
Distribution Agreement

In presenting this thesis or dissertation as a partial fulfillment of the requirements for
an advanced degree from Emory University, I hereby grant to Emory University and
its agents the non-exclusive license to archive, make accessible, and display my thesis
or dissertation in whole or in part in all forms of media, now or hereafter known,
including display on the world wide web. I understand that I may select some access
restrictions as part of the online submission of this thesis or dissertation. I retain
all ownership rights to the copyright of the thesis or dissertation. I also retain the
right to use in future works (such as articles or books) all or part of this thesis or
dissertation.

Signature:

Derek Onken Date

Optimal Control Approaches for Designing Neural Ordinary Differential Equations

By

Derek Onken
Doctor of Philosophy

Computer Science and Informatics

Lars Ruthotto, Ph.D.
Advisor

Rachel Jennings, Ph.D.
Committee Member

James G. Nagy, Ph.D.
Committee Member

Yuanzhe Xi, Ph.D.
Committee Member

Accepted:

Lisa A. Tedesco, Ph.D.
Dean of the James T. Laney School of Graduate Studies

Date

Optimal Control Approaches for Designing Neural Ordinary Differential Equations

By

Derek Onken
M.Sc., Emory University, GA, 2019

B.Sc., The University of Georgia, GA, 2015

Advisor: Lars Ruthotto, Ph.D.

An abstract of
A dissertation submitted to the Faculty of the

James T. Laney School of Graduate Studies of Emory University
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in Computer Science and Informatics

2021

Abstract

Optimal Control Approaches for Designing Neural Ordinary Differential Equations
By Derek Onken

Neural network design encompasses both model formulation and numerical treat-
ment for optimization and parameter tuning. Recent research in formulation fo-
cuses on interpreting architectures as discretizations of ordinary differential equa-
tions (ODEs). These neural ODEs, in which the ODE dynamics are defined by neu-
ral network components, benefit from reduced parameterization and smoother hidden
states than traditional discrete neural networks but come at high computational costs.
Training a neural ODE can be phrased as an ODE-constrained optimization prob-
lem, which allows for the application of mathematical optimal control (OC). The
application of OC theory leads to design choices that differ from popular high-cost
implementations. We improve neural ODE numerical treatment and formulation for
models used in time-series regression, image classification, continuous normalizing
flows, and path-finding problems.

Optimal Control Approaches for Designing Neural Ordinary Differential Equations

By

Derek Onken
M.Sc., Emory University, GA, 2019

B.Sc., The University of Georgia, GA, 2015

Advisor: Lars Ruthotto, Ph.D.

A dissertation submitted to the Faculty of the
James T. Laney School of Graduate Studies of Emory University

in partial fulfillment of the requirements for the degree of
Doctor of Philosophy

in Computer Science and Informatics
2021

Acknowledgments

I am forever grateful to the people who have helped me in life to arrive at this

point. Most directly, I would like to thank my advisor Lars Ruthotto for guiding

me through this work and broader research methodologies. His enthusiasm and men-

torship have helped me grow as a critical scientist, and his direction has shaped my

technical skills in a unique and interdisciplinary space. I would also like to thank my

committee members: Jim Nagy, Yuanzhe Xi, and Rachel Jennings. Their insights and

encouragement have helped shape this dissertation and my growth during my gradu-

ate school experience. Furthermore, I would like to thank Rachel for her guidance in

my internships and the opportunities she afforded me.

My journey has been positively influenced by research experiences with numerous

individuals: Levon Nurbekyan, Xingjian Li, Elizabeth Newman, Juan B. Gutiérrez,

Ted Shifrin, Stephen Garth, Cameron Peterson, Daniel Cowan, Heather Pangburn,

and Thorgeir Karlsson. Without their help, my successes would not have been so.

I am also fortunate to have shared these years with incredible friends and peers:

Thanks to Reza Karimi, Pranav Bhandari, Sapoon Dutta, Kelvin Kan, Samy Wu

Fung, Zelalem Gero, Harshita Sahijwani, Gary Lai, Blair Rosetti, Abbey Julian,

Malvern Madondo, Radhika Sharma, Misael Romero-Reyes, and Jeffrey Davis. With-

out them, my time in graduate school would not have been as enjoyable. I would also

like to thank my past coaches: Yit Aun Lim, Anthony Byrne, Katrin Koch, Harvey

Humphries, and Jack Bauerle. Their unwavering support and guidance have helped

me develop the skills necessary to undertake graduate school.

Most importantly, I would like to thank my family. Thank you to my brothers,

Drew and Decker, for their support and for listening to me talk about my research

ad nauseum. This dissertation is dedicated to my parents, Rich and Pat, for their

immense sacrifices, love, and support throughout. Their work ethic and insightfulness

have made me the person I am today.

i

Contents

1 Introduction 1

1.1 Contribution . 2

1.1.1 Efficient Numerical Treatment 2

1.1.2 Formulation . 4

1.2 Overview . 5

2 Mathematical Background 6

2.1 Neural Networks . 6

2.1.1 Architecture . 6

2.1.2 Training . 8

2.1.3 Concepts . 8

2.2 Neural ODEs . 11

2.3 Optimal Control . 12

2.3.1 Pontryagin Maximum Principle 14

2.3.2 Hamilton-Jacobi-Bellman PDE 14

2.4 Learning and Optimal Control . 16

2.5 Neural ODEs as Reinforcement Learning 17

3 Time-Series Regression 19

3.1 Problem . 19

3.2 Discretize-Optimize vs. Optimize-Discretize 20

3.3 Numerical Experiments . 24

3.3.1 Extrapolation and Different Initial Conditions 27

4 Image Classification 29

4.1 Problem . 29

4.1.1 Focal Loss . 31

4.2 Convolutional Neural Networks . 32

4.2.1 Convolutional Layer . 32

4.2.2 Normalization Layer . 34

4.2.3 Double Symmetric Layer . 35

4.3 Decoupling the Weights and Layers 35

4.4 Image Classification for Lung Cancer Detection 37

4.4.1 Motivation . 37

4.4.2 Model . 39

4.4.3 National Lung Screening Trial Experiment 39

5 Continuous Normalizing Flows for Density Estimation 42

5.1 Problem . 42

5.2 Related Works . 46

5.2.1 Finite Flows . 47

5.2.2 Infinitesimal Flows . 47

5.2.3 Flows Influenced by Optimal Control 49

5.3 Discretize-Optimize Flows . 49

5.3.1 Numerical Experiments . 51

5.4 OT-Flow . 60

5.4.1 Model Formulation . 61

5.4.2 Implementation . 66

5.4.3 Numerical Experiments . 71

6 Path-Finding 77

6.1 Problem . 77

6.2 Related Works . 79

6.2.1 High-Dimensional Deterministic Optimal Control 79

6.2.2 High-Dimensional Stochastic Optimal Control 80

6.2.3 Multi-Agent Path-Finding . 81

6.3 Neural ODE Formulation . 82

6.3.1 Main Formulation . 82

6.3.2 Adding Hamilton-Jacobi-Bellman Penalizers 83

6.3.3 Robustness to Shocks . 84

6.4 Numerics . 85

6.4.1 Hyperparameter Tuning . 86

6.5 Numerical Experiments . 88

6.5.1 Baseline: Discrete Optimization for a Single Initial State . . . 89

6.5.2 Two-Agent Corridor Experiment 90

6.5.3 Effect of the Hamilton-Jacobi-Bellman Penalizers 92

6.5.4 Multi-Agent Swap Experiments 98

6.5.5 Swarm Problem . 101

6.5.6 Quadcopter Experiment . 102

7 Summary 107

Appendix A Derivation of Adjoint Equations 110

A.1 Continuous Adjoint . 110

A.2 Discrete Adjoints . 112

Appendix B Bootstrapping 114

Bibliography 115

Mathematical Symbols 130

Index 134

v

List of Figures

3.1 DO and OD training iterations . 23

3.2 DO and OD convergence . 24

3.3 Time-series regression derivative check 25

3.4 Time-series regression extrapolation. 26

3.5 Different initial parameterizations . 27

4.1 Pooling examples . 30

4.2 Image classification model example 36

4.3 Lung cancer image classification. 37

4.4 Lung cancer model applied to individual cubes. 38

4.5 Model interpretability for deployment. 41

5.1 Normalizing flow example for the Gaussian mixture problem. 43

5.2 Performance of our exact trace and Hutchinson’s estimator using AD 49

5.3 Illustration of the DO approach for the Gaussian mixture problem . . 51

5.4 Problems when choosing a coarse discretization. 55

5.5 Training CNFs on Miniboone with and without multilevel. 60

5.6 OT-Flow enforces straight trajectories. 61

5.7 Effect of adding an HJB penalizer during training 65

5.8 Comparison of OT-Flow (exact trace) and an identical model using the

Hutchinson’s estimator. 70

5.9 Power density estimation using a discrete flow 72

5.10 OT-Flow density estimation on 2-D toy problems. 73

5.11 Miniboone density estimation 2-D slices. 74

5.12 MNIST generation conditioned by class. 76

5.13 MNIST interpolation in the latent space. 76

6.1 Two-agent corridor problem. 90

6.2 Effect of the terminal HJB penalizers. 93

6.3 Shock-Robustness . 94

6.4 Comparable neural network trained with no penalizers. 95

6.5 Comparison of one NN model with 10,001 baseline models. 97

6.6 Swap experiment with hard-boundary corridor. 98

6.7 Swap experiment for 12 agents in R2. 98

6.8 Overcoming CoD . 100

6.9 Swarm problem for 50 agents in R3. 101

6.10 Quadcopter diagram . 102

6.11 Quadcopter problem comparison with baseline. 105

6.12 Quadcopter comparison of states. 106

vii

List of Tables

4.1 Model performance 2× 2 tables. 40

4.2 Model performance metrics. 40

5.1 CNF methods comparison . 50

5.2 Number of parameters comparison with discrete normalizing flows. . . 50

5.3 DO results for the Gaussian mixture problem 54

5.4 DO and OD hyperparameters. 56

5.5 Density estimation using DO and OD. 57

5.6 Testing loss C comparison with other methods. 58

5.7 Re-discretization of the trained CNF in the inference phase. 59

5.8 OT-Flow density estimation on real data sets 75

6.1 Neural network training statistics. 86

6.2 Problem variables and neual network hyperparameters. 87

6.3 Corridor problem comparison of baseline and NN. 94

viii

List of Algorithms

1 Neural network training . 9

1

Chapter 1

Introduction

Neural networks (NNs), compositions of many simple nonlinear and parameterized

linear functions, have become a state-of-the-art machine learning tool [90, 91, 116].

Simultaneously, neural networks have become over-parameterized, complicated dis-

crete objects that empirically produce good results on specific intended tasks. Based

on the popular, successful residual neural network (ResNet) [45], neural ordinary dif-

ferential equations (ODEs) [19, 25, 41] present a continuous interpretation of neural

networks. The continuous approach benefits from a smooth parameterized governing

equation which is appealing for fluid mechanics [16], Boltzmann machines [73], den-

sity estimation [13, 39], particle physics [14], and solving partial differential equations

(PDEs) [85].

Although appealing, neural ODEs are young. The field lacks maturity, and many

paramount works in the space demonstrate the exciting capabilities of neural ODEs

that may benefit from polishing and improvements. Many applications can benefit

from their use, but their implementation can come at high computational cost, among

other concerns. High costs stem from the high-dimensional state (d ≥ 4) of the

ODEs present in the applications and the thousands to millions of parameters in

a single neural ODE. When tuning these parameters, NN approaches often use a

2

momentum-based stochastic gradient descent method, e.g., ADAM [52], to search

this high-dimensional space. Ultimately, the many parameters and the stochasticity

of the optimization scheme result in a time-consuming tuning regime that is not easily

parallelizable.

We strive to leverage optimal control (OC) to improve neural ODEs, focusing on

the design of neural ODEs in several applications. In neural ODEs, the ODE dynamics

are defined by neural network components, and training the network presents an

optimization problem over the parameters and constrained by the ODE. This form

fits nicely into an OC interpretation in which the parameters are the controls and the

neural network features (or ODE solutions) are the states.

From the OC lens, we address the two aspects of neural network design: numer-

ical treatment (or learning rules) and formulation (or architecture) [42]. We apply

mathematically sound methods for efficient optimization and novel architecture.

1.1 Contribution

We focus on the applications of neural ODEs for time-series regression, image classi-

fication, continuous normalizing flows (CNFs), and path-finding problems. Our two

main thrusts address improvements for neural ODE design by: incorporating efficient

numerical treatment—which improves training speed and increases the model’s high-

dimensional scalability—and using the OC value function to improve the neural ODE

formulation.

1.1.1 Efficient Numerical Treatment

Training the neural ODE parameters is a constrained stochastic optimization prob-

lem. Popular existing neural ODE implementations [19, 39, 84] choose the optimize-

discretize (OD) approach for training. However, for image classification, the discretize-

3

optimize (DO) approach has been shown to converge faster due to accurate gradient

computation [36]. We extend this analysis to time-series regression (Chapter 3) and

CNFs (Section 5.3). These problems contain additional constraints on the hidden

states which can require specific treatment not relevant to the image classification

task. We empirically observe 6x–20x speedup in training time from training with the

DO approach.

Whereas the DO approach has already been applied to image classification [41, 45,

114], we investigate an interpolation scheme for the neural ODE parameters, which

is an alternative to the more common neural ODE design where neural network

components operate on time itself [19]. We apply our resultant model on three-

dimensional medical images (Chapter 4). Medical image classification tasks must be

able to handle limited quantities of data where each data point is high-dimensional

(a three-dimensional image). Neural ODEs benefit from reduced parameterization

relative to existing discrete approaches and often require less training data. We

compare our neural ODE approach to the performance of radiologists and existing

methods [3, 62].

CNFs are bottlenecked by a trace computation (Section 5.1). State-of-the-art

methods reduce the cost by estimating the trace with Hutchinson’s estimator [49]

during training [32, 39, 119]. This design choice leads to slow convergence with

respect to number of optimization steps. We instead develop a method for an efficient

exact trace computation made possible by our model formulation (Section 5.4). We

demonstrate the competitive speed and scalability of our exact trace computation

with the Hutchinson’s estimator implemented with automatic differentiation (AD).

While our scalable trace computation helps train CNFs efficiently, other prob-

lems such as multi-agent path-finding do not reap these benefits but still suffer from

the curse of dimensionality (CoD) [7]. The path-finding problems require solving a

high-dimensional PDE know as the Hamilton-Jacobi-Bellman (HJB) equations (Sec-

4

tion 2.3). Traditional numerical methods for HJB equations, such as ENO/WENO [79],

employ grid-discretization and interpolation for off-grid points. These grid-based

methods scale poorly due to CoD, which we mitigate using Lagrangian coordinates [74,

93] (Chapter 6).

1.1.2 Formulation

For the CNF and path-finding tasks, we use OC theory to formulate and regularize

the neural ODEs. For CNFs, adding the arclength of the trajectories straightens

the dynamics and reduces training costs [32]. The inclusion of the arclength also

formulates the problem as an optimal transport problem [67], which fits inside the

OC framework. Thus, we are guaranteed the existence of a scalar value function

(potential function) [29, 33]. Similar to particles in a physical system minimizing

their potential energy, samples (or agents) move in a manner to minimize this value

function. The solution to the HJB equations [7, 29, 33], the value function can be

used to compute directions of optimal trajectory [118, 119]. We convert one of these

equations into a penalizer to help train the CNF, which introduces no bias but allows

for fewer time steps and reduced CNF training cost.

For path-finding problems (Chapter 6), we extend on the CNF formulation. In

CNFs, we only used the intermediate-time HJB equation for the penalizer and were

unable to employ the final-time condition since the problem formulation does not allow

it. However, in solving multi-agent path-finding, we develop two more penalizers out

of the final-time HJB condition and empirically show their effectiveness in training

neural ODEs. From using the value function and the HJB penalizers, we train neural

ODEs to model obstacle avoidance and swarm problems. Furthermore, including the

value function results in the model’s ability to extrapolate beyond the training space

and to handle shocks to the system.

5

1.2 Overview

This dissertation is organized as follows. In Chapter 2, we present the mathematical

background relevant to neural ODEs and OC. We review the original formulation

of the continuous form of the ResNet. Most importantly, we present the connection

between training a neural ODE and OC. In Chapter 3, we give a first glimpse of

a simple neural ODE for the time-series use case. We compare the DO and OD

approaches for training neural ODEs. We present the mathematical differences and

demonstrate where OD leads to inaccurate gradients and slow training. In Chapter 4,

we combine many of these neural ODEs at various resolutions for solving image

classification problems. We leverage the reduced parameterization of neural ODEs

to develop a model capable of achieving state-of-the-art performance in lung cancer

detection. In Chapter 5, we address neural ODE design for solving CNFs. We use

our knowledge of the DO and OD comparison to reduce the CNF costs of state-of-

the-art approaches. Recognizing space for further improvement, we apply theoretical

and numerical design principles to produce our model OT-Flow, which we rigorously

compare to the state-of-the-art. We recognize that OT-Flow can solve other tasks,

and in Chapter 6, we adapt it for solving high-dimensional path-finding problems.

We conclude with a summary and discussion of future work in Chapter 7.

6

Chapter 2

Mathematical Background

We present the mathematical background relevant for this dissertation. First, we

briefly describe the basics of discrete neural networks. Then, we define neural ODEs,

review OC background, and establish their connections.

2.1 Neural Networks

The hallmark tool in the machine learning toolbox, a neural network (NN) is merely

a composition of simple parameterized functions. Typically, this composition strings

together matrix multiplications and element-wise nonlinear representations known as

activation functions .

2.1.1 Architecture

For example, consider a single layer NN known as a dense layer

D(x;θ) = σ(Kx+ b), (2.1)

for input data x ∈ Rd. This layer has parameters (weights): dense matrix K ∈

Rm×d and bias vector b ∈ Rm. The vector θ holds all the parameters; thus, in this

7

example, we denote θ = (K, b) to represent vector θ ∈ Rm(d+1). Activation functions

σ : Ri → Ri, for i ∈ Z+, are the simple element-wise pieces that add nonlinearity to

the model. By element-wise, we mean that we define σ : R → R for the i = 1 case

and apply it to each element of the i-dimensional input vector. Activation functions

often take the form of hyperbolic tangent, sigmoid, or rectified linear units (ReLU),

i.e., σ(z) = tanh(z), σ(z) = 1/(1 + exp(−z)), or σ(z) = max(z, 0), respectively.

Composition of layers similar to (2.1) increases NN complexity where composition

refers to the operation in the classic functional sense. Consider a two-layer NN, or

double layer,

f(x;θ) = D2 ◦D1(x)

= σ2

(
K2 σ1(K1x+ b1) + b2

)
,

(2.2)

where D1,D2 are both dense layers. The parameters θ = (K1,K2, b1, b2) are the

vectorized forms of K1 ∈ Rm1×d, K2 ∈ Rm2×m1 , b1 ∈ Rm1 , b2 ∈ Rm2 .

Even more complicated NNs f can be created using additional layers and/or var-

ious orders of the building blocks presented in (2.2). In NN terminology, the number

of layers defines the depth of the network, and the sizes of the hidden dimensions

m1,m2 determine the width of the network. Naturally, when deciding a network’s

architecture, more layers tends to lead to more parameters and complexity. As a

result, so-called deep NNs—networks with many layers—are hand-waved as incom-

prehensible magic blackboxes due to the incredible amount of complexity.

Ultimately, NNs provide a data-driven methodology that transform data to differ-

ent dimensional spaces where the desired task may be easier to perform. This series

of transformations can be comprehended as a series of projections onto manifolds [99]

in different dimensional spaces.

8

2.1.2 Training

Given an NN f with specified architecture, one must train the network for it to be

useful. Training an NN equates to tuning the values of θ by solving the optimization

problem

min
θ

J
[
f(x;θ)

]
, (2.3)

for general NN f and scalar loss function J—also called the objective function or cost

function or error function. Solving (2.3) generally follows Algorithm 1, an iterative

optimization process.

Backpropagation and preferred optimization schemes present the most interesting

portions of NN training. Backpropagation [91], the fancy term for chain rule, involves

the complicated process of computing the gradient of the loss function with respect to

the parameters ∇θJ
[
f(x;θ)

]
. Since the forward propagation of the network passes

through the network layers to compute f(x), backpropagation passes through the

layers in the opposite direction to compute ∇θJ
[
f(x;θ)

]
. Many machine learning

packages include automatic differentiation (AD) [72], which computes the gradient

by applying chain rule via a computational graph. The optimization schemes used to

solve (2.3) and train the NN often require the gradient output from backpropagation.

Variants of gradient descent that incorporate some understanding of batching have

risen in popularity to become the preferred optimization schemes. For most of our

experiments, we use ADAM [52], a subgradient method [12] with adaptive momentum,

because it empirically performs well in nonconvex, noisy, high-dimensional search

spaces.

2.1.3 Concepts

Taking a step back and using simpler linear least squares regression, we discuss some

broader machine learning terms used in this dissertation.

9

Algorithm 1: Neural network training

Data: inputs x
Result: f(x ; θ) where f is a neural network with parameters θ

1 initialize parameters θ ;
2 while iteration i < max number of iterations do
3 compute f(x ; θ) ;
4 compute loss J [f(x ; θ)] ;
5 compute gradient ∇θJ [f(x ; θ)] via chain rule (called backpropagation) ;
6 update parameters θ via gradient-based optimization ;
7 i← i+ 1 ;

8 end

Linear Least Squares Regression

The simplest form of machine learning involves fitting a line y = mx+b to noisy data

X = {(xi, yi)}ni=1. Specifically, we solve

min
θ
‖y −Aθ‖2 = min

m,b

∥∥∥∥∥∥∥∥∥∥∥∥∥




y1

y2

...

yn



−




x1 1

x2 1

...
...

xn 1






m

b




∥∥∥∥∥∥∥∥∥∥∥∥∥

2

= min
m,b

E
(xi,yi)∈X

‖yi − (mxi + b)‖2,

(2.4)

where E denotes the expectation value. This model has two parameters m, b ∈ R,

and we refer to each yi as the ground truth for corresponding input xi.

Training, Validation, and Testing

Machine learning approaches strive to provide tools that perform well when provided

an input xj that the model has not seen before. As such, we simulate running a model

on unseen data by creating and running a model on a hold-out set Xval, not used in

10

training. Therefore, we really solve

min
m,b

E
(xj ,yj)∈Xval

‖yj − (mxj + b)‖2, (2.5)

but only by using the training set X to tune the parameters

arg min
m,b

E
(xi,yi)∈X

{
‖yi − (mxi + b)‖2 +R(xi,m, b)

}
, (2.6)

for some optional regularization term R. Regularization terms are often used to make

numerical problems strongly convex or to reduce variance [4].

When using an iterative solver for training (Algorithm 1), we often check the

performance of the model on the validation set throughout, storing or overwriting

the parameters that yield minimum validation loss as defined in (2.5). The validation

set ensures that the model does not overfit to the set X during the training process.

Overfitting occurs when the model fits to the unimportant noise of the training data

X while its performance on the validation set degrades [46]. A model that does not

overfit is called generalizable because the solution generalizes from the training set X

to the validation set Xval.

After the entire training process, we select the parameters that produce the mini-

mum validation loss (2.5) as the tuned model parameters. Since Xval is used multiple

times during the training process, it no longer acts as an actual hold-out test. Thus,

we use a testing set, a third set disjoint from the training and validation sets. The

testing set is an actual hold-out set that is used only once. In practice, for given

data, we randomly assign each input-output pair (xi, yi) to exactly one of training,

validation, and testing sets.

While on the topic of noisy data, we should address the volume of data required

to train machine learning models. A typical rule of thumb is that one needs more

independent data points than ten times the number of model parameters. For the

11

least squares problem, this equates to needing 20 data points to fit a line. This arises

from the idea that fewer points will not present enough observations to overpower the

influence of the noise; the few parameters will thus overfit to the noise because the

underlying signal from the data is not pronounced enough. Thus, machine learning

models with fewer parameters can be preferred. While aspirational, obtaining large

amounts of data may not always be possible. Furthermore, the role of regularization

and conditioning can assist highly parameterized models to fit limited data.

2.2 Neural ODEs

Historically, NNs were limited in depth because as NNs grew deeper and deeper,

accuracy saturated. Motivated to fix this degradation issue, He et al. [45] incorporated

skip connections (direct inputs into a layer come from the previous two layers instead

of solely the previous layer) into their model. The resultant residual neural network

(ResNet) outperformed the state-of-the-art on multiple tasks—most notably, in image

classification.

An M -layer discrete ResNet for initial state z(0) = x ∈ Rd can be written as

z(j+1) = z(j) + hv
(
z(j), tj ;θ(j)

)
, where j = 1, . . . ,M, (2.7)

for function v parameterized by θ(j) ∈ Rp and step size h. In machine learning

language, v is an NN layer where z(j) are the features and θ(j) are the layer weights.

Time t ∈ [0, T] for T <∞ is artificial in this context as most NNs do not depend on

time, but merely an ordering of the layers.

The discrete ResNet (2.7) is exactly the forward Euler method applied to an

ODE [25, 41], as we show here. Interpreting the weights θ(j) as evaluations of

θ : [0, T] → Rp at the time points tj = j · h in time-horizon [0, T] and taking the

12

limit as M →∞ and h→ 0, we see that the M -layer ResNet converges to the ODE

∂tzx(t) = v
(
zx(t), t ; θ(t)

)
, for 0 ≤ t ≤ T,

zx(0) = x.

(2.8)

The notation zx(t) denotes the state (or features) z at a time t associated with

initial point x; z is a function of x and t, hence the use of the partial derivative

in (2.8). Viewing the ResNet from a continuous viewpoint allows for the analysis

of the convergence properties and a more intuitive interpretation of the weights θ.

Instead of solving (2.8) with forward Euler, using any blackbox solver can then define

an NN. This approach gained popularization, and (2.8) is dubbed a neural ODE [19].

2.3 Optimal Control

Optimal control (OC) problems present a similar and more general form of the neural

ODE defined in (2.8). We present OC theory relevant for the rest of the dissertation.

We are interested in deterministic finite time-horizon OC problems. Construct a

family of these problems by varying the starting times and starting points [29]. Fix

a time-horizon [0, T] and consider system dynamics governed by

∂szx,t(s) = F
(
zx,t(s),ux,t(s), s

)
, zx,t(t) = x, (2.9)

for t ≤ s ≤ T . Here, x ∈ Rd denotes the initial state, and t ∈ [0, T] is the initial time

of the system. Next, zx,t(s) ∈ Rd represents the state of the system at time s ∈ [t, T]

with initial data (x, t), and ux,t(s) ∈ U ⊂ Ra gives the control applied at time s.

