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Abstract 

 

Evaluating Statistical Approaches to Model Multi-Pollutant Mixtures on Common 

Bottlenose Dolphin (Tursiops Truncatus) Health Along the Eastern Coast of Florida and 

South Carolina 

 

By Victoria M. Kennerley 

Background: Bottlenose dolphins (Tursiops truncatus) are the most common cetacean 

species found in coastal and estuarine ecosystems along the southeastern coast of the United 

States. Their widespread distribution and role as apex predators make them an ideal sentinel 

species for monitoring pollutants. Previous studies have revealed associations between 

individual chemical pollutants and pathophysiological endpoints in dolphins. However, the 

reality is that dolphins are exposed to a large number of pollutants simultaneously and single-

pollutant models do not capture the mixture and potential interplay of combined exposures. 

In recent years, an increased number of studies have implemented more sophisticated 

statistical methods to assess the relationship between multi-pollutant mixtures and health 

outcomes in humans. These methods have not been previously applied to marine mammal 

research.  

 

Methods: In this study, we focus on combining the application of principal component 

analysis and Bayesian kernel machine regression to evaluate the association between 

environmental exposure mixtures and absolute counts of MHCII+ cells in Atlantic bottlenose 

dolphins while simultaneously examining the impact of missing values using random forest 

imputation and multiple imputation.  

 

Results: Multiple imputation resulted in the highest average pollutant concentrations. A 

statistically significant association was found between absolute counts of MCHII+ and the 

first and second principal components primarily made up of 1) ∑PFCs, ∑PFCAs, and 

∑PFSAs and 2) ∑Pesticides, ∑PCBs, and ∑PBDEs across all methods for handling missing 

data. Bayesian Kernel Machine Regression with hierarchical variable selection identified 

PFCAs as most influential. Principle components 1 and 2 were still found to be significant in 

Bayesian Kernel Machine Regression analyses with principle components as predictors. 

 

Conclusions: Of the methods presented, Bayesian Kernel Machine Regression with 

hierarchical variable selection yielded the most straightforward results by identifying a single 

predictor with the most influence. Analyses conducted with different methods for handling 

missing data yielded similar results across all three methods. 
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1. INTRODUCTION 

Bottlenose dolphins (Tursiops truncatus) are the most common cetacean species found in 

coastal and estuarine ecosystems along the southeastern coast of the United States (Bossart, 

2006). Their widespread coastal distribution and role as apex predators make them an ideal 

sentinel species for monitoring ocean and human health (Bossart, 2011). In 2003, the Atlantic 

Bottlenose Dolphin Health and Environmental Risk Assessment (HERA) Project was initiated in 

order to evaluate individual and population health of bottlenose dolphins in Charleston, South 

Carolina (CHS) and the Indian River Lagoon, Florida (IRL) (Murdoch et al., 2006).  Because 

these dolphins are exposed to a number of chemical pollutants, various studies have attempted to 

quantify these environmental exposures as well as their associations with pathophysiological 

effects.  

Dolphins from CHS have been found to have higher concentrations  than IRL dolphins of 

legacy persistent organic pollutants (POPs) such as polychlorinated biphenyls (PCBs) and 

dichloro-diphenylethanes (DDTs), as well as emerging contaminants such as polybrominated 

diphenyl ethers (PBDEs) and perflouroalkyl acids (PFAAs) (Reif et al., 2017). Decreased 

lymphocyte response has been previously observed to be associated with increased 

concentrations of PCBs and DDT in peripheral blood in free-ranging bottlenose dolphins (Lahvis 

et al., 1995). Perfluoroalkyl compounds (PFCs) have been observed to be associated with 

increases in a number of immunological parameters such as absolute numbers of MHCII+ cells, 

CD19+ immature B cells, and CD2+ T cells. Additionally, several PFC analyte groups were  

suggested to have an effect on immune, hematopietic, kidney, and liver function by previous 

results such as a positive association with gamma-glutamyltransferase (GGT) and negative 

association with cholesterol levels. (Fair et al., 2013). 
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Concentrations of mercury (Hg) in the blood and skin of IRL dolphins have been found 

to be among the highest reported worldwide (Reif et al., 2015). An increase in blood and skin 

total Hg (THg) concentrations was observed to be associated with a decrease in total thyroxine 

(T4) and triiodothyronine (T3) suggesting an effect on endocrine function, an increase in GGT 

suggesting an effect on liver function, and an increase in blood urea nitrogen (BUN) suggesting 

an effect on renal function. Increased blood and skin THg were also associated with various 

hematological parameters such as decreases in the absolute number of lymphocytes, eosinophils, 

and platelets. (Schaefer et al., 2011).  

