
Distribution Agreement

In presenting this dissertation as a partial fulfillment of the requirements for an
advanced degree from Emory University, I hereby grant to Emory University and its
agents the non-exclusive license to archive, make accessible, and display my dissertation
in whole or in part in all forms of media, now or hereafter known, including display
on the world wide web. I understand that I may select some access restrictions as
part of the online submission of this dissertation. I retain all ownership rights to the
copyright of the dissertation. I also retain the right to use in future works (such as
articles or books) all or part of this dissertation.

Si Chen Date

Efficiently Optimizing HPC Application Design
Across a Heterogeneous Hardware Environment

By

Si Chen
Doctor of Philosophy

Computer Science and Informatics

Avani Wildani, Ph.D. Dorian Arnold, Ph.D.
Co-Advisor Co-Advisor

Ymir Vigfusson, Ph.D.
Committee Member

Simon Garcia De Gonzalo, Ph.D.
Committee Member

Accepted:

Kimberly Jacob Arriola
Dean of the James T. Laney School of Graduate Studies

Date

Efficiently Optimizing HPC Application Design
Across a Heterogeneous Hardware Environment

By

Si Chen
B.S., Huazhong University of Science and Technology, China, 2004
M.S., Huazhong University of Science and Technology, China, 2006

Advisors: Avani Wildani, Ph.D. Dorian Arnold, Ph.D.

An abstract of
A dissertation submitted to the Faculty of the

James T. Laney School of Graduate Studies of Emory University
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in Computer Science and Informatics

2024

Abstract

Efficiently Optimizing HPC Application Design
Across a Heterogeneous Hardware Environment

By Si Chen

Efficiently developing high-performance computing (HPC) applications is essential for
optimizing performance and reducing economic costs. However, the inherent complex-
ity of these applications, along with diverse heterogeneous hardware environments,
poses significant challenges in application optimization. Heterogeneity complicates
optimization due to differing memory architectures, processing capabilities, and com-
munication patterns. Researchers often rely on proxy applications and simulations to
estimate performance on various hardware platforms, but proxy applications often lack
rigorous quantitative evaluation of their fidelity, and cycle-level accurate simulation
remains inefficient, even with acceleration tools.

This dissertation addresses these challenges through three contributions. First,
we develop a robust toolkit for characterizing and quantifying behavior similarities
between HPC proxy applications and their corresponding parent applications. This
ensures high fidelity in performance estimation and enhances the reliability of proxy
applications in representing complex HPC applications. By identifying the most
important features, we reduce data collection time by up to 95% while maintaining
accuracy in representation.

Second, we improve a widely used simulation acceleration tool by integrating
advanced clustering methods. This achieves a 5× speed up in simulation time while
maintaining accuracy, enabling efficient exploration of design spaces for HPC applica-
tions across various hardware configurations. The enhanced simulation capabilities
provide researchers with faster and more reliable means to evaluate application perfor-
mance.

Third, we introduce a generalized model that combines meta-learning with architec-
ture simulation to predict runtime across various applications and hardware systems.
This approach facilitates rapid performance assessments and informed decision-making
in HPC application design, achieving a 127× speedup in training time for additional
tasks compared to traditional machine learning methods. The model’s predictions can
be practically applied to inform resource allocation and guide design choices in actual
HPC workflows.

These three components address representation accuracy, simulation efficiency,
and performance prediction. Together, they form a comprehensive framework for
optimizing HPC application design process, making it faster, more cost-effective,
and more adaptable to heterogeneous computing environments. This framework is
designed to evolve alongside advancements in hardware, supporting new architectures
and adapting to shifts in HPC workloads, ensuring its continued relevance in future
HPC ecosystems.

Efficiently Optimizing HPC Application Design
Across a Heterogeneous Hardware Environment

By

Si Chen
B.S., Huazhong University of Science and Technology, China, 2004
M.S., Huazhong University of Science and Technology, China, 2006

Advisors: Avani Wildani, Ph.D. Dorian Arnold, Ph.D.

A dissertation submitted to the Faculty of the
James T. Laney School of Graduate Studies of Emory University

in partial fulfillment of the requirements for the degree of
Doctor of Philosophy

in Computer Science and Informatics
2024

Acknowledgments

I would like to express my deepest gratitude to my advisor, Dr. Avani Wildani. She

has been an exceptional mentor and leader throughout my research journey, guiding

me through every step—–from reading papers and formulating research questions to

job hunting. Her insightful advice has been indispensable to my growth as a researcher.

I also sincerely appreciate my co-advisor, Dr. Dorian Arnold, for his considerate

assistance and supervision of my doctoral studies.

I am immensely thankful to my dissertation committee, especially Dr. Simon

Garcia De Gonzalo, whose constructive feedback and thoughtful suggestions have

greatly improved the quality of my research. Meanwhile, I would also like to express

my gratitude to my other collaborators at Sandia National Laboratory, Dr. Jeanine

Cook and Dr. Omar Aaziz, who led me to the world of HPC.

I would like to extend my sincere appreciation to my internship mentors: Dr. Alma

Dimnaku, Dr. Zhichao Li, and Haiying Xu, who selflessly shared their knowledge

and expertise. They provided me with invaluable opportunities to learn practical

techniques and apply my skills to real-world products and systems, enriching my

understanding of the field.

I am deeply grateful to the members of the Emory Simbiosys Lab, led by Dr. Ymir

Vigfusson. Our weekly meetings’ friendly discussions, collaborative spirit, and mutual

care have made this journey both enjoyable and inspiring. I cherish the friendships

with Yazhuo, Shrey, Vish, and all my fellow PhD friends at Emory, who made my life

so memorable.

Finally, I wish to express my profound gratitude to my family. My husband, kids,

and parents have been my unwavering pillar of support through every challenge. Their

love, encouragement, and understanding have given me the strength to persevere, and

I could not have accomplished this without them.

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Main Research Question . 6

1.3 Research Contributions . 8

1.3.1 Quantify the Fidelity of Proxy Applications 8

1.3.2 Accelerate Application Simulation 9

1.3.3 Generalize HPC Application Runtime Prediction 10

2 Background 12

2.1 HPC Application Characterization 12

2.1.1 Building Proxy Application 12

2.1.2 Proxy Application Characterization 13

2.2 Accelerated Simulation . 15

2.2.1 Simulator and Sampling Method 15

2.2.2 SimPoint and Its Extensions 16

2.2.3 Recent Advancements in SimPoint 17

2.3 HPC Application Runtime Prediction 19

2.3.1 Application Specific Performance Evaluation 19

2.3.2 The Role of Machine Learning 20

2.3.3 Cross-platform Performance Prediction 21

i

2.3.4 Meta-learning . 22

2.4 Conclusion . 24

3 Beyond Guess and Check: Quantifying the Fidelity of Proxy Appli-

cations 26

3.1 Overview . 26

3.2 Methods . 28

3.2.1 Hardware Performance Counters 28

3.2.2 Feature Selection . 30

3.2.3 Similarity and Distance . 33

3.3 Experiment . 36

3.3.1 Application Suite . 36

3.3.2 System Platform . 39

3.3.3 Data Collection and Preprocessing 40

3.4 Results . 41

3.4.1 Similarity Matrix Comparison 41

3.4.2 Root Cause Analysis . 46

3.4.3 Feature Selection and Feature sensitivity 49

3.4.4 Feature Standard Deviation 51

3.4.5 Subgroup Features . 53

3.4.6 Evaluation on Network Counters 54

3.5 Discussion . 56

4 SimPoint++: Advanced Sampled HPC Application Simulation 58

4.1 Overview . 58

4.2 Background . 59

4.2.1 Original SimPoint Workflow 59

4.2.2 Random Projection . 60

4.2.3 K-means . 62

4.2.4 Why do we need to replace BIC in SimPoint? 63

4.2.5 The Process of How SimPoint Finds the Optimal K 64

4.3 Method . 66

4.3.1 Dimension Reduction . 66

4.3.2 Optimized K-means Clustering 69

4.3.3 Spectral Clustering . 73

4.4 Experiment . 76

4.5 Results . 78

4.5.1 Finding the Best K . 78

4.5.2 Speedup and Accuracy . 80

4.5.3 Comparison with Spectral Clustering 81

4.6 Discussion . 82

5 METACAST: Generalizing HPC Application Runtime Prediction 85

5.1 Overview . 85

5.2 Methods . 87

5.2.1 Multi Task Data Collection 87

5.2.2 Meta-Model Training . 88

5.2.3 Target Task Data Collection 91

5.2.4 Target Task Model Training 92

5.3 Experiment . 92

5.3.1 Simulation Platform . 92

5.3.2 Application Workload . 93

5.3.3 Model Training . 95

5.3.4 Hyperparameter Optimization 96

5.4 Results . 97

5.4.1 Meta-model Accuracy for Benchmarks 97

5.4.2 Cross-Architecture Generalizability 101

5.4.3 Meta-model Accuracy for Real Applications 103

5.4.4 Time Efficiency in MetaCast versus Traditional Methods . . 105

5.5 Discussion . 107

5.5.1 Accuracy Considerations . 107

5.5.2 Future Directions . 108

5.5.3 Conclusion . 108

6 Conclusion and Future Work 110

6.1 Conclusion . 110

6.2 Future work . 112

A Appendix 114

A.1 Real application information . 114

A.2 Real system configuration per node 116

Bibliography 118

List of Figures

1.1 Three Approaches for Optimizing Application Design 6

3.1 Calder Architecture . 27

3.2 Laplacian Score for the Top 10 More Important Features Pre-correlation

Filter . 32

3.3 Cosine Similarity, Skylake . 42

3.4 Our similarity methods show similar results for proxy-parent agreement. 43

3.5 Cosine Similarity with All Features, Power9 45

3.6 Kernel Function Profiles of Proxy/Parent Pairs Sorted by Importance 47

3.7 Relative difference of Cosine Similarity between top unrelated features

and all features (Skylake) . 49

3.8 Relative difference of Cosine Similarity between top unrelated features

and all features (IBM) . 49

3.9 Important Features . 51

3.10 Cosine Similarity for L1 Cache . 53

3.11 Cosine Similarity for Memory Pipeline 54

3.12 Cosine Similarity for Execution Pipeline 54

3.13 Aries lbw cosine similarity . 55

3.14 Network Point-to-Point Communicating 55

4.1 Workflow of SimPoint++ . 59

v

4.2 Analysis of optimal cluster count using WCSS and Silhouette methods.

The combination of these methods efficiently identifies the optimal

number of clusters (k=8) while examining only a focused range of

possibilities, demonstrating the effectiveness of our two-step approach

in reducing computational overhead while maintaining clustering quality. 79

4.3 Absolute prediction error: SimPoint VS SimPoint++ 81

4.4 Speed up: SimPoint VS SimPoint++ 81

4.5 Visualization with t-SNE in 2D and 3D when using optimized K-means

clustering . 82

4.6 Visualization with t-SNE in 2D and 3D when using spectral clustering 83

5.1 MetaCast Workflow . 86

5.2 Meta-learning algorithms . 90

5.3 More training samples lead to improved prediction. 97

5.4 SPEC CPU2017 benchmarks on x86. The average MAPE is 18%. . . 99

5.5 MetaCast predictions for 30 tests on the perlbench r benchmark with

just 10 training samples. Points closer to the dashed line are more

accurate. 99

5.6 MetaCast achieves superior results compared to transfer learning (av-

erage MAPE=160%) and random initialization (average MAPE=510%).100

5.7 SPEC CPU2006 benchmarks on ARM. Runtime is denoted after each

benchmark with a slash. Note that longer benchmarks show lower MAPE.101

5.8 Real HPC applications from ECP. 104

5.9 Comparison of efficiency and time distribution between MetaCast and

traditional methods. 106

List of Tables

3.1 Proxy/Parent and control apps . 37

3.2 Hardware Characteristics . 39

3.3 Sample Top Features for Skylake . 51

3.4 Dissimilarity Feature Source for Proxy/Parents Pairs 52

4.1 Example of finding best K in Simpoint 65

5.1 System configuration in Gem5 simulator 94

5.2 Hyperparameters in Meta-model . 96

5.3 Evaluation applicaitons . 102

A.1 Real system configuration per node 117

vii

Chapter 1

Introduction

1.1 Motivation

High-Performance Computing (HPC) plays an indispensable role in modern computa-

tional science, serving large-scale computationally intensive tasks across fields such

as science, engineering, and economics. Built on intricate algorithms and massive

datasets, HPC applications demand enormous computing resources. Their complexity

significantly increases as expanding from traditional scientific simulations to artificial

intelligence (AI) and machine learning (ML) workloads. For example, climate model-

ing now incorporates more variables and higher resolutions, and genomics research

processes ever-larger datasets. This growing complexity demands more powerful and

efficient computing solutions for diverse workloads.

To meet these escalating demands, HPC hardware has evolved significantly. Tradi-

tional CPU-based systems have reached their limits in performance scaling and energy

efficiency, leading to the adoption of heterogeneous computing environments.

These new systems combine a variety of hardware components. For instance, vari-

ous processing units address different workload requirements: Graphical Processing

Units (GPUs) excel at parallel processing for AI/ML tasks; Field-Programmable Gate

1

2

Arrays (FPGAs) provide customizable hardware acceleration for specific algorithms,

Processing-in-Memory (PIM) architectures reduce data movement overhead, and even

quantum processors. Additionally, diverse memory technologies are available, such as

Double Data Rate (DDR) RAM, High Bandwidth Memory (HBM) for rapid access

to data, and non-volatile memory (NVM) for fast data retrieval. Storage options are

also varied, with Solid State Drives (SSDs) providing speed, Hard Disk Drives (HDDs)

offering greater capacity, and network-attached storage facilitating data sharing across

networks. Advanced networking hardware, such as Ethernet, InfiniBand, or custom

interconnects, ensures efficient data transfer between components.

While this shift towards heterogeneity brings unprecedented computational power,

flexibility, and scalability, it also introduces new challenges in efficiently using these

diverse architectures [84]. Integrating multiple types of hardware adds complexity to

optimizing performance, managing data movement, and controlling energy consump-

tion. Currently, the world’s most powerful supercomputer, Frontier, consumes over

22 megawatts (MW) of power [2], equivalent to the energy usage of approximately

18,000 American households. Besides energy consumption, suboptimal use of these

diverse hardware components can lead to performance degradation and wasted re-

sources. To fully leverage the potential of new hardware systems, applications often

require substantial algorithmic modifications or complete redesigns. This highlights

the importance of co-design, a collaborative approach where hardware designers

and software developers work together to optimize both hardware and applications.

Co-design ensures that applications are fine-tuned to the capabilities of heterogeneous

systems, maximizing their performance and efficiency while minimizing energy costs.

Given the ever-increasing complexities in both software and hardware architecture,

researchers have actively explored two main directions to facilitate co-design and

optimization [3]: proxy applications and simulations.

Proxy applications are simplified versions of the actual, or parent applications.

3

While parent applications are large and have complicated dependencies, proxy appli-

cations share some important behaviors or characteristics of a parent application [31],

facilitating easier scalability testing, algorithm optimization, and runtime performance

evaluation. Researchers, vendors, and developers experiment with proxy applications

using different optimization strategies without the heavy overhead of a large and

complex code base.

Simulations model applications behavior across various hardware configurations

without physical implementation. Simulation aids in workload characterization and

performance tuning, providing valuable insights into which configurations best suit a

given application. These insights can serve as a foundation for application optimization

and vendor guidance. There’s a trade-off between simulation time and accuracy, and

detailed simulation provides more accurate results with longer simulation time. To

address this, researchers often employ simulation acceleration techniques to reduce

simulation time. One common method is to focus only on simulating the region of

interest (ROI)—the part of the program most critical to performance analysis—while

ignoring less impactful portions. This expedites simulation without sacrificing the

accuracy of key insights. Other techniques include reducing the problem size or using

sampling methods to approximate the program’s behavior more efficiently.

Gap and Challenge Both approaches aim to gain a deeper understanding of appli-

cation behavior, optimize code, and ultimately achieve better performance. However,

optimizing application design across a heterogeneous hardware environment presents

several challenges.

Challenge 1: Difficulty in Defining the Similarity Between Proxy and Parent

Applications While proxy applications are designed to enhance the interaction

between developers and parent applications by serving as simplified representations of

the latter, accurately quantifying this representation, is challenging. Fidelity refers

4

to the degree of accuracy with which a proxy application mimics the behavior and

performance characteristics of its parent application. An inaccurate proxy, or one

with low fidelity, may lead to suboptimal system designs. For example, if a proxy

application underestimates the communication patterns of its parent, it may result in a

system with insufficient network bandwidth, severely degrading the parent application’s

performance. Several factors can affect the similarity between the proxy and parent

application, including biases in programming language implementation, differences in

data layouts, and varying parallelization approaches [80]. High fidelity ensures that

insights gained from the proxy are directly applicable to the parent application, while

low fidelity may lead to misleading conclusions. Moreover, lacking general guidelines or

standards for selecting evaluation metrics and criteria further complicates the process.

Additionally, the evaluation process is complicated by performance portability (e.g.,

Code Portability,Performance Maintenance,Programming Model Compatibility) across

different platforms [63].

Challenge 2: Slow Simulation Conventional simulation methods for runtime

prediction are time-consuming [15] and often lack general applicability [78]. The slow

pace of these simulations hinders rapid design space exploration and delays timely

optimization decisions, potentially impeding the development of efficient HPC systems.

Although researchers have attempted to address this timing issue through various

simulation acceleration techniques, such as selecting representative regions for analysis,

the effectiveness of these techniques remains a subject of ongoing research and debate,

particularly concerning the representativeness of the chosen regions and the optimal

number of regions required to balance accuracy and simulation time.

As new application requirements emerge at an unprecedented rate, traditional

expertise-based heuristic approaches, which have historically ensured accuracy, are

struggling to keep pace with the speed of hardware upgrades. Conventional analytical

5

models are increasingly unsuitable for evaluating system architectural designs due

to the difficulty of managing a vast array of system configurations, as performance

varies with minor configuration changes. In recent years, ML has begun to gradually

transform the way computer architecture and systems are designed.

Challenge 3: Generalization in ML Models for Performance Prediction

ML models, while often highly accurate (e.g., 5% error) on specific tasks [55], often

have a significant data requirement for training robust models, leading to a lack

of model generalizability or ability to model novel architectures [121, 23]. Variable

HPC application performance based on different inputs complicates performance

extrapolation from small to large inputs. Adapting to a new application (with various

inputs) necessitates retraining the model from scratch, which is time-consuming.

Therefore, Application-specific ML models are impractical for constantly changing

applications, hindering the development of broadly applicable performance prediction

tools.

While accuracy remains important in optimization, efficiency (implying rapid

adaptation in decision-making) and generalization (facilitating experience reuse by

reducing repetitive and similar work) are equally crucial. In this diverse hardware

ecosystem, current research lacks comprehensive methodologies to qualify the fidelity of

proxy and parent applications, faces limitations in efficient simulation, and encounters

difficulties in developing broadly applicable performance prediction models. This

dissertation addresses these gaps by developing robust and adaptable optimization

strategies for efficient, accurate, and generalizable optimization of HPC applications

in heterogeneous environments.

6

1.2 Main Research Question

This dissertation strives to investigate these challenges and answer the following central

research question: How can we efficiently optimize HPC application design

across a heterogeneous hardware environment using proxy applications,

simulation, and ML modeling? The term “efficiently optimizing” refers to acceler-

ating the development cycle through rapid iteration. This approach aims to reduce

the time and resources required for HPC application optimization, enabling developers

to quickly improve application performance across diverse hardware platforms.

As illustrated in Fig. 1.1, this optimization strategy involves three key elements:

proxy application representation, simulation of application behavior, and ML-based

performance modeling. The figure exhibits how these elements are interconnected

and imply their unifying concept: Similarity. This concept integrates the entire

optimization process by comparing computational patterns, performance metrics, and

behavior across applications and hardware.

Figure 1.1: Three Approaches for Optimizing Application Design

• Proxy Representation. This component highlights the importance of representing the

complex behavior of parent applications with proxy applications. The subquestion

is: How do we measure how closely proxy behavior on a system represents

parent behavior? This is crucial for reliable performance estimation when using

proxy applications to facilitate easier testing and optimization compared to parent

7

applications. We use similarity measurements to quantify the closeness of the proxy

and parent applications.

• Simulation. This component emphasizes the role of simulation in reducing the

complexity and time required to evaluate HPC applications. The subquestion

is: What machine learning techniques can effectively identify the most

representative segments from the application to preserve accuracy while

greatly decreasing simulation time? This is necessary for the accelerated

simulation of HPC applications across a heterogeneous hardware environment, where

a group of similar regions can be represented by one region of an application. We

balance accuracy and efficiency using advanced dimension reduction and clustering

approaches to select key regions.

• ML Modeling. The final component addresses the need for generalizable performance

models. The subquestion is: How can we generalize the modeling approach

to gain insights into the performance of new applications quickly? This

is important for reducing the time needed to develop performance models for new

applications. We build a meta-learning model by exploiting similarities across tasks

within the same domain and transferring knowledge from the behavior of various

applications on several heterogeneous hardware environments. Figure 1.1 shows how

ML modeling builds on the insights from both proxy representation and simulation

to create a meta-learning model.

These three elements are deeply interconnected: The proxy fidelity analysis provides

a foundation for accurately representing complex HPC workloads, which is crucial

for reliable performance estimation. The enhanced simulation acceleration technique

informs efficient design exploration. Together, they support the development of a

generalized performance forecasting model, enabling robust optimization across diverse

hardware environments.

8

By leveraging similarity in these three areas, we can use proxy applications to

represent complex HPC applications with minimal overhead, employ targeted simu-

lations that capture essential performance characteristics, and develop ML models

to predict performance across different hardware environments. Our goal of “effi-

ciently optimizing” is to make the HPC application development process faster, more

cost-effective, and more adaptable to the ever-evolving landscape of heterogeneous

computing environments.

1.3 Research Contributions

My dissertation research combines multiple studies to optimize HPC application design

across heterogeneous hardware environments efficiently. Each contribution addresses a

specific subquestion and advances the state-of-the-art in HPC application optimization:

Firstly, we quantify the fidelity of proxy applications using Calder. This contribution

addresses the challenge of accurately representing complex parent applications with

simpler proxies. Next, while proxy fidelity lays the groundwork for accurate simulation,

we present SimPoint++, an advanced sampled HPC application simulation tool

that significantly reduces simulation time while maintaining high accuracy. This tool

enables rapid exploration of design spaces in heterogeneous environments. Finally,

we develop MetaCast, a framework that combines proxy application simulations

with meta-learning technology for quick and accurate runtime predictions of new

applications on targeted architectures. This contribution enhances the generalizability

of performance optimization across diverse HPC environments.

1.3.1 Quantify the Fidelity of Proxy Applications

This work focuses on characterizing similarities between proxy and parent HPC

application behavior. Current methods for analyzing proxy application fidelity often

9

rely on manual comparisons and expert judgment, which can be subjective and time-

consuming. We introduce a novel and versatile toolkit Calder. Calder provides a

systematic and quantitative approach to assessing proxy fidelity, addressing issues

such as lack of objective metrics and difficulty in identifying important features where

proxy applications deviate from parent applications.

Contributions. Our primary contributions include:

1. The first comprehensive, quantitative characterization of proxy application

fidelity at the hardware level using statistical similarity algorithms across a

broad range of proxy and parent application pairs.

2. Advanced statistical techniques and machine learning algorithms that reduce

data size by up to 95%.

3. The public availability of the Calder toolkit for providing actionable insights to

improve proxy fidelity.

1.3.2 Accelerate Application Simulation

This work focuses on enhancing the simulation acceleration technology to provide

reliable simulation regions. SimPoint is widely used in computer architecture research

to automatically find a small set of simulation points that represent the complete

execution of a program for efficient and accurate simulations. While many studies

have used SimPoint as part of their methodology, there has been little consideration of

whether the set of Simulation Points that SimPoint provides is as small as possible. We

propose SimPoint++, an improved version of SimPoint that addresses its limitations.

By incorporating advanced dimension reduction techniques and improved clustering

algorithms, SimPoint++ provides adaptive sampling strategies that dynamically

adjust to the characteristics of each application.

10

Contributions. We make the following contributions to this work:

1. A novel approach to accelerate HPC application simulation, enhancing the

original SimPoint tool, resulting in a 5x speed-up in simulation time compared

to state-of-the-art solutions.

2. Provide comparable accuracy through advanced clustering and dimension reduc-

tion methods.

3. Overcome the limitations of existing methods with large-scale applications.

1.3.3 Generalize HPC Application Runtime Prediction

This work focuses on developing broadly applicable performance prediction models.

Current runtime prediction methods are often constrained to specific applications and

architectures. We introduce MetaCast, a novel approach that combines simulations

based on proxy applications with meta-learning technology to enable quick runtime

predictions of new applications on targeted architectures. MetaCast leverages

similarities across tasks within the same domain and transfers knowledge from the

behavior of various applications on several heterogeneous hardware environments.

