
Distribution Agreement

In presenting this thesis as a partial fulfillment of the requirements for a degree from
Emory University, I hereby grant to Emory University and its agents the non-exclusive
license to archive, make accessible, and display my thesis in whole or in part in all
forms of media, now or hereafter now, including display on the World Wide Web. I
understand that I may select some access restrictions as part of the online submission
of this thesis. I retain all ownership rights to the copyright of the thesis. I also retain
the right to use in future works (such as articles or books) all or part of this thesis.

Alexandru Rudi March 29, 2023

Analyzing Competitive Programming Competitions to Develop Effective Training
Methods for Improving Problem-Solving Skills in Students

By

Alexandru Rudi

Jinho D. Choi, Ph.D.
Advisor

Computer Science

Jinho D. Choi, Ph.D.
Advisor

Michelangelo Grigni, Ph.D.
Committee Member

Steven La Fleur, Ph.D.
Committee Member

2023

Analyzing Competitive Programming Competitions to Develop Effective Training
Methods for Improving Problem-Solving Skills in Students

By

Alexandru Rudi

Jinho D. Choi, Ph.D.
Advisor

An abstract of
A thesis submitted to the Faculty of the

Emory College of Arts and Sciences of Emory University
in partial fulfillment of the requirements for the degree of

Bachelor of Science with Honors
Computer Science

2023

Abstract

Analyzing Competitive Programming Competitions to Develop Effective Training
Methods for Improving Problem-Solving Skills in Students

By Alexandru Rudi

Competitive programming is a mind sport that has become increasingly popular in
recent years, with thousands of programmers participating in online competitions ev-
ery day. Despite its popularity, there is not much research on the competition or
effective training methods for students. This study aimed to fill this gap by analyz-
ing previous competitive programming competitions to tag problems and determine
which theoretical knowledge is most valuable in improving students’ problem-solving
skills. We also examined how competitive programmers approach problem-solving,
resulting in a flowchart algorithm for solving problems, which we tested on problems
from previous competitions to show its usefulness. Based on this research, we created
a series of competitive programming practice meetings for students at Emory Uni-
versity, tracking their progress over time. Our approach was found to be successful,
culminating in the university’s participation in the ICPC Southeast Regional and
qualification for the North America Championship.

Analyzing Competitive Programming Competitions to Develop Effective Training
Methods for Improving Problem-Solving Skills in Students

By

Alexandru Rudi

Jinho D. Choi, Ph.D.
Advisor

A thesis submitted to the Faculty of the
Emory College of Arts and Sciences of Emory University
in partial fulfillment of the requirements for the degree of

Bachelor of Science with Honors
Computer Science

2023

Acknowledgments

I extend my heartfelt gratitude to Jinho Choi, who served as my thesis advisor and

ICPC coach. His unwavering help and support were indispensable in bringing this

project to fruition. I am also thankful to my committee members, Michelangelo Grigni

and Steven La Fleur, for generously sharing their valuable time and feedback, which

greatly contributed to the quality of this work. I wish to acknowledge the students

who participated in our meetings as well, as their engagement and contributions were

crucial in realizing this project. Finally, I am deeply grateful to my parents and

Sabrina for their unwavering love and support throughout this journey.

i

Contents

1 Introduction 1

1.1 Introduction to competitive programming 1

1.2 Competitive programming training 1

1.3 Emory University and the ICPC . 2

1.4 Thesis statement . 3

2 Background 4

2.1 Competitive programming research 4

2.2 The format of the ICPC . 5

2.3 A competitive programming syllabus 8

3 Ranking Topics for Competitive Programming 10

3.1 A problem-solving flowchart algorithm 10

3.2 Measuring topic importance . 14

3.3 Practical and theoretical knowledge 15

4 Structuring a Semester of Practice Sessions 17

4.1 Meeting 0 . 19

4.2 Meeting 1 . 20

4.3 Meeting 2 . 20

4.4 Meeting 3 . 21

4.5 Meeting 4 . 22

4.6 Practice Contest 1 . 22

4.7 Meeting 5 . 23

4.8 Meeting 6 . 23

4.9 Meeting 7 . 24

4.10 Meeting 8 . 24

4.11 Meeting 9 . 25

4.12 Measuring the semester . 25

5 Developing Practical Skills 30

5.1 Meeting 1 . 30

5.2 Team Selection Test . 31

5.3 Meeting 2 . 31

5.4 Meeting 3 . 32

5.5 Meeting 4 . 32

5.6 Meeting 5 . 32

5.7 The South Conference Regional . 33

6 Discussion 35

7 Conclusion 37

Appendix A Topic Importance Scores 38

Appendix B Problems flowchart paths 42

B.1 Southeast Regional 2022 . 42

B.2 North America Qualifier 2022 . 43

Bibliography 45

iii

List of Figures

2.1 Emory University’s ranking in the NAC across time 8

3.1 The problem-solving flowchart . 11

3.2 The problem-solving flowchart weighted by frequency in our data . . 13

4.1 Attendance per meeting . 25

4.2 Average students’ performance as measured by hardest solved problem

rating and total solved problem rating 27

4.3 Top 2 students’ hardest solved problem rating 28

4.4 Concept proficiency . 28

4.5 Results of student opinion survey . 29

5.1 Results of our team in the Southern Conference Regional Division 1 . 34

5.2 Results of our team in the Southeast Regional Division 1 34

5.3 Results of our team at the Augusta site Division 1 34

5.4 Results of our teams in the Southern Conference Regional Division 2 34

iv

List of Tables

4.1 List of topics for each meeting . 18

1

Chapter 1

Introduction

1.1 Introduction to competitive programming

In competitive programming competitions, participants strive to develop programs

that can solve a given set of programming problems within a predetermined time-

frame. These problems usually contain multiple inputs, commonly known as tests,

for which the participant’s program must produce the expected output within a short

time frame of around 1 to 5 seconds. As a result, participants must solve the problem

theoretically and write highly efficient and accurate code as quickly as possible to

excel in such competitions. There are many competitive programming competitions,

including weekly online contests on platforms such as Codeforces [1], as well as larger

international events such as the International Olympiad in Informatics (IOI) and the

International Collegiate Programming Contest (ICPC).

1.2 Competitive programming training

With such a highly competitive environment and a prestigious competition, it is im-

portant to find the best way to train students for it. To succeed in competitive

programming, a participant needs to have a good understanding of algorithms and

2

data structures, as well as experience in solving problems to quickly identify and

implement solutions using ingrained pattern recognition skills. This requires a com-

bination of both theoretical and practical training. In this thesis, we aim to create a

method that enhances student improvement in these areas, measured by their ability

to solve competitive programming problems.

1.3 Emory University and the ICPC

The primary objective of this study is to enhance the performance of Emory Uni-

versity’s teams in competitive programming competitions, in particular the ICPC.