Though the single-pollutant models utilized in previously described research have 

revealed many important results and associations, the reality is that dolphins are exposed to a 

large number of pollutants simultaneously and single-pollutant models may fail to capture 

adverse health effects of the mixture and potential interplay of this combined exposure (Reif et 

al., 2017).Furthermore, the impact of missing values exposure measurements has not been 

accounted for in these analyses despite an often occurrence. This use of only complete cases can 

result in discarding much of the data collected as well as potentially bias results (Gelman & Hill, 

2006). 

In recent years, an increased number of studies have implemented more sophisticated 

statistical methods to assess the relationship between multi-pollutant mixtures and health 

outcomes in humans (Billionnet et al., 2012; Stafoggia et al., 2017).  In a review of these 

approaches, Stafoggia et al. propose a classification of these methods into three categories: (1) 

dimension reduction methods such as principal component analysis, positive matrix 

factorization, and partial least squares regression,  (2) variable selection methods such as 

Bayesian kernel machine regression, LASSO, and Bayesian model averaging, and (3) grouping 
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of observations methods such as Bayesian profile regression,  classification and regression trees, 

and groups based on score.   

In this study, we focus on combining the application of principal component analysis 

(PCA) (Anderson, 1985) and Bayesian kernel machine regression (BKMR) (Bobb et al., 2014) to 

evaluate the association between environmental exposure mixtures and absolute counts of 

MHCII+ cells in Atlantic bottlenose dolphins while simultaneously examining the impact of 

missing values using two different imputation methods (Stekhoven & Bühlmann, 2012; van 

Buuren & Groothuis-Oudshoorn, 2011). Though other studies of the impact of multi-pollutant 

mixtures on human health have implemented PCA (Agay-Shay et al., 2015; Richards et al., 

2016) and BKMR (Kim et al., 2019; Valeri et al., 2017) individually as well as in the same study 

to compare (Chiu et al., 2018; Kim et al., 2019; Li et al., 2019), this is the first to combine the 

two as one method. Exploration of the association between multi-pollutant mixtures and health 

outcomes has not previously been investigated in marine mammal research. 

2. METHODS 

2.1 Study Population 

Dolphins were captured, sampled, and released using previously described techniques at 

IRL during the months of June and July and in CHS in August of 2003-2011 (Murdoch et al., 

2006). Samples were restricted to a total of 125 individual dolphins from the IRL (n = 65) and 

CHS (n = 60) with complete data for age, sex, and chemical concentration of each exposure. The 

research was approved under National Marine Fisheries permit no. 998-1678 and by the Harbor 

Branch Oceanographic Institutional Animal Care and Use Committee.  
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Blood samples were drawn from the periarterial rete in the flukes during the first ten 

minutes of capture with a 19-guage, 1.9-cm, butterfly catheter. Vacutainer tubes containing 

lithium herapin, ethylenediamine tetraacetic acid or serum separator gel were used to collect 

samples for hematology (Murdoch et al., 2006). Samples were analyzed by the Cornell 

University Veterinary Diagnostic Laboratory in Ithaca, NY, USA after being stored in an 

insulated cooler and shipped overnight. Extraction of a tooth under local anesthesia using an 

injection of 3% mepivacaine was used in order to determine age by counting postnatal dentine 

layers as described by Hohn et al (Hohn et al., 1989).  