Hence, F : Rd × U × [0, T] → Rd models the evolution of the state zx,t : [t, T] → Rd

in response to the control ux,t : [t, T]→ U .

13

Next, suppose that a control ux,t : [t, T]→ U yields a cost L such that

Lx,t[zx,t,ux,t] =

∫ T

t

L
(
zx,t(s),ux,t(s), s

)
ds + G

(
zx,t(T)

)
, (2.10)

where L : Rd×U× [0, T]→ R is the running cost or the Lagrangian, and G : Rd → R

is the terminal cost. We assume that F,L,G, U are sufficiently regular [33]. The

objective of the OC problem is to find the control that incurs the minimal cost, i.e.,

Φ(x, t) = inf
ux,t

Lx,t[zx,t,ux,t], (2.11)

where Φ is called the value function. A solution u∗x,t of (2.11) is called an optimal

control. Accordingly, the z∗x,t which corresponds to u∗x,t is an optimal trajectory.

Two closely related approaches to solve (2.11) exist: applying the Pontryagin

Maximum Principle [83] (Section 2.3.1) and solving the Hamilton-Jacobi-Bellman

PDE [7] (Section 2.3.2). Both utilize the Hamiltonian H of the system which is

defined as

H(x,p, t) = sup
u∈U
{−p · F (x,u, t)− L(x,u, t)}

= sup
u∈U
H(x,p,u, t),

(2.12)

where variable p is called the adjoint state.

For a wide variety of OC problems, (2.12) admits a closed-form solution. Thus,

we make the following assumption throughout this work.

Assumption 2.3.1. Suppose that (2.12) admits a unique continuous closed-form

solution u∗(x,p, t) to the problem (2.11).

This assumption provides several advantages. First, finding the analytic expres-

sion of H is convenient when working with various approaches. Second, once state z

and adjoint p variables are available, no optimization is necessary to find the optimal

14

control—a key advantage for real-time applications.

2.3.1 Pontryagin Maximum Principle

The Pontryagin Maximum Principle (PMP) is a set of necessary first-order optimality

conditions for the optimal control and trajectory [29, 33, 83]. Ultimately, the PMP

conditions reduce to a system of forward-backward ODEs





∂sz
∗
x,t(s) = −∇pH

(
z∗x,t(s),px,t(s), s

)
,

∂spx,t(s) = ∇xH
(
z∗x,t(s),px,t(s), s

)
,

z∗x,t(t) = x, px,t(T) = ∇xG
(
z∗x,t(T)

)
,

(2.13)

for t ≤ s ≤ T . Using Assumption 2.3.1, once the state and adjoint are found, the

optimal control is recovered via u∗x,t(s) = u∗
(
z∗x,t(s),px,t(s), s

)
.

The PMP approach is a local solution method that can be challenging to solve.

First, by local solution method, we mean that (2.13) are necessary conditions for fixed

initial data (x, t). Hence, if the initial data are changed or external shocks push the

system off an optimized trajectory, a new system must be solved with the new initial

data. Second, the forward-backward structure of (2.13)—the combination of the

initial value problem for z and the terminal value problem for p—makes the system

difficult to solve numerically and depends on the initialization [51]. For example, one

possible approach is a shooting method with some initial guess for px,t(0). Additional

considerations regarding the PMP exist in Fleming and Soner [33].

2.3.2 Hamilton-Jacobi-Bellman PDE

The value function Φ contains complete information about the optimal control; that

is, u∗ and p can be recovered from Φ. For an OC problem, a unique value function

Φ exists [33]. For simplicity, we assume that Φ is differentiable. In general, value

15

functions are not differentiable, but the HJB theory still holds in the framework of

viscosity solutions [21, 33]. The next theorem connects Φ and (u∗,p).

Theorem 2.3.2 (Theorem I.6.2 [33]). Assume that u∗x,t is a right-continuous optimal

control and Φ is differentiable at (z∗x,t(s), s) for t ≤ s < T . Then

px,t(s) = ∇xΦ
(
z∗x,t(s), s

)
(2.14)

satisfies (2.13). Thus, under Assumption 2.3.1,

u∗x,t(s) = u∗
(
z∗x,t(s) , ∇xΦ

(
z∗x,t(s), s

)
, s
)

(2.15)

for almost all s ∈ [t, T].

Also, the value function Φ is the unique (viscosity) solution of the HJB equations

(also known as the dynamic programming equations)





−∂tΦ(x, t) = −H
(
x,∇xΦ(x, t), t

)

Φ(x, T) = G(x)

(2.16)

for (x, t) ∈ Rd × [0, T]. Thus, solving (2.16) is equivalent to solving the OC prob-

lem (2.11) [33].

The HJB approach comes with its own benefits and difficulties. Since Φ has

complete information about the optimal controls for all initial data (Theorem 2.3.2),

any solution method that seeks Φ is a global solution method. Although superior

to PMP in terms of the completeness of the information about optimal controls, the

HJB is challenging to solve in high dimensions by traditional numerical methods,

e.g., ENO/WENO [79], that employ grids and are prohibitively expensive in high

dimensions due to the curse of dimensionality (CoD)—costs increase exponentially

when adding dimensions [7].

16

Assumption 2.3.1 yields optimal controls in a feedback form (2.15), and no further

optimization is necessary to find the optimal controls. Feedback form representations

are valuable in real-world applications. If Φ can be efficiently approximated and ∇xΦ

quickly calculated, optimal controls are readily available at any point in space and

time. As such, the feedback form avoids recomputation at new points in scenarios

when sudden changes to the initial data or the system’s state occur.

2.4 Learning and Optimal Control

For the remainder of this dissertation, we use a specific form of the OC problems

presented in Section 2.3. We consider problems with initial value x at time 0, and

use zx(t) to denote the state of the system at time t ∈ [0, T].

Training the neural ODE (2.8) can be phrased as an infinite-dimensional OC

problem

min
θ

{
J [θ] := E

x∈X
L[zx,θ] + R[θ]

}

s.t. zx(t) solves (2.8),

(2.17)

where the model parameters θ : [0, T] → Rp are the controls, zx satisfies the neural

ODE for initial values given by the training data x ∈ X, and the loss functional L

and regularization functional R are chosen to model a given learning task. For R, we

consider Tikhonov regularization (often called weight decay [56])

R[θ] =
α

2

∫ T

0

‖θ(t)‖2 dt, (2.18)

where we assume that parameter α > 0 is chosen and kept fixed.

We will consider several types of loss functionals. As an example, here, we present

the regression loss used in the time-series problem (Chapter 3). When training a

17

neural ODE to approximate a given function y : [0, T]→ Rd, we choose

L[zx,θ] =

∫ T

0

L
(
zx(t),y(t)

)
dt, L(zx,y) =

1

2
‖zx − y‖2. (2.19)

When the ground truth y is known only at some time points, a discretized version of

this functional L is used (Chapter 3).

2.5 Neural ODEs as Reinforcement Learning

Machine learning methods generally fall into three categories: supervised, unsuper-

vised, and reinforcement learning. Supervised learning tasks require an input with

corresponding ground truth, e.g., the least squares problem (2.4). Unsupervised learn-

ing is “typically about finding structure” hidden in data with no ground truth, and

often involves clustering-type algorithms [103]. Reinforcement learning focuses on

minimizing some error function instead of trying to match some ground truth or

discover hidden structure in data.

Reinforcement learning problems focus on an agent interacting with its dynamic

environment to learn an optimal policy, often through trial and error. Such prob-

lems contain four main elements: a policy, reward signal, value function, and an

environment model [103].

The policy dictates an agent’s action at a given time depending on the current

state of the environment. At each time step, the environment sends a reward signal

to the agent, like points in a video game. The value function specifies the expected

return/reward an agent can obtain in a given state by following a policy. This long-run

view provides a farsighted judgment whereas the reward signal provides immediate

incentive. Agents can either learn from a predictive model of the environment to

decide what actions to take, or agents bypass this altogether in favor of learning the

policy directly through trial and error. The former is commonly known as model-

18

based reinforcement learning and the latter as model-free reinforcement learning.

Reinforcement learning problems specifically seek an agent’s policy that optimizes

the value function or the accumulated reward, and modern implementations leverage

the advances in NNs [61]. OC and reinforcement learning share significant overlap in

theory and design [10, 86].

In both reinforcement learning and OC, the agent or system begins with some

initial state, which we have been calling x. In OC, we seek a control that minimizes

the value function Φ, whereas in reinforcement learning, the optimal policy maximizes

the value function. The reward signal is applied at every time step in reinforcement

learning, similar to the running cost L in OC. Lastly, the OC deterministic dynamics

F equate to the model in reinforcement learning.

The main difference between the OC background (Section 2.3) and reinforcement

learning centers around continuity versus discreteness. The reinforcement learning

model often takes the form of a transition matrix with discrete probabilities. The

reward signal provides values based on the discrete state of the agent, and thus the

discrete value function appears like a table to be traversed. Undergraduate com-

puter science students agonize over setting up and traversing this table in a process

called dynamic programming, which ultimately is the approach to solving the discrete

Bellman equation, a form of the HJB equations (2.16).

The time-series and image classification problems addressed in Chapters 3 and 4,

respectively, are typical examples of supervised learning. Meanwhile, the OT-Flow

formulation of the CNF (Section 5.4) and the path-finding problems (Chapter 6) are

instances of model-based reinforcement learning.

19

Chapter 3

Time-Series Regression

We use a simple time-series regression problem to demonstrate important aspects of

neural ODEs and compare the discretize-optimize and optimize-discretize approaches.

This chapter heavily incorporates portions from Onken and Ruthotto [76].

3.1 Problem

In time-series regression, we aim to model an unknown ODE from sampled data.

Given time-series data y(1)=y(t1), . . . ,y(n)=y(tn) (e.g., the data in Figure 3.1) ob-

tained from some unknown function y, the goal is to tune the neural ODE weights

θ in (2.8) such that z(tk) ≈ y(k) for k = 0, . . . , n. For this chapter, we use a single

initial value x at initial time 0. As such, we avoid the subscripts on z and ground

truth y and write z(0) = z(0) = y(0).

For this task, we use the ODE [15, 19, 84]





∂ty = By◦3

y(0) = x

, where B =



−0.1 2

−2 −0.1


 , x =




2

0


 (3.1)

where y◦3 denotes the element-wise cubic and t ∈ [0, 1.5].

20

To transform the variational problem (2.17) into a finite-dimensional problem, it

is most common to discretize the control on a control grid, i.e., θ(j) = θ(tj) for tj=h·j

with stepsize h, and numerically approximate the integrals in J from (2.18) and (2.19)

using quadrature rules. Discrete NNs traditionally also discretize the states on the

same time grid (the same tj). For time-series regression, we consider the discrete

objective function

J(θ) = h

M∑

i=1

L
(
z(i),y(i)

)
, (3.2)

for L defined in (2.19). Here, the notation z(i) denotes the features of the ith layer

as in (2.7). The continuous neural ODE (2.8) allows for the control and state dis-

cretizations to differ, which we address in the next chapter. We use this discrete

optimization strategy and in Section 3.2 focus on handling the state equation (2.8).

3.2 Discretize-Optimize vs. Optimize-Discretize

For solving PDE-constrained optimization problems, such as (2.17), two prominent

approaches exist: discretize-optimize (DO) and optimize-discretize (OD). In DO, one

first discretizes the constraining PDE at several time points, then optimizes on this

discretization. In OD, one first optimizes the problem in the continuous space (us-

ing the adjoint equations from the Karush-Kuhn-Tucker optimality conditions), then

discretizes the PDE to provide a result. Most neural ODE literature currently being

published promotes the OD approach [19, 32, 39]. We compare the two approaches,

address relevant related works, and demonstrate the computational and convergence

benefits that make DO an often preferred choice [76].

The DO approach to performing time integration discretizes the ODE (2.8) in time

and then optimizes J using that discretization. This approach is common in NNs

and easy to implement, especially when AD can be used for the backpropagation. For

example, a discrete ResNet with input features (or initial conditions) x follows forward

21

propagation (2.7) as the explicit Euler method on a uniform time discretization with

step size h. The choice of fixed step size h trades off the accuracy of the solution with

the amount of computation and overall training time.

In applications that require the neural ODE for prediction or inference, such as

time-series regression, the step size h must be chosen judiciously to ensure the trained

discrete model captures the properties of the continuous model. Choosing a too large

value of h, may, for example, yield a discrete flow model with an inaccurate or subop-

timal inverse. Choosing a too small value of h leads to greater computational costs.

These tradeoffs influence the tuning of the step size hyperparameter. In contrast

to selection of other hyperparameters, the step size choice provides the advantage

of monitoring the accuracy of the ODE solver. While we use a fixed step size h

for simplicity, we can obtain even more efficient approaches by combining adaptive

discretization schemes with the backpropagation used in DO.

Following similar steps used in [36], we expose a crucial difference in the gradi-

ent computation between the DO and OD approaches. Recall from Section 2.1 that

accurate gradients are critical in ensuring the efficiency of gradient-based optimiza-

tion algorithms, including Stochastic Gradient Descent (SGD) [89] and ADAM [52].

The updates for θ in such methods depend on the gradient—really, the subgradi-

ent [12]—of the objective function in (2.17). For ease of presentation, we use and

assume that the forward propagation is the forward Euler scheme (2.7) and that the

objective function consists of the time-series regression loss defined by (2.19) with no

regularization.

In DO, the backpropagation of the discrete ResNet (2.7) computes the gradients.

In practice, AD traverses the computational graph1 backward in time to perform this

computation. The discretization of the forward propagation completely determines

1The computational graph is constructed during the forward propagation and is a directed acycli-
cal graph that tracks which inputs go through which functions in the order that the composition of
functions is applied.

22

this process. For discrete objective function (3.2) and using auxiliary variable a, the

backpropagation through the forward Euler discretization in (2.7) is

∇θ(j)J(θ) = h∇θ v
(
z(j), tj ; θ(j)

)
aj, where

aM = h∇zL
(
z(M),y(M)

)
and

aj = aj+1 + h
(
∇zv

(
z(j), tj ; θ(j)

)
aj+1 +∇zL

(
z(j),y(j)

))
,

(3.3)

and the computations are backward through the layers, i.e., j = M−1,M−2, . . . , 1.

In OD the gradients are computed by numerically solving the adjoint equation

∇θ(t)J [θ] = a(t)∇θv
(
z(t), t ; θ(t)

)
, where

a(T) = ∇zL
(
z(T),y(T)

)
and

−∂ta = ∇zv
(
z(t), t ; θ(t)

)
a(t) +∇zL

(
z(t),y(t)

)
.

(3.4)

As indicated by the notation −∂t, this final value problem is solved backward in

time. This equation can be derived from the Karush-Kuhn-Tucker (KKT) optimality

conditions of the continuous learning problem (Appendix A).

Comparison of the backpropagation (3.3) and the adjoint computation (3.4) shows

that both depend on the intermediate states, which need to be stored or recomputed.

However, the two differ because flexibility exists for choosing the numerical scheme

to discretize the adjoint computation in (3.4), whereas the computation in (3.3) is

determined by the discrete forward propagation. In fact, the backpropagation shown

in (3.3) can be seen as a discretization of the adjoint equation; however, the standard

23

0.0 0.5 1.0 1.5

-1

0

1

2

Disc-Opt. iter=100 timeIter=1.22e-03 sec.
 Best Iterate, with loss= 1.165

data
prediction

t

y 1

-1

0

1

2

0.0 0.5 1.0 1.5

data
pred

(a) DO iter 100, time: 1.22 ms, loss: 1.165

0.0 0.5 1.0 1.5

-1

0

1

2

Opt-Disc. iter=100 timeIter=8.86e-02 sec.
 Best Iterate, with loss= 13.484

data
prediction

t

y 1

-1

0

1

2

0.0 0.5 1.0 1.5

data
pred

(b) OD iter 100, time: 88.6 ms, loss: 13.484

0.0 0.5 1.0 1.5

-1

0

1

2

Disc-Opt. iter=300 timeIter=1.68e-03 sec.
 Best Iterate, with loss= 0.334

data
prediction

t

y 1

-1

0

1

2

0.0 0.5 1.0 1.5

data
pred

(c) DO iter 300, time: 1.68 ms, loss: 0.334

0.0 0.5 1.0 1.5

-1

0

1

2

Opt-Disc. iter=300 timeIter=8.35e-02 sec.
 Best Iterate, with loss= 1.405

data
prediction

t

y 1

-1

0

1

2

0.0 0.5 1.0 1.5

data
pred

(d) OD iter 300, time: 83.5 ms, loss: 1.405

Figure 3.1: Time-series regression training iterations 100 and 300 comparing the DO
and OD approaches with the ground truth (3.1). Discrepancies between convergence
behavior of the approaches vary with initial parameterization (Section 3.3.1).

backward Euler scheme reads

∇θ(j)J(θ) = h∇θv
(
z(tj), tj ; θ(tj)

)
aj, where

aM = h∇zL
(
z(tM),y(tM)

)
and

aj = aj+1 + h
[
∇zv

(
z(tj+1), tj+1 ; θ(tj+1)

)
aj+1 +∇zL

(
z(tj+1),y(tj+1)

)]
.

(3.5)

The only difference between (3.3) and (3.5) is a shift of the indices of the intermediate

weights and features. Thus, the gradients obtained using both methods differ unless

both equations are solved accurately, such as when h converges to zero. Hence, the

OD approach in Chen et al. [19], which uses adaptive time integrators for the forward

and adjoint equations, may provide inaccurate gradients when the time steps differ

between both solvers and the tolerance of those solvers is not sufficiently small [36, 59].

24

0 100 200 300
Iteration

100

101

102

Tr
ai

ni
ng

 L
os

s Opt-Disc
Disc-Opt

0 10 20
Time (s)

100

101

102

Lo
ss

Opt-Disc
Disc-Opt

Figure 3.2: For time-series regression, the DO method converges in fewer iterations,
and each of its iterations requires less time. The mean iteration clocktimes are 2.0
ms for DO and 80.5 ms for OD. Since ADAM is not a descent method, the iteration
loss (thin line) can be higher than the best loss thus far (thick line).

This comparison is fairly standard and is also performed in Gholaminejad et al. [36].

The differences of the gradients computed using DO and OD affect the convergence

of neural ODEs for image classification [36]. We compare the training convergence of

neural ODEs in time-series regression, where the discretization trained in DO must

capture the relevant properties of the continuous model.

3.3 Numerical Experiments

Given 30 time-series data points x,y(1), . . . ,y(29) (n = 29), we train a neural ODE (2.8)

so that z(tk) ≈ y(k) for k = 0, . . . , 29.

We copy the neural ODE in Rackauckas et al. [84] where the NN layer v in (2.8)

resembles a double dense layer given by

v(z, t ;θ) ··= D2 ◦D1(z◦3)

= K2 tanh(K1z
◦3 + b1) + b2

(3.6)

where D1,D2 represent dense layers as defined in (2.1). We explicitly write out the

layers and remark that θ = (K1,K2, b1, b2). The neural ODE is trained using 300

steps of the ADAM [52] optimizer with a learning rate (the size of the update step)

25

10-6 10-5 10-4 10-3 10-2 10-1

10-6

10-4

10-2

100

102

Opt.-Disc. Derivative Check iter=14
eigs: -19.608 + 0i , 5.020 + 0i

Step Size (h)

E
rr

or

E0
E1

(a) OD Iteration 14

10-6 10-5 10-4 10-3 10-2 10-1

10-4

10-2

100

102

104

Opt.-Disc. Derivative Check iter=24
eigs: -5.042 + 0i , 15.781 + 0i

Step Size (h)

E
rr

or

E0
E1

(b) OD Iteration 24

10-6 10-5 10-4 10-3 10-2 10-1
10-6

10-4

10-2

100

102

Disc.-Opt. Derivative Check iter=14
eigs: -19.331 + 0i , 4.490 + 0i

Step Size (h)

E
rr

or

E0
E1

(c) DO Iteration 14

10-6 10-5 10-4 10-3 10-2 10-1

10-6

10-4

10-2

100

102

Disc.-Opt. Derivative Check iter=24
eigs: -6.523 + 0i , 12.226 + 0i

Step Size (h)
E

rr
or

E0
E1

(d) DO Iteration 24

Figure 3.3: The derivative check (3.7) for iterations 14 and 24 shown on log-log
plot. As expected, the gradients of the DO approach (bottom row) are correct; as h
decays, E1(h) (red line) decays faster than E0(h) (blue line) for definitions in (3.7).
The gradient in the OD approach (a,b) is correct for iteration 14, but not for iteration
24. In this case (b), the function E1 (red line) is greater than E0 (blue line).

of 0.1, starting with a Glorot initialization [38].2 The OD and DO approaches use

the same initializations (i.e., same random seed).

The OD approach employs an adaptive explicit Runge-Kutta 4(5) [84]. We com-

pare this with a DO approach that uses Runge-Kutta 4 (RK4) with a fixed step size

h for training the neural ODE. For the step size h, we select the spacing of the data

points, i.e., h = T/29 = 1.5/29. With this choice, the evaluation of the loss function

does not require any interpolation.

The DO approach substantially reduces the cost of training. We attribute these

savings to the following two reasons. First, the runtime per iteration is 97% lower

than the OD approach’s(Figure 3.2). This speedup mainly comes from the fewer func-

2Code is available at https://github.com/EmoryMLIP/DOvsOD_NeuralODEs.

https://github.com/EmoryMLIP/DOvsOD_NeuralODEs

26

0 1 2 3 4 5 6

-1

0

1

2

Trained on t=[0,1.5] , Predicted on t=[0,6]

data
pred Disc-Opt
pred Opt-Disc

t

y 1

Trained on t=[0, 1.5], predicted on t=[0, 6]

-1

0

1

2

0.0 2.0 4.0 6.0

data
pred DO
pred OD

Figure 3.4: Extrapolation of time-series regression models. After training each model
on the time interval t ∈ [0, 1.5], we visualize how the trained NNs extrapolate up to
t = 6. Each neural ODE models behaves as a smooth ODE, by construction, though
the learned models oscillate much more quickly than the ground truth ODE.

tion evaluations, pre-determined by the step size choice, used in the DO approach.

Since the OD method uses adaptive time-stepping, the number of function evalua-

tions (NFE), and thus, cost per iteration varies during the optimization. The mean

iteration clocktimes are 2.0 ms for DO and 80.5 ms for OD. Second, the DO approach

also converges in roughly one third of the total iterations (Figure 3.2) with predictions

at iteration 100 drastically closer to the ground truth than the OD approach (Fig-

ure 3.1a,3.1b). Discrepancies between convergence behavior of the approaches vary

with initial parameterization (Section 3.3.1). Around iteration 24, the ODE solvers

struggle to improve the training (Figure 3.3), but the OD approach appears to suffer

more.

To explain the fewer iterations needed by DO, we numerically test the quality

of the gradients provided by both approaches through use of Taylor’s theorem. Let

g ∈ Rn denote the gradient of the objective function F : Rn → R at a point θ and

let ω ∈ Rn be a randomly chosen direction. Then, by Taylor’s theorem, we have that

E0(h) ··= ‖F (θ + hω)− F (θ)‖ = O(h‖ω‖) and

E1(h) ··= ‖F (θ + hω)− F (θ)− hg>ω‖ = O(h2‖ω‖).
(3.7)

27

0 100 200 300
Iteration

0

25

50

75

100

Tr
ai

ni
ng

 L
os

s Opt-Disc
Disc-Opt

0 10 20
Time (s)

0

25

50

75

100

Lo
ss

Opt-Disc
Disc-Opt

0 1 2 3 4 5 6

-1

0

1

2

Trained on t=[0,1.5] , Predicted on t=[0,6]

data
pred Disc-Opt
pred Opt-Disc

t

y 1

Trained on t=[0, 1.5], predicted on t=[0, 6]

-1

0

1

2

0.0 2.0 4.0 6.0

data
pred DO
pred OD

(a) Different seed 1

0 100 200 300
Iteration

0

25

50

75

100

Tr
ai

ni
ng

 L
os

s Opt-Disc
Disc-Opt

0 5 10 15
Time (s)

0

25

50

75

100

Lo
ss

Opt-Disc
Disc-Opt

0 1 2 3 4 5 6

-1

0

1

2

Trained on t=[0,1.5] , Predicted on t=[0,6]

data
pred Disc-Opt
pred Opt-Disc

t

y 1
Trained on t=[0, 1.5], predicted on t=[0, 6]

-1

0

1

2

0.0 2.0 4.0 6.0

data
pred DO
pred OD

(b) Different seed 2

0 100 200 300
Iteration

0

25

50

75

100

Tr
ai

ni
ng

 L
os

s Opt-Disc
Disc-Opt

0 5 10 15 20
Time (s)

0

25

50

75

100

Lo
ss

Opt-Disc
Disc-Opt

0 1 2 3 4 5 6

-1

0

1

2

Trained on t=[0,1.5] , Predicted on t=[0,6]

data
pred Disc-Opt
pred Opt-Disc

t

y 1

Trained on t=[0, 1.5], predicted on t=[0, 6]

-1

0

1

2

0.0 2.0 4.0 6.0

data
pred DO
pred OD

(c) Different seed 3

Figure 3.5: Time-series regression convergence for different initial parameterizations
(cf. Figure 3.2, 3.4).

We observe the decay of E0(h) and E1(h) as h → 0 for a fixed (randomly chosen)

direction p around the current network weights for two different iterations of the

training (Figure 3.3). We scale both axes logarithmically. As expected, E0 decays

almost perfectly linearly, and the decay of E1 using the DO method is approximately

twice as steep for large h, ultimately leveling off due to rounding errors and condition-

ing (Figure 3.3c, 3.3d). While the derivative obtained in the OD approach is correct

at iteration 14 (Figure 3.3a), it fails to provide an accurate gradient at iteration 24

(Figure 3.3b), where the error E1 is greater than E0 for all h that we tested.

3.3.1 Extrapolation and Different Initial Conditions

For time-series regression on t ∈ [0, 1.5], the NNs appear to have modeled the ground

truth ODE quite well (Figure 3.1). We ask if the models extrapolate correctly to time

t outside the training period [0, 1.5]. We extend the prediction of the trained models

28

to the time period t ∈ [0, 6] (Figure 3.4), where we see that both the DO and OD

approaches learn behaviors that represent smooth ODEs that are different from the

ground truth used to create the data. This presents an example where neural ODEs

extrapolate poorly.

