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Abstract

Applying Diploid Method to Improve Read-mapping and Analysis Based on NGS Data

By Shuai Yuan

Next generation sequencing (NGS) technologies have been applied exten-
sively in genetics and genomics research. A fundamental problem when it
comes to analyzing NGS data is accurately mapping short sequencing reads
back to the reference genome. This important issue affects the interpreta-
tion and downstream analysis of the NGS experiments. Although plenty of
read mapping algorithms and software have been developed, the majority of
them uses the universal reference genome as a scaffold and do not automat-
ically take into consideration the possibility of genetic variants. Ignoring
the genetic variants information will cause a proportion of unmapped or
incorrectly mapped reads, which affects the calculation, interpretation and
analysis in many studies. Issues caused include the significant bias when
detecting Allele-Specific Expression (ASE) from RNA sequencing data, low
genotype calling accuracy, low Single Nucleotide Polymorphisms (SNPs) dis-
covery rate and so on. Given that genetic variants are ubiquitous, it would
be highly desirable if they can be factored into the read mapping procedure.

In our study, we developed a method that produces a personalized diploid
reference genome based on all known genetic variants of that particular in-
dividual. We show that using such a personalized diploid reference genome
with existing mapping software can improve mapping accuracy and signifi-
cantly reduce the bias toward reference allele in ASE analysis.

By combining the imputation technology with reference genome person-
alization method, our studies, using real data, indicate further improve-
ment in read mapping rate as well as genotype calling and SNPs discovery.
Because many whole genome sequencing (WGS) studies are conducted on
cohorts that have been previously genotyped using array-based genotyping
platforms, we believe the strategy introduced here will be of high practical
value to investigators working on WGS.

Our open source software is implemented as a standalone C++ code
and has been integrated into Galaxy, a data intensive biomedical research
platform, for pipeline visualization and better usability.
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Chapter 1

Introduction

1.1 Next Generation Sequencing

Since Frederick Sanger developed the chain-termination based DNA sequencing tech-

nology in 1977, it has been selected as the principle technology for the “first gener-

ation” laboratory and commercial sequencing applications for nearly three decades

[1, 2]. After years of improvement and automation, Sanger sequencing technology

became the major tool for the completion of the human genome project (HGP) [3]

which cost about $2.7 billion and involved 18 countries during 11 years. This project

published progressively improved versions of human reference genomic assembly

(hg4∼hg15) in FASTA format (http://en.wikipedia.org/wiki/FASTA_format).

Although HGP was completed, the developing of human reference genome is still

continuing. The latest version is hg38 which was published for downloading on

UCSC website in December 2013 (https://genome.ucsc.edu).
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Not long after HGP was completed in 2003, Next Generation Sequencing (NGS)

technologies were published in 2005 [4]. These new technologies, in contrast to its

predecessor, are low-cost high-throughput sequencing technologies which massively

parallelize sequencing analysis. Therefore, NGS is also called Massively Parallel

Sequencing (MPS). It is practically supplanting the Sanger sequencing due to its

ultra-high sequencing speed and ultra-low cost [5]. Since the emergence of NGS, the

price dropping pattern of DNA sequencing has been more remarkable than that in

Moore’s Law [6].

SOLiD/Ion Torrent PGM from Life Sciences, Genome Analyzer/HiSeq 2000/MiSeq

from Illumina, and 454/GS FLX Titanium/GS Junior from Roche are the major NGS

sequencer platforms and commercial vendors. Those platforms can generate millions

of reads in a single run within hours. The output reads types can be DNA-seq [7],

RNA-seq [8, 9], ChIP-Seq [10] or BS-Seq [11]. The length of generated reads ranges

from 30 base pairs (bp) to 400 bp [12] , usually stored in a de facto standard FASTQ

format [13] or Sequence Read Archive (SRA) format [14] from National Center for

Biotechnology Information (NCBI). Reads can be single-ended or paired-ended, and

they can be tagged as from sense strand, antisense strand or unknown strand.

NGS’s high-throughput power has been harnessed by many researchers to inves-

tigate and solve genetical, genomical and clinical problems [8, 15–19]. Despite their
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diverse and wide range of categories and applications, most of them share a crucial

problem: how to correctly and efficiently identify the genomic locations (chromo-

some, offset and strand) of the huge amount of NGS reads. This is a fundamental

issue since read mapping affects many downstaiream analyses and results.

Read mapping problem is essentially an approximate string matching problem. It

matches the reads against a reference genome, with biological specialties. However,

the reads generated by NGS technologies are much shorter than Sanger method

(typically 30∼400 bp in length) with much higher error rate (0.5∼1.0% error per

raw base) [4, 20]. Such high error rates entail redundant sequencing of each base to

distinguish sequencing errors from true polymorphisms, which greatly increases the

computational and storage complexity.

In order to complete this task correctly and efficiently, numerous read-mapping

tools and algorithms have been developed. Each one has its advantages and disad-

vantages by providing different trade-offs between speed and quality of the mapping,

and can be applied in different situations. Most of them divide the mapping pro-

cedure into two phases: indexing and alignment. Indexing is to construct auxiliary

indices for reference sequence or read sequences, or both, in order to accelerate the

strings comparison. Although there are many indexing techniques [21], most-widely

used ones belong to two categories: hashing and suffix/prefix tree.
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Once the index is created, the alignment stage will use the built indices to ap-

proximately match each read against the reference genome to decide its potential

source. Besides the nucleotide string, alignment algorithms may selectively take into

account many additional elements, including but not limited to:

� Quality score of each base

� The maximum number of allowed mismatches, and their locations in the read

� Different types of mismatches (indels, repeats, reverses, swaps)

� Gapped alignment: gap numbers and lengths

� Multi-mapped reads: number of optimal and sub-optimal locations

� Distance between paired-ended reads

1.2 Read mapping tools

Based on those indexing and alignment algorithms, a lot of tools have been devised.

BLAST (Basic Local Alignment Search Tool) is the first hash table indexing based

local alignment search tool. It keeps each k-mer subsequences of the reads in a hash

table and uses k-mers in the reference as the key to find exact matches and then

extends around [22, 23]. SOAP (Short Oligonucleotide Analysis Package) adopts
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almost the same strategy except that it indexes the genome rather than reads. It

also uses a special hashing technique called spaced seed [24]. CloudBurst [25] and

GNUMAP (Genomic Next-generation Universal MAPper) [26] also use spaced seed

but with different templates for different genomes. SeqMap [27] and MAQ [28] extend

the method to allow more mismatches, at the cost of exponentially increased number

of templates. BFAST (BLAT-like Fast Accurate Search Tool) [29, 30] proposed a

concept of multiple-level hash indexing to reduce RAM requirement. It is able to

perform a color-aware Smith-Waterman alignment.

MUMmer [31] and OASIS [32] are based on suffix tree, Vmatch [33] and Segemehl

[34] on enhanced suffix array, and Bowtie [35], BWA [36], SOAP2 [37], BWT-SW [38]

and BWA-SW [39] on Burrows-Wheeler transform (BWT). BWT is most widely

used mainly because of its small memory footprint. QPALMA [40] and TopHat [41]

were developed to solve spliced reads alignment like RNA reads. BSMAP (Bisulfite

Sequence Mapping Program) [42] maps BS-seq using hashing technologies. BS Seeker

[43] is a three-letter bisulfite sequence mapping procedure relying on Bowtie [35].

There are still a lot of read alignment and realignment tools unpublished, for more

information about the mapping tools, readers are referred to these wonderful survey

papers: [12, 21,44].
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1.3 Motivation

The output from sequence alignment tools are usually in SAM (Sequence Align-

ment/Map) format or BAM (Binary version of SAM) format [45], which are widely

supported by alignment views including GBrowse [46], LookSeq [47], Tablet [48],

BamView [49]. These alignment results are often quantified and can be used for

many important tasks, such as detecting allele-specific expression (ASE), which is of

great biological importance and can be used for cis-regulatory variant discovery and

epigenetic imprinted region discovery [50–52].

However, the majority of current read mapping algorithms uses the universal ref-

erence genome and does not take into consideration the possibility of genetic variants.

Ignoring genetic variants can cause severe problems. For example, when conducting

ASE study using RNA-Seq data, there was a significant bias at heterozygous sites

toward higher mapping rates. Degner tried to use a masked reference genome created

with all known SNPs (Single Nucleotide Polymorphisms) to reduce the ASE bias,

but that led to less reliable mapping results [53]. Another crucial problem for the

successful application of NGS is variant detection and genotype calling at detected

variant loci [5]. Some genetic variant callers such as SAMtools [45], GATK (Genome

Analysis Toolkit) [54], VarScan [55] and BreakDancer [56] have been designed to

perform such tasks. They all heavily rely on the correctness of read mapping re-
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sults. Ignoring the generic variants already known will cause power loss in mapping

rate, genotype calling accuracy and SNP discovery rate. Pickrell tried to increase

the accuracy of gene variants analysis by creating a set of ethnicity-specific reference

genome, but this method ignored the differences between individuals among the same

population [57].

Currently, how to correctly interpret NGS data and to mine useful information

remain challenging and are active areas of research. In this dissertation we try to

solve some of these problems by constructing personalized reference genomes. This

method, in our studies, shows apparent improvement in multiple aspects and we

anticipate that it is highly useful for many future studies in bioinformatics.



8

Chapter 2

Read-mapping using personalized

diploid reference genome for RNA

sequencing data reduces ASE bias

Abstract

Next generation sequencing (NGS) technologies have been applied extensively

in many areas of genetics and genomics research. A fundamental problem when it

comes to analyzing NGS data is mapping short sequencing reads back to the refer-

ence genome. Most of existing software packages rely on a single uniform reference

genome and do not automatically take into the consideration of genetic variants.

On the other hand, large proportions of incorrectly mapped reads affect the cor-

rect interpretation of the NGS experimental results. As an example, Degner et al.

showed that detecting allele-specific expression from RNA sequencing data was bi-

ased toward the reference allele. In this study, we developed a method that utilize

DirectX 11 enabled graphics processing unit (GPU)’s parallel computing power to
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produce a personalized diploid reference genome based on all known genetic variants

of that particular individual. We show that using such a personalized diploid refer-

ence genome can improve mapping accuracy and significantly reduce the bias toward

reference allele in allele-specific expression analysis. Our method can be applied

to any individual that has genotype information obtained either from array-based

genotyping or resequencing. Besides the reference genome, no additional changes

to alignment algorithm are needed for performing read mapping Therefore, one can

utilize any of the existing read mapping tools and achieve the improved read map-

ping result. C++ and GPU compute shader source code of the software program is

available at: http://code.google.com/p/diploid-mapping/downloads/

2.1 Introduction

For diploid eukaryotic organisms, the maternally and paternally derived copies of

most genes are expressed at similar levels. However, for some genes, the two alleles

of an individual are expressed at different rates. This phenomenon is termed allele-

specific expression (ASE). In recent years, much and increasing effort has been made

to identify ASE genes since they present unique opportunities to study cis-regulatory

variation [51,58–62]

The newly emerged next generation sequencing (NGS) technologies have been
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increasingly recognized as an important and powerful tool for identifying ASE genes

genome-wide, which improves our understanding about cis-regulatory variation. To

identify ASE, one can conduct RNA sequencing (RNA-Seq) experiment [8, 63] to

map all generated reads to the reference genome for all exonic SNPs that are known

to be heterozygous, and then quantify the magnitude of expression of each allele

by counting the number of times each allele is observed in reads that mapped to

that locus. Despite its simplicity, systematic bias for read mapping may affect the

accuracy of identifying ASE genes. This has been pointed out recently by Degner et

al. [53]

Mapping short reads onto the reference genome is a fundamental problem in

analyzing next generation sequencing (NGS) data and has been an area of intensive

research in the past years. A wealth of successful software programs have been

developed and enjoyed wide-spread usage in many different NGS applications such

as MAQ [28], SOAP [64], BOWTIE [35], BWA [36], BFAST [29], mrFAST [65] and

mrsFAST [66]. The details of these algorithms and plenty of other commonly-used

read mapping software can be found in an excellent review paper [21].