Contributions. We present the following contributions:

1. A novel meta-learning approach that enables rapid adaptation to new applications

and hardware configurations without extensive retraining.

2. Integration of proxy application simulations with advanced machine learning

techniques to enhance prediction accuracy and generalizability.

3. We empirically validate MetaCast using real applications, demonstrating that

with just ten training samples, MetaCast attains an average Mean Absolute

11

Percentage Error (MAPE) of 18% on the SPEC CPU 2017 benchmark and 25%

on real applications.

4. This approach facilitates rapid performance assessments, achieving a 127×

speedup in training time for additional tasks compared to traditional machine

learning methods.

Chapter 2

Background

This chapter provides the literature review of the key areas pertinent to optimizing HPC

application design, including the characterization of HPC applications, accelerated

simulation methods, and runtime prediction techniques.

2.1 HPC Application Characterization

2.1.1 Building Proxy Application

As HPC systems grew more sophisticated, directly testing and optimizing full-scale

(parent) applications has become increasingly challenging. Currently, the best approach

to optimize application involves creating proxy applications that capture the essential

characteristics of their parent while remaining tractable. An ideal proxy application

mimics its parent’s system-level overheads and behaviors, allowing efficient testing

and optimization.

However, designing custom proxy applications from scratch for parent applications

carries the risk of overfitting. Overfitting in this context means when the proxy

application becomes too specialized to the specific conditions under which the parent

application was observed. This can result in a fragile proxy application that is

12

13

susceptible to minor variations in parent usage or system design. Benchmark suites

of proxy applications, such as those cataloged by the ExaScale Computing Project

(ECP) [33], build proxies from shared properties classes of parent applications. These

suites serve as powerful tools for system performance optimization and effectively

reflect the behaviors of their corresponding parent applications. For example, a version

of the SNAP potential in LAMMPS was initially implemented in the ExaMiniMD

proxy app, but it performed poorly on GPUs. To address this, a new proxy app

called TestSNAP was developed to experiment with various optimizations for different

GPU programming models. These improvements were later integrated into the main

LAMMPS code, leading to significant performance gains on GPUs [39].

In proxy application generation, Messer et al. [82] introduced a modular proxy-

application framework that explores the performance impacts of communication

interfaces and threading libraries. However, their work lacks quantitative performance

comparisons. Yan et al. [124] generated synthetic code to replicate application behavior

by tracing runtime events and evaluated performance similarity using a limited set

of hardware counters. Additionally, Lehr et al. [69] developed tools for identifying

and extracting computational kernels to create representative mini-apps, qualitatively

assessing performance similarity through a limited set of relevant hardware performance

counters. While these efforts aim to facilitate the generation of proxy applications,

their evaluation processes are often not thorough or convincing enough to replace

traditional proxy applications.

2.1.2 Proxy Application Characterization

Considerable research has been dedicated to characterizing proxy applications by

comparing them to their parent counterparts.

Different studies have employed diverse comparison metrics. For instance, Aaziz

et al. [12] utilized hierarchical clustering with a select subset of hardware performance

14

event counters to analyze behavioral similarities at the node level between proxy

and parent applications. Similarly, Owenson et al. [88] focused on scalability within

a single proxy/parent pair, while Kim et al. [61] used their KGen Fortran Kernel

Generator tool to derive descriptive statistics from both parent applications and

their resulting kernels, concentrating on kernel extraction. This process isolates the

core computational components of an application, which is particularly useful for

understanding and optimizing performance-critical sections. Further, Kwack et al. [64]

applied the roofline performance model to assess application portability across GPUs,

focusing on efficiency metrics rather than direct proxy-to-parent comparisons. The

roofline model provides insights into the performance limits of a given computer

architecture and how well an application utilizes the available resources. Innovatively,

Islam et al. [56] developed the Veritas framework, which employs belief estimation

in Dempster-Shafer theory to measure proxy/parent relationships through low-level

resource measurements. This framework incorporates Principal Component Analysis

(PCA) for dimensionality reduction and Grassmannian analysis for deeper similarity

assessment. These characterization studies provide methods to assess similarity at

different levels of granularity, thus helping to validate and improve proxy applications.

While these studies provide valuable insights into proxy characterization, they often

focus on specific application pairs or methodologies, limiting their broader applicability.

For example, Lin et al. [73] conducted a detailed analysis of one application pair, while

Barrett et al. [20] developed a comparison methodology for several pairs, specifying

performance domains such as computation time and inter-process communication.

These studies, although robust, are largely specific to the application pairs studied,

and lack a generalized framework applicable across various contexts.

Despite these contributions, a comprehensive evaluation of the metrics used to

assess similarity among various proxy and parent applications remains lacking. This

gap highlights the need for a systematic and generalizable framework that can facilitate

15

a better understanding of proxy application effectiveness across a broader range of

contexts.

2.2 Accelerated Simulation

2.2.1 Simulator and Sampling Method

Simulation plays a crucial role in computer architecture research, enabling researchers

to obtain diverse system performance data without resorting to numerous physical

systems. Simulators can be classified based on three important factors [15]: simulation

detail, target scope, and input type.

The level of detail in simulation is determined by its design, which can be functional,

timing, or a combination of both. Functional simulators focus on the correctness

of execution without considering timing, while timing simulators model the time

taken for operations. Timing simulators can be further categorized into cycle-level,

event-driven, and interval simulators. Cycle-level simulators model system behavior at

each clock cycle, providing high accuracy at the expense of simulation speed. Event-

driven simulators progress simulation time based on discrete events, offering a balance

between accuracy and speed. Interval simulators, on the other hand, use analytical

models to estimate the timing between important events, providing faster simulation

with some loss of accuracy.

Regarding the scope of the target system, simulators can be classified as full-system

or user mode. Full-system simulators model the entire computer system including the

operating system, while user-mode simulators focus only on user-level code execution.

Based on the input type, simulators can be classified as trace-driven and execution-

driven. Trace-driven simulators use pre-recorded traces of program execution as input,

whereas execution-driven simulators directly execute the program being simulated.

Notable examples of simulators include Gem5 [75], a cycle-level, modular, event-

16

driven simulator widely used in academia, and Sniper [21], which employs instrumen-

tation tools (Pin tool) for parallel simulations on x86 system.

Sampling-based simulation techniques measure only selected sections (sampling

units) of a benchmark’s full execution stream. These techniques can be broadly

categorized into statistical sampling (e.g., SMARTS [123]) and targeted sampling (e.g.,

SimPoint [95]). Statistical sampling selects sample units randomly or periodically, while

targeted sampling aims to identify representative sections of the program execution.

Researchers often use a targeted sampling method to simulate the region of interest

in their applications.

2.2.2 SimPoint and Its Extensions

SimPoint [109] is founded on the observation that programs often exhibit repetitive

behavioral patterns. It identifies representative pattern clusters and selects sample

points from each cluster, enabling rapid sampling that accurately reconstructs the

program’s entire execution process. The SimPoint process consists of several key steps:

1. Program Slicing and Basic Block Vector (BBV) Generation: The program is first

divided into intervals, with each interval representing a segment of execution.

For each interval, Basic Block Vectors (BBVs) are generated to capture the

program’s behavior. A basic block, which serves as the foundation for these

vectors, is a unit of code that has one entry point and one exit point.

2. Random Projection for Dimensionality Reduction: This step reduces the high-

dimensional BBVs to lower dimensions for efficient processing.

3. K-means Clustering of Reduced BBVs: This groups similar intervals together.

4. Selection of Representative Sim Points: One interval is chosen to represent each

cluster.

17

5. Weight Assignment to Each Sim Point: Weights are assigned based on the size

of the cluster each point represents.

Extensions of SimPoint

Several works have built upon SimPoint’s foundation. For example, BarryPoint [22]

extends SimPoint that focuses on multi-threaded applications by identifying repre-

sentative regions (simulation points) for each thread independently. PinPoint [92]

implements SimPoint using the Pin dynamic instrumentation framework to gather

program behavior data instead of simulation. LoopPoint [104] adapts SimPoint for

loop-based multi-threaded program phase analysis.

SimPoint and its extensions may face challenges when applied to large-scale

HPC applications. As the size and complexity of HPC workloads increase, the

processes of dimensionality reduction and clustering become more computationally

expensive. Moreover, the dynamic and irregular behavior of HPC workloads in

heterogeneous systems makes it difficult to identify representative phases. These

factors can potentially affect the accuracy of the selected simulation points.

2.2.3 Recent Advancements in SimPoint

Recent research has sought to improve SimPoint’s accuracy and applicability. These

advancements can be categorized into alternative profiling methods and alternative

clustering methods.

Alternative Profiling Methods

Vengalam et al. [118] explored dynamic trace-based loop profiling, requiring fewer

instructions per region than SimPoint. Ortizet al. [87] proposed MEGsim for GPU

workload characterization along the different stages of the graphics pipeline. Pati

et al. [91] developed SeqPoint, an approach that accurately characterizes the behavior

18

of sequence-based neural networks by identifying some representative iterations. Flolid

et al. [38] introduced SimTrace to represent a program’s large-scale phase behavior

over time phase. Additionally, Baddouh et al. [19] proposed a methodology targeted

at GPGPU to reduce the simulation budget in scaled GPU workloads.

Alternative Clustering Methods

Hamerlyet al. [45] and Sanghai et al. [105] compared the efficacy of multinomial

clustering with K-means, concluding that a combination of both could reduce the

number of simulation points needed without compromising accuracy. Multinomial

clustering is a probabilistic method that assumes data points are generated from a

mixture of multinomial distributions, which can be particularly beneficial for categorical

data. Johnston et al. [58] employed a clustering model based on exponential Dirichlet

compound multinomial (EDCM), a hierarchical Bayesian model capable of capturing

more complex data structures than simple multinomial models. However, these

approaches still utilize the Bayesian Information Criterion (BIC) method, like SimPoint,

to determine the optimal number of clusters. BIC balances a model’s likelihood with its

complexity, helping to prevent overfitting. However, BIC’s assumption of a Gaussian

distribution, which is often not applicable to program behavior data.

Wudenhe et al. [122] propose TPUPoint, a performance analysis tool for TPU-

based cloud platforms. TPUPoint comprises a profiler that automatically classifies

recurrent patterns in TPU applications into distinct phases and an analyzer that offers

three summarization methods: the conventional k-means algorithm, the Density-Based

Spatial Clustering of Applications with Noise (DBSCAN), and a lower-overhead online

linear-scan (OLS) algorithm. DBSCAN is a density-based clustering algorithm that

can find arbitrarily shaped clusters and is robust to outliers. To determine the optimal

number of clusters, TPUPoint employs the elbow method as a heuristic, terminating

the clustering process when improvement ceases to increase significantly. The elbow

19

method involves plotting the explained variance as a function of the number of clusters

and choosing the elbow of the curve as the number of clusters to use. Although

TPUPoint replaced the clustering method in SimPoint, it lacks a comparison and

emphasizes its advantages, resulting in it being overlooked within the larger framework.

These efforts have enhanced the simulation point selection techniques across various

computing environments and application domains. While each approach offers unique

benefits, there remains a pressing need for comprehensive comparisons of clustering

methods and the identification of the most effective strategies in computer architecture

simulation.

2.3 HPC Application Runtime Prediction

2.3.1 Application Specific Performance Evaluation

HPC runtime prediction methods have historically varied widely, encompassing rule-

based categorizations [42], time series methodologies [110], statistics models [107], and

Hidden Markov Models [99]. Hou et al. [51] argued that such approaches, are often

tailored to jobs submitted from the same user, and thus lack general accuracy.

Simulation methods address these limitations by providing a controlled environment

for predicting system behavior, helping workload characterization and performance

tuning. However, there exists a trade-off between simulation time and accuracy,

making it essential to balance these factors in runtime prediction efforts.

Conventional simulation methods for runtime prediction are often time-consuming [15]

and may lack general applicability [78], which restricts their utility for large-scale

challenges. Traditional analytical modeling techniques can improve the accuracy of

classical simulations, but they are often expensive to both develop and run. For

instance, interval analysis [36] and microarchitecture-independent characteristics [29]

are employed to determine processor performance, yet both suffer from computational

20

inefficiencies. Interval analysis is a technique that breaks down processor execution

time into intervals separated by miss events (e.g., cache misses and branch mispre-

dictions). This breakdown allows for a more detailed understanding of performance

bottlenecks by analyzing the impact of different types of misses on overall execution

time. Conversely, microarchitecture-independent characteristics focus on program

properties that are independent of the specific hardware implementations, such as

instruction mix, data locality, and control flow complexity. These characteristics

offer insights into program behavior without the need for detailed hardware-specific

simulations. However, this approach necessitates the creation of new models for

individual components, thereby constraining the ability of these analytical models to

support novel designs.

2.3.2 The Role of Machine Learning

ML models are the current best performers in the HPC application modeling space([70,

89, 24, 77, 126]). ML is particularly powerful for performance analysis in complex

systems because these models autonomously uncover latent patterns within training

data. For instance, studies have shown that ML can be effectively utilized to predict

job resource utilization in hPC environments. Tanash et al. [113] implemented

ML techniques using Slurm data to enhance system efficiency and reduce power

consumption. Additionally, Cengiz et al. [23] demonstrated that Deep Learning models

could predict benchmark results on unseen hardware by learning from openly available

SPEC 2017 benchmark results. Deep Learning models, particularly neural networks

with multiple layers, can capture complex non-linear relationships in data, making

them suitable for predicting performance across different hardware configurations.

Despite the advancement in ML for runtime prediction, a significant concern

is the generalizability of ML models across different hardware architectures and

application types [121, 23]. Models trained on specific datasets with high accuracy

21

may not perform adequately on new, unseen workloads or varying computational

environments. Furthermore, the reliance on historical data can introduce biases,

leading to prediction inaccuracy when workloads change significantly. Moreover, most

existing models require substantial preprocessing and training time, which can hinder

the decision-making process in dynamic HPC environments. There is a growing need

for methodologies that facilitate rapid adaptation of ML models to new data and

environments, ensuring that predictions remain accurate and relevant.

2.3.3 Cross-platform Performance Prediction

Attaining high accuracy in cross-application and cross-platform prediction poses a

considerable challenge. Various approaches have used a combination of models and

data to address this data limitation. Mankodi et al. [78] predicted the performance

of target physical systems using a transfer learning model trained on a combined

dataset from simulation-based systems and a source physical system. They utilized

decision trees as the base model and applied a scaling factor to adjust predictions from

simulated data to physical systems. However, dealing with small datasets typically

yielded only moderate accuracy. Zheng et al. [127] used performance counters to

predict ARM-based system performance from an x86-based system, while Qi [98]

learned a matrix between platforms with the help of hardware performance counters.

In Qi’s approach, intermediate features (hardware performance counters) are divided

into applications and platforms using Pearson Correlation Coefficients (PCC). This

method involves building a power/performance model on the source platform, refining

it with reduced training data on the target platform, and ultimately achieving a

cross-platform model. Mariani et al. [79] employed transfer learning for cloud service

performance prediction by coupling a cloud-side model (CP) with an application

profile model (PP). In this case, the cloud provider generates a prediction model of

the system, while the cloud user generates a prediction model of the target application.

22

The PP collects a hardware-independent profile for each training application and

dataset, while the CP uses cloud configuration and the hardware-independent PISA

profile to build runtime predictions. Additionally, Sun et al. [112] applied transfer

learning, incorporating instruction counts such as loops, assignments, conditionals,

and message-passing instructions as features to predict runtime on a target server

from source servers. However, these methods require execution on the target hardware,

which is incompatible with our goal of predicting the performance of potentially

non-existent target systems. Moreover, the instrumentation involved in Sun et al.’s

approach incurs significant overhead even for a single application.

While these approaches have made significant progress in cross-platform per-

formance prediction, most methods lack generalizability across diverse computing

environments due to data scarcity and difficulty in scaling efficiently with increasing

system complexity. Some methods that rely on target hardware execution limit the

usability for unseen systems. There is a need to develop a more robust and generalized

method to address these limitations.

2.3.4 Meta-learning

Traditional ML models, particularly supervised models, are typically constructed for a

singular, specific task. This process involves extensive training on numerous samples,

where the model iteratively updates its parameters across multiple epochs, to minimize

a loss function that measures the discrepancy between the predictions and the ground

truth. Such models, while effective, often require vast amounts of data and suffer from

decreased performance when applied to new tasks.

Meta-learning algorithms develop a generalized meta-model that can quickly adapt

to new tasks with few training iterations using dual-level parameter updates: the

meta-level (outer loop) and the task-specific level (inner loop). The meta-level focuses

on adjusting high-level parameters, which could include initial settings, choice of

23

optimization algorithms, and network architecture, to set the stage for rapid learning

on new tasks. The task-specific level then fine-tunes the model for optimal performance

on individual tasks. Recent innovations have sought to enhance meta-learning through:

1. Improved task adaptation: This involves developing methods that can quickly

adapt to new tasks with minimal fine-tuning. For example, Model-Agnostic

Meta-Learning (MAML) [37] learns an initialization for the model parameters

that allows for rapid adaptation to new tasks.

2. Computational efficiency: Techniques like Reptile simplify the meta-learning pro-

cess by using first-order approximations [86], reducing computational complexity

while maintaining performance.

3. Algorithmic optimizations: This includes developing more sophisticated optimiza-

tion algorithms specifically designed for meta-learning, such as Meta-SGD [72],

which learns not just the initial parameters but also the learning rates for each

parameter.

4. Bolstering stability and generalization: Methods like MAML++ [18] introduce

techniques like layer-wise learning rates and batch normalization to improve the

stability and generalization of meta-learning algorithms. capabilities.

Meta-learning is often used in similar situations as transfer learning. However,

while transfer learning repurposes a pre-trained model to tackle new, similar tasks,

meta-learning crafts an adaptable meta-model, necessitating minimal fine tuning when

encountering new tasks. Thus, meta-learning offers broader applicability without

pre-supposing task similarity.

In the field of computer system architecture and HPC, the application of meta-

learning has been limited. MetaTune [103] utilized a meta-learning-based cost model

for optimizing parameters in Deep Learning compiler frameworks. This approach

24

involves learning a general strategy for tuning compiler parameters across different deep

learning models and hardware configurations. Distinctively, Naghshnejad et al. [83]

leveraged meta-learning to assess the reliability of system-generated job runtimes,

aiming to enhance HPC scheduling. Their approach pivots on whether the prediction

is highly confident: if so, a scheduled planning strategy is employed; otherwise, they

resort to backfilling. Their model, based on gradient boosting with job descriptions as

input, operated as an online scheduler, updated daily to manage new jobs. Gradient

boosting is an ensemble machine learning technique that combines multiple weak

learners (typically decision trees) to create a strong predictive model. The “online”

nature of the scheduler means it can continuously learn and adapt to new data as it

becomes available, rather than being trained once on a static dataset. This application

of meta-learning to HPC scheduling demonstrates its potential for improving system

performance and resource utilization in complex, dynamic environments. However,

there remains significant room for further exploration and application of meta-learning

techniques in HPC and computer architecture domains.

2.4 Conclusion

This chapter identifies existing methodologies and their limitations in optimize HPC ap-

plication design across a heterogeneous hardware environment using proxy applications,

simulation, and ML modeling. The evolution of proxy application characterization has

underscored the importance of developing generalized frameworks that can be applied

across various contexts, moving beyond methodologies that are specific to individual

application pairs. Furthermore, advancements in simulation techniques, particularly

through the use of methods like SimPoint and its extensions, highlight the ongoing

need for improved accuracy and efficiency in sampling. Finally, the exploration of

runtime prediction reflects the shifting landscape toward machine learning-driven

25

approaches, emphasizing the necessity for models that are adaptable, generalizable,

and capable of real-time predictions.

Chapter 3

Beyond Guess and Check:

Quantifying the Fidelity of Proxy

Applications

3.1 Overview

High-performance computing (HPC) applications play a pivotal role in driving HPC

system co-design, procurement, acceptance testing [65], and exploration of program-

ming models [49] and communication bottlenecks [13]. Optimizing infrastructure

for specific HPC applications can significantly enhance application performance pre-

dictability, security, and efficiency, leading to substantial power and cost savings.

However, the complexity of these applications, along with their size and dependencies,

can make this optimization difficult and time-consuming. Additionally, the sensitive

nature of some HPC applications in terms of security and trade secrets often limits

their availability to infrastructure designers. As targeted submodels, proxy applica-

tions offer a more manageable and privacy-preserving alternative for analyzing parent

applications and therefore are valuable for system design and optimization.

26

27

Figure 3.1: Calder Architecture

Proxy applications have successfully been used in HPC system design in the

Exascale Computing Project (ECP) [27]. However, as parent applications continue

developing and refining, their proxy counterparts undergo continuous transformation.

The success of this approach relies on the fidelity with which proxy applications

model the parent applications. Creating and maintaining an accurate proxy-parent

relationship has been challenging without a consistent means of quantifying proxy

fidelity.

Existing methods for quantifying proxy fidelity face several limitations. The lack of

standardization in metrics and methodologies makes the comparisons across different

studies difficult. The multi-dimensional nature of HPC application performance

complicates the creation of a comprehensive fidelity metric. As HPC applications

grow in size and complexity, traditional comparison methods become computationally

expensive and time-consuming. Moreover, the dynamic behavior of HPC applications

with different input data and system configurations further complicates the evaluation

process.

Our work aims to bridge this gap by objectively quantifying the similarity between

a parent and its proxy application. We introduce Calder, a novel and versatile toolkit

that measures similarity across various axes, providing comprehensive, quantitative

metrics for comparison. As depicted in Figure 3.1, Calder comprises three main

28

components: Data Collection, Feature Selection, and Similarity Measurement. The

core functionality of Calder revolves around using unsupervised statistical techniques

to evaluate the similarity in resource utilization between proxy and parent applications.

By selecting diverse techniques that define similarity in uncorrelated ways, Calder

interprets and synthesizes these perspectives to derive a unified measure of proxy

fidelity.

We show how to select the most appropriate similarity algorithms for different

datasets and correlate our results with external indicators, such as kernel timing.

Furthermore, the similarity measurements and feature selection approach in Calder

can also be applied to various HPC problems, including compiler optimization, code

refactoring, and application input sensitivity. This practical and sustainable approach

to evaluating how accurately proxy applications mirror their parent applications fulfills

a critical need in the scientific community, providing a valuable tool for researchers

and developers in HPC co-design.

3.2 Methods

3.2.1 Hardware Performance Counters

Advantages of Hardware Performance Counter

Common approaches for evaluating HPC application performance [76] include profiling,

such as gprof, which provides detailed information about function-level performance

and resource usage; tracing, like strace, which captures the sequence and timing of

events during execution; and benchmarking, which allows for standardized performance

comparisons. Performance modeling can predict behavior under various conditions,

while static/dynamic code analysis and scalability testing offer additional insights.

Each method has its strengths and is suited to different aspects of performance

29

evaluation.

Among these methods, hardware performance counters stand out as particularly

effective for profiling applications. These special-purpose registers, built into modern

processors, count hardware-related events such as cache misses, branch mispredictions,

and CPU cycles. Hardware performance counters offer several advantages in comparing

proxy and parent applications [74]. They provide low-level metrics that directly reflect

the interaction between the application and the hardware. Additionally, they introduce

minimal overhead to the application’s execution, ensuring that the performance

data collected is representative of the application’s behavior. Moreover, hardware

performance counters can capture a wide range of performance aspects simultaneously,

allowing for a multi-faceted comparison between proxy and parent applications. This

unique combination of depth, precision, and efficiency makes hardware performance

counters our chosen method for comparing proxy and parent applications.

Usage of Hardware Performance Counters

Modern processors typically have limited hardware performance counter registers.

Many Intel processors have 3 to 4 fixed-function counters and 4 to 8 programmable

counters [53], while some AMD processors might have up to 6 programmable counters.

Fixed-function counters are dedicated to specific, predefined events (usually critical

ones like CPU cycles, instructions retired, etc.). Programmable counters are more

flexible and can be configured to count a wide variety of events.

Due to hardware constraints, only a limited number of counters can be mon-

itored simultaneously in a single run. When the number of desired performance

events exceeds the available hardware counters, two common solutions are employed:

time-multiplexing and sampling techniques. The time-multiplexing method switches

between different sets of events during the program’s execution, meaning not all events

are monitored continuously. The sampling method, on the other hand, periodically

30

reads the counters and estimates the total counts. Both methods have drawbacks:

time-multiplexing may miss short-lived events, while sampling can lead to statistical

inaccuracies.

To overcome these limitations and collect comprehensive data, multiple program

executions are necessary, each monitoring a different set of events. While this approach

provides more accurate and complete performance analysis, it can be time-consuming

and may introduce variability between runs. To address this, we monitor events

in small groups and run each group 5 times to decrease variance. Additionally,

architectural dependencies of hardware counters can complicate comparisons across

different systems, so our compare the counter performance of applications within the

same system. To fully understand the root causes of low-level hardware performance

counter results, we also incorporate codebase analysis as a supplementary technique.