2.2 Exposure Assessment and Handling of Missing Values 

 Blood THg concentration was determined by thermal desorption/amalgamation/atomic 

absorption spectrophotometry using a direct mercury analyzer (DMA-80; Milestone Inc., 

Shelton, CT)  (Schaefer et al., 2011). Concentrations of PBDEs, PCBs, and pesticides were 

measured in blubber biopsy samples using gas chromatography and mass spectrometry (Fair et 

al., 2010). Concentrations of PFCs, perfluoroalkyl sulfonates (PFSAs), and perfluorocarboxylates 

(PFCAs) were determined by methods described by Fair et al (Fair et al., 2013).  

Measured congeners were excluded if there were less than 25% complete observations. 

After exclusion, PFCAs (92.4% complete) included PFOA, PFNA, PFDA, PFUA, PFDoA, and 

PFTA. The PFCs (88.24% complete) included PFDA, PFDS, PFDoA, PFHxS, PFNA, PFOA, 

PFOS, PFOSA, PFTA, and PFUA. The PCB (97.83% complete)  congeners included 1, 101/90, 

105, 106/118/123, 107/108, 110, 114, 119, 12, 123, 126, 128/167, 130, 132/153/168, 141, 146, 

149, 15, 151, 154, 156, 157, 159, 169, 170/190, 172, 174, 177, 18, 180, 183, 187, 188, 189, 193, 

194, 195, 2, 20, 200, 201, 202, 206, 207, 209, 26, 28/31, 29, 3, 37, 33, 35, 44, 45, 48, 49, 5/8, 50, 

52, 56/60, 61/74, 63, 66, 69, 70/76, 77, 82, 84, 87/115, 88/95, 89, 9, 92, and 99. The PFSAs 
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(82% complete) included PFOS, PFOSA, PFDS, and PFHxS. The PBDE congeners (99.67% 

complete) included 17, 28, 71, 47, 66, 100, 99, 85, 154, 153, 183, and 190. Pesticides (100% 

complete) included 2,4’-DDD, 2,4’-DDE, 2,4’-DDT, 4,4’-DDD, 4,4’-DDE, 4,4’-DDT, and 

Aldrin.  

 We consider three types of analyses to handle missing values: (1) not accounting for 

missing data, (2) imputing missing values using a random forest algorithm, and (3) imputing 

missing values using multiple imputation. After implementation of each method for handling 

missing congeners, congener sums were calculated for each of the previously mentioned 

pollutant groups. Details of this process are summarized in Figure 1. When not accounting for 

missing data, missing congener values were treated as zeros in the sum calculations.   

Random forest imputation was conducted using the nonparametric method described by 

Stekhoven et al. (2012). An initial imputation was first made for each missing value using mean 

imputation. Variables with missing values were then sorted by the number of missing 

observations. For each variable with missing values, a random forest was fit using observed 

values of that variable as the response and corresponding values of all other variables as 

predictors. The trained random forest was then applied to predict the missing values of that 

variable and iterated until a stopping criterion is met. For this analysis, 100 trees were grown in 

each forest and 10 iterations were performed given that the stopping criterion was not met first. 

Performance was assessed by out-of-bag (OOB) error estimates.  

Multiple imputation was implemented using Multivariate Imputation by Chained 

Equations (MICE) (van Buuren & Groothuis-Oudshoorn, 2011). Predictive mean matching with 

50 iterations was used as the imputation model for each variable to create five imputed datasets. 
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Subsequent analyses were repeated with each of the five datasets and final point estimates of 

interest were combined using Rubin’s rules (Campion & Rubin, 1989). 

2.3 Statistical Analysis 

Summaries of dolphin demographic characteristics were summarized as percentages for 

binary variables or with means and standard deviations for continuous variables. Summary 

statistics were calculated for ∑PFCAs, ∑PFCs, ∑PCBs, ∑PFSAs, ∑PBDEs, and ∑Pesticides to 

compare across methods for handling missing data. In addition to pollutant concentrations, age 

and sex were selected to be included a priori in all analyses as potential confounders. Separate 

regression analyses were conducted between the absolute count of MHCII+ cells and each 

pollutant concentration to determine significant single-pollutant associations for the purpose of 

comparison to the effects estimated by other methods explored in this analysis. Absolute count of 

MHCII+ was log-transformed as necessary to meet normality assumptions for all three methods.  