Almost all of the existing read-mapping software relies on a universal reference

genome—the National Center for Biotechnology Information (NCBI) human ref-

erence genome [67] which is derived from a small number of anonymous donors.
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Although carefully annotated and maintained, this single reference genome cannot

represent all the variants found in the general population. We know that each indi-

vidual possess a unique set of genetic variants in hundreds of thousands that differ

from the universal reference genome that distinguish him or her from others. Such

wide-spread genetic variants compounded with non-ignorable sequencing errors and

short read length caused a large proportion of reads unmapped or mapped to in-

correct genomic locations. These mapping errors affect the interpretation of the

NGS experimental results. As an example, Degner et al. showed that detecting

allele-specific expression (ASE) from RNA sequencing data was biased toward the

reference alleles because reads containing alternative alleles have less probability to

align than reads that contains the reference allele. Therefore genes with a large

amount of alternative alleles may be underestimated [53].

To reduce the impact of these genetic variants, Dewey et al. proposed to use

ethnically concordant major allele reference genome sequence for read mapping [68].

Using estimated allele frequency data from the 1000 genome project [69], the authors

developed three ethnically-specific major allele references for European, African and

East Asian. When applied to four individuals from a nuclear family, Dewey et

al. reported increased number of reads that mapped uniquely to the major allele

reference genome than to the NCBI reference genome.
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While much improvement is achieved using reference genomes that tailored to-

ward the ethnical groups, it is important to note that there are still plenty of genetic

variations at the individual level within each ethnical group. With the efforts such

as the international HapMap project [70], the 1000 Genome project [69] and many

others, we have accumulated and cataloged millions of known genetic variants, most

in the form of single nucleotide polymorphisms (SNPs). In the past five years, the

cost of array-based genotyping has declined sharply. As a result, for individuals or

cell lines that we want to run RNA-Seq on, the genotypes of almost all common

SNPs (minor allele frequency greater than 5%) are already known. In light of this,

we believe that such information, whenever available should be incorporated into the

process of read mapping.

In this study, we propose a novel method that utilizes all known genetic variant

information of a particular individual and combine it with the NCBI reference genome

to produce a “personalized” and diploid reference genome. We show that mapping

against this personalized diploid reference genome will improve mapping accuracy

and significantly reduce the bias toward reference alleles in allele-specific expression

analysis. Our method can be applied to any individual whose genotype is known

either from array-based genotyping or resequencing. Besides the reference genome,

no additional change to alignment algorithm is required for performing read mapping



13

therefore one can continue using any of the existing read mapping tools they like and

achieve the improved read mapping result.

2.2 Methods

The goal of this project is to construct a personalized diploid reference genome using

known genetic variants of an individual to reduce ASE bias. This reference genome

can then be used for mapping reads generated from any sequencing assay conducted

on this individual to improve the read mapping accuracy. There is no need to modify

the read mapping software. Since genotypes are increasingly available and readily

available, we believe incorporating such information in the read mapping step is

important and beneficial. We have developed a software package available for public

download that is able to achieve this goal conveniently.

2.2.1 Constructing personalized, diploid reference genome

In this study, we only consider SNPs, however our method can handle indels in a

similar fashion. For better comparison with existing research results, we download

universal NCBI reference genome (hg18.fa) from NCBI, which was used by Degner

et al. [53], although our method can be applied to any version of universal reference

genome including hg19.fa. To add alternative alleles, we go through each genotype

stored in the individual’s genotype file (usually in the VCF format) in parallel. A
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typical DirectX11 enabled graphics processing unit (GPU) usually has thousands of

“Stream Processors” running on gigahertz level frequency, which is very suitable to

perform such large amount of parallel computation. For a SNP that is homozygous

wild type allele (identical to the reference allele), no action is taken; for a SNPs that

is homozygous mutant allele, we edit the corresponding nucleotide in the reference

genome sequence file; for a heterozygous SNP, we add a “mini chromosome” that

is w ≥ 2k − 1 bp in length where k is the read length and w can be specified by

users. When w > 2k − 1 indels can be better detected. Suggested value of w is

2k − 1 + 2m, where m is the maximum mismatches allowed during reads mapping.

BWA, for example, sets the default value of m to 2 when the read length is 35 bp.

The sequence of this “mini chromosome” is identical to the corresponding reference

genome except at the middle position in which the alternative allele of that SNP is

placed in. We name these “mini chromosomes” in a way such that their genomic

locations can be easily identified.

Admittedly, adding these “mini chromosomes” may result in additional multiple

mapping, however, with careful bookkeeping, such multiple-mapping incidences can

be resolved post-hoc. If two SNPs are located near each other, i.e., with distance

of d bp, where d < k, we use a slightly longer “mini chromosome”, (w + d) bp that

cover both SNPs, and adding “mini chromosomes” with all possible combinations
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of covered SNPs (see Figure 2.1). More than two nearby SNPs can be handled in

similar fashion. After this step, the personalized diploid reference genome contains

tens of thousands of such mini chromosomes.

Figure 2.1: Examples of generated “mini chromosomes” at heterozygous SNPs. Most
alternative chromosomes have the length of w. Heterozygous SNPs that are close to
each other are merged into longer ones.

We choose not to simply add another set of whole chromosomes consisting with

all the alternative alleles due to the following reasons: First, currently there is a limit

of how large the reference genome can be handled by many existing read mapping

software. Many mapping software have strict limitation on the length of the total

reference sequence (mostly, 4G bp), because the data structure unsigned integer is

defined in compilers as a 32-bit number (232 = 4G) . Second, most of the genomic re-

gions are homozygous, so it is not resource-efficient, and leads to many more multiple

mapping incidences.

Our program can also accept an optional command line argument indicating
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the individual’s gender. When this argument is set, for female individuals, we will

exclude chromosome Y from the personalized reference genome, and chromosome X

is treated the same as any other autosome.

2.2.2 Reads mapping

In this step, we perform read mapping using the personalized diploid reference

genome instead of the universal NCBI reference genome. Although we use map-

ping software BWA v0.5.9 [36] with default parameters in this study, our pipeline

scheme can accommodate any read mapping software

The raw output of the mapping step cannot be used directly because reads are

mapped against a diploid reference genome that contains many “mini chromosomes”.

We take another step to process the mapping result such that reads mapped to “mini

chromosomes” are correctly interpreted as mapped to the corresponding genomic

location with the alternative allele present at the middle SNP. This step contains

two parts: first, the correct genomic mapping locations are recovered; second, none-

zero quality scores are assigned according to some confidence values. Figure 2.2

demonstrates the whole process of our pipeline.
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Pipeline for mapping reads against diploid reference genome

Figure 2.2: 3-step pipeline for creating personalized diploid reference genome and
mapping reads against it. Diploid Constructor takes NCBI reference genome and the
individual’s genotype file as input to create personalized diploid reference genome,
which will then be used by multiple mapping tools to map reads. Mapping Converter
converts intermediate mapping result to regular mapped file. For example, position
“chr3b.l3843:5” is converted to “chr3:13847” (locations are 1-based).
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2.2.3 An alternative method for reducing ASE bias

In addition to comparing with the common practice which is to use the universal

reference genome for mapping, we also tested the masking strategy which has been

used in the Degner et al. 2009 study. In this approach, all known SNP positions were

“masked” prior to read-mapping. Masking was achieved by changing the nucleotide

at each SNP location to one that differs from both the reference and alternative allele.

The SNP locations were obtained by merging genotype files of 214 individuals defined

in the 2007-03 version of the International HapMap Project (http://hapmap.ncbi.

nlm.nih.gov). In order to prevent too strong binding of the bases on both alleles to

a specific masking base, we randomly choose the masking base. For example, if the

nucleotides at the SNP location on the reference and alternative allele are “A” and

“G”, the probability of using “C” or “T” as the mask are both 1/2.

2.2.4 Simulation studies

We conducted simulation studies to evaluate the impact on ASE bias and mapping

quality when using the three competing mapping strategies: using the universal ref-

erence genome which is the status quo, using the masked universal reference genome

which is introduced by Degner et al. 2009; and using the diploid personalized ref-

erence genome which we propose. In order to represent the diversity of human
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population and investigate its impact on the results, we selected three individuals

from the HapMap panel, one Caucasian from CEPH (NA12865), one African from

YRI (NA19238) and one Asian from CHB (NA18621). For each individual, we down-

loaded the individual’s genotype information (2007-03 version) from the International

HapMap Project. As Degner et al. did in their study, we randomly inserted sequenc-

ing errors on reads generated. We tested three different sequencing error rates: 0,

0.01 and 0.05. When simulating reads, we choose the sequencing read length to be 35

bp and 100 bp, and then randomly sample DNA fragments across the whole diploid

reference genome except chromosome X and Y. We only keep reads that cover at least

one heterozygous SNP. For each of the three sequencing error rates, 2 million reads

were generated. Either reference or alternative allele was selected with equal proba-

bility thus assume balanced allele specific expression. To create the masked reference

genome, all SNPs identified from the 214 individuals in the International HapMap

Project (genotype information obtained from the 2007-03 version) are masked. In

order to increase the precision with more mapped reads, we consider SNPs located

in both exons and introns.

2.2.5 Real data studies

We analyzed two sets of RNA-Seq data: one is the one studied in Degner et al. 2009,

the other is 68 individuals from Pickrell et al 2010 [57]. Just like in the simulation
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studies we also use three different read-mapping strategies. Here we only consider

SNPs located within exons.

We analyzed two aspects of the performance of different mapping strategies: map-

ping bias towards reference alleles and total number of reads that are successfully

mapped. For the first, at each SNP locus, we first decide the number of reads that

cover the SNP. After filtering out SNPs with too shallow mapping depth (this step is

optional). In this study, we use threshold of five reads. We then count the number of

reads that match the reference allele and the alternative allele respectively. For the

second, we want to maximize the number of RNA-seq reads that can be mapped suc-

cessfully. Therefore, a mapping strategy that can produce more mapped reads with

high accuracy is preferred. In the simulation study, because we know each read’s

true location, we can compare the number of reads that are correctly mapped back

to their true locations; for real data, because reads’ true locations are unknown, we

compare the number of reads that are successfully mapped.

