

2.1 (0.17) 2.2 (0.17) 2.2 (0.16) 2.2 (0.17) <0.001

R Supramarginal 2.4 (0.21) 2.5 (0.17) 2.5 (0.16) 2.5 (0.18) <0.001

R Temporal Pole 1.9 (0.14) 1.9 (0.15) 1.9 (0.15) 1.9 (0.15) <0.001
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R Transverse

Temporal

2.3 (0.24) 2.3 (0.19) 2.3 (0.16) 2.3 (0.19) 0.261

Table 6: Summary statistics for Cortical Volume

AD (N = 88) MCI (N=340) CN (N=159) Total

(N=587)

ROI name Mean (SD) p value

Intercranial 2.6 (0.25) 2.8 (0.18) 2.8 (0.16) 2.8 (0.2) <0.001

L Bankssts 1453.1

(203.41)

1442.2

(198.06)

1425.6

(193.11)

1439.3

(197.42)

0.533

L Caudal Anterior

Cingulate

620.1 (92.12) 639.8 (105.36) 638.8 (84.15) 636.5 (98.18) 0.232

L Caudal Middle

Frontal

1351.9

(238.26)

1307.2

(215.44)

1284.4

(199.33)

1307.7

(215.48)

0.062

L Cuneus 706.7

(104.71)

725.8 (94.94) 721.4 (96.7) 721.7 (96.99) 0.261

L Entorhinal 1387.3

(239.91)

1380.2

(230.21)

1362.1

(204.15)

1376.4

(224.77)

0.622

L Frontal Pole 1448.9

(214.83)

1453.4

(219.96)

1412

(221.06)

1441.5

(219.87)

0.138

L Fusiform 3988.5

(506.39)

3949.2

(506.76)

3831.3

(433.39)

3923.2

(490.51)

0.017

L Inferior Parietal 1098

(207.84)

1106.1

(172.36)

1093.7

(161.32)

1101.6

(175.06)

0.747

L Inferior Tempo-

ral

4845.7

(555.83)

4789.6

(605.22)

4670.2

(503.67)

4765.6

(574.4)

0.035

L Insula 3624.5

(408.27)

3715.5

(494.61)

3617.2

(460.55)

3675.3

(475.08)

0.054

L Isthmus Cingu-

late

649.6

(147.38)

647.4 (132.29) 642.5

(136.25)

646.4 (135.5) 0.906

L Lateral Occipi-

tal

5425.2

(709.93)

5574.9

(732.02)

5475 (685) 5525.4

(717.6)

0.128



81

L Lateral Or-

bitofrontal

6497

(815.81)

6602.6

(781.71)

6443.3

(733.71)

6543.6

(776.23)

0.085

L Lingual 5145.9

(600.69)

5171.1

(572.27)

5048.3

(569.18)

5134.1

(577.22)

0.084

L Medial Or-

bitofrontal

3403.8

(344.07)

3412.7

(338.09)

3388

(323.51)

3404.7

(334.72)

0.745

L Middle Tempo-

ral

3444 (474.4) 3532.7

(492.17)

3447.8

(400.01)

3496.4

(467.44)

0.087

L Paracentral 413 (75.1) 421.8 (63.04) 421.5 (65.24) 420.4 (65.53) 0.52

L Parahippocam-

pal

325.9 (55.44) 329.2 (57.18) 324 (54.88) 327.3 (56.26) 0.608

L Pars Opercu-

laris

2166.1

(231.89)

2184.5

(262.81)

2158.3

(244.67)

2174.6

(253.42)

0.528

L Pars Orbitalis 2234.6

(275.93)

2270.1

(294.05)

2234.2

(279.46)

2255

(287.56)

0.333

L Pars Triangu-

laris

921 (139.94) 975.1 (158.55) 968.2

(150.96)

965.1

(154.75)

0.013

L Pericalcarine 614.9

(110.93)

633.6 (163.05) 617.2

(126.74)

626.3

(147.01)

0.371

L Postcentral 2212.6

(343.27)

2182.6

(338.27)

2143.8

(346.77)

2176.6

(341.5)