For more than a decade, Emory University has been competing in the regional ICPC

competition and has qualified for the North American Championship for the past

three years. However, our previous practice sessions have been largely unstructured

and suboptimal, with the teams practicing for only 1-2 hours per week. Our practice

usually consisted of randomly selecting a contest and solving problems individually,

with occasional consultation when necessary.

To address the inefficiency of our past practice sessions, we attempted to design

a better methodology for competitive programming practice. Our approach involved

analyzing prior ICPC competitions to identify the structure of problem solutions,

creating a flowchart algorithm to aid students in problem-solving, and identifying

the subset of algorithmic theoretical knowledge required for success in competitions.

We created a comprehensive set of theoretical topics that are likely to appear in

competitive programming problems and ranked them based on their frequency in past

ICPC competitions, prioritizing easier topics by weighing each problem’s difficulty.

We then implemented our methodology over the course of a semester and a half

through weekly practice meetings for Emory students.

3

1.4 Thesis statement

Despite the growing popularity of competitive programming in computer science cir-

cles, there has been limited research focused on optimal practice methods for compet-

itive programming. Therefore, the objective of this thesis is to explore this area by

designing a competitive programming practice methodology for groups of university

students preparing for competitive programming competitions, with a focus on the

ICPC. We aim to measure the effectiveness of our methodology by training Emory’s

competitive programming teams for the Southern Conference ICPC Regional. Our

hypothesis is that by analyzing previous ICPC competitions, we can create an op-

timal curriculum for our meetings that will enable us to better focus on improving

the most relevant skills necessary to solve problems, thereby maximizing students’

performance in competitions. We will evaluate our methodology based on students’

performance in a series of practice contests, as well as their self-reported confidence

in the topics studied. At the end of the practice meetings, three teams will partic-

ipate in the Southern Conference ICPC Regional, and their results will reflect their

competitive programming abilities as a result of our methodology.

4

Chapter 2

Background

The sport of competitive programming emerged towards the end of the 20th century,

with formats like the International Collegiate Programming Contest and the Interna-

tional Olympiad in Informatics setting the standard. The widespread availability of

the internet facilitated the emergence of online competition sites like Topcoder and

Codeforces, which helped popularize the sport worldwide. Today, online competitions

routinely attract more than 30,000 participants [2]. As competitive programming

gained popularity in programming circles, it also attracted some research attention.

2.1 Competitive programming research

Competitive programming has been the subject of several areas of research, including

the automatic solving of problems through AI. One such model is AlphaCode, devel-

oped by the Google Deepmind team, which generates code solutions to competitive

programming problems [10]. Other interesting areas of research include automatic

problem tagging from statements or code solutions [12], detecting vulnerabilities in

competitive programming code [4], identifying code plagiarism [7], and applying com-

petitive programming tools in other contexts such as university courses [3].

In contrast, our study focused on a more traditional area of research - developing

5

methodologies for optimizing practice and effectively coaching students. There are

several approaches to this task, such as compiling a syllabus of the theory that stu-

dents should study or finding ways to optimally assign practice problems to students.

For example, one paper proposed an algorithm that uses a student’s history of solved

problems to predict the most useful practice problem to solve next. This system was

partially implemented for training high school students participating in the Italian

Olympiad in Informatics [5]. However, these methods are not yet fully developed and

practical enough to be applied in our case.

2.2 The format of the ICPC

The International Collegiate Programming Contest is a prestigious annual competi-

tion that challenges teams of 3 students from the same university to solve algorith-

mic problems within a specified time frame. The competition consists of multiple

stages, starting from the regional level and progressing to the World Finals, where

the winning team is crowned as the World Champion. In each competition, teams are

presented with around 12 algorithmic problems of varying difficulty, and they have

a time limit of 5 hours to solve as many as possible. Each participating university

fields a team composed of three students, who have access to only one computer and

keyboard throughout the contest. Consequently, strategizing is essential to optimize

computer usage among team members. The teams are ranked based on the number

of problems solved, with penalties applied for incorrect submissions and time taken

to solve each problem. Each problem is described as an algorithmic challenge, usually

accompanied by a story. For example, a typical ICPC problem statement might look

like this:

ICPC North America Qualifier 2022 Problem M [15]

Your state has a number of cities, and the cities are connected by roads. Un-
fortunately, all of the roads are toll roads!

6

You now run the local chapter of AAA (American Automobile Association),
and people are constantly asking you about the tolls. In particular, they’ve
been asking about individual tolls on any single road on a path between two
cities. Odd, but that’s what they’ve been asking!

Given a description of the cities in your state and the roads that connect them,
and a series of queries consisting of two separate cities, for each query determine
two things:

• First, the smallest value such that there is a route between the two cities
where no road has a toll greater than that value.

• Second, the number of cities reachable from your starting city using no
road with a toll greater than that first value.

Input

The first line of input contains three integers n (2 ≤ n ≤ 2× 105), m (1 ≤ m ≤
2 × 105) and q (1 ≤ q ≤ 2 × 105), where n is the number of cities, m is the
number of roads, and q is the number of queries. The cities are each identified
by a number 1 through n.

Each of the next m lines contains three integers u, v (1 ≤ u, v ≤ n, u ̸= v))
and t (0 ≤ t ≤ 2 × 105), which represents a road between cities u and v with
toll t. The roads are two-way, and the toll is the same in either direction. It
is guaranteed that there is a path between any two cities, and that there is at
most one road between any two cities.

Each of the next q lines contains two integers a and b (1 ≤ a, b ≤ n, a ̸= b).
This represents a query about a path from a to b.

Output

Output q lines. Each line is an answer to a query, in the order that they
appear. Output two space-separated integers, w and k, on each line, where w
is the smallest amount such that there is a route from a to b with no toll greater
than w, and k is the number of cities reachable from a using no road with a
toll greater than w.

Typically, each statement in the ICPC presents a few sample test cases to assist

students in comprehending the problem and testing their solutions. The team is re-

sponsible for writing code that reads the input, generates the correct output, and

prints it using standard I/O. When the team submits their solution file, it is assessed

on the competition’s server using a sequence of hidden test cases. It is the job of the

problem author to ensure that these test cases are thorough enough to reject solu-

tions that do not handle all edge cases or are inefficient. Each problem is constrained

by a time and memory limit, and the team’s program must not exceed these limits

7

during any test case. If the program submitted by the team produces the correct

output within the time and memory limits for each test case, the problem is consid-

ered solved. Typically, the time limit is between 1 and 5 seconds, and the intended

complexity of the problem is specified. Given the importance of runtime efficiency

in many problems, the most widely used programming language among competitive

programmers is C++, owing to its speed and strong standard library. The ICPC ad-

ditionally allows students to submit solutions written in C, Python, Java, and Kotlin.

Thus, a competitive programmer must quickly read the problem, interpret it mathe-

matically, develop an efficient algorithm, and implement it correctly while under time

pressure.