2.3 Results

2.3.1 ASE bias in simulation studies

The most important statistic that measure ASE bias is the proportion of reads that

mapped to the reference allele. Simulation studies showed that the ratios of reads
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mapped to reference alleles are very close to the theoretical value—50% for both

diploid and masked genome methods, regardless of the error rate, whereas conven-

tional method yielded upward bias towards the reference alleles and the bias increase

with the error rate. This indicates that both methods yield much reduced bias at all

error rates. Even assuming no sequencing error, universal reference genome method

is still suffering from inherent bias. The same pattern was observed on all three

HapMap samples that represent different ethnic groups. We also found that increas-

ing read length resulted in more bias. Table 2.1 shows the results for individual YRI

NA19238.

To better understand the magnitude of the bias and the impact of sequencing

errors, we plotted the distribution of proportions of reference alleles obtained using

different read mapping strategies (Figure 2.3). We found that when using univer-

sal reference genome method, the proportions of reference allele in majority of the

SNPs are greater than 0.5. This asymmetry caused the mapping bias towards refer-

ence alleles. The asymmetry also increases dramatically as the error rate increases.

However, neither diploid nor masked genome method shows apparent asymmetry.

2.3.2 Mapping accuracy

The percentage of correctly mapped reads is an important measure when evalu-

ating mapping strategies. Although masking the reference allele in the universal
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A Ratio of reads mapped to the reference alleles
Read length=35 bp, max mismatch=2

B Ratio of reads mapped to the reference alleles
Read length=100 bp, max mismatch=2

Table 2.1: Simulation results show that universal reference genome method suffers
from serious bias towards reference alleles. This bias increases dramatically with the
increment of error rate. However, the masked and diploid genome methods do not
have apparent bias toward either reference or alternative alleles while error rate does
not have influence on the ratio. (A) Read length is 35 bp and maximum mismatch is
set to 2. (B) When the read length increases to 100 bp, ASE bias will also increase
considerably given the same sequencing error rate.
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A Percentage of SNPs corresponding to the reference allele
using universal reference genome

B Percentage of SNPs corresponding to the reference allele
using masked reference genome
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C Percentage of SNPs corresponding to the reference allele
using personalized diploid reference genome

Figure 2.3: Distributions of reference allele proportions for SNPs tested in the sim-
ulation study (required read coverage depth > 5). The distributions spread across
0 to 1 due to randomness of sampling. (A) Using universal reference genome. (B)
Using masked reference genome. (C) Using personalized diploid reference genome.



25

reference genome reduces ASE bias, we found this strategy produces less reliable

mapping result [53] and significantly lower overall mapping success rate, especially

when moderate sequencing error is present. Our simulation shows that when the

sequencing error rate reaches 0.05, the diploid genome method can correctly map

25% more reads compare to masked genome method. This significant improvement

suggests that the diploid genome method has a higher mapping success rate overall.

Figure 2.4 shows the mapping success rates from the three methods when mapping

2 million reads with different error rates.

2.3.3 Real data analysis on ASE bias and mapped reads

We reanalyzed the real RNA-Seq data presented in Degner et al. 2009 to compare

the levels of ASE detection bias resulted from different mapping strategies. We also

compared the number of reads that were successfully mapped to cover heterozygous

exon SNPs using the three read mapping strategies. Figure 2.5 shows the results.

From the figure, we observe the same pattern as in the simulated data: using either

masked reference genome or the personalized diploid reference genome vastly reduce

ASE bias, while our method resulted in much higher success rate of read mapping

than using the masked reference genome.
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Number of reads mapped to the correct loci

Figure 2.4: Simulation results of individual YRI NA19238 show that diploid genome
method can improve mapping quality. The diploid genome method shows the highest
correctness of mapping results among three methods. Universal reference genome
method, although it has mapping bias, shows better mapping quality than masked
genome method.
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A Ratio of reads mapped to reference alleles

B Number of reads that were successfully mapped
to cover heterozygous exon SNPs

Figure 2.5: (A) Results derived from running three different methods on real data
show that diploid genome method can effectively reduce bias towards reference al-
leles. Although masked genome method can also reduce such bias, it might be
over-reduced because of its unreliable mapping result. (B) Number of reads that
cover heterozygous exon SNPs. This figure shows that masked genome method loses
12.7% of successfully mapped reads compare to diploid genome method. Therefore,
it can be inferred that masked genome method is problematic.
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2.3.4 More real data results

To verify that our new method can reduce ASE bias in general population, i.e., indi-

viduals whose genotype is known, we conducted experiments on a set of individuals

with real data from a recent study of Pickrell et al 2010 [57]. We download the en-

tire dataset from http://eqtl.uchicago.edu/RNA_Seq_data/, and then select 68

individuals whose genotype can be found in the 2007-03 version of the International

HapMap Project. Figure 2.6 shows the distribution of the ratio of mapped refer-

ence allele. Again we observe using masked reference genome or personalized diploid

reference genome reduce bias towards reference allele.

As ASE is widespread across heterozygous SNPs the P-values yield from bino-

mial test must also display this enrichment and its impact to the expression bias.

Figure 2.7 shows the QQ-plot of the P-values across quantiles. When using universal

reference genome, we see that the two curves representing “reference more” and “ref-

erence less” respectively are far apart, indicating bias. For the other two methods:

using masked reference genome or personalized diploid reference genome, the bias

essentially disappeared.
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A Distribution of reference allele proportions
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B Reference allele proportion across 68 individuals

Figure 2.6: The counts of individuals at each expression ratio and each individual’s
reference. (A) The reference allele ratios for all individuals are in the range [44%,
58%). For diploid and masked genome method, there are 19 individuals located
in the ratio region [50%, 51%), which is the peak of their curves. The universal
reference genome method, however, caused the shift of the peak to the ratio region
[53%, 54%) for 15 individuals. (B) Using universal reference genome method always
produces higher reference ratio compare to diploid and masked genome method,
which indicates that universal reference genome method will inevitably introduce
bias towards the reference alleles.
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QQ-plot for binomial P-value across SNPs for NA18505 with mapping depth > 10

Figure 2.7: QQ-plot of P-values for one-sided binomial tests for heterozygous SNPs
which are categorized into more or less expression for reference alleles than alternative
alleles. The dotted line is the threshold FDR=1%.
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2.4 Discussion

ASE offers biological insights from understanding transcription regulation to disease

susceptibility. Detecting ASE from RNA-Seq data has become an increasingly im-

portant topic for genetics and genomics researchers. As pointed out by Degner et

al., the current read mapping strategy produces “a significant bias toward higher

mapping rates of the allele in the reference sequence, compared with the alternative

allele.” [53], therefore, it is of great importance to develop alternative strategy to

reduce ASE bias. In this study, we proposed a novel strategy that utilizes known

personal genotype information that is increasingly available in the post-genomic era.

In our method, we first construct a personalized diploid reference genome using avail-

able genotype information, and then use the constructed reference genome with a

regular existing read mapping software such as BWA to map reads generated from

the RNA-Seq experiment. Using both simulated data and real data, we showed

that our strategy can effectively reduce the ASE bias, and increase the success rate

of read-mapping. We believe our method provides an attractive solution to ASE

detection using RNA-Seq data.

The drawback of using the universal NCBI reference genome in read mapping has

been noticed in the literature. Dewey et al. developed three ethnicity-specific major

allele reference genomes for European, African and East Asian based on HapMap
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data and use that for read mapping. They reported improved genotyping accuracy

using this synthetic reference genome [68]. In this study, we went further by con-

structing reference genome that is “personalized”, i.e., taking into account of known

genotype information of that particular individual. With the rapid dissemination

and declining cost of array-based genotyping technologies, genotypes of millions of

SNPs are routinely available. Thus our method is widely applicable. Our strategy

is developed independently of that of Vijaya Satya et al. 2012 [71]. Despite many

similarities between the two methods, there are some notable differences: our person-

alized reference genome is able to accommodate indels in addition to SNP markers;

we use a Mapping Converter to convert the reads mapped to alternative alleles to

correct genomic positions. we have tested our strategies on a much larger datasets

to examine the population-level of the performance improvement; we have tested the

performance of our method on longer read (100 bp) and found even better result in

reducing ASE; we also implemented the construction of the personalized diploid ref-

erence genome using GPU compute shader code to improve the computation speed.

Using our software program, constructing a personalized diploid reference genome

from a dense genotyping file only takes about 10 minutes on a commodity computer

(Intel Core 2 Duo CPU, AMD Radeon HD 6900 GPU, 8GB memory), which seems

a small price to pay for enhanced read mapping result.
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Chapter 3

Using personalized diploid

reference genome to improve read

mapping and genotype calling in

DNA sequencing studies

Abstract

With rapid decline of the sequencing cost, researchers today rush to embrace the

whole genome sequencing (WGS), or the whole exome sequencing (WES) approach

as the next powerful tool for relating genetic variants to human diseases and phe-

notypes. A fundamental step in analyzing WGS and WES data is mapping short

sequencing reads back to the reference genome. This is an important issue, because

incorrectly mapped reads affect the downstream genotype calling and association

analysis. Although many read mapping algorithms have been developed, the major-

ity of them uses the universal reference genome and does not take into consideration

the possibility of genetic variants. Given that genetic variants are ubiquitous, it is
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highly desirable if they can be factored into the read mapping procedure. In this

work, we developed a novel strategy that utilizes genotypes obtained a priori to cus-

tomize the universal haploid reference genome into a personalized diploid reference

genome. The new strategy is implemented in a program named RefEditor. When

applying RefEditor to real data, we achieved encouraging improvements in read

mapping, genotype calling and SNP discovery. Compared to standard approaches,

RefEditor can increase genotype calling accuracy by 10-40% and reduce Mendelian

inconsistency by 10-30% across various sequencing depths. Because many WGS and

WES studies are conducted on cohorts that have been genotyped using array-based

genotyping platforms previously or concurrently, we believe the proposed strategy

will be of high value in practice, which can also be applied to the scenario where

multiple NGS experiments are conducted on the same cohort.

