Distribution Agreement

In presenting this thesis or dissertation as a partial fulfillment of the re-
quirements for an advanced degree from Emory University, I hereby grant
to Emory University and its agents the non-exclusive license to archive,
make accessible, and display my thesis or dissertation in whole or in part in
all forms of media, now or hereafter known, including display on the world
wide web. I understand that I may select some access restrictions as part
of the online submission of this thesis or dissertation. I retain all ownership
rights to the copyright of the thesis or dissertation. I also retain the right
to use in future works (such as articles or books) all or part of this thesis or
dissertation.

Signature:

Slawomir A. Goryczka Date

Secure and Privacy-Preserving Distributed Data Release
By

Slawomir A. Goryczka
Doctor of Philosophy

Computer Science and Informatics

Li Xiong, Ph.D.
Advisor

Shun Yan Cheung, Ph.D.
Committee Member

Benjamin C. M. Fung, Ph.D.
Committee Member

Vaidy Sunderam, Ph.D.
Committee Member

Accepted:

Lisa A. Tedesco, Ph.D.
Dean of the Graduate School

Date

Secure and Privacy-Preserving Distributed Data Release

By

Slawomir A. Goryczka
M.S., Computer Science, Emory University, Atlanta, 2013
M.S./B.S., Mathematics, AGH University of Science and Technology, Krakéw, 2007
M.S./B.S., Computer Science, AGH University of Science and Technology, Krakéw, 2006

Advisor: Li Xiong, Ph.D.

An abstract of
A dissertation submitted to the Faculty of the
James T. Laney School of Graduate Studies of Emory University
in partial fulfillment of the requirements for the degree of
Doctor of Philosophy
in Computer Science and Informatics
2014

Abstract

Secure and Privacy-Preserving Distributed Data Release
By Slawomir A. Goryczka

The rapidly increasing prevalence of distributed data-driven applications
highlights security and privacy issues in storing and processing sensitive
data. Although manipulating raw data may violate privacy of their owners,
techniques for processing and using privacy-preserving data descriptions can
help. It remains a challenge, however, to ensure that adapted and new
solutions are efficient, secure, and preserve privacy of data owners without
disclosing confidentiality of data providers.

This dissertation proposes a new notion of m-privacy that addresses
situations in which data providers may act as adversaries. To verify if such
adversaries are capable of breaching privacy, we introduce novel strategies
and an adaptive algorithm to select and use the most efficient approach.
In addition, we design an algorithm to anonymize data to be m-private,
i.e., any m colluding parties cannot compromise privacy. All verification
and anonymization algorithms are implemented to be run in distributed
environments by a trusted third party.

For settings without a trusted third party, we introduce new secure mul-
tiparty computation protocols that implement m-privacy verification and
anonymization algorithms. For each protocol, we prove its security, ana-
lyze its communication complexity, and evaluate its overall performance for
various settings.

This dissertation also describes a new two-phase algorithm to release dif-
ferentially private histograms for records with customized privacy levels. We
adapt a v-optimal partitioning algorithm to make it usable with differential
privacy, and experimentally evaluate its performance.

Finally, for settings without a trusted third party, this dissertation pres-
ents a new distributed differential privacy mechanism that achieves collusion
resistance with small overhead. We also define an enhanced fault tolerant
and secure scheme for multiparty aggregation operations, and we employ
it to implement our differential privacy mechanism in distributed environ-
ments. Both the privacy mechanism and the fault tolerant scheme are ex-
tensively analyzed and experimentally evaluated.

Secure and Privacy-Preserving Distributed Data Release

By

Slawomir A. Goryczka
M.S., Computer Science, Emory University, Atlanta, 2013
M.S./B.S., Mathematics, AGH University of Science and Technology, Krakéw, 2007
M.S./B.S., Computer Science, AGH University of Science and Technology, Krakéw, 2006

Advisor: Li Xiong, Ph.D.

A dissertation submitted to the Faculty of the
James T. Laney School of Graduate Studies of Emory University
in partial fulfillment of the requirements for the degree of
Doctor of Philosophy
in Computer Science and Informatics
2014

Acknowledgments

First, I would like to thank my advisor, Prof. Li Xiong. Her insight
and guidance were invaluable in exploring areas of research described in this
dissertation. I would like to thank her for enormous hours we spent together
discussing and addressing different privacy and security challenges. Also, I
thank her for her patience, support, and all the words of encouragement that
helped me to overcome doubts and tough moments of despair over last years.
I would also like to thank my committee members, Prof. Vaidy Sunderam,
Prof. Shun Yan Cheung and Prof. Benjamin C. M. Fung, for their valuable
suggestions and comments. Discussions with them greatly helped me shape
this dissertation. Additionally, I would like to thank Vaidy for his support,
especially over last months. I would like to thank Prof. Ken Mandelberg,
Prof. James Lu, Prof. Michelangelo Grigni, Prof. Eugene Agichtein, and
Prof. Dominic Thomas. The knowledge and expertise they shared with me
is a foundation of my studies and my teaching experience. I am grateful
to all faculty, staff, and colleagues, who I met during my studies at Emory
University. They build an exceptional and unique community of researchers
that encourages everyone to ask questions, challenge propositions, verify
ideas, and prove new theorems. I would like to thank to all my students for
the honor of being their teacher. I also thank my colleague, Pawet Jurczyk,
for inspiring me to return to academia, and for revealing new and exciting
challenges in privacy and security. Finally, I owe my thanks to my family
and all my friends, who helped and supported me every time I needed it
over last years.

Contents

Confentd

IList of Figures

Gsfof Tables

lList of Algorithmg

I_Introduction
L1 Moftivafion e s
[.I.T Application Scenariod o v v v v v v i i
IL.1.2 Challengeqg oo
L2 _Contributiond L s
IL.2.1 Svyntactic Privacy Notions in Distributed Environmentd

[[.2.2 Semantic Privacy Notions (Differential Privacy) in Distributed Envid

onments L L L Lo

.5 Organizatlon] e e e
E__Related Work

R.T Dafa Privacy] o o o e e e e e

g.1.1 Syntactical Privacy Notiong o oo

E.1.2 Ditterential Privacyl o . ..o

2.2 Security of Computationyo

E.2.1 Secure Multiparty Computationy

B.2.2 Secret Sharing Schemed Lo 17

B.2.3 FEncrypfion Schemedo 17

2.3 Secure Multiparfy Computatfions with Differenfial Privacy] 18
2.4 Secure Mulfiparty Data Statistics with Differential Privacy. 19
B Distributed Data Aggregation with m-Privacyl 20
B1 Infroduction 20
B.2 m-Privacy Definifiono 23
BZT m-Privacyl . . - - .« « v e e e e e e e 24
B-2.2 Monotonicity of Privacy Constraintd 25

B.3 m-Privacy Verificationo 28
B.3.T Adversary Space Enumerafiono 29

.0.2 Heuristic Algorithms tor E(Monotonic Constrainty 30

B33 m-Privacy Verification Algorithm for Non-EG Monotonic Constrainty. 35

B.3.4 The Worst-Case Time Complexity] 36
p.o.o lhe Average lime Complexityl 37
B.4 Anonvmizafion for m-Privacylo 44
B.5 Experimental Evaluafion 47
B.5.T Experiment Setugo 47
B.5.2 m-Privacy Verification oo 48
B.5.3 m-Privacy Anonymizafiono 51

B5.4 m-Privacy Verification Experiments for non-EG Monotonic Constraintd 55

p.0o.0o _m-FPrivacy Anonvmization Experiments for non-kEG Monotonic Con-

Eframfd 56

B Secure Multiparty Data Aggregation with m-Privacy| 61
BT Tnfroducfionl 0 0 o Lo e e e e 61
B.2 Secure Privacy Constraint Verification Protocold 62
E.2. T Secure k-Anonymity Verificatiod 62

B.2.2" Secure [-Diversity Verification 63

B.3 Secure m-Privacy Verification Protocold 65

2R Secure Leader Flection Profocol 66

B.3. 2 Secure Sorting and Adapfive Ordering 67
B.3.3 Secure m-Privacy Verification Profocol] 68

g.4 Secure m-Frivacy Anonymization Frotocolyo 71
B.4.T Secure Provider-aware Anonymization Protocol 71
A7 Secure Fitness Score Proftocal o e e 74

g.o HExperimental BEvaluationfo 75
.0.1 FExperiment Sefug 76

B.5.2 Secure m-Privacy Verification 77
f.5.3 Secure m-Privacy Anonymizafion 78
Distributed Data Aggregation with Customized Difterential Privacy| 80
b.T Differenfial Privacyl oL 80
b-I.T Query Sensitivity] . -o 81
b.1.2~ m-Privacy and Differenfial Privacy] 81

b.2 Customized Privacy Budgefl00 82
b.3 Differenfially Private Histogramd 83
p.3.T Data-driven Histogramd 85
b.3.2 Privacy- and Data- Driven Histogramd§ 85
p.3.3 Strafegies of Spending Privacy Budgetd 88

b.4 FExperimental Evaluafion 90
P41 Seffingd 90
p.4.2 Parfifioning L o 91
p.4.3 Parfifioning Methody. 92
p.4.4 Histogram Building Approached 95

Secure Multiparty Data Aggregation with Customized Differential Friva+

CY 96
b1 __NMofivafiono 96
b.2 Distributed Differential Privacy Mechanismd 99

b.2.1 Distribufed Laplace Mechanism 99

02?2 (Geometric Mechanismd

b.2.0 Distributed Noise Approximation Mechanismg

0’24 Ihilnted istribunted NVechanismd

0.2.0 Comparison e e
0.5 Security Schemed e
0.0.1 Secret Sharing Schemedo e e e e e e e

[IRW Perturbation-Based Protacold

.9.9___Homomorphic Encryvption00 .o

a4 Enhanced Fanlt lolerant Schema

P.0.0 Comparisonol oL e e e e e e e
p.4 Experimental Evaluation L0000
p.4.1 Experiments SEtup oL oo e e e e e e
0.4 - VI o e e e e e e e
b.4.3 Security]o
T I Fid Work
......................................
[l.1.1 Syntactic Privacy Notions 1in Distributed Environmenty
Il.1.2 Semantic Privacy Notions in Distributed Environmenty
(2 Future World o o
Boocks and Journald

List of Figures

IL.1 An example of a third party surveillance scenario: a town square with peopld

(circles) divided into 3 zones monitored by data providers (colored and shaded

circles)| 2

.2 Collecting, preparing, and releasing privacy preserving data descriptions byl

b trusted third party (‘T'TP)) 4

IL.o Preparing and releasing privacy preserving data descriptions by collaborating|

data providers running secure multiparty computation (SMC) protocols withl

lnsecure communication and computation resources) 5
.1 Two tvpes of distributed data publishing settings for four providers]. 21

B.2 'T'he domain of coalitions for data providers 4 £, F», F3, P4t and 1ts sumplified

epresentation for n providers with two types of pruning. Flus signs represen

coalitions that cannot breach privacy, while minus signs coalitions that canf

preach privacy of given anonvmized dafa records] 29

b.o Adaptive ordering for eiicient pruning and an example run of the binary

m-privacy verification algorithm] 31
B.4 Runtime (logarithmic scale) vs. power of m-privacy for [1¢|/ng =10 48
B.5 Runtime (logarithmic scale) vs. power of m-privacy for [1a|/ng =501 49

B.6 Runtime (logarithmic scale) vs. number of data providers for |[1q|/ng = 10] . 50

B.7 Runtime (Iogarithmic scale) vs. number of data providers for [T[/ngz = 50] . 50

B.8 Runtime (logarithmic scale) vs. [Ial/ng) 51

B.9 Runtime (logarithmic scale) vs. the average fitness score ot data providers) . . 51

b.10 Runtime vs. power of m-privacydo

b.ll Query error vs. power of m-privacvlo

B.12 Runtime (logarithmic scale) vs. |/] for anonymization algorithms).

B.13 Runtime (logarithmic scale) vs. |/'] for different verification strategies)

pb.14 Runtime and query errors vs. k 1n m-privacy with respect to K-anonyvmity, . .

b.lo Runtime and query errors vs. /[1n m-privacy with respect to [-diversity). . . .

B.16 Runtime (logarithmic scale) vs. power of m-privacy).

B.17 Runtime (logarithmic scale) vs. number of data providers)

B.18 Runtime (logarithmic scale) vs. power of m-privacy).

b.1Y Query error vs. power of m-privacvl

B.20 Runtime (logarithmic scale) vs. number of records|

b.21 Query error vs. number of records) L. oL 0 o e

B.22 Runtime (logarithmic scale) and query errors vs. £ in k-anonymity used in g

privacy constraint Cfo oL oo e

B.23 Runtime (logarithmic scale) and query errors vs. ¢ in t-closeness used 1n g

privacy constramt CJ L. L

1.1 Computation time (logarithmic scale) vs. power of m-privacyl

.2 Computation time (logarithmic scale) vs. number of data providers).

A.0 Computation tiume vS. pOwer oI m-privacyy« v v v v o ..

4.4 Computation time vs. number oI data providers]

b.1 V-optimal partitioning of privacy budgets among 3 buckets using (a) thq

average and (b) the mimimum as a target value of each bucket|

p.2 Ddaturation ol the example record privacy budgets 1or buckets)

b.o Partitions of records by AV G and MI/N methods for binomially distributed

privacy budgets]o Lo

b.4 Partitions of records by AV G and M 1INV methods 1or imnversed exponentially|

distributed privacy budgets) Lo

b.o Query error tor histograms built from different partitionings ot records with

pbmomially distributed privacy budgets vs. number of buckets K

.0 Query error tor histograms built Irom different partitionings ot records with

budgets drawn from normal distribution vs. number of buckets £

b.(Query error tor histograms bullt from difierent partitionings and ior different]

number of buckets k for records with mversted exponentially distributed

b.8 Query error (logarithmic scale) for histograms with records having different]

pverage privacy budgets, which were drawn Irom binomial distribution)

) uery error ior different methods of building histograms Ior four partition

pnd two difierent distributions of privacy budgets).

p.1l System settings with distributed data contributors J;, which contribute thei

values x; and noise shares fv; to _securely compute a tunction j and ensurg

ditferential privacy ot data subjects]o oL

p.2 'lhe average noise share generation times In microseconds Ifor different

mechanisms and platforms) Lo

p.o lhe average noise share generation times in microseconds tor different 0 and

f,run on the server| L e e e e e e

p.4 "lhe average magnitude of redundant noise tor different rate ot required noisqg

Bhares v (o« = 0.1), and different privacy budgets o (v = 10/32)).

p.o 1he average runtimes oI a protocol for different encryption key sizes Al

(n = 32) and different number of participants n (k£ = 128))

p.6 'T'he average runtimes for different Shamir’s scheme threshold ¢ (n = 32) and

privacy mechanismsy L L e e e e e e e e

pb./ 'lI'he average runtimes for difierent numbers oi participants and fault tolerant]

Becurity schemes)o e e

p.8 'T'he average local computation times (logarithmic scale) for data preparationg

In_different security schemes on different platforms)

p.Y lhe average runtimes for different numbers or nodes and security schemes) . .

94

List of Tables

TIT _Confribufions] o 8
.2 m-Adversary and m-privacy examplelo oL 9
b.l EBExperiment parameters and default values Ior experiments with KG and

non-E (G monotonic constraints, which are outside and within parentheses)

..................................... 47
E.T Experiment setfings and default values of SMC protocols] 76
b.T Example records with different privacy budgets] 83
p.l Comparison oi complexity, tault tolerance level, and max. allowed collusion

for SMC schemes with n parfies] 116
b.2 Detfault values of experiment parameters]. 119

List of Algorithms

1 The fop-down m-privacy verification algorithm]. 33
K 1he binary m-privacy verincation algorithm) 34
B The verificafion algorithm of m-privacy wr.f.any C] 36
B 1he proviager-aware anonymization algorithml. 45
b 1'he secure k-anonymity verification protocol]o 0oL, 62
b 1'he secure (-diversity veriication protocoll 64
I’ 'T'he Secure Leader Election protocol (SLE)). 66
B 1he secure m-privacy verinication protocol w.r.t. E(monotonic constrainf

L _tor top-down. bottom-up. and direct algorithms: code run by the leading

D der P'l. . . e e e e 69
3] 1he secure provider-aware anonymization protocoll 72
L0 I'he secure nitness score protocolfo oL L oL o 75

1 The PSD: a greedy heuristic of inding the k-histogram of (x7,...,x;), based

on [22[1 . . . 86
L2 T'he dynamic programming algorithm S5 £~ of inding the optimal k-histogram|

bf (z1,...,x;) for a given definition of the tunction SSF£. Based on [47]] 87
[3~ The crealeBucket algorithm of creating a saturated bucket] 89

14 1he data aggregation and recovery procedures ot the KF'1 scheme, which 19

fun by an unfrusted parfy] o 114

Lo T'he encryption tunction run by a party 2 contributing x; at time T with
encryption keys exchanged with parties /V; of the KFE'l scheme)
IL6 T'he recovery protocol run by a party 2 contributing x; at time ¢ with neighborg

IIV; and faultea parties tailing ot the KF'l schemel

Chapter 1

Introduction

1.1 Motivation

The rapidly increasing prevalence of distributed data-driven applications has highlighted
security and privacy issues in storing and processing sensitive data. Although manipulating
raw data in distributed settings may violate privacy of data owners, we can still employ
different techniques to prepare, maintain, and use privacy-preserving descriptions of data,
e.g., anonymized databases, database statistics, data mining models. Such demand
to perform more privacy-preserving computations in distributed settings has increased
significantly. To address these emerging requirements, new privacy mechanisms need to

be developed, and existing techniques need to be adapted to distributed environments.

1.1.1 Application Scenarios

Ensuring security and privacy in the process of preparing and using descriptions of
distributed and sensitive data is a challenge, largely due to the absence of mutual trust
among distributed, autonomous data owners and providers. All descriptions of data are
subject to at least two privacy constraints: 1) privacy of data subjects or owners, and 2)
confidentiality of data providers. For example, consider a system that integrates publicly
available flight schedules with sensitive information about booked tickets. Data users, e.g.,
researchers that study patterns of disease spreading along communication routes, cannot

process such data until a consent from every passenger is given. However, if such data

could be made available without divulging personal details, e.g., through obfuscation or
aggregation, many benefits would accrue.
A few other scenarios in which release of sensitive data, modified to protect privacy

would be useful, are described below.

Syndromic Surveillance. The terrorist attacks in 2001 and following years, and various
disease outbreaks, such as the 2009 outbreak of HIN1 Flu [99], and the outbreak in Germany
of Escherichia coli [I01] have prompted much attention in syndromic surveillance systems
[T5, 89, @7]. In a simple scenario, a public health agency collects data from individual
visitors that report their Influenza cases (self surveillance). The collected data, e.g., the
daily number of Influenza cases, is monitored and analyzed to detect seasonal epidemic
outbreaks. Both participation of a person and details of medical diagnosis are example of
highly sensitive data, and privacy of their owners should be protected. Ensuring that data
are collected and processed in a secure and privacy-aware manner is a challenge, but could be
very valuable for users and researchers, if made available with high utility and high privacy

guarantees.

Intelligence Data Collection. In numerous situations, intelligence gathering is performed
in crowd settings both non-deliberately by the general public and by principals, who are
anonymously embedded in the crowd. A canonical example is an uprising in a major city
under hostile governmental control. The general public may use smart devices to report on

various field data (third party surveillance |62]) as shown in Figure .

NN

Figure 1.1: An example of a third party surveillance scenario: a town square with people
(circles) divided into 3 zones monitored by data providers (colored and shaded circles).

In Figure [, the shaded circles that represent data providers whose identity and location

should be hidden, and the open circles represent targets or data subjects about whom generic
or abstract data should be reported, but personal data should not be divulged. There may
also be agents among the crowd, reporting similar data using popular media (e.g. Twitter)
to avoid identification. In either scenario, the number of participants reporting data may

change over time, but that shall neither compromise their security, nor reveal their identity.

Collaborative Medical Data Aggregation. Consider a scenario in which a group of
hospitals would like to collaborate in order to evaluate medical treatments of a rare illness.
They cannot share their patient records among themselves without getting consent from all
patients, but they can anonymize their records and use them instead. There may be also
patients with records in multiple hospitals, and joining their data from different sources
without their consent should not be possible. In addition, employees of one hospital may
have a history of working for another hospital, hence they may have knowledge about some
patients from their former place of work. That knowledge could be used by them, while
analyzing anonymized data, which could lead to a privacy breach. To address this threat
each hospital can anonymize their data records independently and then aggregates them
with other hospitals. Alternatively, they can anonymize their data records in collaboration,
i.e., hospitals would securely aggregate and then anonymize their data. In either case all

privacy and security risks have to be carefully analyzed and addressed.

Generalized Settings. All above examples have similar goals and the same actors: data
providers (hospitals, agents, patients) and data owners or subjects (patients, individuals).
Notice that for some scenarios data owners are also data providers. In all examples
data providers would like to anonymize data and/or compute some data statistics without
exposing to third parties any sensitive data. Anonymized data are created from original
data by applying suppression, generalization, or perturbation, such that no data recipient
is able to learn anything about any data owner, except what can be derived from the final
result [B8]. Thus, we generalize above examples into one with the goal of preparing a data
description (e.g., anonymized data, data statistics), which preserves both privacy of data
owners, or subjects and confidentiality of data providers.

One approach to fulfill the goal is to find a trusted third party (TTP) that will collect data

from all providers and then perform necessary computations, or transformations to ensure
that sensitive data is not disclosed (Figure I2). Employing a TTP to do computations
addresses some, but not all challenges. For example, a few data providers can be attackers
that collude in order to increase their chances of success. In addition, each data provider
may have different privacy requirements, which need to be fulfilled. On top of that, a TTP
may be unreliable or even unavailable, e.g., finding a TTP for a group of hospitals to share

their data without consent from every patients may be impossible, unless such access is

data @ data @
provider provider
@ \ /data provider

"TTP

data provider
/ data provider

granted by law.

anonymlzed privacy data provider
dataset preserving
data
statistics

Figure 1.2: Collecting, preparing, and releasing privacy preserving data descriptions by a
trusted third party (TTP).

When a TTP is not available all computations need to be executed by untrusted third
parties or data providers without disclosing any sensitive data. Therefore, an important
challenge is to protect the privacy of data owners and subjects, when a data aggregator is
untrusted or not present. If the TTP is not present, providers may collaborate to perform a
secure multiparty computations (SMC) protocol that returns the same outcome as it would
be returned by the TTP. Each SMC protocol is described as a sequence of computations
and exchanging messages among data providers.

Figure 3 depicts a general scenario with a group of data providers participating in

data provider

data provider

anonymized privacy
dataset preserving
data
statistics

Figure 1.3: Preparing and releasing privacy preserving data descriptions by collaborating
data providers running secure multiparty computation (SMC) protocols with insecure com-
munication and computation resources.

an SMC protocol that returns anonymized dataset, or privacy preserving data statistics.
In such settings, each data provider is connected to others using insecure communication
channels. In addition, we assume that each provider is semi-honest (honest-but-curious)
[39], i.e., it follows every step of an SMC protocol, but may use all intermediate results and
its own data to breach privacy of remaining data providers and individuals. As a final result

of our setting the SMC protocol returns a privacy-preserving description of data.

1.1.2 Challenges

Privacy Challenges. To model privacy threats for data providers and data owners we need
to define a potential attacker and its background knowledge. A potential attacker can be
external or internal. In either case predicting possible background knowledge of an attacker
is a challenge. For example, some third parties may corrupt a small fraction of anonymized
records, which may lead to a privacy breach [87]. In the most restrictive setting, we assume
that all but one data record are corrupted. The fewer data records are breached, the more
utility of original data can be preserved in its description. Finding a reasonable tradeoff

between level of privacy restrictiveness and utility of data is a main privacy challenge for all

settings.

If a TTP is present, it needs to also evaluate risks of colluding data providers, i.e.,
providers that share their data, which may increase their chances in breaching privacy.
Preserving privacy in a TTP scheme in the presence of colluding providers is a challenge
that got very little attention so far.

Traditional syntactic approaches to data anonymization, such as removing identifying
attributes, generalizing, or perturbing individual attribute values, preserve truthfulness of
data, i.e., if needed an anonymized record can be linked with its original record. Many
syntactic privacy notions utilize these approaches to counter various attacks, e.g., [67, 60,
85]. An important challenge for such notions in the distributed setting is to model the
background knowledge of attackers. Notice that data providers may be among potential
adversaries as well. In addition, if adversaries collude, they may share their data records,
which increases their attacking power. To preserve privacy of remaining data owners attacked
by a coalition of adversaries, new privacy mechanisms are needed.

Recently introduced semantic approaches protect participation of data owners in any
computed statistics. They do not preserve truthfulness of data, but they also make no
assumptions about background knowledge of attackers, i.e., they assume the worst-case
scenario, in which such attacker knows all but one record. Semantic mechanisms employ
different techniques to ensure data privacy, among which are perturbation and random
sampling, e.g., differential privacy |28, 62]. A challenge for semantic privacy notions is to
ensure that by removing a single record from a dataset all evidences of its presence are
removed as well.

Applying semantic privacy notions to distributed settings with unreliable and colluding
data providers introduces additional challenges. To address some of them, all data providers
should participate in data anonymization in the same way, as we do not know which of
them is reliable and not colluding. For example, each data provider needs to participate in
perturbation process, in order to ensure that necessary level of perturbation is achieved even
when a few participants have failed. Reliability of distributed systems is usually achieved by
replicating necessary actions. Requiring participation of fewer providers to ensure enough

perturbation, results in introducing additional and redundant noise. Finding a distributed

protocol that generates enough noise/perturbation with a small magnitude of redundant
noise is an important challenge, which needs to be addressed to ensure scalability of the
protocol. On top of that, different data providers (or data owners) may require different
levels of privacy, e.g., in differential privacy level of required privacy is expressed by its
parameter, which is often called a “privacy budget”. For such settings new approaches
are needed to efficiently release an integrated view of the data, while guaranteeing such

customized level of privacy requirements.

Security Challenges. Both distributed settings, with and without a TTP, give rise to many
data privacy and security challenges [62, B8, [, 84|. If a TTP is present, then ensuring secure
communication between each data provider and the TTP is the most important challenge.

For scenarios without a TTP all data providers need to agree on security schema and
the protocol they will run. They may decide to choose a specific secret sharing scheme,
encryption scheme, or perturbation scheme. Each of these schemes has its own challenges,
but few of them are common for all schemes, e.g., colluding data providers, or unreliable
communication channels. An additional group of issues is related to performance of protocols
and security schemes, e.g., communication complexity of many protocols in Shamir’s secret
sharing scheme may be very high.

In addition, confidentiality of data providers should be also guaranteed, as any
information about them and about data they provide may harm their security. Therefore,
information about participating data providers is also sensitive and should be protected,

which introduce additional challenges.

1.2 Contributions

Our contributions cover two dimensions of presented challenges: 1) different distributed
data settings, i.e., with and without a TTP, 2) two groups of privacy notions: syntactic
and semantic. In particular, we propose new solutions for anonymization of distributed
datasets using syntactic notions. We introduce an m-privacy notion and corresponding
algorithms to address the challenges when data providers may act as adversaries. We

also introduce solutions to compute statistics of distributed data with respect to semantic

privacy notions. We propose new algorithms to address the challenge when different data
providers or data owners have varied (customized) requirement of differential privacy. Our
proposed algorithms are implemented for centralized scenarios, i.e., they can be run by
a TTP (Table IW). In addition, we define new secure multiparty computation (SMC)
protocols that implement these algorithms in a distributed environment, i.e., they can be
run collaboratively by data providers and untrusted third parties without involving any
TTP. All our algorithms and protocols are collusion resistance, i.e., they securely generate
privacy-preserving data description in settings with a group of colluding data providers. The

key contributions for proposed settings are presented in Table .

Table 1.1: Contributions.

| Privacy notions TTP \ SMC
Syntactic m-privacy: [T02], [4T)] distributed m-privacy protocols:
[T02], [a2]
Semantic customized differential privacy: distributed customized
[93] differential privacy protocols:
[43], [94], [75]

1.2.1 Syntactic Privacy Notions in Distributed Environments

We assume that data records are horizontally distributed among data providers and each
record has an owner or a subject, whose identity should be protected. Each record attribute
is either an identifier, which directly identifies the owner, or a quasi-identifier (QID), which
may identify the owner if joined with a publicly known dataset, or a sensitive attribute,
which values should not be possible to link with their data owners or subjects. A data
recipient also has access to anonymized data as well as to some background knowledge, which
represents any publicly available information about released data, e.g., Census datasets. For
example, Table [2 presents data contributed by hospitals P, P>, P, and P, that wish to
collaboratively anonymize their respective patient databases 11, Tb, T3, and Ty. In each
database, Name is an identifier, { Age, Zip} is a quasi-identifier, and Disease is a sensitive
attribute. Notice that one record, owned by Olga, is contributed by two providers P» and
Py, and is represented as a single record in anonymized dataset.

Syntactic privacy notions guarantee that an identifier can be linked to a sensitive value

Table 1.2: m-Adversary and m-privacy example.
T1 T2
Name | Age| Zip |Disease || Name|Age| Zip |Disease
Alice 24 198745 | Cancer ||Olga 32 98701 | Cancer
Bob 35 12367 | Epilepsy || Mark | 37 |12389|Flu
Emily | 22 |98712| Asthma ||John 31 112399 |Flu

T3 Ty
Name |Age| Zip |Disease || Name|Age| Zip |Disease
Sara 20 | 12300 | Epilepsy || Olga 32 98701 | Cancer

Cecilia| 39 |98708|Flu Frank | 33 [12388|Asthma
Ty
Providers Name Age Zip | Disease
Py Alice [20-30] | ***** | Cancer
Py Emily | [20-30] | ** | Asthma
Ps Sara [20-30] | ***** | Epilepsy
Py John [31-34] | ***** | Flu
Py, Py Olga [31-34] | ***** | Cancer
Py Frank | [31-34] | ** | Asthma
Py Bob [35-40] | ***** | Epilepsy
) Mark [35-40] | ***** | Flu
Py Cecilia | [35-40] | ***** | Flu
7
Providers Name | Age Zip | Disease

P Alice
Py Mark

[20-40] | ***** | Cancer
[20-40] | ***** | Flu

Py Sara [20-40] | ***** | Epilepsy

P, Emily | [20-40] | 987** | Asthma

Py, Py Olga [20-40] | 987** | Cancer
[
[
|
[

Py Cecilia | [20-40] | 987** | Flu
Py Bob 20-40] | 123** | Epilepsy
Py Frank | [20-40] | 123** | Asthma
Py John 20-40] | 123** | Flu

only with limited probability. During anonymization identifiers are suppressed and QIDs
are modified to achieve required privacy notion C, e.g., k-anonymity [80, 85|, [-diversity [60],
and t-closeness [67]. A table achieves C, if every of its QI group achieves C' as well, where a
QI group is a group of records with the same QID values. Attacks are run by attackers, i.e.,
a single or a group (a coalition) of external and internal entities that would like to breach

privacy of data using their background knowledge, as well as anonymized data. Privacy

10

is breached if any attacker learns anything about data that cannot be derived from the
background knowledge, anonymized dataset, and corrupted data records.

In our running example, 7} is one possible anonymization that guarantees k-anonymity
and [-diversity (k = 2, | = 2), i.e., each group of anonymized records with the same QID
(QI group) has at least 2 records in it, and there are at least 2 “well represented” sensitive

values. Notice that the definition of [-diversity, which we use, defines

‘well represented”
sensitive values as distinct values, i.e., [-diversity holds if each QI group contains records
with at least ! distinct sensitive values.

An attacker from the hospital P; may remove from 7 all records provided by P;. In
the first QI group there will be only one remaining record, which belongs to a patient
between 20 and 30 years old. By using quasi-identifier attributes to join this record with the
background knowledge BK (e.g. part of the Census database), P; can identify Sara as its
owner (highlighted in the table) and her disease as Epilepsy. In practice, the attacker would
use more attributes as quasi-identifiers and maximal BK to mount the linking attack [86]. In
general, multiple providers may collude with each other, thereby having access to the union
of their data, or a user may have access to multiple databases, e.g., a physician switching
hospitals, and using information about her former patients.