We repeat the time-series regression for several initial conditions to demonstrate

that the results span a broad set of convergent behaviors. We plot three other random

seeds (Figure 3.5). Sometimes the DO and OD approaches converge at a similar rate

per iteration and can have similar extrapolations (Figure 3.5a). Some cases exist

where the loss skyrockets, and the models fail to fully converge in the 300 iterations

(Figure 3.5b). Still other cases appear where OD converges to a lower loss than DO

after 300 iterations, but extrapolation shows that the two models learn similar ODE

dynamics (Figure 3.5c). In such cases, we observe that the DO model still trains more

efficiently in terms of time. In fact, out of ten random initial conditions selected, the

DO approach used fewer iterations to converge than the OD approach in nine of the

comparisons. In the one model where the OD converges in fewer iterations than DO

(Figure 3.5c), the DO model converges to the same loss in 466 iterations and still

reduced training time by 94%. Training cost reductions due to the DO model across

these ten initial conditions ranged from 94% to 99% with an average reduction of

97% (a 20x speedup).

29

Chapter 4

Image Classification

We use neural ODEs for image classification. The construction of the method in-

cluded contributions by Simion Novikov, Eran Treister, and Lars Ruthotto. The

medical application of this method took place at UnitedHealth Group Research & De-

velopment with contributions from Renn Caday, Wesley Carter, Seth Colbert-Pollack,

Stephen Garth, Jessica Gronski, Rachel Jennings, Hunter McCawley, Prajakta Patil,

and Jonathan Rolfs. We thank the National Cancer Institute for access to NCI’s data

collected by the National Lung Screening Trial (NLST). The statements contained

herein are solely those of the authors and do not represent or imply concurrence or

endorsement by NCI.

4.1 Problem

For image classification tasks, we expect a model f : Rd → Rc to accept a vectorized

image x with d features and return a one-hot encoded vector y ∈ Rc, a vector of

magnitude 1 consisting of c−1 zeros. Each of the c slots in y correspond to one of

the c possible classes. The d features are often the product of the number of pixels

and the number of channels in the image.

30

1 1 1 4

0 6 4 3

1 1 4 2

1 1 2 4

2 3

1 3

Pavg

Input Channel Pooled Channel

(a) Average Pooling

1 1 1 4

0 6 4 3

1 1 4 2

1 1 2 4

6 4

1 4

Pmax

Input Channel Pooled Channel

(b) Max Pooling

Figure 4.1: Pooling examples

Often, image classification models will take on the form

f(x;θ) = S ◦D2 ◦ fM ◦ PM−1 ◦ fM−1 ◦ · · · ◦ P2 ◦ f2 ◦ P1 ◦ f1 ◦D1(x) (4.1)

where S is the softmax operator, each fi component is a neural ODE, each P i is a

pooling operator, each Di is a dense layer (2.1), and θ denotes all the parameters for

the model f .

Pooling operators edit the input image by combining pixels. For instance, consider

z ∈ R48, a two-dimensional image with 4 × 4 pixels and 3 channels. If P1 is a max

pooling operator with a 2 × 2 kernel, then each of the four non-overlapping sets of

2 × 2 pixel squares in the image are “pooled” into one pixel. The value assigned to

the pooled pixel is the maximum of the four pixels used to make it (Figure 4.1). After

pooling, P1(z) ∈ R12 is a two-dimensional image with 2 × 2 pixels and 3 channels.

Average pooling works similarly, except the pooled pixel is assigned the average value

of the pixels pooled together to make it. Pooling operators apply separately to each

image channel; Figure 4.1 contains simple examples when pooling is applied to one

channel of z.

The softmax operator S converts input features into percentages for each class.

The design of (4.1) uses neural ODEs fi that do not change dimensionality, while

the dense layers and pooling operators do. Specifically, D2 is structured to return

31

a hidden state z ∈ Rc. The softmax is an element-wise activation function that

converts each element zi in z to a percentage likelihood for the respective class via

S(zi) =
exp(zi)∑c
j=1 exp(zj)

, for i = 1, . . . , c. (4.2)

4.1.1 Focal Loss

For a loss function, we use an α-weighted focal loss [65]

G
(
f(x),y

)
= −(α� y)

(
(1> − f(x)>)◦γ � log

(
f(x)>

))
, (4.3)

where 1 ∈ Rc is a vector of all ones. Here, the logarithm is applied element-wise,

and ◦γ denotes the element-wise power for a constant hyperparameter γ. The sym-

bol � represents the element-wise product of equally sized vectors or matrices (the

Hadamard Product). The vector α ∈ Rc provides separate weighting for each class.

The α-weighted focal loss (4.3) is based on the cross entropy loss: −y log
(
f(x)>

)
,

and in fact, the two are the same when α = 1 and γ = 0. Loss (4.3) adds two

components. First, the focal loss portion (1 − f(x)>)◦γ incentivizes the model to

“focus” on samples that the model gets incorrect. Meanwhile, the samples that the

model easily classifies receive less importance. Second, we use the α to counteract

imbalance arising from the classes. The training data X contains samples from c

classes, but the number of samples per class need not be the same for all classes. To

counteract this imbalance, we give more weight to the classes with fewer samples.

Consider the vector η ∈ Rc where element ηi is the number of samples in X for class

i. For determining the α, we set

α =

∑c
j=1 ηj

η
. (4.4)

32

The optimization problem (2.17) for image classification then is

min
θ

E
(x,y)∈X

{
G(f(x;θ),y)

}
+ R[θ] (4.5)

where f is parameterized by θ and the set of training data X holds image-label pairs

(x,y). We use weight decay (2.18) for regularizer R.

4.2 Convolutional Neural Networks

Images present a structured form of input data since the pixels form orderly grid

where the spatial positioning between two pixels is important. To exploit the spatial

relationship between data features, convolution is a preferred approach for solving

image classification tasks.

4.2.1 Convolutional Layer

Convolutional neural networks (CNNs) follow the same formulation as dense NNs. For

example, a single convolutional layer is formulated the same as a dense layer (2.1),

except that the linear operator K represents a convolutional operator instead of a

dense matrix. We vectorize the input image x by vectorizing and stacking each of

the image channels. For instance, a standard color image is comprised of the three

channels for red, green, and blue

x =




xR

xG

xB



. (4.6)

The dimension d of this RGB image x is three times the number of pixels of the

image.

33

Next, we formalize the convolutional operator as matrix. Convolutional operator

K is parameterized by so-called kernels, small matrices convolved with the entire

image channel. Convolutional operator K then can be written as an i-by-j block

matrix for transforming an input image with j channels to i channels. Each of the

i · j blocks in K is parameterized by a single kernel. For convolving our example

image (4.6) from three to two channels, we can write Kx as

Kx =



KR2 KG2 KB2

KR1 KG1 KB1







xR

xG

xB




=




KR1xR KR2xR

KG1xG KG2xG

KB1xB KB2xB



. (4.7)

Each block in K is a block-circulant matrix formed by the parameterizing kernel. For

example, consider a 4× 4 pixel image x and a standard sharpening kernel




0 −1 0

−1 5 −1

0 −1 0



. (4.8)

When this kernel parameterizes KR1, then KR1xR is




0 −1 0 −1 5 −1 0 −1 0

0 −1 0 −1 5 −1 0 −1 0

0 −1 0 −1 5 −1 0 −1 0

0 −1 0 −1 5 −1 0 −1 0







xR1

...

xR16




(4.9)

which is convolving the sharpening kernel with the red channel of the 4× 4 image x.

In this example, KR1xR ∈ R4 which equates to a channel of a 2 × 2 image. To stop

convolutional operators from shrinking image dimensions, we can pad the input image

with zeros on all sides prior to vectorization. Although the KR1 in (4.9) appears large,

34

it depends entirely on a kernel with nine parameters. We present the convolution as

matrix-vector multiplication; however, in practice, the convolutional operators are

stored and implemented as tensors of the underlying kernels.

4.2.2 Normalization Layer

Training NNs (Algorithm 1) can often be slow and unstable. To assist in training

speed and stability, normalization layers N are incorporated in the architecture. A

normalization layer adds stability to the network because it re-normalizes hidden fea-

tures by subtracting the mean of the features, then dividing by the standard deviation,

then scaling the features.

We apply the normalization layer to input features via

N (x;θ) = ζ
x− µN√
σ2
N + ε

+ β (4.10)

where the parameters θ = (ζ, β) are for each channel and constant ε > 0 is a small

floating point value that prevents division by zero. Here, µN and σN denote the mean

and standard deviation of the features, respectively. Many choices exist for what data

should be used to compute µN , σN [117]. Instance normalization computes across all

the features (pixels) in a single channel of single input object. Layer normalization

uses all features of all channels in a single input object. Batch normalization computes

across all features of a single channel across all input objects in a batch. Due to the

large variance that can occur across different batches, batch normalization involves

further parameterization terms—running mean and running variance—so that the

model can be run on a single example at inference, where batching is not present.

35

4.2.3 Double Symmetric Layer

Recall that each fi in (4.1) uses the neural ODE (2.8). For the neural layer v in the

neural ODE, we choose a double symmetric layer [92]

v(z, t ;θ) ··= −K> ◦ σ ◦ N ◦ Kz (4.11)

for instance normalization layer N (4.10), parameters θ = (K, ζ, β), and ReLU

activation function—i.e., σ(z) = max(0, z). Most notably, the double symmetric

layer uses the same parameters (kernels) in K and K>, differing it from the double

layer (2.2) which uses two convolutional operators with different parameters. This

double symmetric layer leads to a negative semi-definite Jacobian and promotes NN

stability [92].

4.3 Decoupling the Weights and Layers

Inspired by and comparing against the existing ResNet (2.7), the neural ODEs fi

in (4.1) result in reduced parameterization from decoupling the weights and layers.

In discrete networks, e.g., ResNet, each layer v(j) has an associated set of weights

θ(j) that belong solely to that layer. Thus, increasing the number of layers in a

model similarly increases its number of weights. Deep networks often yield excellent

performance as more parameters and layers gives the model greater expressibility.

Simultaneously, highly parameterized models tend to require more data to avoid

overfitting to the training data (Section 2.1.3). Thus, we seek models with comparable

performance but fewer parameters than a many-layered discrete network. Whereas

fewer parameters tends to result in a simpler model and needing less training data,

networks with few layers tends to lead to poorer results.

We use the ResNet to present the associations of number of layers and model

36

image x

dense layer

3x3 conv

3x3 conv

3x3 conv

3x3 conv

3x3 conv

3x3 conv

3x3 conv

3x3 conv

3x3 conv

3x3 conv

avg pool

dense layer

θ

θ

θ

θ

θ

θ

θ

θ

θ

θ

image x

dense layer

Double Layer
t = 0

Double Layer
t = 1

Double Layer
t = 2

Double Layer
t = 3

Double Layer
t = 4

avg pool

dense layer

θ

θ

θ

image x

Opening Layer

σ ◦ N ◦ K

Neural ODE

RK1 scheme

Double Layer
σ2 ◦ N2 ◦K2 ◦
σ1 ◦ N1 ◦K1(z)

T = 4
t ∈ [0, 4]

hθ = 2
3 control layers

hz = 1
5 state layers

σ ◦ N ◦K ◦ P (z)

ResNet Representation Neural ODE with Reduced Parameterizaiton

Figure 4.2: Image classification model example

performance. Recall that the ResNet is the forward Euler discretization of the neural

ODE (2.8) [25, 41]. For example, imagine solving the neural ODE over time hori-

zon t ∈ [0, 1] with a step size h=0.5. This results in a two-layer network, i.e., two

evaluations of v at t = 0, 0.5. With forward Euler, a smaller step size h results in

more functional evaluations (more layers) and a more accurate approximation. Using

this insight, we motivate how neural ODEs decouple the weights and layers so the

model can have many layers but few parameters. We refer to the the discretization of

the function evaluations as the state layers because they correspond to discretizing

the state z. We can discretize the controls (parameters) θ with a different fineness

generating what we call the control layers. When evaluating θ between control layers,

we linearly interpolate. In Figure 4.2, we demonstrate how an example neural ODE

approach, f(x;θ) = S ◦D2 ◦ P1 ◦ f1 ◦D1(x), can reduce the parameterization of a

37

© 2019 UnitedHealth Group. Any use, copying or distribution without written permission from UnitedHealth Group is prohibited.

PROJECT GOAL

!1 #$%#&'()*
0 %(, #$%#&'()*

Input Output

Model

10 / 30

Figure 4.3: Lung cancer image classification.

ResNet [45] without changing the number of function evaluations.1

4.4 Image Classification for Lung Cancer Detection

We apply our image classification model to low-dose computed tomography (LDCT)

images for lung cancer detection.

4.4.1 Motivation

Cancer claims millions of lives annually with more than 600,000 of those in the United

States. Individually, lung cancer (135,000 U.S. deaths) is the most lethal [70]. How-

ever, when detected in early stages while still localized to the lungs, this lethal cancer

can be treated. Early detection provides this silver lining and a hope for saving

and/or extending lives. Observably, lung cancer five-year survival rates range from

59% when localized to 5.8% when distant [70].

The National Comprehensive Cancer Network (NCCN) recommends that asymp-

tomatic high-risk lung cancer patients (30 pack-years,2 ages 55-74, quit smoking

within past 15 years) be screened annually using low-dose computed tomography

(LDCT) imaging. LDCT scans work by shooting x-ray photons through the pa-

1Code for 2-D images is available at https://github.com/EmoryMLIP/DynamicBlocks.
2A patient’s pack-years are the product of the number of packs smoked daily and the number of

years smoked.

https://github.com/EmoryMLIP/DynamicBlocks

38

© 2019 UnitedHealth Group. Any use, copying or distribution without written permission from UnitedHealth Group is prohibited.

RESEARCH PLAN

!"

Probability:
that cube contains a
cancerous nodule?

no

#1 %&' ()*(&+,-'
0 *,/ ()*(&+,-'

Model

Max Probability
Segment & pull out the
nodules

300 slices, 512 x 512 each

Neural
Network

scalable model to handle NLST

!"

!"!"

15 / 30

Figure 4.4: Lung cancer model applied to individual cubes.

tient’s chest and collecting the attenuation values (the scattering patterns on the

other side). From the attenuation values, the CT scanner solves an inverse problem

using Radon’s transform to generate a CT slice (a 2-D image read by the radiologist).

The CT scanner produces multiple slices, which, when stacked together, form a 3-D

image representation of the patient’s lungs. Radiologists read these slices, looking for

nodules that may be cancerous. Cancerous nodules often appear large, oddly shaped,

or fast-growing. The NCCN recommends annual low-dose CT screening because it

grants higher sensitivity for detection than chest x-rays and lacks the higher radiation

of a full-dose CT, which can be detrimental when used annually.

After an LDCT scan and a suspicious determination by the radiologist, the pa-

tient undergoes follow-up screening (PET scan or full CT) potentially followed by

biopsy. Currently, the LDCT step is marred with false positives (positive predictive

value, PPV, of 3.8%) [107]. Thus, 96% of patients marked as likely to have cancer

are incorrectly marked and undergo some form of costly follow-up screening and/or

biopsy. These additional costs are a mix of patient out-of-pocket costs and insur-

ance company costs, which contribute to the skyrocketing medical insurance rates.

The current pipeline suffers from other issues: some doctors are uncomfortable with

LDCT and will use chests x-rays instead, patients do not always return for follow-up

testing (many high-risk patients have mobility issues or comorbidities), and the entire

39

pipeline can take six months from LDCT scan to biopsy results [37].

We set out to build an NN that reads a patient’s three-dimensional LDCT scan

and predicts whether that patient has a cancerous nodule or is cancer free (Figure 4.3).

Our model should have a PPV greater than 4% while maintaining the same sensitivity

of radiologists (94%).

4.4.2 Model

We adjust the image classification approach presented in Section 4.2 to apply to three-

dimensional images. Namely, we now have three-dimensional convolutional kernels

whereas the rest of the formulation remains the same. We empirically find that an

effective lung cancer model requires at least 32 channels for the hidden features of

the CNN. As such, the hidden states require much memory when training in the

GPU. Since the RAM of the available GPU was 16 GB, we realized the necessity for

separating the initial LDCT image into smaller cubes (Figure 4.4). The NN (4.1)

predicts a cancer probability for each cube. Then, the model combines all the cubes

of a patient, assigning the maximum probability of a patient’s cubes for the patient

as a whole. Maximum probability performed competitively with other combination

methods implemented in Liao et al. [62].

For our model (4.1), we use three neural ODEs f1, f2, f3 with average pooling

operators P1, P2, P3 in (4.1). For each neural ODE, we use a double symmetric layer

with T = 4, three control layers, and five state layers arranged as in Figure 4.2.

We choose the α-weighted focal loss for G (4.3), where α is decided dynamically to

counter the class imbalance of the provided training data.

4.4.3 National Lung Screening Trial Experiment

We obtained a subset of 15,000 patients from the 26,000 patients who partook in

the National Lung Screening Trial (NLST). Although the NLST data set is public,

40

Table 4.1: Model performance 2× 2 tables.

Radiologists [107] Google [3] Ours (Validation)
Actual Actual Actual

True False True False True False

Predicted True 270 6,911 82 1,260 40 398
Predicted False 18 19,043 4 5,370 2 1,560

class imbalance 1.1% 1.3% 2.1%

Table 4.2: Model performance metrics.

Metric Radiologists [107] Google [3] Ours (Validation)

Sensitivity 0.94 0.95 0.95
PPV 0.04 0.06 0.09

only subsets of the data (with a maximum of 15,000 patients) are provided due

to privacy concerns. All patients were high-risk and nonsymptomatic at the time of

LDCT screening. For each patient, we possess the LDCT scan and a biopsy-confirmed

ground truth of cancerous or non-cancerous. We split the data set of patients into

separate training, validation, and testing sets (Section 2.1.3). While splitting, we

control for the distribution of nodule count and size to aid in generalizability.

Despite long training times, our model achieves competitive performance on the

lung cancer detection task for NLST data (Table 4.1, Table 4.2). The radiologists of

the NLST [107] used all 26,000 patients. The Google attempt [3] similarly obtained

a subset of the NLST data and trained an NN to detect lung cancer. The Google ap-

proach predicted more than two classes, matching the Lung CT Screening Reporting

& Data System (Lung-RADS) diagnostic classes.

The neural ODE PPV beats both radiologists and Google, while achieving com-

petitive sensitivity (Table 4.2). The class imbalance and size of the data present

the two most difficult obstacles. Hence, we acknowledge the differences between all

methods’ number of patients and the associated class imbalance (Table 4.1).

In deployment, an NN detection model can assist radiologists in their diagnosis of

41

© 2019 UnitedHealth Group. Any use, copying or distribution without written permission from UnitedHealth Group is prohibited.

INTERPRETABILITY

Each region has a cancer
probability !"

potential utilization by physicians

The segmenter provides
region of interest cubes

Show those to the radiologist

20 / 30 Figure 4.5: Model interpretability for deployment.

lung cancer. In addition to poor PPV, machine learning methods for healthcare fail to

be implemented due to a lack of interpretability. Radiologists have a responsibility to

their patients and thus need to know when to reject or accept the model’s prediction;

therefore, they view uninterpretable black box machine learning models negatively.

Since we have the predictions for each small LDCT cube (Figure 4.4), we can show

though predictions to the radiologist during diagnosis (Figure 4.5). Therefore, the

radiologist can somewhat determine why the NN made its prediction, and optionally

can double-check a reduced search space.

42

Chapter 5

Continuous Normalizing Flows for

Density Estimation

Existing continuous normalizing flow (CNF) approaches suffer from high costs. We

leverage optimal control theory to reduce CNF costs. Similar to Chapter 3, we apply

the DO approach and compare training times and performance with the state-of-

the-art methods on many real data sets. Next, we develop OT-Flow by incorporating

running costs and the value function (Section 2.3). This chapter incorporates portions

from Onken and Ruthotto [76] and Onken et al. [77].

5.1 Problem

A normalizing flow [87] is an invertible mapping f : Rd → Rd between an arbitrary

probability distribution P0 and a known distribution P1 whose densities we denote

by ρ0 and ρ1, respectively. For simplicity, we specify that P1 is the standard normal

distribution with Gaussian density ρ1. Normalizing flows possess two tiers of refer-

ence: a microscopic view and a macroscopic view (Figure 5.1). The microscopic view

considers a single sample x ∈ Rd drawn from P0 and how it follows f , flowing to f(x).

The outputs f(x) follow distribution P1. Alternatively, one can view the normalizing

43

−3 −1 1 3

−3

−1

1

3

x ∼ P0(x)

−3 −1 1 3

−3

−1

1

3

y ∼ P1(y)

f

f−1

sample x̃
zx̃(T) = f(x̃)

ρ0(x) ρ1(y)

Figure 5.1: Normalizing flow example for the Gaussian mixture problem.

flow from the macroscopic, or density view. By the change of variables formula, for

all x ∈ Rd, the flow must satisfy [81, 87]

log ρ0(x) = log ρ1(f(x)) + log | det∇f(x) | . (5.1)

Effectively, we want f to approximate a diffeomorphism (a bijective function that is

differentiable and has a differentiable inverse).

A normalizing flow is constructed by composing invertible neural network layers

fi, where i = 1, . . . , k , i.e.,

f = fk ◦ · · · ◦ f2 ◦ f1. (5.2)

Since computing the log-determinant in general requires O(d3) floating point oper-

ations (FLOPS), effective finite normalizing flows (5.1) consist of layers fi whose

gradients have exploitable structure (e.g., diagonal, triangular, low-rank) [22, 23, 80].

We next convert the normalizing flows into a continuous formulation, where f is

44

modeled by a neural ODE (2.8), i.e., f(x) = zx(T) where zx(t) ∈ Rd is the state at

time t for initial condition x. The change of variables formula (5.1) becomes

log ρ0(x) = log ρ
(
zx(t), t

)
+ log det

(
∇zx(t)

)
, (5.3)

which is the log transform of the Jacobi identity

ρ0(x) = ρ
(
zx(t), t

)
det
(
∇zx(t)

)
, (5.4)

where ρ
(
zx(t), t

)
is the predicted density at time t. Using Jacobi’s formula (different

from the Jacobi identity) and (5.3), Chen et al. [19] derive the instantaneous change

of variables theorem

∂ log ρ
(
zx(t), t

)

∂t
= − tr

(
∇v(zx(t), t ;θ)

)
, (5.5)

for layer v in (2.8). Thus, for a time t ∈ [0, T],

log ρ
(
zx(t), t

)
− log ρ

(
zx(0), 0

)
= −

∫ t

0

tr
(
∇v(zx(s), s;θ)

)
ds. (5.6)

Recall that ρ
(
zx(0), 0

)
= ρ0(x). Furthermore, we define `x(t) = log ρ

(
zx(t), t

)
−

log ρ0(x) so that the final state satisfies `x(T) = log det∇f(x). Therefore, we can

incorporate the time integration (5.6) into the neural ODE, creating a continuous

normalizing flow (CNF) [19, 39]

∂t



zx(t)

`x(t)


 =




v
(
zx(t), t ;θ

)

tr
(
∇v(zx(t), t ;θ)

)


 ,



zx(0)

`x(0)


 =



x

0


 , (5.7)

for artificial time t ∈ [0, T] and x ∈ Rd. Addressing the microscopic view, the first

component maps a point x to f(x)=zx(T) by following the trajectory z : Rd×[0, T]→

45

Rd (Figure 5.1). This mapping is invertible and orientation-preserving under mild as-

sumptions on the dynamics v : Rd× [0, T]→ Rd. Replacing the log determinant (5.1)

with a trace (5.7) reduces the FLOPS to O(d2) for exact computation or O(d) for an

unbiased estimate [32, 39, 119] (Section 5.2.2).

We train the dynamics by matching the final-time predicted density ρ
(
x, T

)
to

the desired density ρ1. The error between the two densities is measured using the

Kullback-Leibler (KL) divergence

DKL

[
ρ(x, T) || ρ1(x)

]
=

∫

Rd

log

(
ρ(x, T)

ρ1(x)

)
ρ(x, T) dx. (5.8)

Changing variables, and using (5.4), we can rewrite (5.8) as

DKL

[
ρ
(
zx(T), T

)
|| ρ1

(
zx(T)

)]

=

∫

Rd

log

(
ρ
(
zx(T), T

)

ρ1

(
zx(T)

)
)
ρ
(
zx(T), T

)
det
(
∇zx(T)

)
dx,

=

∫

Rd

log

(
ρ0(x)

ρ1

(
zx(T)

)
det
(
∇zx(T)

)
)
ρ0(x) dx,

=

∫

Rd

[
log
(
ρ0(x)

)
− log

(
ρ1(zx(T))

)
− log det

(
∇zx(T)

)]
ρ0(x) dx.

(5.9)

For normalizing flows, we assume ρ1 is the density associated with the standard

normal

ρ1(x) =
1√

(2π)d
exp

(−‖x‖2

2

)
, (5.10)

which implies

log
(
ρ1(zx(T))

)
= −1

2
‖zx(T)‖2 − d

2
log(2π). (5.11)

46

Substituting (5.11) into (5.9), we obtain

DKL

[
ρ
(
zx(T), T

)
|| ρ1(zx(T))

]

=

∫

Rd

[
log
(
ρ0(x)

)
− log det

(
∇zx(T)

)
+

1

2
‖zx(T)‖2 +

d

2
log(2π)

]
ρ0(x) dx

=

∫

Rd

[
log
(
ρ0(x)

)
+ Cx(T)

]
ρ0(x) dx

= E
x∼P0(x)

{
log
(
ρ0(x)

)
+ Cx(T)

}
,

where Cx(T) :=
1

2
‖zx(T)‖2 − `x(T) +

d

2
log(2π).

(5.12)

Density ρ0(x) is unknown in density estimation Thus, the term log(ρ0(x)) is dropped,

and normalizing flows minimize C alone. Subtracting this constant does not affect

the minimizer. Thus, CNFs solve the optimization problem [39, 80, 81, 87]

min
θ

E
x∼P0(x)

{Cx(T)} subject to (5.7). (5.13)

Solving (5.13) often comes with high costs for two predominant reasons: the

large number of function evaluations (NFE) needed to solve the ODE (5.7) and the

expensive trace computation that occurs for every function evaluation. Next, we

present existing approaches to mitigate these costs (Section 5.2). Then we present

our two models to mitigate such costs: the DO approach (Section 5.3) and OT-Flow

(Section 5.4).

5.2 Related Works

We present a non-exhaustive summary of existing approaches split into three cate-

gories: finite flows (or discrete flows) that solve the normalizing flow problem (5.1)

without a continuity requirement, approaches to the CNF problem with emphasis on

the use of trace estimation for training efficiency, and CNF approaches that incorpo-

47

rate OC theory.

5.2.1 Finite Flows

Normalizing flows [55, 81, 87, 105] use a composition of discrete transformations

as described in (5.2), where specific architectures are chosen for fi to allow for ef-

ficient inverse and Jacobian determinant computations. NICE [22], RealNVP [23],

IAF [54], and MAF [80] use either autoregressive or coupling flows where the gradient

is triangular, so the gradient determinant can be tractably computed. GLOW [53]

expands upon RealNVP by introducing an additional invertible convolution step.