3.1 Introduction

Mapping short reads onto the reference genome is a fundamental step in analyzing

next generation sequencing (NGS) data and has been an area of intensive research

in the past years. A wealth of successful software programs for mapping short reads,

such as MAQ [28], SOAP [64], SOAP2 [37], BOWTIE [35], BOWTIE2 [72], BWA [36],

BFAST [29], mrFAST [65], mrsFAST [66], NovoAlign (http://novocraft.com),
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SHRiMP [73], and STAR [74], have been developed and enjoyed wide-spread us-

age in many different NGS applications (e.g., whole genome sequencing (WGS) [75],

whole exome sequencing (WES) [76], Chromatin Immunoprecipitation sequencing

(ChIP-seq) [77–79] and transcriptome sequencing or RNA-seq [63]). The details of

these programs can be found in excellent review articles [21,44]. Despite the vast dif-

ferences in algorithms and indexing methods, almost all of the existing read-mapping

programs rely on the universal haploid reference genome—the National Center for

Biotechnology Information (NCBI) human reference genome [67] , which was derived

from a small number of anonymous donors. At any multi-allelic position, a presumed

consensus allele is used. Although carefully annotated and maintained, this single

reference genome is not intended to represent all the variants found in the general

population. Indeed, the human genome is diploid, and each individual possesses a

unique set of genetic variants at millions of loci that distinguish him or her from oth-

ers. Such wide-spread genetic variants, compounded with non-ignorable sequencing

errors and short read length, cause a large proportion of reads to be unmapped or

mapped to incorrect genomic locations. These mapping artifacts sometimes lead to

misinterpretation of the NGS experimental results, such as the overstating the inci-

dence of Allele Specific Expression [53] and affecting regulatory element identification

at heterozygous variants [80].
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Notably, genotype information is often available for samples that are undergo-

ing NGS experiments. There are at least three scenarios in which the genotypes

are available. First, many WGS or WES studies were conducted on samples that

have been studied in the previous wave of genome-wide association studies (GWAS).

These samples have already been genotyped by one of the array-based high-density

genotyping platforms such as those from Illumina (San Diego, CA) and Affymetrix

(Santa Clara, CA) [81] . Comprehensive assessment of array-based genotyping plat-

forms can be found in the review article [82] . Second, many NGS experiments were

conducted on well-established cell lines such as HeLa and IMR90, whose genotypes

have also been profiled using array-based genotyping platforms. Third, and more

often, array-based genotyping and multiple NGS-based experiments such as RNA-

seq, ChIP-seq and resequencing were conducted on the same samples in the same

study [83].

Using array-based genotyping, we will be able to collect genotype information

on a large proportion of common genetic variants. Aided by powerful genotype

imputation techniques, such as MaCH [84, 85], MaCH-Admix [86] , IMPUTE [87] ,

IMPUTE2 [88] , Minimac [89] and BEAGLE [90] , we will gain substantial additional

genotype information on genetic variants that are not found on the genotyping array

but are included on one of the dense reference haplotype panels such as those from
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the 1000 Genomes Project [75] . All of the aforementioned imputation methods

exploit the linkage disequilibrium between observed and unobserved SNPs to infer

the genotype of unobserved SNPs.

We believe that the substantial pre-existing genotype information, whether as-

sayed or imputed, can be and should be utilized to fine tune the reference genome to

reflect the unique features of each individual genome. An accurate reference genome

sequence will lead to improved read mapping and consequently improved SNP dis-

covery and genotype calling.

Here we present RefEditor, a software package developed to improve read map-

ping by customizing the universal haploid reference genome to reflect individual

genetic variation. It contains two components, RefEdit and RefEdit+, both con-

verting the universal reference genome into a personalized diploid reference genome.

RefEdit uses the assayed genotypes only whereas RefEdit+ adopts an additional

step to augment the assayed genotypes by imputation. The basic scheme of RefEdit

and RefEdit+, as well as the comparison between standard read mapping process

and the proposed read mapping process, are illustrated in Figure 3.1. Both RefEdit

and RefEdit+ contain two main components: Diploid Constructor and Mapping

Converter. Diploid Constructor converts the universal haploid reference genome to

the personalized diploid reference genome by supplementing the universal reference
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chromosomes with short sequences containing alternative alleles (Figure 3.1[B] and

Figure 3.1[C]). Mapping Converter modifies intermediate results of read alignment

in SAM (Sequence Alignment/Map) format [45] by translating mapped locations on

customized, diploid reference genome back to its genomic locations on the regular

reference genome and reassigning mapping quality scores (Figure 3.1[B] and Figure

3.1[C]). Diploid Constructor and Mapping Converter are called upon before and after

executing the read alignment tools, respectively.

3.2 Material and Methods

3.2.1 RefEdit+ Pipeline

The main objective of this project is to construct the personalized diploid reference

genome using pre-existing genotype information of an individual, which is typically

stored in a Variant Call Format (VCF) file (https://github.com/samtools/hts-

specs). This reference genome can then be used for mapping reads generated from

any sequencing assay conducted on this individual to improve the read mapping ac-

curacy. There is no need to modify the read mapping software itself. Since genotype

information is increasingly available from more and more array-based genotyping

and sequencing experiments, we believe incorporating such information in the read-

mapping step is important and beneficial. This goal can be conveniently achieved
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(A) Read mapping using universal reference genome

Figure 3.1: The pipeline for imputation, diploid reference genome construction and
read mapping. (A) Traditional read mapping method. (B) RefEdit read mapping
strategy that incorporates known genotypes. (C) RefEdit+ read mapping strategy
that incorporates both assayed and imputed genotypes. The parts inside dashed line
boxes are identical for RefEdit and RefEdit+ methods
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(B) Read mapping using RefEdit.
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(C) Read mapping using RefEdit+.
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with RefEdit and RefEdit+, with the later contains an additional imputation step to

augment the existing genotypes set. The RefEdit+ pipeline consists of the following

steps:

Step 1. Genotype imputation

In order to increase genotype information that can be used to customize the ref-

erence genome, we turn to the genotyping imputation techniques that have been

developed in the past five years and showed great success in finding association

of untyped SNPs and disease phenotype in many GWAS studies [91, 92]. In this

study, we used MaCH version 1.0 [84] and Minimac [89] programs to perform geno-

type imputation. Default parameters are used for MaCH and Minimac throughout

this pipeline. We use population-specific reference panels from the 1000 Genomes

Project [69] which contains 25,802,094 SNPs for Yoruba in Ibadan, Nigeria (YRI)

and 17,076,866 for Utah residents with ancestry from northern and western Europe

(CEU). We use Rsq threshold of 0.7 for imputation quality control to balance the

number of qualified genotypes and quality of imputation.

Step 2. Add alternative alleles (genotyped and imputed) to the reference genome

Next, we combine genotyped and imputed genotypes and use them to modify

NCBI reference genome 37.1 (HG19 reference) to create a new personalized diploid

reference genome. This step is achieved by using the program Diploid Constructor
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contained in the RefEditor software package. This new reference genome can be

fed into any existing mapping tool in the exact same way as the universal reference

genome. During the construction process, no action is taken at loci where genotypes

are homozygous wild type (reference allele); at loci where genotypes are homozygous

mutant alleles we edit the corresponding nucleotides in the reference genome sequence

file; at heterozygous loci we add a mini chromosome of length w ≥ 2k− 1 base pairs

(bp) where k is the read length. Users can specify their own w. When w > 2k − 1

indels can be better detected at the cost of longer read mapping time. Suggested

value of w is 2k − 1 + 2m, where m is the maximum allowed indels during read

mapping. In all studies presented here, read length k is 36, we set m to be 2 which

is the default indel length used by BWA for read length 36. The sequence of this

mini chromosome is identical to the corresponding segment of the universal reference

genome except at the middle position in which the alternative allele of that SNP

is placed. If two genotypes are located near each other, i.e., with distance of d

bp, where d < k + m, we create mini chromosomes of all possible combinations of

haplotypes that can possibly be covered by a read at the given read length. For other

imputed variants like indels, we modify corresponding mini chromosomes to reflect

such type of mutations. Those mini chromosomes are concatenated to the end of

each traditional chromosome defined in the reference file, with a sequence of “N”s of
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m + 1 in length to separate them. An auxiliary file is created to record the genomic

location of these mini chromosomes. We could let these “mini chromosomes” to

stand alone. The reason we choose to ligate them with the original ones is to ensure

pair-end read mapping function to work properly because many mapping tools check

whether the two ends map to the same chromosome.

The construction of the personalized reference genome is illustrated in Figure

3.1[B] and Figure 3.1[C]. RefEditor can also accept an optional command line ar-

gument indicating the individual’s gender. When this argument is set for female

individuals, chromosome Y will be excluded from the personalized reference genome.

Using RefEdit, only non-ref/ref genotypes identified by the genotyping array will

be incorporated, whereas using RefEdit+, all non-ref/ref genotypes identified from

either the genotyping array or imputation will be incorporated.

Step 3. Read mapping using customized diploid reference genome

The customized diploid reference genome can be treated the same as the universal

reference genome and used by almost all existing read mapping software. For this

study, we use BWA v0.5.9 [36] with default parameters for its high performance on

short reads mapping. The raw output of the mapping step needs to be post-processed

such that reads mapped to those mini chromosomes are correctly interpreted as

mapped to the corresponding genomic locations. The mapping quality scores will
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also be reassigned according to the Phred-scaled probability of mismatches between

the read and reference [93]. This step is achieved by using the program Mapping

Converter contained in RefEditor. The parts inside dashed line boxes in Figure 3.1[B]

and Figure 3.1[C] illustrate the read mapping using customized diploid reference

genome and post-processing using Mapping Converter.

Step 4. SNP finding and genotype calling

Genotypes are called from the reads successfully mapped with positive mapping

quality found in sorted BAM format file. We use the Genome Analysis Toolkit

(GATK) [54] to call genotypes. GATK is a widely used software package for detecting

SNPs and calling genotypes from single or multiple samples. It takes into account

the quality scores of each base in the mapped reads. The output from GATK will

be filtered to only keep SNPs.

3.2.2 Competing read mapping strategies

Various strategies have been developed for dealing with sequence variants in read

mapping. Here we briefly review other competing methods.

Ethnicity-specific major allele reference genome

In a recent study, Dewey et al. pointed out that the major alleles at many genomic

loci are different among populations [68] . Given this, Dewey et al. developed a

novel strategy that creates a set of ethnicity-specific reference genomes, including
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European, African and East Asian. In these reference genomes, the allele that is

most frequent among that particular population is used at polymorphic loci, resulting

in around 1.5 million modifications in each population compare to the universal

reference genome [68] . Read mapping is then performed against these ethnicity-

specific major allele reference genomes. Dewey et al. showed that in real studies,

using the ethnicity-specific reference genome results in improvement of genotype

calling accuracy for disease-associated variant loci [68].

GSNAP

GSNAP (Genomic Short-read Nucleotide Alignment Program) uses universal ref-

erence genome and all SNPs from dbSNP in mapping. It also uses its own map-

ping algorithm based on hash tables generated from sampled k-mers from reference

genome [94]. GSNAP considers all possible genotypes while still maintains running

speed comparable to other existing read-mapping software, which impact the map-

ping results of 7-8% transcriptional reads although it does not significantly increase

mapping success rates [94].
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3.3 Results

3.3.1 An example

In Figure 3.2, we illustrate how including known genotypes improves the read map-

ping quality and SNP calling accuracy in a specific case using the sequence data

from the 1000 Genomes Project. At the locus chr1:154568665, the reference allele is

A. The sequencing read containing the alternative allele G at the locus can be suc-

cessfully mapped to the personalized diploid reference genome with two mismatches.