To address this type of attack, we introduce a notion of m-privacy with respect to (w.r.t.)
a privacy constraint C', which ensures that any coalition of m providers is not able to breach
privacy of records provided by remaining parties [2I]. For example, in Table [2 T} is
an anonymized table that satisfies m-privacy (m = 1) with respect to k-anonymity and
[-diversity (kK =2, 1 = 2). We also prove that both problems of m-privacy verification and
anonymization, in the general setting, are computationally hard. For m-privacy verification,
we propose a few different strategies and an adaptive algorithm of selecting an efficient
approach to be used. We also propose an algorithm to anonymize data, such that its
result is m-private w.r.t. any C. All verification and anonymization algorithms have been

implemented to be run in a distributed environment by a T'TP.

SMC Protocols for m-Privacy. For settings without a TTP, we introduce a group of

new secure multiparty computation protocols [I02]. Our protocols implement m-privacy

11

verification algorithms as well as m-privacy anonymization algorithm. For each protocol, we
prove its security and analyze its communication complexity. In addition, for all protocols

we extensively test their performance in a distributed environment [42].

1.2.2 Semantic Privacy Notions (Differential Privacy) in Distributed En-

vironments

For many scenarios, e.g., participatory sensing [[1] and data surveillance [35], data subjects
would like to hide their participation in computed statistics especially if it would bring
negative consequences to them. In such settings, information about participation is sensitive
and should be protected from linking with the data owner as well as the contributed
data itself. In order to satisfy such a privacy requirement, we employ differential privacy,
which is a semantic privacy notion that assures a strong and provable privacy guarantee
for aggregated data regardless of background knowledge. To use differential privacy,
independence of data subjects needs to be assumed, i.e., deleting one subject’s data is
equivalent of hiding all evidence of her participation in the dataset. Without such assumption
hiding all evidence of participation would require modifying dependent records or removing
them. Furthermore, we assume that no deterministic statistics about the participating data
subjects have been previously released. If any additional information has been publicized
earlier, it has to be taken into account to ensure that differential privacy for anonymized data
is achieved. Under such assumptions, differential privacy guarantees negligible change of
perturbed computation results, when a single data subject opts out of the data collection. A
common way of achieving differential privacy is perturbation of results by carefully calibrated
noise. Security of privacy-preserving statistics aggregation needs to be ensured either by a

TTP or by an SMC protocol [38].

Data Statistics. The level of privacy preserved by differential privacy is defined by its
parameter — a privacy budget. We allow each data provider to customize its privacy budget
value and to set it to any value that will be accepted by data owners, and which is spent while
answering queries. Such a setting can also be an outcome of a query workload that covers

different subsets of records by each differentially private query. Therefore, every query has to

12

be issued with a privacy cost that will be subtracted from budgets of all records participating
in this query execution. Notice that if each data owner is also a data provider, then the
number of different values of privacy budgets can be enormous.

For such customized privacy budget settings, we propose a new two-phase approach. In
the first phase, data records are deterministically grouped (partitioned) according to their
required privacy level, and in the second phase, for each partition a differentially private
histogram is generated. This approach maximizes utilization of the privacy budget by each
record, therefore reduces the noise of the resulting histograms. Such customization of privacy
budgets is very helpful in pricing privacy and compensating data owners for their loss of
privacy. For example, a researcher pays individuals in order to use their data records to
compute data statistics. In such settings, efficient managing of record budgets is crucial
to prepare accurate statistics. Notice that records are distributed among semi-honest and
mutually untrusted data providers. They are forbidden from sharing data records, but they
can collaborate in order to perform any secure computations that will not breach privacy of

their record owners.

Collusion Resistant SMC Protocols. Existing differential privacy mechanisms do not
address all challenges of settings with distributed data. For example, dealing with colluding
data providers receives very little attention, and to address it a naive approach is often
chosen, i.e., each provider ensures differential privacy of its data independently. Such solution
adds a high magnitude of redundant noise, which may be avoided. We introduce a new
differential privacy mechanism, which generates small amount of redundant noise that is
necessary to ensure collusion resistance [43].

For settings without a TTP, we define an enhanced fault tolerant secure scheme (EFT),
which is efficient, secure, and can be used to define a variety of secure multiparty aggregation
operations. The new differential privacy mechanism has been implemented in a distributed
environment using secure EFT scheme. Both, privacy mechanism and our new security

scheme have been extensively analyzed and tested.

13

1.3 Organization

The remainder of this dissertation discusses all contributed privacy mechanisms as well as
security schemas and protocols. First, Chapter B gives an overview of research in related
areas.

Then, Chapter B introduces m-privacy w.r.t. a privacy constraint as a new collusion
resistant privacy notion for settings with a TTP. Then, m-privacy is analyzed and tested
for any privacy constraints, but especially for equivalence-group monotonic constraints, i.e.,
constraints that remain fulfilled for a group of anonymized records when a new record is
added to that group. We also propose algorithms to verify and anonymize datasets with
respect to m-privacy.

In Chapter B, we present all m-privacy verification and anonymization algorithms
implemented as secure multi-party protocols. Security of protocols is proved, and their
performance is analyzed and tested extensively.

Next, Chapter B introduces a new method of preparing differentially private data
histograms. Presented method has two phases, in the first one data are partitioned based on
their privacy budget, and in the second one, based on data. Such approach allows to choose
partitioning algorithms for each phase independently to adapt them to the distribution of
privacy budgets as well as to the distribution of attribute values.

Chapter B provides new methods of ensuring semantic privacy in distributed environment
with colluding data providers and limited reliability of resources. In this chapter, we analyze
and test security schemes and privacy mechanisms, which are used to compute data statistics
in such distributed environments. The new approach of ensuring differential privacy by
distributed noise generation is very efficient in terms of performance and the magnitude of
redundant noise.

Finally, Chapter [@ concludes and describes a few potential future directions of our

research.

14

Chapter 2

Related Work

Both research areas, data privacy and security of computations experience tremendous
growth and are very advanced in their development. However, exploration of their

overlapping is still in its infancy.

2.1 Data Privacy

Roots of data privacy research are mainly in the database community. Increasing needs for
protecting sensitive information has motivated many researchers to find new techniques of

data manipulation without compromising privacy of their subjects.

2.1.1 Syntactical Privacy Notions

A large body of privacy preserving data analysis and publishing literature [33] assumes
limited background knowledge of attackers and defines privacy using relaxed adversarial
notion 60| by considering specific types of attacks. Representative principles include k-
anonymity [80, 85|, I-diversity [60], and ¢-closeness [67]. In [87], authors have modeled the
instance level background knowledge as corruption, and studied perturbation techniques
under these syntactic privacy notions.

In [48, 49, 67|, authors studied distributed anonymization for vertically partitioned data
with k-anonymity. Zhong et al. [98] studied classification of data collected from individual

data owners (each record is contributed by different data owner), while maintaining k-

15

anonymity. Jurczyk et al. [61] proposed a notion called I’-site-diversity to ensure anonymity
for data providers in addition to privacy of the data subjects.

Gal et al. |34] proposed a new way of anonymization of multiple sensitive attributes,
which could be used to implement m-privacy w.r.t. [-diversity with providers as one of
sensitive attributes. However, this approach uses the same privacy requirements for all
sensitive attributes, while our notion of m-privacy has no such limitation.

Nergiz et al. [69] proposed a look ahead approach in anonymizing horizontally distributed
data. In their approach providers disclose some information about data in order to decide,
if collaborative anonymization will gain more information than individual one. We leave for
the future research applying the look ahead approach to colluding scenarios considered with
m-privacy.

In [00] authors designed an anonymization algorithm for frequent itemsets. Since
the support function is monotonic, they took advantage of the dual-pruning to improve
performance of their approach. The main difference with our approach (Chapter B) is the
goal of constraint verifications. To find frequent itemsets, all itemsets need to be decided
either by checking or pruning. Thus, after simple modifications (e.g., not using early stop)
our approach can find frequent itemsets, and the dual-pruning algorithm can verify newly

presented notion of m-privacy. However, in either case, it will not be an efficient approach.

2.1.2 Differential Privacy

The notion of differential privacy was defined in [B1]. Authors proposed a method of
achieving it by perturbing results of computations with Laplace distributed noise. Several
works studied the problem of distributed data aggregation with differential privacy. For
example, Dwork et al. developed distributed algorithms of noise generation, in which random
shares are drawn from either binomial or Poisson distributions [30].

McSherry implemented the Laplace mechanism in his framework PINQ and introduced
a composition theorem [62]. The theorem describes how the privacy budget of each data
record is spent, when data are used to answer multiple different queries with differential
privacy costs.

In [90], Xiao et al. proposed several approaches that reduce relative errors of noisy

16

statistics, while still ensuring their differential privacy. Their algorithm obtains estimates of
the query answers with large noise and iteratively refines its estimates to minimize relative
errors.

In [97], Xiao and Tao presented the concept of personalized anonymity for attribute
generalization. Their technique minimize generalizations and satisfy data subject privacy
requirements with efficiency.

In [65], Mohammed et al. generated contingency tables (multidimensional histograms).
Counts in such tables are perturbed in order to achieve differential privacy. Their non-
interactive approach is flexible and can be adapt to use different criteria in building
contingency table records. However, authors did not consider configurations of attribute
values that are not represented in the dataset, i.e., their original count is equal to zero.
They probabilistically generalize records and introduce noise to preserve differential privacy
of data owners. Values of each attribute are generalized to the same level of their taxonomy
trees for all records.

Alhadidi et al. presented a secure two-party differentially-private data release algorithm
for horizontally partitioned data [d]. Differential privacy of released data is achieved by an
exponential mechanism [63]. The mechanism is used in domains where noise perturbation

is not possible.

2.2 Security of Computations

Security of computations has been a challenge since the first computer network was built
and a distributed computer system established. Empowered by the cryptography community
and other communities, ensuring security of computations becomes a very active research

topic.

2.2.1 Secure Multiparty Computations

Secure two-party computations have been defined by Yao, who presented a solution to
the Millionaires’ Problem, where two millionaires want to find out, who is richer without

disclosing their actual wealth [96]. Yao’s protocol has been generalized to secure multiparty

17

computations (SMC) in [40] and to scenarios with active adversaries in [58]. Protocols
implemented in a general SMC scheme are computationally expensive. However, many
specialized and efficient protocols have been developed for variety of specific operations.
Efficient SMC protocols have been also introduced for aggregation operations, e.g., a secure

sum, a secure union, and a secure scalar product |20, bY].

2.2.2 Secret Sharing Schemes

Shamir introduced the first distributed secret sharing scheme [R1]. A secret is decomposed
into n shares, by randomly generating a polynomial of order s, such that its value in zero
is equal to the secret. A set of at least s distinct points and values of the polynomial in
such points are securely distributed. Any group of s shares are enough to interpolate the
polynomial and to reveal the secret. Notice that having there are no limits on number of
generated shares. The Shamir’s secret sharing scheme, with secure communication channels,
is information-theoretically secure [6].

Note that Shamir scheme was introduced only for integer numbers. Catrina et al. adapts
his scheme to use floaring point numbers, by implementing different arithmetic operation
protocols [I¥].

Brun and Medvidovic introduced a distributed secret sharing scheme using a concept of
“tiles” [9]. In their scheme data are represented by tiles, which are distributed in an untrusted
network. Each tile discloses a single bit of data, but the scheme is generally secure if at least
half of them are not corrupted. Note that some statistical information is always revealed

with revealing each tile.

2.2.3 Encryption Schemes

Paillier [71] presented an additively homomorphic cryptosystem that computes the encrypted
sum using for this only encrypted numbers. Its threshold variant has been introduced
by Damgérd et al. [24] and used to implement an electronic voting system. Hazay et al.
presented a threshold Paillier scheme for two-party settings [46]. Cramer et al. applied

homomorphic encryption cryptosystems to many secure protocols [23].

18

Pedersen et al. compared encryption-based and secret sharing schemes used in privacy
preserving data mining [72]. They presented both schemes, but their comparison does not
include performance evaluations and does not cover the latest security schemes and privacy
mechanisms.

Chu et al. proposed a threshold security scheme to collect data in a wireless sensor
network [I9]. In their scheme, encryption keys are symmetric and valid only for a requested
period of time. The scheme is not homomorphic, i.e., a data recipient needs to decrypt all

ciphertexts before aggregating them, therefore she has to be trusted.

2.3 Secure Multiparty Computations with Differential Pri-

vacy

Combining benefits of both data privacy and security of computations is a relatively new
direction of research. A third party that uses large scale systems and manages sensitive data
has to preserve privacy of data subjects and ensure that any computation will leak nothing,
i.e., all distributed and local computations will be secure.

Acs et al. applied privacy-preserving and secure data aggregation to the smart metering
system [I]. Their scheme was inspired by previous work on secure sensor data aggregation
in wireless networks [I6, [7]. The scheme uses differential privacy model and homomorphic
properties of a modulo addition-based encryption scheme to ensure privacy of results and
security of computations.

In a similar scenario individual users collect and aggregate time-series data. PASTE is
the system that implements that and ensures differential privacy of results |[/6]. Differential
privacy is achieved by perturbing the most significant coefficients of the discrete Fourier
transform of the query answers by a Distributed Laplace Perturbation Algorithm (DLPA).
Each participant generates partial noise that is a vector of four Gaussian random variables.
Security of computations is ensured by the threshold Paillier cryptosystem.

Shi et al. also utilized a homomorphic encryption scheme and minimized its commu-
nication complexity by generating an encryption key from the current round number and

the existing key [83]. Their privacy mechanism is distributed and ensures approximate

19

differential privacy with noise drawn from the discrete two-sided geometric distribution [37].
Mohammed et al. presented a secure two-party differentially-private data release
algorithm for vertically partitioned data in the semihonest adversary model [64]. Differential

privacy of released data is achieved by an exponential mechanism [63].

2.4 Secure Multiparty Data Statistics with Differential Priva-
Cy

Jagadish et al. introduced a dynamic programming algorithm to create a single dimensional
v-optimal histogram for a given number of buckets [47].

Barak et al. introduced algorithms, in which they compute frequency matrix, and apply
Fourier transform to it, and add Laplace noise in this domain [5]. To eliminate negative
coefficients, authors employed linear programming to find values, which minimizes additional
perturbation introduced to data.

Hay et al. improved accuracy of differentially private histograms by using a constrained
inference postprocessing tuning [45].

Xu et al. employed partitioning to lower the noise magnitude of differentially private
histogram [94].

Xiao et al. used the wavelet transformation to introduce a Privelet method [92]. After
transforming data they added polylogarithmic noise to achieve differential privacy.

Cormode et al. introduced a new heuristic for differentially private spatial decompositions
(PSD), which can be employed to build a multidimensional histogram with privacy
guarantees |21, 22|. Both DPCube introduced by Xiao et al. in [93] and PSD belong
to the family of Binary Space Partitioning (BSP) techniques.

In [44], Haddadi et al. discussed challenges and some potential avenues for addressing
issues in privacy analytics. Authors proposed a framework that distributes execution of
verified queries within a community of data providers. Although authors describe results
aggregation and a few approaches to dilute them in order to achieve differential privacy,

they do not consider distributed noise generation as a possible approach.

20

Chapter 3

Distributed Data Aggregation with

m-Privacy

3.1 Introduction

Two settings are commonly used to anonymize and publish horizontally distributed
data. In the first setting (anonymize-and-aggregate) data providers anonymize their data
independently and then aggregate them (Figure BTa). A more desirable approach (aggregate-
and-anonymize) that saves more data utility is collaborative data publishing |33, A8, 49, 66|,
in which providers securely aggregate their data and then anonymize them (Figure BIH),
using either a trusted third-party (TTP) or Secure Multi-party Computation (SMC)
protocols [39, bY]|.

For either scenario an external attacker Py has access only to anonymized data T and
some background knowledge (BK), which represents any publicly available information
about anonymized data. Both 7" and BK are not enough to breach privacy of any data
subject. However, an attacker P; that is working for a data provider has an advantage
of knowing T} as well as T* and BK. Such additional knowledge is useless when each
data provider anonymized its dataset independently, but may allow a privacy breach for

the scenario, when data are first aggregated and then anonymized. Preserving privacy of

data records in such environment is more challenging when providers and external attackers

A ¢ A
! | || | | , | | , | . trusted third party / SMC |
oy _y_ ¥ _y_ v
i et TN Rt AR Rt B B _T_*’ ! < - -
! I\T'l/l |\T2/1 I_ T3/| I _4/| N
E v
Po Po
(a) Anonymize-and-aggregate. (b) Aggregate-and-anonymize.

Figure 3.1: Two types of distributed data publishing settings for four providers.

collaborate.

Our goal is to publish an anonymized view of the integrated data, T, which will be
immune to attacks. Attacks are run by attackers, i.e., a single or a group (a coalition)
of external or internal entities that wants to breach privacy of data using background
knowledge, as well as anonymized data. Privacy is breached if one learns anything about
data.

Many privacy notion C' are designed to protect against certain type of attacks. Therefore,
achieving C' by an anonymized dataset guarantees that data owners of its records are

protected against this type of attacks.

Definition 3.1 (Dataset Achieving a Privacy Constraint). For syntactical privacy notions,
an anonymized dataset T achieves C if and only if every group of records with the same
quasi-identifier attribute values (quasi-identifier equivalence group, QI group) achieves C' as

well.

Existing Solutions. Collaborative data publishing can be considered as a multi-party
computation problem, in which multiple providers wish to compute an anonymized view of
their data without disclosing any private and sensitive information. We assume the data
providers are semi-honest [8Y, 69|, which is commonly assumed in distributed computations.

A trusted third party (TTP) or Secure Multi-Party Computation (SMC) protocols [29| can

22

be used to guarantee lack of intermediate information disclosure during the anonymization.
However, neither TTP nor SMC protects against inferring information from the anonymized
data.

The problem of inferring information from anonymized data has been widely studied
in a single data provider settings [33]. A data recipient that is an attacker, e.g., Py,
attempts to infer additional information about data records using the published data, T,
and background knowledge, BK. For example, k-anonymity [80, B3] protects against identity
disclosure attacks by requiring each QI group (Definition B) to contain at least k records,
i.e., each group contains at least k records, which quasi-identifiers have the same values. [-
Diversity requires each QI group to contain at least [“well-represented” sensitive values [60],
and t-closeness, which requires the distribution of a sensitive attribute in each QI group
to be close to the global distribution [67]. Differential privacy |27, 29| guarantees that the
presence of a record cannot be inferred from a statistical data release, while assuming very

little about background knowledge of attackers.

New Challenges. Collaborative data publishing introduces a new attack that has not been
studied so far. Each data provider, such as P; in Figure B, can use both, anonymized data
T*, and its own data T} to infer additional information about other records. Compared to
the attack by the external recipient, each provider has additional data knowledge of its own
records, which can help with the attack. This issue can be further worsened when multiple
data providers collude with each other.

In the social network or recommendation setting, a user may attempt to infer private
information about other users using the anonymized data or recommendations assisted by
some background knowledge and her own account information. Malicious users may collude

or even create artificial accounts as in a shilling attack |I2].

Contributions. We define and address a new type of “insider attack” by an m-adversary,
i.e., a coalition of m colluding data providers or data owners that attempts to infer data
records contributed by others. Notice that a 0-adversary models the external data recipient,
who has access only to the external background knowledge. Since each provider holds a

subset of the overall data, this inherent data knowledge has to be explicitly modeled, and

23

considered when the data are anonymized.

We address the new threat introduced by m-adversaries, and make several important
contributions. First, we introduce the notion of m-privacy that explicitly models the inherent
data knowledge of an m-adversary, and protects anonymized data against such adversaries
with respect to a given privacy constraint. For example, in Table I22 T} is an anonymized
table that satisfies m-privacy (m = 1) with respect to k-anonymity and [-diversity (k = 2,
[=2).

Second, for scenarios with a TTP, to address the challenges of checking a combinatorial
number of potential m-adversaries, we present heuristic algorithms for efficient m-privacy
verification given a set of records. Our approach utilizes effective pruning strategies
exploiting the equivalence group monotonicity property of privacy constraints, and adaptive
ordering techniques based on a novel notion of privacy fitness. We also present a data
provider-aware anonymization algorithm with adaptive strategies of checking m-privacy

fulfillment, to ensure high utility and m-privacy of sanitized data with efficiency.

3.2 m-Privacy Definition

In this section we formally describe our problem setting. Then, we present our m-privacy
definition with respect to a privacy constraint to prevent inference attacks by m-adversary,
followed by properties of our new privacy notion.

Let T' = {t1,t2,...} be a set of records with the same attributes gathered from n data
providers P = {Py, P», ..., P,}, such that T; C T are records provided by P;. Let Ag be a
sensitive attribute with a domain Dg.

If the records contain multiple sensitive attributes, then we could treat each of them
as the sole sensitive attribute, while others would be included to the quasi-identifier [60].
However, in our scenarios we use an approach, which preserves more utility without
sacrificing privacy [34].

Our goal is to publish an anonymized table T while preventing any m-adversary from
inferring Ag for any single record. An m-adversary is a coalition of data users with m data

providers cooperating to breach privacy of anonymized records.

24

3.2.1 m-Privacy

To protect data from external recipients with certain background knowledge BK, we
assume a given privacy requirement C is defined as a conjunction of privacy constraints:
Ci ANCy A...N\Cy. If a group of anonymized records T™* satisfies C, we say C(T™) = true.
By definition C'(0) is true, and) is private. Any of the existing privacy principles can be
used as a component constraint C;.

In our example (Table [32), the privacy constraint C is defined as C' = C; A Ca, where
C is k-anonymity with k = 2, [85], and Cy is [-diversity with [= 2, [60]. Both anonymized
tables T); and T} satisfy C, although as we have shown earlier, T,; may be compromised by
an m-adversary such as {P; }.

We now formally define a notion of m-privacy with respect to a privacy constraint C,
which, whether achieved, is enough to protect the anonymized data against m-adversaries.
The notion explicitly models the inherent data knowledge of an m-adversary, the data records
they jointly contribute, and requires that each QI group, excluding any of those records

owned by an m-adversary, still satisfies C'.

Definition 3.2 (m-Privacy with respect to C). Given n data providers, a set of records T,
and an anonymization mechanism A, an m-adversary I (m < n — 1) is a coalition of m
providers, which jointly contribute a set of records Tr. A(T) satisfies m-privacy with respect
to a privacy constraint C if and only if, any anonymized superset of records A(T') from

non-m-adversary providers satisfies C, i.e.,

VIC P =mNT :T\T; CT CT, C(AT)) = true

Corollary 3.3. For allm < n —1, if A(T) is m-private, then it is also (m — 1)-private. If

A(T) is not m-private, then it is also not (m + 1)-private.

Notice that this corollary describes monotonicity of m-privacy with respect to the number
of adversaries, and is independent from the privacy constraint C' and records. In the next
section we investigate monotonicity of m-privacy with respect to records for a given value

of m.

25

m-Privacy with Duplicate Records. m-Privacy can be also guaranteed when there are
duplicate records (such as records from a patient transferred between hospitals). In our
initial example Olga has records in two hospitals P, and P, (Table [2). For such cases, the
duplicates are treated as a single record shared by a few providers. If any of the providers
is a member of an m-adversary, the record will be considered as a part of its background

knowledge.

m-Privacy and Syntactic Privacy Constraints. Let C' be a syntactic privacy
constraint, i.e., a constraint that preserves data truthfulness at the record level, e.g., k-

* satisfying C' will only guarantee O-privacy w.r.t.

anonymity, [-diversity, ¢-closeness [67]. T
C,i.e., C is not guaranteed to hold for every QI group after excluding records belonging to
any data provider (Definition B). Thus, each data provider may be able to breach privacy
of records provided by others. These guarantees are enough when there is a single data
provider, but when there are many data providers they are insufficient. In our example from
Table 2, T, satisfies only O-privacy w.r.t. C, while T} satisfies 1-privacy w.r.t. the same
C. Thus, T; preserves privacy (defined by C') from being breached by malicious data users
and any single data provider.

m-Privacy is defined w.r.t. a privacy constraint C', and hence it will inherit all strengths
and weaknesses of C'. For example, if C is defined as k-anonymity, then ensuring m-privacy
w.r.t. C' will not protect against homogeneity attacks [60] and deFinetti attack [b3]. m-
Privacy w.r.t. C protects against privacy attacks issued by any m-adversary if and only
if, C' protects against the same attacks by an external data recipient. m-Privacy notion

is orthogonal to the privacy constraint C' being used, and enhances privacy it defines to

distributed settings, where up to m data providers collude.

3.2.2 Monotonicity of Privacy Constraints

Monotonicity of privacy constraints is defined for a single equivalence group of records,
i.e., a group of records that QI attributes share the same generalized values. Let Ay

be a mechanism that anonymizes a group of records 7' into a single equivalence group,

T* = Ay (T).

26

Generalization based monotonicity of privacy constraints has been already defined in
the literature (Definition B4) [67, B0|. Its fulfillment is crucial for designing efficient

generalization algorithms [66, b7, 60, 85]. We will refer to it as generalization monotonicity.

Definition 3.4 (Generalization Monotonicity of a Privacy Constraint |64, 60]). A privacy
constraint C' is generalization monotonic if and only if, for any two equivalence groups A1(T)

and A1(T") that satisfy C, their union satisfies C' as well,

C(A1(T)) = true
C(AL(T")) = true

= C(AL(T) U AL (T)) = true

Notice that in the definition of generalization monotonicity there is an assumption
that original records have been already anonymized into equivalence groups, which are
used for further generalizations. We introduce more general and record-based definition of
monotonicity in order to facilitate the analysis, and design efficient algorithms for verifying

m-privacy w.r.t. C.

Definition 3.5 (Equivalence Group Monotonicity of a Privacy Constraint, EG Monotoni-
city). A privacy constraint C' is EG monotonic if and only if, for a group of records T' such
that its equivalence group Ay (T) satisfies C, and any group of records T, their anonymized

union satisfies C,
C(AL(T)) = true = VT, C(A(TUT)) = true

Notice that T can be any set of records, which makes EG monotonicity more general
than generalization monotonicity. If a constraint is EG monotonic, it is also generalization
monotonic, but vice versa does not always hold. k-Anonymity and [-diversity, which
requires [distinct values of sensitive attribute in a QI group, are examples of EG and
generalization monotonic constraints. Entropy [-diversity [60] and t¢-closeness [07| are
examples of generalization monotonic, but not EG monotonic constraints at the same time.
For example, consider a subset of two anonymized records with 2 different sensitive values

satisfying entropy [l-diversity (I = 2), i.e., the distribution of sensitive attribute values in

27

the QI group is uniform. Entropy I-diversity is not EG monotonic, because it will not
hold if we add records that change the entropy of sensitive values significantly. However,
it is generalization monotonic because it will still hold if two QI groups satisfying entropy

l-diversity (I = 2) are (generalized) into a new group.

Corollary 3.6. If all constraints in a conjunction C = C1ACaA...ANCy, are EG monotonic,

then the constraint C' is EG monotonic.

Similar corollary holds for generalization monotonicity. In our example, C' is defined as
a conjunction of k-anonymity and [-diversity. Since both of them are EG monotonic [60], C

is EG monotonic as well.

Theorem 3.7. m-Privacy with respect to any constraint C' is EG monotonic if and only if,

C is EG monotonic.

This theorem holds also when applied for generalization monotonicity. Proofs of this
theorem for both EG and generalization monotonicities defined with respect to records and

not m are as follows.

Proof of Theorem BZ1 for EG monotonicity. Assume T is a set of records provided by
P ={Py,...,P,} providers, and A is an anonymization mechanism that returns records,
which are m-private w.r.t. C (0 < m < n —1). Thus, A(T) is m-private w.r.t. C, and
C(A(T)) = true.

Suppose m-privacy w.r.t. C'is EG monotonic, and let T be a superset of 7. Then based
on the definition of EG monotonicity (Definition 83), and fulfillment of m-privacy w.r.t.
C by A(T), A(T) is m-private w.r.t. C as well. In particular, A(T) is O-private w.r.t. C
(Corollary B33), i.e., A(T) fulfills C, and thus C is EG monotonic.

Conversely, suppose C'is an EG monotonic privacy constraint applied to the definition of
m-privacy, and let Thbea superset of T'. Assume I C P is a coalition of m attackers providing
Ty (T; € T C T) records, |I| = m, and A(T) is m-private w.r.t. C, then C(A(T\T1)) = true.
Furthermore, T C T implies that A(T) c A(T), and A(T\ T;) € A(T \ T;), which together
with EG monotonicity of C, show that C(A(T\T)) = true. Thus, A(T) is m-private w.r.t.

C, and we conclude that m-privacy is EG monotonic. O

28

Proof of Theorem B=1 for generalization monotonicity. Assume that all records contributed
by n providers P = {Py,..., P,} are split into two sets T and Ty (T3 N1y = @), and A is
an anonymization mechanism that returns anonymized records, which are m-private w.r.t.
C (0 <m < n-—1). Thus, A(T1), and A(T») are m-private w.r.t. C.

Suppose m-privacy w.r.t. C'is generalization monotonic. Then based on the definition of
generalization monotonicity (Definition B4), A(7; UT5) is m-private w.r.t. C. In particular,
A(Th) U A(T3) is O-private w.r.t. C' (Corollary B33), i.e., C(A(T1) U.A(T3)) = true. Because
C(A(Ty)) = true and C(A(T,)) = true, then C' is generalization monotonic.

Conversely, suppose C' is a generalization monotonic privacy constraint applied to
the definition of m-privacy. Assume I C P is a coalition of m attackers providing 17
(Tt € Ty UT3) records. |I| = m, and A(T1), and A(T3) are m-private w.r.t. C, then
C(A(T1\T1)) = true, and C(A(T2\ Tr)) = true. Furthermore, generalization monotonicity
of C implies that C(A(T1\T7)UA(T2\T7)) = true. Thus, A(T1)UA(T>) is m-private w.r.t.

C, and we conclude that m-privacy is generalization monotonic. O

Corollary 3.8. If a constraint C' is EG monotonic, then the definition of m-privacy w.r.t.

C' (Definition B3) may be simplified such that only T' =T \ Ty are checked, i.e.,
VI C P,|I| =m,C(A(T \ Tr)) = true

Indeed, if A(T \ T7) satisfies C, then EG monotonicity of C guarantees that any
anonymized superset of T'\ T satisfies C' as well. Thus, A(T) fulfills definition of m-
privacy w.r.t. C. In addition, if a coalition I is unable to breach privacy, then any
its sub-coalition with fewer records cannot do so either (Definition BH). Unfortunately,

generalization monotonicity of C' is not enough to guarantee this property. T.

3.3 m-Privacy Verification

Checking whether a set of anonymized records satisfies m-privacy w.r.t. a privacy constraint

C creates a potential computational challenge due to the combinatorial number of m-

! Generalization monotonicity of C' does not guarantee fulfillment of C for a QI group of two (or more)
sets of records, where at least one of them has a QI group that does not fulfill C.

29

adversaries and variety of privacy definitions of C. In this section, we first analyze the
problem by modeling the adversary space. Then, we present heuristic algorithms with
effective pruning strategies and adaptive ordering techniques for efficiently checking m-
privacy w.r.t. an EG monotonic constraint C. Finally, we present implementation of
introduced algorithms that can be run by a trusted third party (T'TP) to verify m-privacy

w.r.t. EG monotonic and non-EG monotonic privacy constraints.