Our team’s performance in the ICPC competition is an important measure of suc-

cess. This year, we participated in the Southern Conference Regional, which brings

together top universities from the southern United States. Teams can choose to com-

pete in division 1 or 2, with division 1 being more challenging but offering a chance

to advance to the next stages. The top 15 teams from the Southern Conference Re-

gional Division 1 qualify for the North America Championship, where approximately

60 teams from the United States and Canada will compete. The North American

Championship’s top 20 teams will then advance to the World Finals, where about

150 universities worldwide will compete for the title of World Champions. In 2022,

the ICPC World Finals took place in Dhaka, Bangladesh, with the top 140 universi-

ties from around the world competing for 12 medals. Emory University’s team has

successfully qualified for the North America Championship for the past three years

but has yet to make it to the World Finals. Our closest attempt was ranking 22nd in

the 2021 North America Championship.

8

Figure 2.1: Emory University’s ranking in the NAC across time

2.3 A competitive programming syllabus

Defining a clear syllabus of topics is crucial for any course on competitive program-

ming. Some competitions such as the International Olympiad in Informatics have a

set syllabus of algorithms and data structures students should be familiar with [14],

in order to exclude problems that require topics like calculus or complex data struc-

tures that high school students shouldn’t be expected to be familiar with. The ICPC

however doesn’t have rigid rules in regard to the topics that can appear, so the task

of finding the most important topics is more challenging. According to Laaksonen

[9], while there are similarities between the curriculum of a typical undergraduate

algorithms course and that of competitive programming, there are also differences.

Competitive programmers need to write short and efficient code, so they rely heavily

on standard library functions and handle techniques like range queries, hashing, and

binary search in unique ways. As a result, creating a syllabus based on a university

curriculum may not be ideal. Instead, numerous resources exist in the competitive

9

programming community, such as the ”Competitive Programmer’s Handbook” [8],

”Algorithms for Competitive Programming” website [6], and ”USACO Guide” [13],

which provide explanations of the most commonly used techniques, algorithms, and

data structures for solving competitive programming problems, compiled by experi-

enced competitive programmers. To develop a syllabus for our course, we used these

resources to compile a list of topics.

10

Chapter 3

Ranking Topics for Competitive

Programming

3.1 A problem-solving flowchart algorithm

The initial step in developing an effective methodology for practicing competitive

programming involved transforming the problem-solving thought process of a com-

petitive programmer into a flowchart algorithm. Creating such a flowchart can be

approached in various ways, but no matter how intricate it is, it cannot cover every

possible scenario since problem-solving is inherently complex. Our flowchart, depicted

in Figure 3.1, strikes a suitable balance between simplicity and complexity. In the

flowchart, a green arrow indicates a ”yes” answer, while a red arrow denotes a ”no”

response.

Step 0 of the flowchart involves analyzing whether a problem can be broken down

into one or more subproblems. For instance, finding the minimum spanning tree in a

weighted graph can be reduced to three subproblems: sorting the edges, implementing

a disjoint-union structure, and iterating through the edges in sorted order, using the

disjoint-union structure to determine which edges to add to the minimum spanning

11

Figure 3.1: The problem-solving flowchart

tree. It is also possible for a reduction to only create one subproblem, thus essentially

just reducing the complexity of the problem, such as re-expressing a problem that

deals with pairs of elements into a graph problem. Step 0 is often the hardest one,

and rarely actually occurs at the start of the problem-solving process, instead often

being a result of the latter stages in the flowchart.

Step 1 of the methodology is critical as it prompts the question of whether the

problem at hand is one that the student has encountered before. For instance, in

the previous example, the subproblems of sorting the edges and implementing the

disjoint-union structure are topics that a student should already know how to solve

12

due to their frequent appearance as subproblems. In this paper, we will refer to such

subproblems as ”topics”. The more familiar the student is with these topics, the

quicker they can break down a given problem into solvable subproblems and solve it.

Therefore, it is essential to identify which topics are common and should be mastered

by every student and which are obscure and not worth studying.

Step 2 involves checking whether the problem can be solved using a simple sim-

ulation or brute force approach. For instance, a problem asking for the number of

vowels in a string can be solved by examining each letter. While these types of prob-

lems are common at the beginner level, they can become more challenging when the

solution space is exponential, as in cases where all permutations of an array must be

checked. Recursive algorithms are often required in such cases, which can be difficult

to understand at an early stage.

If the problem cannot be solved through well-known methods or brute force, the

student must find a clever algorithm to tackle it. Nevertheless, there are still dis-

cernible patterns at this stage that can be exploited. The vast majority of algorithms

can be categorized into five types: dynamic programming, greedy, divide and conquer

(which is often implicitly embedded within a data structure or a binary search, as

noted by [9]), non-deterministic (such as Rabin-Karp hashing), and constructive/ad-

hoc algorithms. The last category is difficult to define, but generally refers to al-

gorithms that are specific to a given problem and are challenging to abstract, such

as constructing a string with a particular property. Furthermore, certain problems

involve concepts from number theory, combinatorics, and geometry, requiring more

specialized algorithms, such as the Fast-Fourier Transform algorithm or using a radial

sweep to find the convex hull of a set of points. Often, the problem statement alone

can provide a good idea of the category of the solution, and step 3, along with the rest

of the flowchart in Figure 3.1, exemplifies one such algorithm for determining the cat-

egory of a solution from the statement. However, the algorithm remains deliberately

13

imprecise to maintain its broad applicability.

Figure 3.2: The problem-solving flowchart weighted by frequency in our data

To evaluate the effectiveness of our flowchart in real-world scenarios, we conducted

tests using 25 problems from two competitions - the North America Qualifier 2022

and the South Conference Regional 2022. We converted the solution for each problem

into our flowchart’s format, resulting in 39 subproblems to solve after the reduction

process. Each subproblem represents a path from the starting point to either the

”done” node, in case the problem is well-known or can be brute-forced, or to one

of the technique nodes, indicating the technique the solution employs and the hints

from the statement suggesting this technique For each edge e in our flowchart, we

14

kept track of the number ne of subproblems that included that edge in their path,

and the results can be seen in 3.2, where the thickness of each arrow is proportional

to ne. Additionally, Appendix B displays the path of each subproblem in detail. Our

flowchart successfully represented each of the 39 subproblems to a satisfactory degree,

demonstrating its general applicability to a majority of ICPC problems. We also see

that almost all edges in our flowchart appeared in at least one subproblem, with

the notable exception of interactive problems, which appear very rarely if at all at

ICPC-type competitions but are nonetheless pretty common in online competitions

and other international competitions such as the IOI, and thus were included in

the flowchart. In summary, our flowchart is general enough to apply to most ICPC

problems while being specific enough to provide useful information about a problem’s

solution.

3.2 Measuring topic importance

Although experienced competitive programmers have an intuition regarding the rel-

ative frequency of different topics in competitive programming problems, we sought

to support this intuition with concrete data. To achieve this, we generated a compre-

hensive list of topics that encompasses almost all the topics needed at the beginner

and intermediate levels. We compiled this list of 58 algorithms, data structures,

and techniques that span from beginner to advanced levels, utilizing resources such

as the ”Competitive Programmer’s Handbook” [8] and ”Algorithms for Competitive

Programmers” [6]. These resources are maintained by the competitive programming

community, frequently updated, and expanded, and as such, the list of topics we com-

piled from them is sufficient to solve nearly all intermediate competitive programming

problems.