These flows are based on either coupling layers or autoregressive transformations,

whose tractable invertibility allows for density evaluation and generative sampling.

Neural Spline Flows [24] use splines instead of the coupling layers used in GLOW

and RealNVP. Using monotonic neural networks, NAF [48] requires positivity of the

weights. UMNN [113] circumvents this requirement by parameterizing the Jacobian

and then integrating numerically.

5.2.2 Infinitesimal Flows

Modeling flows with differential equations is natural and common [71, 94, 104, 115].

In particular, CNFs [18, 19, 39] model their flow via (5.7). The continuous nature of

CNFs tend to result in fewer parameters and more accurate inverses than finite flows.

Trace Estimation

The computation of the trace term in (5.7) occurs at every time step of every training

iteration. When computed exactly using existing O(d2) approaches, the trace com-

putation becomes a computational bottleneck in CNF training—and leads to high

48

costs during inference. Typically, the exact trace is computed by

tr(∇v) =
d∑

i=1

{
e>i ∇v ei

}
(5.14)

where ei is the ith standard basis vector. In implementation, AD computes the

Jacobian-vector product ∇v ei. The multiplication with e>i is implemented via in-

dexing operations. Each of the d Jacobian-vector products is O(d). Since most AD

toolboxes do not perform multiple Jacobian-vector products simultaneously, a loop is

required in implementation and computing (5.14) costs O(d2) FLOPS.

To alleviate the expensive training costs of CNFs, FFJORD [39] sacrifices the

exact but slow trace computation for a Hutchinson’s trace estimator with reduced

time complexity [49]. The Hutchinson’s trace estimator is computed via

tr(∇v) = E
ν(ε)

{
ε> ∇v ε

}
(5.15)

for noise vector ε with density ν(ε), E{ε} = 0, Cov(ε) = I. Leveraging AD’s effi-

ciency with Jacobian-vector products, FFJORD uses AD to compute (5.15) with a

single noise vector ε drawn from the Rademacher distribution for complexity O(d)

FLOPS [39]. The Hutchinson’s estimator has improved accuracy when replacing ε

with a matrix of noise vectors (Figure 5.2d). The Hutchinson’s estimator only makes

sense to be used for fewer than d noise vectors since we can compute the exact trace

with d standard basis vectors at similar cost using (5.14).

The Hutchinson’s estimator helps FFJORD achieve training tractability by re-

ducing the trace cost from O(d2) to O(d) per time step. However, during inference,

FFJORD has O(d2) trace computation cost since accurate CNF inference requires

the exact trace. FFJORD also uses the OD approach and an adjoint-based back-

propagation like in the Rackauckas et al. [84] approach for time-series (Section 3.2).

49

1 10 20 30 43
10−3

10−2

10−1

100

Ru
nt

im
e

(s
)

(a) MINIBOONE, d=43

1 10 20 30 40 50 63
Number of Hutchinson Vectors

(b) BSDS300, d=63

1 200 400 600 784

(c) MNIST, d=784

0 250 500 750
Number of Hutchinson Vectors

10−2

10−1

Re
la

tiv
e

Er
ro

r

(d) Accuracy of Estimators
Hutchinson d=43
Hutchinson d=63
Hutchinson d=784
Exact

Figure 5.2: Performance comparison of trace computation using exact approach (Sec-
tion 5.4.2) and Hutchinson’s trace estimator using AD. (a-c): runtimes (in seconds)
over dimensions 43, 63, and 784, corresponding to the Miniboone, Bsds300, and
MNIST data sets, respectively. (d): relative errors vs. number of Hutchinson vectors
for different dimensions. We present means with shaded 99% error bounds computed
from twenty runs via bootstrapping [27] (Appendix B).

5.2.3 Flows Influenced by Optimal Control

To encourage straight trajectories and reduce costs, RNODE [32] regularizes FFJORD

with a running cost L. RNODE also includes the Frobenius norm of the Jacobian

‖∇v‖2
F to stabilize training. They estimate the trace and the Frobenius norm using

a stochastic estimator and report 2.8x speedup. Numerically, RNODE, FFJORD,

and our methods differ. Clearly, DO favors the DO approach in contrast to the OD

approach used in FFJORD and RNODE. Furthermore, OT-Flow’s exact trace allows

for stable training without ‖∇v‖2
F (Figure 5.8). In formulation, OT-Flow shares the

L2 cost with RNODE but follows a potential flow approach (Table 5.1).

Monge-Ampère Flows [119] and Potential Flow Generators [118] draw from OC

theory and parameterize the value function (Table 5.1). However, OT-Flow’s numer-

ics differ substantially due to our scalable exact trace computation (Section 5.4.2).

Optimal transport is also used in other generative models [5, 58, 95, 96, 106].

5.3 Discretize-Optimize Flows

We augment the FFJORD model with the DO approach addressed in Section 3.2

to alleviate the expensive training costs stemming from high NFE. Drawing on the

50

Table 5.1: The CNF methods we address share the underlying neural ODEs but differ
in use of value function Φ, penalizers (L, R, ‖∇v‖2

F), ODE solver, approach (DO or
OD), and trace computation (exact using AD, Hutchinson’s estimator with a single
vector sampled from a Rademacher or Gaussian distribution).

Model
Formulation Training Implementation Inference

Φ L R ‖∇v‖2
F Solver Approach Trace Trace

FFJORD [39] 7 7 7 7 RK(4)5 OD Hutch Rad AD exact

DO 7 7 7 7 RK4 DO Hutch Rad AD exact

RNODE [32] 7 3 7 3 RK4 OD Hutch Rad AD exact

M-A Flows [119] 3 7 7 7 RK4 DO Hutch Gauss

PFG [118] 3 7 3 7 RK1 DO AD exact

OT-Flow 3 3 3 7 RK4 DO efficient exact (Sec. 5.4.2)

Table 5.2: Number of parameters comparison with discrete normalizing flows.

Data Set Power Gas Hepmass Miniboone Bsds300
Dimension d 6 8 21 43 63

OT-Flow 18K 127K 72K 78K 297K
FFJORD, RNODE, DO 43K 279K 547K 821K 6.7M

NAF[48] 414K 402K 9.27M 7.49M 36.8M
UMNN [113] 509K 815K 3.62M 3.46M 15.6M

stepsize discussion in Section 3.2, we know that a too coarse stepsize results in a finite

flow that is a discretization of the CNF. The DO model then can suffer from some of

the same problems as finite flows, specifically poor invertibility. However, CNFs tend

to have fewer parameters than finite flows (Table 5.2).

A meaningful CNF must be invertible, i.e., the reverse mode must also push-

forward ρ1 to ρ0, which is not enforced in training. For discrete normalizing flows,

computing f−1 involves computing the inverse of (5.2) by using the inverse of each

piece fi, which are invertible by design. Computing the inverse of a CNF is performed

by integrating the neural ODE backwards in time, i.e., from T to 0. We stress the

importance of checking model invertibility. To gauge the accuracy of the trained flow

51

−3 −1 1 3

−3

−1

1

3

−3 −1 1 3

−3

−1

1

3

θ θ
control layer θ(ti)

state layer zx(ti)

sample x̃
zx̃(T) = f(x̃)

f

f−1

0 0.25 T=0.5
t

ρ0(x) ρ1(y)

x ∼ P0(x) y ∼ P1(y)

Figure 5.3: DO approach for the Gaussian mixture problem in Section 5.3.1. As
common in OC, we use different discretization points for the weights and the states.
We refer to the discretizations as control and state layers, respectively. We discretize
the state equation using a Runge-Kutta 4 scheme with constant stepsize h = 1.

model, we compute the inverse error

E
x∼P0(x)

∥∥f−1 (f(x))− x
∥∥

2
(5.16)

where x is sampled from P0. This calculates the Euclidean distance between an initial

point x and the result from mapping x forward then back.

5.3.1 Numerical Experiments

We compare DO and OD on a toy Gaussian mixture problem and five high-dimensional

real data sets.

52

Toy Gaussian Mixture Problem

To help visualize CNFs, consider the synthetic test problem where ρ0 is the Gaussian

mixture obtained by averaging eight bivariate Gaussians situated in a circular pattern

about the origin (Figure 5.3). For the DO approach, we use a Runge-Kutta 4 (RK4)

solver with a constant stepsize h. We illustrate an example in Figure 5.3, where for

final-time T = 0.5, the control is discretized at θ(0) and θ(0.25). The state layers

are discretized at one-quarter intervals as determined by the RK4 scheme. Overall,

the forward pass requires eight evaluations of v and the weights at intermediate time

points are obtained by interpolating the two control layers (illustration in Figure 5.3).

We use the neural ODE proposed in Grathwohl et al. [39], where v is given by

v
(
z(t), t;θ(t)

)
=κ64,2

(
·, t;θ4(t)

)
◦ κ64,64

(
·, t;θ3(t)

)

◦ κ64,64

(
·, t;θ2(t)

)
◦ κ2,64

(
z(t), t;θ1(t)

)
.

The so-called concatsquash layer κi,j(x, t; θ) maps features x ∈ Ri to outputs in Rj

and is defined as

κi,j(x, t; θ) = (D2x)� (σ ◦D1t) + (D0t)

= (K2x+ b2)�σ(K1t+ b1) + (K0t),

(5.17)

where the parameters θ are: K0,K1, b1, b2 ∈ Rj and K2 ∈ Rj×i. The nonlinear

activation function σ is the element-wise sigmoid function σ(x) = 1/(1 + exp(−x)),

and D0 uses no bias. This layer accepts and operates on the space features and the

time separately.

To solve the problem, the CNF needs to be trained to push the Gaussian mixture

P0 to the center to form P1 (Figure 5.1). To discretize the loss function, we use

samples drawn from the Gaussian mixture P0. The reverse mode of the model will

separate the large Gaussian back into the eight terms of the Gaussian mixture. What

53

makes the problem challenging is that the true inverse is discontinuous at the origin.

A relatively small network model consisting of one control layer accurately solves

the problem (Table 5.3). For a fixed 10,000 iterations, the DO approach with h = 0.05

demonstrates a slight speedup per iteration and achieves a similar testing loss as the

OD approach; also, the DO solution has a comparable inverse error.

The DO approach with h = 0.25 has the lowest training time and achieves a

spuriously low loss value; however, because the stepsize is too large, the discrete

model loses its invertibility (Section 5.3.1). Decreasing the time step to h = 0.05 still

leads to a substantial reduction in the number of function evaluations, comparable

loss, and comparable inverse error than the OD approach.

Too Coarse Time Stepping

Using a too large stepsize, h=0.25, the DO model may achieve a low testing loss while

losing the invertibility. In fact, this flow fails to accurately align the densities.

A sufficiently small stepsize is needed to ensure the discrete forward propagation

adequately represents the neural ODE [4]; however, a too small stepsize leads to

excessive and unnecessary computation and training time. Hence, there is a trade-off

between accuracy and speed. For the Gaussian mixture problem, we trained two DO

networks with stepsizes h=0.05 and h=0.25 (Table 5.3). The h=0.25 stepsize showed

an inverse error much higher than the other two because the larger stepsize defines a

coarser state grid, which leads to a less-accurate approximation for the ODE (2.8).

The coarse model (h=0.25) achieves a loss on par with the fine grid models and

an inverse error that is accurate for a couple decimal points (Table 5.3). However,

visually, the forward propagation leaves artifacts and does not create a smooth Gaus-

sian (Figure 5.4 middle row). Also, the inverse flow does not fully match the initial

distribution. Therefore, we observe issues with a coarse discrete model despite a com-

petitive loss. Re-discretizing the coarse model after training, we can switch to a finer

54

Table 5.3: DO and OD Gaussian mixture results. The DO approach with h = 0.25
has the lowest training time and achieves a spuriously low loss; however, because
the stepsize is too large, the discrete model loses its invertibility (Section 5.3.1).
Decreasing the time step to h = 0.05 still leads to a substantial reduction in the
number of function evaluations (NFE), comparable loss, and comparable inverse error
to the OD approach.

Data Set
Model Training Testing

Title Solver Time
Epoch

(s) NFE Loss C Inv Err

Gaussian
FFJORD OD RK(4)5 0.79 65 2.83 8.88e-7

Mixture
DO DO RK4 h = 0.05 0.48 40 2.79 1.82e-8
DO DO RK4 h = 0.25 0.10 8 2.83 1.47e-2

solver for testing (Figure 5.4 bottom row), which smooths some of the artifacts in the

central Gaussian and the inverse plot. The coarse model without changes (Figure 5.4

middle row) may be sufficient for some application because the inverse error could be

sufficiently small.

High-Dimensional Density Estimation

We now consider some high-dimensional instances of the CNF problem arising in

density estimation; the public data sets we use are listed in Table 5.5. A detailed

description of the data sets is given in Papamakarios et al. [80]. In short, Miniboone,

Power, Hepmass, and Gas are data sets compiled for various tasks and housed by

the University of California, Irvine (UCI) Machine Learning Repository. The contexts

include neutrinos, electric power consumption of houses, particle-producing collisions,

and gas sensors, respectively. The Berkeley Segmentation Data Set (Bsds300) con-

tains image patches for image segmentation and boundary detection. Papamakarios

et al. [80] preprocessed these data sets for use in density estimation. These data sets

have also been used to validate the OD approach in FFJORD [39].

For each data set, we define a neural layer v via concatenations of concatsquash

layer κi,j(z, t;θ) (5.17) that are more complicated than for the Gaussian mixture

55

y from ρ0 f(y) f−1(f(y))y from ρ0 f(y) f−1(f(y))y from ρ0 f(y) f−1(f(y))

y from ρ0 f(y) f−1(f(y))y from ρ0 f(y) f−1(f(y))y from ρ0 f(y) f−1(f(y))

y from ρ0 f(y) f−1(f(y))y from ρ0 f(y) f−1(f(y))y from ρ0 f(y) f−1(f(y))

T
ra
in
in
g

h
=

0
.0

5

T
es
ti
n
g

h
=

0
.0

5

T
ra
in
in
g

h
=

0
.2

5

T
es
ti
n
g

h
=

0
.2

5

T
ra
in
in
g

h
=

0
.2

5

T
es
ti
n
g

h
=

0
.0

5

x ∼ P0(x) f(x) f−1(f(x))

Figure 5.4: Using a stepsize not sufficiently small enough in the DO method can
result in lack of invertibility.

problem. For hyperparameters, we can select an activation function σ, number of

hidden layers nh, number of flow steps χ, and the number of hidden dimensions, which

we choose based on some multiplier o of the number of input features (Table 5.4).

Our general layer v then is

v(z, t;θ) =
[
κod,d(·, t;θ) ◦ κod,od(·, t;θ)nh−1 ◦ κd,od(z, t;θ)

]χ
. (5.18)

Each of the χ blocks starts with one concatsquash layer that maps from Rd to Rod,

then nh−1 more concatsquash layers that maintain the dimensionality, then a final

56

Table 5.4: CNF hyperparameters, including stepsize h, activation function σ, number
of hidden layers nh, dimension multiplier o, and the number of flow steps χ for (5.18).
The OD hyperparameters were used for both FFJORD [39] and RNODE [32]. All
used initial learning rate 1e-3. DO often used smaller batch sizes so that the batch
would fit into the Titan X GPU with 12GB RAM.

Data Set d Model h batch size σ nh o χ

Power 6
OD - 30000

tanh 3 10 5
DO 0.10 10000

Gas 8
OD - 5000

tanh 3 20 5
DO 0.10 5000

Hepmass 21
OD - 10000

softplus 2 10 10
DO 0.10 5000

Miniboone 43
OD - 5000

softplus 2 20 1
DO 0.25 5000

Bsds300 63
OD - 10000

softplus 3 20 2
DO 0.05 500

concatsquash layer that maps back to Rd. Depending on the difficulty of the data

set, different hyperparameters are selected (Table 5.4); we mostly followed the hyper-

parameters tuned by FFJORD [39].

The performance on the testing sets of all data sets demonstrates that the OD and

DO approaches result in similar negative log-likelihood loss (Table 5.5). However,

DO does so more quickly on most of the data sets but with greater inverse error.

Although the AD used in DO is faster than the adjoint-based recalculation used in

OD for batches of the same size, the memory requirements of storing intermediates

in AD restrict the DO batch sizes to be much smaller than the OD batch sizes.

Checkpointing can also handle the memory constraints. Nonetheless, the OD method

for solving the Hepmass density estimation trains faster than DO because of the

larger batches. Since we use the same models, code, and hyperparameters (Table 5.4)

as FFJORD [39], we witness similar testing losses (Table 5.6).

We observe DO converge in less time for most data sets, but no timing payoff for

Hepmass (Table 5.5). Even so, on average for the five high-dimensional data sets,

57

Table 5.5: DO reduces the training times. Negative log-likelihood loss (lower is
better) in nats (natural unit of information). The number of functions evaluations
for the forward propagation (NFE) are averaged over all the batches and epochs.
The OD approach for Bsds300 was terminated prematurely after nearly seven days
of training. While the discrete model in DO can have a large inverse error with the
stepsize used in training, re-discretizing in the inference phase can reduce this error
substantially. In summary, DO reduces the training times and yields invertible models
with comparable performance to OD.

Training Inference Training Testing

Solver Solver Time (s) NFE NFE Loss Inv Err

P
o
w
e
r OD RK(4)5 RK(4)5 248K 583 649 -0.37 7.60e-6

DO RK4 h=0.10 RK(4)5 56.0K 200 2066 -0.25 1.58e-5
DO RK4 h=0.10 RK4 h=0.10 56.0K 200 200 -0.33 4.23e-3

G
a
s

OD RK(4)5 RK(4)5 271K 475 527 -10.69 1.78e-5
DO RK4 h=0.10 RK(4)5 121K 200 437 -10.27 4.70e-6
DO RK4 h=0.10 RK4 h=0.10 121K 200 200 -10.27 6.63e-3

H
e
p
m
a
s
s OD RK(4)5 RK(4)5 357K 770 866 16.13 5.65e-6

DO RK4 h=0.10 RK(4)5 281K 400 765 16.60 1.09e-6
DO RK4 h=0.10 RK4 h=0.10 281K 400 400 16.60 2.25e-4

M
in
ib
o
o
n
e OD RK(4)5 RK(4)5 32.4K 115 132 10.57 4.80e-6

DO RK4 h=0.25 RK(4)5 3.77K 16 118 10.50 2.17e-6
DO RK4 h=0.25 RK4 h=0.25 3.77K 16 16 10.45 1.45e-3

B
s
d
s
3
0
0 OD RK(4)5 RK(4)5 598K 345 544 -133.94 3.41e-6

DO RK4 h=0.05 RK(4)5 49.7K 160 511 -146.23 1.82e-6
DO RK4 h=0.05 RK4 h=0.05 49.7K 160 160 -146.14 3.75e-4

DO offers a 6x speedup in training over the OD method. All OD and DO models are

competitive in performance with other density estimation models (Table 5.6).

Re-Discretizing the Trained Flows

Re-discretization in the inference phase presents a straightforward idea for reducing

the inversion error of DO trained models.

Using the Miniboone data set, we consider training a CNF with the DO approach

with RK4 and h=0.25. Training takes less than 3,800 seconds, roughly one-tenth of

the time required by the OD (Table 5.5). After training (e.g., during inference or

58

Table 5.6: Testing loss C comparison with other methods.

Power Gas Hepmass Miniboone Bsds300

FFJORD [39] (OD) -0.37 -10.69 16.13 10.57 -133.94†

RNODE [32] -0.39 -11.10 16.37 10.65 -129.75†

DO -0.25 -10.27 16.60 10.50 -146.23
OT-Flow -0.30 -9.20 17.32 10.55 -154.20

MADE [35] 3.08 -3.56 20.98 15.59 -148.85
RealNVP [23] -0.17 -8.33 18.71 13.55 -153.28
Glow [53] -0.17 -8.15 18.92 11.35 -155.07
MAF [80] -0.24 -10.08 17.70 11.75 -155.69
NAF [48] -0.62 -11.96 15.09 8.86 -157.73
UMNN [113] -0.63 -10.89 13.99 9.67 -157.98
†Training terminated before convergence.

model deployment) we re-discretize the model using stepsize h=0.05 (Table 5.7).

This maintains a similar testing loss of 10.50 while substantially reducing the inverse

error. Demonstrating the flexible choice of solver, we also consider the adaptive

RK(4)5 solver in the evaluation (which has 118 function evaluations).

Since the DO model was trained using a fixed stepsize, the generalization with

respect to re-discretization is remarkable; note the low loss observed for all time

integrators. As to be expected, the inverse error is reduced for more accurate time

integrators. Less accurate time integrators can use their error to their advantage

and result in lower loss values while sacrificing invertibility. Therefore, both loss and

invertibility should be used to evaluate CNF performance. This observation motivates

the use of a different metric in Section 5.4.

Multilevel Training

Models trained with finer grids tend to have better convergence than models trained

with coarser grids; however, these fine grid models consume much more training time

from the large NFE. Taking a multilevel approach, we train the initial epochs with

a coarse grid (few state layers), then add state layers to make the grid finer for the

59

Table 5.7: Model trained using the solver associated with bold values. All other
results in the column result from changing the solver settings (and thus the state
discretization) for the forward propagation when running on the test data. Since the
DO problem is solved with a fixed stepsize and not using adaptive integration used
in OD, the generalization to other discretizations is notable.

Trained via DO Trained via OD
Testing

NFE
Inverse Testing

NFE
Inverse

Loss C Error Loss C Error

Miniboone

RK(4)5 rtol 1e-1 atol 1e-3 10.075 28 4.25e-2 10.108 29 3.16e-2
RK(4)5 rtol 1e-2 atol 1e-4 10.529 38 3.55e-3 10.669 38 1.61e-2
RK(4)5 rtol 1e-6 atol 1e-8 10.502 118 2.17e-7 10.636 132 1.85e-7
RK4 h=0.05 10.502 80 3.40e-7 10.636 80 5.22e-7
RK4 h=0.25 10.454 16 1.45e-3 10.590 16 2.57e-3
RK4 h=0.50 10.122 8 2.97e-2 10.239 8 4.79e-2
RK4 h=1.0 8.916 4 2.77e-1 9.082 4 3.70e-1

final training epochs.

We test the multilevel strategy for the DO and OD approaches on the Miniboone

data set (Figure 5.5). For both approaches, we train the first 500 epochs with a coarse

grid and initial learning rate 1e-3 then the next 1500 epochs with a finer grid (using

the ODE solver in Table 5.5) while lowering the learning rate to 5e-4. For DO, we

start with an RK 4 scheme using h=0.50 then switch the stepsize to h=0.25. For OD,

we start with RK(4)5 with relative tolerance 1e-3 and absolute tolerance 1e-5, then

switch to the default RK(4)5 (dividing each tolerance by 103). For both approaches,

when we switch grids at epoch 500, we witness a large uptick in the loss, which

quickly decays. Overall, the performance of the multilevel schemes is comparable in

both cases, and a similar reduction of the training time is observed in Figure 5.5. The

convergence by epoch remains similar to non-multilevel approaches, but the overall

time is reduced in the multilevel approach.

60

Model Training Time (s) Testing Loss Inverse Accuracy

OD 23.8K 10.64 1.85e-7
OD Multilevel 20.2K 10.43 1.22e-7
DO 2.73K 10.45 1.45e-3
DO Multilevel 2.38K 10.38 1.32e-3

0 10000 20000
Total Time (s)

101

102

Tr
ai

ni
ng

 L
os

s OD
DO

0 10000 20000
Total Time (s)

101

102

Tr
ai

ni
ng

 L
os

s OD
OD Multi

0 2000 4000
Total Time (s)

101

102

Tr
ai

ni
ng

 L
os

s DO Multi
DO

Figure 5.5: Training CNFs on Miniboone with and without multilevel. For mul-
tilevel, train first 500 epochs with a quicker coarse grid, then switch to a fine grid
for 1500 epochs. The switch to the finer grid results in immediate uptick in loss,
which quickly recovers. The convergence by epoch remains similar to non-multilevel
approaches, but the overall time is reduced in the multilevel approach.

5.4 OT-Flow

Whereas the improvements in numerical treatment in Section 5.3 result in notable

reductions in training costs, CNFs still have high costs. We alleviated some cost

by moderately reducing the NFE for solving the CNF (5.7); however, the trace is

estimated with Hutchinson’s (5.15) which we further investigate. Our model OT-

Flow further reduces NFE while also providing an efficient exact trace computation

to replace the Hutchinson’s estimator while maintaining competitive speed.

In its original presentation [77], OT-Flow draws from OT theory. Rather than us-

ing the Benamou-Brenier formulation [9] (true OT formulation with hard constraints),

OT-Flow stems from the “relaxed Benamou-Brenier formulation.” This relaxed for-

mulation turns the hard constraints into a soft terminal constraint as part of the

loss—like G in (2.10). Similarly, transport costs equate the OC running costs, and

therefore the OT-Flow formulation is an OC problem. Leveraging OC and the value

function, we formulate OT-Flow and demonstrate its fast training and inference.

61

Figure 5.6: Two flows with approximately equal loss (modification of Figure 1
in Grathwohl et al. [39], Finlay et al. [32]). While OT-Flow enforces straight tra-
jectories, a generic CNF can have curved trajectories.

5.4.1 Model Formulation

Motivated by the similarities between training CNFs and solving OT problems [9, 82],

we regularize the minimization problem (5.13) as follows. First, we formulate the CNF

problem as an OT problem by adding a transport cost. Second, from OT theory, we

leverage the fact that the optimal dynamics v are the negative gradient of a value

function Φ, which satisfies the HJB equations. Finally, we add an extra term to the

learning problem that penalizes violations of the HJB equations. This reformulation

encourages straight trajectories (Figure 5.6).

62

Running Cost Consider the CNF problem (5.13). We add the running cost

Lx(t) =
1

2
‖v
(
zx(t), t

)
‖2, (5.19)

which we accumulate along the trajectories via

cL,x(T) =

∫ T

0

Lx(t) dt.

This incorporation results in the regularized problem

min
θ

E
x∼P0(x)

{
Cx(T) + cL,x(T)

}
s.t. (5.7). (5.20)

The running cost L penalizes the squared arc-length of the trajectories. In practice,

this integral can be computed in the ODE solver, similar to the trace accumulation

in (5.7). The optimization problem (5.20) is an OC problem (2.10) with terminal cost

C. Recall that C in (5.12) is not the full KL divergence because density ρ0 is un-

known. This formulation has mathematical properties that we exploit to reduce CNF

computational costs [30, 32, 110]. In particular, (5.20) is now equivalent to a convex

optimization problem (prior to the NN parameterization), and the trajectories match-

ing the two densities ρ0 and ρ1 are straight and non-intersecting [34] (Figure 5.6). This

reduces the number of time steps required to solve (5.7). The OC formulation also

guarantees a solution flow that is smooth, invertible, and orientation-preserving [1].