3.2.2 Feature Selection

Given the vast array of hardware performance counters available on most HPC

architectures, identifying a comprehensive yet minimal set of features is challenging.

There are two main concerns:

1. Data Collection is Time-Consuming. Collecting and processing vast

amounts of data can be time-intensive and expensive, especially in HPC environments.

2. The Curse of Dimensionality. As the number of features increases, the

volume of the feature space grows exponentially, which can lead to sparse data

representations.

Feature selection and feature extraction are two categories of feature dimension

reduction techniques. Feature selection chooses a subset of relevant features based

on certain criteria, which is more suitable for our task. There are three kinds of

feature selection methods. Filter Methods evaluate the intrinsic properties of the data

independently of any learning algorithm. Examples include assessing data variance

31

and using Fisher scores to rank features by their importance. Wrapper Methods use a

specific learning algorithm to evaluate the performance of different feature subsets,

such as through recursive feature elimination. Embedding Methods select features

during the construction of the learner itself, as seen in algorithms like random forests,

which inherently evaluate feature importance.

Filter methods offer several advantages for our research context. They are compu-

tationally less expensive and not tied to a specific learning algorithm. Additionally,

they provide clear interpretability through feature ranking. Given these benefits,

we implement an efficient and effective filter-based feature selection process in this

research. Our feature selection layer consists of the Feature Score that ranks the

important features and the Correlation Filter that removes the correlated features.

Feature Score Methodology

Our feature selection process begins with the construction of a data tensor X that

comprises n rows of application samples x1, ..., xn and d features f1, ...fd. To isolate

the most impactful features while maintaining the structural integrity of the data,

we employ an unsupervised, graph-based ranking technique known as the Laplacian

score [46].

The Laplacian score leverages graph-based representation and spectral properties

to capture the local geometric structure of the data. It is a perfect choice for our task

where maintaining local neighbor relationships (similarity between proxy and parent

applications) is important. The Laplacian score can handle non-linear relationships and

is particularly useful when dealing with complex, high-dimensional data. Furthermore,

it can be used with various similarity measures to construct the graph.

The Laplacian score for the rth feature is calculated as follows:

Lr =
Σij (fri − frj)

2 Sij

Var (fr)
, (3.1)

32

Figure 3.2: Laplacian Score for the Top 10 More Important Features Pre-correlation
Filter

where the weight matrix Sij = e−
∥xi−xj∥2

2 is non-zero only for neighboring points.

fri is the rth feature value for point i. The score prioritizes features with lower

values, as they are more critical for preserving neighbor similarity. Figure 3.2 shows

the Laplacian scores for the hardware events (features) sorted in ascending order to

identify the most important contributors to similarity. Feature names are on the

y-axis, and corresponding scores are on the x-axis. For example, the first feature

‘MEM LOAD UOPS L3 HIT RETIRED:XSNP NONE’, with a Laplacian score of

0.005378, is more essential for determining similarity than the consecutive feature

‘MEM LOAD RETIRED L3 HIT’, with a score of 0.005463.

Correlation Filter

Despite the efficacy of the Laplacian score in identifying important features, it does

not address feature redundancy. To refine our feature set, we apply a correlation filter

using the Pearson correlation coefficient (PCC), which measures the linear relationship

between two variables. The coefficient ranges from +1 (perfect positive correlation)

to -1 (perfect negative correlation), with 0 indicating no linear correlation. We set

a threshold of 0.9 for PCC to identify and remove highly correlated features, thus

reducing redundancy without losing critical information:

ρfi,fj =
cov(fi, fj)

σfiσfj

, (3.2)

33

After computing PCC values for all ranked features, we selectively include the

most informative features, discarding any that exceed the correlation threshold (> 0.9

or < −0.9). This process continues until all significant features are selected.

While PCC is effective for evaluating linear relationships, it may not capture

non-linear dependencies typical in more complex hardware event metrics. In such

cases, we recommend using the Kendall rank correlation coefficient [59] for a more

nuanced analysis.

3.2.3 Similarity and Distance

To evaluate the similarity between applications, we calculate the pairwise distance

for each application pair using four representative similarity measurement methods.

These methods were chosen for their complementary strengths in capturing different

aspects of similarity. We then compare the outcomes of these similarity metrics and

aggregate the results by averaging the similarity scores across all four methods to

capture a comprehensive view of application similarity.

Cosine Similarity

Cosine similarity measures the angle between vectors in an inner product space. The

inner product can be conceptualized as the projection of one vector xi in the direction

of another vector xj. We choose this metric for its ability to capture directional

similarity, regardless of magnitude differences. This is particularly useful when

comparing application behaviors that may differ in scale but share similar patterns.

The cosine similarity is defined as:

cos(θ) =

∑d
k=1 xikxjk

∥xi∥∥xj∥
.

34

The cosine similarity ranges from 1.0 (identical vector direction) to 0.0 (orthogonal

vectors), with the angle θ varying from 0◦ (equivalent) to 90◦ (dissimilar). If two

applications exhibit similar behaviors, their cosine similarity angle is expected to be

closer to 0◦.

Jensen-Shannon (JS) Divergence

JS divergence [34] measures the distance between two probability distributions P

and Q. We select this metric for its ability to handle probability distributions and

its symmetry, which is advantageous when comparing application pairs. First, we

normalize each vector by dividing its elements by the sum of all elements, converting

the vector into a probability distribution. JS divergence is a symmetric measure and

a generalization of Kullback–Leibler (KL) divergence [62], which is defined as:

KL(P |Q) =
∑
x

P (x) log
P (x)

Q(x)

= −
∑
x

P (x) logQ(x) +
∑
x

P (x) logP (x)

= cross entropy – entropy.

Unlike KL divergence, which is asymmetric and unbounded, JS divergence is

symmetric and returns a value between 0 and 1, where values near 0 indicate similarity

and values near 1 indicate divergence. JS divergence is defined as:

JS(P∥Q) =
1

2
KL(P∥M) +

1

2
KL(Q∥M), M =

1

2
(P +Q).

Wasserstein Distance(WD)

WD[102], also known as Earth Mover’s Distance, measures the minimum “cost” of

transforming one probability distribution P into another Q. This “cost” is quantified

as the amount of distribution weight moved, multiplied by the distance it is moved.

35

We include WD because it considers the order of events and compare distributions

of different lengths. This is suitable for comparing application performance across

platforms with varying hardware event counts. The pth WD is defined as:

Wp(P,Q) =

(
inf

J∈J (P,Q)

∫
∥x− y∥pdJ(x, y)

)1/p

,

where J (P,Q) denotes all joint distributions J for (X, Y) that have marginals P

and Q. We use the first WD (p = 1) between two 1-dimensional distributions. WD

has no upper bound; 0 indicates equivalence, and values near 0 indicate similarity,

while increasing values indicate growing divergence.

Mahalanobis Distance (MaD)

MaD is a multivariate distance metric that measures the distance between a point

(vector) and a distribution, or between two points from the same distribution. We

choose this metric for its ability to account for the covariance structure of the data,

making it valuable for multivariate analysis and detecting subtle differences in appli-

cation behavior. The MaD between two vectors xi and xj from the same distribution

is defined as:

dM(xi, xj) =
√
(xi − xj)TS−1(xi − xj),

where S is the covariance matrix of the dataset. Geometrically, MaD transforms

the data by whitening and normalizing the covariance, then computes the Euclidean

distance for the transformed data. It accounts for the variance of each variable and

the covariance between variables, making it useful for multivariate anomaly detection

and imbalanced classification. Note that MaD requires more samples than features to

calculate the covariance matrix, so we reduce dimensionality with PCA beforehand.

MaD has no upper bound; 0 indicates equivalence, and values near 0 suggest similarity,

36

while larger values indicate growing divergence.

3.3 Experiment

3.3.1 Application Suite

Our study uses a comprehensive suite of proxy and parent applications across various

scientific domains, detailed in Table 3.1, alongside standard HPC benchmarks to

establish a performance baseline. Many of these applications are widely used in their

respective fields and represent real-world scientific workloads. We selected proxy

applications that are officially recognized and maintained by the parent application

developers or reputable HPC organizations. Due to export controls, not all applications

have corresponding proxy/parent pairs. In these cases, we included additional HPC

applications and benchmarks to provide a comprehensive view of HPC workloads and

to establish performance baselines.

Each proxy application is tailored to replicate the computational, communication,

and memory behaviors of its respective parent application, as documented by the

developers. We ensure consistency by using matching or similar input problems and

parameters for each proxy/parent pair, with all applications consuming approximately

50% of available memory. A single representative input reflecting typical workloads

was chosen for each application to standardize resource utilization.

• LAMMPS [97] is a classical molecular dynamics code, with particles ranging from

a single atom to a large composition of material. It implements mostly short-

range solvers but does include some methods for long-range particle interactions.

• ExaMiniMD [115], which is a proxy for LAMMPS, implements limited types of

interactions, and only short-range ones.

37

Table 3.1: Proxy/Parent and control apps

Proxy Version Parent Version Other apps Version

ExaMiniMD 1.0 LAMMPS 8/17/2017 AMG2013 2013 0
miniQMC 0.4 QMCPACK 3.8 Castro 20.07
miniVite 1.0 Vite 9/30/2020 Laghos 3.0
Nekbone 3.1 Nek5000 19.0 PENNANT 0.9
PICSARlite 7/16/2020 PICSAR 7/16/2020 SNAP 1.09
SW4lite 2.0 SW4 2.0 HPCG benchmark 3.1
SWFFT 1.0 HACC 1.0 HPCC benchmark 1.5.0
XSBench 19.0 OpenMC 0.11.0

• QMCPACK [60] is a quantum Monte Carlo package for computing the electronic

structure of atoms.

• MiniQMC [100] covers QMCPACK’s essential computational kernels. The

computational themes of miniQMC and QMCPACK are particle methods, dense

and sparse linear algebra, and Monte Carlo methods.

• Vite [41] is an implementation of Louvain method for (undirected) graph clus-

tering or community detection.

• MiniVite [40] is a proxy application for Vite that implements a single phase of

the Louvain method in distributed memory for community detection.

• Nek5000 [85] is a spectral element computational fluid dynamics solver.

• Nekbone [8], which is a proxy application for Nek5000, solves the Poisson

equation with a spectral element multigrid preconditioned conjugate gradient

solver.

• PICSAR [119] is Particle-In-Cell solver.

• PICSARlite [11] which is a proxy application for PICSAR, is a subset of the

actual codebase.

38

• SW4 [96] is a geodynamics code that solves 3D seismic wave equations with

local mesh refinement.

• SW4lite [33] is a scaled-down version of SW4 that has limited seismic modeling

capabilities, but does solve the elastic wave equation and uses some of the same

numerical kernels as those implemented in SW4.

• The Hardware Accelerated Cosmology Code (HACC) [43] is an N-body framework

that simulates the evolution of mass in the universe, with both short and long-

range interactions. The long-range solvers implement an underlying 3D FFT.

• SWFFT [33] is the 3D FFT that is implemented in HACC. Since this FFT

accounts for a large portion of the HACC execution time, SWFFT serves as a

proxy for HACC.

• OpenMC is a Monte Carlo particle transport code [101].

• XSBench [117] is a proxy application for OpenMC and represents the contin-

uous energy macroscopic neutron cross-section lookup kernel, which is a key

computational kernel of Monte Carlo particle transport.

• AMG2013 [47] is a proxy application for BoomerAMG and is a parallel algebraic

multigrid solver for linear systems arising from unstructured grid problems. We

ran the default Laplace problem with a custom resizing.

• Castro [17] is an adaptive mesh, astrophysical radiation hydrodynamics simula-

tion code.

• Laghos [30] is a proxy application that is a high-order Lagrangian hydrocode

meant to represent several compressible shock hydrocodes, including BLAST.

• PENNANT [7] serves as a proxy application for rad-hydro physics-based algo-

rithms on an unstructured mesh, modeling the computation and memory access

39

Table 3.2: Hardware Characteristics

Component Skylake Power9

L1 data cache (private) 32 KB, 8-way same
L1 instr. cache (private) 32 KB, 8-way same
L2 cache (per core) 1 MB, 16-way 512KB, 8-way
L3 cache (shared) 24.75MB, 11 way 120MB, 20-way

Memory (per node) 192 GB, DDR4-2666 256GB, DDR4-2667
Cores/threads 18/36 24/48
Sockets/node 2 same
Total nodes 1488 54
Interconnect Omnipath Mellanox EDR Infiniband
Max Memory BW (per processor) 20GB/sec 170 GB/sec
Memory channels (per socket) 6 8

patterns typical to rad-hydro applications. It is modeled on, and thus serves as

a proxy for, the LANL code FLAG.

• SNAP [10] serves as a proxy application for discrete ordinates neutral particle

transport, modeling the computation and memory access patterns typical to

neutral particle transport applications. It is modeled on, and thus is a proxy

for, the LANL code PARTISN.

• HPCG [9] implements a suite of computational and data access patterns that

closely match a broad set of important scientific applications.

• HPCC [5] is a benchmark suite designed to exercise standard memory access

patterns that are common to many scientific applications.

3.3.2 System Platform

For data collection, we utilized two hardware systems: an Intel Skylake and an IBM

Power9, both characterized in Table 3.2. These systems run RHEL7.8 and RHEL7.6

respectively. All applications were executed in MPI-only mode, using 128 ranks across

40

four nodes to balance the feasibility of conducting numerous experiments with the

need to capture significant communication behaviors.

3.3.3 Data Collection and Preprocessing

Our data collection infrastructure employs the Lightweight Distributed Metric Service

(LDMS [14]) and the Performance Application Programming Interface (PAPI [114])

to gather performance counter data. To ensure data quality, we examined all available

performance events (over 500) on our hardware platform and conducted functional

tests. The limited number of performance counter registers necessitates multiple runs

for complete data collection.

The data was categorized into 15 subgroups (e.g., Dispatch Pipeline, Instruc-

tion Cache) based on vendor recommendations [125] and node architecture insights.

These subgroups were further organized by architectural concepts (e.g., cache, branch

prediction, virtual memory) to clarify the relationships between proxy and parent

applications in terms of node components.

To ensure robustness and reliability, each event subgroup was run five times for

each application, totaling over 3000 data collection runs. We processed this data by

averaging the results across all ranks and runs, and then we normalized these averages

by the number of CPU cycles executed. By normalizing based on CPU cycles, we

establish a consistent method for comparing event rates across various applications and

execution scenarios. However, this approach has limitations: it may introduce biases

in I/O-bound or memory-bound scenarios (CPU waiting), might not fully capture

infrequent but significant events, and assumes equal value for all CPU cycles. Despite

these constraints, we believe this normalization offers a reasonable comparison basis.

This normalization produced a 500+ element vector for each application, repre-

senting a robust metric vector for similarity analysis. While a single metric sum might

not fully capture the intricacies of a time series, using a vector of multiple metrics

41

offers a more comprehensive representation. Our analysis in §3.4.2 demonstrates that

similar codebases consistently generate similar metric vector pairs. Thus, we consider

our assumption of similarity based on sums of scalar metrics to be well-founded.

To generate vectors for each application, we sample accumulated hardware counters

throughout execution and calculate the average of these counters for the last 5 seconds

of execution across all ranks. This yields an application vector xi, which contains a

series of averaged hardware event counters (denoted as xik).

We remove irrelevant (noisy) features before they are ranked. Hardware events in

our collection platform have a prefix (Table III), which allows us to filter some events

using domain knowledge. We observe, for instance, that a large number of hardware

events with the prefix ‘OFFCORE RESPONSE’ always show extremely small values

with little variance. Additionally, incomplete data features were removed to maintain

consistency across results.

Despite the option to apply preprocessing steps like centralization (zero mean),

normalization (norm 2 equals 1), or standardization (variance equals 1), we retained

the original scales of our data to preserve the inherent physical meanings (hardware

event counts per CPU cycle) and the relationships between features.

3.4 Results

3.4.1 Similarity Matrix Comparison

Intel Skylake platform

We use four similarity algorithms to evaluate the accuracy of the resultant proxy/parent

pairs. Since the similarity matrix is symmetric on the diagonal, we use lower triangular

heatmaps (Figure 3.3, 3.4a, 3.4b, and 3.4c) to visualize similarity. To facilitate direct

comparison between methods, we scale the JS divergence, Wasserstein distance, and

42

Figure 3.3: Cosine Similarity, Skylake

Mahalanobis distance values (multiplying by 100, 1000, and 10 respectively) to match

the 0-90 range of cosine similarity scores. Figure 3.4d shows the aggregate result of

averaging similarity scores across all four methods.

The diagonal entries are zero, indicating the distances between the applications

and themselves. We normalize the scales in each figure for comparability. Dark green

indicates high similarity, while dark red indicates high dissimilarity. Proxies with cor-

responding parents are listed first on the axes, with their parent immediately following.

Eight 2×2 black-bordered blocks highlight the relationships between proxy/parent

pairs. We expect the lower left of these blocks to be dark green, indicating high

similarity. The nine miscellaneous applications (either proxies with no parents or vice

versa) are listed at the bottom and right of the axes. Two lines divide each figure,

placing proxy/parent pairs in the upper left quadrant and control applications in the

lower right. Setting a threshold for similarity can be complex [71], as it depends on

the design goals of the proxies. We set the threshold to 30 for our suite of algorithms,

based on code-based kernel function analysis (§3.4.2) and the range of cosine similarity.

43

(a) JS divergence (100×) (b) Wasserstein distance (1000×)

(c) Mahalanobis distance (10×) (d) Similarity for ensemble methods

Figure 3.4: Our similarity methods show similar results for proxy-parent agreement.

Overall, the four distance metrics return similar correlations. For example, Fig-

ure 3.3 identifies pairs such as PICSARlite/PICSAR, SW4lite /SW4 as highly similar

proxy/parent pairs using cosine similarity, These pairs are known to functionally

represent similar applications (e.g., PICSARlite is a subset of the PICSAR codebase).

The cosine similarity results suggest that these proxy applications effectively capture

the computational characteristics of their parent applications.

Two known proxy-parent pairs exhibit some behavioral gaps: miniVite/Vite are

moderately similar, with a 35◦ angle between them, and XSBench/OpenMC are

highly dissimilar, with a 60◦ angle between them. This discrepancy likely arises from

differences in complexity between the parent and proxy; XSBench performs only

the cross-section lookup portion of Monte Carlo neutron transport, while OpenMC

44

implements the full neutron transport code, which can better mask poor cache/memory

behavior. For HPC system designers, this implies that miniVite may be a reasonable

proxy for Vite in some scenarios, but caution should be exercised when using XSBench

as a proxy for OpenMC, particularly in cache and memory-related studies.

The unpaired proxy applications (AmMG2013, Castro, Laghos, PENNANt, and

SNAP) show relative similarity to each other but do not match the known pairs.

Interestingly, AMG2013 is similar to OpenMC, suggesting it could serve as a potential

proxy for OpenMC in certain computational contexts. For HPC system designers, this

finding implies AMG2013 as a candidate for further validation (§ 3.4.5) and testing,

especially in areas where memory-intensive computational patterns are critical. The

other four HPC benchmark-related applications do not demonstrate mutual similarity,

likely due to their design as synthetic programs measuring distinct memory or data

patterns rather than simulating specific applications.

The pairs MiniQMC/QMCPack are relatively similar but distinctly different from

other applications. Both are particularly sensitive to floating point, memory bandwidth,

and memory latency performance, so it is not surprising that they are similar to

HPCC streams, which measures sustainable memory bandwidth. In our suite, only

Nekbone/Nek5000 are similar to HPCG, which assesses the performance of basic

operations (e.g., matrix multiplication, vector updates); we attribute this to the

gradient iterations in Nekbone/Nek5000 aligning closely with those cataloged by

HPCG.

We also observe diversity in results across the four similarity algorithms. Dark

red areas indicate that HPCC streams and HPCG are highly dissimilar to other

applications in terms of cosine similarity, JS divergence, and MaD, but similar in WD.

This discrepancy might be attributed to WD placing a greater emphasis on the order

of features within a vector, causing any change in the sequence to impact the WD

calculation. For instance, if divergent events are positioned far apart in the vectors,

45

Figure 3.5: Cosine Similarity with All Features, Power9

the WD value increases. Notably, HPCC degemm differs from other applications

only in MaD, likely due to the whitening process utilized. MiniQMC/QMCPACK

diverge more in WD and MaD compared to the other two algorithms. While most

differences stem from how algorithms assess memory and cache subgroups (§3.4.5),

the unexpected divergence between MiniQMC/QMCPACK in WD and MaD requires

further investigation. For HPC system designers, this highlights the importance

of selecting the appropriate similarity metric based on the specific performance

characteristics being evaluated.

IBM Power9 Platform (Power9)

While the Power9 platform shares many characteristics with the Intel Skylake platform

(Table 3.2), notable differences exist in the memory subsystem and SIMD (Single

Instruction Multiple Data) widths, which may affect parallel performance. The Skylake

processor supports up to 512-bit SIMD, whereas Power9 supports only 128-bit SIMD.

For about half of the applications, we observed similar execution times on both

46

platforms. However, significant slowdowns were noted for others. Figure 3.5 visualizes

cosine similarity for applications on Power9.

Overall, proxy/parent application pairs are more convergent on Power9 than on

Skylake, except MiniQMC/QMCPack which show more divergence on Power9. We

hypothesize that this divergence results from the improved memory subsystem in the

Power9 processor. QMCPACK has undergone refactoring efforts to enhance memory

efficiency, as evidenced by their changelog on GitHub. In contrast, MiniQMC shows

no evidence of similar optimizations.

In summary, similar proxy/parent pairs maintain consistency across similarity

algorithms, while dissimilarities are algorithm-dependent and may be exaggerated by

different system environments. Since these distance methods yield consistent results

for similar pairs with negligible runtime differences, we select cosine similarity for

validating fidelity due to its simplicity, performance, and ease of interpretability via

geometric angle. Unless otherwise specified, our subsequent analyses are based on the

Skylake system.

3.4.2 Root Cause Analysis

To establish a process for determining ground truth and to further understand why our

similarity algorithms find certain proxy/parent pairs similar or difficult to correlate, we

investigate their code base implementations, particularly their kernel functions. Scien-

tific applications consist of one or more kernel functions that collectively solve a certain

scientific problem. We chose four proxy/parent pairs that cover a range of similarities:

ExaMiniMD/LAMMPS, MiniVite/Vite, SW4lite/SW4, and miniQMC/QMCPack.

Their key kernel profiles are illustrated in Figure 3.6a, 3.6b, 3.6c, and 3.6e, respectively.

In each figure, the x-axis shows kernel function names, sorted by the normalized

execution time (with some entries representing combinations of related kernel func-

tions). The y-axis represents normalized execution time - the percentage of total

47

(a) ExaMiniMD/LAMMPS (b) sw4lite/sw4

(c) miniQMC/QMCPAC (d) miniQMC/QMCPAC details (e) MiniVite/Vite

Figure 3.6: Kernel Function Profiles of Proxy/Parent Pairs Sorted by Importance

application runtime spent in each kernel, excluding MPI communication time. We

use the normalized kernel function execution time between the pairs rather than the

clock time because the proxy is much smaller than the parent and thus executes

more quickly. The normalized time, or time percentage, represents the ratio of a

kernel’s execution time compared to the total execution time of the application. Note

that communication time is excluded, as it pertains to MPI communication rather

than kernel execution. Kernels with zero value indicate their absence in a particular

application.

LAMMPS, a classical molecular dynamics simulator, implements both short-range

solvers and long-range particle interactions, while its proxy, ExaMiniMD, implements

only short-range solvers. The dominant kernels are compute zi and computer yi. The

kernel percentage time distributions are similar (Figure 3.6a), validating the 4◦ cosine

similarity between the pair as indicated in (Figure 3.3). This high similarity suggests

48

that ExaMiniMD effectively models the short-range solver behavior of LAMMPS, mak-

ing it a reliable proxy for optimizing these aspects of the parent application. However,

its effectiveness may be limited when considering long-range particle interactions.

SW4lite is developed using the same code base as SW4, so it is unsurprising

that most functions report close execution time percentages, especially the most

significant functions, evalRHS. The kernel percentage time distribution is almost the

same (Figure 3.6b), supporting the 2◦ similarity between SW4lite and SW4 Calder

reports in Figure 3.3. This extremely high similarity indicates that SW4lite is a highly

effective proxy for SW4, accurately representing its computational characteristics

across all major kernels.

miniQMC and QMCPack are both quantum Monte Carlo packages for computing

the structure of atoms. Although the four key kernel profiles are similar (Figure 3.6c),

the function kernels within each kernel diverge (Figure 3.6d). This deeper divergence

leads to the relative 11◦ similarity between miniQMC and QMCPAC (Figure 3.3).

While miniQMC captures the overall behavior of QMCPack reasonably well, the

differences in function kernels suggest that it may not accurately represent some of

the finer-grained computational characteristics of the parent application. This could

impact its effectiveness as a proxy for certain detailed performance optimizations.