3.3.1 Adversary Space Enumeration

Given a set of ng data providers, the entire space of m-adversaries (m varying from 0 to
ng — 1) can be represented using a graph shown in Figure B2. Each node at layer m
represents an m-adversary of a particular combination of m providers. The number of all
possible m-adversaries is given by (%G) Each node has parents (children) representing their
direct super- (sub-) coalitions. For simplicity the space is depicted as a diamond, where a
horizontal line at a level m corresponds to all m-adversaries, the bottom node to 0-adversary

(external data recipient), and the top line to (ng — 1)-adversaries.
m=3 P,P,P, PPP, PPP, PPP,

INTS OSSN

Figure 3.2: The domain of coalitions for data providers {P;, Py, P3, Py} and its simplified
representation for n providers with two types of pruning. Plus signs represent coalitions
that cannot breach privacy, while minus signs coalitions that can breach privacy of given
anonymized data records.

In order to verify m-privacy w.r.t. a constraint C for a set of records, we need to check
fulfillment of C' for all records after excluding any possible subset of m-adversary records.
When C is EG monotonic, we only need to check C for the records excluding all records
from any m-adversary (Corollary B8), i.e., adversaries on the horizontal line. For example,

in Figure B2, given m, all coalitions that need to be checked are below and at the green

30

horizontal line. For each possible coalition we need to check scenarios where any possible
subset of their records is excluded from anonymized data. If C' is EG monotonic, then it is
sufficient to check only coalitions at the green horizontal line.

Given an EG monotonic constraint, the straight forward way of verifying m-privacy
is to sequentially generate all possible (T;f) m-~adversaries and then check privacy of the
corresponding remaining records (a direct algorithm). In the worst-case scenario, when m =
ng/2, the number of checks is equal to the central binomial coefficient (nzcjz) = O(Q”Gnalm).
Thus, the direct algorithm is not efficient enough and we propose a few heuristics that utilize

two strategies and limit the number of privacy checks, i.e., pruning and adaptive ordering.

3.3.2 Heuristic Algorithms for EG Monotonic Constraints

In this section, we present heuristic algorithms for efficiently checking m-privacy w.r.t. an EG
monotonic constraint. Then, we modify them to check m-privacy w.r.t. a non-EG monotonic
constraint.

The key idea of our heuristics for EG monotonic privacy constraints is to efficiently search
through the adversary space with effective pruning such that not all m-adversaries need to
be checked. This is achieved by two different pruning strategies, an adversary ordering

technique, and a set of search strategies that enable fast pruning.

Pruning Strategies. The pruning is possible thanks to the EG monotonicity of m-privacy
(Corollaries B33, and BR). If a coalition is not able to breach privacy, then all its sub-
coalitions will not be able to do so as well, and hence do not need to be checked (downward
pruning). On the other hand, if a coalition is able to breach privacy, then all its super-
coalitions will be able to do so as well, and hence do not need to be checked (upward
pruning). In fact, if a sub-coalition of an m-adversary is able to breach privacy, then the
upward pruning allows the algorithm to terminate immediately as the m-adversary will be
able to breach privacy (early stop). Figure B2 illustrates the two pruning strategies where

+ represents a case when a coalition does not breach privacy and — otherwise.

Adaptive Ordering of Adversaries. In order to facilitate the above pruning in both

directions, we adaptively order the coalitions based on their attack powers (Figure B.3(a]).

31

This is motivated by following observations. For downward pruning, super-coalitions of
m~adversaries with limited attack powers are preferred to be checked first as they are less
likely to breach privacy, and hence increase the chance of downward pruning. In contrast,
sub-coalitions of m-adversaries with significant attack powers are preferred to be checked
first as they are more likely to breach privacy, and hence increase the chance of the early

stop.

n -1
e ——
oalitions with increasin

order of the privacy fitness
_—
coalitions with

decreasing order
f the privacy

(a) Adaptive ordering. (b) First steps of the binary algorithm with verified
coalitions of attackers depicted as numbered red
dots.

Figure 3.3: Adaptive ordering for efficient pruning and an example run of the binary m-
privacy verification algorithm.

To quantify privacy fulfillment by a set of records, which we use to measure the attack
power of a coalition and privacy of remaining records, we introduce the privacy fitness score
w.r.t. C for a set of records. It also used to facilitate the anonymization, which we will

discuss in the following section.

Definition 3.9 (Privacy Fitness Score). Privacy fitness Fc for a set of anonymized records
T* is a level of fulfillment of the privacy constraint C. A privacy fitness score is a function

f of privacy fitness with values greater or equal to 1 only if C(T*) = true,

SCOTCE(T*) = f (FC1 (T*)v Fe, (T*)v .. Fe, (T*)>

Notice that privacy fitness score can be defined by any function that follows the above
definition. The definition depends on privacy constraint C, therefore it cannot be exactly

formulate without knowing the C. In our setting, C is defined as (k-anonymity A [-diversi-

32

ty). The privacy fitness score is defined as a weighted average of the two fitness scores with
a € (0,1). When C(T*) = false, scoreg, i~y = max(l — € Fo(T*)), where € is small. In

our example scoreg,, is defined as follow:

scorch(T*) =(1-a)- |Tk| fa- {t[As] ;lt e T}

(3.1)

The privacy fitness score quantifies the attack power of attackers. The higher their
privacy fitness scores are, the more likely they are able to breach the privacy of the remaining
records. In order to maximize the benefit of both pruning strategies, the super-coalitions
of m-adversaries are generated in the order of ascending fitness scores (ascending attack
powers), and the sub-coalitions of m-adversaries are generated in the order of descending
fitness scores (descending attack powers) (Figure B.3(a]).

Now we present several heuristic algorithms that use different search strategies, and hence
utilize different pruning directions. All of them use the adaptive ordering of adversaries to
enable fast pruning. Notice that for a record contributed by many providers (duplicated
records), if any of them is an attacker then the record is considered as it would have been

provided only by the attacker.

The Top-Down Algorithm. The top-down algorithm (Algorithm @) checks the coalitions
in a top-down fashion using downward pruning, starting from (ng — 1)-adversaries, and
moving down until a violation by an m-adversary is detected or all m-adversaries are pruned

or checked.

The Bottom-Up Algorithm. The bottom-up algorithm is similar to the top-down
algorithm. The main difference is in the sequence of coalition checks, which is in a bottom
up fashion starting from O-adversary, and moving up (line B). The algorithm stops whether
a privacy violation by any adversary is detected (early stop) or all m-adversaries are checked

(lines B to @).

The Binary Algorithm. The binary algorithm (Algorithm B), inspired by the binary
search algorithm, checks coalitions between (ng — 1)-adversaries and m-adversaries, and
takes advantage of both upward and downward prunings (Figure B33H). The goal of each

iteration is to search for a pair of coalitions Ig,, and Isuper, such that I, is a direct sub-

33

Algorithm 1: The top-down m-privacy verification algorithm.

Data: A set of anonymized records 1™ provided by P, ..., P,, an EG monotonic C,
a privacy fitness scoring function scorep, and the m.

Result: true if T is m-private w.r.t. C, false otherwise.

sites = sort_sites (P, increasing_order, scorer)

use_adaptive_order_generator (sites, m)

foreachi=n—1,n—-2,...,m do

while is_m-privacy_verified(71™, i) = false do

I = next_coalition_of_size ()

if privacy_is_breached_by(l) = false then
prune_all_sub-coalitions_of (/)

N O ok w N =

®

if is_m-privacy_verified (7™, m) = true then
L return true

©

10 return false

coalition of Isyper, and Igyper breaches privacy, while I, does not. Then, I, and all its
sub-coalitions are pruned (downward pruning), Is,per and all its super-coalitions are pruned
(upward pruning) as well.

Algorithm B works as follows. First, it starts with (ng — 1)-adversaries, finds the first
coalition of attackers that violates privacy, and assigns it to Igyper (lines from @ to @). Then,
it finds an Igp, i.e., a sub-coalition of Isper, which does not breach privacy (line B). At
each step, a new coalition I : Iy C I C Igyper (such that [I| = M; line M) is
checked (line M3). If I can breach privacy, then Ig,pe, is updated to I (line [). Otherwise,
Isup is updated to I (line [B). The algorithm continues until the direct parent-child pairs
Isuper and Igy, are found (line [T). Then pruning in both directions is performed (lines [7
and [8), and the algorithm starts the next iteration. The algorithm stops when m-privacy

can be determined (line B).

Adaptive Selection of Algorithms. Each of the above algorithms focuses on different
search strategy, and hence utilizes different pruning. Which algorithm to use is largely
dependent on the characteristics of a given group of providers. Intuitively, the privacy
fitness score (Equation Bl), which quantifies also the level of privacy fulfillment of the
group, may be used to select the most suitable verification algorithm. The higher the fitness
score, the more likely m-privacy will be satisfied, and hence the top-down algorithm with

downward pruning will significantly reduce the number of adversary checks. Defining the

Algorithm 2: The binary m-privacy verification algorithm.

Data: Anonymized records T* from providers P, an EG monotonic C, a fitness

scoring function scorer, and the m.
Result: true if T is m-private w.r.t. C, false otherwise.

1 sites = sort_sites (P, increasing order, scorer)

2 use_adaptive_order_generator (sites, m)

3 while is_m-privacy_verified (7™, m, C) = false do
4 Isuper = next_coalition_of_size(ng — 1)

5 if privacy_is_breached_by(Isyper, C) = false then
6 prune_all_sub-coalitions (Lsyper)

7 continue

8 Iy = next_sub-coalition_of (Lyyper, m)

9 if privacy_is_breached_by (I, C) = true then
10 L return false // early stop

11 while is_coalition_between(Isup, Isuper) do

12 I — next_coalition_between (Lsyup, Lsuper)

13 if privacy_is_breached_by(/,C') = true then
14 ‘ Isuper =1

15 else

16 L Top=1

17 prune_all_sub-coalitions (Jgyp)

18 prune_all_super-coalitions (Lsyper)

19

return true

35

exact strategy of choosing the m-privacy verification approach can be done based on the
background knowledge (data statistics) or during computations, i.e., when characteristics of
data contributed by each provider are computed. We utilize such an adaptive strategy in

the anonymization algorithm (discussed in Section B), and experimentally evaluate it.

3.3.3 m-Privacy Verification Algorithm for Non-EG Monotonic Con-

straints

If a privacy constraint C' applied to the definition of m-privacy (Definition B3) is not EG
monotonic, then pruning strategies are not useful. The only way to verify m-privacy w.r.t. C
for this setting is to check all possible sets of records that can be used by any m-adversary in
attacks (attacking records). The domain of privacy checks is expanded to cover all possible
sets of attacking records. However, the adaptive ordering of providers is still very useful in
finding an m-adversary that breaches privacy. Coalitions of m-adversaries with significant
attack powers are preferred to be generated first as they are more likely to breach privacy,
and hence increase the chance of the early-stop.

A general verification algorithm for m-privacy w.r.t. any C' (Algorithm B) works as follow.
For each cardinality of m-adversary, starting from 0, it generates all possible coalitions of
adversaries (lines @ to B). Then, for each coalition it generates all possible subsets of the
coalition records such that each provider participates to this set with at least one record (line
@). Finally, it verifies if such subsets can be used in attacks to breach privacy (line B). If the
attack is successful, then no further checks are necessary, and the algorithm returns negative
answer (early stop, line B). After verifying that all possible subsets of records provided by
any m-adversary are not enough to breach privacy, the algorithm returns positive answer.

Notice that for a given i-adversary the algorithm does not generate all possible subsets
of its records (line @). Subsets, with not all providers participating their records, are skipped
because they have been already verified. Each attacker, which is not using any of its records
for the privacy attack can be treated as a non-attacker. But that setting has been already

checked while considering smaller coalitions, therefore it is skipped.

36

Algorithm 3: The verification algorithm of m-privacy w.r.t. any C.

Data: Anonymized records T* from providers P, and the m.
Result: true if T is m-private w.r.t. C, false otherwise.

1 foreach : =0,1,...,m do

2 foreach I € ordered_coalitions_of_size (i) do

3 T; = Up,e; records_of (P;)

4 foreach S € 277 providers_of(S) = I do

5 if privacy_does_not_hold_for (7™ \ S) then

6 L L return false // early stop

return true

ENT

3.3.4 The Worst-Case Time Complexity

In this section, we derive the time complexity for the m-privacy w.r.t. C verification
algorithms in terms of the number of privacy checks. Since all algorithms involve multiple
checks of privacy for various records, we assume that each check of C takes a constant time.
Formally, it can be modeled by an oracle, which performs a check for given records in O(1)
time. For a particular definition of C| time complexity of a single privacy verification should

be also taken into account.

EG Monotonic m-Privacy. All the above verification algorithms have the same worst-
case scenario, in which all super-coalitions of m-adversaries violate privacy, while all sub-
coalitions of m-adversaries do not. Hence, neither adaptive ordering nor pruning strategies
are useful. For these settings, the direct algorithm will check exactly (7;?) possible
m-~adversaries before confirming m-privacy, where ng is the number of data providers
contributing to the group. This is the minimal number of privacy verifications for this
scenario. The bottom-up algorithm will check 0-adversary (external data recipient) up to
all m-adversaries, which requires Y /" ("¢) = O (n@) checks. The top-down algorithm
will check all (ng — 1)-adversaries first, then smaller coalitions up to all m-adversaries,
which requires Y, ("¢) = O (ngc_l_m> checks. The binary algorithm will run (7¢)
iterations and within each O(log (ng — m)) privacy checks. Thus, the total time complexity
is equal to O (ng log (ng —m)).

Non-EG Monotonic m-Privacy. In order to verify m-privacy w.r.t. non-EG monotonic

constraint C for a group of anonymized records provided by parties P, the maximal number

37

of privacy checks follows the formula,

3

2:2:[1<ﬂm4¢)zogwb (3.2)

i=0 ICP Pjel
[I|=i

where Tj is a set of records provided by P;, and T'is a set of all records from all providers.

3.3.5 The Average Time Complexity

Computing the average time complexity for majority algorithms is very difficult. Finding
the exact average time complexity depends on many factors, therefore we estimate the lower
bound of the average complexity time F. For a set of anonymized records T™* provided by
ng parties let all adversary coalitions that breaches m-privacy w.r.t. C' be supersets of a
single z-adversary X, which breaches privacy as well. If such coalition does not exist, then
we take £ = ng. Values of z, m, and ng are parameters in our computations. The number
of all possible z-adversaries for x < m is equal to Z?:_ol (”xG), and for x > m is equal to
Z;ﬁ;ll ("¢). The number of all privacy checks for an z-adversary (z < m) is denoted by

Hp,(z), and for x > m by Hy(z),

Sy (") Hon() + 308 1 ("S) Hay ()

2na

E(m,ng) = (3.3)
The top-down Algorithm. For (x > m) anonymized records T* are m-private w.r.t. C,
and the top-down verifies all (ng — 1)-coalitions applying downwards pruning when possible,
and also checks all coalitions that violate privacy. After all those checks m-privacy w.r.t. C

is verified. The number of privacy checks for a single value of x follows the formula:

ng—r—2
Hu(z) = > (”GZ. $)+HG—1

i=1
ng—x 7 —
_ Z(G,)”_3
. 1
1=0
= 26T 43 (3.4)

When = < m anonymized records 1™ are not m-private w.r.t. C. Similar like for the

38

above case the top-down algorithm verifies all (n—1)-coalitions, and those with more than m
providers that breaches privacy. Then it checks a single m-adversary that breaches privacy
(m-adversaries that do not breach privacy have been already pruned), and stops. Thus, for
a single xz-adversary the number of privacy checks can be computed using the same formula
as above after subtracting coalitions of size smaller or equal to m plus one check for the

m-coalition.

Hy(z) = 267 422 g <"G - x> (3.5)

- 1
=1

Thus, the lower bound of the average number of privacy checks follows,

E(m,ng) =

JonG (3.6)

S5 0)

Then applying the binomial theorem Y 7%, ("¢)r* = (1 + r)"¢ for r = 1/2, and the

following formula, Y76, k("'¢) = 2"¢~Ing || we obtain,

E(m,ng) = 27"¢[2"¢.((3/2)"¢ —27"9) (3.7)
+2"6 g —ng —2(2"¢ — 1)
m—1 na (m—x ng —)]
- 1+ .
() ()

_ ng L NG _ o5 ne—1
= (/e + -2 =

7 (1) (2 00)

xr=

39

Values of E(m,ng) vary for different m, for example,

E(1,nq) (3/2)"¢ + ng/2 + ng2' "9 -2

= 0((3/2)") (3-8)

—1
E(ng —1,n6) = (3/2)"¢ +ng/2—2- "2
2nG
ng—1
e 37 () (e)
=0
ng —1
ng—1
=Y ()2
=0 x
ng—1 n
—ng G
fane 3 (5)
=0
ng —1
= (3/2)" +ng/2-2-

—(3/2)"¢ 4276 41 —27"d

ng — 1
2na

= O(ng) (3.9)

= ng/2-1-

The lower bound of the average time complexity varies from linear to exponential for
different values of m. Thus, for the top-down algorithm m is a significant parameter of the

expected average computation time.

The bottom-up Algorithm. Similar like for the top-down algorithm we compute the lower
bound of the average complexity time for the bottom-up algorithm. The same assumptions
hold. When x > m, then all coalitions of up to m providers need to be considered, and
Hy(z) = 31, ("¢). For < m, the algorithm verifies all coalitions with up to (z — 1)
providers, and some coalitions with x adversaries. Since X can be any xz-adversary with equal

probability, then on average half of z-adversaries will be checked before finding the one that

breaches privacy. Thus, number of privacy checks is equal to H,(z) = Z;:ol (”.G) + ("xG) /2,

()

40

and the lower bound of the average number of privacy checks follows,

E(m,ng) = 27" nil <”$G)§:<”f> (3.10)

r=m+1 =0
" (ne) [&= (e ne
27 "G
s () () (%)
=1 =0
E(m,ng) varies a lot for different m, for example,
(ng +1)* +2
= 0O(ng) (3.11)

F(ng—1ng) > 276 .nil <n;;> <nxG> /2

r=1
ng nG 2
= 92 ne—l, -
()
=0
— 9ng-1l, 2ng _9—na
ng
> gmet 0 gone
dng
4./ng
—1/2
= 0<2”GnG/) (3.12)

The direct Algorithm. Similar like for above algorithms we compute the lower bound of
the average complexity time for the direct algorithm. The same assumptions as above hold.
In addition, we assume that all m-adversaries are checked in a random order. When z > m,

then all m-adversaries need to be considered, hence Hys(x) = (7;?)

For x < m, the algorithm verifies m-adversaries until finding one that breaches privacy.

nGg—=x

Among ("¢) m-adversaries there are
m—x

.) that can breach privacy. Thus, assuming

independence of privacy verifications, probabilities of not breaching privacy p and breaching

41

privacy ¢ follow formulas,

(3.13)

q = (3.14)
Given x the average number of privacy checks H,,(x) follows the formula,

Hp(z) = q+2pq+3p2q+...+<T;S>p(”n?)—1q

— 1) (me)p(h9) — p(h€)
= 2 1>(m)(§_1)2p = (3.15)

The overall average number of privacy checks follows the Equation B=3, and can be simplified,

Sy (") Hyp () + 308 1 ("9) Hag ()

E(m,ng) = oo
2 ey L () +1) o9
- ;,(5) 2neq

+<:f) (1 B Z;”olﬁ) + 1) (3.16)

For m = 1 values of p, ¢, and E(1,ng) follow formulas,

(")

p = 1-— e (3.17)
(")
¢ = (3.18)
E(lng) = 1- (ng2:—G1) . Qna (1 — 2t
1—2n¢g
= ne T

= O(ng) (3.19)

42

For m = ng/2 values of p, ¢, and E(ng/2,nq) follow formulas,

(nerj2)

p = 1-— 8- (3.20)
(nGC;Q)

(neyj2z)

g = (Gﬁ) (3.21)

ng/2
e ng—= nnG
E(n—G ng) = 221 na 1- ((nGC;Q—z) + 1) p(G/Q)
2 s NG ~ x 2ngq

n (o) — 1
G ng/2
+<ng/2> (1/2 + e —) (3.22)

7LG n
Because © < ng, and 0 < ((nzcj;fw) + 1) p(ng/z) < 1, and (ng%) > \;% (one of the

Stirling’s approximation results) we bound E(ng/2,n¢g) as follows,
E(ng/2,ng) = O (2"¢ng') (3.23)

The binary Algorithm. For the binary algorithm we use different settings in order to
compute possible lower bound of the average time complexity. Instead a single z-adversary
X, we assume that every z-combination of providers can breach privacy of remaining records.

For x < m all m-adversaries are able to break the privacy (due to upward pruning).
Therefore, for each size of the coalition up to m providers only one privacy check will
be performed. For z > m the algorithm will finish the current iteration after finding an -
adversary. In order to do so, it will run logy (ng — m — 1) privacy checks. Then, it will prune
downwards all subcoalitions of z-adversary, including (xfm) m-adversaries. The minimal
number of iterations that are necessary to prune all m-adversaries is equal to ("¢)/(,").

Thus, the expected number of privacy checks follows the formula,

m+1
E(m,ng) = py— (3.24)

. <nG> logy(ng —m — 1) "il ("%)

m ng — 1 Bt (2)

43

—1 /n,
2 nglogy(ng — 2) "<~ (%)
E(l,ng) = + £
() ng — 1 ng —1 ; T
2 logy (ng — 2)
MG i — 2
- 0 <2nc . bg?n@) (3.25)
ng
ng ng/2+1
B(ZC DGreT 2
ne \logs (% —1) "G (9)
o /2 ng —1 Z (,5)5)
¢ G z=ng/2+1 \nG/2
ng/2+1 Lgnat logy (%8 — 1)
ng — 1 ng — 1
1
= 0 <2"G : og2ng> , for ng >4 (3.26)
ng
E(ng —2,ng) = 1 (3.27)

Non-EG Monotonic m-Privacy. The maximal number of privacy checks required to
verify m-privacy w.r.t. non-EG monotonic constraint C' for a group of anonymized records
provided by P parties follows the Equation B=2.

An m-adversary I can use any of its records in its attacks. Thus, to ensure m-privacy,
all possible subsets of these records for each possible combination of attackers need to be
considered. Number of all possible subsets of adversary records is exponential to total

number of anonymized records, and equal to,

in: Z H 2|recordsiof(R)| (328)

i=0 I€P Rel
[|=i

However, some privacy checks are repeated, and therefore redundant. If one of the
malicious providers from an m-adversary does not use any of its records in an attack, then
this provider could be treated as a non-attacker, which is equivalent to a scenario with an

(m —1)-adversary that has been already verified. Thus, to avoid unnecessary privacy checks

44

all scenarios with an adversary that does not participate any records in the attack, are
skipped.

Privacy for adversarial coalitions are checked starting from the 0-adversary, then the
number of attackers is increased gradually, similar as in the bottom-up algorithm. FEach
scenario has a different coalition of adversaries that actively participate in attacks using
different subsets of their records. Thus, each scenario is unique, and required for verification.

By skipping redundant privacy checks for an i-adversary I, we verify only scenarios,
where a data provider R may use in the attack any but the empty subset of its records. For I,
the number of possible sets of records used in attacks is equal to [[pe; (2|Tec"”dsf°f(R)| — 1).
Summing up over all possible coalitions of all possible sizes proves that the maximal number

of privacy checks follows the Equation B=2.

Conclusions. The average time complexity analysis is more involved, and its results depend
on the parameter m. For each of them the lower bound of the average time complexity is
O(ng), but the upper bound is different, that is O ((3/2)"¢) for the top-down, O (2”Gnal/2>
for the bottom-up, O (2"Gn51) for the direct, and O <2”G1°grf%> for the binary. Thus,
adapting verification strategy to different settings is crucial to achieve, on average, a low

runtime.

3.4 Anonymization for m-Privacy

After defining the m-privacy verification algorithms, we can use them to anonymize a
horizontally distributed dataset, while preserving m-privacy w.r.t. C. In this section, we
present a baseline anonymization algorithm, and then our approach that utilizes a data
provider-aware algorithm with adaptive verification strategies to ensure high utility and
m-privacy for anonymized data. We also present an SMC protocol that implements our
approach in a distributed environment, while preserving security.

For a privacy constraint C that is generalization monotonic, m-privacy w.r.t. C
is also generalization monotonic (Theorem BZ), and most existing generalization-based
anonymization algorithms can be easily modified to guarantee m-privacy w.r.t. C. The

adoption is straightforward, every time a set of records is tested for privacy fulfillment,

45

we check m-privacy w.r.t. C' instead. As a baseline algorithm to achieve m-privacy, we
adapted the multidimensional Mondrian algorithm [66] designed for k-anonymity. The
main limitation of such adaptation is that groups of records are formed oblivious of the

data providers, which may result in over-generalization in order to satisfy m-privacy w.r.t.

C.

Anonymization Algorithm. We introduce a simple and general algorithm based on the
Binary Space Partitioning (BSP) (Algorithm @). Similar to the Mondrian algorithm, it
recursively chooses an attribute to split data points in the multidimensional domain space
until the data cannot be split any further without breaching m-privacy w.r.t. C. However,
the algorithm has three novel features: 1) it takes into account the data provider as an
additional dimension for splitting; 2) it uses the privacy fitness score as a general scoring
metric for selecting the split point; 3) it adapts its m-privacy checking strategy for efficient
verification. The pseudo code for our provider-aware anonymization algorithm is presented

in Algorithm @.

Algorithm 4: The provider-aware anonymization algorithm.

Data: Records T provided by P; (j =1,...,n), QI attributes 4; (i =1,...,q), the
m, and a constraint C'

Result: Anonymized T* that is m-private w.r.t. C

m = get_splitting_points_for_attributes(A4;)

m = m U get_splitting_point_for_providers(Ag)

7' ={a; € m,i€{0,1,...,q} : are_both_split_subpartitions_m-private(7,a;)}

if 7’ is () then

L T = T*UA(T)

(=L NV

return 7"

~

A; = choose_splitting_attribute(T, C, 7’)
(T2, 1)) = split (T, A;)
Run recursively for 7] and T

© ®

Provider-Aware Partitioning. The algorithm first generates all possible splitting points,
m, for QI attributes and data providers (lines @ to B). In addition to the multidimensional
QI domain space, we consider the data provider of each record as its additional attribute Ag.
For instance, each record ¢ contributed by data provider P, will have t[Ag] = P;. Introducing
this additional attribute adds also a new dimension for partitioning. Using Ag to split data

points decreases number of providers in each partition, and hence increases the chances that

46

more sub-partitions will be m-private, and feasible for further splits. This leads to a more
precise view of the data, and have a direct impact on the anonymized data utility. To find
the potential split point along this dimension, we impose a total order on the providers, e.g.,
sorting the providers alphabetically or based on the number of records they provide, and

partition them into two groups with approximately the same size.

Adaptive Verification for EG-Monotonic m-Privacy. m-Privacy is then verified for
all possible splitting points, and only those satisfying it are added to a candidate set 7’
(line B). In order to minimize the time, our algorithm adaptively selects an m-privacy
verification strategy using the fitness score of the partitions. Intuitively, in the early stage
of the anonymization algorithm, the partitions are large and likely m-private. The top-
down algorithm, which takes advantage of the downward pruning, may be used for fast
privacy verification. However, as the algorithm continues, the partitions become smaller, the
downward pruning is less likely, and the top-down algorithm will be less efficient. The binary
algorithm may be used instead to take advantage of upward pruning. We experimentally
find the threshold of privacy fitness score for selecting the best algorithm, and confirm the

benefit of this strategy.

Privacy Fitness Score Based Splitting Point Selection. Given a non-empty candidate
set 7' (Algorithm @), the privacy fitness score (Definition B) is used to find the best split
(line @). Intuitively, if the resulting partitions have higher fitness scores, they are more
likely to satisfy m-privacy, and allow further splitting. Notice that the fitness score does
not have to be exactly the same function used for adaptive ordering in m-privacy check.
For example, if in the Equation B, the weight parameter used to balance fitness values of
privacy constraints, should have, most likely, different value. After choosing the splitting
point, the partition is divided, and the algorithm is run recursively on each sub-partition

(lines B and @).

47

3.5 Experimental Evaluation

3.5.1 Experiment Setup

We merged the training and testing sets of the Adult dataset? into a single data set. Records
with missing attribute values have been removed. All remaining 45,222 records have been
used in experiments. The Occupation has been chosen as a sensitive attribute Ag. This
attribute has 14 distinct values. Records are randomly distributed among n providers
following uniform or exponential distribution for non-EG and EG monotonic constraints,

respectively.

Privacy Constraints. We note again that m-privacy is orthogonal to the privacy
constraints being used, and these are chosen to demonstrate the feasibility and efficiency
of our approach. The EG monotonic privacy constraint is defined as a conjunction of
k-anonymity [85] and [-diversity [60]. Both m-privacy verification and anonymization
algorithms use privacy fitness scores (Equation B1), but with different values of the weight
a. Values of o can be defined in a way that reflects restrictiveness of privacy constraints.
The impact of the weight to overall performance was experimentally investigated and values
of a for the most efficient runs have been chosen as default.

All experiments have performed on Sun Microsystems SunFire V880 with 8 CPUs, 16 GB
of RAM, and running Solaris 5.10. All algorithm parameters, and their default values are

listed in the Table B

Table 3.1: Experiment parameters and default values for experiments with EG and non-EG
monotonic constraints, which are outside and within parentheses, respectively.

Name | Description Verification \ Anonymization ‘
m Power of m-privacy 5 (3) 3 (1)
n Number of data providers - 10 (5)
ne Number of data providers contributing 15 (5) -
to a group
|T| Total number of records - 45222 (30)
|T¢| | Number of records in a group {150, 750} (25) -
k Parameter of k-anonymity 50 (4) 30 (4)
l Parameter of I-diversity 4 3)
t Parameter of ¢-closeness (0.5) (0.5)

2The Adult dataset has been prepared using the Census database from 1994, http://archive.ics.uci.
edu/ml/datasets/Adult

http://archive.ics.uci.edu/ml/datasets/Adult
http://archive.ics.uci.edu/ml/datasets/Adult

48

Metrics. The efficiency of algorithms is measured by their runtime. To evaluate the utility

of the anonymized data, we used the query error metric defined similar to prior work |22, G1].

2,500 queries have been randomly generated, and each query had qd predicates p;, defining
q

a range of a randomly chosen quasi-identifier, where qd € [2, 5] and ¢ is the number of

quasi-identifier attributes,
SELECT ¢t FROM T* WHERE p; AND ... AND pgq;

Query error is defined as the normalized difference in the results @) coming from anonymized

and original data: query error = (Q(T*) — Q(T))/Q(T).

3.5.2 m-Privacy Verification

The objective of the first set of experiments is to evaluate the efficiency of different algorithms

for m-privacy verification given a group of records T with respect to C.

Attack Power. In this experiment we compare m-privacy verification heuristics against
different attack powers. We use two different groups of records with relatively small and
large average numbers of records per data provider. Figure B2 shows the runtime with

varying m for all heuristics for the former group of records.

time [ms]
1E+6
1E+5- = binary
=¥ top-down
1E+41 -~ baseline

1E+31 +-bottom-up

1E+2-
1E+1

1E+0

Figure 3.4: Runtime (logarithmic scale) vs. power of m-privacy for |Tg|/ng = 10.

The group has 150 records, and small average fitness score per provider (equal to 0.867),
which reflects to a high probability of privacy breach by a large m-adversary. In most cases

the binary algorithm achieves the best performance due to its efficient upward and downward

49

pruning. However, performance of the top-down algorithm is comparable with binary for

m > ng/2.

time [ms]
1E+7

=+ binary
1E+61-*top-down
1E+5]~*baseline

- bottom-up
1E+4

1E+31
1E+21
1E+11
1E+0

Figure 3.5: Runtime (logarithmic scale) vs. power of m-privacy for |T¢|/ng = 50.

Figure B3 shows the runtime with varying m for all heuristics for the group 750 records,
and a larger average fitness score per provider (equal to 2.307). Therefore intuitively, it
is very unlikely that an m-adversary may breach privacy, and the downward pruning can
be applied often. This intuition is confirmed by results, which show that the top-down
algorithm is significantly faster than other heuristics. Since the remaining algorithms do not
rely only on the downward pruning, they have to perform an exponential number of checks.

We can also observe a clear impact of m, e.g., m ~ ng/2 incurs the longer run.