2.3.1 Principal Component Analysis and Regression  

Principal component analysis (PCA) is a dimension reduction method which identifies 

independent linear combinations of the predictors that capture the most variance across 

predictors (Anderson, 1985). It does not take into account the outcome of interest in calculation 

of components. After implementation of PCA, regression analysis models were run with the 

scores from the first three components as predictors for 82 dolphins with complete observations 

for absolute count of MCHII+ cells. 

2.3.2 Bayesian Kernel Machine Regression with Variable Selection  

Bayesian Kernel Machine Regression (BKMR) is a recently proposed method which utilizes 

a smooth function to flexibly model the relationship between exposures and an outcome of 

interest (Bobb et al., 2014). It allows incorporation of non-linear effects and or interactions 



7 
 

among exposures, as well as flexibility in both choice of kernel function and optional variable 

selection. The model is given by 

Yi = h(∑ PFCi, ∑ PFCAi, ∑ PFSAi, ∑ Pesticidei, ∑ PCBi, ∑ PBDEi, Blood THgi) + xi
Tβ + ϵi   

where Yi  is the absolute count of MHCII+ cells for dolphin i (i = 1, … , n), h() is the exposure-

response function of pollutants to be estimated, xi is composed of covariates age and sex, and ϵi is 

the random error term assumed to be independent and identically normally distributed with mean 

0 and common variance. The Gaussian kernel function used to represent the exposure-response 

function in our analysis can be expressed as  

𝐾(𝒛, 𝒛′) = 𝑒𝑥𝑝 {− ∑ 𝑟𝑚(𝑧𝑚 − 𝑧𝑚
′ )2

7

𝑚=1

} 

where z and z’ denote vectors of pollutants for two different dolphins and 𝑟𝑚 ≥ 0 represents the 

tuning parameter that controls the smoothness of the exposure-response function as a function of 

pollutant m.  

Of the two methods for variable selection that can be incorporated with BKMR, our analysis 

focused on hierarchical variable selection as component-wise variable selection may fail for 

highly correlated exposures as is the case with the pollutant concentrations of interest. For 

hierarchical variable selection, exposures are partitioned into groups such that highly correlated 

pollutants are grouped together and correlation across groups is low. No more than one pollutant 

from a group is able to enter the model at a time. For this analysis, ∑PCBs, ∑PBDEs, and 

∑Pesticides were retained as individual pollutants. A combined group was formed for ∑PFCAs, 

∑PFCs, and ∑PFSAs. All analyses were conducted running the MCMC sampler with a burn-in 
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of 25,000 iterations and 25,000 iterations for inference. Trace plots were inspected for model 

convergence. 

2.3.3 Bayesian Kernel Machine Regression with Principal Components 

Running BKMR without variable selection in this analysis would face issues with 

multicollinearity due to high correlation between pollutants, a typical issue in multi-pollutant 

analyses. One feature of PCA is the independence between resulting components.  In this 

section, we also consider the application of BKMR without variable selection but with principal 

components as predictors instead of individual pollutants.   

To improve convergence, modifications were made to default tuning parameters by 

specifying the standard deviation of the proposal distribution of the kernel parameters r1, …, r7 

for each pollutant so the acceptance rate is around 40. We also considered setting the kernel 

parameter to be identical for all three principle component predictors. All statistical analyses 

were conducted in R (version 3.5.1; R Foundation for Statistical Computing).  

3. RESULTS 

Summary statistics of dolphin characteristics are presented in Table 1. The mean age was 

14.63 (± 8.19) for CHS dolphins and 11.55 (± 5.10) for IRL dolphins. Of the dolphins sampled 

from IRL, 72% (N = 47) were male compared to only 58% (N = 35) sampled from CHS. A 

comparison of pollutant concentration summary statistics across methods for handling missing 

data are presented in Table 2. Multiple imputation resulted in the highest average pollutant 

concentrations. Higher average concentrations were expected because otherwise missing values 

were treated as zero concentration when computing the sums. For all three methods for handling 

missing data, the single-pollutant regression model showed statistically significant associations 
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between absolute counts of MHCII+ and ∑PFCs, ∑PFSAs, and ∑PCBs (Supplementary Table 

1). 