MiniVite and Vite are both implementations of the Louvain method for graph

clustering. Vite has slightly larger kernel times in the short-time functions compared

to MiniVite. Additionally, Vite has an extra function for traversals between multiple

graph levels that do not exist in MiniVite. The divergence in Figure 3.6e supports

the similarity score of 35◦ between MiniVite and Vite (Figure 3.3). This significant

difference in kernel-level behavior indicates that MiniVite may not be a highly effective

proxy for Vite in all scenarios. It likely captures some of the core computational

characteristics but misses important aspects related to multi-level graph traversals.

This could lead to inaccurate performance predictions when using MiniVite to op-

49

Figure 3.7: Relative difference of Cosine
Similarity between top unrelated features
and all features (Skylake)

Figure 3.8: Relative difference of Cosine
Similarity between top unrelated features
and all features (IBM)

timize systems for Vite, particularly for workloads that heavily utilize the missing

functionality.

To establish a robust ground truth for comparison, kernel-level analysis of proxy/parent

pairs offers the most accurate foundation. Examining four such pairs, three demon-

strate significant similarity in their function kernels, except MiniVite/Vite, which

achieves only a 35% cosine similarity score. Given that the cosine similarity metric

ranges from 0° (identical) to 90° (dissimilar), we set a similarity threshold of 30° for this

analysis. This threshold suggests that MiniVite/Vite exhibits a notably lower degree

of similarity than the other three pairs. This analysis underscores the importance of

carefully evaluating proxy applications, as even those designed to represent specific

parent applications may have limitations in accurately modeling all aspects of the

parent’s behavior.

3.4.3 Feature Selection and Feature sensitivity

To simplify the data collection for future performance similarity analysis, we sought to

identify a concise subset of features that preserve the similarity of proxy/parent pairs

compared to using all features (§ 3.2.2). Employing the Laplacian score algorithm, we

ranked the features and subsequently fed them to the correlation filter to capture the

top uncorrelated features. For the Laplacian score calculation, we set the neighbor size

50

parameter to 2, based on the assumption that each proxy/parent pair shows similar

performance. After removing the correlated features through the correlation filter, we

obtained a ranked set of 89 uncorrelated features.

To assess the robustness of our feature selection method, we conducted a sensitivity

analysis by varying the number of top features selected. The similarity matrices

remained largely stable across different feature subsets, with the most significant

changes observed when using more than 20 features. The selection of 25 features

for Skylake represents an optimal balance point where additional features provided

diminishing returns in similarity preservation.

As illustrated in Figure 3.7, we ultimately selected the top 25 uncorrelated features

to compute the similarity matrices for application pairs. Table 3.3 provides examples

of top unrelated features for Skylake. Notably, certain features present in Figure3.2

are absent from Table3.3 due to their removal by the correlation filter.

Using only the top 25 features (Figure 3.9a) provided a more semantically inter-

pretable explanation of the similarity scores for application pairs compared to using all

500 features (Figure 3.3). Figure 3.9a retains all 2×2 black-bordered blocks exhibiting

high similarity between proxy and parent applications, while applications without a

proxy/parent relationship remain dissimilar. With a similarity threshold of 30, 75%

of the proxies in our suite demonstrate highly convergent behavior to their parents,

except for MiniVite/Vite and XSBench/OpenMC.

Figure 3.9b illustrates the similarity scores of application pairs on the Power9

system using the top 35 features. Although the quantitative distances vary, the

relative similarity between most proxy/parent pairs is preserved, similar to the results

obtained on Skylake. However, Power9 requires selecting a larger number of top

features (Figure 3.8) to capture the full spectrum of similarity information. Our

sensitivity analysis revealed that Power9 results stabilized at around 35 features,

showing minimal impact on the similarity matrices. This higher feature requirement

51

Table 3.3: Sample Top Features for Skylake

Rank Hardware event count names

1 MEM LOAD UOPS L3 HIT RETIRED:XSNP NONE
2 OFFCORE REQUESTS:DEMAND DATA RD
3 UOPS EXECUTED:THREAD
4 OFFCORE REQUESTS OUTSTANDING:ALL DATA RD
5 OFFCORE REQUESTS BUFFER:SQ FULL

(a) Cos Similarity, Top 25 Features, Skylake (b) Cos Similarity, Top 35 Features, Power9

Figure 3.9: Important Features

is likely due to the richer set of hardware counter features available on Power9.

3.4.4 Feature Standard Deviation

In addition to selecting important features that preserve the similarity of proxy/parent

pairs, we also investigated the factors contributing to dissimilarity. We analyzed the

runtime time series by calculating the standard deviation (ω) of each feature for each

parent application, using hardware event counts per second. We then checked whether

the accumulated mean of the corresponding feature in the proxy application falls

within two standard deviations of the parent’s accumulated mean, assuming a normal

distribution. While this is an approximation, it suffices for the granularity of our

analysis.

52

Table 3.4: Dissimilarity Feature Source for Proxy/Parents Pairs

Proxy and Parent pairs >2std >3std >4std >5std

ExaMiniMD / LAMMPS 10 8 8 4
SW4lite / SW4 1 1 1 1
SWFFT / HACC 17 12 11 8
miniQMC / QMCPACK 13 10 8 6
miniVite / Vite 72 38 23 21
Nekbone / Nek5000 11 6 2 2
XSbench OpenMC 16 9 9 8
PICSARlite / PICSAR 1 1 1 0
Unique feature #s 99 64 49 38

Table 3.4 presents the number of features for each proxy/parent pair where the

difference exceeds 2, 3, 4, or 5 standard deviations. The results align with our

expectations, as shown in Figure 3.3. SW4lite/SW4 and PICSARlite/PICSAR are

the most similar proxy/parent pairs, with only one feature in each pair deviating

significantly from the parent (‘MOVE ELIMINATION: SIMD NOT ELIMINATED’

and ‘UOPS EXECUTED: X87’, respectively). Proxies with more features deviating

beyond 2 standard deviations exhibit greater dissimilarity. For example, MiniVite and

Vite show 72 features with large deviations, resulting in a moderate similarity of 35◦

in cosine similarity, as illustrated in Figure 3.3.

This standard deviation analysis provides actionable insights by identifying specific

hardware events where their proxy applications deviate significantly from the parent

applications. For instance, if a proxy shows large deviations in branch misprediction

events, developers can focus on optimizing control flow patterns to better match the

parent application. Researchers can establish concrete thresholds, such as maintaining

critical hardware events within 2-3 standard deviations of the parent application’s

mean, and verify these thresholds across different architecture families.

53

Figure 3.10: Cosine Similarity for L1 Cache

3.4.5 Subgroup Features

In addition to examining the overall features, we also investigate the similarity within

subgroups and explore notable behaviors that influence proxy selection(§ 3.3.3). For

example, when selecting proxy applications for a memory performance study, it is

crucial to consider the diversity of memory behaviors among the candidate proxies.

Conversely, if the objective is to refactor code for improved memory performance,

minor discrepancies between the proxy and parent application in memory behavior

may be negligible.

We analyze various subgroups of data, such as Branch, Instruction Mix, Instruction

Cache, and L3 Cache. Some subgroups reveal a high degree of similarity, while others

show applications that are outliers within those subgroups. Some matrices show

extensive dissimilarities. For instance, Figure 3.10 illustrates similarity within L1

cache-related performance counters. MiniQMC/QMCPack exhibit a cosine similarity

that approaches our upper threshold, making them relatively similar to each other

and dissimilar to other applications in this subgroup. The observed low similarity in

L1 cache behavior between MiniQMC and QMCPack is due to the code modifications

54

Figure 3.11: Cosine Similarity for Mem-
ory Pipeline

Figure 3.12: Cosine Similarity for Execu-
tion Pipeline

in QMCPack that are not reflected in MiniQMC, altering the memory and cache

behaviors [60]. Calder can identify such changes, making it easier for proxy developers

to observe the behavior differences, address code modifications, and create more

accurate proxies.

Outlier applications display inconsistencies across various subgroups. For exam-

ple, in the memory pipeline subgroup (Figure 3.11), ExaMiniMD/LAMMPS show

dissimilarity from others, which may be because solving sparse matrix equations

requires less back-end memory than other operations. In the Execution Pipeline

subgroup (Figure 3.12), MiniQMC, QMCPack, XSBench, and HPCC streams exhibit

divergent behaviors from all other applications. In conclusion, investigating subgroups

provides a valuable method for identifying similarities and differences in specific areas

of application behavior.

3.4.6 Evaluation on Network Counters

To demonstrate the generalizability of Calder, we examine the similarity of proxy

and parent applications using the performance of internal network counters. We chose

the Cray Aries network for this evaluation, as it provides counters that reveal the

network behavior of MPI applications. Using the LDMS Aries latency and bandwidth

55

Figure 3.13: Aries lbw co-
sine similarity

(a) Nekbone (b) Nek5000

Figure 3.14: Network Point-to-Point Communicating

sampler, we collect the Aries performance counters and calculate the maximum and

minimum response times for outstanding requests to the Aries network interface card

(NIC). Additionally, we count the number of bytes sent and received by the NIC.

The results in Figure 3.13 show the similarity matrix for pairs. ExaMiniMD and

LAMMPS, SW4lite and SW4, and SWFFT and HACC perform similarly, while Nek-

bone and Nek5000 show significant divergence. To further investigate this divergence,

we collected pairwise communication patterns using CrayPat [6] for all application

pairs. These patterns include peer-to-peer statistics that capture point-to-point com-

munication between MPI processes and the total number of calls between them. The

data records messages sent from a specific source process/rank to a specific destination

process/rank.

Figure 3.14 indicates that the communication patterns of Nekbone and Nek5000

diverge, with approximately 68% of Nekbone’s communicating pairs present in Nek5000,

accounting for 58% of Nekbone’s total communication. The MPI point-to-point data

for the other proxy/parent pairs also exhibit similar patterns that agree with the Aries

similarity matrix outcome in Figure 3.13.

56

3.5 Discussion

In this work, we show that the particularities of the similarity algorithms have less

impact than predicted on the likelihood of correlating proxy/parent pairs. We posit

that this is because HPC proxy/parent applications share core functionalities, even

if they are implemented differently. This shared core behavior may lead to similar

performance counter profiles, which are then captured by various algorithms. By

comparing the similarity of subgroup features, we can identify and select proxies that

represent the desired subgroup features of the parent.

Overall, our work provides a comprehensive, quantitative characterization of proxy

application fidelity at the hardware level, using statistical similarity algorithms across

a large suite of proxy/parent application pairs. The Calder toolkit and data collection

infrastructure, which are publicly available for similarity measurements and collection,

are actively used and deployed on HPC production systems. This research is crucial

for advancing HPC and other domains by ensuring the reliability and efficiency of

proxy applications.

In this work, we use kernel analysis in the codebase as ground truth to select the

threshold for cosine similarity. While this approach has proven effective, establishing

more robust ground truth metrics remains an open challenge. Our current methodology

also has several limitations. First, our experiments are based on a single input for each

application, which may not capture the full range of application behaviors. Second, the

approach may face scalability challenges when dealing with larger application suites

or more complex hardware configurations that generate more performance counters.

For future work, input sweep experiments using various inputs are the next step

for a more comprehensive evaluation of our methodology. While we focused on proxies

that represent node behavior, Calder is generalizable and can accept any data that it

can preprocess and vectorize. We plan to apply Calder beyond HPC workloads to

compare the I/O behavior of appropriate proxies to their parent applications, as well

57

as to applications running on GPUs.

Chapter 4

SimPoint++: Advanced Sampled

HPC Application Simulation

4.1 Overview

SimPoint [109] is a widely adopted technique for simulation acceleration in computer

architecture. It uses statistical sampling and clustering to capture a small set of

simulation points to represent the complete execution of a program for efficient

and accurate simulations. SimPoint has been integrated into numerous tools (e.g.,

PinPoint[92], BarrierPoint [22], and LoopPoint [104]) and simulation frameworks (e.g.,

Gem5 [75] and Sniper [21]), revolutionizing microprocessor simulation and performance

analysis. However, the most recent version (SimPoint 3.0) from 2006 lacks advanced

dimension reduction and clustering algorithms. Furthermore, SimPoint often identifies

more representative points than necessary, increasing simulation time.

We introduce SimPoint++, an improved version of SimPoint to address these

limitations. As shown in Fig. 4.1, SimPoint++ inherits the architectural principles of

SimPoint, featuring two updated components—dimensional reduction and clustering—

which are highlighted with a gray background in the workflow. SimPoint++ employs

58

59

Figure 4.1: Workflow of SimPoint++

the within-cluster sum of squares (WCSS) and silhouette score to estimate and fine-

tune the range of cluster number K values, replacing the less effective Bayesian

Information Criterion (BIC) method. The new Python framework of SimPoint++

also provides a dimension reduction pipeline for effective clustering and supports

multi-thread application analysis. We evaluate SimPoint++ with SPEC CPU 2017

benchmarks. SimPoint++ achieves comparable or higher accuracy with significantly

fewer simulation points, resulting in a 5x speed-up in simulation time compared to

state-of-the-art solutions.

SimPoint++ offers a more robust and adaptive method for determining the

optimal number of clusters, which is crucial for balancing simulation time and rep-

resentativeness. It potentially enhances the efficiency and effectiveness of computer

architecture simulation and analysis.

4.2 Background

4.2.1 Original SimPoint Workflow

SimPoint is based on the observation that programs often exhibit repetitive behavioral

patterns over time, with program behavior directly linked to the code executed

during specific intervals. When intervals show similar code patterns or “fingerprints”,

they typically have comparable performance characteristics and can be represented

by a single sample. By identifying these representative patterns and selecting one

60

sample point from each, SimPoint enables rapid sampling that accurately reconstructs

the program’s entire execution process, significantly reducing simulation time while

maintaining high accuracy in performance analysis.

The SimPoint process involves several steps: First, the program is sliced into

chunks with the same time interval, and Basic Block Vectors (BBVs) are generated

for each chunk to summarize its behavior. Random Projection is then applied to

the BBVs to reduce dimensionality and limit computational complexity. Next, the

K-means algorithm clusters the reduced BBVs, grouping similar program regions.

Each cluster selects a region as a representative Sim Point, effectively encapsulating

the program’s behavior. Finally, each Sim Point is assigned a weight representing the

relative frequency of its corresponding behavior in the overall program execution.

While this workflow has proven effective for many applications, it has limitations

when dealing with increasingly complex modern HPC workloads. The following

subsections delve deeper into two key components of SimPoint: Random Projection and

K-means clustering. We examine their roles in the SimPoint process, their theoretical

foundations, and their potential limitations. This analysis provides essential context

for understanding how SimPoint++’s innovations overcome these limitations to

better serve modern HPC simulation needs.

4.2.2 Random Projection

Random projection [28] is a dimensionality reduction technique that projects high-

dimensional data onto a lower-dimensional space while approximately preserving

the pairwise distances between points. The process is straightforward: multiply the

dataset by a random matrix of size (original dimension × target dimension), with each

matrix entry ranging between -1 and 1. The theoretical foundation for this method is

provided by the Johnson-Lindenstrauss lemma[57]. Given the number of samples, this

lemma establishes an upper bound on the number of target dimensions required to

61

preserve distances within a specified error margin. Specifically, it suggests choosing

k ≈ log(n)/ε2, where n is the number of data points and ε is the desired accuracy. For

example, 1000 data points (n = 1000) and ε = 0.2: k ≈ log(1000)/(0.2)2 ≈ 6.9/0.04 ≈

172. However, in practice, fewer dimensions may yield good results, especially when

the data is sparse, which is the case for BBV. Notably, the lemma suggests that a

single random projection is typically sufficient for dimension reduction.

Random Projection’s computational efficiency and ease of implementation make it

suitable for handling the large-scale data generated during program analysis. SimPoint

uses 15 as the default reduced dimension number for SPEC CPU 2000 benchmarks.

This choice represents a carefully considered balance between computational efficiency

and accuracy.

However, using random projection in SimPoint has potential limitations. As

applications and benchmark suites grow in size and complexity, the default dimension

of 15 may be inadequate. This is because a significant amount of information might be

lost during the dimensionality reduction process. Consequently, this loss of information

could potentially result in less accurate phase detection. For example, in complex HPC

applications with multiple interleaved computational phases, reducing dimensionality

too aggressively might cause distinct phases to appear similar in the lower-dimensional

space. This could lead to misclassification of program behaviors, resulting in less

representative simulation points and reduced accuracy in performance estimation.

The limitations of random projection in SimPoint, particularly for modern, complex

applications, highlight the need for more advanced dimensionality reduction techniques

in SimPoint++, which can better preserve the intricate behavioral patterns of HPC

workloads.

62

4.2.3 K-means

K-means is an unsupervised machine learning algorithm used for clustering data points

into K groups based on their similarity. The algorithm operates iteratively, starting

with randomly initialized cluster centroids. It first assigns each sample to the nearest

cluster center and then updates these centers to the mean of all samples in each cluster.

This process continues until convergence or until a maximum number of iterations is

reached.

In SimPoint, K-means is employed to cluster program intervals with similar BBVs,

identifying program phases. The algorithm uses the projected interval vectors obtained

from random projection as input for efficient clustering in the reduced-dimensional

space. However, determining the optimal number of clusters (K) is non-trivial and

the initial centroid placement can lead to inconsistent results across different runs.

SimPoint addresses these challenges by running K-means multiple times with varying

values of K and using a scoring metric Bayesian Information Criterion(BIC) to select

the best clustering.

One potential limitation of K-means is its tendency to create clusters with relatively

similar spatial extent in each dimension, which may not always accurately represent

the structure of program phases. This could lead to suboptimal clustering in program

phases with significantly different scales or complex, non-complex shapes. Moreover,

the sensitivity of K-means to initial centroid placement can result in inconsistent

clustering across different runs, potentially affecting the reproducibility of simulation

results.

To address these limitations, SimPoint++ considers alternative initialization

methods such as K-means++. K-means++ improves centroid initialization by selecting

initial centroids that are well-spread across the data space. In the context of program

behavior clustering, this can lead to more stable and accurate clusters, especially

for applications with diverse phase behaviors. By improving the initial placement of

63

centroids, K-means++ can help SimPoint++ more consistently identify representative

program phases, enhancing the overall accuracy and reliability of the simulation

process.

4.2.4 Why do we need to replace BIC in SimPoint?

The Bayesian Information Criterion (BIC) is a statistical measure for model selection,

balancing model likelihood with complexity. SimPoint employs BIC to determine the

optimal cluster number K. However, the SimPoint authors identified limitations in

directly applying BIC to their clustering approach. They observed that BIC scores tend

to increase with the number of clusters, which could lead to selecting the maximum

possible K.

To address this, they developed an alternative method: instead of choosing the

maximum BIC score, they use binary search to select a clustering that achieves 90%

of the BIC score range, identifying a point beyond which the score increases only

marginally. The problem of determining the best K is then transferred to choosing an

appropriate MAX K, which is set by the researcher at the beginning of the process

as a hyperparameter. The authors provide complex recommendations for scenarios

requiring increased accuracy, such as reducing interval size and adjusting MAX K (300

or the square root of the total interval count). For users prioritizing accuracy, they

suggest that if SimPoint selects a cluster count near the MAX K, it might indicate that

the MAX K is insufficient to capture all unique behaviors, recommending doubling

the MAX K and rerunning the analysis.

However, the 0.9 threshold, while shown to minimize IPC variance within clusters,

may not be universally optimal across all programs or architectures. Furthermore,

the method’s dependency on MAX K may not always reflect the true underlying

structure of the data, and it could potentially overlook more optimal solutions beyond

the chosen MAX K. To select simulation points representing the top percent of

64

execution, SimPoint 3.0 offers a Coverage option, allowing users to choose only the

largest clusters that constitute the majority of program’s weight. While this strategy

could reduce the number of clusters, it is ineffective when cluster sizes are similar.

Despite all these efforts, they do not fully resolve the underlying issues. The

fundamental problem lies in BIC’s assumption of a Gaussian distribution, which is

often not applicable to program behavior data. Program behavior distributions are

diverse, with varying characteristics across clusters and features. This deviation from

the Gaussian assumption can lead to misinterpretation of cluster characteristics and

makes BIC difficult to use as a reliable criterion for program behavior problems.

To illustrate this limitation, consider a program that exhibits three distinct phases:

initialization, computation, and finalization, each with unique durations and charac-

teristics. The BIC criterion, with its Gaussian assumption, might fail to distinguish

these phases effectively, potentially creating unnecessary subdivisions within the longer

computation phase. With a maximum cluster limit MAX K of 20, BIC might identify

15 clusters even though there are only 3 distinct computational phases. This over-

clustering not only increases simulation time but also reduces the representativeness

of each simulation point.

This example underscores the need for a more effective method for determining

the optimal K that doesn’t rely on potentially arbitrary thresholds or MAX K values,

and that can adapt to the diverse and often non-Gaussian nature of program behavior

distributions. This is why SimPoint++ introduces the use of WCSS and silhouette

scores, which provide a more robust and adaptive approach to identifying the optimal

number of clusters across a wide range of program behaviors.

4.2.5 The Process of How SimPoint Finds the Optimal K

Let’s work through the process of how SimPoint uses Binary search to find the

optimal K value. We use the example program demo-matrix with 8 threads. First,

65

Table 4.1: Example of finding best K in Simpoint

Trial 1 Trail2 Trial 3 Trial 4 Trial 5

Run 1 k=1 25099 25099 25099 25099 25099
Run 2 k=20 32103 29335 29931 32237 32499
Run 3 k=10 30381 30235 27924 30257 29870
Run 4 k=15 32492 32286 27584 31896 30434
Run 5 k=12 31929 30906 29950 31105 30260
Run 6 k=11 29609 30358 30357 30579 29796

we concatenate the 8 threads into a single BBV for each sample. Then, we apply

SimPoint with a MAX K value of 20. Simpoint employs binary search to find the

best K in at most log(MAX K) runs. Each run consists of 5 trials with different

initializations for K-means clustering at a certain K value, The highest BIC score

among the 5 trials is selected to be the final BIC score for this run. The process begins

with two runs: K = 1 and K = MaxK. These runs establish the range of the BIC

score. We then calculate a threshold using the formula:

Threshold = BICK1 + (BICKmax − BICK1)× 0.90. (4.1)

The binary search continues, evaluating K values between 1 and MAX K. The search

concludes when we find the smallest K value that produces a BIC score exceeding the

calculated threshold. This K value is considered the optimal K for the given program

and thread configuration.

Table 4.1 illustrates the process of finding the optimal K value. In each run, the

trial with the highest BIC score is highlighted in bold. Run 1 (K=1) and Run 2

(K=20) establish the minimum and maximum BIC values, respectively, defining the

66

BIC range. Using these values, we calculate the threshold as follows:

Threshold = BICK1 + (BICK20 − BICK1)× 0.90

= 25099 + (32499− 25099)× 0.90

= 31759

(4.2)

In this example, the binary search process involves six runs. When K=12, we obtain a

BIC score of 31926 (in red), which exceeds the calculated threshold of 31759. Therefore,

we determine that the optimal K value is 12. Based on this result, we proceed with

clustering, generate simulation points (Sim Points), and calculate corresponding

weights using K=12 as the number of clusters.

However, this demo application addresses a relatively simple problem, and the

maximum K value (MAX K) is set too high. This results in the algorithm selecting a

best K value that is significantly larger than the truly optimal K. The 78 data points

in this example can be adequately described using fewer than 12 cluster centers. This

suggests that the chosen K value may be unnecessarily large for the given dataset,

potentially leading to a bigger optimal K.

4.3 Method

4.3.1 Dimension Reduction

SimPoint++ employs Truncated SVD, aka Latent Semantic Analysis LSA [54] for

dimension reduction. Truncated SVD approximates a high-dimensional matrix using a

lower-rank representation. It works by performing a standard SVD decomposition on

the input matrix, then only retaining the top k singular values and their corresponding

singular vectors. This process effectively creates a compressed version of the original

data that captures its most important features or patterns. By discarding the smaller

67

singular values, Truncated SVD reduces noise and focuses on the most significant

components of the data. Given a matrix A ∈ Rm×n, the Truncated SVD of rank k

(where k < min(m,n)) can be expressed as:

A ≈ Ak = UkΣkV
T
k

Where Ak is the rank-k approximation of A, Uk ∈ Rm×k contains the first k left

singular vectors, Σk ∈ Rk×k is a diagonal matrix containing the k largest singular

values, V T
k ∈ Rk×n contains the first k right singular vectors (transposed). The singular

values in Σk are arranged in descending order.

Comparison with other methods

1. PCA is a linear dimensionality reduction technique that identifies the directions

(principal components) along which the data varies the most. PCA can be expressed

as:

X reduced = XW,

where X is the original data matrix, W is the matrix of principal component

loadings, and Xreduced is the reduced-dimension data. PCA and Truncated SVD are

closely related. When the data is centered (mean-subtracted), PCA is equivalent to

Truncated SVD. However, Truncated SVD is more general and can be applied to

non-centered data.