We selected eight contests, namely the North American Championship 2020, 2021,

15

and 2022, the World Finals 2017, 2018, and 2019, the North America Qualifier 2022,

and the South Conference Regional 2022, to construct our dataset of 97 intermediate

to advanced level problems. For each problem, we analyzed the solution and identified

which topics appear as subproblems in the solution, and tagged those topics to the

problem. Let ai,j = 1 if the j-th topic is used in the solution of the i-th problem, and

ai,j = 0 otherwise. Additionally, we gave each problem a difficulty score di between 0

and 1, where

di =
number of teams that solved problemi

number of teams in the contest problem i belongs to

The final importance score of the topic j is

wj =
∑
i

di · ai,j.

The topics that appear more often or appear in easier problems have a higher score,

meaning a student should prioritize learning them more, meaning that wj is the metric

we were looking for to measure topic importance. You can see the results in Appendix

A, which we later used to create our curriculum.

3.3 Practical and theoretical knowledge

As mentioned before, it is important to make the distinction between practical knowl-

edge and theoretical knowledge in competitive programming. For example, most com-

puter science students have a very good theoretical understanding of binary search,

being able to describe and implement a basic application of the algorithm. How-

ever, more often than not, when binary search is used in a competitive programming

problem, it is well hidden and requires problem-reduction skills to observe that the

problem can be reduced to binary search. Our flowchart in Figure 3.2 shows that

16

out of the 39 subproblems we analyzed, 15 (38%) were well-known problems that

fall under theoretical knowledge, while the remaining 24 (62%) required practical

knowledge to solve. Practical knowledge skills are difficult to teach and require prac-

tice on specific problems to master. Therefore, competitive programming places a

greater emphasis on practical knowledge than a university curriculum for example.

Oftentimes the most successful competitive programmers have relatively limited algo-

rithmic knowledge, specializing in only what is strictly required to solve problems. As

such, as a rough approximation, a good competitive programmer only spends about

10% of their practice time on studying theory, instead focusing the majority of their

time on solving problems and gaining practical knowledge, which is something that

we will take into account in our methodology.

17

Chapter 4

Structuring a Semester of Practice

Sessions

After researching the most important topics, we developed a curriculum that we

taught to the students over the course of the fall semester. Since most of the students

were computer science majors, we assumed they had a basic level of familiarity with

these topics to be able to fit all these topics into one semester. As such, each practice

session would introduce 2-4 topics to the students. We focused on practical knowledge,

which we believe is essential for improving skills, particularly at an early stage. To

this end, we designed each lecture to maximize practice time rather than overloading

the students with information. Each lecture lasted 90 minutes and was split into three

30-minute segments. During the first segment, we presented three problems related

to the current topic, designed to be of relatively easy difficulty. This allowed students

who were already familiar with the topic to practice, while those who were unfamiliar

would be presented with a concrete problem that required knowledge of the topic to

solve, but they would hypothetically try to solve with their current knowledge and

fail, thus allowing them to see why the new topic is required for solving the problems.

In the second segment, we delivered a 30-minute lecture on the theory behind the

18

Meeting # Topics
1 Time Complexity, C++ STL, Greedy, Complete Search 1

2
Complete Search 2, Bitmasks, Binary Search, Query Problems, Pre-
fix Sums

3 Number Theory & Combinatorics
4 Two Pointers, Sliding Window, Dynamic Programming 1
5 Trees, Graphs, DFS, BFS, Shortest Path Algorithms
6 Dynamic Programming 2
7 Graph Algorithms - Greedy and Dynamic Programming
8 Sparse Tables, Segment Trees
9 Rabin-Karp Hashing

Table 4.1: List of topics for each meeting

topic, accompanied by implementations to reinforce their understanding. In the final

segment, we presented the same three problems as before along with three more

difficult problems, intended for practice at home. This provided students with the

opportunity to put their new knowledge into practice and interact with the provided

implementations or implement it themselves.

We structured our 9 meetings (excluding the introductory meeting and a 4-hour

practice contest mid-way through) according to the plan shown in Figure 4. We in-

troduced topics sequentially ordered roughly by difficulty and grouped similar topics

in the same day. However, we did not strictly adhere to the topic importance scores

due to our limited dataset, which resulted in some topics being deemed more impor-

tant than they actually are in practice or not suitable for beginner to intermediate

students, such as ”suffix arrays” or ”max flow.”

Based on our topic rankings, the sum of wj of all topics is 22.4, while the sum of

wj of the topics we selected is 15.1, which represents 67.4% of the total. This sug-

gests that mastering our selected topics should provide students with the theoretical

knowledge needed to solve most beginner and intermediate problems.

Selecting practice problems for each meeting was also a crucial task. We obtained

the problems from Codeforces [1], the most widely used website for competitive pro-

19

gramming worldwide. To identify appropriate problems, we searched their database

of problems from previous contests, filtering by tags related to the topic, such as

greedy, and hand-picking problems. Given our limited practice time, we prioritized

problems with short, simple statements that had solutions that clearly used the given

topic.

Our team’s main webpage was hosted on Github [11], providing comprehensive

information about our meetings and team, a schedule of events for the year, as well as

a list of practice resources and tips, including references to valuable resources such as

the Competitive Programmer’s Handbook [8] Our schedule provided links to the slides

for each meeting and the practice contests. Most importantly, the Github repository

provided original code implementations for every algorithm and data structure in our

schedule. This allowed students to reference the code while studying the topics and

simplified the implementation process for applying the new knowledge to concrete

problems. The Github page even garnered attention outside of Emory, appearing in

11 unique Google searches in just one month and receiving 4 stars from non-Emory

users.

4.1 Meeting 0

Introduction

Attendance: 23

In the initial meeting, I introduced competitive programming to the participants

and presented them with a 1-hour contest consisting of 6 problems, designed to be

simple and familiarize them with the format. A total of 22 students took part in the

contest, with 2 students solving 2 problems and 3 students solving 1 problem. After

the contest, a survey was conducted with 7 respondents, revealing that the primary

difficulties encountered were debugging (4), inability to find a solution (2), and inabil-

20

ity to implement a solution (2). This, along with the students’ personal experiences,

indicates that becoming accustomed to the contest format and input-output opera-

tions are the primary initial hurdles. The students who were more familiar with the

format were able to solve 1-2 easy problems, which serves as the starting point for

our efforts to enhance their skills.