Value Function and HJB Penalizer We further capitalize on OC theory by

incorporating additional structure to guide our modeling. Recall the existence of the

value function (also called the potential function) Φ: Rd × [0, T] → R. Using (2.12)

63

and (2.14), we can construct the Hamiltonian of the CNF

H(x,∇Φ(x, t), t) = sup
v

{
−∇Φ(x, t) · v(x, t)− 1

2
‖v(x, t)‖2

}
(5.21)

where the control is the velocity of the samples v. The first-order necessary conditions

0 = −∇Φ(x, t)− v(x, t). (5.22)

lead to

v(x, t;θ) = −∇Φ(x, t;θ), (5.23)

which means we can parameterize Φ with an NN instead of v directly. Analogous

to classical physics, samples move in a manner to minimize their potential function.

Moreover, Φ satisfies the HJB equations (2.16) [7]; for our problem, these become

−∂tΦ(x, t) = −1

2
‖∇Φ(x, t)‖2,

Φ(x, T) = G(x),

(5.24)

with terminal condition G. To derive an equation for G, consider the KL divergence

in (5.9) after the change of variables is performed. The HJB terminal condition is

given by [8, 110]

G(zx(T)) :=
δ

δρ0

DKL

[
ρ
(
zx(T), T

)
|| ρ1

(
zx(T)

)]

=
δ

δρ0

∫

Rd

[
log
(
ρ0(x)

)
− log

(
ρ1(zx(T))

)
− log det

(
∇zx(T)

)]
ρ0(x) dx

= 1 + log
(
ρ0(x)

)
− log

(
ρ1(zx(T))

)
− log det

(
∇zx(T)

)
,

(5.25)

where δ
δρ0

is the variational derivative with respect to ρ0.

The value function allows us to reformulate the CNF in terms of Φ instead of v

64

and add an additional regularization term which penalizes the violations of (5.24)

along the trajectories by

cHJt,x(T) =

∫ T

0

Rx(t) dt, Rx(t) =

∣∣∣∣∂tΦ
(
zx(t), t

)
− 1

2
‖∇Φ

(
zx(t), t

)
‖2

∣∣∣∣ . (5.26)

This HJB penalizerR favors plausible Φ without affecting the solution of the optimiza-

tion problem (5.20). While solving (5.24) in high-dimensional spaces is notoriously

difficult, penalizing its violations along the trajectories is inexpensive. Therefore, we

include the value Rx(T) in the objective function. The density ρ0, which is required

to evaluate G, is unknown in our problems. Similar to Yang and Karniadakis [118],

we do not enforce the HJB terminal condition but do enforce the HJB equations for

t ∈ (0, T) via penalizer R.

Typically, regularizers (such as weight decay) introduce bias to the problem while

reducing variance. Since the R term does not mathematically alter the solution, we

call it a penalizer instead. As we will show, penalizers help reduce costs or find

the solution. As a thought experiment, consider the traversal of the noisy high-

dimensional space in which θ lives. Imagine penalizers as smoothing this space to

help facilitate the traversal without actually altering the location of the optimum.

Effect of HJB Penalizer In Figure 5.7, we show the effect of training the toy

Gaussian mixture problem with and without the HJB penalizer R. For this demon-

stration, we train the model using two RK4 steps. As a result, the L cost is penalized

at too few time steps. Therefore, without an HJB penalizer, the model achieves poor

performance and unstraight characteristics (Figure 5.7). This issue can be remedied

by adding more RK4 time steps or the HJB penalizer—see examples in Yang and

Karniadakis [118], Ruthotto et al. [93], and Lin et al. [64]. The additional RK4 time

steps would add significant memory and computational overhead. The HJB penal-

izer, however, adds little memory and computation. We thus can train the model

65

x ∼ P0(x) f(x) = zx(T) f−1(y) , y ∼ P1(y)

N
o

H
J
B

2
T

im
e

S
te

p
s

N
o

H
J
B

8
T

im
e

S
te

p
s

W
it

h
H

J
B

2
T

im
e

S
te

p
s

Figure 5.7: Effect of adding an HJB regularizer during training. For each flow,
we show initial, forward mapping, and generation. The HJB regularizer allows for
training a flow with one-fourth the number of time steps, leading to a drastic reduction
in computational and memory costs. White trajectories display the forward flow f
for several random samples; red trajectories display the inverse flow f−1.

with two RK4 time steps and an HJB penalizer with efficient computational cost and

good performance.

OT-Flow Problem In summary, the regularized problem solved in OT-Flow com-

bines aspects from Zhang et al. [119], Grathwohl et al. [39], Yang and Karniadakis

[118], and Finlay et al. [32] (Table 5.1). The L2 and HJB terms add regularity and

66

are accumulated along the trajectories. Thus, the full optimization problem is

min
θ

E
x∼P0(x)

{
α1Cx(T) + cL,x(T) + α2 cHJt,x(T)

}
, (5.27)

subject to

∂t




zx(t)

`x(t)

cL,x(t)

cHJt,x(t)




=




−∇Φ(zx(t), t;θ)

− tr
(
∇2Φ(zx(t), t;θ)

)

1
2
‖∇Φ(zx(t), t;θ)‖2

∣∣∣ ∂tΦ(zx(t), t;θ)− 1
2
‖∇Φ(zx(t), t;θ)‖2

∣∣∣



,




zx(0)

`x(0)

cL,x(0)

cHJt,x(0)




=




x

0

0

0



,

where we optimize the weights θ, defined in (5.28), that parameterize Φ. We include

two hyperparameters α1, α2 to assist the optimization; these hyperparameters weight

the importance of the corresponding terms relative to the Lagrangian term. Spe-

cially selected hyperparameters can improve the convergence and performance of the

model.1 By making use of the ODE solver and the computed ∇Φ, we compute the

terms L,R with negligible cost.

5.4.2 Implementation

We define our model, derive analytic formulas for fast and exact trace computation,

and describe our efficient ODE solver.

Network We parameterize the potential as

Φ(s;θ) =w>N(s;θN) +
1

2
s>(A>A)s+ b>s+ c,

where θ = (w,θN ,A, b, c).

(5.28)

1All hyperparameters are included in the public code repository available at https://github.

com/EmoryMLIP/OT-Flow.

https://github.com/EmoryMLIP/OT-Flow
https://github.com/EmoryMLIP/OT-Flow

67

Here, s = (x, t) ∈ Rd+1 are the input features corresponding to space-time, N(s;θN) :

Rd+1 → Rm is a neural network chosen to be a residual neural network (ResNet) [45]

in our experiments, and θ consists of all the trainable weights: w ∈ Rm, θN ∈ RpN ,

A ∈ Rι×(d+1), b ∈ Rd+1, c ∈ R. We set a rank ι = min(10, d) to limit the number

of parameters of the symmetric matrix A>A. Here, A, b, and c model quadratic

potentials, i.e., linear dynamics; N models the nonlinear dynamics. This formulation

was found to be effective in Ruthotto et al. [93].

ResNet The (M+1)-layer ResNet uses an opening layer to convert the Rd+1 inputs

to the Rm space, then M layers operating on the features in hidden space Rm. We

obtain N(s;θN) by forward propagation

a0 = σ(K0s+ b0)

a1 = a0 + hσ(K1a0 + b1)

...
...

N(s;θN) = aM = aM−1 + hσ(KMaM−1 + bM),

(5.29)

where h > 0 is a fixed stepsize, and the network’s weights are K0 ∈ Rm×(d+1),

K1, . . . ,KM ∈ Rm×m, and b0, . . . , bM ∈ Rm. We select the element-wise activation

function σ(x) = log(exp(x) + exp(−x)), which is the antiderivative of the hyper-

bolic tangent, i.e., σ′(x) = tanh(x). Therefore, hyperbolic tangent is the activation

function of the flow ∇Φ.

Gradient Computation The gradient of the potential is

∇sΦ(s;θ) = ∇sN(s;θN)w + (A>A)s+ b, (5.30)

68

where we simply take the first d components of ∇sΦ to obtain the space derivative

∇Φ. The first term is computed using chain rule (backpropagation)

vM+1 = w

vM = vM+1 + hK>M diag
(
σ′(KMaM−1 + bM)

)
vM+1,

...
...

v1 = v2 + hK>1 diag
(
σ′(K1a0 + b1)

)
v2,

∇sN(s;θN)w = v0 = K>0 diag
(
σ′(K0s+ b0)

)
v1.

(5.31)

Here, diag(q) ∈ Rm×m denotes a diagonal matrix with diagonal elements given by q ∈

Rm. Multiplication by diagonal matrix is implemented as an element-wise product.

Trace Computation We compute the trace of the Hessian of the potential model.

We first note that

tr
(
∇2
sΦ(s;θ)

)
= tr

(
E>∇2

s

(
N(s;θN)w

)
E
)

+ tr
(
E>(A>A)E

)
, (5.32)

where the columns of E ∈ R(d+1)×d are the first d standard basis vectors in Rd+1.

All matrix multiplications with E can be implemented as constant-time indexing

operations. The trace of the A>A term is trivial. We compute the trace in one

forward pass through the layers. The trace of the first ResNet layer is

t0 = tr
(
E>∇s

(
K>0 diag(σ′(K0s+ b0))v1

)
E
)

= tr
(
E>K>0 diag

(
σ′′(K0s+ b0)� v1

)
K0E

)

=
(
σ′′(K0s+ b0)� v1

)>(
(K0E)� (K0E)

)
1,

(5.33)

where 1 ∈ Rd is a vector of all ones. Computing t0 requires O(m · d) FLOPS when

first squaring the elements in the first d columns of K0, then summing those columns,

69

and finally one inner product. To compute the trace of the entire ResNet, we continue

with the remaining rows in (5.31) to obtain

tr
(
E>∇2

s(N(s;θN)w)E
)

= t0 + h

M∑

i=1

ti, (5.34)

where ti is computed as

ti = tr
(
J>i−1∇s

(
K>i diag(σ′(Kiai−1(s) + bi))vi+1

)
J i−1

)

= tr
(
J>i−1K

>
i diag

(
σ′′(Kiai−1 + bi)� vi+1

)
KiJ i−1

)

=
(
σ′′(Kiai−1 + bi)� vi+1

)>(
(KiJ i−1)� (KiJ i−1)

)
1.

Here, J i−1 = ∇a>i−1 ∈ Rm×d is a Jacobian matrix, which can be updated and over-

written in the forward pass at a computational cost of O(m2 · d) FLOPS. The J

update is initialized with J = ∇a>0 = diag
(
σ′(K0s+ b0)

)
(K0E) and follows:

∇a>i = ∇a>i−1 + diag
(
hσ′(Kiai−1 + bi)

)
Ki∇a>i−1

J ← J + diag
(
hσ′(Kiai−1 + bi)

)
KiJ .

(5.35)

Our experiments use a simple two-layer ResNet (M=2). When tuning the number

of layers as a hyperparameter, we found that wide networks promoted expressibility

but deep networks offered no noticeable improvement. We choose h=1 for simplicity.

The total computational cost of our model is O(m2 · d) FLOPS. Thus, our exact

trace computation has similar computational complexity as FFJORD’s and RNODE’s

trace estimation. In clocktime, the analytic exact trace computation is competitive

with the Hutchinson’s estimator using AD, while introducing no estimation error

(Figure 5.2). We time our approach and compare against the Hutchinson’s estimator

using AD with different numbers of vectors and present 99% error bounds via boot-

strapping [27] (Appendix B). Our efficiency in trace computation (5.34) stems from

70

0 2000 4000 6000 8000 10000
Iteration (Number of Batches)

0

1000

2000

3000

4000

5000

6000

7000

Lo
ss

MINIBOONE
Hutchinson Train
Exact Trace Train

Hutchinson Val
Exact Trace Val

0 5000 10000 15000
Iteration (Number of Batches)

-30000

-20000

-10000

0

10000

Lo
ss

GAS
Hutchinson Train
Exact Trace Train

Hutchinson Val
Exact Trace Val

Figure 5.8: We compare the training and validation losses for OT-Flow (exact trace)
and an identical model where we instead use the Hutchinson’s estimator using a single
vector. The exact trace allows OT-Flow to converge in fewer iterations to a lower
validation loss with smaller variance in training loss than the Hutchinson’s estimator.

exploiting the identity structure of matrix E and not building the full Hessian.

Since we parameterize the value function Φ instead of the v, the Jacobian of

the dynamics ∇v is given by the Hessian of Φ in (5.7). We note that Hessians are

symmetric matrices. When trace estimates seem appealing, we note that a plethora

of estimators perform better in accuracy and speed on symmetric matrices than on

nonsymmetric matrices [6, 49, 109]. We, however, stick with the exact trace for our

use case.

We find that using the exact trace instead of a trace estimator improves conver-

gence (Figure 5.8). Specifically, we train an OT-Flow model and a replicate model in

which we only change the trace computation, i.e., we replace the exact trace computa-

tion with Hutchinson’s estimator using a single random vector. The model using the

exact trace (OT-Flow) converges more quickly and to a lower validation loss, while

its training loss has less variance (Figure 5.8).

Using Hutchinson’s estimator without sufficiently many time steps fails to con-

verge [76] because such an approach poorly approximates the time integration and

the trace in the second component of (5.7). Whereas FFJORD and RNODE esti-

mate the trace but solve the time integral well, OT-Flow trains with the exact trace

and notably fewer time steps (Table 5.8). At inference, all three solve the trace and

71

integration well.

ODE Solver For the forward propagation, we use RK4 with equidistant time steps

to solve the constraints of (5.27). The number of time steps is a hyperparameter

denoted nt. For validation and testing, we use more time steps than for training, which

allows for higher precision and a check that our discrete OT-Flow still approximates

the continuous object. A large number of training time steps prevents overfitting to

a particular discretization of the continuous solution and lowers inverse error; too

few time steps results in high inverse error but low computational cost. We tune the

number of training time steps so that validation and training loss are similar with

low computational cost. Other hyperparameters include the hidden space size m, the

number of ResNet layers for which we use 2 for all experiments, and various settings

for the ADAM optimizer.

For the backpropagation, we use AD. This technique corresponds to the DO ap-

proach. Our implementation exploits the benefits of our proposed exact trace com-

putation combined with the efficiency of DO.

5.4.3 Numerical Experiments

We perform density estimation on seven two-dimensional toy problems and five high-

dimensional problems from real data sets. We also show OT-Flow’s generative abili-

ties on MNIST.

Metrics In density estimation, the goal is to approximate ρ0 using observed samples

X = {xi}, where xi are drawn from the distribution P0. In real applications, we lack a

ground-truth ρ0, rendering proper evaluation of the density itself untenable. However,

we can follow evaluation techniques applied to generative models. Drawing random

points {yi} from P1, we invert the flow to generate synthetic samples Q = {qi},

where qi = f−1(yi). We compare the known samples to the generated samples via

72

Discrete normalizing flow trained on Power

d Testing Loss Inv Error MMD

6 −0.64 2.34e-3 1.94e-2

x 0(x) f(x)

y 1(y) f 1(y)
0

2000

4000

6000

8000

0

500

1000

1500

2000

0

200

400

600

800

0

1000

2000

3000

4000

power dims: 0 vs 1Dim. 0 vs 1
x ∼ P0(x) f(x)

y ∼ P1(y) f−1(y)

x 0(x) f(x)

y 1(y) f 1(y)
0

25000

50000

75000

100000

0

500

1000

1500

2000

0

200

400

600

800

0

20000

40000

power dims: 2 vs 3Dim. 2 vs 3
x ∼ P0(x) f(x)

y ∼ P1(y) f−1(y)

x 0(x) f(x)

y 1(y) f 1(y)
0

2500

5000

7500

10000

0

1000

2000

3000

0

200

400

600

800

0

5000

10000

power dims: 4 vs 5Dim. 4 vs 5
x ∼ P0(x) f(x)

y ∼ P1(y) f−1(y)

Figure 5.9: Power density estimation using a discrete normalizing flow. By the test-
ing loss metric, this model is considered very competitive. However, the model itself
performs poorly, as clear in the visualization of the last two dimensions. The MMD
shows that the generation is poor. The inverse error shows that the testing loss uses
an integration scheme that is too coarse, as addressed in Section 5.3.1 and Wehenkel
and Louppe [113].

maximum mean discrepancy (MMD) [40, 60, 82, 108]

MMD(X,Q) =
1

|X|2
|X|∑

i=1

|X|∑

j=1

k(xi,xj)

+
1

|Q|2
|Q|∑

i=1

|Q|∑

j=1

k(qi, qj)−
2

|X| |Q|

|X|∑

i=1

|Q|∑

j=1

k(xi, qj),

(5.36)

for Gaussian kernel k(xi, qj) = exp(−1
2
‖xi−qj‖2). MMD tests the difference between

two densities (ρ0 and our estimate of ρ0) on the basis of samples drawn from the

corresponding distributions. A low MMD value means that the two sets of samples

are likely to have been drawn from the same distribution [40]. Since MMD is not

used in the training, it provides an external, impartial metric to evaluate our model

on the hold-out test set (Table 5.8).

Normalizing flows use C for evaluation. Recall that loss C is used to train the

forward flow to match ρ1. Testing loss, i.e., C evaluated on the testing set, should

provide the same quantification on a hold-out set. However, in some cases, the testing

73

D
at

a
x

E
st

im
at

e
ρ
0

G
en

er
at

io
n

f
−
1
(y

)

Figure 5.10: OT-Flow density estimation on 2-D toy problems. Top: samples from
the unknown distribution. Middle: density estimate for unknown ρ0 computed by
inverse flowing from ρ1 via (5.7).

loss can be low even when f(x) is poor and does not match ρ1 (Figure 5.9). Further-

more, because the model’s inverse contains error, accurately mapping to ρ1 with the

forward flow does not necessarily mean the inverse flow accurately maps to ρ0.

Testing loss varies drastically with the integration computation [76, 108, 113]. It

depends on `, which is computed along the characteristics via time integration of the

trace. Too few discretization points leads to an inaccurate integration computation

and greater inverse error. Thus, a low inverse error implies an accurate integration

computation because the flow closely models the ODE. An adaptive ODE solver

alleviates this concern when provided a sufficiently small tolerance [39]. Similarly,

we check that the flow models the continuous solution of the ODE by computing the

inverse error (5.16) on the testing set using a finer time discretization than used in

training. We evaluate the expectation values in (5.27) and (5.16) using the discrete

samples X, which we assume are randomly drawn from and representative of the

initial distribution ρ0.

Toy Problems We train OT-Flow on several toy distributions that serve as stan-

dard benchmarks [39, 113]. Given random samples, we train OT-Flow then use it to

74

Samples OT-Flow FFJORD
x ∼ P0(x) f(x) f(x)

y ∼ P1(y) f−1(y) f−1(y)

(a) Miniboone dimension 16 vs 17

Samples OT-Flow FFJORD
x ∼ P0(x) f(x) f(x)

y ∼ P1(y) f−1(y) f−1(y)

(b) Miniboone dimension 28 vs 29

Figure 5.11: Miniboone density estimation. Two-dimensional slices using the 3,648
43-dimensional testing samples x ∼ P0(x) and 105 samples y from distribution P1;
more visuals presented the Appendix of Onken et al. [77].

estimate the density ρ0 and generate samples (Figure 5.10).

Density Estimation on Real Data Sets We compare our model’s performance

on the real data sets Power, Gas, Hepmass, Miniboone, and Bsds300 [80].

The data sets are commonly used in normalizing flows [23, 39, 48, 113] and vary in

dimensionality (Table 5.4).

For each data set, we compare OT-Flow with FFJORD [39] and RNODE [32] (cur-

rent state-of-the-art) in speed and performance. We compare speed both in training

the models and when running the model on the testing set. To compare performance,

we compute the MMD between the data set and M=105 generated samples f−1(y)

for each model; for a fair comparison, we use the same y for FFJORD and OT-Flow

(Table 5.8). We show visuals of the samples x ∼ P0(x), y ∼ P1(y), f(x), and f−1(y)

generated by OT-Flow and FFJORD (Figure 5.11). These two-dimensional slices use

the 3,648 43-dimensional testing samples x ∼ P0(x) and 105 samples y from distribu-

tion P1. We report the loss C values (Table 5.8) to be comparable to other literature

but reiterate the inherent flaws in using C to compare models.

75

Table 5.8: OT-Flow density estimation on real data sets. We present the number
of training iterations, the number of function evaluations for the forward ODE solve
(NFE), and the time per iteration. For Bsds300 training, FFJORD and RNODE
were terminated when validation loss C hit -140. All values are the average across
three runs on a single NVIDIA TITAN X GPU with 12GB RAM.

Model
Training Testing

Time (h) # Iter Time
Iter

(s) NFE Time (s) Inv Err MMD

P
o
w
e
r OT-Flow 3.1 22K 0.56 40 10.6 4.10e-6 4.68e-5

RNODE 25.0 32K 2.78 200 88.2 5.95e-6 5.64e-5
FFJORD 68.9 29K 8.63 583 72.4 7.60e-6 4.34e-5

G
a
s

OT-Flow 6.1 52K 0.42 40 30.9 1.79e-4 2.47e-4
RNODE 36.3 59K 2.23 200 763.7 2.53e-5 8.03e-5
FFJORD 75.4 49K 5.54 475 892.4 1.78e-5 1.02e-4

H
e
p
m
a
s
s OT-Flow 5.2 35K 0.53 48 47.9 2.98e-6 1.58e-5

RNODE 46.5 40K 4.16 400 446.7 1.91e-5 1.58e-5
FFJORD 99.4 47K 7.56 770 450.4 2.98e-5 1.58e-5

M
in
ib
o
o
n
e OT-Flow 0.8 7K 0.44 24 0.8 5.65e-6 2.84e-4

RNODE 1.4 15K 0.33 16 33.0 4.42e-6 2.84e-4
FFJORD 9.0 16K 2.01 115 31.5 4.80e-6 2.84e-4

B
s
d
s
3
0
0 OT-Flow 7.1 37K 0.70 56 432.7 5.54e-5 4.24e-4

RNODE 106.6 16K 23.4 200 15 253.3 2.66e-6 1.64e-2
FFJORD 166.1 18K 33.6 345 20 061.2 3.41e-6 6.52e-3

The results demonstrate the computational efficiency of OT-Flow relative to the

state-of-the-art (Table 5.8). With the exception of the Gas data set, OT-Flow

achieves comparable MMD to the state-of-the-art with drastically reduced training

time. We attribute most of the training speedup to the efficiency from using our exact

trace instead of the Hutchinson’s trace estimation (Figure 5.2, Figure 5.8). On the

testing set, our exact trace leads to faster testing time than the state-of-the-art’s ex-

act trace computation via AD (Table 5.1, Table 5.8). To evaluate the testing data, we

use more time steps than for training, effectively re-discretizing the ODE at different

points. The inverse error shows that OT-Flow is numerically invertible and suggests

that it approximates the true solution of the ODE. Ultimately, OT-Flow’s combina-

tion of OT-influenced regularization, reduced parameterization, DO approach, and

76
first 3 rows originals. last 3 rows are conditional generations.

(a) Originals

first 3 rows originals. last 3 rows are conditional generations.

(b) Generated

Figure 5.12: MNIST generation conditioned by
class. The encoder and decoder are trained prior
and cause the slight thickness of the generations.

red boxed values are original; others are interpolated in rho_1 space

Figure 5.13: MNIST interpola-
tion in the latent space. Origi-
nal images are boxed in red.

efficient exact trace computation results in fast and accurate training and testing.

MNIST We demonstrate the generation quality of OT-Flow on the MNIST data

set using an encoder-decoder structure. The MNIST data set contains 28× 28-pixel

images of handwritten numerical digits (Figure 5.12a).

Consider encoder B : R784 → Rd and decoder D : Rd → R784 such that D(B(x)) ≈

x. We train d-dimensional flows that map distribution ρ0(B(x)) to ρ1. The encoder

and decoder each use a single dense layer and activation function (ReLU for B and

sigmoid for D). We train the encoder-decoder separate from and prior to training

the flows. The trained encoder-decoder, due to its simplicity, renders digits D(B(x))

that are a couple pixels thicker than the supplied digit x.

We generate new images via two methods. First, using d=64 and a flow condi-

tioned on class, we sample a point y ∼ ρ1(y) and map it back to the pixel space to

create image D(f−1(y)) (Figure 5.12b). Second, using d=128 and an unconditioned

flow, we interpolate between the latent representations f(B(x1)), f(B(x2)) of original

images x1,x2. For interpolated latent vector y ∈ Rd, we invert the flow and decode

back to the pixel space to create image D(f−1(y)) (Figure 5.13).

77

Chapter 6

Path-Finding

Path-finding problems are modeled by an ODE. Fitting within the OC framework,

path-finding problems are often solved with the PMP or HJB (Section 2.3). The

PMP approach works well in high dimensions for a single initial condition. The HJB

approach works well for many initial conditions but scales poorly to high dimensions.

We design and apply a neural ODE to blend the benefits of the PMP and HJB

approaches to solve several path-finding problems. This chapter heavily incorporates

portions from Onken et al. [78]1 and ongoing work with the same authors.

6.1 Problem

Consider n centrally controlled, homogeneous agents at initial locations x1, x2, . . . , xn ∈

Rq. Viewing all agents as part of a single OC system (Section 2.3), we represent

the initial state of the system as x = (x1, x2, . . . , xn) ∈ Rd. We use the agents

have individual controls ui which similarly are formulated as the system control

ux = (u1, u2, . . . , un) ∈ Ra. The dynamics F of the system follow

∂tzx(t) = F (zx(t),ux(t), t), 0 ≤ t ≤ T, zx(0) = x. (6.1)

1This work is under c©2021 EUCA.

78

similar to the general form in (2.9). We want the agents to have a particular target

state y ∈ Rd at final-time. Specifically, we minimize

G(z(T)) =
α0

2
‖z(T)− y‖2, (6.2)

for some multiplier (weighting term) α0. We also want to encode some optimality of

the agent’s paths and avoidance with each other in the L term.

In our setting, the Lagrangian L consists of three terms: an energy term E : Rd×

U → R which penalizes how much the agents travel, an obstacle term Q : Rd × U →

R, which penalizes agents from spatial locations (i.e., a terrain function), and an

interaction term W : Rd × U → R, which penalizes the proximity among agents (i.e,

collision avoidance). As a result, we define the Lagrangian as

L
(
zx(t),ux(t), t

)
= E

(
zx(t),ux(t)

)
+ α1Q

(
zx(t),ux(t)

)
+ α2W

(
zx(t),ux(t)

)

=
n∑

i=1

Ei
(
zi(t), ui(t)

)
+ α1

n∑

i=1

Qi

(
zi(t), ui(t)

)
+ α2

∑

j 6=i
Wij

(
zi(t), zj(t)

)
.