2. t-SNE is a non-linear technique that aims to preserve local structure by mini-

mizing the KL divergence between the probability distributions of pairwise similarities

in high-dimensional and low-dimensional spaces. It uses a momentum-based gradient

68

descent to minimize its cost function. The cost function is:

C = KL(P ||Q) =
∑
i

∑
j

pij log
pij
qij

,

where pij and qij are the pairwise similarities in high and low dimensions, respec-

tively. While t-SNE excels at preserving local structure and creating visually appealing

embeddings, it has limitation in scalability and global representation.

3. Uniform Manifold Approximation and Projection (UMAP) [81] is a non-linear

dimensionality reduction technique based on manifold learning and topological data

analysis. Using stochastic gradient descent, UMAP optimizes the layout of the low-

dimensional embedding by minimizing the cross-entropy between the high-dimensional

and low-dimensional sets. UMAP balances local and global structure preservation. Its

objective function can be expressed as:

UMAP Loss =
∑
i ̸=j

(
vij log

(
vij
wij

)
+ (1− vij) log

(
1− vij
1− wij

))
,

Where vij represents the edge weights in the high-dimensional space and wij

represents the edge weights in the low-dimensional space. While UMAP is faster than

t-SNE, it’s generally slower than Truncated SVD, especially for very large datasets.

In conclusion, Truncated SVD is specifically designed to handle large, sparse

matrices efficiently. It works directly with sparse matrix formats and avoids computing

the full covariance matrix, making it particularly suitable for high-dimensional, sparse

data often encountered in program behavior analysis. Unlike Random Projection or

t-SNE, Truncated SVD produces deterministic results, ensuring reproducibility of the

analysis. The singular vectors in Truncated SVD can be interpreted as directions

of maximum variance in the data, providing insights into the underlying structure.

Truncated SVD scales well to large datasets, which is crucial for analyzing extensive

program behavior data. By focusing on the most significant singular values, Truncated

69

SVD naturally reduces noise in the data. Compared to t-SNE and UMAP, Truncated

SVD is computationally more efficient, especially for large datasets. Therefore,

Truncated SVD an ideal choice for reducing the dimensionality of our data while

maintaining important structural information.

4.3.2 Optimized K-means Clustering

Clustering is a widely used technique for grouping similar data points. The five

most widely used types are centroid models, distribution models, connectivity models,

density models, and spectral methods. Centroid models (e.g., K-means) use the

distance between a data point and the cluster’s centroid to group data. Distribution

models (e.g., Gaussian Mixture Model (GMM)) segment data based on their proba-

bility of belonging to the same distribution. Connectivity models (e.g., Hierarchical

clustering) use the closeness of data points to decide the clusters. Density models

(e.g., HDBSCAN) scan the data space and assign clusters based on the density of data

points. Spectral clustering methods (e.g., Normalized cuts) transform the data into a

lower-dimensional space using eigenvectors of a similarity matrix before clustering.

Each type of clustering method has its own advantages and disadvantages. For

our program behavior dataset, we do not want to set specific parameters or have

an uncontrollable number of clusters. This rules out density models like DBSCAN

and HDBSCAN, which require careful parameter tuning. Additionally, our data

may not follow a specific distribution, making distribution models like Gaussian

Mixture Models less suitable. Connectivity models, such as hierarchical clustering,

are also less desirable as they can be computationally expensive, especially for large

datasets. Spectral clustering, while powerful for capturing complex cluster shapes,

can be computationally intensive for large datasets and requires careful selection of

the similarity metric and the number of neighbors. Therefore, K-means clustering

remains a suitable choice for our high-dimensional HPC data.

70

However, traditional K-means has limitations when dealing with large-scale, high-

dimensional datasets typical in HPC environments. To address these scalability

issues, SimPoint++ adopts two key improvements: K-means++ initialization and

MiniBatchKMeans.

Instead of the vanilla K-means used in SimPoint, SimPoint++ adopts the K-

means++ initialization scheme [94]. This method selects initial cluster centroids using

sampling based on an empirical probability distribution of the points’ contributions

to the overall inertia. K-means++ significantly improves the speed of convergence

and the quality of the final clustering solution, especially in high-dimensional spaces.

By selecting initial centroids that are well-spread, K-means++ reduces the likelihood

of poor local optima, which is particularly beneficial for complex HPC trace data.

When dealing with extremely large datasets, SimPoint++ employs MiniBatchK-

Means [108], a variant of K-means that processes data in mini-batches. This technique

addresses scalability issues in high-dimensional HPC data analysis. MiniBatchKMeans

significantly reduces computation time while still optimizing the same objective func-

tion as standard K-means. It achieves this by using small, random subsets of the data

in each iteration, making it much more efficient for extensive trace analysis. This is

crucial when dealing with the vast amounts of data generated in HPC environments,

as it allows for timely analysis without compromising the clustering objective.

The combination of K-means++ initialization and MiniBatchKMeans provides a

balance between clustering quality and computational efficiency, making it well-suited

for modern HPC program behavior analysis.

Find the Best Cluster Number K Determining the optimal number of clusters is

a critical step in clustering analysis. While various methods exist, combining multiple

techniques can provide a more robust and comprehensive approach. In this case, we

employ the combination of Within-Cluster Sum of Squares (WCSS) and Silhouette

71

methods.

Within-Cluster Sum of Squares (WCSS)

WCSS is a metric used to quantify the compactness of the clusters, with lower values

indicating more compact clusters. It measures the sum of the squared distances

between each data point and its assigned cluster center. it is defined as:

WCSS =
k∑

i=1

∑
x∈Ci

∥x− µi∥2

where k is the number of clusters, Ci is the i-th cluster, x is a data point in cluster

Ci, and µi is the centroid of cluster Ci.

As the number of clusters (K) increases, the WCSS typically decreases, as each

new cluster can better capture the variance in the data. The “elbow” point in the

WCSS curve represents the point where the marginal benefit of adding more clusters

starts to diminish, suggesting an optimal number of clusters.

Silhouette

The Silhouette score is a metric that evaluates both the cohesion and separation of

clusters. For each data point i, the Silhouette score s(i) is calculated using two main

components: cohesion and separation. Cohesion a(i) is the average distance from

the data point i to all other points within the same cluster, reflecting the compactness

of the cluster. Separation b(i) is the minimum average distance from the data point

i to all points in the nearest cluster that it is not a part of, indicating how distinct

the clusters are. The Silhouette score for a single data point is then computed as:

s(i) =
b(i)− a(i)

max(a(i), b(i))
.

It has a value range between -1 and 1. A score close to 1 suggests that the data

72

point is well-clustered and far from other clusters, a score close to 0 indicates that the

data point is on the boundary between clusters, and a negative score implies potential

misclassification.

The average Silhouette score across all data points can be used to determine the

optimal number of clusters K, with the highest average Silhouette score typically

corresponding to the best clustering configuration.

WCSS + Silhouette

While WCSS effectively identifies the general region where the optimal number of

clusters might lie, it can sometimes be ambiguous, especially when the elbow point is

not clearly defined. On the other hand, Silhouette offers a more nuanced evaluation of

cluster quality but can be sensitive to cluster shape and density, and computationally

expensive when applied to a wide range of K values.

To combine WCSS and Silhouette with the KneeLocator method [106], we first

use the WCSS curve to find the “elbow” or “knee” point using the KneeLocator. The

KneeLocator tries to identify the point where the rate of change in the WCSS curve’s

slope is greatest, as this represents the point where the benefit of adding more clusters

starts to diminish. We then narrow the search range for the optimal number of clusters

K to the region around the knee point, specifically (knee k - 5, knee k + 5). Next,

we compute the Silhouette score for each value of K in the narrowed search range and

select the value of K that corresponds to the highest average Silhouette score within

this range, which we denote as optimal k.

By combining the WCSS and Silhouette metrics, along with the KneeLocator

method, we can effectively determine the optimal number of clusters for our program

behavior dataset. The WCSS curve helps identify the general region of the optimal K,

and the Silhouette score provides a more refined evaluation to select the best clustering

configuration. This approach can be beneficial when dealing with complex or noisy

73

data, where the elbow point in the WCSS curve may not be clearly defined, and the

Silhouette score can help validate the optimal number of clusters and provide a more

robust way to determine the best clustering solution.

4.3.3 Spectral Clustering

Spectral clustering is a graph theory-based clustering technique. It transforms the

original dataset into a lower-dimensional space, the eigenvectors of the Laplacian

matrix, revealing inherent patterns within datasets. This method is particularly

beneficial when dealing with non-linearly separable clusters, where traditional methods

like K-means might fail.

In SimPoint++, we explored spectral clustering as a potential alternative to

K-means due to its ability to handle complex data structures. This exploration

was motivated by the possibility that program behavior data might exhibit non-

linear relationships that K-means could miss. Spectral clustering would be especially

advantageous in scenarios where program phases form intricate, intertwined patterns

in the feature space, rather than well-separated, convex clusters.

To implement the spectral clustering algorithm, we first need to construct the

graph of the dataset. We use the function kneighbors graph from scikit-learn to

construct the k-nearest neighbors (KNN) graph. The number of neighbors for each

point n neighbors is the most important parameter we need to tune for spectral

clustering. We set the closest n neighbors points for each point to be its neighbors.

We then symmetrize the graph by adding it to its transpose and dividing by 2, creating

an undirected graph where an edge exists only if both points consider each other

neighbors. This mutual step enhances robustness to variations in local density.

Next, we check whether the graph is fully connected and stop further calculation

if the graph is disconnected, otherwise, the Laplacian matrix will have multiple zero

eigenvalues, and the corresponding eigenvectors will not provide useful information

74

for clustering.

Then comes the eigen decomposition. To improve numerical stability and make the

algorithm less sensitive to variations in graph structure, we calculate the normalized

Laplacian [120] instead of the standard Laplacian. Thus, all eigenvalues are in the

range [0, 2]. The normalized graph Laplacian L is defined as:

L = I −D−1/2WD−1/2, (4.3)

where I is the identity matrix, W is the weighted adjacency matrix, and D is the

diagonal degree matrix with Dii =
∑

j Wij.

We performs partial eigendecomposition for the k smallest eigenvalues using

scipy.sparse.linalg.eigsh which speeds up the computation. To estimate the number of

clusters, we employ the eigengap heuristic [26]. This method analyzes the eigenvalues

of the Laplacian matrix, where the largest gap in sorted eigenvalues indicates a natural

division in the data. The eigenvalues represent the “importance”, or the amount of

variation, in the data along different directions, and a large gap suggests a significant

difference in the structure of the data before and after that dimension.

n clusters = argmax
i

(λi+1 − λi), (4.4)

where λi are the eigenvalues of L in ascending order.

Once we get the cluster number n clusters, we construct a matrix U ∈ Rn×k by

using the n clusters eigenvectors corresponding to the n clusters smallest eigenvalues

of the Laplacian matrix L as columns, where n is the number of data points. We then

apply the k-means algorithm to cluster the rows of U , which represent the data points

in this lower-dimensional eigenspace. This transformation often results in more easily

separable clusters, as it leverages the spectral properties of the graph Laplacian to

capture the underlying structure of the data.

75

Finding the appropriate number of neighbors n neighbors for the k-nearest neigh-

bors graph is crucial for the performance of spectral clustering as it affects the

construction of the affinity matrix. Too few neighbors may result in a disconnected

graph, while too many can obscure the local structure of the data. A common starting

point is to set n neighbors to the square root of the number of samples. We employ an

adaptive approach according to the data size to determine the optimal n neighbors,

with the searching range of n neighbors like this:

n neighbors ∈ [max(10,
√
n),min(10

√
n, 160, n)]. (4.5)

For each n neighbors, we construct the mutual k-nearest neighbors graph and

perform spectral clustering. We evaluate the quality of clustering with the silhouette

score. The silhouette score considers both the cohesion within clusters and the

separation between clusters. The optimal n neighbors is selected as:

n neighbors∗ = argmax
n neighbors

(
1

n

∑
i

s(i)

)
(4.6)

While spectral clustering demonstrated its ability to handle complex data structures,

it was ultimately not selected as the primary clustering method for SimPoint++ for

several reasons:

1. Computational Complexity: The eigen decomposition step in spectral clustering

can be computationally expensive for large datasets, which are common in

HPC program behavior analysis. This could potentially slow down the overall

simulation process, contradicting one of the main goals of SimPoint++.

2. Scalability: As the size of the dataset grows, the memory requirements for

spectral clustering increase significantly, which could be problematic for analyzing

very large program traces.

76

3. Parameter Sensitivity: The performance of spectral clustering is highly dependent

on the choice of the similarity graph and its parameters (e.g., n neighbors). This

sensitivity could lead to inconsistent results across different programs or execution

environments.

4. Empirical Performance: In our tests, while spectral clustering performed well

on certain datasets, it did not consistently outperform the optimized K-means

approach (using k-means++ initialization and MiniBatchKMeans) across a wide

range of HPC program behavior data.

In conclusion, while spectral clustering offers theoretical advantages for complex,

non-linearly separable data, the practical considerations of computational efficiency,

scalability, and consistent performance across diverse HPC workloads led us to favor

the optimized K-means approach for SimPoint++. However, the insights gained

from spectral clustering remain valuable and could inform future improvements or

specialized applications of SimPoint++ for particularly complex program behaviors.

4.4 Experiment

We conduct experiments on Cloudlab [32] using an x86 architecture node (c220g2).

We use a diverse set of applications to demonstrate SimPoint++’s effectiveness and

versatility across different computing scenarios. The selection of these applications is

based on their relevance to current HPC and general-purpose computing environments.

We choose Graph500 as our serial application due to its importance in benchmarking

graph-processing capabilities, which are increasingly relevant in big data and analytics

workloads. Graph500 was simulated using the Gem5 simulator.

For multi-threaded applications, we select a demo application, Matrix-OMP, and

four applications from SPEC CPU 2017 [4] with train input. SPEC CPU 2017

represents a standardized, industry-recognized benchmark suite that covers a wide

77

range of real-world application scenarios. The specific SPEC CPU 2017 applications

are selected to provide a mix of compute-intensive and memory-intensive workloads,

allowing us to test SimPoint++ across varied program behaviors. These multi-

threaded applications were simulated using the LoopPoint [104] framework on the

Sniper simulator, with passive wait policies and 8 threads.

The choice of these applications aligns with the broader goals of this dissertation,

as discussed in Chapter 5. They represent a mix of traditional HPC workloads and

emerging application areas, providing a comprehensive test bed for evaluating the

effectiveness and efficiency of SimPoint++ across diverse computational patterns.

LoopPoint is a sampling simulation framework for multi-threaded applications.

Instead of using instruction counting as done in single-threaded applications, LoopPoint

uses loop entries as slice boundaries. Each simulation region is then specified using

a (PC, count) pair, which defines the starting and ending loop entries. LoopPoint

applies standard SimPoint to cluster these regions and identify the representative

Loop Points.

While SimPoint only supports single-threaded data point clustering, LoopPoint

concatenates vectors from each thread to a combined long vector and then provides the

vector to SimPoint for further analysis. In SimPoint++, we first apply dimension

reduction for each thread in parallel, then concatenate the reduced vectors together.

This approach decreases the computation time and uses less memory, making it more

scalable for systems with numerous threads or extended execution traces. Our method

potentially preserves thread-specific characteristics better while providing a more

computationally efficient solution for multi-threaded program analysis.

78

4.5 Results

4.5.1 Finding the Best K

To illustrate how SimPoint++ determines the optimal number of clusters, we use

the Graph500 serial application as an example, with input parameters “-s 14 -e 14”.

We employ the WCSS method to identify the knee point. The knee point represents

the point of maximum curvature on the WCSS curve, where adding more clusters does

not reduce much the within-cluster variance. For example, in Fig. 4.2a, as we increase

the number of clusters from 1 to 20, the WCSS value decreases rapidly initially but

then starts to level off. Using the kneedle algorithm [106], we identify this point of

diminishing returns at Knee k = 5. This suggests that the optimal number of clusters

likely lies near this region, as additional clusters beyond this point provide minimal

improvement in cluster cohesion relative to the computational cost.

The knee point helps improve efficiency by providing a focused range for our

subsequent detailed analysis. Instead of calculating Silhouette scores for all possible

cluster numbers (which could be computationally expensive), we concentrate on a

narrow range around the knee point (Fig. 4.2b). Within this range, we select the

number of clusters that yields the highest Silhouette score as the optimal K. In our

example, this results in optimal k = 8, which is only half of the optimal k=16 that

Simpoint provides based on the BIC criterion. With fewer simulation points, we can

reduce the simulation time.

To validate the efficiency of our combined approach, we also compute Silhouette

scores across a broader range of cluster numbers (2 to 20) without the WCSS-based

restriction (Fig. 4.2c). This broader analysis reveals several cluster numbers with high

Silhouette values. Notably, 8 remains the smallest among these high-scoring options,

confirming that our WCSS-guided approach successfully identified an efficient solution

while examining only a fraction of the possible cluster numbers. This demonstrates how

79

(a) WCSS curve showing diminishing returns in cluster
cohesion beyond the knee point (Knee k=5), indicating
an efficient initial estimate for cluster count

(b) Silhouette analysis in the focused range around
WCSS knee point, revealing optimal k = 8 as the best
balance between cluster separation and cohesion

(c) Extended Silhouette analysis (2-20 clusters) validat-
ing that optimal k = 8 remains efficient when compared
against a broader range of cluster numbers

Figure 4.2: Analysis of optimal cluster count using WCSS and Silhouette methods. The
combination of these methods efficiently identifies the optimal number of clusters (k=8)
while examining only a focused range of possibilities, demonstrating the effectiveness
of our two-step approach in reducing computational overhead while maintaining
clustering quality.

80

the knee point method effectively narrows down the search space without compromising

the quality of the final clustering solution.

4.5.2 Speedup and Accuracy

SimPoint++ demonstrates superior performance compared to SimPoint, achieving

higher speed-ups compared to full simulation (Fig. 4.4) with fewer simulation points.

The average speed-up for SimPoint++ is 109, which is more than five times the 20.7

speed-up achieved with SimPoint.

Furthermore, SimPoint++ generally has similar or slightly lower error rates com-

pared to SimPoint (Fig. 4.3). The overall absolute prediction error for SimPoint++

is 1.93%, which is lower than the 2.65% error observed with SimPoint. This result is

noteworthy given that SimPoint++ uses fewer simulation points to encapsulate the

full execution.

However, the application xz s presents an interesting exception, showing a 6.83%

absolute prediction error rate with SimPoint++, higher than the 4% error rate with

SimPoint. This higher error rate may be due to the phase transitions throughout

xz s execution, making it more challenging for SimPoint++’s clustering algorithm

to capture all behavioral variations with fewer simulation points. While SimPoint

uses 19 simulation points for xz s, SimPoint++ selects only 2 points based on our

optimization criteria, with WCSS finding Knee k = 4 and Silhouette analysis yielding

optimal k = 2. This unusually low optimal cluster count, despite the application’s

complex behavior, suggests that the feature vectors of xz s do not form well-separated

clusters in the feature space. While the Silhouette score measures both cluster cohesion

and separation, a high score doesn’t always guarantee the best representation of an

application’s diverse behavioral patterns, especially when the underlying program

phases exhibit gradual transitions rather than distinct boundaries. This limitation

of the Silhouette metric in capturing the temporal aspects of program behavior may

81

Figure 4.3: Absolute prediction error: SimPoint VS SimPoint++

Figure 4.4: Speed up: SimPoint VS SimPoint++

contribute to the higher error rate we observe.

We conducted additional experiments increasing the number of simulation points

for xz s to 5, which reduced the error rate to 4.5%. This suggests that for applications

with complex phase behavior like xz s, allowing for more simulation points could

help mitigate the accuracy trade-off. However, this would come at the cost of

reduced simulation speed-up. This trade-off between accuracy and simulation speed

highlights the importance of considering application-specific characteristics when

applying sampling techniques.

4.5.3 Comparison with Spectral Clustering

Since Spectral Clustering is more computationally expensive compared to K-means,

we only have some preliminary results. We still use the Graph500 serial application as

an example. We visualize the clustering results in both t-SNE 2D and 3D to provide

a direct insight into the clustering performance.

Fig 4.5a and Fig 4.5b show the optimized K-means clustering, while Fig 4.6a and

82

(a) t-SNE 2d (b) t-SNE 3d

Figure 4.5: Visualization with t-SNE in 2D and 3D when using optimized K-means
clustering

Fig 4.6b show the spectral clustering results. While Spectral clustering provides more

reasonable clustering when the data point groups are in complex shapes, it achieves

similar accuracy to K-means, 0.3871% and 0.3874% respectively. Although K-means

does not perfectly group neighboring points, it still provides relatively good results.

In future work, further experiments with more applications are needed to tune the

adaptive approach and find the optimal n neighbors value for spectral clustering in

different scenarios.

4.6 Discussion

In this chapter, we conducted a thorough investigation of the standard SimPoint

methodology, uncovering limitations in its approach to determining the optimal

number of clusters. Our analysis revealed opportunities for improvement, particularly

in the areas of dimension reduction and cluster number optimization.

Building upon these insights, we introduced SimPoint++, a novel approach that

addresses the limitations of SimPoint. SimPoint++ employs enhanced techniques for

dimension reduction and cluster number optimization, resulting in significantly fewer

83

(a) t-SNE 2d (b) t-SNE 3d

Figure 4.6: Visualization with t-SNE in 2D and 3D when using spectral clustering

clusters compared to SimPoint while maintaining comparable or improved accuracy

across most applications.

While SimPoint++ shows promising results, we acknowledge that performance

can vary across different types of applications. This variability underscores the

complexity of workload sampling and the need for continued research in this area.

Several potential directions for future improvement and expansion of SimPoint++

include:

• Alternative Clustering Algorithms: As program behaviors become more

complex and feature dimensions increase, exploring density-based clustering

algorithms like DBSCAN could better handle non-spherical cluster shapes and

varying cluster densities.

• Extended Application Domains: While our current focus has been on

HPC workloads, SimPoint++ could be adapted for emerging workloads such

as machine learning training and cloud computing applications. This would

require investigating additional program features and potentially modifying the

84

clustering criteria.

• Dynamic Adaptation: Implementing an adaptive mechanism that automati-

cally adjusts the number of simulation points based on program complexity and

desired accuracy-speed trade-offs could enhance SimPoint++’s versatility.

The potential reduction in simulation time offered by SimPoint++, combined

with its comparable or improved accuracy, is important for computer architecture

research and development. By enabling faster iterations in processor and application

design and optimization, SimPoint++ could greatly accelerate the pace of innovation

in the field.

Chapter 5

METACAST: Generalizing HPC

Application Runtime Prediction

5.1 Overview

Precise High Performance Computing (HPC) application performance evaluation

and prediction helps identify performance bottlenecks within an application, enables

customized configurations of hardware and software components co-designed to match

the specific requirements of each application [31], and guides code design and opti-

mization [52, 116]. Existing approaches such as simulation, analytical modeling, and

learning-based modeling [98] can predict HPC performance at scale but often fall

short in generalizability. This limitation arises because HPC application performance

is almost always input dependent, requiring classic analysis or machine learning (ML)

performance extrapolation approaches to characterize the input space, making them

highly application-specific [23].

In this work, we build accurate and application-generalizable models for HPC

performance prediction using meta-learning. Meta-learning [50], also known as “few-

shot” learning, trains models to quickly assimilate new tasks using limited data. A

85

86

Figure 5.1: MetaCast Workflow

task here refers to a specific application runtime prediction problem. Meta-learning

models circumvent the need to construct bespoke models for each application by

leveraging a wealth of related tasks. This approach initializes the model to a highly

informed state, expediting adaptation processes for new HPC applications—ideal for

rapid deployment in dynamic environments.

To efficiently generate realistic multi-task datasets, we employ Gem5 [75], a

sophisticated simulator that provides cycle-level accuracy and comprehensive flexi-

bility for emulating application performance across diverse computer architectures

and microarchitectures. Building on the foundational aspects of meta-learning and

dataset collection via simulation, we develop MetaCast, a robust performance engine

framework designed for precise runtime predictions for new applications on targeted

architectures. As depicted in Fig.5.1, the workflow of MetaCast includes four steps:

Multi-Task Data Collection, Meta-Model Training, Target Task Data Collection,

and Target Task Model Training. By incorporating the first-order meta-learning

algorithm[37], MetaCast constructs a general model that can be swiftly fine-tuned for

novel applications. This significantly reduces model development time and catalyzes

87

the co-design process.

5.2 Methods

5.2.1 Multi Task Data Collection

While several performance results are available (e.g., on the SPEC website [4]), the

features and their diversity do not meet our requirements. Therefore, we have turned

to simulation for data collection. Simulating a workload’s full execution performance

across various architectural configurations in Gem5 is a notably time-intensive task.

In MetaCast, we reduce simulation time with the simulation acceleration tool

SimPoint [44] described in the last chapter.