3.1 Principal Component Analysis 

We selected 3 principle components from the pollutants. The derived principal components 

and the weights of the pollutants that make up each component across methods for handling 

missing data are summarized in Table 3. The analysis identified the percentage of total variation 

described by the first three components as 83.58% for pollutant sums calculated without congener 

imputation, 83.42% for those calculated after random forest imputation on congeners, and an 

average of 83.35% across the 5 imputed datasets for those calculated after MICE imputation. 

Across methods for imputation, each of the principle components were primarily made up of the 

following pollutants: 1) ∑PFCs, ∑PFCAs, and ∑PFSAs, 2) ∑Pesticides, ∑PCBs, and ∑PBDEs, 

and 3) blood THg. A statistically significant association was found between absolute counts of 

MCHII+ and the first and second principal components across all methods for handling missing 

data (Supplementary Table 2).  

3.2 Bayesian Kernel Machine Regression 

The univariate relationship between each pollutant and absolute counts of MCHII+ where all 

other exposures are fixed to their 50th percentile are plotted in Figure 2 for each imputation 

method. From Figure 2A, we see that increasing values of PFCAs were associated with a decrease 

in the log absolute counts of MCHII+ cells. Panels B, C, and D of Figure 2 all show decreasing 

values log absolute counts of MCHII+ cells for increased values of principle component 1. 

 Figure 3 shows the joint (multi-pollutant) exposure-response function when all predictors are 

at a particular percentile as compared to when all of them are at their 50th percentile (reference 

level). Panel A exhibits a positive trend in contrast to panels B, C, and D which exhibit negative 
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trends. This difference can be explained as the weights of the primary pollutants of principle 

components 1 and 3 being negative.  

Figure 4 shows the effect of a single exposure at its 75th percentile compared to its 25th 

percentile while the remaining exposures are fixed to a particular percentile (25th, 50th, or 75th) is 

plotted in Figure 4. This plot is useful for examining complex interactions between exposures. 

Higher values of PFCAs (panel A) as well as lower values of principle components 1 and 2 

(panels B, C, and D) were associated with higher values of the exposure-response function. In 

addition, panels B, C, and D suggest an interaction between all three components because the 

effects vary slightly when other exposures were fixed at different levels.  

In Figures 2,3 and 4, panels B, C, and D show similar results in analyses conducted without 

accounting for missing data, with random forest imputation and with multiple imputation.  

4. DISCUSSION 

Bottlenose dolphins are the most common cetacean species found in coastal and estuarine 

ecosystems along the southeastern coast of the United States and an ideal sentinel species for 

monitoring ocean and human health due to their widespread coastal distribution and role as apex 

predators. Previous studies of bottlenose dolphin health have investigated the relationship between 

single pollutants and health outcomes. In this analysis, we conducted the first analysis to evaluate 

different methods for estimating the association between multi-pollutant mixtures and absolute 

counts of MCHII+ cells in 82 dolphins from Charleston, South Carolina and the Indian River 

Lagoon, Florida using single pollutant regression, principle component regression, Bayesian 

Kernel Machine Regression with individual pollutants and variable selection, and Bayesian Kernel 

Machine Regression with principle components. This was done while simultaneously evaluating 
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the impact of missing data by comparing analyses conducted imputing zero concentration for 

missing data, accounting for missing values with random forest imputation, and accounting for 

values with multiple imputation.  

Single pollutant regression analysis showed statistically significant associations between 

absolute counts of MHCII+ and ∑PFCs, ∑PFSAs, and ∑PCBs. Similarly, principle component 

regression showed a statistically significant association between components 1 (which had the 

highest weights for ∑PFCs, ∑PFSAs, and ∑PFCAs) and 2 (which had the highest weights for ∑ 

Pesticides and ∑PCBs. Alternatively, Bayesian Kernel Machine Regression with hierarchical 

variable selection identified PFCAs as most influential. Principle components 1 and 2 were still 

found to be significant in Bayesian Kernel Machine Regression analyses with principle 

components as predictors. Of the methods presented, Bayesian Kernel Machine Regression with 

hierarchical variable selection yielded the most straightforward results by identifying a single 

predictor with the most influence.  