4.2 Meeting 1

Time Complexity, C++ STL, Greedy, Complete Search 1

Attendance: 15

As Codeforces was undergoing maintenance during the meeting, a practice con-

test was not held. Instead, I conducted a 1.5-hour lecture on the relevant topics and

provided code demonstrations. The discussion centered around time complexity and

its relevance to competitive programming, including how the CPU can perform ap-

proximately 109 simple operations per second, and the constraints on N that allow

complexities such as O(N), O(N2), or O(2N). Additionally, we explored the use of

programming language libraries, specifically the C++ STL, and how to employ them

efficiently. The topic then shifted to greedy strategies, with examples of how they

can be applied to scheduling problems and the essential principles for proving their

optimality. Finally, we delved into complete search and backtracking, showcasing how

to utilize recursion to generate all subsets and permutations of a given set.

4.3 Meeting 2

Complete Search 2, Bitmasks, Binary Search, Query Problems, Prefix Sums

Attendance: 14

In this meeting, we concluded our exploration of complete search by examining

further applications, such as the queen’s problem. Additionally, I presented a clever

21

approach to generate subsets without recursion using a bitmask, encoding each subset

of a set comprising N elements into the bits of a number ranging from 0 to 2N − 1.

We also delved into binary search and its utility in answering queries, such as finding

the k-th element in an ordered set, quickly. Lastly, we discussed the prefix sums

technique, which stores the sum of each prefix of an array, enabling us to answer

interval sum queries in constant time by representing them as the difference between

two prefixes.

No participants were able to solve any problems during the contests, potentially

because the first problem was quite challenging. Upon analyzing the attempted sub-

missions, we noticed that none of the students had correct solution ideas before the

lecture. However, after the lecture, some students had the correct solution ideas but

failed to implement them in time. The survey conducted after the meeting indicated

that most individuals struggled with translating their solutions into code, confirming

our observations and showcasing the need to place greater emphasis on implementing

the algorithms during the lectures.

4.4 Meeting 3

Number Theory and Combinatorics

Attendance: 15

In this meeting, we explored various concepts from number theory and combina-

torics, including the modulo operator, prime factorization, the sieve of Eratosthenes,

Euclid’s algorithm, logarithmic exponentiation, modular inverse, and binomial coef-

ficients. We also covered the implementation details for all of these algorithms.

During the practice contest, the students performed better than the previous

week, with three individuals successfully solving at least one problem. However, as

in the previous meeting, the survey conducted after the session revealed that most

22

participants faced challenges in translating their solutions into code. Notably, all

respondents acknowledged having a solution in mind that, after the lecture, they

realized was incorrect, indicating that the lecture had a positive impact on deepening

their understanding of these topics.

4.5 Meeting 4

Two Pointers, Sliding Window, Dynamic Programming 1

Attendance: 10

In this meeting, we delved into various techniques for problem-solving on arrays,

including two-pointers and sliding window methods. These techniques are useful for

solving problems such as determining whether there exist two elements in an array

of length N that add up to a given sum X, with a time complexity of O(N logN).

Additionally, we introduced dynamic programming, which we used to solve the longest

increasing subsequence problem in O(N2) and the maximum path in a grid from the

top-left to bottom-right problem in O(N ·M).

Unfortunately, Codeforces experienced downtime again, causing disruption during

the second practice contest. However, we were still able to achieve a few correct

solutions for the first problem.

4.6 Practice Contest 1

Attendance: 3

Following the fourth meeting, we organized an offline practice contest which had

three student participants. The contest problems were similar in difficulty to those

presented in the first meeting, and this time, one student managed to solve three

problems while two others solved two problems each. This is a notable improvement

of one additional solved problem compared to the first contest, indicating that practice

23

had a positive impact on their skills.

4.7 Meeting 5

Trees, Graphs, DFS, BFS, Shortest Path Algorithms

Attendance: 4

During this lesson, we covered fundamental graph algorithms, including DFS,

BFS, Dijkstra, Bellman-Ford, and Floyd-Warshall, providing an opportunity to prac-

tice data structure and dynamic programming skills (priority queues in Dijkstra,

dynamic programming approaches in the latter three algorithms).

Although only four students attended the session due to a building fire alarm in

the building, they performed well, with one student even solving an intermediate dif-

ficulty problem according to the Codeforces’ rating system. Following this point, the

students grew accustomed to the problem format and competitions, becoming more

comfortable with their programming languages and implementing their solutions. Is-

sues such as input/output ceased to arise, and the students began to concentrate on

more abstract concepts.

4.8 Meeting 6

Dynamic Programming

Due to scheduling conflicts, this meeting was held offline. The students were

presented with a dynamic programming contest featuring 25 classical problems of

varying difficulty levels. Their task was to solve as many problems as possible, which

were later reviewed and discussed in a subsequent meeting during the second semester.

24

4.9 Meeting 7

Graph Algorithms - Greedy and Dynamic Programming

Attendance: 4

In this session, we delved deeper into graph algorithms, revisiting both greedy

and dynamic programming techniques. Prim’s algorithm for finding the minimum

spanning tree of a weighted graph was covered under greedy, while we discussed

directed acyclic graphs and topological sorting as part of dynamic programming. We

learned how to perform dynamic programming on directed acyclic graphs using the

topological sorting, for example, finding the longest path in a directed acyclic graph.

Attendance remained low with only 3 to 4 students showing up for this and sub-

sequent meetings. In general, students solved more problems after the lecture than

before, which could be attributed to either the lecture or to them having more time

to think about the problems.

4.10 Meeting 8

Sparse Tables, Segment Trees

Attendance: 3

At this meeting, we introduced two advanced data structures - sparse tables and

segment trees - which are commonly used in competitive programming. Segment

trees, in particular, are highly versatile and have a short implementation, making

them a popular choice for data structure problems. However, it could be argued

that Fenwick trees, despite being more complicated in theory and less versatile than

segment trees, should also be included due to their extremely short implementation.

25

4.11 Meeting 9

Rabin-Karp Hashing

Attendance: 3

In this meeting, we covered Rabin-Karp hashing, a highly flexible approach for

solving string-matching problems that does not require the use of challenging-to-

implement data structures like suffix arrays or intricate algorithms such as Knuth-

Morris-Pratt. Nonetheless, it has its own intricacies, such as the requirement to

be familiar with concepts like hash collisions, the birthday paradox, and number

theory concepts like modular arithmetic and inverses. Nevertheless, of all intermediate

string algorithms, we opted for Rabin-Karp due to its high versatility and ease of

implementation once comprehended thoroughly.

4.12 Measuring the semester

Figure 4.1: Attendance per meeting

The attendance trend over the course of the meetings can be observed in Figure

4.1. While the attendance started off strong, only a small number of students, typi-

26

cally 3-4, were present in the final meetings. This drop in attendance may have been

caused by various factors, such as waning interest, the difficulty level of the practice

problems, and the pace of the lectures. The number of participating students in each

meeting, defined as those who attempted to submit at least one solution during the

practice contests, is also depicted in the graph. The graph also reveals disruptions in

attendance, such as the absence of practice contests during meeting 1 and the virtual

format of meeting 6. These meetings have been excluded from subsequent analyses.