By contrast, this read fails to map to the universal reference genome because there

are three mismatches, which exceeds the limit adopted by most mapping tools for

this read length. Downstream 18 bp at the locus chr1:154568683, multiple mapped

reads show the same type of mismatch, suggesting that there might be a new SNP

at that locus. The alternative allele G is not known a priori. This new SNP is

verified by gold standard genotype calls based on Complete Genomics Inc. (CGI)

deep sequencing data.

3.3.2 Performance comparison study design

We conducted a series of studies using real data to evaluate the performance of

RefEdit and RefEdit+ for read mapping, variant finding and genotype calling. In the

first study, we focused on the mapping success rates, genotype calling accuracy and
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Figure 3.2: An example of how our RefEdit method can find new genotypes from
known genotypes. The maximum mismatch threshold is set to 2 by default. The
known genotype is A/G at chr1:154568665. The read with ID SRR005196.8817822
is mapped to chr1:154568668 with 1 mismatch at chr1:154568683. The read with ID
SRR005197.10106228 is mapped to chr1:154568657 of the alternative allele in the cus-
tomized reference genome with 2 mismatches (chr1:154568660 and chr1:154568683).
RefEdit discovers the new SNP at chr1:154568683 because of multiple existences of
non-reference alleles. The Universal method, however, fails to map the read with ID
SRR005197.10106228 because it exceeds the maximum mismatch threshold, therefore
the new SNP cannot be discovered with confidence
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variant detection rates for two individuals from different populations. In the second

study, we used the Mendelian inconsistency (MI) as the metric for performance.

3.3.3 Study samples

We selected samples from the HapMap [95, 96] and 1000 Genomes Project [69, 75]

requiring that the samples have been genotyped by both array-based genotyping

platform and deep sequencing. Specifically, the African descent NA19238 and the

European descent NA12716 were qualified and chosen for the first study, and the

African trio (NA19238 (mother), NA19239 (father) and NA19240 (child)) was chosen

for the second study.

3.3.4 Genotypes from genotyping arrays

We chose the Affymetrix Axiom series array as the array-based genotyping platform

in this study. This array contains about 6 million SNPs. We used the genotypes

produced by the 1000 Genomes Project, which were called based on the CGI deep

sequencing data, as the gold standard. This sequencing platform discovered about 41

million SNPs among 433 individuals. Both platforms produce high quality genotype

calls and have been frequently used in other studies [97–99].
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3.3.5 Genotype summary from genotyping array and impu-

tation

We use population-specific reference panels from the 1000 Genomes Project [75] for

imputation. To avoid biased results, the two haplotypes from the study sample are

excluded from the panel during each run.

It is of interest to know, from the existing array-based genotype data, how many

genotypes containing the alternative allele are identified and how many more can

be added by genotype imputation. Genotype summaries (ref/ref, ref/alt, alt/alt

proportions) for NA 19238 and NA 12716 are displayed in Figure 3.3 (also see Table

3.2 for numerical result). A Venn’s diagram showing the overlaps between sets of

assayed, imputed and the CGI gold standard genotypes can be found in Figure 3.4.

The Axiom genotyping platform has very high concordance in the overlapping part

with CGI genotypes (99.75% for NA19238 and 99.83% for NA12716) as shown in

the Table 3.3., and hence is reliable. Details of the categorized consistencies between

Affymetrix and CGI genotypes for individual NA19238 and NA12716 can be found

in the Table 3.4.

The Rsq value is a good estimator of the correlation between the imputed and

true genotypes, and thus is frequently used as a measure of imputation accuracy [85,

90,100,101]. By applying an appropriate Rsq threshold, we can achieve a reasonable
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Table 3.1: Mapping rates of the five mapping strategies for individual NA19238
(1,892,304,208 reads) and NA12716 (258,507,654 reads).
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NA19238

(A)
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NA12716

(B)
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NA19238 NA12716

(C) (D)

Figure 3.3: Comparison of genotype ratios before and after imputation for individ-
uals NA19238 and NA12716. Imputation will considerably increase the amount of
non-ref/ref genotypes. Non-ref/ref genotypes before and after imputation are incor-
porated into the customized reference genome construction for RefEdit and RefEdit+
methods respectively. (A) Genotype composition before/after imputation and CGI
for sample NA19238. (B) Genotype composition before/after imputation and CGI
for sample NA12716. (C) The overlapping of non-ref/ref genotypes between impu-
tation and CGI for sample NA19238. Concordance is 98.94%. (D) The overlapping
of non-ref/ref genotypes between imputation and CGI for sample NA12716. Concor-
dance is 98.99%.
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Figure 3.4: Venn’s diagram illustrating SNPs with genotypes obtained from
Affymetrix Axiom array, imputation and CGI sequencing for sample NA19238. (1)
There are 4,611,084 overlapping SNPs between Affymetrix Axiom array and CGI
with 99.75% concordant rate. (2) There are 6,851,861 overlapping SNPs between
imputed and CGI with concordance rate 98.58%. (3) There are 2,965,053 SNPs with
imputed genotype but not called by CGI sequencing. (4) There are 20,295,528 SNPs
that called by CGI sequencing but not from Affymetrix Axiom array or imputation.
Only 321,790 are non-ref/ref genotypes.
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Figure 3.5: The proportions of imputed genotypes that passed the threshold and
their accuracy compare to CGI gold standard across different Rsq value thresholds.
The red curve indicates the concordance between imputed genotypes and CGI af-
ter applying the Rsq threshold. The blue curve indicates the proportions of the
genotypes that pass the Rsq threshold.
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Table 3.2: The total number and percentages of the three different types of geno-
types that are being genotyped by the Affymetrix Axiom array, imputation and CGI
sequencing.

Table 3.3: Genotyping concordance rates between the Affymetrix Axiom array and
CGI sequencing before and after imputation, ref/ref genotypes included.
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Table 3.4: The total numbers and percentages of the three different types of geno-
types that are called by the Affymetrix Axiom array and the CGI sequencing.

Table 3.5: The total numbers and percentages of the three different types of geno-
types that are being genotyped by imputation and CGI sequencing.
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Table 3.6: S5 GATK genotype calling accuracy comparison of five methods for
NA19238 on chromosome 1.
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Table 3.7: Comparison between GATK genotype calling results of five methods and
CGI sequencing genotypes for NA19238 on chromosome 1. The sequencing depth is
22x. The differences (+/-) are from comparing to genotype calls using the universal
reference genome method. The RefEdit and RefEdit+ methods increase the concor-
dance (shaded parts) between genotype calls and the CGI gold standard genotypes.
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Table 3.8: Mendelian Inconsistency comparison of five methods for YRI trio
(NA19238, NA19239 and NA19240) on chromosome 1 using GATK genotype calling
results. The differences (+/-) are from comparing to MI of using the universal refer-
ence genome method. The RefEdit and RefEdit+ methods consistently reduce the
MI.
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balance between the number and the quality of imputed genotypes. We used CGI

as the gold standard to evaluate the genotype concordance. The ratio of imputed

genotypes that passed the threshold and their accuracy compared to CGI genotype at

different Rsq thresholds can be found in the Figure 3.5. We set the threshold at 0.7,

which will retain 47.6% of the total imputed genotypes. The imputation accuracies

for NA19238 and NA12716 are 99.05% and 99.32% respectively, as shown in the

Table 3.3. Details of the categorized consistencies between the imputed genotypes

and the CGI genotypes for individual NA19238 and NA12716 can be found in the

Table 3.5. The numbers and proportions of newly imputed genotypes, along with

those from the genotyping arrays, are shown in Figure 3.3.

3.3.6 Read mapping rate

Since we do not know the true genomic location of a sequencing read generated

from real sequencing experiments, we are unable to directly compare mapping accu-

racy. The proportion of successfully mapped reads among all sequenced reads is a

reasonable alternative, which had been used in other studies [68, 94]. A successful

mapping is defined as a unique mapping with no more than two mismatches. Here

we compared the numbers and proportions of successfully mapped reads using dif-

ferent read mapping approaches. In addition to RefEdit and RefEdit+, we included

three additional mapping strategies: standard read mapping with universal reference
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genome, read mapping with ethnicity-specific major allele reference genome [68], and

mapping with GSNAP [94].

Our results indicate that RefEdit and RefEdit+ methods show consistent im-

provement in terms of the read-mapping rate. Table 3.1 summarizes the mapping

rates of five methods under three mismatch thresholds. Figure 3.6 shows the average

coverage depth of mapped reads from the five mapping strategies at different geno-

type categories for individual NA19238 (chr1∼chr22) using genotypes called from

CGI sequencing data. Note that using the universal reference genome resulted in

extremely low coverage depth at alt/alt loci when no mismatch is allowed, which is

expected because only reads with sequencing errors happening to match the reference

allele can be mapped to those loci.

3.3.7 Genotype calling consistency

Using the CGI genotype calls as the gold standard, we evaluated the genotype call-

ing accuracy of RefEdit/RefEdit+ with three competing methods at 13 different

sequencing depths (0.5x, 1x, 2x, 4x, 6x, 8x, 10x, 12x, 14x, 16x, 18x, 20x, 22x) on in-

dividual NA19238. For each sequencing depth, performance comparison is conducted

on the subset of non-ref/ref genotypes (according to CGI genotypes) that are called

by GATK [54]. Figure 3.7[A] shows the concordance of the non-ref/ref genotypes for

five different mapping methods. As expected, the genotype call consistency improves



65

(A) Mismatch = 0

(B) Mismatch ≤ 1
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(C) Mismatch ≤ 2

Figure 3.6: Average depth of mapped reads from the five mapping strategies for
individual NA19238 (chr1∼chr22), using CGI as gold standard for ref/ref, ref/alt
and alt/alt loci. (A) Mismatch = 0. (B) Mismatch ≤ 1. (C) Mismatch ≤ 2. In
the ref/ref loci group all methods have small differences in coverage depth; in ref/alt
and alt/alt groups RefEdit+ method shows much higher coverage depth compare to
other methods. The coverage depths increase when maximum allowed mismatches
increase.
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as the sequencing depth increases. Our RefEdit and RefEdit+ methods consistently

outperformed the three competing methods in all read depths, with RefEdit+ per-

forming the best. These results clearly demonstrate that incorporating genotype

information of the individual into the read mapping process helps improving the

accuracy of genotype calls. Note that the concordance rate is lower than reported

elsewhere in the literature [5]. This is because here we chose a lower quality threshold

in GATK to allow inclusion of more SNPs in the performance comparison study in

light of the difference in sensitivity of different methods. Using the more commonly

used threshold results in higher concordance across board and a similar pattern in

terms of performance comparison (data not shown).

Remarkably, Figure 3.7[A] suggests that the read mapping using our RefEdit+

strategy can achieve the same level of accuracy as the read mapping using the uni-

versal reference genome, by using only a fraction of the reads required by the latter.