0.28

L Posterior Cin-

gulate

1409.9

(197.64)

1400.2

(201.32)

1360.9

(179.98)

1391

(195.78)

0.069

L Precentral 399.4 (84.61) 414.5 (76.43) 411.1 (78.45) 411.3 (78.28) 0.273

L Precuneus 201.6 (34.09) 198.8 (32.51) 196.5 (34.22) 198.6 (33.2) 0.501

L Rostral Anterior

Cingulate

2948.7

(378.56)

3059.4

(399.52)

3048.3

(372.34)

3039.8

(390.49)

0.057

L Rostral Middle

Frontal

4099.9

(622.38)

4289.2

(592.92)

4228

(471.41)

4244.3

(570.24)

0.019

L Superior Frontal 2888.2

(499.93)

3070.1 (401.3) 3110.4

(386.43)

3053.8

(419.13)

<0.001

L Superior Pari-

etal

954.9

(167.59)

987.5 (175.89) 927.5

(147.62)

966.4

(169.21)

0.001
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L Superior Tem-

poral

4589.2

(655.81)

4609.3

(514.25)

4523.5

(534.31)

4583

(543.31)

0.257

L Supramarginal 2451.2

(320.27)

2523.3

(276.01)

2488.6

(237.08)

2503.1

(274.14)

0.066

L Temporal Pole 2889.9

(391.34)

2947.6 (402.5) 2840.3

(367.57)

2909.9

(393.81)

0.015

L Transverse

Temporal

1886.4

(254.77)

1887.8

(237.44)

1843.9

(230.45)

1875.7

(238.64)

0.144

R Bankssts 2733.7

(407.71)

2894.2

(363.02)

2863.5

(343.63)

2861.8

(368.55)

0.001

R Caudal Ante-

rior Cingulate

1304.4

(199.43)

1291.8

(185.01)

1273.6

(168.54)

1288.7

(182.95)

0.4

R Caudal Middle

Frontal

609.6 (84.2) 650 (98.16) 645.1 (90.65) 642.6 (95.07) 0.002

R Cuneus 1566.2

(238.28)

1551.5

(247.03)

1555.3

(224.88)

1554.8

(239.57)

0.877

R Entorhinal 577.9 (90.85) 594.9 (78.74) 580.2 (69.39) 588.4 (78.55) 0.061

R Frontal Pole 1196.1

(173.41)

1191.4

(187.56)

1197

(168.54)

1193.6

(180.23)

0.939

R Fusiform 1301.6

(208.49)

1316.6

(214.48)

1272.9

(207.31)

1302.5

(212.15)

0.1

R Inferior Parietal 4105.3

(537.55)

4102.6

(477.46)

3996.9

(483.26)

4074.4

(489.88)

0.065

R Inferior Tempo-

ral

1063.3

(145.16)

1106.6

(182.88)

1073.1

(144.31)

1091

(168.62)

0.029

R Insula 4811.5

(592.92)

4739.6

(548.46)

4631.3

(483.45)

4721

(541.15)

0.027

R Isthmus Cingu-

late

3418.7

(408.85)

3528.4

(423.35)

3440.8

(395.71)

3488.2

(415.92)

0.021

R Lateral Occipi-

tal

806.3 (159.4) 811.2 (154.17) 788.8 (150.6) 804.4

(154.05)

0.314

R Lateral Or-

bitofrontal

5373.9

(750.12)

5385.5

(676.93)

5318.6

(666.6)

5365.6

(685.04)

0.593
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R Lingual 6655.6

(870.68)

6771.4 (752.4) 6604

(709.22)

6708.7

(762.46)

0.057

R Medial Or-

bitofrontal

5109.9

(586.2)

5161.6

(611.85)

5034.4

(540.73)

5119.4

(591.13)

0.08

R Middle Tempo-

ral

3572

(420.14)

3608.5 (406.6) 3593.8

(374.74)

3599

(399.85)

0.734

R Paracentral 3572

(524.67)

3681.2

(512.85)

3610.6

(473.17)

3645.7

(505.24)