(6.3)

Here, Wij implicitly depends on the controls since the agents zi depend on ui. We

remove this for brevity. In this framework, the dimensionality is proportional to

the number of agents. The scalar parameters, α1 and α2, control the magnitude

of the penalization of the obstacle and interactions, respectively. In general, these

interactions may not be symmetric, and agents may be heterogeneous. However,

for our problems, we assume the agents are identical. In particular, to model the

interaction, we choose

Wij(zi, zj) =





exp
(
−‖zi−zj‖22

2r2

)
, ‖zi − zj‖2 < 2r,

0, otherwise,

(6.4)

79

where the radius r applies to an agent’s space bubble or boundary. In this choice of

W ij encoded using piecewise Gaussian repulsion, agents avoid overlapping their space

bubbles.

The energy term E and obstacles Q are problem-dependent (Section 6.5). The

energy depends on the control formulation. The obstacles can vary in dimensionality

and shape. We investigate using smooth obstacles, such as hills, and obstacles with

a hard boundary such as rectangular prisms.

6.2 Related Works

Path-finding problems for many agents fit into the high-dimensional OC realm. We

address the existing literature for solving deterministic and stochastic problems with

NNs and approaches to path-finding problems.

6.2.1 High-Dimensional Deterministic Optimal Control

A common difficulty in solving high-dimensional OC problems is CoD, where the

computational costs grow exponentially with spatial dimension. Lin et al. [63] address

this by using the Hopf-Lax formulas to create a splitting technique that allows for

quick trajectory generation without the need to discretize over a grid.

Kang and Wilcox [50] alleviate the CoD by introducing a sparse grid in the state

space and use the method of characteristics to solve boundary value problems over

each sparse grid point. To approximate the feedback control at arbitrary points, they

interpolate the solutions of the grid using high-order polynomials. The authors solve

up to six-dimensional control problems. Nakamura-Zimmerer et al. [69] also attempt

to alleviate CoD by learning a closed-form value function. First, trajectories are

generated in a similar manner as in Kang and Wilcox [50]. Using a supervised learning

approach, the NN is trained to match the generated trajectories. The trajectories

80

(training data) are generated adaptively using information about the costate and by

combining progressive batching with an efficient adaptive sampling technique.

Our work stems from the same framework as Kunisch and Walter [57], which

approximates the feedback control with an NN then optimizes the control cost on a

distribution of initial states. The authors also provide a theoretical analysis of OC so-

lutions via NN approximations. We extend the framework to finite horizon problems

with non-quadratic costs and parameterize the value function instead of the feed-

back function. This extension enables enforcing HJB conditions via penalizer terms;

such terms empirically improve numerical performance for solving high-dimensional

mean-field games and mean-field control [64, 93], similar to the advantages shown in

Section 5.4.

Our work also bears close resemblance to existing methods [64, 77, 93], which

make similar use of NNs to parameterize the value function.

6.2.2 High-Dimensional Stochastic Optimal Control

In the seminal works [26, 44], the authors solve high-dimensional semilinear parabolic

PDE problems by the method of (stochastic) characteristics. To overcome CoD, they

approximate the gradient of the solution at different times by NNs and introduce a

loss function that measures the deviation from the correct terminal condition in the

characteristic equations. In particular, they solve high-dimensional stochastic OC

problems by solving the corresponding viscous HJB equation. This method recovers

the gradient of the solution as a function of (x, t) and can be considered a global

method. Nevertheless, loss functions employed in E et al. [26] and Han et al. [44]

consider only one initial point at a time, and the generalization depends on how well

the generated random trajectories fill the space. The variance of the trajectories

increases as time grows. Finally, in the deterministic limit the method becomes local

as there is no diffusion to enforce the trajectories to explore the whole space. Similar

81

techniques are applied in Nüsken and Richter [75] based on different loss functions.

In Han and E [43], the authors solve stochastic OC problems by directly approxi-

mating controls and using the control objective as a loss function. As in E et al. [26]

and Han et al. [44], the loss function considers a single initial point.

6.2.3 Multi-Agent Path-Finding

Multi-Agent Path-Finding (MAPF) [102] methods are methods tailored for multi-

agent control problems. These methods tend to focus on collision avoidance rather

than optimality. Among these are Conflict-Based Search (CBS) methods [97, 111],

which are two-level algorithms. At the low level, optimal paths are found for individ-

ual agents, while at the high-level, a search is performed in a constraint tree whose

nodes include constraints on time and location for a single agent. Decoupled optimiza-

tion approaches [28, 47] first compute independent paths and then try to avoid colli-

sion afterwards. These methods are often combined with graph-based methods [101],

sub-dimensional expansions [112], and CBS approaches [11, 20]. Another approach

phrases the MAPF problem as a differential game [68]. Provided certain assumptions,

this differential game strategy guarantees that the agents reach their targets while

avoiding collisions. Machine learning approaches for multi-agent control have also

been successfully applied in where supervised learning is used to imitate non machine

learning solutions generated [88]. Our approach differs from these methods in that

we do not have a data generation and fitting/imitation phases; instead, we directly

solve for the control objective. Additionally, localization and interaction modeling

techniques [98] can be incorporated in our model in a straightforward manner.

82

6.3 Neural ODE Formulation

We provide a detailed presentation of our formulation, leveraging the advantages

of both the PMP and HJB approaches. In particular, we directly optimize the

cost (2.11) subject to (6.1). However, rather than solving for the controls, we

use (2.13) and (2.14) to represent the dynamics and cost in terms of the value function

parameterized by an NN. Moreover, since we know the value function solves the HJB,

we add terms that penalize deviations from the HJB equations similar to Section 5.4.

6.3.1 Main Formulation

Our goal is to eliminate ux, F, L from the optimization problem (2.11) and obtain

concise expressions for the dynamics and control cost in terms of the state and adjoint

variables. Under this Assumption 2.3.1 and equations (2.12) and (2.13), the envelope

formula [31, Section 3.1, Theorem 1] yields

F
(
x,u∗(x,p, t), t

)
=−∇pH(x,p, t)

L
(
x,u∗(x,p, t), t

)
=p · ∇pH(x,p, t)−H(x,p, t)

(6.5)

Also, by (2.15),

ux(t) =u∗
(
zx(t),px(t), t

)
, 0 ≤ t ≤ T, (6.6)

where px(t) is the adjoint state. Therefore, for controls of the form (6.6), we obtain

∂tzx(t) =−∇pH
(
zx(t),px(t), t

)
,

L
(
zx(t),ux(t), t

)
=px(t) · ∇pH

(
zx(t),px(t), t

)
−H

(
zx(t),px(t), t

)
, and

(6.7)

From Theorem 2.3.2, we recognize that the adjoint variable must have the form

px(t) = ∇Φ(zx(t), t). Consequently, (2.11) can be equivalently written as the opti-

83

mization problem

inf
Φ

E
x∼P0(x)

{∫ T

0

L
(
zx(t),ux(t), t

)
dt + G

(
zx(T)

)}

s.t.





px(t) = ∇Φ(zx(t), t)

∂tzx(t) = −∇pH(zx(t),px(t), t), zx(0) = x.

(6.8)

The initial conditions x ∈ Rd are drawn from some initial distribution P0. In each

problem, we set up and solve (6.8), where the dynamics F , the Lagrangian L, and

thus the Hamiltonian H vary with the problem.

As in Section 5.4, we approximate Φ by an NN, denoted Φ(·;θ), which turns

(6.8) into a finite-dimensional optimization over the weights θ. For brevity, we often

omit the explicit dependence of Φ on θ. We use the same model for Φ (5.28) as

in OT-Flow.. This approach does not require first solving for sample trajectories

to generate training data and thus differs from the supervised training approaches

presented in [69]. Instead, our approach aligns more with model-based reinforcement

learning (Section 2.5).

6.3.2 Adding Hamilton-Jacobi-Bellman Penalizers

We introduce three penalty terms cHJt,x, cHJfin,x, and cHJgrad,x derived from the HJB

PDE (2.16) as follows:

cHJt,x(t) =

∫ t

0

∣∣∣∣ ∂sΦ
(
zx(s), s

)
−H

(
zx(s),∇Φ(zx(s), s), s

) ∣∣∣∣ ds

cHJfin,x = |Φ(zx(T), T)−G(zx(T)) |

cHJgrad,x =| ∇Φ(zx(T), T)−∇G(zx(T)) |.

(6.9)

Penalizers prove helpful in similar problems without introducing bias (Section 5.4.1).

Adding cHJt,x, cHJfin,x, cHJgrad,x to (6.8) and rewriting the time-integral in terms of

84

ODE constraints, we obtain

min
Φ

E
x∼P0(x)

{
cL,x(T) +G(zx(T)) + β1cHJt,x(T) + β2cHJfin,x + β3cHJgrad,x

}
, (6.10)

subject to

∂t




zx(t)

cL,x(t)

cHJt,x(t)




=




−∇pH
(
zx(t),∇Φ(zx(t), t) , t

)

Lx(t)

Rx(t)



, (6.11)

initialized with zx(0) = x and cL,x(0) = cHJt,x(0) = 0, and

Lx(t) =∇Φ(zx(t), t) · ∇pH
(
zx(t),∇Φ(zx(t), t) , t

)
−H

(
zx(t),∇Φ(zx(t), t) , t

)

Rx(t) =
∣∣∣∂tΦ

(
zx(t), t

)
−H

(
zx(t),∇Φ

(
zx(t), t

)
, t
)∣∣∣.

We note that reformulating the Lagrangian Lx uses (6.5) and that Lx and Rx are

generalized forms of their use in Section 5.4.1.

The objective function thus contains the accumulated running cost cL,x(T), the

HJB penalty along the trajectories cHJt,x(T), the final-time HJB penalty cHJfin,x,

and the transversality penalty cHJgrad,x. The penalty multipliers β1, β2, β3 > 0 are

hyperparameters of the model (Section 6.4). We address the empirical effectiveness

of the penalizers in Section 6.5.2.

6.3.3 Robustness to Shocks

Instead of approximating individual trajectories give initial data x, we approximate

the dynamics

∂tz = −∇pH
(
z,∇Φ(z, t), t

)
(6.12)

85

that generate optimal paths. To accomplish this, we parameterize the value function

Φ with an NN [57, 64, 69, 93, 118]. Because the value function is global, obtained

models are robust to various disturbances, such as sudden shocks to the system, that

alter the initial data.

In Section 6.5.3, we experimentally verify the model’s robustness to shocks. More

specifically, we observe that the NN controller successfully drives the system to the

target after abrupt changes in the initial data as a result of minor and major shocks

(Figure 6.3). Minor shocks result in initial data within the training distribution de-

fined by P0 in (6.8). As a result, the performance of the NN controller does not

degrade (Figure 6.3a, Table 6.3). Major shocks result in initial data significantly far

from the training distribution; they potentially can significantly degrade the perfor-

mance of the NN controller in terms of the cost (Figure 6.3c, Table 6.3). Remarkably,

however, the NN controller manages to safely drive the system towards the desired

location (Figure 6.3b).

We attribute the shock robustness to the NN parameterization of the global value

function. Experimentally, we find that penalizers help in training convergence (Fig-

ure 6.2) but not necessarily in shock robustness (cf. Figures 6.3,6.4).

6.4 Numerics

We solve the ODE-constrained optimization problem (6.10) using the DO approach

(Section 3.2), in which we define a discretization of the ODE, then optimize on that

discretization. The forward pass of the model uses an RK4 integrator with nt time

steps to approximate the constraints (6.11). The objective function is then computed;

AD [72] calculates the gradient of the objective function with respect to θ; ADAM [52]

updates the parameters θ. We iterate this process a selected maximum number of

times. For the learning rate (step size) provided to ADAM, we follow a piece-wise

86

Table 6.1: NN training statistics. All timings are approximate from training on a
shared NVIDIA Quadro RTX 8000 GPU.

Params # Iters Time
Iter

(s)
Training

Time (min)

Corridor 1,311 1800 0.32 10
Swap 2 [68] 415 4000 0.56 37
Swap 12 [68] 2,196 4000 0.26 17
Swarm [47] 342,654 6000 0.57 57
Quadcopter [63] 18,576 6000 0.72 72

constant decay schedule. For instance, in the experiment in Figure 6.2, we divide the

learning rate by 10 every 800 iterations.

To produce an NN that generalizes to the state-space, we must define initial

points in a manner to promote model generalizability. We assume the initial points

are drawn from a distribution P0. In training the NN, we train on a batch of samples

at a time, where the batch is one sampled set from the distribution. After training

many iterations on that batch, we resample the distribution to define a new batch

and train many iterations on that batch. We repeat this process until we hit the

maximum number of iterations. As an example, we commonly choose batches of

1024 or 2048 samples which were re-sampled every 25-100 iterations. We found no

noticeable empirical difference in solution quality across those ranges. Through this

process, the model uses few data points at each iteration, but does not overfit to a

specific set of data points.

6.4.1 Hyperparameter Tuning

The number of time steps nt is selected a priori as a hyperparameter of the model.

Large nt leads to high computation and training time while reducing error; mean-

while, too small nt leads to overfitting to a refinement of the time discretization of

the trajectories. To check for overfitting, we use more time steps for the hold-out

validation set as addressed in Chapters 3 and 5. We similarly check for overfitting for

87

Table 6.2: Variables and hyperparameters inherent to the problem itself (shared
for NN and baseline) and the hyperparameters tuned for the NN approach. All αi
values are determined relative to the α-less E term in the problem definition. The βi
hyperparameters are tuned relative to the α values.

Problem Definition

n d α1 α2 α3

agents dim. on G on Q on W

Corridor 2 4 100 104 300
Swap 2 [68] 2 4 300 106 105

Swap 12 [68] 12 24 300 - 105

Swarm [47] 50 150 900 107 25000
Quadcopter [63] 1 12 5000 - -

NN-specific Hyperparameters

m β1 β2 β3 nt nt
width on HJt on HJfin on HJgrad training validation

Corridor 32 0.02 0.02 0.02 20 50
Swap 2 [68] 16 1 1 3 20 50
Swap 12 [68] 32 5 2 5 20 50
Swarm [47] 512 2 1 3 26 80
Quadcopter [63] 128 0.1 0 0 26 50

the baseline approach and observe stable results for different nt. Training on a single

NVIDIA Quadro RTX 8000 GPU requires between ten minutes and a little over one

hour for the considered OC problems (Table 6.1).

Other hyperparameters include the number of ResNet layers (tuned to equal 2),

width of the ResNet m, and the multipliers β1, β2, β3. In contrast, each OC problem

has particular α1, α2, α3 defined which we use for both the baseline and NN; changing

these values alters the problem (Table 6.2).2

ResNet Hyperparameters

For our ResNet N (5.29), each network layer is a dense layer (2.1). Varying network

depths in solving path-finding problems revealed no noticeable benefits, so we stick

2For reproducibility, our Python implementation and all hyperparameters are available at
https://github.com/donken/NeuralOC.

88

to a two-layer ResNet for simplicity and speed.

The ResNet width m describes the dimension of the hidden space onto which

the model projects. Specifically, multiplying the model inputs by K0, returns an

m-dimensional result for subsequent operators. The manifold [99] onto which the

model projects the data exists in this hidden space. If the precise dimensionality of

the manifold and the projection are known, then one could set m as the manifold

dimension and define the network to be the projection. Machine learning approaches

rely on the model learning the manifold and projection. Therefore, in practice, one

tunes the architecture width m to be greater than or equal to the manifold dimen-

sionality. In theory, if m exceeds the manifold dimensionality, then since manifolds

exist in higher dimensional spaces, the model could learn to ignore the additional

unnecessary dimensions.

We tune hyperparameter m so that we obtain the smallest model without sacrific-

ing performance. We prefer smaller models as a model with few parameters is more

interpretable and easier to train as the parameter space in which we optimize θ is

reduced. Often, smaller models also present quicker computation with fewer FLOPs.

However, we train models on a GPU which parallelizes the matrix-vector computa-

tions so the different model widths in our experiments have negligible influence on

time per training iteration.

6.5 Numerical Experiments

We provide a baseline local solution method and solve several multi-agent path-finding

problems and one high-dimensional quadcopter problem with complicated dynamics.

89

6.5.1 Baseline: Discrete Optimization for a Single Initial State

For comparison with the NN approach, we provide a local solution method that solves

the OC problem for a fixed initial state z(0) = x0. To this end, we obtain a discrete

optimization problem by applying forward Euler to the state equation and a midpoint

rule to the integrals, which leads to

min
{u(k)}

G
(
z(nt)

)
+ h

nt−1∑

k=0

L
(
z(k),u(k), tk

)

s.t. z(k+1) = z(k) + hF
(
z(k),u(k), tk

)
,

(6.13)

where h=T/nt. We use T=1 and nt=50 and solve (6.13) using ADAM with initial-

ization of the controls set as straight paths from z(0) to y with small added Gaussian

noise.

We arrived at these training decisions empirically. First, when solving (6.13)

in our experiments, ADAM finds slightly more optimal solutions (1−2% more opti-

mal) in practice than L-BFGS. Second, the initialization of the controls substantially

influences the solution. As a particular example, the baseline solution depicted in

Figure 6.3c learns to send agent 1 around the left side of the obstacle; the baseline

struggles to learn this optimal trajectory if initialized with controls that point towards

passing through the right of that obstacle or through the corridor. As a response,

we initialize with controls of equal magnitude pointing in a straight trajectory from

initial point to target. Third, we find examples where initializing with these com-

pletely straight trajectories can lead to poor optima that can even model collisions,

e.g., when solving the problem in Figure 6.1a. We find that adding small Gaussian

noise to the straight trajectories fixes this issue, and thus we initialize with controls

that dictate a noisy straight trajectory.

90

−2 0 2

−2

0

2

nt=8

−2 0 2

nt=16

−2 0 2

nt=24

−2 0 2

nt=25

−2 0 2

nt=32

−2 0 2

nt=40

−2 0 2

nt=50

−2 0 2

−2

0

2

nt=8

−2 0 2

nt=16

−2 0 2

nt=24

−2 0 2

nt=25

−2 0 2

nt=32

−2 0 2

nt=40

−2 0 2

nt=50

−2 0 2

−2

0

2

nt=8

−2 0 2

nt=16

−2 0 2

nt=24

−2 0 2

nt=25

−2 0 2

nt=32

−2 0 2

nt=40

−2 0 2

nt=50Ttime t

(a) Baseline.

−2 0 2

−2

0

2

nt=8

−2 0 2

nt=16

−2 0 2

nt=24

−2 0 2

nt=25

−2 0 2

nt=32

−2 0 2

nt=40

−2 0 2

nt=50

−2 0 2

−2

0

2

nt=8

−2 0 2

nt=16

−2 0 2

nt=24

−2 0 2

nt=25

−2 0 2

nt=32

−2 0 2

nt=40

−2 0 2

nt=50

−2 0 2

−2

0

2

nt=8

−2 0 2

nt=16

−2 0 2

nt=24

−2 0 2

nt=25

−2 0 2

nt=32

−2 0 2

nt=40

−2 0 2

nt=50Ttime t

(b) NN model. Solved for multiple pairs; only one shown.

Figure 6.1: Two-agent corridor problem.

6.5.2 Two-Agent Corridor Experiment

We design a four-dimensional problem in which two agents attempt to reach fixed

targets on the other side of two hills. We design the hills in such a manner that one

agent must pass through the corridor between the two hills while the other agent

waits. For this example, the hills use a smooth terrain, and we assess the shock-

resilient nature of the NN.

Set-up

Suppose the two homogeneous agents with radius r=0.5 start at x1=[−2,−2]> and

x2=[2,−2]> with respective targets y1=[2, 2]> and y2=[−2, 2]>. Thus, the initial and

target joint-states are x0=[−2,−2, 2,−2]> and y=[2, 2,−2, 2]>. We sample from P0,

which is a Gaussian centered at x0 with an identity covariance. These sampled initial

positions form the training set X.

The running costs depend on the spatio-temporal cost function Qi. Throughout,

91

our obstacles use the Gaussian density function with mean µ and covariance Σ

ν(zi ; µ,Σ) =
exp

(
−1

2
(zi − µ)Σ−1(zi − µ)

)
√

(2π)d det Σ
.

In this experiment, we define the corridor between obstacles

Qi(zi) = ν


zi ;



−2.5

0


 , 0.2I


+ ν


zi ;




2.5

0


 , 0.2I




+ν


zi ;



−1.5

0


 , 0.2I


+ ν


zi ;




1.5

0.0


 , 0.2I


 .

The energy terms are given by

Ei
(
zi(t), ui(t)

)
=

1

2
‖ui(t)‖2, (6.14)

and the dynamics are given by F (z,u, t) = u.

We note that the Q and W terms do not directly depend on the controls ux, and

we therefore write the Hamiltonian (2.12) as

H(zx,px, t) = sup
ux∈U

{
− p>xux − L

(
zx,ux, t

)}

= sup
ux∈U

{
− p>xux − E

(
zx,ux

)
− α2Q

(
zx
)
− α3W

(
zx
)} (6.15)

We then can solve for the first-order necessary condition

0 = −px −∇uE
(
zx,ux

)

⇒ px = −∇u
(

n∑

i=1

1

2
‖ui‖2

)
= −ux

(6.16)

Using the closed-form solution for the controls (6.16), we can rewrite the Hamil-

92

tonian as

H(zx,px, t) = ‖p‖2 − 1

2
‖px‖2 − α2Q

(
zx
)
− α3W

(
zx
)

=
1

2
‖px‖2 − α2Q

(
zx
)
− α3W

(
zx
) (6.17)

where the characteristics are given by

∂tzx(t) = −∇pH
(
zx(t),px(t), t

)
= −px(t). (6.18)

Results

The baseline and the NN learn to wait for one agent to pass through the corridor

first, followed by the second agent (Figure 6.1). The NN performs marginally worse

in running cost (Table 6.3), which can be seen in the early stages of the trajectories

of x1 (Figure 6.1b). The NN achieves a slightly better G value than the baseline. The

closeness of the values between the approaches is exciting; although we solve the NN

by optimizing the expectation value of a set of points in the region, the NN achieves

a near-optimal solution for x0.

6.5.3 Effect of the Hamilton-Jacobi-Bellman Penalizers

We experimentally assess the effectiveness of the penalizers cHJfin and cHJgrad when

used alone or with each other. the cHJt penalizer reduces the necessary number of

time steps (Section 5.4.1). We define six models (combinations of the HJB penalizers

and one using only weight decay) and train each on the corridor problem. The HJB

penalizers results in quickest convergence on a hold-out validation set (Figure 6.2).

HJt : We enforce the PDE (2.16) describing the time derivative of Φ along the

trajectories. Including this penalizer improves regularity and reduces the necessary

number of time steps when solving the dynamics [64, 77, 93, 118].

HJfin : We enforce the final-time condition of the PDE (2.16). The inclusion of this

93

0 400 800 1200 1600 2000 2400
Iteration

103

104

c L
+

G

HJfin
HJgrad

HJfin & HJgrad
HJt, HJfin, & HJgrad

Weight Decay
No Penalization

0 400 800 1200 1600 2000 2400
Iteration

10 2

10 1

100

G
/

1

HJfin
HJgrad

HJfin & HJgrad
HJt, HJfin, & HJgrad

Weight Decay
No Penalization

Figure 6.2: We train several models that only differed in the penalizers used in
training. We compare against an unpenalized model and one that uses a typical
weight decay (Tikohonov) regularizer. The terminal HJB penalizers lead to improved
convergence and lower G value. Each curve is the average of three training instances.

penalizer helps the network achieve the target [93]. We observe this experimentally,

where the inclusion of HJfin correlates with a lower G value (Figure 6.2). HJfin is also

the sole aspect of our formulation that directly tunes the Φ, while all other aspects

use ∇Φ.

HJgrad : We enforce the transversality condition ∇Φ(zx(T), T)=∇G(zx(T)) ∀zx,

a consequence of the final-time HJB condition (2.16). Numerically, all conditions are

enforced on a finite sample set. Therefore, higher-order penalization may help the

generalization; i.e., achieving a better match of Φ(·, T) and G for samples not used

during training (the hold-out validation set). We observe the latter experimentally;

using HJgrad instead of HJfin results in better validation convergence (Figure 6.2).

The importance of enforcing the values of ∇Φ was addressed in Nakamura-Zimmerer

94

−4 −2 0 2 4

−4

−2

0

2

4

6
train agent 1
agent 1
train agent 2
agent 2

space bubble
target
shock

(a) Minor shock ‖ξ‖=0.94
within the training space.

−4 −2 0 2 4

−4

−2

0

2

4

6
train agent 1
agent 1
train agent 2
agent 2

space bubble
target
shock

(b) Major shock ‖ξ‖=6.2
outside the training space.

x̂ = zx0(0.1) + ξ,
t = [0.1, 1]

−4 −2 0 2 4

−4

−2

0

2

(c) Baseline solution for
(x̂,0.1) after major shock.

Figure 6.3: Shock-Robustness. The NN handles a shock ξ at time t=0.1.

Table 6.3: Multiple Agent Corridor Problem. Comparison of values for single instance
x0 (cf. Figures 6.1, 6.3).

Scenario Method cL +G cL G

no shocks Baseline 61.33 61.02 0.31
t ∈ [0, 1] NN 62.19 61.98 0.21

following shock ‖ξ‖ = 0.94 Baseline 59.79 59.46 0.33
t ∈ [0.1, 1] NN 60.54 60.34 0.20

following shock ‖ξ‖ = 6.2 Baseline 71.77 71.22 0.55
t ∈ [0.1, 1] NN 151.67 150.63 1.03

et al. [69].

Shocks

We use this experiment to demonstrate how our approach is robust to shocks (Fig-

ure 6.3). Consider solving the control problem for t ∈ [0, T] as always. Then for

T = 1, we consider a shock ξ (implemented as a random shift) to the system at time

t = 0.1. Our method is designed to handle minor shocks that stay within the space of

trajectories of the initial distribution about x0. Our model computes a trajectory to

y for many initial points. Therefore, for point x̃ ∈ X, the model provides dynamics

F (zx̃(t),ux̃(t), t) before the shock. After the shock, the state picks up the trajectory

95

−4 −2 0 2 4

−4

−2

0

2

4

6
train agent 1
agent 1
train agent 2
agent 2

space bubble
target
shock

(a) Minor shock ‖ξ‖ = 0.94
within the training space.

−4 −2 0 2 4

−4

−2

0

2

4

6
train agent 1
agent 1
train agent 2
agent 2

space bubble
target
shock

(b) Major shock ‖ξ‖ = 6.2
outside of the training space.