Analyses conducted with different methods for handling missing data yielded similar results 

across all three methods with one exception - analyses conducted with multiple imputation resulted 

in only slightly larger standard errors than the other methods. Of the two imputation approaches 

implemented, this is the most conservative.  

One limitation of this study is the reduction in sample size from 125 to 82 dolphins due to 

missing outcome observations. Though we were able to impute missing congener values, we did 

not impute outcome observations. Additionally, the methods that we did implement make up only 

a small percentage of the available methods for investigating the impacts of multi-pollutant 

mixtures. Future studies can be conducted to compare these methods with those implemented in 

this study.   
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5. TABLES AND FIGURES 

Figure 1. Breakdown of pollutants congeners discarded and categorized.  
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Table 1. Summary statistics of dolphin characteristics by site. Mean (± SD) are reported for 

continuous variables and frequency (%) are reported for categorical.  

    Site 

All   

[N = 125] 

Charleston Harbor, SC   

[n = 60 (48%)]           

Indian River Lagoon, 

FL  

[n = 65 (52%)] 

Age (years) 13.02 (± 6.91) 14.63 (± 8.19) 11.55 (± 5.10) 

Length*(cm) 230.45 (± 22.21) 229.20 (± 24.41) 231.63 (± 20.02) 

Gender 

     Male 

     Female 

 

82 (66%) 

43 (34%) 

 

35 (58%) 

25 (42%) 

 

47 (72%) 

18 (28%) 

Weight** (pounds) 321.43 (± 83.48) 330.12 (± 93.40) 314.29 (± 74.36) 

Year 

     2003 

     2004 

     2005 

     2007 

     2010 

     2011 

 

54 (43.2%) 

34 (27.2%) 

32 (25.6%) 

2 (1.6%) 

1 (0.8%) 

2 (1.6%) 

 

33 (55%) 

10 (16.67%) 

17 (28.33%) 

0 (0%) 

0 (0%) 

0 (0%) 

 

21 (32.31%) 

24 (36.92%) 

15 (23.08%) 

2 (3.08%) 

1 (1.54%) 

2 (3.08%) 

*2 missing values; **12 missing values 
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Table 2. Comparison of polluant concentration summary statistics across methods for handling 

missing data. 

 

 Without Imputation 

 

Random Forest Imputation Average MICE Imputation 

 Mean (SD)  Min Max Mean (SD)  Min Max Mean (SD)  Min Max 

∑ PFC 1,499.2 

(1,290.49) 

112 8,640.4 1,514.9 

(1,289.76) 

117.2 8,640.4 1,561.16 

(1,276.72) 

143.64 8,640.4 

∑ PFCA 228.39 

(304.33) 

10.87 2,005.91 228.92 

(304.29) 

10.87 2,005.91 228.99 

(304.3) 

10.87 2,005.1 

∑ PFSA 1,270.8 

(1,077.96) 

101.1 7,059.0 1,286.0 

(1,076.6) 

106.4 7,059.0 1,332.2 

(1,064.28) 

127.86 7059.0 

∑ Pesticides 6,435.2 

(4,376.95) 

153.9 21,199.8 6,435.2 

(4,376.95) 

153.9 21,199.8 6,435.2 

(4,376.95) 

153.9 21,199.8 

∑ PCB 23,472.7 

(14,957.01) 

428.7 75,957.9 23,920.7 

(14,851.65) 

428.7 75,957.9 24,144.12 

(14,755.55) 

428.7 75,957.9 

∑ PBDE 1,159.21 

(1,234.24) 

98.19 8,881.72 1,159.3 

(1,234.2) 

101.8 8,881.7 1,159.21 

(1,234.22) 

100.44 8,881.71 

Blood THg 0.40 (0.45) 

 

0.03 2.75 0.40 (0.45) 

 

0.03 2.75 0.40 (0.45) 

 

0.03 2.75 

 

 

Table 3. Derived principal components and the weights of the pollutants that make up each component 

across methods for handling missing data. 