0.115

R Parahippocam-

pal

436.5 (66.98) 456.7 (62.43) 458.5 (61.75) 454.1 (63.28) 0.017

R Pars Opercu-

laris

440.3 (68.91) 442.9 (76.73) 432 (73.76) 439.5 (74.83) 0.315

R Pars Orbitalis 863 (133.15) 886.2 (128.02) 896.2

(121.85)

885.4

(127.37)

0.144

R Pars Triangu-

laris

738.5

(155.13)

747 (184.85) 723.2

(127.03)

739.3

(166.72)

0.329

R Pericalcarine 2045.8

(327.59)

2003.9

(346.64)

1991.2

(333.25)

2006.8

(340.13)

0.47

R Postcentral 1438.5

(207.59)

1457.2

(200.48)

1418.5

(184.46)

1443.9

(197.75)

0.12

R Posterior Cin-

gulate

355.5 (76.24) 358.4 (85.16) 349.7 (73.2) 355.6 (80.73) 0.534

R Precentral 271.6 (45.26) 272.9 (43.62) 264.7 (45.97) 270.5 (44.57) 0.159

R Precuneus 2904.4

(403.61)

3033.5

(387.84)

2984.3

(336.66)

3000.8

(379.28)

0.014

R Rostral Ante-

rior Cingulate

5014.8

(725.8)

5128.9

(668.02)

5101.1

(652.9)

5104.3

(672.95)

0.366

R Rostral Middle

Frontal

2848.6

(438.6)

3032.1

(429.49)

3012.4

(377.2)

2999.3

(421.56)

0.001

R Superior

Frontal

899.9

(150.61)

898.5 (156.85) 861.4

(131.53)

888.6

(150.13)

0.027

R Superior Pari-

etal

4423.9

(559.05)

4463.2

(548.23)

4378

(499.96)

4434.3

(537.62)

0.252



84

R Superior Tem-

poral

2443.6

(362.29)

2477.9 (304.2) 2449.8

(286.08)

2465.1

(308.73)

0.497

R Supramarginal 3003.8

(408.74)

2987 (368.81) 2874.2

(355.3)

2958.9

(374.48)

0.003

R Temporal Pole 1739.6 (219) 1763.3 (217.8) 1740.8

(192.4)

1753.6

(211.36)

0.431

R Transverse

Temporal

3071

(433.56)

3197.9

(413.22)

3179

(363.18)

3173.8

(405.2)

0.032

Table 7: Summary statistics for Cortical Surface Area

AD (N = 88) MCI (N=340) CN (N=159) Total

(N=587)

ROI name Mean (SD) p value

L Bankssts 1769.2

(324.52)

1969.8

(371.48)

2012.6

(259.29)

1951.3

(346.11)

<0.001

L Caudal Anterior

Cingulate

3556

(658.45)

3540.9

(599.07)

3524.5

(567.29)

3538.7

(599.04)

0.92

L Caudal Middle

Frontal

2201.8

(384.33)

2307.8

(335.09)

2332 (340.7) 2298.5

(346.33)

0.013

L Cuneus 3558.7

(679.67)

3615.3

(638.33)

3600.3

(558.25)

3602.7

(623.46)

0.749

L Entorhinal 2088.9

(430.71)

2107.9

(362.45)

2084.9

(399.49)

2098.8

(382.99)

0.794

L Frontal Pole 8066.4

(1253.95)

8335.5

(1303.77)

8026.7

(1010.71)

8211.5

(1230.27)

0.016

L Fusiform 2842.5

(555.36)

2945.9

(460.51)

2922.6

(415.97)

2924.1

(465.19)

0.178

L Inferior Parietal 1535860.5

(166861.19)

1518754.7

(156096.6)

1481550.3

(147406.12)

1511241.6

(156367.94)

0.013

L Inferior Tempo-

ral

11696.4

(1680.71)

12049 (1618.9) 11834.5

(1390.57)

11938.1

(1573.44)

0.108
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L Insula 8338.9

(1133.86)

9029.6

(1298.88)

8869.5

(1022.33)

8882.7

(1227.04)

<0.001

L Isthmus Cingu-

late

2065

(428.92)

2057.2

(403.82)

2038.8

(414.27)