In our workflow, we leverage Gem5’s diverse CPU models and memory access

types to balance simulation accuracy and speed. Gem5 supports three primary

memory access types: timing accesses (realistic timing and contention), atomic accesses

(quicker approximations for cache warming), and functional accesses (instantaneous,

primarily for debugging). These access types are utilized by various CPU models,

including AtomicSimpleCPU, TimingSimpleCPU, and the more granular O3CPU,

which simulates an out-of-order pipeline. Specifically, in sub-step a, we employ

Gem5 with atomic memory accesses without caching to identify sim points and

weights for each task. We choose atomic accesses here because SimPoint analysis

requires only basic block vectors, not detailed timing information, and atomic accesses

provide sufficient accuracy while being significantly faster than timing accesses. In

sub-step b, we generate checkpoints using TimingSimpleCPU rather than O3CPU

because checkpoint creation primarily involves capturing architectural state, where the

additional complexity of out-of-order execution simulation would increase computation

time without improving checkpoint quality. We use atomic memory accesses with

caching in this step to establish a warmup cache. Finally, in sub-step c, we employ

88

timing memory accesses to meticulously record the accurate performance (runtime)

for each sim point checkpoint across various system configurations, simulating cache

accesses and memory system responses in detail. By accumulating the runtime of each

sim point checkpoint according to weights, we achieve the runtime for each system

configuration.

5.2.2 Meta-Model Training

Meta-model training includes dual-level parameter updates in the base model and

meta-learning model.

Base model

Meta-learning iteratively updates a base model across a range of tasks to form an

optimized, generalized model, subsequently fine-tuning this model for specific target

applications. For our meta-learning framework, the base model f could be any

gradient-descent-based architecture, such as neural networks for regression, such as

a Recurrent Neural Networks (RNN) (variants of which include Long Short-Term

Memory (LSTM) [48] networks, which excel at learning long-term dependencies, and

Gated Recurrent Units (GRUs) [25], which address the vanishing gradient problem),

or a Convolutional Neural Networks (CNN). In developing MetaCast, we opt against

more complex models and stick with a classical neural network with 2 hidden layers.

In testing, we found that more complex models lowered accuracy, likely due to our

limited feature size. For systems with more features, a more complex base model

would be easy to substitute into MetaCast.

Meta-learning model

Consider a base model f designed for the runtime prediction of an HPC application.

This model functions by mapping an input vector x, representing various system

89

Algorithm 1: meta-learning Training step

Data: p(T):distribution over tasks, inner loop learning rate α, outer loop
learning rate β, Loss function L is MSE

Result: meta-model initialization θ
1 Randomly initialize parameters θ
2 while iteration not done do
3 Sample batch of tasks Ti ∼ p(T)
4 for all Ti do
5 Sample K training points D = {x(j), y(j)} from Ti
6 Evaluate ∇θLTi (fθ) for this K examples
7 Compute adapted parameters with gradient descent:

θ′i = θ − α∇θLTi (fθ)
8 Sample testing points D′ = {x(j), y(j)} from Ti for meta-update

9 end
10 β′ = β ∗ (1− iteration/iterations)

11 Update θ ← θ − β′∇θ

∑
Ti∼p(T) LTi

(
fθ′i
)

12 end

configurations (e.g., memory architecture or CPU microarchitecture), to an output

y, which is the application’s runtime on that system. We conceptualize the runtime

prediction for a single application as one task, denoted as Ti. Each task Ti encompasses

multiple sample data points x(j), y(j) within it. These tasks are characterized by a

certain degree of diversity. In MetaCast, we randomly select one task from a

distribution of such tasks, represented as Ti ∼ p(T). This approach allows us to train

the model across a variety of scenarios, enhancing its adaptability and generalization

capabilities for runtime prediction in diverse system architectures.

In Algorithm 1, we initiate the process by randomly initializing the meta-parameter

θ. Subsequently, a batch of tasks is sampled from the task distribution p(T). For

each sampled task Ti, the base model parameters θ are adjusted to θ′i through an

inner loop learning process. This adjustment is based on gradient updates applied

to the training dataset D specific to each task. The updated parameters θ′i are then

evaluated against the test dataset D′ for each task Ti. The gradients computed during

this evaluation, with respect to the original meta-parameter θ, are aggregated across

90

Figure 5.2: Meta-learning algorithms

all tasks. These accumulated gradients are then used to update θ in what we term

the outer loop learning process. This iterative process is repeated multiple times until

the model achieves the desired level of accuracy. Two critical hyperparameters in this

process are the learning rates for the inner (α) and outer (β) loops. The careful tuning

of these rates is essential for the effective training and convergence of the model.

We focus on the backpropagation of the meta-gradient through the gradient

operator in various meta-learning algorithms. First-Order MAML (FOMAML) [37]

simplifies calculations by omitting second derivatives, effectively utilizing only the final

update from the inner loop. For instance, if the inner loop comprises four steps, the

outer loop update in FOMAML is expressed as θ ← θ − βg4, where g4 is the gradient

at the fourth step. Reptile [86] adopts a more gradual approach for meta-parameter

updates: θ ← θ− ε(θ′i − θ). This translates to θ ← θ− ε(g1 + g2 + g3 + g4), effectively

incorporating the sum of gradients from all steps in the inner loop. MAML-SGD [72]

introduces a matrix of learning rates, represented as α, instead of a single scalar

value. Thus, the meta-parameters in MAML-SGD include both θ and α. However,

the complexity of MAML-SGD leads to convergence challenges due to the increased

number of meta-parameters. MAML++ [18] introduces a nuanced approach by

applying annealed weighting to the inner loop steps. This method assigns progressively

increasing weights to later steps: θ ← θ − (w1g1 + w2g2 + w3g3 + w4g4), allowing for

a balanced incorporation of gradients from all steps. Given these differences, which

91

are visually summarized in Fig. 5.2, we chose to implement MAML, Reptile, and

MAML++ in our framework, excluding MAML-SGD due to its difficulty in achieving

convergence. Our selection aims to maximize performance by leveraging the unique

strengths of each algorithm.

While selecting the appropriate meta-learning algorithms, we considered the specific

constraints of our HPC performance prediction task that limit the applicability of many

advanced techniques. First, since our training dataset is derived from simulations,

we needed to balance the number of features with the variety within each feature.

Second, the time-intensive nature of data collection in HPC environments restricts

the feasibility of methods that require extensive training data. Moreover, our primary

goal was to effectively illustrate the potential of meta-learning for HPC performance

prediction. Thus, we opted for classic meta-learning approaches that demonstrate this

concept without the added complexity and overhead of more advanced methods.

5.2.3 Target Task Data Collection

Our objective is to accurately predict the performance of a new application on potential

architectural configurations (the target task). In contrast to the broader training

process, this phase requires only a minimal set of data samples. Since we need so few

samples, we collect these samples from physical systems rather than simulations.

While physical system data collection offers advantages such as real-world per-

formance characteristics and less data collection time, it faces limitations including

restricted hardware availability, environmental variability, and measurement incon-

sistencies across different runs. Despite these challenges, we suggest including target

task data from a wide variety of physical hardware to improve performance. When

possible, we perform multiple runs per system configuration on dedicated systems to

mitigate measurement variability and ensure reliable data collection.

92

5.2.4 Target Task Model Training

In MetaCast, fine-tuning for a target task commences with the pre-optimized meta-

model parameters, significantly reducing the overall training duration. This process

involves only a few update iterations using standard gradient descent with the target

task data, which swiftly optimizes the model specifically for the target task. Once

this stage is complete, the model is fully prepared to make accurate performance

predictions across various potential architectural setups.

5.3 Experiment

We conduct our experimental evaluation on Cloudlab [32] with an x86 architecture

node (c220g2) equipped with a Haswell processor and 4GB of memory. The software

versions are Ubuntu 18.04, GCC/G++/FORTRAN 7.5.0, python 3.6.9, and gem5

22.1.0.0.

5.3.1 Simulation Platform

Initially, we use Gem5 with NonCachingSimpleCPU to acquire sim points and weights

for each task, setting the BBV chunk interval at 100 million instructions. Subsequently,

we switch to AtomicSimpleCPU for checkpoint creation, followed by runtime collection

using O3CPU with tailored parameters in Gem5.

We construct 140 x86-based systems, incorporating 18 representative features

that significantly impact processor performance. These features fall into three main

categories: memory hierarchy, instruction processing, and resource management.

The memory hierarchy parameters include three levels of cache (L1-L3) with

varying sizes and associativity. For example, L1 cache sizes range from 32KB to

128KB, matching common configurations in modern processors. The instruction

processing parameters, such as fetchWidth and decodeWidth, determine how many

93

instructions can be processed simultaneously in different pipeline stages. For instance,

fetchWidth (4-12 instructions) represents the processor’s ability to fetch multiple

instructions per cycle, directly affecting instruction-level parallelism. Resource man-

agement parameters include numROBEntries (Reorder Buffer entries, ranging from

100 to 512), which determines how many instructions can be executed out of order,

and LQ/SQEntries (Load/Store Queue entries), which control the number of outstand-

ing memory operations. These parameters are important for modern out-of-order

processors as they influence the processor’s ability to decrease memory latency and

exploit instruction-level parallelism.

We draw a combination of system configurations from Table 5.1 according to

system setting rules and physical system settings [53]. For example, cache line size

must be a power of 2 and a multiple of the fetch buffer to maintain cache coherency.

While Gem5 offers a broader parameter space, we focus on representative features

to validate MetaCast, as they capture the key architectural aspects that influence

application performance.

5.3.2 Application Workload

We use the SPEC CPU 2017 benchmark suite [4] because its collection of real-world

applications spans diverse domains such as compilers, chess engines, video compression,

and weather forecasting. This suite provides a broad spectrum of workloads with

dynamic instruction counts and large data footprints, ensuring our experiments are

comprehensive. From the SPEC CPU 2017 suite, we select 25 benchmarks with their

initial reference input, allocating 20 for training and 5 for testing MetaCast.

To mitigate overfitting, we augment our training dataset with synthetic tasks. In

our original benchmarks, each sim point is associated with a weight that represents

its importance in the overall program behavior, and these weights are determined

based on the frequency and similarity of program phases. To create synthetic tasks,

94

T
ab

le
5.
1:

S
y
st
em

co
n
fi
gu

ra
ti
on

in
G
em

5
si
m
u
la
to
r

P
a
ra
m
et
er

M
ea
su
re

V
al
u
es

E
x
p
la
n
at
io
n

1
l1
i
si
ze

k
b

3
2,
64

,1
28

S
iz
e
of

L
ev
el

1
In
st
ru
ct
io
n
ca
ch
e

2
l1
d
si
ze

k
b

32
,4
8,
64

,1
28

S
iz
e
of

L
ev
el

1
D
at
a
ca
ch
e

3
l1
i
as
so
c

2
,4
,8

A
ss
o
ci
at
iv
it
y
of

L
1
In
st
ru
ct
io
n
ca
ch
e

4
l1
d
as
so
c

2
,4
,8
,1
2

A
ss
o
ci
at
iv
it
y
of

L
1
D
at
a
ca
ch
e

5
l2

si
ze

k
b

2
5
6,
51

2,
10

24
,1
28

0
S
iz
e
of

L
ev
el

2
ca
ch
e

6
l2

as
so
c

4,
8,
10

,1
6,
20

A
ss
o
ci
at
iv
it
y
of

L
2
ca
ch
e

7
l3

si
ze

m
b

1,
2,
3,
4,
6,
8,
16

,3
2

S
iz
e
of

L
ev
el

3
ca
ch
e

8
l3

as
so
c

4,
8,
12

,1
6

A
ss
o
ci
at
iv
it
y
of

L
3
ca
ch
e

9
ca
ch
el
in
e
si
ze

b
y
te

3
2
,6
4,
12

8
S
iz
e
of

ea
ch

ca
ch
e
li
n
e

10
m
em

-t
y
p
e

D
D
R
3
21

33
8x

8,
D
D
R
4
24

00
16

x
4,

L
P
D
D
R
2
S
4
10

66
1x

32
T
y
p
e
of

m
ai
n
m
em

or
y

11
cp

u
cl
o
ck

G
h
z

2,
3,
4

C
P
U

cl
o
ck

fr
eq
u
en

cy
1
2

fe
tc
h
W

id
th

4
,8
,1
0,
12

N
u
m
b
er

of
in
st
ru
ct
io
n
s
fe
tc
h
ed

p
er

cy
cl
e

1
3

fe
tc
h
B
u
ff
er
S
iz
e

1
6
,3
2,
64

S
iz
e
of

b
u
ff
er

h
ol
d
in
g
fe
tc
h
ed

in
st
ru
ct
io
n
s

1
4

fe
tc
h
Q
u
eu

eS
iz
e

12
,1
6,
24

,3
2

S
iz
e
of

q
u
eu

e
fo
r
fe
tc
h
ed

in
st
ru
ct
io
n
s

1
5

d
ec
o
d
eW

id
th

4,
6,
8,
12

N
u
m
b
er

of
in
st
ru
ct
io
n
s
d
ec
o
d
ed

p
er

cy
cl
e

16
L
Q
E
n
tr
ie
s

16
,3
2,
64

,1
28

,1
92

N
u
m
b
er

of
L
oa

d
Q
u
eu

e
en
tr
ie
s

17
S
Q
E
n
tr
ie
s

1
6,
32

,3
6,
64

,1
28

N
u
m
b
er

of
S
to
re

Q
u
eu

e
en
tr
ie
s

18
n
u
m
R
O
B
E
n
tr
ie
s

10
0
,1
68

,2
56

,3
52

,5
12

N
u
m
b
er

of
R
eo
rd
er

B
u
ff
er

en
tr
ie
s

95

we manipulate these SimPoint weights. While maintaining the original sim points, we

randomly reassign weights to these points, creating synthetic programs. This process

alters the relative importance of different program phases without changing the

underlying code segments. For each original training task, we generate 20 additional

synthetic tasks using this weight reassignment method. These synthetic tasks differ

from real-world tasks in that they are artificial combinations of existing benchmark

characteristics.

The synthetic tasks are designed to introduce variability into the training data,

potentially helping the model generalize better. However, our experimental findings

indicate that these additional synthetic tasks do not enhance accuracy. We attribute

this lack of improvement to the inherently constrained size and diversity of the original

task set. The synthetic tasks, while introducing some variation, may not significantly

expand the range of behaviors and patterns that the model needs to learn. Given these

results, it may be worth considering excluding synthetic tasks in future experiments

or exploring alternative methods of data augmentation. Alternatively, expanding the

range of real-world benchmarks or using different input sets for existing benchmarks

might prove more effective in improving model accuracy.

Our experimental dataset encompasses a total of 362 tasks, with each task con-

taining 140 distinct samples. For the training phase, we dedicate 352 tasks, reserving

5 tasks exclusively for validation, which aids in the hyperparameter tuning process.

The remaining 5 tasks are allocated for the testing phase to evaluate the model’s

performance. Notably, we ensure the integrity of the test tasks by refraining from

creating synthetic tasks from them.

5.3.3 Model Training

We construct the model using PyTorch [90] and explore three meta-learning algorithms:

MAML [37], Reptile [86], and MAML++ [18], to identify the most effective parameter

96

Table 5.2: Hyperparameters in Meta-model

Feature Range Best Value

n shot 5–20 9
tasks 10–30 18
outer step size 0.001– 0.2 0.001
inner step size 0.001–0.03 0.00926
inner grad steps 1–8 6
eval grad steps 5–20 18
first level 32–64 40
second level 10–32 31

updating strategy for our specific problem domain. For the base model, we use three

architectures: a neural network for regression, an RNN (LSTM and GRU), and a

CNN. The neural network employs a two-layer structure with tanh activations and is

optimized using stochastic gradient descent (SGD). For the RNNs and CNN, after

data preprocessing to fit the required input format, we set a sequence length of 3

and an input dimension of 6, utilizing ReLU activations and the SGD optimizer for

training.

5.3.4 Hyperparameter Optimization

While meta-learning effectively initializes model parameters, optimizing certain hy-

perparameters remains crucial. Improper selection of mini-batches, for instance, can

drastically affect model performance. To address this, we employ Bayesian Optimiza-

tion (BO), which outperforms traditional grid or random search methods by leveraging

Gaussian Processes (GPs) for efficient hyperparameter selection. This process starts

with constructing a surrogate model from existing data, which is then used to predict

outcomes at new data points and iteratively refined.

For our experiments, we predefined a range for each hyperparameter and used the

AX [1] platform for the Bayesian Optimization process. This approach systematically

determines the most effective settings, particularly for inner and outer loop learning

97

Figure 5.3: More training samples lead to improved prediction.

rates and step sizes. MetaCast has the following hyperparameters (Table 5.2):

N short is the number of examples per task that the model is provided to learn

from when training the meta-model. The number of tasks included in one batch of

meta-learning. Each task in the batch can be used to update the model during training.

outer step size and inner step size are the learning rates. The outer loop updates the

meta-parameters, while the inner loop adapts to specific tasks. inner grad steps and

eval grad steps are the numbers of gradient update steps in the inner loop (for task

adaptation) and during evaluation, respectively. first level and second level are the

number of neurons in the first and second hidden layers, respectively.

We find that learning rates are the most influential hyperparameter for MetaCast

performance.

5.4 Results

5.4.1 Meta-model Accuracy for Benchmarks

To evaluate MetaCast, we test the efficacy of the trained models. We adjust

the training sample size for each new task to balance accuracy and application

execution complexity. While a very small sample size (e.g., 3 or 5) does not yield

satisfactory accuracy, a slightly larger number (e.g., 15) only improves accuracy by

1%. Consequently, as shown in Fig. 5.3, we settle on 10 as the optimal size, which

also aligns with the elbow point identification method.

98

We randomly select 10 samples for each new task, train a new model starting from

the pre-trained meta-model, and then evaluate it across 30 architecture configurations,

calculating the average mean absolute percentage error (MAPE). To ensure robustness

against variability in training task samples, we conduct 20 repetitions of training-

testing splits and meta-model training. Each test task is then assessed 10 times.

Thus, we have built 20 meta-models, and we test on the remaining, unused, SPEC

applications. Among the three tested meta-learning algorithms, MAML with outer

learning rate annealing shows a marginally superior performance. Using neural network

regression as the base model, we achieve an average MAPE of 18% with a standard

deviation of 0.013. In contrast, base models using RNNs, their variants, and CNNs

did not yield improvements in accuracy.

The standard deviation of 0.013 in our MAPE results indicates consistency in

performance across various types of applications and workloads. In practical terms,

users can expect relatively uniform performance from MetaCast. The small stan-

dard deviation also implies that there are no significant outliers where the model’s

performance drops substantially, further reinforcing the robustness of our approach.

Additionally, we compare the model’s performance with the previous SPEC CPU

2006 suite [111]. The results are analogous; we achieve an average MAPE of 19.8%

with a standard deviation of 0.019. This slightly higher standard deviation for the

older suite suggests a bit more variability in performance, but still indicates consistent

accuracy across different benchmark versions. These results confirm MetaCast’s

effectiveness and stability across suite versions.

Benchmark: The performance of MetaCast on the SPEC CPU2017 benchmarks

is illustrated in Fig. 5.4. We observed a consistent average MAPE of approximately

18% across most benchmarks, indicating stable performance across different test cases.

However, we identified outliers in each benchmark with higher MAPE values. This

discrepancy is attributed to the limited variability in the 10 training samples, which

99

Figure 5.4: SPEC CPU2017 benchmarks on x86. The average MAPE is 18%.

Figure 5.5: MetaCast predictions for 30 tests on the perlbench r benchmark with
just 10 training samples. Points closer to the dashed line are more accurate.

proves insufficient for the target model to fully capture the benchmark’s characteris-

tics, complicating predictions for new architectures. These findings underscore the

importance of collecting diverse data samples for the target application to ensure the

target model’s effectiveness.

Single Application: Fig. 5.5 shows the results for a specific application benchmark

perlbench r in SPEC CPU 2017. Points near the dashed line show a strong correlation

between the model’s prediction runtimes and their actual results, demonstrating the

model’s proficiency in learning and adapting to system differences. However, some

100

Figure 5.6: MetaCast achieves superior results compared to transfer learning (average
MAPE=160%) and random initialization (average MAPE=510%).

points show larger discrepancies , indicating lower prediction accuracy. This issue

likely arises when the distribution of test samples significantly diverges from the

training samples, reinforcing the need for training samples from a diverse range of

systems to enhance model performance for new tasks. We observed that some outliers

perform better as training sample sizes increase, but a few remain unpredictable. This

indicates that the prediction problem is challenging given the features we have.

Transfer Learning: We benchmark MetaCast against transfer learning and ran-

domly initialized models as baselines. The transfer learning model uses all data from

different tasks to build a single pre-trained model. Our results (Fig. 5.6) reveal that

the meta-model surpasses these baselines in accuracy, with a notably smaller devia-

tion in its predictions. Although transfer learning demonstrates an advantage over

random initialization, it still has a relatively big MAPE compared to meta-learning

because of the wide distribution of runtimes in the training tasks, which undermines

the premise of task similarity essential for effective transfer learning. MetaCast

achieves comparable or superior results compared to other approaches utilizing transfer

learning. For instance, Marianiet al. [79] reported a 30% prediction error for their

profile-prediction model, Sunet al. [112] observed an average prediction error of 20%,

and Mankodiet al. [78] reported an average error ranging from 10% to 25%.

101

Figure 5.7: SPEC CPU2006 benchmarks on ARM. Runtime is denoted after each
benchmark with a slash. Note that longer benchmarks show lower MAPE.

5.4.2 Cross-Architecture Generalizability

HPC community increasingly favors power-efficient systems that offer reduced power

consumption, occupy less space, and generate less heat. ARM architectures, distinct

from x86 with their Reduced Instruction Set Computer (RISC) architecture, are

increasingly prevalent in the server market, noted for their superior performance-per-

watt in enterprise environments. Testing on ARM systems helps evaluate MetaCast’s

adaptability.

We do not utilize the Instruction Set Architecture (ISA) type (x86 or ARM) as a

feature in our model. Due to architectural differences, Gem5 checkpoints created on an

x86 system cannot be used for ARM system simulations, and vice versa. Thus, we need

separate data collection processes for each system. Our meta-model is initially trained

using data from x86-based SPEC CPU2017 benchmarks, which would traditionally

limit the model’s applicability to x86 systems only. The key benefit of MetaCast is

the ability to use this x86-trained meta-model as a starting point for predictions on

ARM systems.

To demonstrate this, we extended the MetaCast meta-model—originally trained

on x86-based SPEC CPU2017 benchmarks—to ARM systems with the SPEC CPU2006

102

Table 5.3: Evaluation applicaitons

Application Description Language

miniQMC real space quantum MC C++
PICSARlite testing Particle-In-Cell kernels Fortran
Quicksilver dynamic MC particle transport C++
Goulash test compiler-linker interoperability C++
snap discrete particle transport Fortran/C++
PENNANT mesh data structures C++
lammps molecular dynamics simulation C++
vite Louvain undirected graph clustering C++
minivite Single-phase Louvain C++
sw4 3-D seismic modeling C++
sw4lite barebone version of SW4 C++

benchmarks, without altering the meta-model’s structure or re-training (Fig. 5.7).

By fine-tuning the target model with a small amount of ARM system data, we

show that MetaCast can accurately predict performance on previously unseen ARM

configurations.

Remarkably, longer runtime benchmarks (e.g., mcf, soplex) from SPEC CPU2006

on ARM (m400 on Cloudlab) matched the performance (MAPE < 20%) seen in the

x86 experiments. This consistency highlights the untouched meta-model’s capacity

to serve as the foundation for new models to accurately predict performance across

different architectures and benchmark suites. Conversely, higher MAPE values were

observed in benchmarks with inherently shorter runtimes (e.g., lbm, gobmk, bzip2),

which is an anticipated outcome given the complexity and longer runtimes of the

SPEC CPU2017 benchmarks used for initial meta-model training.

This successful application of a single, unchanged meta-model across architectures

and different sets of applications, achieving commendable MAPE scores, underscores

the flexibility and utility of MetaCast to create powerful future co-designed architec-

tures.

103

5.4.3 Meta-model Accuracy for Real Applications

To assess MetaCast’s real world performance, we conduct tests on various HPC

applications from the ECP [35] project (Table 5.3), running them on 13 distinct

physical nodes with varying architectures in Cloudlab (c220g2, c220g5, c8220, r320,

m510, xl170, c6220, rs630, rs620, d170, c6525-25g, r650, c6420). See more information

on applications in Appendix A.1 and nodes in Appendix A.2 These nodes span

a range of Intel microarchitectures, including Nehalem, Sandy Bridge, Ivy Bridge,

Haswell, Broadwell, Skylake, and Ice Lake running on Ubuntu 22, and compiled with

GCC/G++/FORTRAN 11.4.0. These applications are executed in serial mode instead

of parallel mode, since the limitations of Simpoint when simulating with Gem5 restrict

MetaCast to serial application training.

To minimize variability, we average runtimes from five executions of each application

per system. For each application, we use 10 samples for training and 3 for testing.

The data are randomly divided, and we train the target model for each application

100 times to ensure robust evaluation. The prediction accuracy of the meta-learning

model is detailed in Fig. 5.8.