Number of Contributing Data Providers. In this experiment we analyze the impact
of increasing number of data providers, ng, on the different algorithms for the small and
large set of records, respectively. Notice that the average number of records per provider is
constant. Figure B8 and Figure BZ1 show the runtime of different heuristics with varying
ng.

We observe that increasing the number of contributing data providers has different
impact on different algorithms in both group settings. In the first group (Figure B®),
the execution time for each algorithm grows exponentially. In this case the group of records
has a low privacy fitness score, and is very vulnerable to attacks. Increasing the number of
providers will make the domain of possible m-adversaries, which are considered exponentially
bigger.

Similar trend is found for the other group (Figure B7) for binary, direct, and bottom-up

50

time [ms]
1E+6

=& binary
1E+51-*top-down
=+-direct

== bottom-up

1E+4
1E+3
1E+2

1E+14

1E+0

2 4 6 8 10 12 14 16 18 20
NG

Figure 3.6: Runtime (logarithmic scale) vs. number of data providers for |T¢|/ng = 10.

time [ms]

1E+7

=+ binary
1E+61 -+ top-down
1E+5 ~*=direct
= bottom-up

1E+4 1
1E+31
1E+21
1E+1
1E+0

2 4 6 8 10 12 14 16 18 20
Ng

Figure 3.7: Runtime (logarithmic scale) vs. number of data providers for |T¢|/ng = 50.

algorithms. For the top-down algorithm runtime grows linearly with the number of providers,

which is due to its effective use of downward pruning.

The Average Number of Records Per Provider. In this experiment we systematically
evaluate the impact of the average number of records per provider (|7¢|/n¢) on the efficiency
of the algorithms. Figure B8 shows runtime with varying |T|/ng (ng is constant while |T¢|
is being changed) for different heuristics. We observe that for groups with small average
number of records per provider, both direct and bottom-up algorithms are very efficient as
the group is likely to violate m-privacy. For groups with the large average number of records
per provider, i.e., when |T|/ng > 15, the top-down algorithm outperforms others.

Figure B presents the runtime with varying the average fitness score of contributing
providers. It yields an almost identical trend as the result for average number of records
per provider (Figure BX). In fact, they are linearly correlated (R? = 0.97, scorep =

0.04 - |Tz|/ng + 0.33) due to the definition of our privacy fitness score.

51

time [ms]
1E+6
1E+5
1E+4 1
- binary
1E+31 -+~ adaptive
1E+2] =¥ top-down
=+ direct
1E+1 == bottom-u

1E+0

0O 5 10 15 20 25 30 35 40
Tal/ng

Figure 3.8: Runtime (logarithmic scale) vs. |Tg|/ng.

time [ms]
1E+6
1E+5+
1E+4 1
- binary
1E+31 -+-adaptive
1E+21 =¥ top-down
=+ direct
1E+1 1 -up
1E+0 T T T T . T . r .
0 0.5 1 1.5 2 2.5

avg privacy fitness score of providers

Figure 3.9: Runtime (logarithmic scale) vs. the average fitness score of data providers.

Adaptive Strategy. Based on the above results, we use the following parameters for the
adaptive m-privacy checking strategy used in our anonymization experiments. If the average
fitness score of contributing providers in a group is less than 0.85 (|T¢|/ng < 15), we use

the binary algorithm, while for other cases the top-down is our choice.

3.5.3 m-Privacy Anonymization

This set of experiments compares our provider-aware algorithm with the baseline algorithm,
and evaluates the benefit of provider-aware partitioning for m-privacy w.r.t. an EG

monotonic constraint.

Attack Power. We first evaluate both anonymization heuristics with varying attack power
m. Figure B0 shows the runtime with varying m for both algorithms. As a reference

we added results of anonymization applied independently by each data provider. Since its

52

runtime and query error are independent of m, and can be run in parallel, it outperform
other approaches, but anonymized data have low utility.

We observe that the provider-aware algorithm significantly outperforms the baseline
algorithm. This fact may look counter intuitive at the first glance — our algorithm considers
one more candidate splitting point at each iteration, thus the execution time should be
longer. However, in each iteration of the provider-aware algorithm, the additional splitting
point along data providers, if chosen, reduces the number of providers for each subgroup,
and hence reduces m-privacy verification time significantly (as observed in Figure B8 and
Figure B). In contrast, the baseline algorithm preserves the average number of providers
in each subgroup which incurs a high cost for m-privacy verification. As expected, both

algorithms show a peak cost when m ~ n/2.

time [ms]
1E+6 “# baseline
=+ provider-
8E+54 aware
=“*independent
B6E+5+
4E+51
2E+51
OE+0+

o 1 2 3 4 5 6 7 8 9 10

Figure 3.10: Runtime vs. power of m-privacy.

query error (qd = 2)

0.1359 ¥Y~—¥%—FH%—¥%F— ¥ ————v
0.1304 & baseline

=+ provider-
0.1259 aware
0.1201 “*independent
0.115-
0.110
0.105+
0.100

0 1 2 3 4 5 6 7 8 9 10
m
Figure 3.11: Query error vs. power of m-privacy.

Figure BI1 shows also the query error of the two algorithms with varying m. Intuitively,

53

a higher attack power m should increase the query error as the data need to be generalized
further to satisfy m-privacy. Our intuition is confirmed by the result of the baseline
algorithm, but is disproved for the provider-aware algorithm. The constant values of the
query error looks counter intuitive, but can be explained. The baseline algorithm, oblivious
of the provider information, results in more generalized groups with increasing m. In
contrast, the provider-aware algorithm takes into account the data providers, and returns
groups with smaller number of contributing providers (on average 1 for k = 15). Therefore,
it maintains a more precise view of the data, and significantly outperforms the baseline
algorithm. The query error may increase with m eventually, but it will not be as significant

growth as for the baseline algorithm.

Number of Data Records. This set of experiments evaluates algorithms for different
dataset sizes. Figure B2 shows the runtime with varying number of records for both
algorithms. As a reference we added results of anonymization applied independently by
each data provider. However, its query error (not presented), is on average 40% greater
than for data anonymized by running other algorithms.

As expected, the runtime for both algorithms grows with the number of records.
However, the baseline algorithm has a higher growth rate than the provider-aware algorithm.
This difference is caused by the significant reduction of the verification time in our algorithm,
which limits the number of providers represented in each group. The query error (not

presented) is at the same rate for both algorithms.

time [ms]
3E+5

& baseline

=+ provider-
aware

2E+51 =*=independent

1E+51

OE+0 ; T T T
4k 8k 12k 16k 20k 24k 28k 32k 36k 40k
Tl

Figure 3.12: Runtime (logarithmic scale) vs. |T'| for anonymization algorithms.

Adaptive m-Privacy Verification. In this experiment we evaluate the benefit of the

o4

adaptive selection of a m-privacy verification algorithm. Figure B3 presents runtimes of
adaptive anonymization algorithm using selected verification strategies with varying |T'|. For
small values of |T'|, the algorithm using adaptive verification strategy follows the binary, and,
for more records, the top-down algorithm, as we expected. However, for values of |T| > 300,
our algorithm outperforms the non-adaptive strategies. The reason is that anonymization
of numerous records requires verification of m-privacy for many subgroups of different sizes.
Adapting to such variety of groups results in higher efficiency comparing to the choice of a

single strategy.

time [ms]
1E+9
1E+81
1E+7 A
1E+6 1
1E+54
1E+4 4
1E+3 1
1E+2
1E+14

1E+0+ " .
30 300 3000

=-adaptive
- binary
=¥ top-down

Tl

Figure 3.13: Runtime (logarithmic scale) vs. |T| for different verification strategies.

Impact of Privacy Constraints. We performed a set of experiments evaluating the
impact of the privacy constraints on the utility of data using anonymization algorithms for
m-privacy. In our experiments, the constraint is defined as a conjunction of k-anonymity
and [-diversity. Figure B4 and Figure BT3 show runtime and query errors with varying
privacy constraint restrictiveness (varying k and [, respectively).

As expected, more restrictive constraints, i.e., greater values of k or [, require more
records or more distinct values of the sensitive attribute in each QI group, and thus results
in higher query error. However, execution times are shorter comparing to weaker privacy

constraints, which is a consequence of fewer partitions.

95

time [ms] query error (qd = 2)

6E+5 0.14

5E+5+ 0.121 ._./H/._.*.\-/.
0.10+

4E+5+
0.081 # baseline

3E+51 -~ provider-

4 baseline 0.064 gware
2E+51-provider- 0041 o "0 o0
aware
1E+54 0.02

F—0—00—0—0—0—0—90—0—0
— 0.+

0 4 8 12 16 20 24 28 32 36 40 44 48 52 0 4 8 12 16 20 24 28 32 36 40 44 48 52
k k

OE+0

Figure 3.14: Runtime and query errors vs. k in m-privacy with respect to k-anonymity.

time [ms] query error (qd = 2)
0.116
AE+5- 0.1141
0.112
3E+5
0.1104
2E+5+ 0.108
0.106
1E+54 '.'base_line 0.104 1 paseline
* gsf;ger' 0.102 4= provider-
0E+0 . . : . 0.1004+—22C . . :
0 2 4 6 8 10 0 2 4 6 8 10

Figure 3.15: Runtime and query errors vs. [in m-privacy with respect to [-diversity.

3.5.4 m-Privacy Verification Experiments for non-EG Monotonic Con-

straints

The goal of this set of experiments is to evaluate the efficiency and complexity of the m-

privacy verification algorithm w.r.t. a non-EG monotonic constraint C.

Attack Power. In this experiment we present the impact of the m-privacy power m for
different sets of records. We use four different sets of records, generated randomly and
independently from each other. Figure BTG shows the runtime with varying m for different
sets of records. For each set the maximal runtime is reached in the maximal value of m for
which records are m-private (m = 2 for |Tg| = 15, and m = 3 for others). For lower values,
the runtime increases exponentially, while for greater values drops significantly, which is

caused by early identification of attacking records that can breach privacy (early stop).

Number of Contributing Data Providers. In this experiment we analyze the impact of

56

time [ms]
1E+6
& |Tg| =15
1E+5+ —=|Tgl =20
- |Tg| = 25
1E+4+ G
=+ |Tg| =30
1E+3+
1E+2+
1E+1-
1E+0

Figure 3.16: Runtime (logarithmic scale) vs. power of m-privacy.

increasing the number of data providers, ng, while preserving the average number of records
per provider for m-privacy verification (m = 3). Figure BT7 shows the runtime with varying
nq for a few different values of the average number of records per provider. As expected, the
m-privacy verification runtime increases exponentially with number of contributing providers
for m-private sets of records (m = 3). For sets, which are not m-private, i.e., for ng = 3,
and for ng = 5 with |Tg|/ng = 5, their runtimes are very low, due to early finding a set of

attacking records that breaches privacy.

time [ms]
1E+8

1E+7+
1E+6
1E+5+
1E+4+
1E+3+
1E+2+
1E+14
1E+0

== |Tgl/ng=3
& |Tg|/ng= 4
*|Tgling=5

2 3 4 5 6 7 8 9 10
Ng

Figure 3.17: Runtime (logarithmic scale) vs. number of data providers.

3.5.5 m-Privacy Anonymization Experiments for non-EG Monotonic

Constraints

In this set of experiments we analyze performance of the m-privacy anonymization

algorithms w.r.t. a non-EG monotonic constraint C' for different parameter values. The

o7

privacy constraint is defined as a conjunction of k-anonymity [85] and ¢-closeness [67].
Attack Power. We first evaluate the impact of varying size of malicious coalitions.
Figure BIX8 and Figure B9 show, respectively, the runtime and query errors for different
powers of m-privacy, i.e., the parameter m.

time [ms]
1E+7 1

4 baseline
1E+67 - provider-
1E+5 aware

1E+41

Figure 3.18: Runtime (logarithmic scale) vs. power of m-privacy.

As expected, runtimes for both algorithms increase exponentially with m (Figure BTI8).
The provider-aware algorithm runs slightly longer, which is expected due to consideration
of additional splits of records, but the query error is significantly lower.

query error (qd = 2)

0.20
0.18_././.\._.
0.161
0.14+

S - baseline
0.121 -~ provider-

aware

0.10 T T T T

0 1 2 3 4 m

Figure 3.19: Query error vs. power of m-privacy.

We expect that increasing restrictiveness of the m-privacy would increase query error
as well (Figure BTY). This intuition is confirmed for low values of m, but for (m > 2)
query errors slightly decrease, and maintain the same level of values. This counter-intuitive
behavior is a side effect of the dataset size, for which it is very likely to get an anonymized

m-private (m = 3) dataset, which is also m-private (m = 4). The same reason stays behind

58

a higher error rate for m-private (m = 2) anonymized dataset.

Number of Data Records. The goal of this experiment is to evaluate our algorithm
for different number of records. Each bigger set of records is a superset of the smaller set
considered earlier. Figure and Figure B21 present runtime and query error results for

different numbers of records, respectively.

time [ms]

1E+4

= W‘ﬁ

1E+2+

1E+11 - baseline
-0~ provider-

aware
1E+0

10 15 20 25 30 35 40 |T|

Figure 3.20: Runtime (logarithmic scale) vs. number of records.

query error (qd = 2)

0.20

& baseline
0.18- -~ provider-

aware

0.16+
0.14+
0.12+
0.10

10 15 20 25 30 35 40 Tl

Figure 3.21: Query error vs. number of records.

Figure confirms our intuition that the runtime increases exponentially with the
number of records. Dynamics of these growths, which are represented by slopes of lines
in the chart, is correlated with m. The greater the m is, the more dynamically runtime
increases for both algorithms.

Query error depends less on the size of the dataset (Figure B=2T). At the first glance this
seems to be counter-intuitive, but it can be explained. Adding records increases query error,

but only up to some point, after which the anonymization algorithm is able to generate more

99

QI groups, and the error of query answers decreases. Thus, the query error is a periodic-like
function of the dataset size. For all scenarios the provider-aware algorithm performs at least

as good as the baseline algorithm, and achieves lower query errors for larger datasets.

Privacy Constraints. We also perform a set of experiments evaluating the impact of the
privacy constraint restrictiveness on the utility of anonymized data. In these experiments
we evaluate our algorithm for different levels of privacy constraints restrictiveness, i.e., k-
anonymity and ¢-closeness. Notice that the restrictiveness of k-anonymity is proportional to
values of k (i.e., increasing k makes it more restrictive), while ¢-closeness is disproportional
to values of ¢ (i.e., increasing ¢ makes it less restrictive). Figure B22 and Figure BZ3 show

runtime and query error, while varying k and t values, respectively.

time [ms] query error (qd = 2)
1E+4 0.20
1E+31 0181
0.161 -
1E+24
0.14
16414 4 baseline 4 baseline
~-provider- | 0-121 -~ provider-
aware aware
1E+0 T T T T T T T T — 0.10 T T T T T T T T T
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
k k

Figure 3.22: Runtime (logarithmic scale) and query errors vs. k£ in k-anonymity used in a
privacy constraint C.

time [ms] query error (qd = 2)
1E+4 0.20
1E+34 0-181
0.16
1E+2+
0.14
1E+1 & baseline & baseline
== provider- 0.121 == provider-
aware aware
1E+0 T T T T T 0.10 T T T T T
0 0.2 0.4 0.6 0.8 1t 0 0.2 0.4 0.6 0.8 1t

Figure 3.23: Runtime (logarithmic scale) and query errors vs. ¢ in ¢-closeness used in a
privacy constraint C.

We expect that increasing k will reduce runtime due to less splits of records that can be

60

performed. At the same time the query error will increase, because of the presence of bigger
equivalence groups in the anonymized data. Our expectations are generally confirmed by
experiments. Only for k > 6 query errors are constant or decrease (baseline for k = 10). The
reason of that is, again, small size of the dataset. After some number of splits, further splits
are not possible due to privacy constraints, and obtained QI groups meet more restrictive
privacy constraints than required. Thus, query errors as well as runtimes for those scenarios
would be the same. Notice that modifying k& impacts privacy fitness scores and choices of
attributes used to split records, hence for k = 10 the baseline algorithm runs in a different
way than for £ = 9, and returns results with lower query errors.

Experiments confirm also that our algorithm returns anonymized data with the same
or better utility than the baseline algorithm in all scenarios. The price for preserving more

utility is just a slight increase of the runtime.

61

Chapter 4

Secure Multiparty Data Aggregation

with m-Privacy

4.1 Introduction

In Chapter B we assumed that there is a trusted third-party (TTP) that collects data from all
providers and runs all necessary algorithms. For settings without such party, data providers
need to run an SMC protocol. We assume that all providers are semi-honest (honest but
curious), i.e., they follow each protocol they run, but inspect all intermediate results of
computations.

In this chapter we present SMC protocols for that implement all presented m-privacy
verification and anonymization algorithms as well as subprotocols to verify privacy fulfillment
and anonymize records. SMC protocols are designed and implemented in the Shamir’s secret
sharing scheme [81], but encryption and other secure schemas are also employed. In a secret
sharing scheme, the owner of a secret message s prepares and distributes n shares, such that
each party gets a few shares (usually one). An algorithm reconstructing s requires any r
shares as its input. To prevent any coalition of up to m providers to reveal intermediate
results, we set 7 = m+ 1. Notice that receivers of shares do not have to be neither providers
nor trusted. They could be run as separate processes within a distributed environment

(e.g. cloud) and computations still would stay information-theoretically secure [6]. The

62

implementation and complexity analyzes have been built on top of the SEPIA framework |4,
1o3|.

4.2 Secure Privacy Constraint Verification Protocols

To allow using any privacy constraint in our m-privacy verification protocol, secure privacy
verification is implemented as a separate protocol, and results of its runs are disclosed.
Some secure m-privacy verification protocols designed for a specific privacy constraint C
may disclose less intermediate computation results than our approach, but will be limited
ounly to a single privacy constraint and will not be able to deal with other constraints.
In addition, changing C requires redesigning the whole protocol from scratch. Presenting
verification protocols for any privacy constraint is out of the scope of this paper, but we
present secure protocols to verify k-anonymity and [-diversity. All implementations use
Shamir’s secret sharing [81] as their main scheme. For a few subprotocols we use encryption
(commutative, homomorphic, etc.), and other secure schemas for efficiency. Assume that

there are ng data providers, and each data provider P; provides T; records.

4.2.1 Secure k-Anonymity Verification

To securely verify k-anonymity, the leader counts all records s = |T'| using the secure sum

protocol [20, (71, 82|, and securely compares s with k. Our implementation of the secure
sum protocol uses only Shamir’s secret sharing scheme (Algorithm B).

First, all data providers run secure sum protocol in order to compute total number of
records s. To avoid disclosing s it is stored in distributed shares [s] (line M). Finally, all

providers securely compare [s] with &k [[4, L03]. As the result, each provider gets a share of

1 if k-anonymity holds or a share of 0 otherwise (line 2).

Algorithm 5: The secure k-anonymity verification protocol.

Data: Pi,..., P, providing 11, ...,T,, records respectively.
Result: Each P; gets [1]; if s > k, [0]; otherwise.

1 [s] = secureSum (|Th],. .., |Tngl)

2 return 1 — lessThan([s], k)

63

Theorem 4.1. Assuming security of subprotocols, the k-anonymity verification protocol is

secure against at most m attackers.

Proof. Assuming secure communication channels, the Shamir’s secret sharing scheme were
proven correct and information-theoretically secure [6]. Thus, knowing up to m shares of
any value does not disclose it. Correctness and security of both secureSum and lessThan
subprotocols were proven in [I4]. The protocol does not reveal anything, but the result of

the comparison s > k. O

Complexity Analysis. Computation complexity of the protocol is equal to the sum of
complexities for both subprotocols. In [I4] complexities are given as functions of secure
multiplications. Each secure multiplication requires additional shares generation, and secret
reconstruction, which take O(mng) time. Assuming that number of bits used to represent a
number in our protocols is constant, secure comparison protocol requires constant number of
multiplications, i.e., its time complexity is O(mng). Secure sum protocol (including shares
generation) has the same complexity. Thus, the overall time complexity is O(mng).

While running the secureSum subprotocol ng(ng — 1) messages are sent. Additionally,
the lessThan subprotocol requires constant number of multiplications, therefore total
number of messages is equal to ng(ng — 1). Thus, the total communication complexity

is equal to O(n%).

4.2.2 Secure [-Diversity Verification

The goal of this protocol is to securely verify if the total number of sensitive values from
all records, is at least | (Algorithm B). The protocol has two phases. In the first phase,
each data provider P; finds the set of sensitive values S; of its records. Then, it randomly
generates p; fake values, and adds them to S; (line D). Notice that each provider generates
fake values from a different domain. In the last step of this phase, the leader runs the secure
size of set union subprotocol to compute s, i.e., the size of the set of sensitive values of all
records with a few additional fake values (line B). The subprotocol is run in the same way

as the secure size of set intersection |20, 88] with a few minor modifications. Notice that the

64

use of commutative encryption scheme in the subprotocols ensures that duplicated sensitive
values are properly handled.

In the second phase, all providers securely compute the number all fake values (line).
Then, they securely check if the number of sensitive values is not less than [, i.e, if s—[p] > L.
The results are stored by providers as shares of 1 if [-diversity holds or shares of 0 otherwise

(line @).

Algorithm 6: The secure [-diversity verification protocol.
Data: Each P; has records T;.
Result: Each P; gets [1]; if |}, Si| > [, [0]; otherwise.
1 S; ={t[As] : t € T;} U generate_fake_values(p;)
2 § = secureSizeO fUnion (S1,...,Sn)
3 [p| = secureSum (p1,...,Png)
4 return 1 — lessThan(s — 1, [p])

Theorem 4.2. Assuming security of subprotocols, the l-diversity verification protocol is

secure against up to m attackers except an upper bound of the number of sensitive values.

Proof. Using commutative encryption scheme in implementation of the secureSizeO fUnion
subprotocol guarantees its correctness and security. Adding distinct fake values ensures that
the local number of sensitive values will not be disclosed. Since each data provider generates
different fake values, the sum of their counts is equal to the count of their union. The only
information that is revealed, is 5, i.e., the upper bound of the number of sensitive values.
However, allowing large and random number of fake values guarantees the low probability
of guessing the real number of sensitive values. The second phase of the protocol utilizes
Shamir’s secret sharing scheme for secure sum, and comparison subprotocols, which are

secure |6, T4|. Thus, the protocol is also secure. O]

Complexity Analysis. The first steps of the protocol require 2ng rounds of both commu-
nication and encryptions. Thus, if there are at most dg sensitive values, and up to pg fake
values, the time complexity is equal to O(ng(ds + ps)). Time complexity of the secure sum
protocol implemented using secret sharing scheme is equal to O(mng).

While computing s all providers exchange 2ng messages. Both secureSum and lessThan

protocols generate 2ng(ng—1) messages, and the overall communication complexity is equal

65

to O(nZ,).

Secure Privacy Verification. Above protocols return the verification result as shares of
[1] if privacy constraint is fulfilled, and [0] otherwise. Each provider holds a single share for
a constraint C;. Any r = m + 1 providers are able to check if C' = C1 A ... A Cy, holds, by
securely multiplying their results for all constraints, and comparing it against zero [[4]. If
the final reconstructed value is equal to 1, then C holds, otherwise it does not.

The fulfillment of each privacy constraint is kept secret, and only the fulfillment of
their conjunction is disclosed. Given results of privacy checks for all w constraints in the
conjunction, the time complexity is equal to O(rwng), and communication complexity is
equal to O(n%).

Overall the time complexity for our running example is equal to O((wm + m + pg)na),

while the communication complexity is equal to O(n).

4.3 Secure m-Privacy Verification Protocols

In this section we present secure multiparty protocols to verify m-privacy w.r.t. a privacy
constraint C'. Notice that a secure m-privacy verification protocol for a non-EG monotonic
constraint is an extension of the bottom-up approach (Algorithm B).

Notice that the TTP can recognize duplicated records, and treats them in the appropriate
way. For SMC protocols all records are unique, and duplicates are not detected.

To compute sums we run a secure sum protocol, which securely computes the sum of
numbers held by providers. Implementation of such protocol is based on Shamir’s secret
sharing scheme, and has been introduced in SEPIA framework |14, I03|. Another protocol
that is provided by SEPIA is secure comparison, which securely compares two numbers. By
running this protocol for a set of numbers, we find the minimum and maximum values in
the set, and set its elements in order.

In our protocols we also use secure size of set union subprotocol, which is a slight
modification of the secure size of set intersection protocol [20]. The modification is to count

all distinct encrypted items, and not only ones that are contributed by every provider.

66

Correctness, security, and complexity of these protocols and their implementations have

been proven in [I4, 20].

4.3.1 Secure Leader Election Protocol

All protocols are initiated by a leader P’, i.e., a chosen provider, which is found by running
a secure leader election protocol (SLE). Our SLE protocol (Algorithm @) runs a secret sum
protocol over randomly generated numbers in order to elect the leader. The implementation
utilizes Shamir’s secret sharing scheme, and does not disclose any information about data
and its providers. The leader is considered untrusted, therefore any honest but curious party
(also external) can participate in the election. Each data provider can simulate, monitor,
and verify the leader actions to detect any malicious behavior. After running this protocol,
each provider knows index of the leader from the list of all providers. In our algorithm
[ri] = ([ri]1,...,[ri]n) represents a vector of shares generated for a number 7;, which is
owned by a provider P;.

The protocol that is run by P; works as follows. First, P; generates a random number
i, which shares are then distributed among other providers such that [r;]; is sent to P;.
Then, P; sums up all i*® shares, in order to compute [r];, and collaboratively reconstruct

r =i, ri. Finally, the leader is identified as P, (mod n)-

Algorithm 7: The Secure Leader Election protocol (SLE).
Data: A list of n data providers P.

Result: A chosen leader in P.

r; = get_natural_random_number ()

[ri] = get_secret_shares(r;)

To each P; € P sends [r;];, and receives [r;]; from it.
Sums up all i*® shares: Y0 [ri]; =[S il = [r];

r =reconstruct ([r])

return P (404 n)

(=I5, S NN VN

Security. The SLE protocol is secure as long as communication channels among providers
are secure [[4]. With such assumption, and without loosing generality, let consider the
worst-case scenario, i.e., I = {Py,..., P,_1} are malicious, and collude.

Since each data provider participates a random number 7; in order to compute r =

67

>, 1, colluding providers I are not able to bias the value of r. The presence of 7, in the
sum guarantees that r is uniformly random, and unbiased.

Although malicious providers I can modify all shares they have access to, there
modifications will not bias the randomness of 7,, which is enough to guarantee unbiased
randomness of r. Due to lack of access to n'™ share [r,],, their modifications of other
shares change 7, (and r) randomly. Thus, such random modification of 7, does not bias the

randomness of the leader choice.

Complexity. Complexity of generating n shares, which are enough to reconstruct the
original value, is equal to O(n), and is caused by generating a polynomial of degree n,
and generating n shares. Summing up n shares has complexity O(n). Reconstruction of
r requires running Lagrange interpolation algorithm, which complexity is equal to O(n?).
Thus, the overall computation complexity is equal to O(n?).

Each provider, e.g. P;, sends (and receives) (n — 1) shares before computing [r];. Then,
[r]; is further sent to (n — 1) providers, while receiving other shares of r. Thus, P; sends

(and receives) (2n — 2) messages. The overall computation complexity is equal to O(n?).

4.3.2 Secure Sorting and Adaptive Ordering

The main responsibility of the leader is to determine m-privacy fulfillment with as little
privacy checks as possible. Our heuristic minimizes the number of privacy checks by utilizing
EG monotonicity of C' and adaptive ordering of m-adversary generation (Section B=34). To
define such order, P’ runs any sorting algorithm, which sorts providers by fitness scores of
their local records, with all comparisons run securely.

Applying the adaptive ordering heuristic uncovers the order of fitness scores of data
providers. Without such ordering more privacy checks need to be performed.

Our implementations of secure sorting protocol utilizes the Shamir’s secret sharing
scheme with 7 shares required to reconstruct a secret. To ensure m-privacy we set r = m+1.
Thus, for ng data providers the protocol requires running a sorting algorithm, which takes
O(nglogng) secure comparisons. Each secure comparison has the same complexity, i.e.,

requires a few secure multiplications, where each multiplication takes O(m?) time [I4]. Thus,

68

the secure sorting time complexity is equal to O(m?ng logng). Each secure multiplication
requires passing ng(ng — 1) messages in total, although only (m 4 1)? of them are needed
to get the result. Thus, the communication complexity is equal to O(ng log ng).

Notice that if we allow disclosing fitness score values from all providers, then all
complexities can be significantly reduced to O(ng logng) for time complexity, and O(ng)

for communication complexity.

4.3.3 Secure m-Privacy Verification Protocol

After finding the order of data providers, the leader P’ starts verifying privacy for different
coalitions of attackers, which are generated in specific order. A general scheme of secure m-
privacy verification is the same for all heuristic algorithms (Algorithm B). Common steps are
as follows. In the main loop P’ verifies privacy of records for m-adversaries until m-privacy
can be decided (line B). Notice that in order to determine m-privacy w.r.t. EG monotonic
C, it is enough to check privacy for all scenarios with exactly m attackers (Corollary B8).
In the loop, P’ generates, and broadcasts a coalition of potential adversaries I, so each
party can recognize its status (attacker/non-attacker) for the current privacy check. Then,
the leader runs the secure privacy verification protocol for I (line B). If privacy could be
breached, and I has no more than m data providers, then the protocol stops, and returns
negative answer (line @). Otherwise, the information about privacy fulfillment is used to
prune (upwards or downwards) a few potential m-adversaries (line 8). Finally, if m-privacy

w.r.t. C can be decided, P’ returns the result of the verification (line @[).

Secure m-Privacy Verification for the binary Algorithm. Similar to other m-privacy
verification algorithms the binary algorithm can be easily implemented as an SMC protocol.
The protocol is run by the leading provider. Results of privacy checks are announced to
other providers. Thus, each of them is able to recognize when m-privacy is determined or
the protocol should be run further. For the binary algorithm, secure m-privacy verification
protocol is also run by P’, which executes all steps of the Algorithm B. The only difference

is privacy verification, which is implemented as an SMC protocol.

Proposition 4.3. Assuming security of subprotocols, all m-privacy protocols are secure

69

Algorithm 8: The secure m-privacy verification protocol w.r.t. EG monotonic
constraint C' for top-down, bottom-up, and direct algorithms; code run by the leading
provider P’.

Data: List of providers P, an EG monotonic C, and the m.
Result: true if Ay (T) is m-private w.r.t. C, false otherwise.
sites = securely_sort_providers (P, increasing order, scorep)
use_adaptive_order_generator (sites, m)

while is_m-privacy_decided() == false do

I = generate_next_coalition(P)

Broadcast coalition 1.

// Runs secure privacy verification protocol.
privacy breached = is_privacy_breached_by(I)

if privacy breached and |I| < m then

8 L return false // early stop

[B N

N o

9 prune_coalitions ([, privacy breached)

10 return is_m-private()

except revealing results of potential attacks of generated m-adversaries.

Proof. Results of all privacy checks are publicly known, and, by applying pruning, one
can determine privacy of records for a few potential m-adversaries. Thus, the security
disclosure depends on data, and the sequence of generated m-adversaries I is very important
to minimize it. In this proof, we analyze security for all heuristics that are presented above
(Section B332).

All generated m-adversaries can be partitioned into two groups by the result of privacy
check: 1) the m-adversary, and all its subsets, cannot breach privacy of remaining records,
2) the m-adversary, and all its supersets, can breach privacy of remaining records.

If the records are m-private w.r.t. C, then direct and bottom-up algorithms make the
verification protocol fully secure. Fulfillment of m-privacy implies that all verified coalitions
have size up to m, and are in the group 1), i.e., there is no security breach. On the contrary,
both top-down and binary algorithms consider coalitions of more than m providers from
both groups. Coalitions from group 1) can have any size, but all coalitions from group
2) contain more than m providers. Thus, these two algorithms disclose both positive and
negative results of possible attacks from coalitions of different size.