2053.4

(409.89)

0.861

L Lateral Occipi-

tal

13328.6

(1813.51)

14045.1

(1858.17)

13817.1

(1649.51)

13875.9

(1811.59)

0.004

L Lateral Or-

bitofrontal

18042.6

(2257.47)

19129.8

(2342.65)

18724.5

(1990.48)

18857.1

(2268.75)

<0.001

L Lingual 11297.4

(1621.04)

12071.7

(1660.01)

11808.1

(1528.64)

11884.2

(1639.5)

<0.001

L Medial Or-

bitofrontal

9509.2

(1243.01)

10155.9

(1276.18)

10216.1

(1139.98)

10075.2

(1256.67)

<0.001

L Middle Tempo-

ral

8598.3

(1368.88)

9267.7

(1431.91)

9143.8

(1096.22)

9133.8

(1357.15)

<0.001

L Paracentral 1847.1

(425.07)

2113.2

(389.95)

2221.9

(330.16)

2102.8

(397.38)

<0.001

L Parahippocam-

pal

793.6

(156.84)

840.8 (170.76) 831.7

(158.57)

831.2

(166.03)

0.059

L Pars Opercu-

laris

6248.5

(715.35)

6512.3

(802.62)

6480.8

(786.38)

6464.2

(789.8)

0.019

L Pars Orbitalis 6433.6

(806.06)

6724.2

(891.99)

6675.1

(835.1)

6667.4

(868.83)

0.02

L Pars Triangu-

laris

2019.3

(358.4)

2288 (431.97) 2280

(403.55)

2245.5

(424.24)

<0.001

L Pericalcarine 1708.7

(405.26)

1780.1

(473.52)

1723.9

(423.55)

1754.2

(451.01)

0.255

L Postcentral 5464.9

(1022.53)

5731.9

(984.28)

5628.9

(911.82)

5664

(974.07)

0.063

L Posterior Cin-

gulate

2704.7

(544.55)

2715.4

(455.28)

2636.1

(415.98)

2692.3

(460.2)

0.193

L Precentral 1437.2

(418.56)

1893.5

(425.04)

1994.8

(385.08)

1852.6

(450.41)

<0.001
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L Precuneus 679.2

(166.91)

714.5 (145.66) 714 (137.03) 709.1

(147.07)

0.119

L Rostral Anterior

Cingulate

8201.1

(1406.94)

9311.5

(1423.43)

9384.8

(1239.09)

9164.9

(1430.06)

<0.001

L Rostral Middle

Frontal

9836.5

(1983.1)

11110.1

(1771.23)

11107.7

(1369.1)

10918.5

(1763.8)

<0.001

L Superior Frontal 8495.5

(1751.47)

9806.3

(1501.58)

10067.8

(1378.53)

9680.6

(1591.53)

<0.001

L Superior Pari-

etal

2318.3

(437.28)

2556.6

(458.41)

2447

(391.95)

2491.2

(445.96)

<0.001

L Superior Tem-

poral

10248.7

(1786.97)

10771.1

(1586.58)

10578

(1446.39)

10640.5

(1590.09)

0.019

L Supramarginal 6488.6

(798.21)

6844.6

(836.16)

6715.3

(712.72)

6756.2

(807.32)

0.001

L Temporal Pole 5763.7

(1066.78)

6083.2

(1015.28)

5851.4

(860.25)

5972.5

(991.18)

0.005

L Transverse

Temporal

4714.2

(700.12)

4853.3 (660.1) 4805.9

(617.98)

4819.6

(655.89)

0.198

R Bankssts 8199.3

(1502.17)

9593 (1381.91) 9661.5

(1324.74)

9402.6

(1472.95)

<0.001

R Caudal Ante-

rior Cingulate

3161 (568) 3203.2

(537.92)

3144.5

(455.99)

3181 (521.6) 0.467

R Caudal Middle

Frontal

1787.4

(352.94)

2070.6

(385.54)

2122.6

(327.28)

2042.2

(381.23)

<0.001

R Cuneus 4162.7

(731.07)

4218.6

(721.05)

4276.8

(630.63)

4226

(699.06)