Figure 6.4: Comparable NN trained with no penalizers.

of some other point x̂ ∈ X and follows that trajectory to y (Figure 6.3a). In this

scenario, the total trajectory has two portions

zx̃(0.1) =

∫ 0.1

0

F
(
zx̃(t),ux̃(t), t

)
dt, zx̃(0) = x̃, and

zx̂(1) =

∫ 1

0.1

F
(
zx̂(t),ux̂(t), t

)
dt, zx̂(0.1) = zx̃(0.1) + ξ,

before and after the shock, respectively. We imagine a minor shock then as moving

from one trajectory to another (Figure 6.3a). The results of the control problem along

t=[0.1, 1] for the NN and baseline solutions are similar (Table 6.3).

Interestingly, our model extends outside the training region (Figure 6.3b). Al-

though the vast majority of NNs cannot extrapolate, our NN still solves the control

problem after a major shock, demonstrating some extrapolation capabilities. We note

that the NN solves the original problem for x0 to near optimality. However, after

a large shock, the NN solves the control problem, but with little hope for optimal-

ity. In our example, we compare the NN’s solution (Figure 6.3b) with the baseline

solution for t=[0.1, 1] (Figure 6.3c). The NN learned a solution in which agent 2

passes through the corridor followed by agent 1. After the major shock, the NN still

96

applies these dynamics (Figure 6.3b) while the baseline finds a more optimal solution

(Figure 6.3c). The NN is roughly 100% less optimal in this single shock example

(Table 6.3).

We attribute the shock robustness to the NN parameterization of the global value

function. Experimentally, the shock robustness of our model (Figure 6.3) does not

noticeably differ from a model trained without penalization. Since the NN is trained

offline prior to deployment, it handles shocks in real-time. In contrast, methods that

solve for a single trajectory—e.g., the baseline—must pause to recompute following

a shock.

Global Capabilities of NN Model

To provide a more thorough analysis of our model’s global optimality, we assess one

NN’s performance for many different initial conditions x0 + ξ. We sample random

shifts ξ of varying magnitudes. We sample 1000 random ξ for each magnitude ‖ξ‖ =

0.5, 1.0, . . . , 5.0. For each x0 + ξ, we evaluate the trained NN model and train a

baseline model, computing the suboptimality of the NN (Figure 6.5). We note that

this equivalently can be described as comparing the NN model and the baseline on

many samples from concentric hyperspheres. Since a shock can be phrased as picking

up a trajectory from an initial condition, testing the NN’s global capabilities and

shock-robustness are synonymous.

We observe that the NN optimality slowly decays as ‖ξ‖ increases (Figure 6.5).

Specifically, for the corridor experiment, the NN performs near optimality within

‖ξ‖ ≤ 2. Since the NN was trained on P0 which was a Gaussian about x0 with co-

variance I. The bound ‖ξ‖ ≤ 2 then equates to being within two standard deviations

of x0.

97

−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6 ||ξ||=5
||ξ||=4
||ξ||=3

||ξ||=2
||ξ||=1

target
 x0

(a) The initial points x0 + ξ for the corridor problem sampled from hyperspheres of radius
‖ξ‖.

0 1 2 3 4 5
Magnitude ||ξ||

0%

50%

100%

150%

200%

Su
bo

pt
im

al
ity

2 std dev
of ρ0

mean
95% CI

(b) The mean suboptimality of the NN’s solution cL + G, where the baseline solution for
each initial point is considered optimal.

0 1 2 3 4 5
Magnitude ||ξ||

0%

10%

20%

30%

40%

Lik
el

ih
oo

d
of

 C
ol

lis
io

n

2 std dev
of ρ0

mean
95% CI

(c) For initial points at each magnitude, we present the percentage of those resulting in a
collision of any severity when run with the NN.

Figure 6.5: Comparison of one NN model with 10,001 baseline models for 1000 initial
points x0 + ξ at each magnitude ‖ξ‖. Confidence intervals are computed via boot-
strapping 10,000 sub-samplings of size 500 from each set of 1000 points (Appendix B).

98

−10 −5 0 5 10

−4

−2

0

2

4

−10 −5 0 5 10

−4

−2

0

2

4 Zoom In

Agents Cross

Figure 6.6: Swap experiment with hard-boundary corridor.

−10 0 10
−5

0

5
nt=8

−10 0 10

nt=16

−10 0 10

nt=24

−10 0 10

nt=25

−10 0 10

nt=32

−10 0 10

nt=40

−10 0 10

nt=50

−10 0 10
−5

0

5
nt=8

−10 0 10

nt=16

−10 0 10

nt=24

−10 0 10

nt=25

−10 0 10

nt=32

−10 0 10

nt=40

−10 0 10

nt=50

−10 0 10
−5

0

5
nt=8

−10 0 10

nt=16

−10 0 10

nt=24

−10 0 10

nt=25

−10 0 10

nt=32

−10 0 10

nt=40

−10 0 10

nt=50Ttime t

Figure 6.7: Swap experiment for 12 agents in R2.

6.5.4 Multi-Agent Swap Experiments

We replicate the experiments found in Mylvaganam et al. [68] where agents swap

positions while avoiding each other. All agents are two-dimensional, and the formu-

lation mostly matches that presented in the corridor example (Section 6.5.2). For the

swap experiments, we alter x0, y, and Q.

Setup

We begin with two agents that swap positions with each other while passing through

a corridor with hard edges. To enforce these hard edges, we enforce a space bub-

ble around obstacles similar to how we implement multi-agent interactions (6.4).

Therefore, we train with this space bubble but evaluate and plot the results without

it. The actual obstacles (two circles with radius 2) are formulated as follows. Let

99

Ωobs = {z | ‖z − µ1‖ < 2 or ‖z − µ2‖ < 2}, then

Qi(zi) =





1, if zi ∈ Ωobs,

0, otherwise,

where µ1 =




0

4


 and µ2 =




0

−3.5


. However, for training, we encode this as

Qi,trn(zi) =





ν (zi ; µ1, I) + ν (zi ; µ2, I) , if zi ∈ Ωobs,trn,

0, otherwise,

where Ωobs,trn = {z | ‖z−µ1‖ < 2.2 or ‖z−µ2‖ < 2.2}. By training with Gaussian

repulsion—which has gradient information within the obstacles—we incentivize the

optimizer to learn trajectories avoiding the obstacles. Additionally, we increase the

obstacle radial bound by ten percent to give the network some wiggle room. We use

the same obstacle definitions for the baseline and NN approaches.

For initial and target states, we choose x0=[10, 0,−10, 0]> and y=[−10, 0, 10, 0]>.

These values are a scaled down version of those in [68] and are easier to visualize.

For the two-agent problem, the agents successfully switch positions while avoiding

each other (Figure 6.6). Qualitatively, our method learns trajectories with shorter

arclength than those in Mylvaganam et al. [68].

We also replicate the 12-agent case [68]. For this experiment, six pairs of agents

swap positions across the same space. Since there are no obstacles, Q=0. In our

setup, the problem is slightly adjusted as our global problem solves for a fixed y but

with initial conditions in P0, instead of just x0. We display the solution for the single

initial case x0 (Figure 6.7).

100

8 12 16 20 24
Problem Dimension d

200

400

600

800

1000

NN
 P

ar
am

et
er

s

8 12 16 20 24
Problem Dimension d

1000

1200

1400

1600

1800

2000
Tr

ai
ni

ng
 T

im
e

(s
)

Figure 6.8: The NN’s number of parameters scales linearly with the problem dimen-
sion as the computational cost remains mostly constant, overcoming CoD. For each
problem (subproblem of the 12-agent swap experiment), we train the smallest NN
that achieves at least 10% suboptimality.

Overcoming CoD

Expanding on the 12-agent swap experiment, we demonstrate how the NN model

overcomes CoD (Figure 6.8). We design four additional similar problems by dropping

out agents from the 12-agent version. Thus, we arrive at problems containing 2, 3, 4,

5, and 6 pairs of agents that swap positions. We select a fixed suboptimality of 10%

and tune the smallest NN we can to achieve this suboptimality or better. The size of

the NN is quantized by the NN width m, which we tune to make the NN small. The

resulting NNs follow a linear growth of number of parameters relative to the problem

dimension d (Figure 6.8). Due to the parallelization of the GPU, the training time of

these models remains constant.

101

Figure 6.9: Swarm problem for 50 agents in R3.

6.5.5 Swarm Problem

We demonstrate the high-dimensional capabilities of our model by solving a swarm

problem in the spirit of Hönig et al. [47]. The swarm problem contains 50 three-

dimensional agents that fly from initial to target positions while avoiding each other

and obstacles. We construct Qi to model two rectangular prism obstacles [−2, 2] ×

[−0.5, 0.5] × [0, 7] and [2, 4] × [−1, 1] × [0, 4]. We train with Gaussian repulsion in-

side the obstacles similar to the swap experiment (Section 6.5.4) and use the same

dynamics (6.18). Due to the complexity of the collision avoidance, we find it ben-

eficial to switch the scalar weights on the HJB penalizers during training—recall

that the penalizers do not alter the solution (Section 6.5.3). For the first portion of

training, we choose β1=2, β2=1, and β3=3 (Table 6.2); for the rest of training, we

use β1=β2=β3=0. This set-up focuses the model on solving the control problem in

the first portion of training as the final-time penalizers help the agents reach their

destinations. We then reduce the weights of the penalizers for optimal fine-tuning.

The NN learns to guide all agents around the obstacles (Figure 6.9). Naturally, if

102

mg

thrust u x

y

yaw ψ

pitch θ

roll ϕ

Figure 6.10: Quadcopter diagram [100].

the time discretization is too coarse (small nt), then the model may simulate collisions

solely due to inaccurate time integration. In validation, we use a fine time discretiza-

tion and observe that the agents avoid colliding the obstacles and each other by

observing that values for Q and W are exactly 0.

6.5.6 Quadcopter Experiment

In this experiment, a quadcopter, i.e., a multirotor helicopter, utilizes four rotors to

propel itself across space from an initial state in the vicinity of x0 to target state y. We

choose values x0=[−1.5,−1.5,−1.5, 0, . . . , 0]> ∈ R12 and y=[2, 2, 2, 0, . . . , 0]> ∈ R12.

Denoting gravity as g, the acceleration of a quadcopter with mass m is given by





ẍ = u
m

(
sin(ψ) sin(ϕ) + cos(ψ) sin(θ) cos(ϕ)

)

ÿ = u
m

(
− cos(ψ) sin(ϕ) + sin(ψ) sin(θ) cos(ϕ)

)

z̈ = u
m

cos(θ) cos(ϕ)− g

(6.19)

103

where (x, y, z) is the spatial position of the quadcopter, and (ψ, θ, ϕ) is the angular

orientation [17].

The dynamics can be written as the following first-order system

ż = F (z,u, t) =⇒





ẋ = vx

ẏ = vy

ż = vz

ψ̇ = vψ

θ̇ = vθ

ϕ̇ = vϕ

v̇x = u
m
F7(ψ, θ, ϕ)

v̇y = u
m
F8(ψ, θ, ϕ)

v̇z = u
m
F9(θ, ϕ)− g

v̇ψ = τψ

v̇θ = τθ

v̇ϕ = τϕ

(6.20)

where





F7(ψ, θ, ϕ) = sin(ψ) sin(ϕ) + cos(ψ) sin(θ) cos(ϕ),

F8(ψ, θ, ϕ) = − cos(ψ) sin(ϕ) + sin(ψ) sin(θ) cos(ϕ),

F9(θ, ϕ) = cos(θ) cos(ϕ).

Here, z = [x y z ψ θ ϕ vx vy vz vψ vθ vϕ]> ∈ R12 is our state and u =

[u τψ τθ τϕ]> ∈ R4 is our control, where u is the main thrust directed out of the

bottom of the aircraft and the τ are the torques corresponding to the yaw ϕ, pitch

ψ, and roll θ (Figure 6.10). For the energy term, we consider

E(z,u) = 2 + ‖u‖2 = 2 + u2 + τ 2
ψ + τ 2

θ + τ 2
ϕ. (6.21)

For this problem, we have no obstacles nor other agents, so L(z,u, t) = E(z,u). We

consider the Hamiltonian in (2.12) where p = [p1 p2 . . . p12]> ∈ R12. Noting the

104

optimality conditions of (2.12) for the quadcopter problem are obtained by

−∇uE − p>∇uF = 0

⇒ −2




u

τψ

τθ

τϕ



−




p7

p8

p9

p10

p11

p12




> 


F7/m 0 0 0

F8/m 0 0 0

F9/m 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1




= 0

⇒ −2




u

τψ

τθ

τϕ



−




1
m

(F7p7 + F8p8 + F9p9)

p10

p11

p12




= 0,

(6.22)

we can derive an expression for the controls as

u =
−1

2m
(F7p7 + F8p8 + F9p9), τψ =

−p10

2
, τθ =

−p11

2
, τϕ =

−p12

2
. (6.23)

We therefore can compute the Hamiltonian

H(x,p, t) = −L(z,u, t)− [vx vy vz]




p1

p2

p3



− [vψ vθ vϕ]




p4

p5

p6




+
1

2m2

(
p7F7 + p8F8 + p9F9

)2
+ p9g +

1

2
(p2

10 + p2
11 + p2

12).

(6.24)

Finally, using (2.14) and (6.23), we compute the controls u using the NN (Fig-

105

x

−2−10 1 2
y

−2 −1 0 1 2

z

−2
−1
0
1
2

(a) Baseline trajectory of discrete
optimization for the four controls
on nt = 50.

x

−2−10 1 2
y

−2 −1 0 1 2

z

−2
−1
0
1
2

(b) NN trajectories, demonstrating
the NN’s usability for many initial
conditions.

−2 −1 0 1 2
x

−2

−1

0

1

2

y

(c) Baseline trajectory.

−2 −1 0 1 2
x

−2

−1

0

1

2

y

(d) NN trajectories.

0 0.5 T=1
Time (nt = 50)

−40

−20

0

20

40

60

Co
nt

ro
l

NN u
NN τψ
NN τθ
NN τϕ

Baseline u
Baseline τψ
Baseline τθ
Baseline τϕ

(e) Comparison of controls.

cL +G cL G

Baseline 2,182.7 2,111.2 71.47
NN 2,184.9 2,122.0 62.90

(f) Comparison of loss values for single initial point x0.

Figure 6.11: Quadcopter problem comparison with baseline.

106

0 0.5 T=1
Time (nt = 50)

−0.5

0.0

0.5

1.0

1.5

Va
lu

e

Baseline ψ
Baseline θ
Baseline ϕ
NN ψ
NN θ
NN ϕ

(a) Angular values.

0 0.5 T=1
Time (nt = 50)

0

2

4

6

8

Ve
lo

cit
y

NN vx
NN vy
NN vz

Baseline vx
Baseline vy
Baseline vz

(b) Spatial position velocities.

0 0.5 T=1
Time (nt = 50)

−6

−4

−2

0

2

4
Ve

lo
cit

y

NN vψ
NN vθ
NN vϕ

Baseline vψ
Baseline vθ
Baseline vϕ

(c) Angular velocities.

Figure 6.12: Quadcopter comparison of some states, supplementing Figure 6.11.

ure 6.11e) with

u =
−1

2m

(
F7
∂Φ

∂vx
+ F8

∂Φ

∂vy
+ F9

∂Φ

∂vz

)
, τψ = −1

2

∂Φ

∂vψ
, τθ = −1

2

∂Φ

∂vθ
, τϕ = −1

2

∂Φ

∂vϕ
.

(6.25)

The quadcopter contains highly coupled 12-dimensional dynamics, which can lead

to time-consuming model training despite its dimension and lack of obstacles and

interactions (Table 6.1). We find that the HJB terminal conditions offered little

impact as no obstacle or interaction costs interfered with the terminal cost.

The NN approach learns similar controls (Figure 6.11e) and states (Figure 6.12)

as the baseline method. Both methods learn a similar flight path though the NN

approach learns for many initial conditions (Figure 6.11). As with the corridor prob-

lem, the NN learned a solution with better terminal cost, but less optimal cL than

the baseline (Figure 6.11f).

107

Chapter 7

Summary

Neural ODEs draw from both recently developed data-driven machine learning and

more theory-driven applied mathematics. Acknowledging that the development and

hype of neural ODEs stems mostly from the machine learning viewpoint, we lever-

age optimal control theory to improve the design of neural ODEs. While hardware

advances and the rise of GPUs have certainly assisted in NN development, we see

design improvements as a similarly important avenue for cost-reduction.

In this dissertation, we presented methods for designing neural ODEs used in

four tasks. These design choices fall under two categories: numerical treatment and

formulation. In Chapter 2, we presented the mathematical background relevant for

this work. We briefly described general neural networks, introduced neural ODEs,

and reviewed relevant optimal control theory.

In Chapter 3, we motivate a time-series task where a continuous neural ODEs

appear applicable. We use this simple task to present the numerical treatment ben-

efits that arise from using the discretize-optimize approach instead of the optimize-

discretize approach. These numerical benefits result in reduced training costs.

In Chapter 4, we shift to focusing on image classification tasks. Neural ODEs

present little computational benefits over a more standard NN approach, e.g., the

108

discrete ResNet. However, we design a neural ODE that is formulated to decou-

ple the weights and layers of the neural network, resulting in a model with fewer

parameters than comparable methods. We demonstrate the effectiveness of our low-

parameterized neural ODE on a problem where training data is sparse—low-dose

computed tomography for lung cancer detection.

For Chapter 5, we address the continuous normalizing flows problem. We first

assess the numerical benefits of using the discretize-optimize approach introduced

in Chapter 3. Using the value function, we furthermore formulate and regularize a

neural ODE for the task. Numerically, in addition to using the discretize-optimize

approach, we develop an efficient exact trace computation, derived from the analytical

Laplacian of our neural network approximation of the value function. We observe

drastic reductions in training and inference costs relative to the state-of-the-art.

We lastly turn to path-finding problems in Chapter 6. Using a similar for-

mulation as in Chapter 5, we formulate a neural ODE that yields shock-robust

and collision-avoidant paths for high-dimensional and centrally-controlled multi-agent

problems. Numerically, we use Lagrangian coordinates and penalizers fashioned from

the Hamilton-Jacobi-Bellman equations for efficient implementation.

This dissertation paves the way for future work in neural ODEs. Because neural

ODEs present a single tool in the overlapping space of data-driven machine learning

and traditional mathematical modeling, we feel this work is merely part of the begin-

ning of a much larger movement[2, 36, 59, 66]. We encourage the further leveraging

of optimal control and, more widely, theoretically sound mathematical approaches for

the improvement of expensive neural networks.

Although we present some tasks (image classification and normalizing flows) on

real-world data sets and applications, we leave the expansion of other tasks as future

work. We used a simple time-series problem merely to introduce concepts; neural

ODEs can necessarily apply to time-series data in practical applications. Furthermore,

109

we simulate solutions for path-finding, but have interest in joining our work with

engineering methods for real-world applications. Specifically, we have interest in

deploying our model on physical quadcopters; we want to combine our work with

approaches that allow the agents to be autonomous or respond in real-time to sensory

information; we want to see our work in action.

110

Appendix A

Derivation of Adjoint Equations

We provide derivations behind the continuous backpropagation (3.4) and discrete

backpropagations (3.3) and (3.5).

A.1 Continuous Adjoint

Consider the continuous ResNet optimization problem (2.19) subject to (2.8),

min
θ

∫ T

0

L
(
z(t),y(t)

)
dt s.t. ∂tz(t) = v

(
θ(t), z(t), t

)
, z(0) = x (A.1)

where y is the ground truth and z depends on θ.

From here, we calculate the Lagrangian G, with adjoint variable (and Lagrangian

multiplier) a

G[θ, z,a] =

∫ T

0

L
(
z(t),y(t)

)
dt +

∫ T

0

a(t)>
[
v(z(t), t;θ(t))− ∂tz(t)

]
dt.

=

∫ T

0

L
(
z(t),y(t)

)
+ a(t)>v

(
z(t), t;θ(t)

)
− a(t)>∂tz(t) dt.

(A.2)

From optimization theory, we know that all the variations of G have to vanish at an

optimal point. Here, we derive the strong form of the optimality system. Before doing

111

so, we simplify the third term using integration by parts and simplify using a(0) = 0

(due to the initial condition of the neural ODE):

∫ T

0

a(t)>∂tz(t) dt = a(t)>z(t)

∣∣∣∣
T

0

−
∫ T

0

∂ta(t)>z(t) dt

= a(T)>z(T)−
∫ T

0

∂ta(t)>z(t) dt.

(A.3)

After substituting (A.3) into (A.2), the Lagrangian now becomes

G[θ, z,a] =

∫ T

0

L(z(t),y(t)) + a(t)>v
(
z(t), t;θ(t)

)
+ ∂ta(t)>z(t) dt

− a(T)>z(T).

(A.4)

For some time t ∈ [0, T), the variational derivative of G with respect to z(t) is

∂z(t)G[θ, z,a] = ∇zL(z(t),y(t)) + ∇zv
(
z(t), t;θ(t)

)
a(t) + ∂ta(t). (A.5)

Setting this equal to zero gives the backward in time ODE

− ∂ta(t) = ∇zL
(
z(t),y(t)

)
+ ∇zv

(
z(t), t;θ(t)

)
a(t). (A.6)

Using that this equation holds for all t ∈ [0, T), we see that the variational derivative

of G with respect to z(T) is

∇z(T)G(θ, z,a) = ∇zL
(
z(T),y(T)

)
− a(T). (A.7)

Setting this equal to zero gives the final time condition

a(T) = ∇zL
(
z(T),y(T)

)
(A.8)

112

Finally, we note that, via chain rule, the variation of J with respect to θ is

∇θ(t)J [θ] = ∇θv
(
z(t), t;θ(t)

)
a(t). (A.9)

A.2 Discrete Adjoints

The backpropagations presented in (3.3) and (3.5) come from discretizing the contin-

uous adjoint (3.4).

We consider a deep discrete ResNet (forward Euler scheme) and calculate the DO

discretization for the backpropagation (3.3). The forward mode (2.7) follows

a1 = a0 + hv
(
a0, t0;θ(0)

)

a2 = a1 + hv
(
a1, t1;θ(1)

)

...
...

aM = aM−1 + hv
(
aM−1, tM−1;θ(M−1)

)
.

From outputs a1, . . . ,aM , we calculate a discrete sum as the loss

J(θ) =
M∑

i=1

hL
(
z(i),y(i)

)
. (A.10)

We then backpropagate to calculate the gradients to update model parameters.

Using auxiliary term a to accumulate the gradient of J with respect to the states z

113

as we step backwards in time,

aM = h∇z(M)L
(
z(M),y(M)

)

aj = h∇z(j)L
(
z(j),y(j)

)
+ h∇z(j)L

(
z(j+1),y(j+1)

)

= h∇z(j)L
(
z(j),y(j)

)
+∇z(j)z(j+1) h∇z(j+1)L

(
z(j+1),y(j+1)

)

= h∇z(j)L
(
z(j),y(j)

)
+
(
I + h∇z(j)v

(
z(j), tj;θ

(j)
))
aj+1

= aj+1 + h
(
∇zv

(
z(j), tj;θ

(j)
)
aj+1 +∇zL

(
z(j),y(j)

))

Using chain rule, we can now calculate the gradient with respect to the parameters

∇θ(j)J(θ) = ∇θ z(j) ∇z(j)J(θ)

= h∇θ v
(
z(j), tj;θ

(j)
)
aj.

(A.11)

The OD discretization (3.5) follows the backward Euler scheme. It calculates the

gradient at time tj+1 instead of at tj as DO does.

114

Appendix B

Bootstrapping

Bootstrapping is a resampling method used when dealing with limited data [27].

We only use bootstrapping for generating confidence intervals (CIs) in plots. A CI

is an error bound on the central tendency of a distribution of data. When bound

by number of observations (applicable to us because each observation is expensive),

bootstrapping follows the following process: draw fewer than n samples from the n

observations you have, compute their central tendency, replace samples, repeat many

times. Ultimately, one has a distribution of observations for the central tendency

and can use that distribution to determine the percentage bounds on the error of the

central tendency.

For the trace comparison between our exact trace and the Hutchinson’s estimator

(Figure 5.2), we run 20 replications and compute error bounds via bootstrapping.

From the 20 runs, we sample with replacement 4,000 times with size 16. We compute

the means for each of these 4,000 samplings and compute the 0.5 and 99.5 percentiles

which we include in Figure 5.2 as a shaded area.

For Figure 6.5, we compare 1000 initial points x0 + ξ at each magnitude ‖ξ‖.

Confidence intervals from 2.5 to 97.5% are computed via bootstrapping 10,000 sub-

samplings of size 500 from each set of 1000 points.

115

Bibliography

[1] Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré. Gradient flows: in metric

spaces and in the space of probability measures. Springer Science & Business

Media, 2008.

[2] Harbir Antil, Enrique Otarola, and Abner J Salgado. A space-time fractional

optimal control problem: Analysis and discretization. SIAM Journal on Control

and Optimization, 54(3):1295–1328, 2016.

[3] Diego Ardila, Atilla P Kiraly, Sujeeth Bharadwaj, Bokyung Choi, Joshua J

Reicher, Lily Peng, Daniel Tse, Mozziyar Etemadi, Wenxing Ye, Greg Cor-

rado, David P Naidich, and Shravya Shetty. End-to-end lung cancer screening

with three-dimensional deep learning on low-dose chest computed tomography.

Nature Medicine, 25(6):954–961, 2019.

[4] Uri M Ascher and Chen Greif. A First Course in Numerical Methods. SIAM,

2011.

[5] G. Avraham, Y. Zuo, and T. Drummond. Parallel optimal transport GAN. In

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),

pages 4406–4415, 2019.

[6] Haim Avron and Sivan Toledo. Randomized algorithms for estimating the trace

of an implicit symmetric positive semi-definite matrix. Journal of the ACM

(JACM), 58(2):1–34, 2011.

116

[7] Richard Bellman. Dynamic Programming. Princeton University Press, Prince-

ton, N. J., 1957.

[8] J.-D. Benamou, G. Carlier, and F. Santambrogio. Variational mean field games.

In Active Particles. Vol. 1. Advances in Theory, Models, and Applications,

Model. Simul. Sci. Eng. Technol., pages 141–171. Birkhäuser/Springer, Cham,

2017.

[9] Jean-David Benamou and Yann Brenier. A computational fluid mechanics solu-

tion to the Monge-Kantorovich mass transfer problem. Numerische Mathematik,

84(3):375–393, 2000.

[10] Dimitri P Bertsekas. Reinforcement Learning and Optimal Control. Athena

Scientific Belmont, MA, 2019.

[11] Eli Boyarski, Ariel Felner, Roni Stern, Guni Sharon, Oded Betzalel, David

Tolpin, and Eyal Shimony. ICBS: The improved conflict-based search algorithm

for multi-agent pathfinding. In Eighth Annual Symposium on Combinatorial

Search. Citeseer, 2015.