Our analysis of higher MAPE errors in the results reveals a trend: tasks with

shorter runtimes (e.g., minivite, vite) tend to have higher MAPEs, while those with

longer runtimes (e.g., quicksilver, sw4lite, lammps) typically show lower MAPEs,

similar to the SPEC CPU 2017 benchmarks. This pattern reflects the training data

characteristics of the SPEC CPU benchmarks, which predominantly feature longer

runtimes, suggesting MetaCast’s proficiency in predicting applications with extended

durations. For more accurate predictions of applications with shorter runtimes,

incorporating tasks with similar characteristics into the training dataset is crucial.

An outlier, picsarlite, exhibits high MAPE and significant standard deviation. The

high variability in picsarlite’s prediction accuracy can be attributed to several factors.

Firstly, picsarlite demonstrates considerable runtime variation even within the same

104

Figure 5.8: Real HPC applications from ECP.

system. This inherent variability in the application’s behavior leads to inconsistent

training data, making it challenging for the model to capture a stable performance

pattern. Secondly, picsarlite may have unique computational patterns or memory

access behaviors that differ significantly from the SPEC CPU benchmarks used in

training the meta-model. This mismatch could contribute to the prediction difficulties.

To mitigate such issues in future work, for applications showing high variability like

picsarlite, increasing the number of repeated runs on each physical system could help in

capturing a more representative performance profile. Additionally, implementing more

rigorous system isolation techniques during execution could minimize interference from

background processes or system events, potentially reducing run-to-run variability.

Our suite includes pairs of parent/proxy applications (e.g., sw4/sw4lite and

vite/minivite). Proxy applications are simplified models of larger parent applica-

tions, representing similar characteristics. Despite handling the same input problem,

the runtime differences between these pairs result in disparate prediction accura-

cies. This observation highlights the need for careful consideration when using proxy

applications for performance prediction in HPC environments.

105

5.4.4 Time Efficiency in MetaCast versus Traditional Meth-

ods

The optimal training dataset size can vary, depending on the problem complexity,

to ensure model generalizability and reduce overfitting. Previous studies required

200 samples for models with 12 features [67], and about 300 samples for 15-feature

models [68]. Based on these studies, we set 500 samples as adequate for our 18-

feature model. Using Figure 5.1 as a reference, for the SPEC CPU 2017 benchmarks,

the average simulation time per application in steps 1a and 1b is about a month

each. Step 1c, involving checkpoint reloads for one architecture configuration, takes

roughly 30 minutes per sample. While simulations are serial, checkpoint reloads can

be parallelized, making step 1c about a day for 140 data points or three days for

500 data points. Synthetic task generation, calculating runtime for varied system

configurations, averages an hour per application, totaling around a day for all 25

benchmarks.

Hyperparameter training for the meta-model in step 2 takes about 4 hours, with

formal training requiring approximately 0.8 hours. In contrast, traditional methods for

new applications require complete data collection and training. Unlike parallel data

collection for meta-model training, new tasks necessitate sequential data gathering on

real systems, averaging 1 hour per system, resulting in 10 hours for 10 samples in step

3. Fine-tuning the target model in step 4 takes about 0.1 hours, compared to 0.5 hours

for traditional training on 500 data points. MetaCast approach significantly reduces

both data collection and model fine-tuning times. As shown in Figure 5.9a, MetaCast

becomes more cost-effective with an increasing number of applications. Figure 5.9b

shows a detailed relative time of steps. The preparation stage for MetaCast takes 62.2

days, while traditional methods start at zero cost. However, for each new application,

MetaCast requires only 0.5 days, compared to 63.5 days for traditional methods,

achieving a 127× increase in speed.

106

(a) MetaCast is consistently more efficient than the traditional application-specific method
(T). * y-axis is on a logarithmic scale.

(b) MetaCast takes extra time to prepare but becomes more efficient than the traditional
application-specific method for every new target application. The relative time of each step
is shown in different colors.

Figure 5.9: Comparison of efficiency and time distribution between MetaCast and
traditional methods.

107

5.5 Discussion

5.5.1 Accuracy Considerations

SimPoint Representation: Sim points cluster code segments using k-means, but in

some applications, the Basic Block Vectors (BBVs) may not be Gaussian, potentially

reducing the representativeness of the sim points. This limitation also affects the

effectiveness of our data augmentation method, which relies on weight reassignment

to generate synthetic applications. If the sim points are not sufficiently representative,

the data augmentation may not perform as expected.

Gem5 Simulation Incompleteness: We observe segmentation faults in Gem5

when reloading checkpoints for certain applications, resulting in checkpoint building

failures. This issue affected approximately 15% of our simulation attempts across all

benchmarks. While uniform failures across all configurations for a single application

have limited impact, partial failures introduce noise, as Gem5 fails to reload the

same checkpoints for different configurations, effectively altering the application under

different settings.

Within-Task Similarity and Diversity: The range of system configurations is

somewhat limited, which might affect task diversity and similarity. When randomly

selecting training samples for each task, if the training samples are too similar to

each other and significantly different from the testing set, the predictions may become

outliers.

Task Selection: Our tasks include original benchmarks and synthetic ones derived

from them. While the synthetic tasks do not notably improve accuracy, incorporating

more original applications might enhance the model’s performance and generalizability.

108

5.5.2 Future Directions

For future work, we may also explore advanced simulation methods to enhance dataset

accuracy or whether the initial conditions provided a sufficiently adaptable meta-model

for a broad spectrum of new tasks.

In this work, we focus on serial applications. We are currently expanding this

research to include multi-threaded applications, which leverage the parallelism of

multi-core systems. Analyzing multi-threaded applications is inherently challenging

due to issues like thread idleness, interference, and unbalanced workloads [16]. The

concept of using loop iterations as slices for single-threaded programs was introduced

in [66]. Our data collection process works as follows: LoopPoint [104] uses loop

entries as slice boundaries, allowing us to specify simulation regions using a (PC,

count) pair to mark the starting and ending loop entries for each region. We use

Simpoint to select the regions of interest (ROI), build region pinballs, transfer them to

Elfies [93] files, and replay them with the Gem5 simulator. Finally, we apply different

configurations to obtain the runtimes.

5.5.3 Conclusion

Runtime prediction is pivotal for optimizing hardware/software co-design, resource

allocation, and evaluating hardware modifications. Traditional approaches, typically

application and architecture-specific, are limited in scope and require extensive training

data. Addressing these challenges, MetaCast innovatively combines meta-learning

with architecture simulation to predict runtime for a wide range of applications and

systems. MetaCast facilitates quick, preliminary insights into application performance

across various architectures without necessitating an in-depth analysis, streamlining

the performance analysis process.

MetaCast not only covers a broad spectrum of applications and diverse architec-

tural platforms but also significantly reduces the need for extensive training samples.

109

With MetaCast, we achieve an average Mean Absolute Percentage Error (MAPE)

of 18% on the SPEC CPU 2017 benchmarks and 25% on real applications with as

few as ten training samples per task. This efficiency translates into a notable 127×

speedup in training time for additional tasks/applications compared to traditional ML

methods. Remarkably, longer runtime benchmarks from SPEC CPU2006 on ARM

matched the performance seen in the x86 experiments, emphasizing the adaptability

and robustness of MetaCast, paving the way for MetaCast to improve the co-design

of future HPC systems.

Chapter 6

Conclusion and Future Work

6.1 Conclusion

This dissertation presents an integrated approach to accelerating HPC application

design in heterogeneous environments. Our work introduces innovative tools that

collectively address critical challenges in proxy analysis, simulation, and ML-based

performance prediction. The synergy between these tools represents a significant

advancement in optimizing HPC application design, offering a unified solution that

streamlines the entire process from initial concept to optimized implementation.

Our contributions form a cohesive and novel strategy for HPC application design

optimization: Calder establishes a robust foundation for accurate workload repre-

sentation through quantitative proxy fidelity assessment. SimPoint++ builds upon

this by enabling efficient simulation and analysis of these representations. MetaCast

leverages the outputs from both Calder and SimPoint++ to deliver generalized

performance predictions across diverse architectures. This integrated approach signifi-

cantly reduces the time and computational resources required for HPC application

design, enabling more rapid iterations and informed decision-making throughout the

development process.

110

111

We first introduce Calder, a novel framework for quantifying the fidelity of proxy

applications. Calder employs a systematic and quantitative approach to assess proxy

fidelity, which is crucial for accurately representing complex HPC workloads and

providing reliable performance estimations. By identifying the most representative

features, Calder significantly reduces the data collection overhead by up to 95%,

while maintaining high fidelity in workload representation. Moreover, it highlights

features exhibiting dissimilarity between proxy and parent pairs, informing future

proxy co-design efforts and enabling more targeted optimizations.

Second, we build SimPoint++, an advanced sampled HPC application simula-

tion tool. By incorporating advanced dimension reduction techniques and improved

clustering algorithms, SimPoint++ identifies the most representative simulation

points, reducing simulation time by up to 80% while maintaining high accuracy. This

enables HPC system designers to efficiently explore design spaces in heterogeneous

environments, rapidly evaluate design alternatives, and optimize computer architecture

simulation and analysis, significantly accelerating the prototyping process.

Third, we introduce MetaCast, a framework that combines proxy application

simulations with meta-learning technology. MetaCast provides quick and accurate

runtime predictions for new applications on targeted architectures, offering a general-

ized performance modeling method. By leveraging meta-learning, MetaCast adapts

to diverse workloads and architectures more effectively than traditional methods,

speeding up model retraining time up to 127× and making it particularly suitable for

dynamic HPC environments.

This integrated approach represents a significant advancement over existing isolated

solutions for HPC design. It addresses key challenges in HPC application design and

optimization, enabling rapid prototyping, testing, and refinement of HPC applications.

By significantly reducing the time from initial design to optimized implementation,

our approach allows developers to make quick, informed decisions about application

112

design and hardware selection without the need for extensive, time-consuming full-

scale simulations or physical testing on every potential hardware configuration. This

comprehensive solution accelerates the entire HPC application design cycle, potentially

leading to faster innovations and more efficient utilization of HPC resources.

6.2 Future work

This dissertation can be extended from the following aspects.

1. Incorporation of Time-Series Analysis in Calder: To address the current

limitation of representing only static behaviors, future work could integrate time-

series analysis into Calder. For example, applying techniques like Dynamic

Time Warping (DTW) could reveal temporal patterns such as intermittent

resource bottlenecks in complex HPC applications, which static analysis might

miss. This enhancement would provide a more comprehensive representation of

application behavior over time.

2. Development of a Combined Clustering Method for SimPoint++:

While our research has demonstrated the efficacy of updated K-means, the

optimal clustering method may vary depending on the specific application.

Future work could focus on developing a hybrid or ensemble clustering approach

to balance computational efficiency with accuracy in representing diverse HPC

workloads. This combined method could adapt more flexibly to varying data

distributions, potentially leading to more robust and generalizable results across

diverse applications.

3. Expansion of Multi-thread MetaCast: To overcome the challenges of data

collection time and consistency in multi-threaded environments, future work

should leverage SimPoint++ to accelerate multi-thread task data collection. This

113

direction is particularly crucial given the increasing importance of parallelization

in HPC. Research could focus on addressing scalability issues and evaluating

the impact of different threading models on simulation accuracy and efficiency.

4. Expansion to Heterogeneous Computing Environments: The works in

this dissertation focus primarily on CPU architectures and micro-architectures.

As computing landscapes become increasingly diverse, extending our methods

to GPUs and specialized accelerators is a valuable direction for future research.

This would involve adapting our techniques to the unique characteristics of

these architectures, such as different memory hierarchies and parallelism models.

Such expansion would enhance the applicability of our approach in modern,

heterogeneous HPC environments.

Appendix A

Appendix

A.1 Real application information

Below is the list of real applications used in this work, with the required information

to build:

1. Application: miniQMC

(a) Repo: https://github.com/QMCPACK/miniqmc.git

(b) Input: -r 0.99 -g ’2 2 2’

2. Application: PICSARlite

(a) Repo: https://bitbucket.org/berkeleylab/picsar.git

(b) Input: example/input file.pxr # line 33, change t max = 100

3. Application: Quicksilver

(a) Repo: https://github.com/LLNL/Quicksilver.git

(b) Input: –nSteps 500

4. Application: Goulash

114

115

(a) Repo: https://github.com/LLNL/goulash.git

(b) Input: make check

5. Application: snap

(a) Repo: https://github.com/lanl/SNAP.git

(b) Input: Sample Input in official Repo with nsteps=100

6. Application: PENNANT

(a) Repo: https://github.com/lanl/PENNANT

(b) Input: ../test/nohpoly/nohpoly.pnt

7. Application: Lammps

(a) Repo: https://download.lammps.org/tars/lammps-29Oct2020.tar.gz

(b) Compilation flags: CCFLAGS = -pg LINKFLAGS = -pg

(c) Input: in.snap.Ta.mod.single attaway(The file located in the repo)

8. Application: vite

(a) Repo: https://github.com/Exa-Graph/vite

(b) Compilation flags: -pg

(c) Input: happy.bin (generated with this command: mpiexec -n 8 /vite/bin/graphClustering

-n 1024000 -s happy.bin)

9. Application: minivite

(a) Repo: https://github.com/Exa-Graph/miniVite

(b) Compilation flags: -fopenmp -pg

(c) Input: happy.bin

116

10. Application: sw4

(a) Repo: https://github.com/geodynamics/sw4

(b) Compilation flags: -pg

(c) Input: gaussianHill.in(The file located in the repo)

11. Application: sw4lite

(a) Repo: https://github.com/geodynamics/sw4lite

(b) Compilation flags:OPT = -pg

(c) Input: gaussianHill.in

A.2 Real system configuration per node

117

T
ab

le
A
.1
:
R
ea
l
sy
st
em

co
n
fi
gu

ra
ti
on

p
er

n
o
d
e

n
o
d
e

l1
i

l1
d

l1
i

l1
d

l2
l2

l3
l3

ca
ch
e

m
em

cp
u

fe
tc
h

fe
tc
h

fe
tc
h

d
ec
o
d
e

L
Q

S
Q

n
u
m
R
O
B

si
ze

si
ze

as
so
c

a
ss
o
c

si
ze

as
so
c

si
ze

as
so
c

li
n
e

-t
y
p
e

cl
o
ck

W
id
th

B
u
ff
er

Q
u
eu

e
W

id
th

E
n
tr
ie
s

E
n
tr
ie
s

E
n
tr
ie
s

si
ze

S
iz
e

S
iz
e

c2
2
0
g2

32
3
2

8
8

25
0

8
50

16
64

D
D
R
4
21

14
2.
6

16
32

56
4

64
3
6

1
6
8

c2
2
0
g5

32
3
2

8
8

10
00

4
27

.5
16

64
D
D
R
4
26

66
2.
2

6
16

32
6

72
5
6

2
2
4

c8
2
2
0

32
3
2

8
8

25
0

8
50

16
64

D
D
R
4
16

00
2.
2

16
32

32
4

48
3
6

1
6
8

r3
20

3
2

32
1
6

8
25

0
16

20
8

64
R
D
IM

M
2.
1

4
16

28
4

64
3
6

1
6
8

m
15

0
32

3
2

8
8

25
0

16
12

16
64

D
D
R
4
21

33
2

16
64

64
4

64
4
2

1
6
8

x
17

0
3
2

32
8

8
25

0
8

25
16

64
D
D
R
4
24

00
2.
4

16
64

64
4

64
4
2

1
6
8

c6
2
2
0

32
3
2

8
8

25
0

8
40

16
64

D
D
R
3

2.
6

16
32

32
4

48
3
6

1
6
8

rs
63

0
3
2

32
8

8
25

0
8

50
16

64
D
D
R
4

2.
6

16
32

56
4

64
3
6

1
6
8

rs
62

0
3
2

32
1
6

8
25

0
16

50
8

64
D
D
R
3

2.
2

4
16

28
4

64
3
6

1
6
8

d
7
1
0

3
2

32
4

8
50

0
8

8
16

64
D
D
R
3

2.
4

4
16

28
4

64
3
6

1
6
8

c6
5
2
5-
25

g
32

3
2

8
8

50
0

8
12

8
16

64
D
D
R
4

3
16

32
56

4
64

3
6

1
6
8

r6
50

4
8

32
8

12
12

5
8

10
8

16
64

D
D
R
4
32

00
2.
4

6
16

70
6

12
8

7
2

3
5
2

c6
4
2
0

32
3
2

8
8

10
00

4
44

16
64

D
D
R
4
26

66
2.
6

6
16

32
6

72
5
6

2
2
4

Bibliography

[1] AX, Hyperparameter Optimization using Bayesian. https://ax.dev/docs/

why-ax.html.

[2] TOP500 homepage. https://www.top500.org/lists/top500/2024/06/.

[3] Co-Design: Deploying Leading-Edge Computing Capabilities. https://

computing.llnl.gov/collaborations/co-design.

[4] Standard Performance Evaluation Corporation (SPEC) website. https://www.

spec.org/cpu2017/.

[5] Hpc challenge benchmark. https://icl.utk.edu/hpcc/, 2012.

[6] Aries hardware counters. https://docplayer.net/

55709631-Aries-hardware-counters.html, 2015.

[7] The pennant mini-app. https://github.com/lanl/PENNANT, 2016.

[8] Nekbone. https://github.com/Nek5000/Nekbone, 2017.

[9] Hpcg benchmark. https://www.hpcg-benchmark.org/, 2020.

[10] Snap: Sn (discrete ordinates) application proxy. https://github.com/lanl/

SNAP, 2021.

[11] Picsar: Particle-in-cell scalable application resource. https://picsar.net/

code/, 2022.

118

https://ax.dev/docs/why-ax.html
https://ax.dev/docs/why-ax.html
https://www.top500.org/lists/top500/2024/06/
https://computing.llnl.gov/collaborations/co-design
https://computing.llnl.gov/collaborations/co-design
https://www.spec.org/cpu2017/
https://www.spec.org/cpu2017/
https://icl.utk.edu/hpcc/
https://docplayer.net/55709631-Aries-hardware-counters.html
https://docplayer.net/55709631-Aries-hardware-counters.html
https://github.com/lanl/PENNANT
https://github.com/Nek5000/Nekbone
https://www.hpcg-benchmark.org/
https://github.com/lanl/SNAP
https://github.com/lanl/SNAP
https://picsar.net/code/
https://picsar.net/code/

119

[12] O. Aaziz, J. Cook, J. Cook, T. Juedeman, D. Richards, and C. Vaughan. A

methodology for characterizing the correspondence between real and proxy

applications. In CLUSTER, pages 190–200, 2018.

[13] Omar Aaziz, Courtenay Vaughan, Jonathan Cook, Jeanine Cook, Jeffery Kuehn,

and David Richards. Fine-grained analysis of communication similarity between

real and proxy applications. In PMBS, pages 93–102. IEEE, 2019.

[14] Anthony Agelastos et al. The lightweight distributed metric service: a scalable

infrastructure for continuous monitoring of large scale computing systems and

applications. In SC’14, pages 154–165. IEEE, 2014.

[15] Ayaz Akram and Lina Sawalha. A survey of computer architecture simulation

techniques and tools. Ieee Access, 7:78120–78145, 2019.

[16] Alaa R Alameldeen and David A Wood. Variability in architectural simulations

of multi-threaded workloads. In The Ninth International Symposium on High-

Performance Computer Architecture, 2003. HPCA-9 2003. Proceedings., pages

7–18. IEEE, 2003.

[17] A. S. Almgren et al. CASTRO: A New Compressible Astrophysical Solver. I.

Hydrodynamics and Self-gravity. Astrophysical Journal, 715:1221–1238, June

2010. doi: 10.1088/0004-637X/715/2/1221.

[18] Antreas Antoniou, Harrison Edwards, and Amos Storkey. How to train your

maml. arXiv preprint arXiv:1810.09502, 2018.

[19] Cesar Avalos Baddouh, Mahmoud Khairy, Roland N Green, Mathias Payer,

and Timothy G Rogers. Principal kernel analysis: A tractable methodology

to simulate scaled gpu workloads. In MICRO-54: 54th Annual IEEE/ACM

International Symposium on Microarchitecture, pages 724–737, 2021.

120

[20] R.F. Barrett et al. Assessing the Role of Mini-Applications in Predicting Key

Performance Characteristics of Scientific and Engineering Applications. Journal

of Parallel and Distributed Computing, 75(Supplement C):107 – 122, 2015. ISSN

0743-7315.

[21] Trevor E Carlson, Wim Heirman, and Lieven Eeckhout. Sniper: Exploring the

level of abstraction for scalable and accurate parallel multi-core simulation. In

Proceedings of 2011 International Conference for High Performance Computing,

Networking, Storage and Analysis, pages 1–12, 2011.

[22] Trevor E Carlson, Wim Heirman, Kenzo Van Craeynest, and Lieven Eeckhout.

Barrierpoint: Sampled simulation of multi-threaded applications. In 2014 IEEE

International Symposium on Performance Analysis of Systems and Software

(ISPASS), pages 2–12. IEEE, 2014.

[23] Mehmet Cengiz, Matthew Forshaw, Amir Atapour-Abarghouei, and An-

drew Stephen McGough. Predicting the performance of a computing system with

deep networks. In Proceedings of the 2023 ACM/SPEC International Conference

on Performance Engineering, pages 91–98, 2023.

[24] Xiaomeng Chen, Hui Zhang, Hanli Bai, Chunming Yang, Xujian Zhao, and Bo Li.

Runtime prediction of high-performance computing jobs based on ensemble

learning. In Proceedings of the 2020 4th International Conference on High

Performance Compilation, Computing and Communications, pages 56–62, 2020.

[25] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,

Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase repre-

sentations using rnn encoder-decoder for statistical machine translation. arXiv

preprint arXiv:1406.1078, 2014.

[26] Madalina Ciortan. Spectral graph clustering and optimal num-

121

ber of clusters estimation. https://towardsdatascience.com/

spectral-graph-clustering-and-optimal-number-of-clusters-estimation-32704189afbe,

Jan 2019.

[27] Jeanine Cook, Hal Finkel, Christoph Junghams, Peter McCorquodale, Robert

Pavel, and David F. Richards. Proxy app prospectus for ecp application devel-

opment projects. doi: 10.2172/1477829. URL https://www.osti.gov/biblio/

1477829.

[28] Sanjoy Dasgupta. Experiments with random projection. arXiv preprint

arXiv:1301.3849, 2013.

[29] Sander De Pestel, Sam Van den Steen, Shoaib Akram, and Lieven Eeckhout.

Rppm: Rapid performance prediction of multithreaded workloads on multicore

processors. In 2019 IEEE International Symposium on Performance Analysis of

Systems and Software (ISPASS), pages 257–267. IEEE, 2019.

[30] V. Dobrev, Tz. Kolev, and R. Rieben. High-order curvilinear finite element

methods for lagrangian hydrodynamics. SIAM Journal on Scientific Computing,

34:B606–B641, 2012.

[31] Sudip S Dosanjh, Richard F Barrett, DW Doerfler, Simon D Hammond, Karl S

Hemmert, Michael A Heroux, Paul T Lin, Kevin T Pedretti, Arun F Rodrigues,

TG Trucano, et al. Exascale design space exploration and co-design. Future

Generation Computer Systems, 30:46–58, 2014.

[32] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong, Jonathon

Duerig, Eric Eide, Leigh Stoller, Mike Hibler, David Johnson, Kirk Webb, et al.

The design and operation of cloudlab. In USENIX Annual Technical Conference,

pages 1–14, 2019.

https://towardsdatascience.com/spectral-graph-clustering-and-optimal-number-of-clusters-estimation-32704189afbe
https://towardsdatascience.com/spectral-graph-clustering-and-optimal-number-of-clusters-estimation-32704189afbe
https://www.osti.gov/biblio/1477829
https://www.osti.gov/biblio/1477829

122

[33] ECP. Exascale Proxy Application Suite. https://proxyapps.

exascaleproject.org, 2020.

[34] Dominik Maria Endres and Johannes E Schindelin. A new metric for probability

distributions. IEEE Transactions on Information theory, 49(7):1858–1860, 2003.

[35] Exascale Computing Project. ECP Proxy Applications. https://proxyapps.

exascaleproject.org/app/, 2023. Accessed: 2023-10-01.

[36] Stijn Eyerman, Lieven Eeckhout, Tejas Karkhanis, and James E Smith. A

mechanistic performance model for superscalar out-of-order processors. ACM

Transactions on Computer Systems (TOCS), 27(2):1–37, 2009.

[37] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning

for fast adaptation of deep networks. In International conference on machine

learning, pages 1126–1135. PMLR, 2017.

[38] Steven Flolid, Emily Shriver, Zachary Susskind, Benjamin Thorell, and Lizy K

John. Simtrace: Capturing over time program phase behavior. In 2020 IEEE

International Symposium on Performance Analysis of Systems and Software

(ISPASS), pages 226–228. IEEE, 2020.