Figure 3.7[A] shows that the method using the universal genome requires a sequenc-

ing depth of 22x to reach the same accuracy as RefEdit+ at a sequencing depth

of ∼9x, albeit with about 4% fewer SNPs called by RefEdit+ at lower sequencing

depth (Table 3.6). Given the cost associated with the sequencing depth, RefEdit+

provides a key benefit in terms of cost effectiveness. Compared to mapping using the

universal reference genome, applying RefEditor can improve genotype concordance
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by 10% to 40% across different sequencing depth (from 22X to 4X).

The detailed breakdown table of genotype concordance for five methods can be

found in the Table 3.7, which shows that RefEdit+ moves a large proportion of

genotypes that were previously incorrectly called as ref/ref by other methods to the

correct genotypes of ref/alt or alt/alt, according to the CGI genotypes. The main

reason for the incorrect ref/ref calls made by using the universal reference genome

is that fewer reads that contain the alternative allele can be mapped to the correct

locations compared to reads that contain the reference allele.

3.3.8 Mendelian inconsistency

A drawback of evaluating performance using genotype concordance as above is that

we need to designate a gold standard which may contain errors of its own, although

error rate is rather low. Given that there are genotype data from two different plat-

forms (array-based and sequencing-based) for parent-offspring trios from the Inter-

national HapMap and 1000 Genomes Project, an alternative metric for performance

evaluation is MI which counts the number of loci that show Mendelian errors within

the trio. MI has been used in Dewey et al. to evaluate the performance of the ethnic-

specific major allele reference genome approach [68]. For this study, we used data

from chromosome 1 of an YRI trio (NA19238, NA19239 and NA19240) to calculate

and compare MI at 13 different coverage depths (0.5x, 1x, 2x, 4x, 6x, 8x, 10x, 12x,
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(A)
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(B)
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(C)

Figure 3.7: (A) GATK genotype calling accuracy of five methods for NA19238 on
chromosome 1 using CGI as a gold standard. (B) Mendelian Inconsistency of five
methods for YRI trio (NA19238, NA19239 and NA19240) on chromosome 1 using
GATK genotype calling results. (C) GATK SNP discovery rates of five methods for
NA19238 on chromosome 1 compared to CGI SNPs.



72

14x, 16x, 18x, 20x, 22x). We only compared performance at loci where all three in-

dividuals made the genotype calls and not all of them have homozygous genotypes.

MI rates are illustrated in Figure 3.7[B], which shows that the RefEdit+ method

has the lowest MI values across all sequencing depths. A breakdown table of MI for

all methods at different sequencing depths can be found in Table 3.8. Compared to

mapping using the universal reference genome, applying RefEdit+ can significantly

reduce MI by 10% to 30% across various sequencing depth.

3.3.9 SNP identification

Besides genotype calling accuracy at known SNP sites, when conducting WGS stud-

ies, it is also important to correctly identify novel SNP variants, as was illustrated

in the previous example (Figure 3.2). Therefore, we assess whether RefEdit+ also

improves SNP detection. To be specific, we compared the SNP detection rate when

using different read mapping methods at different sequencing depths. For each read

mapping strategy, we define the SNP detection rate as follows: among all SNPs iden-

tified by CGI sequencing, the proportion of SNPs that are also identified by GATK

(non-ref/ref genotypes). As shown in Figure 3.7[C], RefEdit+ is able to identify

the most number of SNPs, followed by RefEdit. The performance enhancement of

RefEdit/RefEdit+ is maximized at about 10x coverage.
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3.4 Discussion

With the price of DNA sequencing continuing its rapid decline, whole genome se-

quencing will likely to be performed en masse in research laboratories and perhaps

clinics with the primary goal of identifying genetic variants. Mapping the sequenc-

ing reads to the human genome is an important early step to analyze data from all

sequencing-based experiments including WGS. Multiple studies [68,94] have demon-

strated that genetic variants that occur in about 1% of the genome have a non-

ignorable impact on the mapping accuracy, which in turn affects the accuracy of

the genotype calls of these variants. Scientists have attempted to address this issue

by either incorporating all known genetic variants [94] or ethnic-specific major vari-

ants [68] into the mapping process. In this study, we go one step further and propose

a novel method that takes advantage of the increasingly available personal genotype

information. The key of our approach is to customize the reference genome using

known genotypes of that individual. Our extensive performance comparison studies

demonstrate significant improvement in terms of read mapping, genotype calling and

SNP identification.

The performance improvement of RefEditor over existing mapping strategies is

easy to understand, because more information is being incorporated. Our work

showed that the improvement could be achieved computationally efficiently and in
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a straightforward fashion using RefEditor. Because array-based genotyping tech-

nologies have matured and cost less than WGS, they have been the choice for most

large-scale association studies to date [82] . A slew of special-design genotyping

chips have also been developed or under-development to supplement the mundane

GWAS genotyping chips [102, 103]. As a result, large amount of dense genotyping

information is readily available for large cohorts of samples. Many WGS studies

were conducted on these samples [104, 105]. Such a design makes our personalized

reference genome strategy very attractive.

Figure 3.3[A] and [B] showed a surprising result that genotyping array augmented

by imputation actually identified more SNPs (non-ref/ref genotypes) than deep WGS

(3.9 million vs. 2.6 million for NA19238; 2.9 million vs. 1.8 million for NA12716).

Although such results are atypical, the situation showed in Figure 3.3[C] and [D] is

noteworthy which indicates that a large number of SNPs identified by genotyping

array plus imputation were not called by WGS even with high coverage. We think

there are two reasons behind it: first, the coverage depth of WGS is not uniform

across the genome; second, loci harboring genetic variants tend to have relatively

lower mapping coverage depth due to the fact that the reference genome does not

contain any genetic variant information. The development of next generation of

denser genotyping imputation panels promises to further improve the effectiveness
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of imputation of common and rare variants [106]. These suggest that one should

consider supplementing WGS or WES by cheaper array-based genotyping and im-

putation in order to increase the quantity and quality of overall genotype calls; and

a better read mapping strategy that can utilize existing genotypes such as RefEditor

should be employed in the process.

It has been reported in the literature that multi-sample SNP calling strategy

improves genotype calling in WGS studies [5]. Since that particular approach is

carried out after the read mapping step, our strategy can also be applied during

the read mapping step which we believe will further enhance the genotype calling

downstream. Due to the requirement of a reasonable number of samples in the cohort

to apply the multi-sample calling strategy, we are unable to evaluate the potential

performance enhancement under that scenario in the current study.

Another important lesson we learned is that the genotype imputation strategy

plays a key role in performance improvement for RefEdit+. Genotype imputation has

been monumentally successful in GWAS analysis. We demonstrate that high quality

imputed genotypes also improve the reference genome customization and therefore

produce improved read mapping and genotype calling results.

An extension of our customized reference genome strategy is to apply RefEditor

iteratively for multiple rounds. Specifically, after genotypes were called with the help
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of RefEditor, we can combine these genotypes with known genotypes that were used

earlier to obtain an updated set of known genotypes, and then apply RefEditor to

perform read mapping and genotype calling again. The same strategy can also be

applied to WGS samples without existing genotype information.

Our performance comparison results demonstrate the importance and benefits of

incorporating existing genotype information in read mapping, genotype calling and

variants discovery in WGS studies. Admittedly, more work is required to perform

read mapping with RefEditor: unlike using a single universal reference genome, one

has to generate a reference genome for each individual sample in the cohort. A

post-process step is also needed after read mapping. However, with our RefEditor

package, the whole read mapping process can be automated using simple scripts,

and therefore very little human time and intervention is needed in adopting our

personalized read mapping strategy. As for computation time, in our experiment on

a single core 1.4G Hz CPU and 8GB memory, Diploid Constructor took 4 minutes

and 32 seconds to construct the diploid reference genome from hg19.fa and 15,568,754

genotypes (3,900,277 non-ref/ref). The reference genome size increased by 0.2 GB

(from 3.0 GB to 3.2 GB) and indexing time increased 5 minutes and 30 seconds

(from 87m8s to 92m38s). Reads mapping time increased 5 seconds (from 18m49 to

18m54s) to map 5,112,949 reads (read length is 36 bp). Mapping Converter took
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49 seconds to convert the intermediate mapping results. Given the importance of

accurately identifying genetic variants in WGS studies, which are often rare and have

low sequencing coverage, we strongly advocate the new strategy of using personalized

reference genome in read mapping.

3.5 Web Resources

The URLs for source code and data presented are as follows:

RefEditor source code, http://code.google.com/p/refeditor/

Universal hg19.fa, http://hgdownload.cse.ucsc.edu/goldenPath/hg19/chromosomes/

MaCH version 1.0.18, http://www.sph.umich.edu/csg/abecasis/MaCH/download/

mach.1.0.18.source.tgz

Minimac RELEASE STAMP 2012-11-16, http://www.sph.umich.edu/csg/cfuchsb/

minimac-beta-2012.11.16.tgz

Ethnicity specific reference genome, http://datadryad.org/bitstream/handle/

10255/dryad.35120/YRIref.fasta.zip?sequence=3

All FASTQ files, ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/data/
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Chapter 4

RefEditor-Galaxy, a Galaxy tool

for enhancing read mapping as

part of bioinformatics workflows

Abstract

RefEditor package and the Pipelines built on it (RefEdit and RefEdit+) have

proved beneficial in many aspects of genomic research (Chapter 2, 3). We present

RefEditor-Galaxy, a wrapper for using RefEditor within Galaxy. The functionality

delivered by RefEditor (i.e. diploid reference genome construction) can be combined

with the tools and workflows devised within the Galaxy framework or its reposito-

ries, resulting in an enhancement of RefEditor. A use case is provided in order to

demonstrate RefEditor-Galaxy’s capability for reference genome constructing, read

mapping and format converting. Coupling RefEditor-Galaxy with other bioinformat-

ics tools of the Galaxy framework results in a system that opens a new dimension of

NGS experiments and analyses. RefEditor-Galaxy’s source code can be downloaded
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from: http://toolshed.g2.bx.psu.edu/repos/superyuan/refeditor

4.1 Introduction

4.1.1 RefEditor

RefEditor package is mainly designed to improve NGS read mapping and help down-

stream genomic studies for diploid organisms. Its capabilities have already been

demonstrated as to be able to increase read mapping rate, to reduce ASE bias

(Chapter 2), to increase genotype calling accuracy and SNP discovery rate (Chap-

ter 3). However, it is a Command Line Interface (CLI) based software package.

It requires researchers to have background knowledge about executing, debugging

and organizing commands on Unix-family Operating Systems to be able to exploit

RefEditor’s functionalities to create versatile pipelines for typical bioinformatics anal-

yses. Galaxy [107–110], an popular, web-based platform combining various genomic-

oriented tools into workflows, offers an ideal Graphical User Interface (GUI) platform

for making RefEditor part of bioinformatics analyses. Therefore, we have devel-

oped RefEditor-Galaxy, a tool to execute RefEditor programs from within Galaxy.