0.45

R Entorhinal 1824.2

(319.69)

1944.5

(299.41)

1888

(273.61)

1911.2

(298.57)

0.002

R Frontal Pole 2972.6

(503.22)

3069.8

(537.57)

3096

(450.73)

3062.3

(510.97)

0.176

R Fusiform 1868.8

(382.48)

1886.5 (359.7) 1830.8

(344.26)

1868.8

(359.3)

0.273
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R Inferior Parietal 8516.7

(1402.34)

8875.7

(1300.54)

8601.1

(1201.54)

8747.5

(1297.32)

0.017

R Inferior Tempo-

ral

2805.4

(439.31)

2989 (492.21) 2937.5

(403.34)

2947.5

(465.54)

0.004

R Insula 11784.7

(1706.03)

12236.7

(1617.76)

12012.5

(1354.44)

12108.2

(1571.16)

0.037

R Isthmus Cingu-

late

7938.3

(1154.2)

8673.8

(1187.03)

8522.9

(1002.57)

8522.7

(1161.23)

<0.001

R Lateral Occipi-

tal

2500.9

(424.76)

2589.1

(443.42)

2518.8

(434.48)

2556.9

(439.2)

0.107

R Lateral Or-

bitofrontal

12818.6

(1760.2)

13438.5

(1762.17)

13364.8

(1696.18)

13325.6

(1754.57)

0.012

R Lingual 18321.9

(2356.1)

19735.8

(2236.85)

19424.5

(1841.65)

19439.5

(2207.2)

<0.001

R Medial Or-

bitofrontal

11184.4

(1647.84)

12063

(1628.59)

11716.8

(1410.92)

11837.5

(1603.66)

<0.001

R Middle Tempo-

ral

9625.7

(1487.31)

10586.7

(1415.53)

10752.3

(1250.98)

10487.5

(1430.3)

<0.001

R Paracentral 8896.6

(1563.83)

9804.6

(1418.67)

9742.2

(1148.95)

9651.6

(1408.8)

<0.001

R Parahippocam-

pal

2003.9

(464.21)

2279.8

(383.14)

2351.7

(334.92)

2257.9

(399.39)

<0.001

R Pars Opercu-

laris

1028.7

(188.93)

1078.9

(216.27)

1059.9

(214.53)

1066.3

(212.32)

0.128

R Pars Orbitalis 2037.9

(353.8)

2150.1

(359.43)

2211.8

(352.87)

2150 (360.3) 0.001

R Pars Triangu-

laris

2032.5

(507.64)

2052.1

(528.66)

2004.6

(393.18)

2036.3

(491.98)

0.602

R Pericalcarine 5080.8

(901.88)

5307.6

(986.75)

5299.5

(936.16)

5271.4

(962.68)

0.131

R Postcentral 2824.6

(533.95)

2883.2

(496.11)

2797.9

(433.47)

2851.3

(486.66)

0.162
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R Posterior Cin-

gulate

1401.4

(404.45)

1774.3

(442.71)

1853.9

(349.11)

1740

(438.12)

<0.001

R Precentral 936.6

(214.25)

944.2 (179.79) 906.2

(159.12)

932.7

(180.58)

0.089

R Precuneus 8133.3

(1354.98)

9098.6

(1385.12)

9107.3

(1147.14)

8956.2

(1362.69)

<0.001

R Rostral Ante-

rior Cingulate

12112.4

(2008.45)

13491.1

(2010.79)

13499.6

(1756.6)

13286.7

(2003.37)

<0.001

R Rostral Middle

Frontal

8662.8

(1664.53)

9874.2

(1593.64)

10009.4

(1460.75)

9729.2

(1631)

<0.001

R Superior

Frontal

2168.1

(409.56)

2294.2 (410.1) 2236.4

(329.64)

2259.7

(391.91)

0.018

R Superior Pari-

etal

10209.5

(1473.15)

10797.9

(1678.19)

10592.6

(1406.29)

10654.1

(1589.77)

0.007

R Superior Tem-

poral

6396.9

(792.09)

6673 (767.39) 6610.2 (659) 6614.6

(748.33)