If the records are not m-private w.r.t. C, i.e., there is an m-adversary that can breach

privacy, perfect security of the protocol cannot be guaranteed. Due to pruning property all

70

heuristics reveal information about all coalitions from group 1), and about a single coalition
of size up to m from group 2). In addition, top-down and binary algorithms reveal also

results of privacy checks for coalitions from group 2) having more than m providers. O

Notice that for a potential attacker, finding a coalition that is able to breach privacy, is
more important than finding a coalition that cannot do so. Thus, both direct and bottom-
up algorithms are more secure than others. Among them bottom-up have more chances to
identify the smallest coalition that is able to breach privacy. Thus, direct is our choice for
maximum privacy scenarios. For other settings, our anonymization algorithm adaptively

chooses the verification algorithm.

Computation Complexity. Electing the leader is a separate task, which can be run once
for all privacy verifications. Its time complexity is equal to O(mng).

In Algorithm B, a single loop iteration executes following operations: generating next
coalition of attackers (O(logng)), broadcasting generated coalition (O(logng)), verifying
if m-privacy can be determined (O(ng)), and pruning (O(ng)). Among them privacy
verification has the highest complexity. Assuming that its time complexity is equal to V
(computed below), and complexity of a single verification loop is equal to V =V + O(ng).
The direct algorithm will check privacy for at most (Zf) possible m-adversaries. Thus,
the complexity of m-privacy verification is equal to O (V - ng). The bottom-up algorithm
will check O-adversary (external data recipient) up to all m-adversaries, which requires
Sty (") = O (nf) checks, therefore for this case complexity is equal to O (V - n). The

top-down algorithm will check all (ng — 1)-adversaries first, then smaller coalitions down

to all m-adversaries, which requires ;2 ("¢) = O (ngc_l_m> checks, and the overall
complexity of the protocol is equal to O (V . nZGil*m). The binary algorithm will run

("<) iterations with O(log (ng — m)) privacy checks in each of them. Thus, when used, the
protocol time complexity is equal to O (V - ng log (ng —m)).

Communication Complexity. During each loop iteration of the m-privacy verification
protocol (Algorithm B) the leader sends (ng — 1) messages to providers with information
if they should act as attackers or not. Assume that Vo is a communication complexity

for a privacy verification protocol (computed below), and Vo = Vo + ng — 1 is the total

71

communication. Thus, the total communication complexities depend on the number of
privacy checks, which is different for each algorithm, i.e., direct, O (Vo - ni2); bottom-up,

O (Vo - ng); top-down, O (VC . ngc_l_m>; and binary, O (Ve - nilog (ng —m)).

4.4 Secure m-Privacy Anonymization Protocols

Algorithm @ can be executed in a distributed environment by a TTP or by all providers
running an SMC protocol. In this section we present a secure protocol for semi-honest
providers. As an SMC schema we use Shamir’s secret sharing, but, when needed, we employ

also encryption.

4.4.1 Secure Provider-aware Anonymization Protocol

The protocol uses already existing SMC protocols. The first step for all providers is to elect
the leader P’ by running a secure election protocol (Algorithm @, [79]), which then runs
Algorithm 8.

The most important step of the protocol is to choose an attribute used to split records
based on fitness scores of record subsets. Splitting is repeated until no more valid splits can
be found, i.e., any further split would return records that violate the privacy.

Secure anonymization protocol runs as follows. First, the median of each attribute A;
is found by running the secure median protocol (line B, [2]). All records with the A; values
less than the median, and some records with the A; values equal to the median establish
the distributed set 7. Remaining records define the distributed set 79*. Then, m-privacy
w.r.t. C is verified for 7% by running the secure verification protocol, i.e., either Algorithm
B or B (line B). If A; (Ts’i) is m-private w.r.t. C, then the same verification protocol is run
for 79" (line). If Ay (T9") is also m-private w.r.t. C, then this split becomes a candidate
split. For each candidate split, minimum fitness score of T%% and T9' is computed (secure
fitness score protocol is described below). Among candidate splits, the one with the maximal
fitness score is chosen, and the protocol is run recursively for its subpartitions (lines 21 to
22). If no such attribute can be found for any group of records, the protocol stops.

Secure m-privacy anonymization protocol calls three different SMC subprotocols: the

72

Algorithm 9: The secure provider-aware anonymization protocol.

[= I U

10

11

12
13

14
15
16
17
18
19

20
21
22

Data: A set of distributed records T, a set of QI attributes A; (i =1,...,q), m, a

privacy constraint C'.

Result: An anonymized view of distributed records A (T) that is m-private w.r.t. C.

tmaz = —1

[fmax] = [0]

foreach i € {0,...,q} do
Find the median value s; of A; in the set T (using secure median protocol).
Send s; and A; to other providers.
Locally split set T} into TJSZ ={teT;:t[A;] < s;}, and

=y

Tjg’i ={te T; - t[A;] > si}.
Locally distribute records {t € T} : t[A;] = s;} among T;" and T;"* to reduce their
uneven distribution. ‘

Securely verify m-privacy w.r.t. C of a distributed set 7% = (J;_, ;" (using
Algorithm B or B).
if 75" is not m-private w.r.t. C then

L continue

Securely verify m-privacy w.r.t. C' of a distributed set 79" = U?Zl Tjg o (using
Algorithm B or B).

if 79" 4s not m-private w.r.t. C then

L continue

[f(T*%)] =secure_fitness_score (T%")

[f(T9%)] =secure_fitness_score(T9")

[f] = min([f(T*")], [f (T9")])

if reconstruct(lessThan([fmaz],[f])) == 1 then

L [fmaz] = [f]

tmax =

f imaz = 0 then

Run this protocol for T #mas
Run this protocol for T9*mae=,

73

secure median [2, T3], the secure m-privacy verification (Section B23), and the secure fitness
score (Algorithm M). The last protocol needs to be defined for each privacy constraint C
(described below). For the sake of this analysis, we assume that all these protocols are
perfectly secure, i.e., all intermediate results can be inferred from the protocol outputs.

At each anonymization step following values are disclosed: medians s; of all QID
attributes, fulfillment of m-privacy w.r.t. C' for records split according to every computed
median, and, for m-private splits, the order of privacy fitness scores of all verified subsets of
records. Medians of all QID attributes need to be revealed to allow each provider defining
its local subgroups of records. Announcing results of m-privacy verification for distributed
sets of records allow each provider to accept or to drop candidate splits. The best splitting

attribute is the one that maximizes fitness scores of split record groups.

Theorem 4.4. The m-privacy anonymization protocol is secure except median values for
each attribute, m-privacy fulfillments for records split by these medians, and the order of

fitness score values for m-private QI groups.

Proof. To prove formally that the m-privacy anonymization protocol is secure, we assume
that all subprotocols are secure, and present a simulator that, using outputs of the protocol
and subprotocols, computes intermediate results. Each party splits its records based on the
received median values s;. Obtained subsets are used only by secure m-privacy verification,
and secure fitness score protocols. Disclosing the order of fitness scores for m-private subsets
of records allows the simulator to choose the splitting attribute, which has the maximal
fitness score value.

If none of possible splits is m-private, then the simulator finishes splitting the current set
of records. No other intermediate and undisclosed results are computed during the protocol
computation. Finally, since the secure median protocol, and the m-privacy verification
protocol, as well as the secure fitness score protocol are assumed to be secure, and from the

composition theorem [89] the m-privacy anonymization protocol is secure as well. O

Complexity Analysis. Before analyzing complexity of the secure anonymization protocol,
let us make a note about complexity of the secure median protocol. A secure median

protocol for an attribute A; uses the binary search to find the median. To verify if the

74

median is found, one needs to make sure that there are n/2 records with values of A; not
greater and not less than the value, i.e., if both sets split by the value are n/2-anonymous
(Algorithm B). The time complexity of such protocol is equal to O(n?log(domain(A;))).
The communication complexity is also equal to O(n?log(domain(A4;))).

Time complexity of the m-privacy anonymization protocol depends on complexities of
the secure median protocol Mr, the m-privacy verification protocol V, and the secure fitness
protocol Fpr. Assuming the worst-case scenario (maximal number of splits) for |T| records
and ¢ QID attributes, the time complexity is equal to O(|T|(¢ + 1)(Vp +2-Vp 4+ 2 Fp)).
For our running example the overall time complexity is equal to O(|T|(q + 1)(n? + npg)).

Communication complexity heavily depends on used subprotocols. Mg, Vi, and Fe
denote communication complexities for the secure median, the m-privacy verification, and
the fitness score protocols, respectively. The communication complexity for the m-privacy
anonymization protocol is equal to O(|T'|(¢+1)(3+ M¢c + Vo + F¢)), which for our running

example is equal to O(|T|qn?).

4.4.2 Secure Fitness Score Protocol

Many privacy constraints (including ones we have used in our running example) base on
threshold values 7. In order to securely compare fitness scores of constraints, they need to
be scaled, e.g., using the least common multiple (lem) of all threshold values. After that
the secure fitness score can be computed by running the following protocol (Algorithm @0).
The elected leader computes the least common multiple of all thresholds from the privacy
constraints (line 0). Then, values measured, and compared with thresholds in each privacy
constraints can be securely computed (line B), and scaled (line @). Shares of the minimal
one are scaled back, and returned (line B).

In our running example, we require fulfillment of k-anonymity and I-diversity. Thus,
for P;, v1 = |T|, and 72 is equal to the number of distinct sensitive values of local records
T. In order to compute v; and 72, we run secure k-anonymity, and [-diversity protocols
(Algorithm B and Algorithm B respectively). However, in both protocols we skip comparison
of computed values with their thresholds (k and [, respectively), and return shares of such

values.

75

Algorithm 10: The secure fitness score protocol.
Data: 7 — thresholds from all w constraints, data records 7.
Result: Shares of the minimal fitness score value.
lem =least_common_multiple (7o, 71, ..., Tw)
foreach i € {0,...,w} do
Securely compute ~;, i.e., value measured for C;, and T
[F;] = multiplicate([;], lem/T;)

return reconstruct (min([F1],. .., [Fu])) /lem

BW N =

ot

The Shamir’s secret sharing scheme, with secure communication channels, is information-

theoretically secure [6]. Correctness and security of the multiplicate subprotocol has
been discussed in details in |I4]. The above protocol reveals the fitness score value.
However, if this protocol is used as a subprotocol, and revealing of the minimal fitness
score value is not necessary, then the protocol would return shares of the minimal value, i.e.,
min([Fy], ..., [Fy]).
Complexity Analysis. Computation complexities of shares generation, as well as
multiplication for n providers, are equal to O(n?) each [I4|. Secure minimum protocol
requires (logy w) comparisons, which takes O(n?) time. Thus, the overall time complexity
is equal to O(n?log, w) + > 12 time_complexity(v;). For our running example, the time
complexity is equal to O(n? + npg), where pg is the maximal number of fake values in the
l-diversity protocol.

While running the above protocol, each data provider exchanges w(n — 1) messages for
all multiplications. Secure minimum protocol is implemented using lessThan comparison
subprotocol, and hence its communication complexity is equal to O(nlogw) [I4]. Therefore,
the overall communication complexity is the sum of all such complexities and is equal to
O(wn?)+ Y"1, communication_complexity(~;), which for our running example is equal to

O(n?).

4.5 Experimental Evaluation

We run two sets of experiments for m-privacy w.r.t. C' with the following goals: 1) to

compare, and evaluate the different m-privacy verification algorithms, and 2) to evaluate,

76

and compare the proposed anonymization algorithm with the baseline algorithm in terms of

both utility and efficiency.

4.5.1 Experiment Setup

We merged the training and testing sets of the Adult dataset”. Records with missing values
have been removed. All remaining 45,222 records have been randomly distributed among n
providers. As a sensitive attribute Ag we have chosen Occupation with 14 distinct values.
To implement SMC protocols, we have enhanced the SEPIA framework [I4, [03], which
utilizes Shamir’s secret sharing scheme [81]. Security of communication is guaranteed by

the SSL using 128-bit AES encryption scheme. For the secure [-diversity protocol we have

used commutative Pohlig-Hellman encryption scheme with a 64-bit key [IZ3].

Privacy Constraints. The EG monotonic privacy constraint is defined as a conjunction
of k-anonymity [85] and I-diversity [60]. Privacy fitness score is defined by Equation B. All

algorithm parameters, and their default values are listed in the Table EI.

Table 4.1: Experiment settings and default values of SMC protocols.

Name | Description Verification ‘ Anonymization

m Power of m-privacy 3 3

n Number of data providers - 10

nG Number of data providers contributing to 10 -

a group

|T| Total number of records - 1000
|T¢| Number of records in a group 150 -

k Parameter of k-anonymity 30 30

l Parameter of [-diversity 3 3

All experiments have been performed on the local network of 64 HP Z210 with 2 quad-
core CPUs, 8 GB of RAM, and running Ubuntu 2.6 each. The efficiency of protocols is

measured by their computation time.

'The Adult dataset has been prepared using the Census database from 1994, http://archive.ics.uci.
edu/ml/datasets/Adult

http://archive.ics.uci.edu/ml/datasets/Adult
http://archive.ics.uci.edu/ml/datasets/Adult

7

4.5.2 Secure m-Privacy Verification

The objective of the first set of experiments is to evaluate the efficiency of different heuristics
in generating attacker coalitions for privacy verification. Notice that computation times are

presented in seconds, not milliseconds.

Attack Power. In this experiment, we compare m-privacy verification heuristics against

different attack powers, and different number of data providers.

time [s]
1E+3

=+ binary

=¥ top-down
=+-direct
1E+2 19— pottom-up

1E+1 1

1E+0 T T T T T T T T T

Figure 4.1: Computation time (logarithmic scale) vs. power of m-privacy.

Figure B0 shows computation time with varying m for all heuristics. Similar to the TTP
implementation, the secure protocols for the top-down and binary algorithms demonstrate
the best performance. The difference between these two approaches is negligible for most
values of m. The direct approach is not that efficient as the above algorithms except small
and large values of m. The bottom-up approach is useful only for very small values of m.

Numbers of messages that are generated, while running protocols (not shown), are

between 10* and 10 for different m, and confirm our conclusions.

Number of Contributing Data Providers. In this experiment we analyze the impact
of increasing number of data providers, ng, on different algorithms.

Figure B2 shows the runtime of different heuristics with varying ng.

As expected, the computation time increases exponentially with the number of data
providers. Differences among approaches are not significant, and as above top-down and

binary algorithms are more efficient than other approaches. The bottom-up heuristic is the

78

time [s]
1E+4

=+ binary
1E+3 -*top-down
== direct

1E+27 - bottom-up

1E+1 -
1E+0-
1E-14

1E-2

O 2 4 6 8 10 12 14
Ng

Figure 4.2: Computation time (logarithmic scale) vs. number of data providers.

slowest among others.

4.5.3 Secure m-Privacy Anonymization

This set of experiments compares estimates of our provider-aware and the baseline
approaches, and evaluates the overhead of our solution. Due to high runtime of protocols,
we estimated their computation times using runs of TTP algorithms, and computation times
of subprotocols.

As a comparison, we implemented an independent approach in which each provider
anonymizes its data on its own. We observe that its runtime is independent of m and n,
and equals to 1.2 seconds (not shown). However, the query error is significantly worse than

for the collaborative setting (Section Bo3).

Attack Power. We first evaluate both anonymization heuristics with varying attack power
m.

Figure B3 shows the estimated computation time with varying m for both approaches.
As expected for EG monotonic constraints, increasing m results in stopping anonymization
process significantly earlier. In addition, both approaches have comparable computation

times with negligible differences.

Number of Data Providers. In this experiment, we estimate computation times for

different number of data providers n, but with the same average number of records per

79

time [s]
1E+7

1E+6

1E+51

- baseline

== provider-
aware

1E+4

0o 1 2 3 4 5 6 7 8 9 10

Figure 4.3: Computation time vs. power of m-privacy.

provider (|7'|/n = 100).

time [s]

1E+9

1E+ & paseline
81 - provider-

1E+7{ aware

1E+61
1E+54
1E+4
1E+34

1E+2 T
0 2 4 6 8 10 12 14

Figure 4.4: Computation time vs. number of data providers.

Figure B4 shows estimated time with varying the number of providers for both
algorithms. As expected, the computation time is similar for both approaches, and increases

exponentially with n.

80

Chapter 5

Distributed Data Aggregation with

Customized Differential Privacy

While introducing m-privacy, we assumed that attackers corrupted a few records and they
use that knowledge in their attacks. In the worst-case scenario all but one data providers
would collude and each provider would have to achieve privacy of their records independently.
However, even then attackers may learn if a record describing a data subject is in the dataset
or not, which is already a valuable information. Therefore, privacy of data subjects is
protected, only if a data recipient does not learn anything about them including their

participation in the data collection.

5.1 Differential Privacy

Similar motivation inspired Dwork et al. to define differential privacy, which is the state-of-
the-art semantic privacy model that gives a strong and provable privacy guarantee [27, 29,
30, b4|. Differential privacy assures an individual that her participation in the data collection
can be guessed only with negligible probability regardless prior knowledge of an attacker.
Informally, the attacker that knows all but one records and the result of computations, is
not able to find out, if the remaining record has been used in computations or not. Formally,

differential privacy is defined as follows.

81

Definition 5.1 ((a,d)-Differential Privacy [28, BO, b4]). A randomized mechanism A
satisfies d-approzimate a-differential privacy, which is denoted also as (a,0)-differential
privacy, if for any neighboring databases D1 and D2, where D1 can be obtained from Do by

either adding or removing one record, and any possible output set S,

Pr[A(Dy) € S| < e“- PrlA(D2) € S|+ 6

If § = 0, then the mechanism satisfies a-differential privacy.

Dwork et al. introduced Laplace privacy mechanism that adds Laplace distributed noise
to the final results and hence achieves differential privacy [28|. For results, which are integers,
Ghosh et al. proposed a geometric mechanism, which integer noise is drawn from the two-

sided symmetric geometric distribution [37].

5.1.1 Query Sensitivity

Let D € D be a database, and @ be an aggregated query, e.g., a count query. In addition,
let R be real numbers, Z be integer numbers, N be natural numbers, and A/ be a random
variable (r.v.) representing noise.

All privacy mechanisms introduce perturbation to results of an aggregation query Q.
Such perturbation is carefully calibrated with respect to the global sensitivity of @, which

is defined as follows.

Definition 5.2 (Global Sensitivity [31]). The sensitivity of any aggregate function @ : 1D —
R, is equal to Ag = maxp, p, ||[Aq(D1) —Ag(D2)||1 for all Dy, Dy differing in at most one

record.

5.1.2 m-Privacy and Differential Privacy

m-Privacy with respect to any syntactic privacy constraint C' can be used to compute
privacy-preserving microdata, i.e., to anonymize data such that its truthfulness is preserved.
On the other hand, differential privacy preserves privacy of data owners in macrodata, i.e., in

data statistics. At the same time it assumes the worst case scenario, i.e., all but one records

82

are compromised. A similar scenario for m-privacy is when each data provider contributes
a single record and (m = n — 1), i.e., all but one data providers collude. Other than that

both notions have no common properties.

5.2 Customized Privacy Budget

Differential privacy (DP) is often used as a notion of privacy by many data providers. The
level of privacy preservation in DP is defined by a privacy budget. Each dataset has its
privacy budget set to a certain value «;. Every time a query with a specified differential
privacy parameter « is issued against a dataset ¢, the answer is perturbed by adding noise
that magnitude depends on « if (a < «;), or is dropped (or drawn randomly), otherwise.
In the former case, after the query is answered the effective budget is reduced by «;, i.e., we
spent o from the current privacy budget a; to answer the query. If the o is not specified, we
set a = . If the query is issued against a few datasets, then we consider min(«;) as their
overall privacy budget. The amount of budget that is spent to answer a statistical query
over sensitive data describes the distribution of noise added to its result. The more budget
is spent, the more accurate answer is returned.

Often queries are issued against a subset of sensitive data, hence the budget is spent only
by the selected subset of data records. Thus, the distribution of the budget «; over all data
records depends on query workload and is not uniform (Table 6). In addition, data owners
may independently customize privacy budgets of their records and set them based on their
subjective judgements. Thus, we assign a privacy budget to each record independently from
other records and any of its sensitive attribute values. Notice that the value of the privacy
budget should not be correlated with any sensitive information, which would make it also
sensitive. In our example (Table b) a sensitive attribute Salary is not correlated with the
privacy budget.

For both scenarios (multiple queries and personalized budgets) privacy budget of data
records may vary. Treating all records as a single dataset limits budgets they can spend to
the minimal budget among records, e.g., 0.01 for Table b7. This approach is not optimal,

since a few records will still have a non-zero budget, which would not be spent. Spending

83

Table 5.1: Example records with different privacy budgets.

Name | Age | Zip | Salary | Budget «;
Alice 22 | 02152 | 70000 0.01
Emaly 32 | 02112 | 180000 0.02
John 31 | 02130 | 105000 0.05
Olga 27 | 02114 | 110000 0.07
Frank 36 | 02232 | 90000 0.09
Bob 35 | 01245 | 140000 0.11
Mark 33 | 04323 | 110000 0.14
Cecilia | 39 | 02121 | 100000 0.15

all budgets would improve utility of computation results. On the other hand, considering
each data record as an independent dataset would saturate budgets of all records. However,
the total amount of noise added to results would reduce utility significantly.

Finding a strategy that generates the optimal buckets of data records is the main goal of
this chapter. The optimal partitioning is defined as the one, which minimizes the difference
between results generated from noisy and original datasets. We ensure privacy of data
records by accessing them only through a differentially private interface. We implement such
interface as a multidimensional DP-preserving histogram, and study different approaches of

generating it.

5.3 Differentially Private Histograms

For given data records we want to build a multidimensional DP-preserving histogram, which
will be as similar as possible to the optimal histogram without privacy guarantees, but with
the same number of buckets. Notice that there are two sources of errors in histograms,
approximation of records’ distribution within a bucket and noise introduced to ensure
differential privacy. If the number of buckets is a parameter, then increasing it would reduce
approximation error, but at the same time it would increase the total amount of noise.
Reducing the number of buckets would reduce the noise error, but it would also increase
the approximation error. Hence finding the optimal number of buckets is a tradeoff between
approximation and noise errors. We measure errors using variance of their distributions,

therefore for a given number of buckets a histogram is optimal, if and only if it is v-optimal.

84

Definition 5.3 ([I/4]). In a v-optimal histogram H, a weighted variance of the source values
is minimized. That is, the quantity V(H) = Zle n;Vj is minimized, where n; is the number

of entries in the bucket j and Vj is the variance of the source values in the bucket j.

The definition of v-optimality is very general, and can be applied to any error that can
be characterize with variance. For DP-preserving histograms variance V; of the bucket j is
a sum of variances of approximation error VjA and noise V}N .

Notice that differential privacy for the bucket j is achieved by adding to its count
noise drawn from the Laplace distribution with the mean 0 and the scale 1/a;, where
a; = min;(ej;), and «j; is the privacy budget for a record ¢ in the bucket j, and
xzj =y .(zji). Therefore, V}N = 2/04?- and VjA is defined as the average sum of squared

errors (SSE),

x5 — E(x;
-y (n'()
=1 J
= SSE;/n; (5.1)

In [95], Xu et al. assumed that all records have the same privacy budgets (V; jo;; =),
and they defined the weighted variance as Z§:1 SSE; for k buckets. For such settings
authors proposed algorithms to build optimal DP-preserving single dimensional histograms.
Inspired by their approach, we relaxed their assumptions by allowing multidimensional
histograms, and customized privacy budgets. Such relaxation is necessary to perform

complex tasks that produce privacy-preserving results.

Privacy Budget as an Attribute. For data records, the expected value E(z;;) is defined
as the average (Equation B1), i.e., E(z;;) = xj/n;, where x; = >, (x;;). However, the
expected value of privacy budget is defined by the minimum, ie., E(a;;) = o, where
a; = min;(cj;). We apply both data and privacy budget to the definition of v-optimality
(Definition B3), however to avoid confusion with the original definition, and to emphasize
differences, we will use the notion of generalized v-optimality.

Notice that privacy budget and its definition of the expected value apply to all algorithms

85

of computing v-optimal histogram introduced in [47]. Authors used the average as the most
common definition of the expected value, but they also mentioned other possible functions,
including multidimensional ones.

Our goal is to build a generalized v-optimal multidimensional histogram H, which
minimizes the variance of all errors V(H), and is subject to privacy budget limitations.
Notice that we do not set the number of buckets k, but keep it as an additional parameter.
Since approximation error and noise variances reach maximum values for different k& (kK =n

and k = 1, respectively), then the minimal variance is reached for kqp € {1,...,n}.

5.3.1 Data-driven Histograms

The straightforward solution (denoted as NO) is to consider privacy budgets as not
important and use a heuristic to compute a histogram. In such approach the maximal
privacy budget that can be spent is the minimal value of the budget among all records.
If records have different privacy budgets, then they will not be able to spend all of it.
A multidimensional histogram is generated by a greedy top-down partitioning algorithm
(Algorithm M), which partitions records until the variance of record buckets decreases. The
algorithm was initially introduced by Cormode et al. in [22] as PSD. Such solution increases
odds that privacy budget of each bucket will be low, i.e., a bucket will have a record with
low privacy budget. As baselines we used a single cell /bucket histograms (single_cell) and
histograms with unit cells/buckets (cells histogram). Both of these baseline approaches

are independent of the data.

5.3.2 Privacy- and Data- Driven Histograms

In order to consider privacy while creating histograms, we propose a new two-phase method
of building histograms that take into account both privacy and data. In the first phase,
we partition records based on their privacy budget values using different algorithms. In our
approach (MIN) we modified the original v-optimal histogram building algorithm presented
in [47], by using minimum as the expected value of the privacy budget (Algorithm IT). As
baselines we use random partitioning (RN D), the original algorithm from [27] (AVG), and

we skipped partitioning (NO). In the second phase, we build histogram using methods

86

Algorithm 11: The PSD: a greedy heuristic of finding the k-histogram of (z1, ..., z;),
based on [22].

Input: (x1,...,2;) € buckets

Input: &
1 foreach j e {1, ..., k} do
2 V= 00
3 B = pyll
4 By = nyll
5 foreach B ebuckets do
6 foreach attribute a do
7 B, By = splitMinVariance (B, a)
8 currentVariance = variance (B, By)
9 if currentVariance < min(variance(B), v) then
10 v = currentVariance
11 B = By
12 Byin = B,
13 if v = oo then
14 L return buckets
15 buckets = buckets \{B}
16 buckets = buckets U{ Bt pmin }

17 return buckets

presented in the previous section (single cell, PSD, cells histogram). Combining
different approaches for each phase we identify the best performing one. For example,
all histograms that have been built with single cell are privacy-driven histograms, while

all histograms created by NO algorithm are data-driven.

Privacy-aware Data Partitioning. The goal of this phase is to group records with similar
privacy budgets, such that the amount of wasted budget is minimized. In the extreme case,
each partition has only one record, which is able to spend all its privacy budget. However,
in this setting the amount of generated noise could be significant, which is not optimal.
To spend as much budget as possible by each record and to avoid generating too many
partitions, we introduced the M IN algorithm that partitions records based on their privacy
budgets.

The remaining degree of freedom in the MIN algorithm is the order of records, while
creating a histogram. Considering all possible combinations of n records among k buckets

has too high complexity to be computed efficiently. However, since privacy budget of a

87

bucket is determined by the minimal budget record from that bucket, we can skip many
combinations. Currently we sort all records in the ascending order of their privacy budgets.
Notice that sorting records in the descending order of privacy budgets generates the same
histograms.

Notice that in |47] authors used in their definition of the sum of squared errors (SSE)
the average as a function describing the expected value. For privacy budget, the expected

value is minimum, therefore for a bucket j, i.e.,
n;
SSE; = SSE(aj1,. ., jn;) = > (0 — m}lﬂ(@éj,i))2 (5.2)

i=1

With such definition of the SSE;, the MIN algorithm is defined as follows.

Algorithm 12: The dynamic programming algorithm SSE* of finding the optimal

k-histogram of (z1,...,z;) for a given definition of the function SSE. Based on [47].
Input: (x1,...,2;)
Input: &
if k=0 then return 0
minSSE = oo
foreach j € {k-1, ..., i} do

currentSSE = SSE*((z1,...,xj), k—1) + SSE(zjq1,...,2)
if currentSSE < minSSE then
L minSSE = currentSSE

N O o W =

buckets [k — 1] = (zj41,...,2;)

8 return minSSE

Comparing Partitioning Algorithms. Running the original AV G algorithm (with the
SSE defined using the average value) to find the v-optimal histogram of privacy budgets
with 3 buckets (A, B, and C) as shown in Figure B.

With such partitioning 0.14 of privacy budget will not be spent (0.0175 on average).
Running Algorithm I3 for the same data and also 3 buckets would produce buckets as show
in Figure b With such partitioning only 0.12 of privacy budget will not be spent (0.015 on

average).

88

budget V-optimal partitioning of records using the average budget V-optimal partitioning of records using the minimum

0.14. [bucket C 0.14. [J bucket C
® bucket B M bucket B

0.121 M bucket A | 0.12 M bucket A

0.104 0.104

0.08+ 0.08+

0.06 0.061

0.04 1 0.04-

0.02+ 0.02+

0.00+ 0.00+

Alice Emily John Olga Frank Bob Mark Cecilia Alice Emily John Olga Frank Bob Mark Cecilia
(a) (b)

Figure 5.1: V-optimal partitioning of privacy budgets among 3 buckets using (a) the average
and (b) the minimum as a target value of each bucket.

5.3.3 Strategies of Spending Privacy Budgets

Despite our efforts to minimize variance of privacy budget distribution, records in each
bucket may have different privacy budgets. The privacy budget of a bucket is always equal
to the minimum budget among all records. However, we utilize privacy budgets from all
records using saturation or sampling. Such approach helps to improve quality of final results,

which is very important if the variance of records distribution to the histogram is high.

Budget Saturation. The goal of the budget saturation is to create buckets with records,
which privacy budgets are not greater than ~ from their minimum, i.e., in bucket j
Vioj; < ming oy + . Parameter v controls granularity of budget partitioning. For «
equal to zero, the number of buckets would be equal to the number of distinct privacy
budgets. If differences between budgets are small, a few buckets would have very small
privacy budget, and would introduce the amount of noise, which would lower the overall
utility of results.

We propose a new method of saturating privacy budgets by running Algorithm I3. Note
that the function copy copies a record and sets for a new privacy budget for it. Given a
bucket j we create an empty bucket j'. A record x;; with privacy budgets equal or greater
than (min; (e ;) +7) is copied into a bucket j’, with a new privacy budget (a;; —min; o ;).
At the same time the budget of x;; is reset to min; ov;;. After processing all records from

the bucket j, the algorithm is run iteratively with new buckets, i.e., j = 7.

89

Algorithm 13: The create Bucket algorithm of creating a saturated bucket.

Input: v
Input: bucket j

1 ={}

2 a; = mini(ajyi)

3 foreachi=1,...,n; do

4 if o;; +7v > «a; then

5 j' = 3" U{ copy(xj;i, aji— a;) }
6 Qi = 0

7 return j’

Applying Algorithm L3 to our example dataset (Table b1) for v = 0.05 and records
sorted on privacy budget, we would group records into three buckets A, B, and C as it is
shown in Figure b=2.

budget Distribution of records among buckets

[bucket C
M bucket B
0.121 M bucket A

0.10+

0.14

0.08+
0.061
0.04
0.02+1

0.00+

Alice Emily John Olga Frank Bob Mark Cecilia

Figure 5.2: Saturation of the example record privacy budgets for buckets.

Note that each record from the second or the third buckets was copied from the first
bucket. Sum of privacy budgets from all copies of a record is equal to its overall privacy

budget.

Undersampling and Oversampling. Having a bucket of records with different privacy
budgets we still want to utilize as budget as possible. At the same time, we want to drop
records with too small budget, i.e., the budget that could noise the final result substantially.
To meet these requirements we use undersampling and oversampling of records.