RefEditor-Galaxy fully takes advantage of RefEditor’s functionalities and can in-

teract with other Galaxy tools in an integrated fashion. This chapter presents an

overview of RefEditor-Galaxy’s design and implementation, including a tested use
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cases that provides a basis for creating more complex analyses.

4.1.2 Galaxy

Galaxy offers an open, web-based unified workbench platform for performing genomic

analyses [107–110]. It has established a significant community of users and devel-

opers [111]. Galaxy’s public server (http://usegalaxy.org) makes analysis tools,

genomic data, tutorial demonstrations, persistent workspaces, and publication ser-

vices available to any scientist that has access to the Internet [112]. This server pro-

cesses about 5,000 jobs per day. Individuals and groups have used Galaxy to perform

many types of genomic research, including investigations of epigenomics [113, 114],

chromatin profiling [115, 116], transcriptional enhancers [117], genome-environment

interactions [118] and others [119, 120]. In addition to the public server, thousands

of local Galaxy servers have been set up by downloading the Galaxy application and

customizing it to meet particular needs.

Galaxy majorly features three parts:

� Making computation accessible. Several database resources have been inte-

grated with the public Galaxy server and are included as part of the down-

loadable package. These resources include the UCSC Table Browser [121],

BioMart Central Portal, InterMine, EpiGraph [113], EuPathDB [122] and Hb-
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Var [123]. It has also integrated hundreds of tools from diverse categories

including Text Manipulation, Filter and Sort, Formats Conversion, Alignment,

Statistics, Motif detection, NGS processing and more. There are still hundreds

of tools published in Galaxy’s main tool shed and other repositories.

� Ensuring reproducibility. Reproducing experimental results is an essential facet

of scientific inquiry, providing the foundation for understanding, integrating,

and extending results toward new discoveries. Galaxy provides an environment

to automatically generate metadata from each analysis step in order to record

and repeat computational analyses history. It tracks the provenance of data

and tool usage which enables users to selectively run and rerun particular anal-

yses [124, 125]. From Galaxy users can extract workflows which are reusable

templates analysis that can repeat on different data. Galaxy provides an envi-

ronment to visualize, modify, annotate, save, delete and rerun workflows.

� Promoting transparency. Data, histories, workflows, and pages can be easily

shared and published to Galaxy’s public repositories. Those items can be

import and immediately used for extensive studies inside Galaxy [110].
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4.2 RefEditor-Galaxy

To add a set of tools to Galaxy, we first define the default sections for those tools in

a file in Extensible Markup Language (XML) syntax. Those default sections can be

changed when users install the tool set. We also write another XML configuration file

for each new tool that describes how to run the tool, including detailed specification

of input and output parameters. This specification allows the Galaxy framework to

work with the tool abstractly and automatically generate layout of computational

tool from XML descriptions to ensure a consistent look and feel. This XML file

will invoke another interpreter to execute a program/script for data check. Those

interpreters can be python, perl, bash or sh. After data checking, a final program will

be invoked from those data checker. This final program can be any piece of software

written in any language as long as it can be invoked from a console command. Figure

4.1 shows the call graph.

RefEditor-Galaxy consists of five components: tool conf.xml, vcf2genotypes.∗,

DiploidConstructor.∗, MappingConverter.∗ and test-data. They are organized in the

directory tree shown in Figure 4.2
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Figure 4.1: Calling graph of RefEditor-Galaxy. RefEditor-Galaxy (blue box) invokes
RefEditor (red box). tool conf.xml is the entry of other three independent tools
(vcf2genotypes.∗, DiploidConstructor.∗ and MappingConverter.∗).
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/

tool conf.xml

refeditor

vcf2genotypes.xml

vcf2genotypes.py

DiploidConstructor.xml

DiploidConstructor.py

MappingConverter.xml

MappingConverter.py

test-data

hg19test.fa

test.fastq

test.vcf

Figure 4.2: Directory tree for RefEditor-Galaxy. tool conf.xml defines the sections
the tools belong to. refeditor contains the definition of three tools. test-data contains
all the test files.
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4.2.1 tool conf.xml

tool conf.xml in the top directory describes the default section of other three tools

(vcf2genotypes.∗, DiploidConstructor.∗ and MappingConverter.∗) shown in the Galaxy

tools pane on the left side of the browser window. It also behaves as the entry for

those tools.

4.2.2 vcf2genotypes.∗

vcf2genotypes.∗ is a tool that extracts the genotypes of a specified individual above

the minimal quality score from a VCF file and store them in a standard genotypes

format used by HapMap project. vcf2genotypes.xml accepts three parameters:

� A VCF file [List Data].

� Name of the target individual [String]. It must be a column name of an indi-

vidual defined in the VCF file.

� Minimal Quality Score [Integer]. Default=0.

vcf2genotypes.xml will invoke vcf2genotypes.py to perform sanity check on parame-

ters, and then execute vcf2genotypes.
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4.2.3 DiploidConstructor.∗

DiploidConstructor.∗ takes the universal haploid reference genome and genotype file

as the input, and then output the personalized diploid reference genome containing

alternative alleles . DiploidConstructor.xml accepts five parameters:

� A haploid reference genome file in FASTA format [List Data].

� A genotype file [List Data].

� Read length [Integer].

� Maximum length of deletions on mini-chromosomes [Integer]. Default=0.

� Gender [Binary Selection]. Default=male

DiploidConstructor.xml will invoke DiploidConstructor.py to perform sanity check

on parameters, and then execute DiploidConstructor.

Figure 4.3 shows the web interface for DiploidConstructor.∗.

4.2.4 MappingConverter.∗

MappingConverter.∗ modifies intermediate results of read alignment in SAM format,

and then output final mapping results that correspond to the universal reference

genome. MappingConverter.xml accepts two parameters:
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Figure 4.3: RefEditor-Galaxy Web interface. The RefEditor-Galaxy Web interface
is displayed in the middle pane. In the left pane, a list of standard Galaxy tools and
RefEditor-Galaxy are shown; in the right pane, a sample of a history of the executed
tasks is shown.
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� A SAM file that contains intermediate mapping results [List Data].

� A diploid reference genome file, based on which the intermediate mapping

results are generated [List Data].

MappingConverter.xml will invoke MappingConverter.py to perform sanity check on

parameters, and then execute MappingConverter.

4.2.5 test-data

Galaxy Dev team suggests that an optional test-data folder be included in the tool

package. This folder contains all testing files so that automated tests can be con-

ducted in the repository server. Users can also manually test RefEditor-Galaxy using

provided test data.

RefEditor-Galaxy eventually invokes binary programs defined in RefEditor to

fulfill the tasks as shown in Figure 4.1.

4.3 Installation

Galaxy Tool Shed is a de facto AppStore for Galaxy tools [126]. Galaxy Main Tool

Shed (http://toolshed.g2.bx.psu.edu/) and Test Tool Shed (http://testtoolshed.

g2.bx.psu.edu/) are already included with Galaxy’s distribution (tool_sheds_
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conf.xml). Hundreds of tools have been published on those Sheds. Users can easily

download and install a tool with just a few mouse clicks, which is another important

benefit Galaxy provides.

RefEditor-Galaxy is published on the Galaxy Main Tool Shed. It can be down-

loaded by going to Galaxy Admin Interface and click Search and browse tool sheds

→ Galaxy Main Tool Shed→ Fasta Manipulation, as shown in Figure 4.4 and Figure

4.5

The RefEditor, on which RefEditor-Galaxy relies, should also be installed from

http://code.google.com/p/refeditor/

Figure 4.4: Galaxy Main Tool Shed and Test Tool Shed are already included with
Galaxy’s distribution. They can be found from Galaxy Admin Interface → Search
and browse tool sheds
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Figure 4.5: RefEditor-Galaxy can be previewed and installed from Galaxy Main Tool
Shed → Fasta Manipulation → refeditor

4.4 Use Case

Galaxy can automatically generate workflows from series of analyses steps. We use

RefEditor-Galaxy and BWA wrappers to conduct diploid read alignment based on

the testing data included in RefEditor-Galaxy, and then extract the workflow from

the operation history. This workflow, as shown in Figure 4.6, is the Galaxy version

of RefEdit pipeline defined in Chapter 3. Users can manipulate the workflow to
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incorporate other tools (e.g. Filters).

Figure 4.6: RefEdit pipeline is implemented as a Galaxy workflow using RefEditor-
Galaxy and BWA wrappers. The latter can be installed from Galaxy Main Tool Shed
→ Next Gen Mappers

4.5 Discussion

Galaxy provides an integrated environment for bioinformatics analyses. It offers a

general solution that enables a computational tool to be easily included in an analysis

chain and run by scientists without programming experience. In this chapter we

reviewed the implementation of RefEditor-Galaxy, a wrapper for RefEditor software

package. A use case that implements RefEdit pipeline is also provided, and the

equivalent workflow is extracted. To increase the accessibility of our tools, we put

them into the Galaxy Main Tool Shed for easy downloading and installation.
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We have not implemented the RefEdit+ pipeline in Galaxy platform since it en-

tails that the imputation tools be integrated into Galaxy. However, once the imputa-

tion tools wrapper have been accomplished, RefEdit+ pipeline can be implemented

in Galaxy without any change of RefEditor-Galaxy, since the RefEdit+ pipeline just

requires additional invocations of genotype imputation tools.

Moving Forward, we want to conduct more experimental integrations on Galaxy

platforms in order to make more meaningful bioinformatics discoveries.
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Chapter 5

Conclusion

This dissertation has described a research effort and solution towards increasing

read mapping ratio/accuracy, reducing ASE bias, improving genotype calling accu-

racy and SNP discovery ratio for diploid individuals through alternating the reference

genome. We have developed an open source software package to achieve those goals

conveniently. We also designed pipelines to utilize that software package.

5.1 Future Work

There still remain many unexplored areas worthy of investigation on this research

topic. Some of them are listed here:

5.1.1 Dynamic reference genome

Currently, we only modify the reference genome once for each diploid individual.

That strategy already showed benefits in multiple downstream analysis, including

new SNP discovery. We wonder if those new SNPs have high enough quality to
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be incorporated into the next round of reference genome construction and further

improvements on other aspects. If yes, then how to balance the quantity and quality

of the SNPs used for diploid reference genome? How many rounds should we go

through the iteration to create such a dynamic reference genome?

5.1.2 More formats support

The program Mapping Converter currently only supports SAM format. Although

this is a very popular data format supported by many mapping tools, there are still

some formats used by many mapping tools that worth to be supported, such as

BAM, which is a compressed format mutually convertible with SAM. We can design

Mapping Converter so that it automatically recognizes multiple file formats from the

input, and then set the output format correspondingly, or use formats that users

select. That requires, of course, RefEditor-Galaxy to be updated to allow additional

parameters.