0.008

R Supramarginal 6028

(1022.01)

6248 (948.84) 5987.1

(866.25)

6144.4

(945.09)

0.007

R Temporal Pole 4550.5

(633.11)

4645.4

(593.29)

4589.7

(541.09)

4616.1

(586.01)

0.321

R Transverse

Temporal

9730

(1653.35)

10711.1

(1521.02)

10864.1

(1337.55)

10605.5

(1538.27)

<0.001

R Transverse

Temporal

3071

(433.56)

3197.9

(413.22)

3179

(363.18)

3173.8

(405.2)

0.032

Table 8: Summary statistics for White Matter and Subcortical

volumes

AD (N = 88) MCI (N=340) CN (N=159) Total

(N=587)

ROI name Mean (SD) p value

Brainstem 1439.9

(234.82)

1438.4

(198.64)

1425.8

(200.68)

1435.2

(204.71)

0.793
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Corpus Callosum

Anterior

4361

(685.61)

4633.8

(708.44)

4558.8

(574.57)

4572.6

(676.82)

0.003

Corpus Callosum

Central

413.3 (91.16) 468.9 (96.14) 467.8 (86.42) 460.3 (94.79) <0.001

Corpus Callosum

Mid Anterior

5970.4

(724.81)

6178.8

(713.34)

6073.3

(664.93)

6119

(705.36)

0.03

Corpus Callosum

Mid Posterior

3381.1

(418.52)

3533 (372.45) 3444.8

(358.03)

3486.3

(379.75)

0.001

Corpus Callosum

Posterior

97.6 (47.4) 96.1 (50.94) 91.1 (42.52) 95 (48.25) 0.481

Csf 2191

(671.57)

1727.8

(641.64)

1617.7

(625.39)

1767.4

(666.71)

<0.001

Fourth Ventricle 7114

(6013.97)

5415.1

(5376.4)

4483.5

(5932.92)

5417.5

(5679)

0.002

L Accumbens

Area

1077.8

(228.39)

1344 (258.72) 1395.7

(212.33)

1318.1

(263.28)

<0.001

L Amygdala 3327.3

(491.81)

3476.5

(588.82)

3385.6

(460.11)

3429.5

(544.92)

0.036

L Caudate 48700.7

(5363.27)

48510.3

(5250.86)

47050.4

(4435.03)

48143.4

(5096.36)

0.006

L Cerebellum

Cortex

12869.6

(1956.07)

13215

(1956.25)

12843.5

(1988.49)

13062.6

(1969.8)

0.088

L Cerebellum

WM

20883.3

(2533.13)

21036.5

(2375.22)

20743

(2250.96)

20934

(2366.19)

0.425

L Choroid Plexus 2091.6

(434.05)

1905.5

(412.46)

1802

(355.67)

1905.4

(410.61)

<0.001

L Hippocampus 2857.2

(560.99)

3504.6

(577.86)

3696.8

(433.85)

3459.6

(601.32)

<0.001

L Inferior Lateral

Ventricle

715 (164.47) 769.4 (156.74) 767.1

(129.15)

760.6

(151.97)

0.009

L Lateral Ventri-

cle

1726.1

(1052.84)

935.5 (737.73) 632.2

(418.44)

971.9

(802.57)

<0.001
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L Pallidum 25681.4

(11197.04)

18859

(11203.15)

16624.8

(8439.07)

19276.6

(10890.02)

<0.001

L Putamen 332.1 (63.77) 359.8 (69.26) 359.8 (62.31) 355.7 (67.26) 0.002

L Thalamus 1571.2

(234.23)

1616.3

(231.44)

1605.9

(207.7)

1606.7

(225.84)

0.247

L Ventral DC 335.1 (75.68) 367.3 (80.68) 366.4 (69.23) 362.2 (77.71) 0.002

L Vessel 4503.6

(683.26)

4826.7 (721.6) 4818.4

(609.11)

4776

(695.48)

<0.001

Non WMHypo In-

tensities

300.2 (66.54) 333.6 (78.36) 330.2 (66.86) 327.7 (74.5) 0.001

Optic Chiasm 5948.7

(741.68)