Records with a very small budget values are undersampled, i.e., dropped (or sampled with
low probability). Oversampling helps to saturate more privacy budget than is assigned to the

bucket. For example, a bucket has a privacy budget equal to o, and also it contains records

90

with higher budget. Thus, we generate a new bucket from records having a privacy budget
greater than a + €. Values of their budget in the new bucket is reduced by a. Repeating
such procedure recursively, we ensure that each bucket has privacy budgets within e length
range. Note that to avoid buckets with low privacy budget, will limit necessity of record

undersampling.

5.4 Experimental Evaluation

5.4.1 Settings

In our experiments we used a sample of 10,000 records from the Census dataset. Each record
is described by three categorical attributes martial status, sezx, and salary. To every record
we have added one more numeric attribute budget with values equal to a privacy budget set
to this record. Values of the budget have been drawn from normal, inversed exponential,
and binomial distributions. All values that have been drawn outside of the budget values

range, are set to the closest value in the range.

Privacy Budget Distributions. When using normal distribution N(u, o), we set its
mean L to the mean of all budget values, and standard deviation equal to o = 0.1. Inversed
exponential distribution Exzp(\) for a range [a,b] is a distribution b — Exp()\). We set
A= (%rb. This distribution models population with majority of people that are willing to
share their privacy with others, i.e., they set high privacy budgets for their records. The
bimodal distribution is obtained from two normal distributions with different means. In
our experiments we defined a range of all privacy budgets [a, b] and normal distributions as
N(p1,0.1) and N(u2,0.1), where i = a + 252, and ps = a + @.

Metrics. To compare quality of generated histograms we issue 100,000 random queries
against each histogram and compute the average relative error, i.e., value 0.2 means that

answers from the privacy-aware histogram will be, on average, 20% off from the real query

answer.

91
5.4.2 Partitioning

To evaluate our partitioning method (MIN) we compare it against two baseline methods
(NO, RND) and one non-privacy-aware method (AVG). The NO method does not
partition records at all, i.e., all records are in a single partition. RND is a random
partitioning, in which partition borders have been drawn randomly with uniform probability.
AV @ is a v-optimal partitioning method introduced in [47]. In this method records are
partitioned based on their privacy budget values such that the variance of partitions is
minimal. Notice that the expected value for every partition is defined as the average privacy
budget among all records belonging to the partition. In our method MIN, we adapted the
v-optimal partitioning algorithms with some modifications. The most important is setting

the minimum privacy budget as the expected value for each partition.

?gé'gcords AVG method (binomial distribution) Zorgcords MIN method (binomial distribution)
M Bucket D H Bucket D
5001 [Bucket C 500+ [Bucket C
) B Bucket B Ml Bucket B
400 M Bucket A 4001 M Bucket A
300 300+
200 200
III” ‘l"MHH il “| III” ‘l“ll U
Lot 1 AMEAEARAAAN 11111 L Lt AL (L L REREERRRERL Lu
0.04 0.12 0.2 0.28 0.36 0.44 0.52 0.6 0.68 0.76 0.84 0.92 1 0.04 0.12 0.2 0.28 0.36 0.44 0.52 0.6 0.68 0.76 0.84 0.92 1
0 0.08 0.16 0.24 0.32 0.4 0.48 0.56 0.64 0.72 0.8 0.88 0.96 0 0.08 0.16 0.24 0.32 0.4 0.48 0.56 0.64 0.72 0.8 0.88 0.96
privacy budget privacy budget

Figure 5.3: Partitions of records by AVG and MIN methods for binomially distributed
privacy budgets.

Figure B33 shows partitioning by AVG and MIN methods for binomially distributed
privacy budget. The first partition generated by the AV G method has more records than
the first partition produced by our method MIN. Notice that the first partition contains
the record wit the minimal privacy budget.

Figure b4 shows results of partitioning by AVG and MIN methods for inverse
exponentially distributed privacy budget. Similar as for the binomial distribution, the first
partition of the AV G method has more records than the first partition of the M IN method.
Therefore, the AV G method partitions records in such way that more privacy budget (on

average) cannot be spent in computations.

92

#7#68C0rds AVG method (inversed exponential distribution) 1;6’800"115 MIN method (inverse exponential distribution)
M Bucket D M Bucket D
6001 O Bucket C 6001 [Bucket C
500+ M Bucket B 500+ M Bucket B
400 M Bucket A 200 M Bucket A
300+ 300+
200+ 200+
” (TR ” A
; |.||||.II||I ; I-IIII-||I|

0

004 012 021 028 036 044 052 0.6
008 016 024 032 0.4 0.56

068 076 084 092
064 072 079 088 096

privacy budget

004
0

012

044 052 06 068 076 084 092
048 056 064 072 079 088 096

privacy budget

021 025 036 1

Figure 5.4: Partitions of records by AV G and MIN methods for inversed exponentially
distributed privacy budgets.

5.4.3 Partitioning Methods

Responses to queries in privacy-preserving histograms are altered by approximation and
perturbation errors. Approximation error is inherent to all histograms, while perturbation
error depends on noise added to bucket counts. All three, distribution of privacy budgets
as well as partitioning method, and a method used to build a histogram have impact to the
overall error. In addition, the number of partitions k& impacts overall error even more. For
small k, the approximation error is the largest one, while for large k, perturbation is the
main source of the error. Therefore, there is k for which the overall error is minimal, but
However, our experiments suggest that the number of

finding it efficiently is not trivial.

buckets should be set around 3—4.

query error PSD partitioning Cells histogram partitioning

query error
1.01 1.01
0.81 0.81
0.61 0.6
0.4{ % NO 0.4{ ™ NO
‘5 RND ‘B RND
0.2 AVG 0.2{*AVG
- MIN *MIN
0.0 . : : : ; 0.0
0 1 2 3 4 5 0 1 2 3 4 5
k k
Figure 5.5: Query error for histograms built from different partitionings of records with

binomially distributed privacy budgets vs. number of buckets k.

93

Figure b3 shows relative query error for histograms generated by different partitioning
methods and for binomial distribution of privacy budgets. For all but NO methods we
can find a local minimum of query errors for k € [2,4]. For greater k relative query error
increases due to greater perturbation error. Among all methods, our approach (MIN)
produces histograms with the smallest error for all methods of building histogram. We
present only results for PSD and cell histogram approaches, and skip one cell, i.e., no
partitioning approach. The AV G method generates partitions, which histograms answer
queries with more error than MIN, but less than random partitioning RN D. The number

of buckets k, which generates the minimal error for MIN is equal to 4.

query error PSD partitioning query error Cell histogram partitioning
1.0 1.0 m
0.8 0.84
0.61 0.61
0.4' *NO 04'
‘B RND
0.24- AvG 0.21
“*MIN
0.0 T T T T T 0.0 T T T T T
0 1 2 3 4 5 0 1 2 3 4 5

Figure 5.6: Query error for histograms built from different partitionings of records with
budgets drawn from normal distribution vs. number of buckets k.

Figure b8 shows query error for histograms generated by different partitioning methods
and for privacy budgets drawn from the normal distribution N(0.5,0.1). Similar to the
binomially distributed settings (Figure 53) both AV G and MIN methods generates
partitions for which histograms have the minimal error. However, results for MIN and
AV G are more similar, and for £k = 2 and the PSD method as well as for k = 3 and the
cell histogram method the AV G partitioning generates histograms with lower query error.
The number of buckets k, which generates the minimal error is equal to 4.

Figure b0 shows query error for histograms generated by different partitioning methods
and for privacy budgets drawn from the inversed exponential distribution. Similar as for
the binomial distribution, our M IN method generates histograms with the smallest error.

In addition, the minimal error is achieved for k equal to 3 or 4.

94

query error PSD paritioning query error Cells histogram partitioning
1.01 1.0
0.8 0.81
0.61 0.61
0.414NO 0.44{%NO
‘@ RND ‘@ RND
0.21-+ AVG 0.21- AVG
=+ MIN = MIN
0.0 T T T T T 0.0 T T T T T
0 1 2 3 4 5 ‘ 0 1 2 3 4 5
k

Figure 5.7: Query error for histograms built from different partitionings and for different
number of buckets k for records with inversted exponentially distributed budgets.

Minimal Privacy Budget. For all previous experiments we drew privacy budgets from
the range [0.01,1.0]. In this set of experiments we change the range from which budgets
are drawn. The distribution of budget values is binomial with maximums in 0.25 and 0.75

length of the range. Each range will have length equal to 0.5 and will start at different value.

query error PSD partitioning query error Cells histogram patrtitioning
1.004 1.001
0.101 0.104
0.01 T T T T T 0.01 T T T T T
0.25 0.30 0.35 0.40 0.45 0.50 0.25 0.30 0.35 0.40 0.45 0.50
average privacy budget average privacy budget

Figure 5.8: Query error (logarithmic scale) for histograms with records having different
average privacy budgets, which were drawn from binomial distribution.

Figure b8 shows in logarithmic scales query error for histograms generated by different
partitioning methods. For both PSD and cells histogram approaches NO and RND
methods generate histograms with higher query error than AV G and MIN. Results for the
latter ones are similar, but in most settings histograms produced based on M IN partitions

preserve more utility, i.e., have lower query error.

95

5.4.4 Histogram Building Approaches

Each partition was used to generate a histogram using one of three methods. In the
single cell method, a partition is treated as a one-cell histogram. In the PSD method
we have adapted the method introduced in [2I|. The cells histogram approach generates

the most fine-grained histograms in which each bucket is a unite cube.

query error Inversed exponential distribution query error Binomial distribution
. Osi
L2 U single cell 1.0 single cell
—1 — —dpsp —
HPsD ‘
1.0 M cells hi M cells his
::: ;mIS- 081 togram
0.8+]
0.6
0.6
0.4 0.4
0.2 0.2
0.0 r . i 0.0 . . .
NO RND AVG MIN NO RND AVG MIN

Figure 5.9: Query error for different methods of building histograms for four partitions and
two different distributions of privacy budgets.

Figure b9 shows query error for different heuristics of generating histograms. Query
error for single cell histograms are the highest. Cells histograms introduce histograms with
less error than one cell histograms, but more than ones generated by the PSD heuristic.
Notice that the difference between histograms built by PSD and cells histogram methods
introduce similar amount of error. It is caused by relatively dense distribution of points in
cells. For high dimensional histograms, the error of cell histograms would be even higher

comparing to histograms generated by the PSD method.

96

Chapter 6

Secure Multiparty Data Aggregation

with Customized Differential Privacy

6.1 Motivation

Participatory sensing and data surveillance |1, B3] are gradually integrated into an
inseparable part of our society. In many applications, a data aggregator may wish to collect
personal data from multiple individuals to study patterns or statistics over a population.
Data privacy and security issues arise frequently and increasingly in such surveillance
systems [62, BR, 774, 84]. An important challenge is how to protect the privacy of the

data subjects, when the data aggregator is untrusted or not present.

System Settings. We consider a dynamic set of data contributors that contribute their
own data (self surveillance) or other data (third party surveillance) in a surveillance system.
In our running example contributors D; (1 < i < n) collect data z; independently, in order
to compute noisy f(z1,...,zy,) (Figure 61). In the self surveillance scenarios the individuals
represented in the collected data (data subjects) are also data contributors. We assume that
collected data are used by an untrusted application or an application run by an untrusted
party for analysis and modeling (e.g. disease outbreak detection or intelligence analysis).
Privacy of data subjects is defined by differential privacy, which is the state-of-the-

art privacy notion [27, 29, b4] that assures a strong and provable privacy guarantee for

97

(xns Rn) (xSa RS)

Figure 6.1: System settings with distributed data contributors D;, which contribute their
values x; and noise shares R; to securely compute a function f and ensure differential privacy
of data subjects.

aggregated data. To use it we assume independence of data subjects, i.e., deleting one
subject’s data is equivalent to hiding all evidences of her participation in the dataset.
Furthermore, we assume that no deterministic statistics about the participating data
subjects have been previously released [64]. Under such assumptions differential privacy
requires ensuring negligible change of computation results, when a single data subject had
opted out of the data collection. Therefore, this assures an individual that any privacy breach
will not unveil existence of its record. A common way of achieving differential privacy is
perturbation of the aggregated statistics by calibrated noise R, such that f(z1,...,z,) + R

is returned (Figure BEI).

Centralized Model. In a centralized model a trusted aggregator (TA), which is a TTP,
(e.g. CDC offices in the syndromic surveillance scenario) securely collects the data and
outputs perturbed aggregates with privacy guarantee. In such model, each data contributor
maintains a secure communication channel with the TA. Both security and privacy of
computations are guaranteed by the TA, but at cost of making it a single point of failure

for the entire system.

Decentralized Model. In a decentralized model without a TA (e.g. in the intelligence collec-

98

tion scenario), the data contributors perform aggregations and perturbations collaboratively
through protocols implemented in a secure multiparty computation (SMC) schemes
(Figure 61). Such protocols are reliable, but are also complex to design and run. In order
to securely aggregate information that contains personal data without involving the TA,
each protocol must fulfill two important constraints: 1) preserve privacy of individuals or
data subjects whose data are being collected, and 2) ensure security of all data contributors
who should be anonymous and who need to protect their data from other contributors
and any untrusted aggregator. Notice that using privacy mechanisms to ensure both
constraints would make the final results useless. Using only security schemes to protect
both computations and data contributors would not guarantee privacy of data subjects
either. Therefore, privacy mechanisms and security schemes need to be employed together

in our scenarios.

Goals. In the simplest and the most naive approach, each data contributor perturbs its own
data to guarantee their differential privacy independently. In such approach the noise in the
aggregated result is superfluous, therefore our goal is to find distributed privacy mechanisms,
which ensure privacy and minimize any redundant noise.

Distributed implementations of such mechanisms require security of computations that
is achieved by SMC schemes and their protocols. The protocol shall remain secure if a few
participants faulted, i.e., it should be fault tolerant. Therefore, SMC protocols that return
differentially private results guarantee that privacy of data subjects and data providers is
protected at all time.

Traditional approaches to data anonymization, such as removing identifying attributes,
generalizing, or perturbing individual attribute values, are susceptible to various attacks [33].
They preserve truthfulness of data, i.e., if needed an anonymized record can be linked with
its original record, but the privacy level they guarantee depends on background knowledge
of attackers. In addition, secure anonymization of distributed data is complex and in the
worst-case scenario every approach will be inefficient. However, in many scenarios getting
anonymized data records is superfluous and their statistics are enough, e.g., the number of

records.

99

6.2 Distributed Differential Privacy Mechanisms

Differential privacy can be achieved by a few privacy mechanisms. An example of non-
perturbation mechanism that also achieves differential privacy is the exponential mechanism
[63], in which privacy is achieved by sampling a dataset. In [43], we studied various
distributed perturbation-based mechanisms that ensure differential privacy. In addition,
we identified important features of such mechanisms, e.g., small redundant noise, the same
level of contribution by each provider in noise generation, and drawing noise from specified
domain (integer or real numbers).

In distributed settings any group of data contributors is equally likely to collude, therefore
a mechanism shall ensure equal participation of each contributor in both computations and
perturbations in order to minimize power of such group in its potential attacks. Equal
participation in perturbing results means that all contributors generate the same level
of noise, i.e., all noise shares are independent and identically distributed (i.i.d.) random
variables.

In the simplest and the most naive distributed approach, each data contributor perturbs
statistics of its own data to achieve differential privacy for them. In such approach some
noise in the aggregated result is redundant. Minimizing such redundant noise has been a

motivation to find more efficient privacy mechanism.

6.2.1 Distributed Laplace Mechanism

Laplace Perturbation Algorithm. A common mechanism to achieve «-differential
privacy is the Laplace perturbation algorithm (LPA) [29]. LPA ensures that results of
an aggregated query @ are a-differentially private, by perturbing them with a r.v. £, which
is drawn from the Laplace probability distribution function Lap(f, «) with mean 6 and scale

«. The LPA mechanism is defined as follows.

Definition 6.1 (Laplace Mechanism, LPA [81],[29]). For Q : D — R¥, the mechanism Kq

that adds independently generated noise L with distribution Lap(0, Ag/«) to each of the k

100

output terms enjoys a-differential privacy,

Pr(L=1)= QZQe—lmla/AQ (6.1)

Notice that £ can be also simulated by two exponential distributed random variables as

follows.

Lemma 6.2 (|b5]). Let Xy and Y\ be random variables with the exponential distribution, i.e.,
Pr(X\ =x) = Pr(Y» =) = Ae ™ forx > 0. Noise L in the LPA with the query sensitivity

Aq and parameter o (Definition B1) can be simulated as £ = %(Xl — V1) =X\ = for

A= &
Ag

Laplace mechanism can be directly applied by the TA in a centralized model. In a
decentralized model the TA is not present and has to be simulated by data contributors. In
such model differential privacy is achieved by distributed perturbation Laplace algorithms
(DLPA). In DLPA each party generates partial noise, such that the aggregated noise follows
the Laplace distribution, which is enough to guarantee differential privacy.

Due to infinite divisibility of Laplace distribution [b3], a r.v. with such distribution can
be computed by summing up n other random variables. We utilize this property and study a
few algorithms named after distributions they use to draw partial noise, i.e., Gamma, Gauss,
and Laplace. Gamma and Gauss have been already introduced in [0, [76], respectively, while

Laplace is their alternative. We describe and compare all three DLPA mechanisms below.

Gamma DLPA. This mechanism utilizes infinite divisibility of Laplace distribution and
generates partial noise by drawing it from the gamma distribution [I]. Formally, a Laplace
distributed random variable £ ~ Lap(f,a) can be simulated by the sum of 2n random

variables as follows,

L= % + zn:(gl — Hi) (6.2)
=1

where G; and H; are i.i.d. gamma distributed random variables with densities following the

formula (z > 0),

a 1/n
Pr(Gi=xz)=Pr(H;=x) = (Il“él/)n) gt/mlem/a (6.3)

101

I is the gamma function, such that I'(a) = [;° 2% te "dx.
Notice that generating a r.v. with the gamma distribution requires drawing at least 2
random variables [8]. Assuming uniform distribution of its parameter a, on average 2.54

uniformly distributed random variables need to be drawn.

Gauss DLPA. A random variable £ ~ Lap(0, &) can be also simulated by 4 i.i.d. random
variables N1, N2, N3, Ny, each is drawn from the normal distribution Gauss(0,«/2) with

variance («/2) [b3] and applied as follows,
L=NE+N;—Ni— N} (6.4)

Since infinite divisibility of the normal distribution is stable, drawing a single r.v.
N; ~ Gauss(0,a/2) (i = 1,2,3,4) is simulated by the sum of n i.i.d. Gaussian random

variables NV ; ~ Gauss(0, 5-) as follows,

The above formulas can be implemented in distributed settings, but secure computation
of squares of random variables is a challenge. An SMC protocol implementing such
computations has high complexity [76].

Generating a random variable from the Gaussian distribution requires, on average,
drawing a single uniformly distributed number [8]. Additional approaches, which are, on

average, more efficient, but in the worst-case scenario are slow, have been described in 6.

Laplace DLPA. We propose a Laplace distributed differential privacy mechanism, which
reduces the amount of redundant noise in the final solution [23]. The mechanism simulates
drawing a Laplacian random variable £ ~ Lap(0,«) by r ii.d. random variables £; ~

Lap(0,) and a B ~ Beta(1l,r — 1), as defined in the following formula,

L= \/E.izi (6.6)

i=1

Notice that B is a single random variable, which is drawn with probability Pr(B = z) =

102

(r—1)(1 —x)"=2 for # € (0,1). Assuming that at most m out of n data providers can be
inactive the mechanism shall be run with r = n—m, i.e., aggregated partial noise from n—m
providers shall be enough to ensure differential privacy. Partial noise generated by additional
providers is redundant, but very small comparing to other distributed differentially private

mechanisms that were studied.

6.2.2 Geometric Mechanisms

The geometric mechanism presented by Ghosh et al. is centralized, i.e., noise is generated
as a single random variable.

The LPA (Definition 1) perturbs query results with noise drawn from the continuous
Laplace distribution. When returned results are expected to be integers, such mechanism
cannot be directly applied. To address this, Ghosh et al. introduced two privacy mechanisms
that ensure o-differential privacy by perturbing their results with integer noise and
truncating noisy value if needed [87]. Their mechanisms work only for queries with sensitivity
equal to one (e.g. count queries). We leave for future study finding a discrete perturbation

mechanism for different sensitivities.

Definition 6.3 (Geometric Mechanism, GPA [37]). For a function Q : D — N, a parameter
e € (0,1), the e-geometric mechanism is an oblivious mechanism with integer range Z, defined
as follows. When the true query result is Q(D), the mechanism outputs Q(D) + N € Z,
where N is a random variable drew from the following discrete GM (€) distribution,

_1—6
C14e

Pr(N =z) el (6.7)

If the result of the query @ is limited to natural numbers N,, = {0,1,...,m}, ie.,
@ : D — N,,, the perturbed output of the GPA is outside N,, with non-zero probability.
The truncated geometric mechanism (tGPA) that has range N,, avoids such inconsistencies
by “remaping” all negative outputs to 0 and all outputs greater than m to m, which formally

is defined as follows.

Definition 6.4 (Truncated Geometric Mechanism, tGPA [37]). For an aggregated function

Q : D — N and parameter value € € (0,1), the truncated e-geometric mechanism has

103

range N,, = {0,1,...,n}, when for each value Q(D) noise N is drawn from the following
distribution,
0 if 4+ Q(D) ¢{0,1,...,n}
Pr(N =x)= %em if t+Q(D)e{l,...,n—1}
el if 2 + Q(D) € {0,n}

The GPA is a discretized version of the LPA, in which noise is drawn from the Lap(Ag /)
distribution (e = exp(—a/Ag)) and Ag = 1 for both geometric mechanisms. Ghosh et al.

proved that both geometric mechanisms achieve a-differential privacy.

Distributed Geometric Mechanism. We proposed a distributed geometric mechanism,
in which n contributors participate i.i.d. noise shares to simulate e-geometric mechanism for
€ € (0,1) and achieve a-differential privacy (o = —AgIn(e)) [E3].

In order to present the distributed GPA we prove that noise generated by the GPA can
be simulated as a difference between two exponentially distributed random variables. Then,
we show that such variables can be generated as sums of i.i.d. Pélya distributed random

variables.

Lemma 6.5. Let X and Y be geometrically distributed random variables with the probability
of success equal to (1 —¢€), i.e., Pr(X = z) = Pr(Y = z) = ¢*(1 —€). Noise N in the e-

geometric mechanism (Definition E23) can be simulated as N = X —).

Proof. We show that both A/ and (X — Y) have the same distribution, i.e., they have the

same moment-generating functions M, My (t) = My_y(t) for all valid ¢.

(1 —e€)2et
(et —€)(1 — eet)’

My (t) = for t < —In(e) (6.8)

Recall also that for any two i.i.d. random variables S and T, Msy7(t) = Ms(t) - M7(t).

In addition, for any constant a, M,s(t) = Mg(at) [60]. Notice that the moment-

generation function for geometric distribution with the probability of success p is equal

104
to p(1 — (1 —p)et)~! for t < —In(p) [B0].
Mx—y(t) = Mx(t) - My(—t)

o (I—e)%
(et —€)(1 — eet)

, for t < —In(e) (6.9)

Thus, Mar(t) = My_y(t) and N = X — V. 0

In order to define DGPA we recall a Pélya distribution. Then we prove that such
distributed random variables can be used to generate i.i.d. noise shares, such that the final

noise follows the GM () distribution, and therefore the DGPA achieves a-differential privacy
(a = —In(e)).

Definition 6.6 (Polya Distribution [60]). Let X' be a random variable following the discrete
Pdélya(r,p) distribution with parameters r € R and p € (0,1). The probability distribution
function is defined as follows,

r+zr—1

= (7

>px(1 —p)

If r € N, then the Pdlya distribution is known as a negative binomial distribution NB(r,p).

If r = 1, then it is known as a geometric distribution with probability of success equal to
(1—p).

Theorem 6.7. Let n be a number of data contributors and X;, YV; be i.i.d. random variables
following the Pdlya(1/n,e€) distribution for i = 1,2,...,n. A random variable N with the

distribution GM (€) (Definition B=3) can be simulated by the following sum,

N = i(‘)(i - Vi)

i=1

Proof. Both NB and Polya distributions are infinitely divisible [b0]. Therefore, the sum
of i.i.d. random variables X; ~ Pdlya(r;,€) follows the same distribution with parameters
r=> . r;and e.

If 7, = 1/n, then both > " &; and > .. Y follow Pdlya(l,¢) distribution, i.e.,

are geometrically distributed with probability of success equal to (1 — €). Therefore, by

105
Lemma B3 we conclude the proof. O

To draw a random variable X; from Pdlya(r,e) distribution we utilize the Poisson-
Gamma mixture [b0]. First, we randomly draw A from the Gamma(r, e/(1—¢)) distribution.
Then, we draw AX; from the Poisson distribution with parameter .

The e-geometric mechanism draws noise from the two-sided geometric distribution
GM (€), which can be simulated as a difference between two sums of n Poélya distributed

random variables. Therefore, if N~ GM(¢) and X;,Y; ~ Pélya(1/n,€), then

n

N =30 -) (6.10)

i=1

Notice that both GM and Pdlya distributions are discrete, therefore the noise in the proposed

geometric mechanism is an integer number as well.

6.2.3 Distributed Noise Approximation Mechanisms

Both LPA and GPA achieve d-approximate a-differential privacy for all values of 6 > 0
(Definition b). Using these mechanisms for relaxed settings (0 > 0) is not optimal, i.e.,
disturbance of the final result is superfluous. However, they can be modified to introduce
less noise and still ensure required level of approximated a-differential privacy. One group
of modifications is to draw noise from approximated noise distribution.

In [B0] authors presented two methods of achieving (c,d)-differential privacy for any
values of a and 0 > 0. One method utilizes a Poisson process to generate random
variables that approximate exponentially distributed random variables. The other method
ensures (a, 0)-differential privacy privacy by approximating Gaussian noise with binomially
distributed random variables. In both methods random variables are drawn by tossing
unbiased or biased coins, which has been implemented in distributed settings, but with
significant communication and computation overheads [30]. Therefore, we skip these
mechanisms in our study and consider only diluted mechanisms, which also achieve (a,d)-

differential privacy and are efficient.

106

6.2.4 Diluted Distributed Mechanisms

Diluted mechanisms (Definition 68) have been designed as mechanisms easily applicable in
distributed settings. In a diluted distributed perturbation mechanism (dDPA), each partial
noise N; is drawn by each of n parties. All N; are securely summed up and used as noise
to ensure approximated differential privacy. Notice that dDPA required that the rate of
non-colluding parties is at least equal to «, which is a parameter of dDPA.

A diluted geometric mechanism (dGPA) has been introduced in 83|, as a mechanism
that achieves («, d)-differential privacy. We generalize dGPA to a privacy mechanism that

uses a perturbation algorithm (PA) and ensures approximate differential privacy.

Definition 6.8 (Diluted Mechanism, dPA). Let PA be a data perturbation algorithm used
by an a-differential privacy mechanism, a parameter o € (0,1), and X; (i = 1,...,n) be
i.i.d. random variables drawn by PA for given a. A diluted mechanism (dPA) ensures (o, d)-
differential privacy, by adding up to n random variables N; defined as follows,

X;, with probability £

N = (6.11)
0, with probability 1 —

where B(d,7) = min{%nlogQ(%), 1}, and yn is the minimal number of generated random

variables N;.

In dGPA results are perturbed by at most n random variables &;, which are drawn
from the discrete two-sided geometric distribution GM (exp(—a/Ag)) (Definition B3).
Each r.v. &; ~ GM (exp(—a/Ag)) can be simulated by a difference of two geometrically
distributed random variables (Lemma BE3). Therefore, drawing A; by this mechanism
requires generation of at most three uniformly distributed random variables. The first r.v.
is used to decide, if X; should be drawn. The second r.v., which is drawn from the uniform
distribution, establishes the sign of X;, and the third one, which is drawn from the geometric
distribution, sets the value of &X;. On average for n tries, the &; will be drawn fn times,
and the overall number of drawn random variables is equal to (n + %logQ(%)).

Any differentially private mechanism may be applied to the dPA to achieve approximated

107

differential privacy of perturbed data. For example, the diluted Laplace mechanism (dLPA)
calls the LPA mechanism to generate X; with the same 3(d,) probability (Definition G3R).
Proving that such diluted mechanism achieves approximated differential privacy requires

repeating proofs from [83], with simple substitution of the noise generation function.

6.2.5 Comparison

All DLPA and DGPA mechanisms guarantee the same level of differential privacy, while
diluted and noise approximation mechanisms guarantee approximated differential privacy.
Drawing a noise share by each mechanism has different computation cost and noise shares
have different statistical characteristics.

To compare complexities of noise generation, we consider the number of random variables
that each party generates for each method. For the Laplace DLPA mechanism, each
party generates a single random variable, and one party generates 2 random variables,
i.e., 1 + 1/n random variables per party, which makes it the most efficient mechanism. The
implementation of a gamma random number generator has an indeterministic number of
steps, and requires generating at least 2 (on average 2.54) uniformly distributed random
variables [3]. The Gauss mechanism requires each party to generate 4 different Gaussian
distributed random variables.

Each diluted mechanism requires every party to generate at least one, and at most two
(LPA) or three (GPA) uniformly distributed random variables. Let v be the minimal rate of
non-colluding contributing parties and d be a parameter of approximated differential privacy.
Then, on average each party of dDLPA generates (1 + % log, (%)) random variables and each

party of dADGPA generates (1 + %logQ(%)) random variables.

Redundant Noise. Distributed settings introduce additional challenges for privacy
mechanisms. One of them is collusion of participants that take advantage of shared data in
order to breach privacy. Since each provider knows its own data and also data from colluding
parties, we need to guarantee that results computed using data provided by non-colluding
parties achieve privacy. We assume that the rate of colluding parties in one group is less than

v, therefore partial noise generated by yn parties is enough to ensure required differential

108

privacy. Since all n parties generate partial noise, which is aggregated in the final result,
noise from the remaining (1 —~)n parties is redundant. Notice that all parties generate i.i.d.
partial noise, therefore its mean and its variance are the same for each party.

If a privacy mechanism is implemented using a security scheme, then its parameters affect
the value of v and wice versa (Table B-I). In order to protect privacy of data subjects no
fewer than yn parties should be able to reconstruct (Shamir) or decrypt (Paillier) the final
result, therefore v < s/n. Similarly, since the maximal number of colluding parties is smaller
than 7 for Acs and EFT schemes, noise of remaining parties should be able to guarantee
privacy, therefore v <1 — % For all schemes the value of v limits fault tolerance levels.
If there are less then yn active parties, then computations are terminated, because their
results would not be differentially private. Thus, the fault tolerance levels for all protocols

are always less than (1 —7)n.

6.3 Security Schemes

Privacy mechanisms are not designed to provide security of computations. They can be used
to do so, but the amount of perturbation added by each of them would make the final result
useless. Therefore, to ensure security of data aggregation secure multiparty computation
(SMC) schemes and protocols are employed. An SMC protocol shall remain secure even if
a few participants are inactive, i.e., it should be fault tolerant. On top of that the SMC
protocol shall be efficient and consume as little resources as possible.

We study three groups of secure schemes: secret sharing, homomorphic encryption, and
perturbation-based. Each group has its own advantages and disadvantages for different types

of data aggregations. Inspired by two schemes we present a new hybrid security scheme.

6.3.1 Secret Sharing Schemes

Secret sharing schemes split a secret into multiple shares that are meaningless unless s of
them are collected and the secret is reconstructed. Any set of fewer than s shares discloses
nothing about the secret even for computationally unbounded adversary. The value of s

defines also the minimal number of colluding parties necessary to breach the security of

109

computations. After generation, shares are distributed, such that each contributor receives
a few (usually one) shares. They are then used in computations and combined to reveal the
final result.

As an example of secret sharing schemes we present the Shamir scheme [81]. In this
scheme shares of different secret numbers can be summed up to get shares of their sum,
which can be then reconstructed. Other arithmetic and set operations are also possible and

implemented [I4, T0O3].