5.1.3 More studies

We did our study on one diploid species — human. We wonder if this strategy

can also work effectively on other diploid species. We also want to conduct other

WGS studies, such as ChIP-seq, BS-seq and imprinting studies. By integrating our

methods with other tools in Galaxy, we are expecting more meaningful bioinformatics
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discoveries.

5.2 Summary

The benefits of using RefEditor to incorporate known genotypes and imputation

technology have been apparently demonstrated in our studies. A strong integration

of RefEditor and Galaxy platform has been accomplished by the implementation of

RefEditor-Galaxy. The final result is a viable foundation for many future bioinfor-

matical studies in NGS field.



96

Bibliography

[1] F Sanger, S Nicklen, and A R Coulson. Dna sequencing with chain-terminating

inhibitors. Proc Natl Acad Sci U S A, 74(12):5463–7, Dec 1977.

[2] Lin Liu, Yinhu Li, Siliang Li, Ni Hu, Yimin He, Ray Pong, Danni Lin, Lihua Lu,

and Maggie Law. Comparison of next-generation sequencing systems. Journal

of Biomedicine and Biotechnology, 2012:11, 2012.

[3] Francis S Collins, Michael Morgan, and Aristides Patrinos. The human genome

project: lessons from large-scale biology. Science, 300(5617):286–90, Apr 2003.

[4] Marcel Margulies, Michael Egholm, William E Altman, Said Attiya, Joel S

Bader, et al. Genome sequencing in microfabricated high-density picolitre

reactors. Nature, 437(7057):376–80, Sep 2005.

[5] Yun Li, Wei Chen, EricYi Liu, and Yi-Hui Zhou. Single nucleotide polymor-

phism (snp) detection and genotype calling from massively parallel sequencing

(mps) data. Statistics in Biosciences, 5(1):3–25, 2013.



97

[6] G.E. Moore. Cramming more components onto integrated circuits. Proceedings

of the IEEE, 86(1):82–85, Jan 1998.

[7] Elaine R Mardis. Next-generation dna sequencing methods. Annu Rev Ge-

nomics Hum Genet, 9:387–402, 2008.

[8] Zhong Wang, Mark Gerstein, and Michael Snyder. Rna-seq: a revolutionary

tool for transcriptomics. Nat Rev Genet, 10(1):57–63, 2009.

[9] John C Marioni, Christopher E Mason, Shrikant M Mane, Matthew Stephens,

and Yoav Gilad. Rna-seq: an assessment of technical reproducibility and com-

parison with gene expression arrays. Genome Res, 18(9):1509–17, Sep 2008.

[10] Peter J. Park. Chip-seq: advantages and challenges of a maturing technology.

Nat Rev Genet, 10(10):669–680, 2009.

[11] Shawn J Cokus, Suhua Feng, Xiaoyu Zhang, Zugen Chen, Barry Merriman,

Christian D Haudenschild, Sriharsa Pradhan, Stanley F Nelson, Matteo Pelle-

grini, and Steven E Jacobsen. Shotgun bisulphite sequencing of the arabidop-

sis genome reveals dna methylation patterning. Nature, 452(7184):215–9, Mar

2008.

[12] Ayat Hatem, Doruk Bozdag, Amanda Toland, and Umit Catalyurek. Bench-

marking short sequence mapping tools. BMC Bioinformatics, 14(1):184, 2013.



98

[13] Peter J A Cock, Christopher J Fields, Naohisa Goto, Michael L Heuer, and

Peter M Rice. The sanger fastq file format for sequences with quality scores,

and the solexa/illumina fastq variants. Nucleic Acids Res, 38(6):1767–71, Apr

2010.

[14] NCBI Resource Coordinators. Database resources of the national center for

biotechnology information. Nucleic Acids Res, 42(Database issue):D7–17, Jan

2014.

[15] Michael L. Metzker. Sequencing technologies [mdash] the next generation. Nat

Rev Genet, 11(1):31–46, 2010.

[16] David B. Goldstein, Andrew Allen, Jonathan Keebler, Elliott H. Margulies,

Steven Petrou, Slave Petrovski, and Shamil Sunyaev. Sequencing studies in

human genetics: design and interpretation. Nat Rev Genet, 14(7):460–470,

2013.

[17] L. G. Biesecker, W. Burke, I. Kohane, S. E. Plon, and R. Zimmern. Next-

generation sequencing in the clinic: are we ready? Nat Rev Genet, 13(11):818–

24, 2012.

[18] R. David Hawkins, Gary C. Hon, and Bing Ren. Next-generation genomics:

an integrative approach. Nat Rev Genet, 11(7):476–486, 2010.



99

[19] Matthew Meyerson, Stacey Gabriel, and Gad Getz. Advances in understand-

ing cancer genomes through second-generation sequencing. Nat Rev Genet,

11(10):685–696, 2010.

[20] David R Bentley, Shankar Balasubramanian, Harold P Swerdlow, Geoffrey P

Smith, et al. Accurate whole human genome sequencing using reversible ter-

minator chemistry. Nature, 456(7218):53–9, Nov 2008.

[21] Heng Li and Nils Homer. A survey of sequence alignment algorithms for next-

generation sequencing. Briefings in Bioinformatics, 11(5):473–483, 2010.

[22] Stephen F. Altschul, Warren Gish, Webb Miller, Eugene W. Myers, and

David J. Lipman. Basic local alignment search tool. Journal of Molecular

Biology, 215(3):403 – 410, 1990.

[23] S F Altschul, T L Madden, A A Schaffer, J Zhang, Z Zhang, W Miller, and

D J Lipman. Gapped blast and psi-blast: a new generation of protein database

search programs. Nucleic Acids Res, 25(17):3389–3402, Sep 1997.

[24] Bin Ma, John Tromp, and Ming Li. Patternhunter: faster and more sensitive

homology search. Bioinformatics, 18(3):440–5, Mar 2002.

[25] Michael C Schatz. Cloudburst: highly sensitive read mapping with mapreduce.

Bioinformatics, 25(11):1363–9, Jun 2009.



100

[26] Nathan L Clement, Quinn Snell, Mark J Clement, Peter C Hollenhorst, Jahnvi

Purwar, Barbara J Graves, Bradley R Cairns, and W Evan Johnson. The

gnumap algorithm: unbiased probabilistic mapping of oligonucleotides from

next-generation sequencing. Bioinformatics, 26(1):38–45, Jan 2010.

[27] Hui Jiang and Wing Hung Wong. Seqmap: mapping massive amount of

oligonucleotides to the genome. Bioinformatics, 24(20):2395–6, Oct 2008.

[28] Heng Li, Jue Ruan, and Richard Durbin. Mapping short dna sequencing

reads and calling variants using mapping quality scores. Genome Research,

18(11):1851–1858, 2008.

[29] Nils Homer, Barry Merriman, and Stanley F. Nelson. Bfast: An alignment

tool for large scale genome resequencing. PLoS ONE, 4(11):e7767, 2009.

[30] Nils Homer, Barry Merriman, and Stanley F Nelson. Local alignment of two-

base encoded dna sequence. BMC Bioinformatics, 10:175, 2009.

[31] Stefan Kurtz, Adam Phillippy, Arthur L Delcher, Michael Smoot, Martin

Shumway, Corina Antonescu, and Steven L Salzberg. Versatile and open soft-

ware for comparing large genomes. Genome Biol, 5(2):R12, 2004.



101

[32] Colin Meek, Jignesh M. Patel, and Shruti Kasetty. Oasis: An online and

accurate technique for local-alignment searches on biological sequences. In In

VLDB, pages 910–921, 2003.

[33] Mohamed Ibrahim Abouelhoda, Stefan Kurtz, and Enno Ohlebusch. Replacing

suffix trees with enhanced suffix arrays. Journal of Discrete Algorithms, 2(1):53

– 86, 2004.

[34] Steve Hoffmann, Christian Otto, Stefan Kurtz, Cynthia M Sharma, Philipp

Khaitovich, Jörg Vogel, Peter F Stadler, and Jörg Hackermüller. Fast map-

ping of short sequences with mismatches, insertions and deletions using index

structures. PLoS Comput Biol, 5(9):e1000502, Sep 2009.

[35] B. Langmead, C. Trapnell, M. Pop, and S. L. Salzberg. Ultrafast and memory-

efficient alignment of short dna sequences to the human genome. Genome Biol,

10(3):R25, 2009.

[36] Heng Li and Richard Durbin. Fast and accurate short read alignment with

burrows–wheeler transform. Bioinformatics, 25(14):1754–1760, 2009.

[37] Ruiqiang Li, Chang Yu, Yingrui Li, Tak-Wah Lam, Siu-Ming Yiu, Karsten

Kristiansen, and Jun Wang. Soap2: an improved ultrafast tool for short read

alignment. Bioinformatics, 25(15):1966–1967, 2009.



102

[38] T W Lam, W K Sung, S L Tam, C K Wong, and S M Yiu. Compressed

indexing and local alignment of dna. Bioinformatics, 24(6):791–7, Mar 2008.

[39] Heng Li and Richard Durbin. Fast and accurate long-read alignment with

burrows-wheeler transform. Bioinformatics, 26(5):589–95, Mar 2010.

[40] Fabio De Bona, Stephan Ossowski, Korbinian Schneeberger, and Gunnar

Ratsch. Optimal spliced alignments of short sequence reads. Bioinformatics,

24(16):i174–80, Aug 2008.

[41] Cole Trapnell, Lior Pachter, and Steven L Salzberg. Tophat: discovering splice

junctions with rna-seq. Bioinformatics, 25(9):1105–11, May 2009.

[42] Yuanxin Xi and Wei Li. Bsmap: whole genome bisulfite sequence mapping

program. BMC Bioinformatics, 10:232, 2009.

[43] Pao-Yang Chen, Shawn J Cokus, and Matteo Pellegrini. Bs seeker: precise

mapping for bisulfite sequencing. BMC Bioinformatics, 11:203, 2010.

[44] Nuno A. Fonseca, Johan Rung, Alvis Brazma, and John C. Marioni. Tools for

mapping high-throughput sequencing data. Bioinformatics, 28(24):3169–3177,

2012.



103

[45] H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth,

G. Abecasis, and R. Durbin. The sequence alignment/map format and sam-

tools. Bioinformatics, 25(16):2078–9, 2009.

[46] Lincoln D Stein, Christopher Mungall, ShengQiang Shu, Michael Caudy, Marco

Mangone, Allen Day, Elizabeth Nickerson, Jason E Stajich, Todd W Harris,

Adrian Arva, and Suzanna Lewis. The generic genome browser: a building

block for a model organism system database. Genome Res, 12(10):1599–610,

Oct 2002.

[47] Heinrich Magnus Manske and Dominic P Kwiatkowski. Lookseq: a browser-

based viewer for deep sequencing data. Genome Res, 19(11):2125–32, Nov

2009.

[48] Iain Milne, Micha Bayer, Linda Cardle, Paul Shaw, Gordon Stephen, Frank

Wright, and David Marshall. Tablet–next generation sequence assembly visu-

alization. Bioinformatics, 26(3):401–2, Feb 2010.
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