[12] Stephen Boyd, Stephen P Boyd, and Lieven Vandenberghe. Convex Optimiza-

tion. Cambridge University Press, 2004.

[13] Johann Brehmer and Kyle Cranmer. Flows for simultaneous manifold learning

and density estimation. arXiv:2003.13913, 2020.

[14] Johann Brehmer, Felix Kling, Irina Espejo, and Kyle Cranmer. Madminer:

Machine learning-based inference for particle physics. Computing and Software

for Big Science, 4(1):1–25, 2020.

[15] Steven L Brunton, Joshua L Proctor, and J Nathan Kutz. Discovering governing

117

equations from data by sparse identification of nonlinear dynamical systems.

PNAS, 113(15):3932–3937, 2016.

[16] Steven L Brunton, Bernd R Noack, and Petros Koumoutsakos. Machine learning

for fluid mechanics. Annual Review of Fluid Mechanics, 52, 2019.

[17] Luis Rodolfo Garćıa Carrillo, Alejandro Enrique Dzul López, Rogelio Lozano,

and Claude Pégard. Modeling the quad-rotor mini-rotorcraft. In Quad Rotor-

craft Control, pages 23–34. Springer, 2013.

[18] Changyou Chen, Chunyuan Li, Liqun Chen, Wenlin Wang, Yunchen Pu, and

Lawrence Carin Duke. Continuous-time flows for efficient inference and den-

sity estimation. In International Conference on Machine Learning (ICML),

volume 80, pages 824–833, 2018.

[19] Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud.

Neural ordinary differential equations. In Advances in Neural Information Pro-

cessing Systems (NeurIPS), pages 6571–6583, 2018.

[20] Liron Cohen, Tansel Uras, T. K. Satish Kumar, Hong Xu, Nora Ayanian, and

Sven Koenig. Improved solvers for bounded-suboptimal multi-agent path find-

ing. In International Joint Conference on Artificial Intelligence (IJCAI), pages

3067–3074, 2016.

[21] Michael G. Crandall and Pierre-Louis Lions. Viscosity solutions of Hamilton-

Jacobi equations. Transactions of the American Mathematical Society, 277(1):

1–42, 1983. ISSN 0002-9947.

[22] Laurent Dinh, David Krueger, and Yoshua Bengio. NICE: non-linear inde-

pendent components estimation. In Yoshua Bengio and Yann LeCun, editors,

International Conference on Learning Representations (ICLR), 2015.

118

[23] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation us-

ing real NVP. In International Conference on Learning Representations (ICLR),

2017.

[24] Conor Durkan, Artur Bekasov, Iain Murray, and George Papamakarios. Neural

spline flows. In Advances in Neural Information Processing Systems (NeurIPS),

pages 7509–7520, 2019.

[25] Weinan E. A proposal on machine learning via dynamical systems. Communi-

cations in Mathematics and Statistics, 5(1):1–11, 2017.

[26] Weinan E, Jiequn Han, and Arnulf Jentzen. Deep learning-based numerical

methods for high-dimensional parabolic partial differential equations and back-

ward stochastic differential equations. Communications in Mathematics and

Statistics, 5(4):349–380, Nov 2017. ISSN 2194-671X.

[27] Bradley Efron and Robert J Tibshirani. An Introduction to the Bootstrap. CRC

press, 1994.

[28] Michael Erdmann and Tomas Lozano-Perez. On multiple moving objects. Al-

gorithmica, 2(1-4):477, 1987.

[29] Lawrence Evans. An introduction to mathematical optimal control theory ver-

sion 0.2, 2013.

[30] Lawrence C Evans. Partial differential equations and Monge-Kantorovich mass

transfer. Current Developments in Mathematics, 1997(1):65–126, 1997.

[31] Lawrence C Evans. Partial Differential Equations, volume 19. American Math-

ematical Society, 2010.

[32] Chris Finlay, Jörn-Henrik Jacobsen, Levon Nurbekyan, and Adam M Oberman.

119

How to train your neural ODE: the world of Jacobian and kinetic regularization.

In International Conference on Machine Learning (ICML), 2020.

[33] Wendell H. Fleming and H. Mete Soner. Controlled Markov Processes and

Viscosity Solutions, volume 25 of Stochastic Modelling and Applied Probability.

Springer, New York, second edition, 2006. ISBN 978-0387-260457; 0-387-26045-

5.

[34] Wilfrid Gangbo and Robert J McCann. The geometry of optimal transporta-

tion. Acta Mathematica, 177(2):113–161, 1996.

[35] Mathieu Germain, Karol Gregor, Iain Murray, and Hugo Larochelle. MADE:

Masked autoencoder for distribution estimation. In International Conference

on Machine Learning (ICML), pages 881–889, 2015.

[36] Amir Gholaminejad, Kurt Keutzer, and George Biros. ANODE: Uncondition-

ally accurate memory-efficient gradients for neural ODEs. In International Joint

Conference on Artificial Intelligence (IJCAI), pages 730–736, 2019.

[37] Thomas R Gildea, Stacey DaCosta Byfield, D Kyle Hogarth, David S Wilson,

and Curtis C Quinn. A retrospective analysis of delays in the diagnosis of lung

cancer and associated costs. ClinicoEconomics and Outcomes Research: CEOR,

9:261, 2017.

[38] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training

deep feedforward neural networks. In International Conference on Artificial

Intelligence and Statistics, pages 249–256, 2010.

[39] Will Grathwohl, Ricky TQ Chen, Jesse Betterncourt, Ilya Sutskever, and

David Duvenaud. FFJORD: Free-form continuous dynamics for scalable re-

versible generative models. International Conference on Learning Representa-

tions (ICLR), 2019.

120

[40] Arthur Gretton, Karsten M. Borgwardt, Malte J. Rasch, Bernhard Schölkopf,

and Alexander Smola. A kernel two-sample test. Journal of Machine Learning

Research (JMLR), 13(25):723–773, 2012.

[41] Eldad Haber and Lars Ruthotto. Stable architectures for deep neural networks.

Inverse Problems, 34(1):1–22, 2017.

[42] M.T. Hagan, H.B. Demuth, M.H. Beale, and O. De Jesús. Neural Network

Design. Martin Hagan, 2014. ISBN 9780971732117.

[43] Jiequn Han and Weinan E. Deep learning approximation for stochastic control

problems. arXiv:1611.07422, 2016.

[44] Jiequn Han, Arnulf Jentzen, and Weinan E. Solving high-dimensional partial

differential equations using deep learning. Proceedings of the National Academy

of Sciences, 115(34):8505–8510, Aug 2018. ISSN 1091-6490.

[45] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual

learning for image recognition. In IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pages 770–778, 2016.

[46] Catherine F Higham and Desmond J Higham. Deep learning: An introduction

for applied mathematicians. SIAM Review, 61(4):860–891, 2019.

[47] Wolfgang Hönig, James A Preiss, TK Satish Kumar, Gaurav S Sukhatme, and

Nora Ayanian. Trajectory planning for quadrotor swarms. IEEE Transactions

on Robotics, 34(4):856–869, 2018.

[48] Chin-Wei Huang, David Krueger, Alexandre Lacoste, and Aaron Courville.

Neural autoregressive flows. In International Conference on Machine Learn-

ing (ICML), pages 2078–2087, 2018.

121

[49] Michael F Hutchinson. A stochastic estimator of the trace of the influence ma-

trix for Laplacian smoothing splines. Communications in Statistics-Simulation

and Computation, 19(2):433–450, 1990.

[50] Wei Kang and Lucas C Wilcox. Mitigating the curse of dimensionality: Sparse

grid characteristics method for optimal feedback control and HJB equations.

Computational Optimization and Applications, 68(2):289–315, 2017.

[51] Wei Kang, Qi Gong, and Tenavi Nakamura-Zimmerer. Algorithms of data

development for deep learning and feedback design. arXiv:1912.00492, 2019.

[52] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-

tion. In International Conference on Learning Representations (ICLR), 2015.

[53] Durk P Kingma and Prafulla Dhariwal. Glow: Generative flow with invert-

ible 1x1 convolutions. In Advances in Neural Information Processing Systems

(NeurIPS), pages 10215–10224, 2018.

[54] Durk P Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever,

and Max Welling. Improved variational inference with inverse autoregressive

flow. In Advances in Neural Information Processing Systems (NeurIPS), pages

4743–4751, 2016.

[55] I. Kobyzev, S. Prince, and M. Brubaker. Normalizing flows: An introduction

and review of current methods. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 2020.

[56] Anders Krogh and John A Hertz. A simple weight decay can improve gener-

alization. In Advances in Neural Information Processing Systems (NeurIPS),

pages 950–957, 1992.

122

[57] Karl Kunisch and Daniel Walter. Semiglobal optimal feedback stabilization of

autonomous systems via deep neural network approximation. arXiv:2002.08625,

2020.

[58] Na Lei, Kehua Su, Li Cui, Shing-Tung Yau, and Xianfeng David Gu. A geo-

metric view of optimal transportation and generative model. Computer Aided

Geometric Design, 68:1–21, 2019.

[59] Qianxiao Li, Long Chen, Cheng Tai, and E Weinan. Maximum principle

based algorithms for deep learning. The Journal of Machine Learning Research

(JMLR), 18(1):5998–6026, 2017.

[60] Yujia Li, Kevin Swersky, and Rich Zemel. Generative moment matching net-

works. In International Conference on Machine Learning (ICML), pages 1718–

1727, 2015.

[61] Yuxi Li. Deep reinforcement learning. arXiv preprint arXiv:1810.06339, 2018.

[62] Fangzhou Liao, Ming Liang, Zhe Li, Xiaolin Hu, and Sen Song. Evaluate the

malignancy of pulmonary nodules using the 3-D deep leaky noisy-or network.

IEEE Transactions on Neural Networks and Learning Systems, 30(11):3484–

3495, 2019.

[63] Alex Tong Lin, Yat Tin Chow, and Stanley J Osher. A splitting method for over-

coming the curse of dimensionality in Hamilton–Jacobi equations arising from

nonlinear optimal control and differential games with applications to trajectory

generation. Communications in Mathematical Sciences, 16(7):1933–1973, 2018.

[64] Alex Tong Lin, Samy Wu Fung, Wuchen Li, Levon Nurbekyan, and Stan-

ley J Osher. APAC-Net: Alternating the population and agent control via

two neural networks to solve high-dimensional stochastic mean field games.

arXiv:2002.10113, 2020.

123

[65] T. Lin, P. Goyal, R. Girshick, K. He, and P. Dollr. Focal loss for dense object

detection. In 2017 IEEE International Conference on Computer Vision (ICCV),

pages 2999–3007, 2017. doi: 10.1109/ICCV.2017.324.

[66] Yiping Lu, Aoxiao Zhong, Quanzheng Li, and Bin Dong. Beyond finite layer

neural networks: Bridging deep architectures and numerical differential equa-

tions. In International Conference on Machine Learning (ICML), pages 3276–

3285, 2018.

[67] Gaspard Monge. Mémoire sur la théorie des déblais et des remblais (Memoir on

the theory of cutting and filling). Histoire de l’Académie Royale des Sciences

de Paris, 1781.

[68] Thulasi Mylvaganam, Mario Sassano, and Alessandro Astolfi. A differential

game approach to multi-agent collision avoidance. IEEE Transactions on Au-

tomatic Control, 62(8):4229–4235, 2017.

[69] Tenavi Nakamura-Zimmerer, Qi Gong, and Wei Kang. Adaptive deep learning

for high dimensional Hamilton-Jacobi-Bellman equations. arXiv:1907.05317,

2019.

[70] National Cancer Institute (NCI). Surveillance, Epidemiology, and End Results

Program (SEER), 2020. URL https://seer.cancer.gov/statfacts/.

[71] Radford M Neal. MCMC using Hamiltonian dynamics. Handbook of Markov

chain Monte Carlo, 2(11):2, 2011.

[72] Jorge Nocedal and Stephen Wright. Numerical Optimization. Springer Science

& Business Media, 2006.

[73] Frank Noé, Simon Olsson, Jonas Köhler, and Hao Wu. Boltzmann generators:

https://seer.cancer.gov/statfacts/

124

Sampling equilibrium states of many-body systems with deep learning. Science,

365, 2019.

[74] Levon Nurbekyan and Joao Saude. Fourier approximation methods for first-

order nonlocal mean-field games. arXiv:1811.01156, 2018.

[75] Nikolas Nüsken and Lorenz Richter. Solving high-dimensional Hamilton-Jacobi-

Bellman PDEs using neural networks: Perspectives from the theory of controlled

diffusions and measures on path space. arXiv:2005.05409, 2020.

[76] Derek Onken and Lars Ruthotto. Discretize-optimize vs. optimize-discretize

for time-series regression and continuous normalizing flows. arXiv:2005.13420,

2020.

[77] Derek Onken, Samy Wu Fung, Xingjian Li, and Lars Ruthotto. OT-

Flow: Fast and accurate continuous normalizing flows via optimal transport.

arXiv:2006.00104, 2020.

[78] Derek Onken, Levon Nurbekyan, Xingjian Li, Samy Wu Fung, Stanley Osher,

and Lars Ruthotto. A neural network approach applied to multi-agent optimal

control. arXiv:2011.04757, 2020.

[79] Stanley Osher and Chi-Wang Shu. High-order essentially nonoscillatory schemes

for Hamilton–Jacobi equations. SIAM Journal on Numerical Analysis, 28(4):

907–922, 1991.

[80] George Papamakarios, Theo Pavlakou, and Iain Murray. Masked autoregres-

sive flow for density estimation. In Advances in Neural Information Processing

Systems (NeurIPS), pages 2338–2347, 2017.

[81] George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mo-

125

hamed, and Balaji Lakshminarayanan. Normalizing flows for probabilistic mod-

eling and inference. arXiv:1912.02762, 2019.

[82] Gabriel Peyr and Marco Cuturi. Computational optimal transport. Foundations

and Trends in Machine Learning, 11(5-6):355–607, 2019.

[83] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko.

The Mathematical Theory of Optimal Processes. Translated by K. N. Trirogoff;

edited by L. W. Neustadt. Interscience Publishers John Wiley & Sons, Inc. New

York-London, 1962.

[84] Christopher Rackauckas, Mike Innes, Yingbo Ma, Jesse Bettencourt, Lyndon

White, and Vaibhav Dixit. DiffEqFlux.jl - A julia library for neural differential

equations. arXiv:1902.02376, 2019.

[85] Maziar Raissi. Deep hidden physics models: Deep learning of nonlinear partial

differential equations. The Journal of Machine Learning Research (JMLR), 19

(1):932–955, 2018.

[86] Benjamin Recht. A tour of reinforcement learning: The view from continuous

control. Annual Review of Control, Robotics, and Autonomous Systems, 2:253–

279, 2019.

[87] Danilo Jimenez Rezende and Shakir Mohamed. Variational inference with nor-

malizing flows. In International Conference on Machine Learning (ICML),

pages 1530–1538, 2015.

[88] Benjamin Rivière, Wolfgang Hönig, Yisong Yue, and Soon-Jo Chung. GLAS:

Global-to-local safe autonomy synthesis for multi-robot motion planning with

end-to-end learning. IEEE Robotics and Automation Letters, 5(3):4249–4256,

2020.

126

[89] Herbert Robbins and Sutton Monro. A stochastic approximation method. The

Annals of Mathematical Statistics, 22(3):400–407, 09 1951. doi: 10.1214/aoms/

1177729586.

[90] Frank Rosenblatt. The perceptron: A probabilistic model for information stor-

age and organization in the brain. Psychological Review, 65(6):386, 1958.

[91] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning

representations by back-propagating errors. Nature, 1986.

[92] Lars Ruthotto and Eldad Haber. Deep neural networks motivated by partial

differential equations. Journal of Mathematical Imaging and Vision, Sep 2019.

ISSN 1573-7683. doi: 10.1007/s10851-019-00903-1.

[93] Lars Ruthotto, Stanley J. Osher, Wuchen Li, Levon Nurbekyan, and Samy Wu

Fung. A machine learning framework for solving high-dimensional mean field

game and mean field control problems. Proceedings of the National Academy of

Sciences (PNAS), 117(17):9183–9193, 2020.

[94] Tim Salimans, Diederik Kingma, and Max Welling. Markov chain Monte Carlo

and variational inference: Bridging the gap. In International Conference on

Machine Learning (ICML), pages 1218–1226, 2015.

[95] Tim Salimans, Han Zhang, Alec Radford, and Dimitris N. Metaxas. Improv-

ing GANs using optimal transport. In International Conference on Learning

Representations (ICLR), 2018.

[96] Maziar Sanjabi, Jimmy Ba, Meisam Razaviyayn, and Jason D Lee. On the

convergence and robustness of training GANs with regularized optimal trans-

port. In Advances in Neural Information Processing Systems (NeurIPS), pages

7091–7101, 2018.

127

[97] Guni Sharon, Roni Stern, Ariel Felner, and Nathan R Sturtevant. Conflict-

based search for optimal multi-agent pathfinding. Artificial Intelligence, 219:

40–66, 2015.

[98] Guanya Shi, Wolfgang Hönig, Yisong Yue, and Soon-Jo Chung. Neural-

swarm: Decentralized close-proximity multirotor control using learned inter-

actions. arXiv:2003.02992, 2020.

[99] Theodore Shifrin. Multivariable Mathematics: Linear Algebra, Multivariable

Calculus, and Manifolds. John Wiley & Sons, 2005.

[100] Kai Stachowiak. Drone image. URL https://www.publicdomainpictures.

net/en/view-image.php?image=288508&picture=drone. Accessed March 23,

2021. CC0 Public Domain License.

[101] Trevor Standley and Richard Korf. Complete algorithms for cooperative

pathfinding problems. In International Joint Conference on Artificial Intel-

ligence (IJCAI), pages 668–673, 2011.

[102] Roni Stern, Nathan Sturtevant, Ariel Felner, Sven Koenig, Hang Ma, Thayne

Walker, Jiaoyang Li, Dor Atzmon, Liron Cohen, TK Kumar, et al. Multi-agent

pathfinding: Definitions, variants, and benchmarks. arXiv:1906.08291, 2019.

[103] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Intro-

duction. The MIT Press, second edition, 2018.

[104] Johan Suykens, Herman Verrelst, and Joos Vandewalle. On-line learning

Fokker-Planck machine. Neural Processing Letters, 7:81–89, 04 1998.

[105] Esteban G Tabak and Cristina V Turner. A family of nonparametric density

estimation algorithms. Communications on Pure and Applied Mathematics, 66

(2):145–164, 2013.

https://www.publicdomainpictures.net/en/view-image.php?image=288508&picture=drone
https://www.publicdomainpictures.net/en/view-image.php?image=288508&picture=drone

128

[106] Akinori Tanaka. Discriminator optimal transport. In Advances in Neural In-

formation Processing Systems (NeurIPS), pages 6816–6826, 2019.

[107] National Lung Screening Trial Research Team. Results of initial low-dose com-

puted tomographic screening for lung cancer. New England Journal of Medicine

(NEJM), 368(21):1980–1991, 2013.

[108] Lucas Theis, Aron van den Oord, and Matthias Bethge. A note on the evalua-

tion of generative models. In International Conference on Learning Represen-

tations (ICLR), 2016.

[109] Shashanka Ubaru, Jie Chen, and Yousef Saad. Fast estimation of tr(f(a)) via

stochastic Lanczos quadrature. SIAM Journal on Matrix Analysis and Appli-

cations, 38(4):1075–1099, 2017.

[110] Cédric Villani. Optimal Transport: Old and New, volume 338. Springer Science

& Business Media, 2008.

[111] Glenn Wagner and Howie Choset. M*: A complete multirobot path planning

algorithm with performance bounds. In IEEE/RSJ International Conference

on Intelligent Robots and Systems, pages 3260–3267, 2011.

[112] Glenn Wagner and Howie Choset. Subdimensional expansion for multirobot

path planning. Artificial Intelligence, 219:1–24, 2015.

[113] Antoine Wehenkel and Gilles Louppe. Unconstrained monotonic neural net-

works. In Advances in Neural Information Processing Systems (NeurIPS), pages

1543–1553, 2019.

[114] E Weinan, Jiequn Han, and Qianxiao Li. A mean-field optimal control formu-

lation of deep learning. Research in the Mathematical Sciences, 6(1):10, 2019.

129

[115] Max Welling and Yee W Teh. Bayesian learning via stochastic gradient Langevin

dynamics. In International Conference on Machine Learning (ICML), pages

681–688, 2011.

[116] Paul Werbos. Beyond regression: New tools for prediction and analysis in the

behavior science. Doctoral Dissertation, Harvard University, 1974.

[117] Yuxin Wu and Kaiming He. Group normalization. In European Conference on

Computer Vision (ECCV), pages 3–19, 2018.

[118] Liu Yang and George Em Karniadakis. Potential flow generator with L2 opti-

mal transport regularity for generative models. IEEE Transactions on Neural

Networks and Learning Systems, 2020.

[119] Linfeng Zhang, Lei Wang, et al. Monge-Ampère flow for generative modeling.

arXiv:1809.10188, 2018.

130

Mathematical Symbols

a dimension of the control

a auxillary variable

B encoder

b bias component of neural network

C normalizing flows loss function

d dimension of state

D decoder

D dense layer

DKL Kullback-Leibler divergence

E energy term

ei ith standard basis vector

E rectangular identity matrix

E expectation value

f neural network/neural ODE

F dynamics

g gravity

G terminal cost

h stepsize

H Hamiltonian

I identity matrix

131

J discrete loss

J ResNet Jacobian

J loss functional

K neural network component

` log-determinant

L Lagrangian

L loss functional

M neural network depth (number of layers)

N ResNet

N normalization layer

nh number of hidden layers

nt number of time steps

o hidden dimension multiplier

O big O notation for time complexity

p number of network parameters

P pooling operator

p adjoint

q dimension of a single agent’s state

Q obstacle terrain

qi synthetic sample

Q set of synthetic samples

r agent radius

R HJB penalty term

R regularization functional

S softmax function

s space-time vector in Rd+1

T final time

132

u controls

U set of admissible controls

u thrust

v neural network layer

v hidden state

v velocity

w neural network component

W interaction costs

x initial state

X training set

y ground truth, desired output

z state / hidden features

Z+ set of positive integers

αi weighting parameter

β normalization scaling bias

βi weighting hyperparameter

γ focal loss hyperparameter

ε noise vector

ε machine epsilon

ζ normalization layer scaling weight

η number of training samples for each class

θ quadcopter roll angle

θ neural network parameters

ι rank

κ concatsquash layer

µN normalization mean

ν Gaussian density function

133

ξ shock

ρ predicted density of the model

ρ0 unknown, initial-time density

P0 initial-time distribution

ρ1 known, final-time density

P1 final-time distribution (standard normal)

σ activation function

σN normalization standard deviation

τ torque

ϕ quadcopter yaw angle

Φ value function

χ number of flow steps

ψ quadcopter pitch angle

ω random direction for derivative check

� Hadamard Product

134

Index

activation function, 6, 7, 52, 67

AD, 8, 20, 21, 48, 85

ADAM, 2, 21, 24

automatic differentiation, see AD

backpropagation, 8

bootstrapping, 49, 114

change of variables, 44

CNF, 2, 3, 18, 44

CoD, 3, 15, 79, 80

continuous normalizing flow, see CNF

convolution, 32

curse of dimensionality, see CoD

dense layer, 6, 24, 30, 87

depth, 7, 87

derivative check, 25, 26

discretize-optimize, see DO

DO, 3, 20, 85

dynamic programming, 15

feedback form, 16

focal loss, 31, 39

ground truth, 9

Hadamard Product, 31, 52

Hamilton-Jacobi-Bellman, see HJB

HJB, 3, 4, 13, 18

Hutchinson’s trace estimator, 49, 50,

69, 70

hyperparameter, 21

Jacobi identity, 44

Jacobi’s formula, 44

kernel, 30, 33, 39, 72

KL, 45

Kullback-Leibler divergence, see KL

LDCT, 37, 39

low-dose computed tomography, see

LDCT

National Lung Screening Trial, see

NLST

135

neural ODE, 4, 12

NLST, 39, 40

OD, 2, 20

optimal cost-to-go, see value function

optimize-discretize, see OD

overfit, 10, 71

penalizer, 4, 64, 92, 93

PMP, 13, 14

Pontryagin Maximum Principle, see

PMP

pooling, 30

positive predictive value, see PPV

potential function, see value function

PPV, 38–41

quadcopter, 102

residual neural network, see ResNet

ResNet, 1, 11, 20, 35, 67, 88, 108

RK, 52

Runge-Kutta, see RK

SGD, 21

subgradient, 8

Tikhonov regularizaton, see weight

decay

time-series, 18

value function, 2, 4, 14, 17

weight decay, 16, 64

width, 7

	Introduction
	Contribution
	Efficient Numerical Treatment
	Formulation

	Overview

	Mathematical Background
	Neural Networks
	Architecture
	Training
	Concepts

	Neural ODEs
	Optimal Control
	Pontryagin Maximum Principle
	Hamilton-Jacobi-Bellman PDE

	Learning and Optimal Control
	Neural ODEs as Reinforcement Learning

	Time-Series Regression
	Problem
	Discretize-Optimize vs. Optimize-Discretize
	Numerical Experiments
	Extrapolation and Different Initial Conditions

	Image Classification
	Problem
	Focal Loss

	Convolutional Neural Networks
	Convolutional Layer
	Normalization Layer
	Double Symmetric Layer

	Decoupling the Weights and Layers
	Image Classification for Lung Cancer Detection
	Motivation
	Model
	National Lung Screening Trial Experiment

	Continuous Normalizing Flows for Density Estimation
	Problem
	Related Works
	Finite Flows
	Infinitesimal Flows
	Flows Influenced by Optimal Control

	Discretize-Optimize Flows
	Numerical Experiments

	OT-Flow
	Model Formulation
	Implementation
	Numerical Experiments

	Path-Finding
	Problem
	Related Works
	High-Dimensional Deterministic Optimal Control
	High-Dimensional Stochastic Optimal Control
	Multi-Agent Path-Finding

	Neural ODE Formulation
	Main Formulation
	Adding Hamilton-Jacobi-Bellman Penalizers
	Robustness to Shocks

	Numerics
	Hyperparameter Tuning

	Numerical Experiments
	Baseline: Discrete Optimization for a Single Initial State
	Two-Agent Corridor Experiment
	Effect of the Hamilton-Jacobi-Bellman Penalizers
	Multi-Agent Swap Experiments
	Swarm Problem
	Quadcopter Experiment

	Summary
	Appendix Derivation of Adjoint Equations
	Continuous Adjoint
	Discrete Adjoints

	Appendix Bootstrapping
	Bibliography
	Mathematical Symbols
	Index