Shamir Scheme. Each participant implements and runs the same Shamir scheme protocol
with outline defined as follows. A participant ¢ computes n shares of its local secret value
x;, by randomly generating a polynomial w; of order s, such that w;(0) = x;. For a set of
selected, and publicly known non-zero distinct points 21, .. ., zn, shares of x; are computed as
values of w; in these points, i.e., x; j = w;(z;) for j =1,...,n. Then, shares are distributed,
such that from all participants x; ; are sent to party j. After exchanging all shares, party
J computes a share of the result at z;, e.g., sums up received shares) . z; ;. Finally, one
party collects at least s shares of the result, interpolates them to compute a polynomial w,
and reconstructs the result by computing w(0).

Notice that Shamir scheme was introduced only for integer numbers. Adapting the
scheme to floating point numbers requires implementing different arithmetic operation
protocols [I8] or encoding floating point numbers as integers, e.g., by multiplying them
by the same power of 10.

Security of Shamir scheme is based on the randomness of generated shares and security
of communication channels. Assuming that all communication channels are secure, Shamir
scheme is information-theoretically secure, i.e., is secure against computationally unbounded
attackers |6]. However, since efficient implementation of secure communication channels
relies on encryption (e.g. a Secure Sockets Layer), the scheme is, in fact, computationally
secure, i.e., an attacker that uses current computer technology and available resources will
not be able to breach security.

Since disclosing any set of less than s shares does not reveal the secret, the scheme is

immune to collusion of less than s parties. Fault of any party may require identifying its

110

shares by other parties and dropping them, if a faulted party was able to distribute less
than s of its shares. If enough shares were distributed and parties faulted, the protocol is
continued. If decryption requires participation of more parties than are active, the protocol
is rerun.

Shamir scheme has low computation complexity, but since each participant sends at least
(n—1) shares to others, the amount of communication is relatively high and equal to O(n?).
An example framework that implements secure operations of Shamir scheme is SEPIA |4,

103,

6.3.2 Perturbation-Based Protocols

Perturbation-based protocols are an efficient alternative for other protocols, but often they
require certain topology of connections, e.g., a ring. The main idea is to perturb input data
by adding some random noise, such that they become meaningless for any attacker, and then
perform computations on the noisy data. This approach achieves security by obfuscating
all intermediate results, but is vulnerable to collusion and is not fault tolerant. Fault of any
party requires rerunning the protocol by remaining active parties.

As an example of perturbation-based protocols, we consider the secure sum protocol [20].
In this protocol all parties are connected in a ring topology. Each party generates random
noise, which is added to its private input. The starting party, which is elected randomly,
sends its obfuscated value to its successor that adds its own obfuscated value and passes it
further. At the end, the starting party holds the sum of obfuscated values from all parties.
In the next phase, each party removes its noise from the obfuscated sum, which, at the end,
reveals the correct final sum.

Unfortunately, if two neighbors of the same party collude, they can easily discover
both the obfuscated value (the first phase) and the random noise (the second phase)
generated by the party. With such information they can compromise the value participated
by the party. Many enhancements have been introduced to this protocol to increase its
collusion resistance, e.g., shuffling party positions in the ring, and dividing computations into
multiple rounds [20]. Although such enhancements may significantly increase communication

complexity of protocols, they are still very efficient.

111

6.3.3 Homomorphic Encryption

An encryption scheme is homomorphic, if it allows computations to be carried out on
ciphertext. Formally, for a given homomorphic encryption function E with respect to a
function f, the encrypted result of f can be obtained by computing a function g over

encrypted values of x1,...,x,, i.e.,

E(f(x1,...,zpn)) = g(E(x1),...,E(xy)) (6.12)

Homomorphism of an encryption scheme is very useful in distributed settings. An outline
of computing a value of f over distributed input x; is defined as follows. First, each party
encrypts its local data z; and sends F(z;) to a single party. Then, such party computes
the function g on encrypted data. Due to homomorphism of the encryption scheme, the
party gets the encrypted value of function f, which can be used for further computations or
decryption.

Fully homomorphic schemes allow secure multiparty computation of any function f. The

price for such flexibility in choosing f is high complexity of computations 26, B6]. However,
a few partially homomorphic schemes are efficient enough to achieve both security and
performance goals, e.g., multiplicatively homomorphic ElGamal [32] and RSA [[78] schemes.
Our choice of the encryption scheme is determined by the aggregation operation, which in
our scenarios is addition. Examples of additively homomorphic schemes are Paillier [I71],
Acs [1], and Shi [83].
Paillier Scheme. The Paillier scheme is a probabilistic public-key encryption scheme |24,
g, 73], which works as follows. Initially, a single trusted third party (TTP) generates a
pair of public and private keys. A party ¢ encrypts its local value z; using the encryption
function E and the public key. Then, all encrypted values are collected by any participant
or the TTP, which computes g(F(z1),...,E(x,)). The result can be decrypted or used in
further computations.

The original protocol has been enhanced to a threshold scheme, in which shares of a
private key are distributed, and any s out of n shares are sufficient to decrypt the ciphertext.

In such scheme the TTP is not necessary to decrypt the final result. Any s participants

112

can do so, by partially decrypting it using their shares of the private key, and combining
computed results. Details of key generation, encryption and decryption algorithms can be
found in |24, 46]. For settings where the TTP is not present, generation and distribution of
public and private keys can be also securely performed, by running a separate SMC protocol

|25, 0], e.g., Diffie-Hellman key exchange protocol |I].

Acs Scheme. The Acs scheme is a modulo addition-based encryption scheme [1], i.e.,
addition is the encryption function. Encryption keys are generated in pairs by two parties,
e.g., by running Diffie-Hellman key exchange protocol. Keys in each pair are inverse to each
other, i.e., they sum up to 0. Each party has r encryption keys, which inverses are held by
r other parties. Since in the final result all encryption keys are summed up, they cancel out
and no decryption is necessary.

Any group of less than r colluding parties is not able to disclose local value of any other
party. However, bigger groups can do so with non-zero probability. In the original scheme
introduced by Acs et al., fault of any participant requires rerunning all computations from
the beginning. The original scheme can be extended by a recovery subprotocol that finalizes
computations and returns the correct result. We introduce and analyze such subprotocol as
part of our enhanced scheme described below.

Establishing r keys for each party before actual computations is inefficient and requires
running a key exchange protocol by ' pairs of parties. Unfortunately, reusing the same
keys leads to leaks in security especially when parties fault. The following scheme addresses

this requirement of using different keys, by generating them from setup keys.

Shi Scheme. In the Shi scheme a separate decryption function is reduced to computing
the discrete logarithm of the output in order to get the final result [83|. If aggregated
value is used in further computations, decryption can be postponed until the final result is
computed. Similar to the Acs scheme, the method of generating encryption keys ensures
that the final result will be already decrypted. Although all parties need to participate to
compute the result, they do not need to communicate in order to establish encryption keys
for the next run of the protocol. For each run, an encryption key is computed from the

initially established key using a one-way function, e.g., a hashing function SHA-256. Such

113

approach minimizes communication among parties, but requires additional computations.
Since participation of all parties is necessary to finalize computations, fault of any party

during computations makes the result useless, and the protocol has to be rerun by active

parties. Communication complexity is minimal, but computation complexity is high due to

key generation.

6.3.4 Enhanced Fault Tolerant Scheme

We proposed an enhanced fault tolerant (EFT) security scheme, which is efficient, fault
tolerant, and collusion resistant. The EFT scheme is an encryption scheme with encryption
implemented by adding to or subtracting from the local data a uniformly distributed random
variable, which is secretly agreed between two parties. Since each party exchanges such
random variables with a few neighboring parties, encrypted value is secured unless all
neighboring parties collude. The result of data aggregation does not require decryption since
perturbation introduced by each party is canceled out by its inverse from a neighboring party.
This feature is also used to recover the result after a few parties became inactive. Thus, the
encryption function used in the EFT is very efficient and does not require any decryption
function. In addition, to avoid reestablishing all encryption keys among neighboring parties
in the beginning of every computation round, the keys are computed from the initially agreed
secret keys and the publicly known current round number.

Each run of the protocol implemented in the EFT scheme is initiated by an untrusted
party, which want to aggregate data provided by contributors. Such party collects encrypted
local values and aggregates them. At the same time it detects if any party gets inactive.
When at least one participant is not able to finish the protocol, the aggregator initiates
the recovery protocol by informing all active parties about the inactive ones. To recover
the result, parties prepare their recovery keys, which are aggregated with the previously

computed result.

EFT Details. In our scheme an untrusted data aggregator, which is an independent entity
or is simulated by any data contributor, initiates all protocol runs (Algorithm @d). After

aggregating values returned by all parties N it returns the final result (lines 0 to B). If any

114

data contributor faults, the aggregator will detect it (line B). The result will be decrypted
only partially and the aggregator will run the recovery subprotocol to compute the final

result (lines @ to 9).

Algorithm 14: The data aggregation and recovery procedures of the EFT scheme,
which is run by an untrusted party.

sum =0
Faulted = ()
foreach j € N do
sum + = get_encrypted_value_from(j, ttmeout)
L if timeout happened or no connection with j then Faulted = Faulted U {j}

[SBN NEVCR C

if Faulted = () then return sum

// Recovery subprotocol.

7 foreach j € N do

8 L sum + = get_recovery_key_from(j, Faulted)

(=]

9 return sum

Data contributors participate in the aggregation by running Algorithm I3. In the setup
phase, a contributor ¢ establishes random keys k; ; with randomly chosen parties IV; (lines
M to B). After fixing k; ; no further setup is needed, and no communication is generated.
During encryption, each k; ; is hashed with the current timestamp ¢, and the result is added
to, or subtracted from, the contributed value z; (lines B to B). The result is sent back to the
aggregator.

Notice that only r collaborating neighbors N; can breach security and reveal z;.
Therefore, when using a privacy mechanism with our scheme, the minimal number of noise
shares required to ensure privacy shall be at most r.

In the recovery process (Algorithm IB), each party gets the set of all faulted parties
(Faulted). For faulted neighbors the party computes its recovery key, which is the sum
of inverses of aggregated encryption keys (lines B to H), drops connection with them (line
), and removes them from its set of neighbors N; (line B). If all neighbors of a party ¢
faulted, then sending the recovery key to the aggregator would reveal the contributed value
zi. Therefore, before sending, the party subtracts x; from the recovery key, which will

remove it from the aggregated result.

Security. Security proofs of our scheme are the same as presented in [I]. Encrypted keys are

115

Algorithm 15: The encryption function run by a party ¢ contributing x; at time ¢
with encryption keys exchanged with parties N; of the EFT scheme.

if |NV;| < r then
N! = connect_randomly_with_new_parties(r — |N;|)
foreach j € N/ do
L k;; — Diffie-Hellman_key_exchange (i, j)
N; = N; U Nz/
iphertext = x;
foreach j € N; do
if id(4) > id(j) then ciphertext + = Hash(k; ;, t)
else ciphertext — = Hash(k; j, 1)

[N

O

© o N o

10 return ciphertext

Algorithm 16: The recovery protocol run by a party ¢ contributing z; at time ¢ with
neighbors N; and Faulted parties failing of the EFT scheme.

1 recovery key =0
2 foreach j € Faulted N N; do
3 if id(s) <id(j) then recovery key + = Hash(k;;, t)

4 else recovery _key — = Hash(k; ;, 1)
5 disconnect_from(yj)
6 | Ni=Ni\{j}

7 if N; =0 then recovery key = recovery key — x;
8 return recovery key

116

Scheme Communication Fault tolerance Max. collusion
complexity level (max. n —2)

Shamir (s,n) n(n+1) n—s s—1

Perturbation- 3n 0 1

based (n)

Paillier (s,n) 5n n—s s—1

Asc (r,n) 2n+2rn n r—1

Shi (n) 2n 0 n—2

EFT (r,n) 2n n r—1

Table 6.1: Comparison of complexity, fault tolerance level, and max. allowed collusion for
SMC schemes with n parties.

computationally secure due to the hash function, e.g., SHA-256, which cannot be reversed
in a polynomial time. Notice that the EFT scheme is immune to collusion of less than r
parties. Increasing r € [1,n) will increase security of the protocol, but will also reduce its
scalability. The value of r should be established based on probability of faults and should

be greater than the maximal number of colluding parties.

Complexity. If all parties are active and run our protocol, then they generate 2n messages
in only two rounds — one to collect encrypted values by an untrusted aggregator and
one to broadcast the final result. When a few parties faulted, a recovery process would
generate additional 3n messages to broadcast Faulted, collect recovery keys, and broadcast
the recovered result. Computational complexity of the EFT protocol is slightly higher
than complexity of the Acs scheme, due to additional computations. However, since

encryption keys are not reestablished before each computation, the communication overhead

is significantly lower, while preserving fault-tolerance.

6.3.5 Comparison

To compare different schemes we have implemented a secure sum protocol in each of them
and analyze their complexity and security characteristics.

A summary of the comparison is presented in Table Bl. Shamir scheme does not require
significant computational resources and its fault tolerance level depends on the number of
parties required to reconstruct the secret s. However, the high communication complexity

is a major drawback that limits its scalability. Additionally, all ”72 communication channels

117

need to be secure.

Each perturbation-based protocol is suited for a specific computation and requires
participation of all parties. Thus, it is not fault tolerant and faults of any party requires
rerunning it. In addition, in the presence of colluding parties, the scheme does not ensure
security, which is its major weakness. However, such protocols are suitable for settings where
parties have limited resources, but are reliable.

Among homomorphic encryptions schemes Paillier and Shi incur high computation
overheads due to their heavy encryptions. Therefore, these schemes may be suitable for
scenarios in which participants have more computational power, and high scalability is
required. The minimal amount of communication is generated by Shi and our EFT scheme.
Shi scheme is immune to (n —2) colluding parties, but will not be able to recover after fault
of any party. Paillier, Acs, and our schemes are fault tolerant with the level of protection
against colluding parties defined as a parameter. However, after initial setup our scheme
does not require any more communication, while in Acs scheme all encryption keys need to be
regenerated, which causes exchanging 2rn additional messages. Reestablishing encryption
keys before each computation (n messages) and decryption of results (2n messages) increase
significantly the communication complexity of Paillier scheme. Among encryption schemes,
our EFT scheme is the most efficient in terms of communication and computations, is also
fault tolerant, and is flexible in adjusting its collusion level. None of other schemes holds all

these properties.

Fault Tolerance. All schemes can be partitioned by their fault tolerance level into three
groups. Perturbation-based and Shi schemes are not fault tolerant, i.e., if any party faults,
the currently run protocol is stopped and run again.

Schemes from the other group deal with faults silently (e.g. Shamir and Paillier), i.e.,
they do not run any recovery protocol to retrieve final results, but continue computations.
However, if the number of active data contributors drops below s, then protocols
implemented in either of these schemes are stopped and rerun with decreased value of
s. Notice that s cannot be less then the maximal number of potential colluding data

contributors, and the number of noise shares necessary to achieve differential privacy.

118

Remaining two schemes, i.e., Acs and our EFT scheme, finish computations and return
results regardless of any faulted participants. However, when a data contributor faults, all

remaining contributors shall run a recovery protocol, which we presents in Algorithm [8.

Collusion of Parties. Only Shi scheme remains secure after collusion of (n — 2) parties,
which is the maximal number of colluding parties. Collusion of any two or more parties may
breach security of Perturbation-based scheme. Rearranging topology of connections among
parties and dividing computations into multiple stages may improve collusion resistance
of this scheme to certain extent. For remaining schemes the maximal number of allowed
colluding parties is less than the number of encryption key shares required to reconstruct
the result (Shamir, Paillier) or the number of keys exchanged by each party with others
(Acs, EFT).

6.4 Experimental Evaluation

In this section, we present experimental evaluations of various privacy mechanisms and
security schemes used to implement a distributed secure sum protocol. Since the security
and privacy levels of schemes have been formally analyzed above, we mainly focus on their
performance. The questions we attempt to answer are: 1) How do the different distributed
noise generation algorithms and privacy mechanisms compare with each other in terms of
efficiency and redundant noise? 2) How do the different secure computation scheme protocols
perform in various settings, and how do they scale, and compare with each other in terms

of computation and communication cost?

6.4.1 Experiments Setup

All experiments have been run using JVM 1.6. We evaluated local computations including
partial noise generation, and data preparation on three different platforms: 1) a cluster of 64
HP 7210 nodes with 2 quad-core CPUs, 8 GB of RAM each, running Linux Ubuntu system,
2) a laptop with Intel Core 2 Duo T5500 and 2 GB of memory running Windows XP, and
3) a shared server Sun Microsystems SunFire V880, with 8 CPUs and 16 GB of memory

running SunOS 5.10. Notice that the sever assigns only limited amount of resources to our

119

applications. All protocols are evaluated in a distributed environment using the cluster of
nodes, which are connected by the 100Mbit network. All reported results are averaged from
1,000 runs for security scheme and 1,000,000 tries for privacy mechanism experiments.
Our main software framework is built on top of SEPIA [I[4, T03], which uses Shamir secret
sharing scheme for secure distributed computations. We extended SEPIA and implemented
other SMC schemes and privacy mechanisms to achieve differential privacy of the final
results. We chose implementation of the Paillier scheme from the UTD Paillier Threshold
Encryption Toolbox |L04]. Additionally, we used random number generators implemented in
the HPC library Colt [I00]. All remaining schemes and mechanisms have been implemented

by authors. Default values of experiment parameters are listed in Table 62

] Name \ Description Default Value
n Number of running nodes. 32
k Size of encryption keys in bits. 128
T The number of encryption keys exchanged with neighboring 3
parties for Acs and EFT schemes.
S The minimal number of parties required to decrypt or 3

reconstruct results in a security scheme.

yn The minimal number of noise shares to achieve privacy for 8
privacy mechanism experiments, and the minimal number
of non-colluding parties.

) A parameter of approximated differential privacy 0.1
The key size (in bits) of the AES encryption with RSA for 128
SSL communication channels.

Table 6.2: Default values of experiment parameters.

6.4.2 Privacy

The main goal of this experiment is to evaluate the overhead of the following mechanisms

(Section B2):
e distributed LPA (DLPA): Laplace, Gamma, and Gauss,
e distributed GPA (DGPA),

e diluted: Laplace (dLPA), geometric (dGPA).

120

DLPA and DGPA guarantee differential privacy of the final result, while diluted mechanisms
ensure approximated differential privacy. For all DLPA mechanisms the final result achieves
the same level of differential privacy, i.e., its final noise is drawn from the same distribution.
Therefore, we compare the local computation time of the three DLPA and the DGPA
geometric mechanisms, as well as their impact on the overall protocol performance.

Noise Share Generation. In order to ensure that enough noise is added to the final result,
each node adds its share of noise. The average generation time of such shares for different

mechanisms is shown in Figure 62.

time [us]

2.0 L] dGPA
1.8+] dLPA
1.6 [Geometric
1.41 B Gamma
1.2 M Gauss
1.01 M Laplace
0.8+

0.6

0.4-

0.2-

0.0+

Laptop Server Node

Figure 6.2: The average noise share generation times in microseconds for different
mechanisms and platforms.

Generating a single noise share by the Laplace DLPA is more efficient than by
other mechanisms, which confirms our expectations (Section B2Z3). Drawing a uniformly
distributed r.v. and a few arithmetic operations are enough to generate a noise share in
Laplace DLPA mechanism with efficiency. Notice that Laplace DLPA requires also a r.v.
drawn from the beta distribution, which is generated and broadcasted to all parties as part
of the setup message for each run, therefore it is not considered here. Geometric mechanism
requires drawing two random variables, one from Poisson and one from gamma distributions,
which makes it slower than most DLPA mechanisms. Gauss requires generating 4 normally
distributed random variables, while gamma, on average, requires slightly over 5 uniformly

distributed random variables [3].

121

Efficiency of diluted privacy mechanisms with default parameter values (Table 63),
which achieve d-approximate a-differential privacy, is very high. Performance of noise
generation for diluted mechanisms depends on 3(4,,n), i.e., probability of generating noise

(Definition BR), which, for default values of parameters, is approximately equal to 41.52%.

time [us] time [us]

0 0.2 04 0.6 0.8 19 0 0.2 0.4 0.6 0.8 17
Figure 6.3: The average noise share generation times in microseconds for different § and ~,
run on the server.

Figure B33 shows the average runtimes of noise generations for dLPA and dGPA with
different § and v on the server. As expected, relaxing the approximate differential privacy
constraint (Definition B), i.e., increasing the value of J, decreases both the probability of
noise generation $ and the runtime. Similarly, increasing the fraction of non-colluding parties
~ also decreases B and the runtime. Since generating Laplace noise is more efficient than
generating geometric noise, the dLPA is also more efficient than dGPA, which is confirmed

in our experiments.

Redundant Noise. To protect privacy of data subjects against colluding data providers,
we run privacy mechanisms requesting that shares of yn participants (yn = 10) are enough
to achieve privacy. Thus, our final results have some additional noise, which characteristics
are different for each mechanism. In this experiment we compare redundant noise generated
by all privacy mechanisms (Figure 54).

Laplace, Gamma, and Geometric mechanisms generate similar amount of redundant
noise. Among them the Laplace mechanism generates slightly less noise than Gamma and
Geometric mechanisms for v < 0.6 and slightly more for v > 0.6. All three mechanisms

generate significantly less redundant noise than the Gauss mechanism for any v and a.

122

redundant noise magnitude redundant noise magnitude
507 & Gauss 30+ 4% Gauss
== Gamma == Gamma
401 ¥ | aplace 251 ¥ Laplace
=+ Geometric | o | - Geometric
301 + dLPA/dGPA + dLPA/dGPA
15
20+
10
101 5
0 0

0 01 02 03 04 05 06 07 08 09 Y/ 0 01 02 03 04 05 06 070

Figure 6.4: The average magnitude of redundant noise for different rate of required noise
shares v (a = 0.1), and different privacy budgets o (v = 10/32).

For given settings redundant noise magnitudes of dLPA and dGPA are almost the
same, therefore we represent them as a single dashed line in Figure 64. DLPA and
DGPA mechanisms cannot be compared with diluted mechanisms, in which redundant
noise depends on [(v,0) (Definition b). However, we can compare characteristics of
their redundant noise. Since f is independent of «, redundant noise for diluted and other
mechanisms will decrease at the same rate as « is increasing. In diluted mechanisms ~y
impacts redundant noise differently than other mechanisms. Requiring participation of
more non-colluding parties to achieve privacy (increasing) decreases redundant noise for

diluted mechanisms slower than for DLPA (except Gauss) and DGPA.

6.4.3 Security

In this group of experiments we evaluate performance of distributed aggregation protocols
for different security schemes. Security levels guaranteed by each scheme have been already

discussed (Section 623).

Performance of Homomorphic Encryption Schemes. In this set of experiments we
evaluate homomorphic encryption schemes. In the setup phase encryption keys are generated
and distributed. To ensure maximal security of the Paillier and the Acs schemes in each
round new keys are used. If we lower security requirements, the same encryption key could
be reused a few times. Therefore, we set up the Paillier scheme to be run in two settings

named new key (maximal security) and reuse key (lower security).

123

time [s] time [s]
4.0 1.0 —
4 Paillier (new ** Pailiier (new

351 ey 0.8 key)
3.09 ~* Paillier (reuse *© |7 Pailiier (reuse
5 key) key)

31 = Acs/ShIEFT 0.6 Acs
2.0+ =+ Shi
151 0.44{*EFT
1.01 0.2
0.5 —9b
0.0 : —— F— 0.0 : : : : : : : :

0 32 64 96 128 160 192 224 256 0 8 16 24 32 40 48 56 64
« [bits] n

Figure 6.5: The average runtimes of a protocol for different encryption key sizes k (n = 32)
and different number of participants n (k = 128).

Figure B3 shows the average runtime of a single round for encryption keys of different
sizes and different amounts of participants. Since results of Acs, Shi, and EFT schemes are
very similar, we represent them as a single line, when evaluating schemes against different
encryption key sizes. Generating and distributing a set of encryption keys in the Paillier
scheme is a very time consuming process. Increasing the key size k, significantly increases
computation time for the new key scenario, and have a negligible overhead when one key is
used all the time in the reuse key scenario.

Despite the encryption overhead, the homomorphic encryption schemes scale well.
Adding new nodes, while keeping the same encryption key size, increases the average runtime

of all homomorphic encryption schemes linearly.

Shamir’s Secret Sharing

In this experiment we evaluate the impact of the threshold ¢ in the Shamir’s secret sharing
scheme. The threshold ¢ represents the number of shares that are necessary to reconstruct
the secret. Thus, its value defines the minimal number of colluding nodes that can break
security of the scheme. By modifying the value of ¢, one modifies also the fault tolerance
level of the protocol (Table 61), but with a negligible impact on its performance.

Figure B8 shows the average runtimes of Shamir scheme protocols for different threshold
t. Increasing t increases the runtime minimally. The results seem to be surprising, but are

explainable. Each participant while running the protocol sends messages to all remaining

124

time [s]
0.22
- Y
0.20+ /
- | aplace
0.184 - Gamma
0.16 ¥ Gauss
16+ - Diluted
0.141 ‘/‘\‘/*—Gio‘metric
0.10 : . T
0 3 6 9 12 15

Figure 6.6: The average runtimes for different Shamir’s scheme threshold ¢ (n = 32) and
privacy mechanisms.

nodes, i.e., to (n — 1) nodes, regardless of t. The only time that is gained for smaller ¢
comes from reconstructing the result, which starts as soon as t shares are collected by a
node without waiting for remaining shares to arrive. However, since our network is fast and
reliable, the difference in runtimes are small.

Differences among privacy mechanisms are results of their implementation in the secret
sharing scheme. Gauss mechanism requires running additional subprotocols that securely

compute the sum of squared numbers.

Performance of Fault Tolerance Schemes. The goal of this experiment is to compare
performance of fault tolerant schemes, i.e., Shamir, Paillier, Acs, and our EFT, with one
data contributor faulting. Notice that we extended the original Acs scheme with the same
recovery subprotocol as used in the EFT scheme. Remaining schemes will rerun the protocol,
if any participant drops. We set r = s = yn = 3.

Figure 624 shows the average runtimes for fault tolerant protocols when a single data
contributor faulted. In such scenario the runtime of a protocol implemented in either Paillier
or Shamir schemes is reduced due to less communication and computation that is performed.
At the same time Acs and our scheme needed more time to run a recovery protocol and
retrieve the final result. Despite additional computations our scheme is as efficient as Shamir

scheme for fewer contributors (n < 32), but scales better when we increase n. Runtimes

125

time [s]
0.8

=¥- Shamir
=& Palillier (new

key)
= AcC

0.4{>EFT

0.6+

0.2

0.0 Ll Ll LI T T T T T
0 8 16 24 32 40 48 56 64

n

Figure 6.7: The average runtimes for different numbers of participants and fault tolerant
security schemes.

for the Acs scheme are slightly longer than for our scheme, which is caused by the need of

reestablishing encryption keys before each run.

Data Preparation Overhead. For all protocols majority of their computations are local
and prior to any communication with other parties. Therefore, before comparing protocols
for different scenarios, we run an experiment to evaluate time needed by each node to prepare

its data before sending them to other nodes.

time [s]
1E-2 I Paillier
] 1 Shamir
1E-3- @ Acs
— B shi
1E-4- M Fault-Tolerant
M Perturbation-
based
1E-5-
1E-61
1E-71
1E-8 T 7

Laptop Server Node

Figure 6.8: The average local computation times (logarithmic scale) for data preparations
in different security schemes on different platforms.

126

Figure B8 shows the average local computation time (logarithmic scale) for data
preparation of security schemes on different platforms. The runtime includes all random
number generations, encryptions, and any other necessary computations. The Perturba-
tion-based scheme outperforms others by at least two orders of magnitude. In this scheme
each node generates at most one random number, which is a relatively easy task. Each
node running Shamir, or Acs, or Shi, or Fault-Tolerant scheme spends more time before
communicating with others. However, it is still two orders of magnitude faster than for the
Paillier scheme with 128-bit key. Notice that, we have measured only the encryption time,

and skipped the time spent on keys generation.

Overall Protocol Performance. In this experiment we compare the overall performance
for all security schemes and different numbers of nodes. Since different privacy mechanisms
have little impact on the overall performance, in all runs we use Laplace LDPA. Figure 69
shows runtimes of the distributed aggregation protocols implemented in different security

schemes.

time [s]
1.2

- Perturba-
1.04 tion-based

=¥ Shamir
0814 paillier (new
0.6 Key)

0.4+~ Shi

0.2

0.0 T T T T T T T T

Figure 6.9: The average runtimes for different numbers of nodes and security schemes.

Notice that for security, all parties in both Paillier and Acs schemes reestablish their
encryption keys in each round. As the number of nodes increases, both Perturbation-based
and Shamir schemes do not scale well as the increasing communication cost becomes the

dominant overhead. Communication in the Perturbation-based scheme grows linearly with

127

number of participants (Table B2I), but is synchronized, i.e., each participant (except the one
initiating computations) send a message after receiving it from the previous participant in the
ring. Such communication is not asynchronous, which impacts scalability. Communication
in the Shamir scheme grows quadratically with number of nodes (Table BE1), which is
confirmed in our experiments.

When the number of nodes is between 32 and 48, the secret sharing scheme outperforms
the Perturbation-based protocol. This may seem counter-intuitive at the first glance,
especially when we consider the large amount of communication required for exchanging
the secret shares in the secret sharing scheme. However, we note that nodes are connected
pair-wise in the secret sharing scheme, while they are connected in a ring topology in the Per-
turbation-based protocol. Thus, passing a message to all other nodes takes less time in the
former scheme. When the number of nodes increase further, the amount of communication
in the secret sharing scheme outweighs the benefit of all-to-all connections topology and
hence it is outperformed by the Perturbation-based protocol again.

On the other hand, all homomorphic encryption schemes scale well due to their low
communication costs. However, the Paillier scheme has a significant computation overhead
comparing to others, which limits its scalability. Among encryption schemes our scheme is
the fastest one, because in each round encryption keys do not have to be regenerated and

the encryption function has low time complexity.

128

Chapter 7

Conclusions and Future Work

7.1 Summary

In this dissertation we presented and addressed challenges of privacy preserving data release,
which have different distributed data settings, and cover syntactic and semantic privacy

notions.

7.1.1 Syntactic Privacy Notions in Distributed Environments

For syntactic privacy notions we described and addressed challenges introduced by a set
of m colluding data providers (m-adversary) in collaborative data publishing. Privacy
threats introduced by m-adversaries are addressed by our new privacy notion, m-privacy,
defined with respect to a privacy constraint C. We also proved that both verification of m-
privacy fulfillment and anonymization datasets in order to achieve m-privacy are, in general,
computationally hard.

To verify m-privacy w.r.t. any syntactic privacy notion C' (Chapter B) we presented
new heuristics and SMC protocols. A few of them check m-privacy for EG monotonic
privacy constraints, and use adaptive ordering techniques to improve computations efficiency.
For non-EG monotonic constraints we introduced an algorithm, with minimal required
number of privacy checks. We also presented a provider-aware anonymization algorithm
with an adaptive verification strategy to ensure high utility and m-privacy of anonymized

data. Experimental results confirmed that our heuristics perform better or comparable with

129

existing algorithms in terms of efficiency and utility.

We implemented all verification and anonymization algorithms in two distributed data
settings, with and without a trusted third party (TTP). All secure multiparty computation
protocols have been presented in details with their security and complexity carefully analyzed
(Chapter @). In addition, we extensively tested their performance and quality of anonymized
datasets. Implementations of algorithms for the T'TP setting is available on-line for further

development [I02].