On average, 60% of the students submitted code solutions during practice contests

in our meetings, with participation gradually increasing as the number of participants

decreased and their skills improved. To evaluate the students’ performance, we used

the difficulty ratings of the practice problems provided by Codeforces, where each

problem is rated at least 800, with lower ratings indicating easier problems. We mea-

sured a student’s performance using two metrics: summing the ratings or taking the

maximum rating of the problems they solved during each practice contest. Although

neither metric is perfect, as nuances such as the difficulty of a single high-rated prob-

lem versus two lower-rated problems are not fully captured, both metrics are adequate

for our purposes. Figure 4.2 shows the average performance of the students for each

meeting using both metrics, with an upward trend, albeit with unreliable data due to

the small sample size and short practice contests. To further measure the success of

our meetings, Figure 4.3 depicts the performance of the top two students throughout

the meetings, as they attended almost all meetings and clearly showed improvement

during the second half of the semester.

After the regional competition, a survey was distributed to the students, which

was completed by 7 of them. However, only 5 of the 7 students had attended during

the first semester. Consequently, only the responses of these 5 students were taken

into account for the subsequent analysis. The survey aimed to evaluate the students’

proficiency in a range of broad competitive programming concepts before and after

27

Figure 4.2: Average students’ performance as measured by hardest solved problem
rating and total solved problem rating

attending any meeting throughout the year. Each concept was rated on a scale of

0 to 5 based on proficiency, with 0 indicating no prior knowledge, 1 indicating prior

knowledge but no study, 2 indicating attempted study but poor understanding, 3

indicating theoretical understanding but no practical experience, 4 indicating basic

problem-solving ability, and 5 indicating a deep understanding. The results, presented

in Figure 4.4, demonstrated that students felt an improvement in every concept. On

28

Figure 4.3: Top 2 students’ hardest solved problem rating

Figure 4.4: Concept proficiency

average, students reported a 36% increase in proficiency across all concepts, with

number theory, combinatorics, and array techniques being the most well-performing

areas.

29

Figure 4.5: Results of student opinion survey

Furthermore, the students were surveyed with five questions to gather their opin-

ions on the meeting’s structure, and the results are presented in Figure 4.5. Over-

all, the students appreciated the format, with 80% of them feeling that the balance

between theory and practice was appropriate. However, on average, the practice

problems were deemed slightly too difficult, and the meetings were slightly too long,

which may have contributed to a decrease in interest and lower attendance rates in

the latter half of the semester. In addition, the students were asked to identify topics

that should receive more or less focus, and the frequency of each topic’s mention in

the responses revealed that the curriculum was lacking in dynamic programming and

graph theory while covering C++-specific knowledge too extensively.

30

Chapter 5

Developing Practical Skills

During the second semester, the students had acquired sufficient knowledge in the

topics covered in the previous semester. Therefore, the emphasis was shifted to de-

veloping practical skills through problem-solving. To achieve this, the duration of the

lectures was extended by an hour, and the entire time was dedicated to individually

solving problems from a provided ICPC contest. As each student had varying levels of

proficiency, individual problem-solving was considered optimal since it enabled them

to skip the easy problems and devote more time to those that they found challenging

and productive. However, they were encouraged to seek help when they were unable

to generate new ideas for a problem within 10-15 minutes. If a student was stuck

but still had some new ideas, they were to continue working on the problem, and

if genuinely stuck, a hint would be provided to guide them towards the correct ap-

proach. If a hint proved inadequate, the entire solution was discussed, and students

were requested to implement it.

5.1 Meeting 1

ICPC Southeast Regional 2021 Division 2

Attendance: 5

31

The students’ progress was evident in the contest as all of them were able to solve

a minimum of three problems. Two students particularly demonstrated significant

improvement, solving up to six problems and even discussing the seventh problem

with me. It was apparent that the students were adept at utilizing programming

techniques like greedy and dynamic programming to their advantage. None of the

students encountered difficulties related to input/output or a lack of knowledge about

the programming language or contest format.

5.2 Team Selection Test

Attendance: 4

The team selection test for the main Emory team was successful, with impressive

performances from the students. The top two participants, selected as members of

our main team this year, solved 6 and 7 problems, respectively. These results indicate

that they would have scored highly in the contest that was simulated, demonstrating

that the students were now equipped to compete with some of the best competitive

programmers in the country after completing the lectures.

5.3 Meeting 2

ICPC Southeast Regional 2020

Attendance: 8

Although the students continued to perform satisfactorily, it was evident that they

required additional practice to solidify their understanding of the material covered in

the previous semester. In particular, they encountered challenges when attempting

to reduce a problem to concepts such as topological sorting and expressed concerns

about their ability to effectively implement it.

32

5.4 Meeting 3

ICPC Southeast Regional 2020

Attendance: 7

To reinforce the students’ proficiency in implementing complex algorithms, we

continued practicing with the same contest since we had not made significant progress

previously. In addition, we practiced using Team Reference Documents, a feature of

the ICPC that enables the team to refer to pre-implemented algorithms during the

contest. This approach aimed to enhance the students’ confidence and familiarity

with utilizing challenging algorithms in a competitive setting.

5.5 Meeting 4

ICPC North America Qualifier 2022

Attendance: 7

Our teams participated in the ICPC North America Qualifier 2022, held last Sat-

urday, which was a preparatory contest for all teams before the regional competitions.

Both teams performed well, with the primary team solving 9 out of 12 problems and

the secondary team solving 4. Following the competition, we conducted a comprehen-

sive review of all the problems, and some students demonstrated an understanding of

even the most challenging solutions. This demonstrated that their skills have signifi-

cantly improved, enabling them to tackle most intermediate and even some advanced

problems.

5.6 Meeting 5

Dynamic Programming

Attendance: 6

33

As the students were uncertain about their grasp of dynamic programming, we

dedicated the entire meeting to reviewing dynamic programming problems from the

previous semester’s contest. Using concrete problem examples proved helpful in

strengthening the students’ understanding of the dynamic programming technique,

and they became more adept at formulating dynamic programming states and tran-

sitions.

5.7 The South Conference Regional

On Feb. 25, the South Conference Regional competition was held, featuring 271

teams from the top universities in the southern United States, including the Georgia

Institute of Technology, the University of Central Florida, the University of Maryland,

the University of Texas at Austin, Texas A&M University, and the University of Texas

at Dallas. Emory University was represented by three teams: team M||E in division

1, and teams M|E and MorE in division 2. At the competition, team M||E placed

12th out of 152 in the South Conference Regional Division 1, qualifying for the North

America Championship in May. Moreover, team M||E received the Bronze medal

for being the 5th team out of 35 in the Southeast Region and the Gold medal for

placing first at the Augusta site. Our division 2 teams also had a strong showing,

with team M|E placing 19th and team MorE placing 30th out of 119 teams in the

South Conference Regional Division 2. They also placed 2nd and 4th out of 15 at

the Augusta site, which would have resulted in a silver medal, but our division 2

teams were not eligible for medals due to our university having a team participating

in division 1. These results reflect the great effort put in by all three of our teams

this year.