 

 Without Imputation 

 

Random Forest 

Imputation 

Average MICE 

Imputation 

 PC1 PC2 PC3 PC1 PC2 PC3 PC1 PC2 PC3 

∑ PFC -0.55 -0.18 -0.24 -0.54 -0.20 -0.23 -0.54 -0.22 -0.23 

∑ PFCA -0.51 -0.06 -0.01 -0.50 -0.08 0.00 -0.50 -0.09 0.02 

∑ PFSA -0.52 -0.20 -0.28 -0.51 -0.22 -0.28 -0.51 -0.23 -0.28 

∑ Pesticides -0.10 0.61 -0.17 -0.12 0.61 -0.16 -0.13 0.61 -0.16 

∑ PCB 0.00 0.58 -0.39 -0.03 0.58 -0.39 -0.06 0.58 -0.40 

∑ PBDE -0.29 0.42 0.22 -0.30 0.41 0.23 -0.31 0.40 0.24 

Blood THg 0.29 -0.17 -0.80 0.29 -0.16 -0.80 0.29 -0.16 -0.79 
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Figure 2. Univariate relationship between each pollutant and absolute counts of MCHII+ cells 

where all other exposures are fixed to their 50th percentile with A. variable selection not 

accounting for missing data, B. principle components as predictors not accounting for missing 

data, C. principle components as predictors with random forest imputation, and D. principle 

components as predictors with multiple imputation.  
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Figure 3. Comparison of the value of the exposure-response function when all predictors are at a 

particular percentile as compared to when all of them are at their 50th percentile with A. variable 

selection not accounting for missing data, B. principle components as predictors not accounting 

for missing data, C. principle components as predictors with random forest imputation, and D. 

principle components as predictors with multiple imputation.  
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Figure 4. Value of the exposure-response function for a predictor at its 75th percentile as 

compared to when that predictor is at its 25th percentile while the remaining exposures are fixed 

to particular percentiles with A. variable selection not accounting for missing data, B. principle 

components as predictors not accounting for missing data, C. principle components as predictors 

with random forest imputation, and D. principle components as predictors with multiple 

imputation. 
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Supplementary Tables 

Table 1. Parameter estimates across methods for handling missing data from single-pollutant 

regression analyses conducted between each individual pollutant and log-transformed absolute 

count of MCHII+ cells, adjusted for age and sex. 

 Without Imputation 

 

Random Forest Imputation Average MICE Imputation 

 Estimate (± Standard Error) Estimate (± Standard Error) Estimate (± Standard Error) 

∑ PFC 0.00 (± 0.00)** 0.00 (± 0.00)** 0.00 (± 0.00)** 

∑ PFCA 0.00 (± 0.00)* 0.00 (± 0.00)* 0.00 (± 0.00)* 

∑ PFSA 0.00 (± 0.00)** 0.00 (± 0.00)** 0.00 (± 0.00)** 

∑ Pesticides 0.00 (± 0.00) 0.00 (± 0.00) 0.00 (± 0.00) 

∑ PCB 0.00 (± 0.00)** 0.00 (± 0.00)** 0.00 (± 0.00)** 

∑ PBDE 0.00 (± 0.00) 0.00 (± 0.00) 0.00 (± 0.00) 

Blood THg -0.11 (± 0.14) -0.11 (± 0.14) -0.11 (± 0.14) 
* P-value < 0.1; ** P-value < 0.05; *** P-value < 0.01 

 

Table 2.  Results of regression analysis between principal component scores one through three 

and log-transformed absolute count of MCHII+ cells across methods for handling missing data, 

adjusted for age and sex. 

 

 

 
* P-value < 0.1; ** P-value < 0.05; *** P-value < 0.01 

 

 

 

 

 

 

 

 

 

 

 

 

Method           PC1 PC2 PC3 
Without Imputation -0.17 (± 0.06)*** -0.13 (± 0.06)** -0.01 (± 0.07) 
Random Forest Imputation -0.16 (± 0.06)*** -0.14 (± 0.06)** -0.00 (± 0.07) 

Average MICE Imputation -0.16 (± 0.06)*** -0.14 (± 0.06)** -0.01 (± 0.07) 
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