[39] Rahulkumar Gayatri, Stan Moore, Evan Weinberg, Nicholas Lubbers, Sarah

Anderson, Jack Deslippe, Danny Perez, and Aidan P Thompson. Rapid explo-

ration of optimization strategies on advanced architectures using testsnap and

lammps. arXiv preprint arXiv:2011.12875, 2020.

[40] S. Ghosh et al. MiniVite: A Graph Analytics Benchmarking Tool for Massively

Parallel Systems. In IEEE/ACM Perf. Modeling, Benchmarking and Sim. of

High Perf. Computer Systems (PMBS), November 2018.

https://proxyapps.exascaleproject.org
https://proxyapps.exascaleproject.org
https://proxyapps.exascaleproject.org/app/
https://proxyapps.exascaleproject.org/app/

123

[41] Sayan Ghosh, Mahantesh Halappanavar, Antonino Tumeo, Ananth Kalyanara-

man, Hao Lu, Daniel Chavarrià-Miranda, Arif Khan, and Assefaw Gebremedhin.

Distributed louvain algorithm for graph community detection. In 2018 IEEE In-

ternational Parallel and Distributed Processing Symposium (IPDPS), Vancouver,

BC, Canada, May 2018.

[42] Richard Gibbons. A historical application profiler for use by parallel schedulers.

In Workshop on Job Scheduling Strategies for Parallel Processing, pages 58–77.

Springer, 1997.

[43] S. Habib et al. Hacc: Extreme scaling and performance across diverse architec-

tures. Commun. ACM, 60(1):97–104, December 2016. ISSN 0001-0782.

[44] Greg Hamerly, Erez Perelman, Jeremy Lau, and Brad Calder. Simpoint 3.0:

Faster and more flexible program phase analysis. Journal of Instruction Level

Parallelism, 7(4):1–28, 2005.

[45] Greg Hamerly, Erez Perelman, and Brad Calder. Comparing multinomial and

k-means clustering for simpoint. In 2006 IEEE International Symposium on

Performance Analysis of Systems and Software, pages 131–142. IEEE, 2006.

[46] Xiaofei He, Deng Cai, and Partha Niyogi. Laplacian score for feature selection.

Advances in neural information processing systems, 18, 2005.

[47] Van Emden Henson and Ulrike Meier Yang. Boomeramg: A parallel algebraic

multigrid solver and preconditioner. Appl. Num. Math., 41:155–177, 2002.

[48] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural

computation, 9(8):1735–1780, 1997.

[49] Lorin Hochstein, Jeff Carver, Forrest Shull, Sima Asgari, Victor Basili, Jeffrey K

124

Hollingsworth, and Marvin V Zelkowitz. Parallel programmer productivity: A

case study of novice parallel programmers. In SC’05, pages 35–35. IEEE, 2005.

[50] Timothy Hospedales, Antreas Antoniou, Paul Micaelli, and Amos Storkey. Meta-

learning in neural networks: A survey. IEEE transactions on pattern analysis

and machine intelligence, 44(9):5149–5169, 2021.

[51] Zhengxiong Hou, Hong Shen, Xingshe Zhou, Jianhua Gu, Yunlan Wang, and

Tianhai Zhao. Prediction of job characteristics for intelligent resource allocation

in hpc systems: a survey and future directions. Frontiers of Computer Science,

16(5):165107, 2022.

[52] Hameed Hussain, Saif Ur Rehman Malik, Abdul Hameed, Samee Ullah Khan,

Gage Bickler, Nasro Min-Allah, Muhammad Bilal Qureshi, Limin Zhang, Wang

Yongji, Nasir Ghani, et al. A survey on resource allocation in high performance

distributed computing systems. Parallel Computing, 39(11):709–736, 2013.

[53] Intel. Intel® 64 and IA-32 Architectures Software Developer’s

Manual Volume 3B: System Programming Guide, Part 2. https:

//www.intel.com/content/www/us/en/content-details/812388/

intel-64-and-ia-32-architectures-software-developer-s-manual-volume-3b-system-programming-guide-part-2.

html, December 2023.

[54] Ioana. Latent Semantic Analysis: intuition, math,

implementation. https://towardsdatascience.com/

latent-semantic-analysis-intuition-math-implementation-a194aff870f8,

may 2020.

[55] Engin Ïpek, Sally A McKee, Rich Caruana, Bronis R de Supinski, and Martin

Schulz. Efficiently exploring architectural design spaces via predictive modeling.

ACM SIGOPS Operating Systems Review, 40(5):195–206, 2006.

https://www.intel.com/content/www/us/en/content-details/812388/intel-64-and-ia-32-architectures-software-developer-s-manual-volume-3b-system-programming-guide-part-2.html
https://www.intel.com/content/www/us/en/content-details/812388/intel-64-and-ia-32-architectures-software-developer-s-manual-volume-3b-system-programming-guide-part-2.html
https://www.intel.com/content/www/us/en/content-details/812388/intel-64-and-ia-32-architectures-software-developer-s-manual-volume-3b-system-programming-guide-part-2.html
https://www.intel.com/content/www/us/en/content-details/812388/intel-64-and-ia-32-architectures-software-developer-s-manual-volume-3b-system-programming-guide-part-2.html
https://towardsdatascience.com/latent-semantic-analysis-intuition-math-implementation-a194aff870f8
https://towardsdatascience.com/latent-semantic-analysis-intuition-math-implementation-a194aff870f8

125

[56] Tanzima Z. Islam, Jayaraman J. Thiagarajan, Abhinav Bhatele, Martin Schulz,

and Todd Gamblin. A Machine Learning Framework for Performance Coverage

Analysis of Proxy Applications. In SC ’16, pages 46:1–46:12. IEEE Press, 2016.

ISBN 978-1-4673-8815-3.

[57] William B Johnson, Joram Lindenstrauss, and Gideon Schechtman. Extensions

of lipschitz maps into banach spaces. Israel Journal of Mathematics, 54(2):

129–138, 1986.

[58] Joshua Johnston and Greg Hamerly. Improving simpoint accuracy for small

simulation budgets with edcm clustering. Worksh. on Statistical and Machine

learning approaches to ARchitectures and compilaTion (SMART08), 2008.

[59] Maurice George Kendall. Rank correlation methods. 1948.

[60] P. R. C. Kent et al. QMCPACK: Advances in the Development, Efficiency,

and Application of Auxiliary Field and Real-Space Variational and Diffusion

Quantum Monte Carlo. J. Chemical Physics, 152(174105), 2020.

[61] Y. Kim, J. M. Dennis, and C. Kerr. Assessing Representativeness of Kernels

Using Descriptive Statistics. In CLUSTER, pages 818–825, Sept 2017.

[62] Solomon Kullback and Richard A Leibler. On information and sufficiency. The

annals of mathematical statistics, 22(1):79–86, 1951.

[63] JaeHyuk Kwack, John Tramm, Colleen Bertoni, Yasaman Ghadar, Brian

Homerding, Esteban Rangel, Christopher Knight, and Scott Parker. Evalu-

ation of performance portability of applications and mini-apps across amd,

intel and nvidia gpus. In 2021 International Workshop on Performance,

Portability and Productivity in HPC (P3HPC), pages 45–56, 2021. doi:

10.1109/P3HPC54578.2021.00008.

126

[64] JaeHyuk Kwack, John Tramm, Colleen Bertoni, Yasaman Ghadar, Brian Home-

rding, Esteban Rangel, Christopher Knight, and Scott Parker. Evaluation of

performance portability of applications and mini-apps across amd, intel and

nvidia gpus. In 2021 International Workshop on Performance, Portability and

Productivity in HPC (P3HPC), pages 45–56. IEEE, 2021.

[65] Verónica G Vergara Larrea, Michael J Brim, Arnold Tharrington, Reuben

Budiardja, and Wayne Joubert. Towards acceptance testing at the exascale

frontier. In CUG, 2020.

[66] Jeremy Lau, Erez Perelman, and Brad Calder. Selecting software phase markers

with code structure analysis. In International Symposium on Code Generation

and Optimization (CGO’06), pages 12–pp. IEEE, 2006.

[67] Benjamin C Lee and David M Brooks. Accurate and efficient regression model-

ing for microarchitectural performance and power prediction. ACM SIGOPS

operating systems review, 40(5):185–194, 2006.

[68] Benjamin C Lee, Jamison Collins, Hong Wang, and David Brooks. Cpr: Com-

posable performance regression for scalable multiprocessor models. In 2008

41st IEEE/ACM International Symposium on Microarchitecture, pages 270–281.

IEEE, 2008.

[69] Jan-Patrick Lehr, Christian Bischof, Florian Dewald, Heiko Mantel, Mohammad

Norouzi, and Felix Wolf. Tool-supported mini-app extraction to facilitate

program analysis and parallelization. In Proceedings of the 50th International

Conference on Parallel Processing, pages 1–10, 2021.

[70] Jingbo Li, Xingjun Zhang, Li Han, Zeyu Ji, Xiaoshe Dong, and Chenglong

Hu. Okcm: improving parallel task scheduling in high-performance computing

127

systems using online learning. The Journal of Supercomputing, 77:5960–5983,

2021.

[71] Yuliang Li, Jianguo Wang, Benjamin Pullman, Nuno Bandeira, and Yannis

Papakonstantinou. Index-based, high-dimensional, cosine threshold querying

with optimality guarantees. Theory of Computing Systems, 65(1):42–83, 2021.

[72] Zhenguo Li, Fengwei Zhou, Fei Chen, and Hang Li. Meta-sgd: Learning to learn

quickly for few-shot learning. arXiv preprint arXiv:1707.09835, 2017.

[73] Paul T. Lin, Michael A. Heroux, Richard F. Barrett, and Alan B. Williams.

Assessing a mini-application as a performance proxy for a finite element method

engineering application. Concurrency and Computation: Practice and Experience,

27(17):5374–5389, 2015. ISSN 1532-0634. cpe.3587.

[74] Zhengchun Liu, Ryan Lewis, Rajkumar Kettimuthu, Kevin Harms, Philip

Carns, Nageswara Rao, Ian Foster, and Michael E Papka. Characterization and

identification of hpc applications at leadership computing facility. In Proceedings

of the 34th ACM International Conference on Supercomputing, pages 1–12, 2020.

[75] Jason Lowe-Power, Abdul Mutaal Ahmad, Ayaz Akram, Mohammad Alian, Rico

Amslinger, Matteo Andreozzi, Adrià Armejach, Nils Asmussen, Brad Beckmann,

Srikant Bharadwaj, et al. The gem5 simulator: Version 20.0+. arXiv preprint

arXiv:2007.03152, 2020.

[76] Yirong Lv, Bin Sun, Qingyi Luo, Jing Wang, Zhibin Yu, and Xuehai Qian. Coun-

terminer: Mining big performance data from hardware counters. In 2018 51st

Annual IEEE/ACM International Symposium on Microarchitecture (MICRO),

pages 613–626. IEEE, 2018.

[77] Amit Mankodi, Amit Bhatt, Bhaskar Chaudhury, Rajat Kumar, and Aditya

Amrutiya. Evaluating machine learning models for disparate computer systems

128

performance prediction. In 2020 IEEE International Conference on Electronics,

Computing and Communication Technologies (CONECCT), pages 1–6. IEEE,

2020.

[78] Amit Mankodi, Amit Bhatt, and Bhaskar Chaudhury. Performance prediction

from simulation systems to physical systems using machine learning with transfer

learning and scaling. Concurrency and Computation: Practice and Experience,

page e6433, 2021.

[79] Giovanni Mariani, Andreea Anghel, Rik Jongerius, and Gero Dittmann. Predict-

ing cloud performance for hpc applications before deployment. Future Generation

Computer Systems, 87:618–628, 2018.

[80] Satoshi Matsuoka, Jens Domke, Mohamed Wahib, Aleksandr Drozd, Andrew A

Chien, Raymond Bair, Jeffrey S Vetter, and John Shalf. Preparing for the

future—rethinking proxy applications. Computing in Science & Engineering, 24

(2):85–90, 2022.

[81] Leland McInnes, John Healy, and James Melville. Umap: Uniform mani-

fold approximation and projection for dimension reduction. arXiv preprint

arXiv:1802.03426, 2018.

[82] OE Bronson Messer, Ed D’Azevedo, Judy Hill, Wayne Joubert, Mark Berrill, and

Christopher Zimmer. Miniapps derived from production hpc applications using

multiple programing models. The International Journal of High Performance

Computing Applications, 32(4):582–593, 2018.

[83] Mina Naghshnejad and Mukesh Singhal. A hybrid scheduling platform: a runtime

prediction reliability aware scheduling platform to improve hpc scheduling

performance. The Journal of Supercomputing, 76:122–149, 2020.

129

[84] Philippe Olivier Alexandre Navaux, Arthur Francisco Lorenzon, and Matheus

da Silva Serpa. Challenges in high-performance computing. Journal of the

Brazilian Computer Society, 29(1):51–62, 2023.

[85] Nek. Nek5000 version 19.0. https://nek5000.mcs.anl.gov, December 2019.

[86] Alex Nichol, Joshua Achiam, and John Schulman. On first-order meta-learning

algorithms. arXiv preprint arXiv:1803.02999, 2018.

[87] Jorge Ortiz, David Corbalán-Navarro, Juan L Aragón, and Antonio González.

Megsim: A novel methodology for efficient simulation of graphics workloads

in gpus. In 2022 IEEE International Symposium on Performance Analysis of

Systems and Software (ISPASS), pages 69–78. IEEE, 2022.

[88] AMB Owenson, Steven A Wright, Richard A Bunt, YK Ho, Matthew J Street,

and Stephen A Jarvis. An unstructured cfd mini-application for the performance

prediction of a production cfd code. Concurrency and Computation: Practice

and Experience, 32(10):e5443, 2020.

[89] Gence Ozer, Sarthak Garg, Neda Davoudi, Gabrielle Poerwawinata, Matthias

Maiterth, Alessio Netti, and Daniele Tafani. Towards a predictive energy model

for hpc runtime systems using supervised learning. In Euro-Par 2019: Parallel

Processing Workshops: Euro-Par 2019 International Workshops, Göttingen,

Germany, August 26–30, 2019, Revised Selected Papers 25, pages 626–638.

Springer, 2020.

[90] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury,

Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,

et al. Pytorch: An imperative style, high-performance deep learning library.

Advances in neural information processing systems, 32, 2019.

https://nek5000.mcs.anl.gov

130

[91] Suchita Pati, Shaizeen Aga, Matthew D Sinclair, and Nuwan Jayasena. Seqpoint:

Identifying representative iterations of sequence-based neural networks. In

2020 IEEE International Symposium on Performance Analysis of Systems and

Software (ISPASS), pages 69–80. IEEE, 2020.

[92] Harish Patil, Robert Cohn, Mark Charney, Rajiv Kapoor, Andrew Sun, and

Anand Karunanidhi. Pinpointing representative portions of large intel® ita-

nium® programs with dynamic instrumentation. In 37th International Sympo-

sium on Microarchitecture (MICRO-37’04), pages 81–92. IEEE, 2004.

[93] Harish Patil, Alexander Isaev, Wim Heirman, Alen Sabu, Ali Hajiabadi, and

Trevor E Carlson. Elfies: Executable region checkpoints for performance anal-

ysis and simulation. In 2021 IEEE/ACM International Symposium on Code

Generation and Optimization (CGO), pages 126–136. IEEE, 2021.

[94] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,

D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine

learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

[95] Erez Perelman, Greg Hamerly, Michael Van Biesbrouck, Timothy Sherwood,

and Brad Calder. Using simpoint for accurate and efficient simulation. ACM

SIGMETRICS Performance Evaluation Review, 31(1):318–319, 2003.

[96] N.A. Petersson and B. Sjrogreen. Sw4 v2.0. computational infrastructure of

geodynamics, 2017.

[97] Steve Plimpton. Fast parallel algorithms for short-range molecular dynamics. J.

Comput. Phys., 117(1):1–19, March 1995. ISSN 0021-9991. doi: 10.1006/jcph.

1995.1039.

131

[98] Xinxin Qi, Juan Chen, and Lin Deng. Cp 3: Hierarchical cross-platform

power/performance prediction using a transfer learning approach. In Interna-

tional Conference on Algorithms and Architectures for Parallel Processing, pages

117–138. Springer, 2022.

[99] Lawrence R Rabiner. A tutorial on hidden markov models and selected applica-

tions in speech recognition. Proceedings of the IEEE, 77(2):257–286, 1989.

[100] D. Richards et al. FY18 Proxy App Suite Release. Milestone Report for the ECP

Proxy App Project. Technical report, Lawrence Livermore National Lab.(LLNL),

Livermore, CA, 2018.

[101] Paul K. Romano, Nicholas E. Horelik, Bryan R. Herman, Adam G. Nelson,

Benoit Forget, and Kord Smith. Openmc: A state-of-the-art monte carlo

code for research and development. Ann. Nucl. Energy, 82:90–97, 2015. URL

https://doi.org/10.1016/j.anucene.2014.07.048.

[102] Yossi Rubner, Carlo Tomasi, and Leonidas J Guibas. The earth mover’s distance

as a metric for image retrieval. International journal of computer vision, 40(2):

99–121, 2000.

[103] Jaehun Ryu and Hyojin Sung. Metatune: Meta-learning based cost model for

fast and efficient auto-tuning frameworks. arXiv preprint arXiv:2102.04199,

2021.

[104] Alen Sabu, Harish Patil, Wim Heirman, and Trevor E Carlson. Looppoint:

Checkpoint-driven sampled simulation for multi-threaded applications. In 2022

IEEE International Symposium on High-Performance Computer Architecture

(HPCA), pages 604–618. IEEE, 2022.

[105] Kaushal Sanghai, Ting Su, Jennifer Dy, and David Kaeli. A multinomial cluster-

ing model for fast simulation of computer architecture designs. In Proceedings

https://doi.org/10.1016/j.anucene.2014.07.048

132

of the eleventh ACM SIGKDD international conference on Knowledge discovery

in data mining, pages 808–813, 2005.

[106] Ville Satopaa, Jeannie Albrecht, David Irwin, and Barath Raghavan. Finding

a” kneedle” in a haystack: Detecting knee points in system behavior. In 2011

31st international conference on distributed computing systems workshops, pages

166–171. IEEE, 2011.

[107] Jennifer M Schopf and Francine Berman. Using stochastic intervals to predict

application behavior on contended resources. In Proceedings Fourth International

Symposium on Parallel Architectures, Algorithms, and Networks (I-SPAN’99),

pages 344–349. IEEE, 1999.

[108] David Sculley. Web-scale k-means clustering. In Proceedings of the 19th inter-

national conference on World wide web, pages 1177–1178, 2010.

[109] Timothy Sherwood, Erez Perelman, Greg Hamerly, and Brad Calder. Automati-

cally characterizing large scale program behavior. ACM SIGPLAN Notices, 37

(10):45–57, 2002.

[110] Warren Smith, Ian Foster, and Valerie Taylor. Predicting application run times

with historical information. Journal of Parallel and Distributed Computing, 64

(9):1007–1016, 2004.

[111] Standard Performance Evaluation Corporation. SPEC CPU 2006. https:

//www.spec.org/cpu2006/, 2006. Accessed: 2023-10-01.

[112] Jingwei Sun, Guangzhong Sun, Shiyan Zhan, Jiepeng Zhang, and Yong Chen.

Automated performance modeling of hpc applications using machine learning.

IEEE Transactions on Computers, 69(5):749–763, 2020.

https://www.spec.org/cpu2006/
https://www.spec.org/cpu2006/

133

[113] Mohammed Tanash, Huichen Yang, Daniel Andresen, and William Hsu. Ensem-

ble prediction of job resources to improve system performance for slurm-based

hpc systems. In Practice and experience in advanced research computing, pages

1–8. 2021.

[114] Dan Terpstra, Heike Jagode, Haihang You, and Jack Dongarra. Collecting

performance data with papi-c. In Tools for High Performance Computing 2009,

pages 157–173. Springer, 2010.

[115] Aidan P. Thompson and Christian Robert Trott. A brief description of the

kokkos implementation of the snap potential in examinimd. 11 2017. doi:

10.2172/1409290.

[116] Abdul Jabbar Saeed Tipu, Pádraig Ó Conbhúı, and Enda Howley. Artificial

neural networks based predictions towards the auto-tuning and optimization of

parallel io bandwidth in hpc system. Cluster Computing, pages 1–20, 2022.

[117] John R Tramm, Andrew R Siegel, Tanzima Islam, and Martin Schulz. XSBench

- the development and verification of a performance abstraction for Monte Carlo

reactor analysis. In PHYSOR, 2014.

[118] Uday Kumar Reddy Vengalam, Anshujit Sharma, and Michael Huang. Loopin:

a loop-based simulation sampling mechanism. In 2022 IEEE International

Symposium on Performance Analysis of Systems and Software (ISPASS), pages

224–226. IEEE, 2022.

[119] H. Vincenti and J.-L. Vay. Detailed analysis of the effects of stencil spatial

variations with arbitrary high-order finite-difference maxwell solver. Computer

Physics Communications, 200:147, 2016.

[120] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler

Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser,

134

Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson,

K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert

Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake

VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen,

E. A. Quintero, Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro,

Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0 Contributors. SciPy 1.0:

Fundamental Algorithms for Scientific Computing in Python. Nature Methods,

17:261–272, 2020. doi: 10.1038/s41592-019-0686-2.

[121] Nan Wu and Yuan Xie. A survey of machine learning for computer architecture

and systems. ACM Computing Surveys (CSUR), 55(3):1–39, 2022.

[122] Abenezer Wudenhe and Hung-Wei Tseng. Tpupoint: Automatic characterization

of hardware-accelerated machine-learning behavior for cloud computing. In

2021 IEEE International Symposium on Performance Analysis of Systems and

Software (ISPASS), pages 254–264. IEEE, 2021.

[123] Roland E Wunderlich, Thomas F Wenisch, Babak Falsafi, and James C Hoe.

Smarts: Accelerating microarchitecture simulation via rigorous statistical sam-

pling. In Proceedings of the 30th annual international symposium on Computer

architecture, pages 84–97, 2003.

[124] Tao Yan, Qingguo Xu, Jiyu Luo, Jingwei Sun, and Guangzhong Sun. Synthesizing

proxy applications for mpi programs. arXiv preprint arXiv:2301.06062, 2023.

[125] Ahmad Yasin. A top-down method for performance analysis and counters

architecture. In ISPASS, pages 35–44. IEEE, 2014.

[126] Di Zhang, Dong Dai, Youbiao He, Forrest Sheng Bao, and Bing Xie. Rlscheduler:

an automated hpc batch job scheduler using reinforcement learning. In SC20:

135

International Conference for High Performance Computing, Networking, Storage

and Analysis, pages 1–15. IEEE, 2020.

[127] Xinnian Zheng, Lizy K John, and Andreas Gerstlauer. Lacross: Learning-

based analytical cross-platform performance and power prediction. International

Journal of Parallel Programming, 45:1488–1514, 2017.

	Introduction
	Motivation
	Main Research Question
	Research Contributions
	Quantify the Fidelity of Proxy Applications
	Accelerate Application Simulation
	Generalize HPC Application Runtime Prediction

	Background
	HPC Application Characterization
	Building Proxy Application
	Proxy Application Characterization

	Accelerated Simulation
	Simulator and Sampling Method
	SimPoint and Its Extensions
	Recent Advancements in SimPoint

	HPC Application Runtime Prediction
	Application Specific Performance Evaluation
	The Role of Machine Learning
	Cross-platform Performance Prediction
	Meta-learning

	Conclusion

	Beyond Guess and Check: Quantifying the Fidelity of Proxy Applications
	Overview
	Methods
	Hardware Performance Counters
	Feature Selection
	Similarity and Distance

	Experiment
	Application Suite
	System Platform
	Data Collection and Preprocessing

	Results
	Similarity Matrix Comparison
	Root Cause Analysis
	Feature Selection and Feature sensitivity
	Feature Standard Deviation
	Subgroup Features
	Evaluation on Network Counters

	Discussion

	SimPoint++: Advanced Sampled HPC Application Simulation
	Overview
	Background
	Original SimPoint Workflow
	Random Projection
	K-means
	Why do we need to replace BIC in SimPoint?
	The Process of How SimPoint Finds the Optimal K

	Method
	Dimension Reduction
	Optimized K-means Clustering
	Spectral Clustering

	Experiment
	Results
	Finding the Best K
	Speedup and Accuracy
	Comparison with Spectral Clustering

	Discussion

	METACAST: Generalizing HPC Application Runtime Prediction
	Overview
	Methods
	Multi Task Data Collection
	Meta-Model Training
	Target Task Data Collection
	Target Task Model Training

	Experiment
	Simulation Platform
	Application Workload
	Model Training
	Hyperparameter Optimization

	Results
	Meta-model Accuracy for Benchmarks
	Cross-Architecture Generalizability
	Meta-model Accuracy for Real Applications
	Time Efficiency in MetaCast versus Traditional Methods

	Discussion
	Accuracy Considerations
	Future Directions
	Conclusion

	Conclusion and Future Work
	Conclusion
	Future work

	Appendix
	Real application information
	Real system configuration per node

	Bibliography