34

Figure 5.1: Results of our team in the Southern Conference Regional Division 1

Figure 5.2: Results of our team in the Southeast Regional Division 1

Figure 5.3: Results of our team at the Augusta site Division 1

Figure 5.4: Results of our teams in the Southern Conference Regional Division 2

35

Chapter 6

Discussion

Overall, the results from the practice meetings, opinion survey, and ICPC regional

performance indicate that our methodology was effective in preparing students for

ICPC competitions. While the practice meetings showed a general improvement in

the students’ problem-solving abilities, as shown in Figure 4.2, the data was not

very conclusive due to technical difficulties, low attendance, and the difficulty of the

practice problems leading to low problem-solving rates. Despite these challenges,

the students showed noticeable improvements in their problem-solving skills, as seen

in the number and difficulty of problems solved during practice sessions during the

second semester and in their survey results. In the end, the students had a great

performance in the ICPC regional, where the main team qualified for the North

America Championship and the other two teams performed excellently in division 2,

placing within the top quarter of participants despite only practicing for one and a

half semesters. While further studies are needed to provide more conclusive evidence,

the data we have suggests that our methodology succeeded in improving the students’

competitive programming abilities.

Our curriculum was generally successful in improving students’ confidence in the

concepts discussed during our meetings. However, some areas like greedy strategies,

36

dynamic programming, and graphs didn’t show significant improvement despite being

crucial concepts in competitive programming. In our survey, students also expressed

the need for more focus on these topics. Although we had dedicated meetings for

these concepts, they are challenging to master, and thus more attention is needed.

Additionally, the topics discussed in the last two meetings, sparse tables, segment

trees, and Rabin-Karp hashing, seemed too advanced for the level of the students.

Therefore, we suggest replacing these topics with more practice on dynamic program-

ming, greedy algorithms, and graph algorithms. We also recommend moving the

meeting on number theory and combinatorics later in the schedule as the material

was too mathematically complex for the early stages in the curriculum.

The format of the program had a weakness in that it did not allocate time for dis-

cussing specific problem solutions, instead only focusing on theory during the sessions

and leaving students to tackle problems on their own during practice contests. To

address this shortcoming, an improvement would be to add a 30-minute segment at

the end of the sessions to discuss the first few practice problems, providing concrete

examples of how to apply the newly learned concepts and assisting students who may

be struggling. In the second semester, we addressed this issue by focusing exclusively

on solving ICPC problems, which likely contributed to our success in the regional

competition.

37

Chapter 7

Conclusion

To summarize, our practice methodology was successful in designing a curriculum

and conducting a series of competitive programming meetings for Emory students.

These meetings resulted in self-reported proficiency increases for the required topics,

and Emory’s teams performed well in the ICPC regional competition. However, fur-

ther studies are needed to determine the objective improvement in skill level due to

insufficient data during the practice sessions. The topic selection was successful, but

slightly imbalanced towards intermediate topics, to the detriment of more fundamen-

tal topics like dynamic programming. The lesson format was effective and positively

received by the students, although some implementation flaws were noted, such as

the practice problems being too difficult. We hope to refine our methodology in the

future and test it on a larger sample size of students.

38

Appendix A

Topic Importance Scores

Importance

score

Number of prob-

lems

Topic

4.11 9 DFS and BFS

3.74 7 Binary search

3.66 13 Data structures

1.93 3 Sets and maps

1.59 2 Shortest path (Dijkstra / Bellman-Ford /

Floyd-Warshall

1.42 9 Geometry

1.34 6 Pruning

1.10 5 Complete search / backtracking

0.89 3 Biconnectivity

0.88 2 DAGs (Topological sort / DP)

0.86 6 Linear sweeps

0.83 1 Maximum matching

0.62 2 Advanced data structures

39

Importance

score

Number of prob-

lems

Topic

0.52 2 Suffix array

0.46 3 Segment trees

0.46 3 Binary indexed trees

0.44 1 Prefix sums

0.40 1 Aho-Corasick

0.33 1 Two pointers

0.24 1 Divide and conquer

0.23 2 Advanced number theory

0.15 2 Radial sweeps

0.12 2 LCA

0.12 1 RMQ

0.12 1 LCP

0.12 1 KMP / Z-algorithm

0.12 1 Hashing

0.10 2 LP

0.09 1 MST

0.07 3 Max flow / Min cut

0.06 1 Polygon clipping

0.05 Voronoi diagram

0.04 1 Trie

0.04 1 Tree DP

0.04 1 Parallel BS

0.04 1 Linear algebra

0.04 1 Grundy theorem

40

Importance

score

Number of prob-

lems

Topic

0.04 1 DP optimizations (CHT, D&C, Knuth,

Alien’s Trick)

0.03 1 Meet in the middle

0.02 1 Exchange Arguments

0.02 1 Matroids

0.02 1 Bitmasks

0.00 0 Suffix automaton

0.00 0 Square root decomposition, Mo’s algorithm

0.00 0 Sliding window / Nearest largest

0.00 0 SCC

0.00 0 Nondeterministic

0.00 0 Interactive

0.00 0 Inclusion-exclusion

0.00 0 Gray codes

0.00 0 Generating functions

0.00 0 Eulerian paths

0.00 1 DSU

0.00 0 Cayley formula / Prufer codes

0.00 0 Burnside’s lemma

0.00 0 Bitset optimizations

0.00 0 Bitmask DP

0.00 0 Binary lifting

0.00 0 Advanced segment trees

0.00 0 2SAT

41

42

Appendix B

Problems flowchart paths

The subproblems are indicated by numbers. For example, if problem L reduces to

3 subproblems, they will be indicated by L1, L2, and L3. If it only reduces to one

subproblem, that is indicated in the path by the step ”Reduce”.

B.1 Southeast Regional 2022

A: Not classic → Brute force

B1: Classic (prefix sums)

B2: Not classic → Brute force

C: Reduce → Classic (BFS)

D: Not classic → Not brute force → Find some way to do X → Can’t express with

states → Constructive

E: Reduce → Not classic → Not brute force → Maximize x such that f(x) holds →

Not monotonic → No greedy strategy → Dynamic programming

F: Reduce → Not classic → Not brute force → Maximize x such that f(x) holds →

Not monotonic → Greedy or dynamic programming

G1: Not classic → Not brute force → Maximize x such that f(x) holds → Monotonic

→ Binary search

43

G2: Classic (articulation points)

H1: Classic (radial sweep)

H2: Not classic → Not brute force → Counting on arrays → Data structures

H3: Classic (Fenwick tree)

I: Not classic → Not brute force → Find some way to do X → Can’t express with

states → Constructive

J1: Not classic → Not brute force → Pure math → Combinatorics

J2: Not classic → Brute force

K1: Not classic → Not brute force → Find some way to do X → Can’t express with

states → Constructive

K2: Classic (DSU)

L1: Not classic → Not brute force → Queries → Data structures

L2: Classic (DFS Tree)

L3: Classic (Small to large)

M: Reduce → Not classic → Not brute force → Maximize x such that f(x) holds →

Not monotonic → No greedy strategy → Dynamic programming

B.2 North America Qualifier 2022

A1: Classic (sorting)