6083.3

(653.62)

6094.2

(657.72)

6066

(669.26)

0.201

R Accumbens

Area

3488.9

(430.57)

3620.5

(399.75)

3517.1

(370.01)

3572.8

(400.12)

0.003

R Amygdala 116.9 (70.84) 113.3 (65.22) 110.6 (61.78) 113.1 (65.11) 0.763

R Caudate 90.6 (61.73) 85.8 (93.24) 73.1 (64.72) 83.1 (82.24) 0.181

R Cerebellum

Cortex

314.1 (74.32) 304.4 (74.95) 279.6 (65.96) 299.1 (73.46) <0.001

R Cerebellum

WM

868.2

(174.79)

900.7 (159.48) 908 (154.03) 897.8

(160.66)

0.155

R Choroid Plexus 441.1

(100.65)

498.6 (105.22) 495.7 (92.43) 489.2

(103.06)

<0.001

R Hippocampus 1177.7

(226.03)

1407.6

(253.48)

1464 (220.3) 1388.4

(257.43)

<0.001

R Inferior Lateral

Ventricle

3506.7

(529.29)

3616.1

(624.67)

3531.1

(498.53)

3576.7

(580.12)

0.147

R Lateral Ventri-

cle

49721.6

(5378.86)

49780.8

(5760.28)

48367.6

(4607.6)

49389.1

(5440.89)

0.021

R Pallidum 13032.2

(2078)

13390.4

(2089.08)

12965.4

(2139.91)

13221.6

(2107.18)

0.072

R Putamen 1779.9

(525.03)

1516.8

(412.52)

1422.8

(359.2)

1530.8

(432.16)

<0.001
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R Thalamus 2535.7

(453.77)

2265.3

(540.41)

2180.4

(457.55)

2282.8

(518.26)

<0.001

R Ventral DC 2933.9

(547.89)

3593.3

(596.49)

3740 (463.6) 3534.2

(613.18)

<0.001

R Vessel 1511.4

(1047.84)

772.4 (623.67) 532.1

(405.01)

818.1

(726.53)

<0.001

Third Ventricle 22441.4

(10702.92)

17170.3

(10098.93)

15237.9

(7801.3)

17437.1

(9875.76)

<0.001

WMHypo Intensi-

ties

2234.7

(712.19)

2110.5

(689.58)

2068.3

(582.98)

2117.7

(666.91)

0.164
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Appendix 3: Generalized Additive

Mixed Models of Ambulatory

Blood Pressure

This appendix provides additional details and supplementary information about the

analyses conducted in Chapter 3. The first section reviews our model selection strat-

egy. Section 2 reports diagnostics from our final models. Section 3 presents results

of analyses with the sample size restricted to only include individuals with at least

70% of intended ABP readings. Lastly, section 4 provides graphical summaries of the

number of ABP readings in each participant’s profile and the time-intervals between

readings.

GAMMs of ABP Appendix 3.1: Model Selection

Before examining associations between ABP profiles and the exposure of interest, we

fit a generalized additive mixed model (GAMM) to describe ABP as a function of time.

See section 3.3, equation (3.1). The model includes a fixed, non-parametric functional

term for time (as described above) estimated estimated via thin-plate spline regression

and a random intercept for each participant with an AR(1) correlation structure for

the residuals.
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Models were examined using ABP measurements directly and compared to the

use of log-transformed ABP measurements. While log-transforming the data reduced

the variability in participant’s raw ABP profiles, this transformation also resulted in

a time model with poorer fit. We therefore chose to leave the outcome variables un-

transformed for further analyses. The rank of our spline regression was also chosen

based on the time model. We chose k = 59 as the rank that achieved sufficient model

fit while maintaining sparsity. Higher ranks added additional parameters without

providing meaningful improvements to the model fitting process. The final model

was also compared to one with a nested random-effects structure by allowing different

correlation coefficients for each day. The addition of this parameter did not provide a

statistically significant improvement in model fit and was therefore removed form final

consideration. AIC was used to inform model selection at each step. The estimated

time curves for systolic BP (SBP) and diastolic BP (DBP), respectively, are shown

in figure 3.2.