A2: Not classic → Not brute force → Game theory → Greedy

B1: Not classic → Not brute force → Count the number of ways to do X → No

formula → Dynamic programming

B2: Not classic → Not brute force → Pure math → Number theory

C: Classic (sorting)

D: Not classic → Simulate

44

E: Reduce → Classic (DFS)

F: Not classic → Brute force

G1: Classic (DFS)

G2: Not classic → Not brute force → Count the number of ways to do X → No

formula → Dynamic programming

G3: Not classic → Not brute force → Count the number of ways to do X → Formula

→ Combinatorics

H: Reduce → Not classic → Not brute force → Maximize a function f → No greedy

strategy → Dynamic programming

J: Reduce → Classic (Max flow)

K: Not classic → Brute force

L: Reduce → Not classic → No brute force → Geometry

M1: Not classic → Not brute force → Queries → Data structures

M2: Classic (Kruskal)

M3: Classic (Least common ancestor)

45

Bibliography

[1] Codeforces. Codeforces, 2023. URL https://codeforces.com/. Accessed:

2023-01-28.

[2] Codeforces. Codeforces contests, 2023. URL https://codeforces.com/

contests. Accessed: 2023-01-28.

[3] Daniel Coore and Daniel Fokum. Facilitating course assessment with a compet-

itive programming platform. In Proceedings of the 50th ACM Technical Sympo-

sium on Computer Science Education, SIGCSE ’19, page 449–455, New York,

NY, USA, 2019. Association for Computing Machinery. ISBN 9781450358903.

doi: 10.1145/3287324.3287511. URL https://doi.org/10.1145/3287324.

3287511.

[4] Debeshee Das, Noble Saji Mathews, and Sridhar Chimalakonda. Exploring

security vulnerabilities in competitive programming: An empirical study. In

Proceedings of the International Conference on Evaluation and Assessment in

Software Engineering 2022, EASE ’22, page 110–119, New York, NY, USA,

2022. Association for Computing Machinery. ISBN 9781450396134. doi:

10.1145/3530019.3530031. URL https://doi.org/10.1145/3530019.3530031.

[5] Tania Di Mascio, Luigi Laura, and Marco Temperini. A framework for per-

sonalized competitive programming training. In 2018 17th International Confer-

https://codeforces.com/
https://codeforces.com/contests
https://codeforces.com/contests
https://doi.org/10.1145/3287324.3287511
https://doi.org/10.1145/3287324.3287511
https://doi.org/10.1145/3530019.3530031

46

ence on Information Technology Based Higher Education and Training (ITHET),

pages 1–8, 2018. doi: 10.1109/ITHET.2018.8424620.

[6] Algorithms for Competitive Programming. Algorithms for competitive program-

ming, 2023. URL https://cp-algorithms.com/. Accessed: 2023-01-28.

[7] Jeong-Hoon Ji, Gyun Woo, and Hwan-Gue Cho. An experience of detecting

plagiarized source codes in competitive programming contests. SIGCSE Bull.,

40(3):369, jun 2008. ISSN 0097-8418. doi: 10.1145/1597849.1384411. URL

https://doi.org/10.1145/1597849.1384411.

[8] Antti Laaksonen. Guide to competitive programming. Undergraduate Topics

in Computer Science. Springer International Publishing, Cham, Switzerland, 1

edition, January 2018.

[9] Antti LAAKSONEN. What is the competitive programming curriculum?

OLYMPIADS IN INFORMATICS, pages 35–42, 2022. doi: 10.15388/ioi.2022.04.

URL https://doi.org/10.15388/ioi.2022.04.

[10] Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser,

Ré mi Leblond, Tom Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago,

Thomas Hubert, Peter Choy, Cyprien de Masson d’Autume, Igor Babuschkin,

Xinyun Chen, Po-Sen Huang, Johannes Welbl, Sven Gowal, Alexey Cherepanov,

James Molloy, Daniel J. Mankowitz, Esme Sutherland Robson, Pushmeet Kohli,

Nando de Freitas, Koray Kavukcuoglu, and Oriol Vinyals. Competition-level

code generation with AlphaCode. Science, 378(6624):1092–1097, dec 2022.

doi: 10.1126/science.abq1158. URL https://doi.org/10.1126%2Fscience.

abq1158.

[11] Alexandru Rudi. M||e competitive programming github page, 2023. URL

https://cp-algorithms.com/
https://doi.org/10.1145/1597849.1384411
https://doi.org/10.15388/ioi.2022.04
https://doi.org/10.1126%2Fscience.abq1158
https://doi.org/10.1126%2Fscience.abq1158

47

https://github.com/emory-courses/competitive-programming. Accessed:

2023-01-28.

[12] Sudha Subramanian, A. Kumar, M. Nagappan, and R. Suresh. Classification

and Recommendation of Competitive Programming Problems Using CNN, pages

262–272. 12 2018. ISBN 978-981-10-7634-3. doi: 10.1007/978-981-10-7635-0 20.

[13] USACO. Usaco guide, 2023. URL https://usaco.guide/. Accessed: 2023-01-

28.

[14] Tom Verhoeff, Gyula Horváth, Krzysztof Diks, Gordon Cormack, Michal Forǐsek,

Richard Peng, and Jakub Lacki. The international olympiad in informatics syl-

labus, 2022. URL https://ioinformatics.org/files/ioi-syllabus-2023.

pdf.

[15] Nick Wu. Icpc north america qualifier 2022 problem m, 2023. URL https:

//naq22.kattis.com/contests/naq22/problems/tollroads. Accessed: 2023-

03-22.

https://github.com/emory-courses/competitive-programming
https://usaco.guide/
https://ioinformatics.org/files/ioi-syllabus-2023.pdf
https://ioinformatics.org/files/ioi-syllabus-2023.pdf
https://naq22.kattis.com/contests/naq22/problems/tollroads
https://naq22.kattis.com/contests/naq22/problems/tollroads

	Introduction
	Introduction to competitive programming
	Competitive programming training
	Emory University and the ICPC
	Thesis statement

	Background
	Competitive programming research
	The format of the ICPC
	A competitive programming syllabus

	Ranking Topics for Competitive Programming
	A problem-solving flowchart algorithm
	Measuring topic importance
	Practical and theoretical knowledge

	Structuring a Semester of Practice Sessions
	Meeting 0
	Meeting 1
	Meeting 2
	Meeting 3
	Meeting 4
	Practice Contest 1
	Meeting 5
	Meeting 6
	Meeting 7
	Meeting 8
	Meeting 9
	Measuring the semester

	Developing Practical Skills
	Meeting 1
	Team Selection Test
	Meeting 2
	Meeting 3
	Meeting 4
	Meeting 5
	The South Conference Regional

	Discussion
	Conclusion
	Appendix Topic Importance Scores
	Appendix Problems flowchart paths
	Southeast Regional 2022
	North America Qualifier 2022

	Bibliography