GAMMs of ABP Appendix 3.2: Model Diagnostics

Figures 10 and 10 display diagnostics plots for the models corresponding to equation

(3.1). While the quantile-quantile plots (upper left corner in each) suggests a small

departure from normality, each histogram of residuals (upper right corner) exhibits

a symmetric distribution centered at 0. Residuals appear heteroscedastic with larger

variances corresponding to larger values of the linear predictor (lower left corners).

However, the responses and fitted values show a clear linear relationship. As pointed

out in section 3.5, BP profiles differ greatly across individuals. Our models of mean

BP profiles may not capture sufficient variability. Residuals from fitting the exposure

and covariate-adjusted models were similar.
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Figure 10: Model diagnostics for the time-only model shown in equation (3.1)
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Figure 11: Model diagnostics for the time-only model shown in (3.2)
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Figure 12: Estimated time model with the sample restricted to only women with 70%
of intended ABP readings or more.

GAMMs of ABP Appendix 3.3: Analyses with Re-

stricted Sample Size

Some participants did not achieve the intended number of ABP readings. To ensure

that BP profiles for each participant contributed meaningfully to the estimated mean

profiles, we examined results with the sample size restricted to only include those

with at least 70% of intended readings. This diminished the sample size to n = 365

participants. Figure 12 exhibits results of fitting our time model with the restricted

sample. Figure 13 shows the fitted BP profiles BWs and non-BWs, along with their

difference curves. Figure 14 shows estimated profiles and differences after adjusting

for meaningful covariates. Results from the restricted sample mirrored those in the

full sample.
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Figure 13: Estimated average ABP profiles for BWs and non-BWS (top row) and their
differences across time (bottom row) exhibit consistently higher BP in BWs compared
to non-BWs. Resuls presented here restrict the sample to only participants with at
least 70% of intended readings. Vertical dotted lines and shaded x-axes indicate
periods of time during which BWs’ average BP was significantly higher than non-
BWs.



98

10
0

11
0

12
0

Covariate−Adjusted BW Model

Time

S
B

P

fit
te

d 
va

lu
es

, s
im

ul
t.C

I

No
Yes

12 pm 6 pm 12 am 6am 12 pm

60
65

70
75

80

Covariate−Adjusted BW Model

Time
D

B
P

fit
te

d 
va

lu
es

, s
im

ul
t.C

I

No
Yes

12 pm 6 pm 12 am 6am 12 pm

0
2

4
6

Difference Yes − No

Time

E
st

. d
iff

er
en

ce
 in

 S
B

P

di
ffe

re
nc

e,
 s

im
ul

t.C
I

12 pm 6 pm 12 am 6am 12 pm

0
1

2
3

4
5

Difference Yes − No

Time

E
st

. d
iff

er
en

ce
 in

 D
B

P

di
ffe

re
nc

e,
 s

im
ul

t.C
I

12 pm 6 pm 12 am 6am 12 pm

Figure 14: Estimated average ABP profiles for BWs and non-BWS (top row) and their
differences across time (bottom row) exhibit consistently higher BP in BWs compared
to non-BWs. Resuls presented here restrict the sample to only participants with at
least 70% of intended readings. Vertical dotted lines and shaded x-axes indicate
periods of time during which BWs’ average BP was significantly higher than non-
BWs.
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Figure 15: The scatter plot (top) shows the number of ABP readings achieved by
each participant. “SGUID” refer to participants’ study IDs. The box plot (bottom)
shows the spread of values in the scatter plot.

GAMMs of ABP Appendix 3.4: Graphical Sum-

maries of Selected ABP Profile characteristics

ABP profiles were not of uniform quality in the proposed. Each profile should consist

of roughly 76 ABP readings. The number of readings ranged from 6 to 88. The

longest interval between consecutive readings exceed 24 hours. The data analyzed in

Chapter 3 uses all available profiles, regardless of their quality. The results of the full-

sample analyses were strikingly similar to those from the restricted one (Appendix

3.3)
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[37] André Rey. L’examen psychologique dans les cas d’encéphalopathie trauma-
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