7.1.2 Semantic Privacy Notions in Distributed Environments

In this dissertation we also studied settings with semantic privacy notions and new
challenges, which they introduce. One of them is customization of privacy settings for
differential privacy, i.e., we allow data providers to set their privacy budgets independently
(Chapter B). Customized privacy budget can be also an outcome of a query workload that
covers only a subset of records by its queries. For such settings, we proposed a two-phase
approach to generate data histograms, which differential preserve privacy and maximizes
data utility. First, data are partitioned into v-optimal partitions based on records’ privacy
budget. Then, each partition is used to create a data histogram using any state-of-the-art
algorithm with bucket counts perturbed to ensure differential privacy. Separating privacy
partitioning from data-driven methods of building histograms gave us flexibility in choosing
algorithms for each step independently. All presented algorithms have been evaluated
extensively in experiments.

Another challenge, which we addressed is collusion of data providers in distributed
settings with semantic privacy notions. We introduced a new privacy-aware method of
computing data statistics, in which each data provider generates only partial noise from the
same data distribution. After combining all partial noise values, the final result is perturbed
enough to achieve differential privacy, even when we remove records from a few providers. In
order to ensure that level of collusion resistance some redundant noise needs to be generated.
Our method is designed in a such way that it generates very little redundant noise comparing
to naive and existing approaches.

To choose an efficient security scheme and a privacy mechanism for distributed and

130

privacy-preserving computations a few privacy and security challenges needs to be addressed.
In this dissertations we introduced and evaluated a new, efficient, and fault tolerant
scheme (EFT) to ensure reliability and collusion resistant of computations. Our security
scheme guarantees computational security and minimal communication together with a high
reliability of the system (Chapter B). To address privacy challenges for distributed settings,
we proposed a new and efficient distributed perturbation mechanism (Laplace DLPA), which
introduces only small amount of redundant noise. The choice of a privacy mechanism is
crucial to preserve utility of final results, and impacts performance significantly for devices

with limited power and computation resources, e.g., mobile devices.

7.2 Future Work

The notion of m-privacy has ben introduced for horizontally partitioned datasets. Adapting
it to vertically distributed or ad-hoc created datasets are two interesting directions for future
research. Also, generalizing our approach to other kinds of data, such as set-valued data,
defines another interesting path to explore.

In times of shifting from stand-alone to mobile devices with limited amount of
resources, adapting both security schemes and privacy mechanisms to such new environments
introduces many new challenges. Existing approaches to perform privacy-preserving
computations have been designed mostly for computers with relatively amount of com-
putation resources and with reliable power source. Therefore, running such algorithms and
protocols without adapting them to mobile devices is suboptimal. Reducing complexity of
such computations and minimizing their communication overhead is also a very interesting
dimension of research.

Ensuring security and privacy of complex tasks is barely explored nowadays. Even for
simple tasks (e.g. creating a histogram) there are still some room for improvement their
performance.

An edge case of customized privacy budget setting is allowing each data owner to set its
own budget. That way privacy would be personalized for each data owner. Such variety of

different privacy budget values define a new environment for future studies. For example, to

131

improve utilization of privacy budget by each record, a new techniques of budget saturation

should be proposed and analyzed.

BIBLIOGRAPHY: BOOKS AND JOURNALS 132

Bibliography: Books and Journals

2]

3]

Gergely Acs and Claude Castelluccia. “I have a DREAM!: differentially private
smart metering”. In: Proceedings of the 13th International Conference on Information

Hiding. TH’11. 2011, pp. 118-132. 1SBN: 978-3-642-24177-2.

Gagan Aggarwal, Nina Mishra, and Benny Pinkas. “Secure Computation of the
kth-Ranked Element”. In: Proceedings of the 23rd International Conference on
the Theory and Application of Cryptographic Techniques: Advances in Cryptology.
EUROCRYPT’04. 2004, pp. 40-55. 1SBN: 978-3-540-21935-4.

Joachim H. Ahrens and Ulrich Dieter. “Computer methods for sampling from gamma,
beta, Poisson and bionomial distributions”. In: Computing 12 (3 1974), pp. 223-246.

1SSN: 0010-485X.

Dima Alhadidi, Noman Mohammed, Benjamin C. M. Fung, and Mourad Debbabi.
“Secure distributed framework for achieving e-differential privacy”. In: Proceedings

of the 12th International Privacy Enhancing Technologies Symposium. Vol. T384.

Lecture Notes in Computer Science. 2012, pp. 120-139. 1SBN: 978-3-642-31679-1.

Boaz Barak, Kamalika Chaudhuri, Cynthia Dwork, Satyen Kale, Frank D. McSherry,
and Kunal Talwar. “Privacy, Accuracy, and Consistency Too: A Holistic Solution to
Contingency Table Release”. In: Proceedings of the 26th ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems. PODS’07. Beijing, China,
2007, pp. 273-282. 1SBN: 978-1-59593-685-1.

Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. “Completeness theorems

for non-cryptographic fault-tolerant distributed computation”. In: Proceedings of the

BIBLIOGRAPHY: BOOKS AND JOURNALS 133

8]

[10]

[11]

[12]

[13]

20th Annual ACM Symposium on Theory of Computing. STOC’88. Chicago, llinois,
United States, 1988, pp. 1-10. 1sBN: 0-89791-264-0.

George Boros and Victor Moll. Irresistible Integrals: Symbolics, Analysis and
Experiments in the Evaluation of Integrals. Cambridge University Press, 2004. I1SBN:

978-0521796361.

George Edward Pelham Box and Mervin Edgar Muller. “A Note on the Generation
of Random Normal Deviates”. In: The Annals of Mathematical Statistics 29.2 (1958),
pp. 610-611.

Yuriy Brun and Nenad Medvidovié. “Entrusting Private Computation and Data
to Untrusted Networks”. In: IEEE Transactions on the Dependable and Secure

Computing 10.4 (July 2013), pp. 225-238.

Cristian Bucild, Johannes Gehrke, Daniel Kifer, and Walker White. “DualMiner: A
Dual-Pruning Algorithm for Itemsets with Constraints”. In: Proceedings of the eighth
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
KDD’02. Edmonton, Alberta, Canada, 2002, pp. 42-51. 1SBN: 1-58113-567-X.

Jesse Burke, Deborah Estrin, Mark Hansen, Andrew Parker, Nithya A. Ramanathan,
Sasank Reddy, and Mani B. Srivastava. “Participatory Sensing”. In: Workshop
on World-Sensor-Web (WSW): Mobile Device Centric Sensor Networks and

Applications. 2006.

Robin Burke, Bamshad Mobasher, Roman Zabicki, and Runa Bhaumik. “Identifying
attack models for secure recommendation”. In: Beyond Personalization: A Workshop

on the Next Generation of Recommender Systems at the International Conferece on

Intelligent User Interfaces. San Diego, California, USA, 2005.

Martin Burkhart and Xenofontas A. Dimitropoulos. “Fast Privacy-Preserving Top-k
Queries Using Secret Sharing”. In: Proceedings of 19th International Conference on

the Computer Communications and Networks. ICCCN’10. 2010, pp. 1-7.

BIBLIOGRAPHY: BOOKS AND JOURNALS 134

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Martin Burkhart, Mario Strasser, Dilip Many, and Xenofontas Dimitropoulos.
“SEPIA: Privacy-Preserving Aggregation of Multi-Domain Network Events and
Statistics”. In: USENIX Security Symposiun. USENIX, 2010.

Baki Cakici, Kenneth Hebing, Maria Griinewald, Paul Saretok, and Anette Hulth.
“CASE: A framework for computer supported outbreak detection”. In: BMC Medical
Informatics and Decision Making 10.1 (2010), p. 14.

Claude Castelluccia, Aldar C-F. Chan, Einar Mykletun, and Gene Tsudik. “Efficient
and provably secure aggregation of encrypted data in wireless sensor networks”. In:
ACM Transactions on Sensor Networks (TOSN) 5.3 (June 2009), 20:1-20:36. 1SSN:
1550-4859.

Claude Castelluccia, Einar Mykletun, and Gene Tsudik. “Efficient Aggregation
of encrypted data in Wireless Sensor Networks”. In: Proc. of the 2nd Annual
International Conference on on Mobile and Ubiquitous Systems: Networking and
Services. MobiQuitous 2005. MOBIQUITOUS’05. 2005, pp. 109-117. 1SBN: 0-7695-
2375-17.

Octavian Catrina and Amitabh Saxena. “Secure computation with fixed-point
numbers”. In: Proceedings of the 14th International Conference on Financial
Cryptography and Data Security. FC’10. Tenerife, Spain, 2010, pp. 35-50. I1SBN: 3-
642-14576-0, 978-3-642-14576-6.

Cheng-Kang Chu, Wen Tao Zhu, Sherman S. M. Chow, Jianying Zhou, and Robert
H. Deng. “Secure mobile subscription of sensor-encrypted data”. In: Proceedings of
the 6th ACM Symposium on Information, Computer and Communications Security.

ASIACCS’11. 2011, pp. 228-237. 1SBN: 978-1-4503-0564-8.

Chris Clifton, Murat Kantarcioglu, Jaideep Vaidya, Xiaodong Lin, and Michael Y.
Zhu. “Tools for privacy preserving distributed data mining”. In: ACM SIGKDD
Ezplorations Newsletter 4 (2 2002), pp. 28-34. 1SsN: 1931-0145.

Graham Cormode, Cecilia Procopiuc, Divesh Srivastava, Entong Shen, and Ting Yu.

“Differentially Private Spatial Decompositions”. In: Proceedings of the 2012 IEEFE

BIBLIOGRAPHY: BOOKS AND JOURNALS 135

22]

23]

[24]

[25]

[26]

[27]

28]

28th International Conference on Data Engineering. ICDE’12. 2012, pp. 20-31. ISBN:
978-0-7695-4747-3.

Graham Cormode, Divesh Srivastava, Ninghui Li, and Tiancheng Li. “Minimizing
Minimality and Maximizing Utility: Analyzing Method-based Attacks on Anony-
mized Data”. In: Proceedings of the VLDB Endowment 3 (1-2 Sept. 2010), pp. 1045~
1056. 1ssN: 2150-8097.

Ronald Cramer, Ivan Damgard, and Jesper Buus Nielsen. “Multiparty Computation
from Threshold Homomorphic Encryption”. In: Proceedings of the 20th International
Conference on the Theory and Application of Cryptographic Techniques: Advances in
Cryptology. EUROCRYPT’01. 2001, pp. 280-299. 1SBN: 3-540-42070-3.

Ivan Damgérd and Mats Jurik. “A Generalisation, a Simplification and Some
Applications of Paillier’s Probabilistic Public-Key System”. In: Proceedings of the
4th International Workshop on Practice and Theory in Public Key Cryptography:
Public Key Cryptography. PKC’01. 2001, pp. 119-136. 1SBN: 3-540-41658-7.

Ivan Damgard and Gert Laessge Mikkelsen. “Efficient, Robust and Constant-
Round Distributed RSA Key Generation”. In: Theory of Cryptography. Ed. by

Daniele Micciancio. Vol. 5978. Lecture Notes in Computer Science. Springer Berlin

Heidelberg, 2010, pp. 183-200. 1SBN: 978-3-642-11798-5.

Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. “Fully
Homomorphic Encryption over the Integers”. In: Proceedings of the 29th Annual
international conference on Theory and Applications of Cryptographic Techniques.
EUROCRYPT’10. French Riviera, France, 2010, pp. 24-43. 1SBN: 3-642-13189-1, 978-
3-642-13189-9.

Cynthia Dwork. “A firm foundation for private data analysis”. In: Communications

of the ACM 54.1 (2011), pp. 86-95. 1ssN: 0001-0782.

Cynthia Dwork. “Differential privacy”. In: Proceedings of the 33rd International
Conference on Automata, Languages and Programming — Volume Part IL

ICALP’06. 2006, pp. 1-12. 1sBN: 3-540-35907-9, 978-3-540-35907-4.

BIBLIOGRAPHY: BOOKS AND JOURNALS 136

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

Cynthia Dwork. “Differential privacy: a survey of results”. In: Proceedings of the
5th International Conference on Theory and Applications of Models of Computation.
TAMC’08. Xi’an, China, 2008, pp. 1-19. 1SBN: 3-540-79227-9, 978-3-540-79227-7.

Cynthia Dwork, Krishnaram Kenthapadi, Frank D. McSherry, Ilya Mironov, and
Moni Naor. “Our data, ourselves: privacy via distributed noise generation”. In:
Proceedings of the 25th Annual International Conference on The Theory and
Applications of Cryptographic Techniques. EUROCRYPT’06. 2006, pp. 486-503.
ISBN: 3-540-34546-9, 978-3-540-34546-6.

Cynthia Dwork, Frank D. McSherry, Kobbi Nissim, and Adam Smith. “Calibrating
noise to sensitivity in private data analysis”. In: Proceedings of the 3rd conference on
Theory of Cryptography. TCC’06. 2006, pp. 265-284. 1SBN: 3-540-32731-2, 978-3-540-
32731-8.

Taher El Gamal. “A public key cryptosystem and a signature scheme based on discrete
logarithms”. In: Proceedings of CRYPTO 84 on Advances in Cryptology. 1985, pp. 10—
18. 1SBN: 0-387-15658-5.

Benjamin C. M. Fung, Ke Wang, Rui Chen, and Philip S. Yu. “Privacy-preserving
data publishing: A survey of recent developments”. In: ACM Computing Surveys
(CSUR) 42.4 (2010), 14:1-14:53. 13SN: 0360-0300.

Tamas S. Gal, Zhiyuan Chen, and Aryya Gangopadhyay. “A Privacy Protection
Model for Patient Data with Multiple Sensitive Attributes”. In: International Journal

of Information Security and Privacy 2.3 (2008), pp. 28-44.

Simson L. Garfinkel and Michael D. Smith. “Guest Editors’ Introduction: Data

Surveillance”. In: IEEE Security & Privacy 4.6 (2006).

Craig Gentry. “Fully homomorphic encryption using ideal lattices”. In: Proceedings
of the 41st Annual ACM Symposium on Theory of Computing. STOC’09. Bethesda,
MD, USA, 2009, pp. 169-178. 1SBN: 978-1-60558-506-2.

BIBLIOGRAPHY: BOOKS AND JOURNALS 137

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

Arpita Ghosh, Tim Roughgarden, and Mukund Sundararajan. “Universally utility-
maximizing privacy mechanisms”. In: Proceedings of the 41st annual ACM symposium

on Theory of Computing. STOC’09. 2009, pp. 351-360. 1SBN: 978-1-60558-506-2.

Oded Goldreich. Foundations of Cryptography: Volume 1. Basic Tools. Cambridge
University Press, 2007. 1sSBN: 9780521035361.

Oded Goldreich. Foundations of Cryptography: Volume 2. Basic Applications.
Cambridge University Press, 2004. 1sBN: 9780521830843.

Oded Goldreich, Silvio M. Micali, and Avi Wigderson. “How to play ANY mental
game”. In: Proceedings of the 19th Annual ACM Symposium on Theory of Computing.
STOC’87. 1987, pp. 218-229. 1SBN: 0-89791-221-7.

Slawomir Goryczka, Li Xiong, and Benjamin C. M. Fung. “m-Privacy for collaborative
data publishing”. In: 7th International Conference on Collaborative Computing:
Networking, Applications and Worksharing (CollaborateCom). CollaborateCom’11.

2011, pp. 1-10.

Slawomir Goryczka, Li Xiong, and Benjamin C. M. Fung. “m-Privacy for
Collaborative Data Publishing”. In: IEEE Transactions on Knowledge and Data

Engineering 99.PrePrints (2013), p. 1. 1SSN: 1041-4347.

Slawomir Goryczka, Li Xiong, and Vaidy S. Sunderam. “Secure multiparty
aggregation with differential privacy: a comparative study”. In: EDBT/ICDT
Workshops. 2013, pp. 155-163. 1SBN: 978-1-4503-1599-9.

Hamed Haddadi, Richard Mortier, and Steven Hand. “Privacy analytics”. In: ACM
SIGCOMM Computer Communication Review 42.2 (Mar. 2012), pp. 94-98. ISSN:
0146-4833.

Michael Hay, Vibhor Rastogi, Gerome Miklau, and Dan Suciu. “Boosting the
Accuracy of Differentially Private Histograms Through Consistency”. In: Proceedings

of the VLDB Endowment 3.1-2 (Sept. 2010), pp. 1021-1032. 1SSN: 2150-8097.

BIBLIOGRAPHY: BOOKS AND JOURNALS 138

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

Carmit Hazay, Gert Lassge Mikkelsen, Tal Rabin, and Tomas Toft. “Efficient RSA
key generation and threshold Paillier in the two-party setting”. In: Proceedings of
the 12th Conference on Topics in Cryptology. CT-RSA’12. San Francisco, CA, 2012,
pp. 313-331. 1sBN: 978-3-642-27953-9.

Hosagrahar Visvesvaraya Jagadish, Nick Koudas, S. Muthukrishnan, Viswanath
Poosala, Kenneth C. Sevcik, and Torsten Suel. “Optimal Histograms with Quality
Guarantees”. In: Proceedings of the 24rd International Conference on Very Large

Data Bases. VLDB’98. 1998, pp. 275-286. 1SBN: 1-55860-566-5.

Wei Jiang and Chris Clifton. “A secure distributed framework for achieving k-ano-
nymity”. In: The VLDB Journal — The International Journal on Very Large Data
Bases 15.4 (2006), pp. 316-333.

Wei Jiang and Chris Clifton. “Privacy-Preserving Distributed k-Anonymity”. In:
Proceedings of the 19th annual IFIP WG 11.8 working conference on Data and
Applications Security. Vol. 3654. DBSec’05. Storrs, CT, 2005, pp. 166-177. ISBN:
3-540-28138-X, 978-3-540-28138-2.

Norman Lloyd Johnson, Adrienne W. Kemp, and Samuel Kotz. Univariate Discrete
Distributions. Wiley Series in Probability and Statistics. Wiley, 2005. ISBN:

9780471715801.

Pawel Jurczyk and Li Xiong. “Distributed Anonymization: Achieving Privacy for
Both Data Subjects and Data Providers”. In: Proceedings of the 23rd Annual IFIP
WG 11.3 Working Conference: Data and Applications Security XXIII. Vol. 5645.
Lecture Notes in Computer Science. 2009, pp. 191-207. 1SBN: 978-3-642-03006-2.

Jerry Kang, Katie Shilton, Deborah Estrin, Jeff Burke, and Mark Hansen. “Self-

Surveillance Privacy”. In: Towa Law Review 97 (2012), pp. 809-847.

Daniel Kifer. “Attacks on privacy and deFinetti’s theorem”. In: Proceedings of the
2009 ACM SIGMOD International Conference on Management of Data. Providence,
Rhode Island, USA: ACM, 2009, pp. 127-138. 1SBN: 978-1-60558-551-2.

BIBLIOGRAPHY: BOOKS AND JOURNALS 139

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

Daniel Kifer and Ashwin Machanavajjhala. “No free lunch in data privacy”. In:
Proceedings of the 2011 ACM SIGMOD International Conference on Management

of Data. SIGMOD’11. 2011, pp. 193-204. 1SBN: 978-1-4503-0661-4.

Samuel Kotz, Tomasz J. Kozubowski, and Krzysztof Podgoérski. The Laplace
Distribution and Generalizations: A Revisit with Applications to Communications,
Economics, Engineering, and Finance. Progress in Mathematics Series. Springer,

2001. 1SBN: 9780817641665.

Kristen Lefevre, David J. Dewitt, and Raghu Ramakrishnan. “Mondrian multidimen-

sional k-anonymity”. In: ICDE. 2006.

Ninghui Li and Tiancheng Li. “¢-Closeness: Privacy Beyond k-Anonymity and I-
Diversity”. In: Proceedings of the 23rd International Conference on Data Engineering.

ICDE’07. 2007.

Yehuda Lindell and Benny Pinkas. “An Efficient Protocol for Secure Two-Party
Computation in the Presence of Malicious Adversaries”. In: Proceedings of the 26th
Annual International Conference on The Theory and Applications of Cryptographic
Techniques. EUROCRYPT’07. Barcelona, Spain, 2007, pp. 52-78. 1SBN: 978-3-540-
72539-8.

Yehuda Lindell and Benny Pinkas. “Secure Multiparty Computation for Privacy-
Preserving Data Mining”. In: The Journal of Privacy and Confidentiality 1.1 (2009),
pp- 59-98.

Ashwin Machanavajjhala, Johannes Gehrke, Daniel Kifer, and Muthuramakrishnan
Venkitasubramaniam. “I-Diversity: Privacy Beyond k-Anonymity”. In: Proceedings of
the 22nd International Conference on Data Engineering. ICDE’06. 2006, p. 24. ISBN:

0-7695-2570-9.

George Marsaglia and Wai Wan Tsang. “The Ziggurat Method for Generating
Random Variables”. In: Journal of Statistical Software 5.8 (Oct. 2000), pp. 1-7. 1SSN:

1548-7660.

BIBLIOGRAPHY: BOOKS AND JOURNALS 140

[62]

[63]

[64]

[65]

[66]

[67]

[68]

Frank D. McSherry. “Privacy integrated queries: an extensible platform for privacy-
preserving data analysis”. In: Proceedings of the 2009 ACM SIGMOD International
Conference on Management of Data. SIGMOD’09. Providence, Rhode Island, USA,
2009, pp. 19-30. 1sBN: 978-1-60558-551-2.

Frank D. McSherry and Kunal Talwar. “Mechanism Design via Differential Privacy”.
In: Proceedings of the 48th Annual IEEE Symposium on Foundations of Computer
Science. FOCS’07. 2007, pp. 94-103.

Noman Mohammed, Dima Alhadidi, Benjamin C. M. Fung, and Mourad Debbabi.
“Secure Two-Party Differentially Private Data Release for Vertically Partitioned
Data”. In: IEEE Transactions on Dependable and Secure Computing 11.1 (Jan. 2014),

pp. 59-7T1. 1SSN: 1545-5971.

Noman Mohammed, Rui Chen, Benjamin C. M. Fung, and Philip S. Yu.
“Differentially private data release for data mining”. In: Proceedings of the 17th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
KDD’11. San Diego, California, USA, 2011, pp. 493-501. 1sBN: 978-1-4503-0813-7.

Noman Mohammed, Benjamin C. M. Fung, Patrick C. K. Hung, and Cheuk-Kwong
Lee. “Centralized and distributed anonymization for high-dimensional healthcare
data”. In: ACM Transactions on Knowledge Discovery from Data (TKDD) 4.4 (2010),

18:1-18:33.

Noman Mohammed, Benjamin C. M. Fung, Ke Wang, and Patrick C. K. Hung.
“Privacy-Preserving Data Mashup”. In: Proceedings of the 12th International

Conference on Extending Database Technology: Advances in Database Technology.
EDBT’09. Saint Petersburg, Russia, 2009, pp. 228-239. 1SBN: 978-1-60558-422-5.

Min Mun, Sasank Reddy, Katie Shilton, Nathan Yau, Jeff Burke, Deborah Estrin,
Mark Hansen, Eric Howard, Ruth West, and Péter Boda. “PEIR, the Personal
Environmental Impact Report, As a Platform for Participatory Sensing Systems
Research”. In: Proceedings of the 7th International Conference on Mobile Systems,
Applications, and Services. MobiSys’09. Krakow, Poland, 2009, pp. 55-68. 1SBN: 978-
1-60558-566-6.

BIBLIOGRAPHY: BOOKS AND JOURNALS 141

[69]

[70]

[71]

[72]

73]

[74]

[75]

[76]

Mehmet Ercan Nergiz, Abdullah Erciiment Cicek, Thomas B. Pedersen, and Yiicel
Saygin. “A Look-Ahead Approach to Secure Multiparty Protocols”. In: [IEEE
Transactions on Knowledge and Data Engineering 24 (2012), pp. 1170-1185. 1SSN:
1041-4347.

Takashi Nishide and Kouichi Sakurai. “Distributed Paillier Cryptosystem Without
Trusted Dealer”. In: Proceedings of the 11th International Conference on Information
Security Applications. WISA’10. Jeju Island, Korea, 2011, pp. 44—60. 1SBN: 3-642-
17954-1, 978-3-642-17954-9.

Pascal Paillier. “Public-key cryptosystems based on composite degree residuosity
classes”. In: Proceedings of the 18th International Conference on Theory and
Application of Cryptographic Technigues. EUROCRYPT’99. 1999, pp. 223-238. ISBN:
3-540-65889-0.

Thomas B. Pedersen, Yiicel Saygin, and Erkay Savas. “Secret Sharing vs. Encryption-
based Techniques For Privacy Preserving Data Mining”. In: Joint UNECE/Eurostat

work session on Statistical Data Confidentiality. 2007.

Stephen C. Pohlig and Martin E. Hellman. “An improved algorithm for computing
logarithms over GF(p) and its cryptographic significance (Corresp.)” In: IEEFE
Transactions on Information Theory 24.1 (2006), pp. 106-110. 1sSN: 0018-9448.

Viswanath Poosala, Peter J. Haas, Yannis E. loannidis, and Eugene J. Shekita.
“Improved Histograms for Selectivity Estimation of Range Predicates”. In:
Proceedings of the 1996 ACM SIGMOD International Conference on Management
of Data. SIGMOD’96. Montreal, Quebec, Canada, 1996, pp. 294-305. 1SBN: 0-89791-
794-4.

Layla Pournajaf, Li Xiong, Vaidy Sunderam, and Slawomir Goryczka. “Spatial Task
Assignment for Crowd Sensing with Cloaked Locations”. In: 15th IEEE International

Conference on Mobile Data Management (MDM). July 2014.

Vibhor Rastogi and Suman Nath. “Differentially private aggregation of distributed

time-series with transformation and encryption”. In: Proceedings of the 2010 ACM

BIBLIOGRAPHY: BOOKS AND JOURNALS 142

77]

(78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

SIGMOD International Conference on Management of Data. SIGMOD’10. 2010,
pp. 735-746. 1SBN: 978-1-4503-0032-2.

Report of the August 2010 Multi-Agency Workshop on InfoSymbiotics/DDDAS, The
Power of Dynamic Data Driven Applications Systems. Workshop sponsored by: Air

Force Office of Scientific Research and National Science Foundation.

Ronald L. Rivest, Adi Shamir, and Len Adleman. “A method for obtaining digital
signatures and public-key cryptosystems”. In: Communications of the ACM 21.2
(1978), pp. 120-126.

Alexander Russell and David Zuckerman. “Perfect Information Leader Election in
log* n+0O(1) Rounds”. In: Proceedings of the 39th Annual Symposium on Foundations
of Computer Science. Nov. 1998, pp. 576-583. 1SBN: 0-8186-9172-7.

Pierangela Samarati. “Protecting Respondents’ Identities in Microdata Release”. In:

IEEE Transactions on Knowledge and Data Engineering 13.6 (2001), pp. 1010-1027.

Adi Shamir. “How to share a secret”. In: Communications of the ACM 22.11 (Nov.

1979), pp. 612-613. 1sSN: 0001-0782.

Rashid Sheikh, Beerendra Kumar, and Durgesh Kumar Mishra. “A Distributed
k-Secure Sum Protocol for Secure Multi-Party Computations”. In: Journal of

Computing 2 (3 Mar. 2010), pp. 68-72. 1SSN: 2151-9617.

Elaine Shi, T.-H. Hubert Chan, Eleanor G. Rieffel, Richard Chow, and Dawn Song.
“Privacy-Preserving Aggregation of Time-Series Data”. In: Proceedings of the 18th

Annual Network and Distributed System Security Symposium. NDSS’11. 2011.

Katie Shilton. “Four Billion Little Brothers?: Privacy, mobile phones, and ubiquitous
data collection”. In: Communications of the ACM 52 (11 2009), pp. 48-53. ISSN:

0001-0782.

Latanya Sweeney. “k-Anonymity: A Model for Protecting Privacy”. In: International
Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 10.5 (2002),

pp. 557-570. 1SSN: 0218-4885.

BIBLIOGRAPHY: BOOKS AND JOURNALS 143

[36]

87]

[38]

[89]

[90]

[91]

[92]

(93]

[94]

Latanya Sweeney. Uniqueness of Simple Demographics in the U.S. Population. Tech.

rep. Carnegie Mellon University, 2000.

Yufei Tao, Xiaokui Xiao, Jiexing Li, and Donghui Zhang. “On Anti-Corruption
Privacy Preserving Publication”. In: Proceedings of the 2008 IEEE 24th International
Conference on Data Engineering. ICDE’08. 2008, pp. 725-734. I1SBN: 978-1-4244-1836-
7.

Jaideep Vaidya and Chris Clifton. “Secure set intersection cardinality with application
to association rule mining”. In: Journal of Computer Security 13 (4 July 2005),

pp. 593-622. 1SSN: 0926-227X.

Michael M. Wagner, Andrew W. Moore, and Ron M. Aryel, eds. Handbook of
Biosurveillance. Academic Press, June 2006. 1SBN: 978-0123693785.

Xiaokui Xiao, Gabriel Bender, Michael Hay, and Johannes Gehrke. “iReduct:
Differential Privacy with Reduced Relative Errors”. In: Proceedings of the 2011 ACM
SIGMOD International Conference on Management of Data. SIGMOD’11. Athens,
Greece, 2011, pp. 229-240. 1SBN: 978-1-4503-0661-4.

Xiaokui Xiao and Yufei Tao. “Personalized privacy preservation”. In: Proceedings
of the 2006 ACM SIGMOD International Conference on Management of Data.
SIGMOD’06. Chicago, IL, USA, 2006, pp. 229-240. 1SBN: 1-59593-434-0.

Xiaokui Xiao, Guozhang Wang, and Johannes Gehrke. “Differential Privacy via
Wavelet Transforms”. In: IEEE Transactions on Knowledge and Data Engineering

23.8 (Aug. 2011), pp. 1200-1214. 1SSN: 1041-4347.

Yonghui Xiao, Li Xiong, Liyue Fan, and Slawomir Goryczka. “DPCube: Differentially
Private Histogram Release through Multidimensional Partitioning”. In: ArXiv e-

prints (Feb. 2012). eprint: 1202.5358.

Li Xiong, Vaidy S. Sunderam, Liyue Fan, Slawomir Goryczka, and Layla Pournajaf.
“PREDICT: Privacy and Security Enhancing Dynamic Information Collection and
Monitoring”. In: Proceedings of the International Conference on Computational

Science. Vol. 18. ICCS’13. June 2013, pp. 1979-1988.

1202.5358

BIBLIOGRAPHY: BOOKS AND JOURNALS 144

[95]

[96]

[97]

(98]

Jia Xu, Zhenjie Zhang, Xiaokui Xiao, Yin Yang, Ge Yu, and Marianne Winslett.
“Differentially private histogram publication”. In: The VLDB Journal — The
International Journal on Very Large Data Bases 22.6 (2013), pp. 797-822. ISSN:

1066-8888.

Andrew Chi-Chih Yao. “How to generate and exchange secrets”. In: Proceedings of
the 27th Annual Symposium on Foundations of Computer Science. SFCS’86. IEEE,
1986, pp. 162-167.

W. Katherine Yih, Swati Deshpande, Candace Fuller, Dawn Heisey-Grove, John Hsu,
Benjamin A. Kruskal, Martin Kulldorff, Michael Leach, James Nordin, Jessie Patton-
Levine, Ella Puga, Edward Sherwood, Irene Shui, and Richard Platt. “Evaluating
real-time syndromic surveillance signals from ambulatory care data in four states”.

In: Public Health Reports 125.1 (2010).

Sheng Zhong, Zhigiang Yang, and Rebecca N. Wright. “Privacy-enhancing k-
anonymization of customer data”. In: Proceedings of the 24th ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems. PODS’05.
Baltimore, Maryland, 2005, pp. 139-147. 1SBN: 1-59593-062-0.

BIBLIOGRAPHY: ELECTRONIC RESOURCES 145

Bibliography: Electronic Resources

[99] 2009 HIN1 Flu. http://www.cdc.gov/hiniflu/. 2009.

[100] Colt: Open Source Libraries for High Performance Scientific and Technical

Computing in Java. http://acs.1bl.gov/software/colt.

[101] Inwvestigation Update: Qutbreak of Shiga toxin-producing E. coli 0104 (STEC
0104:HJ) Infections Associated with Travel to Germany. http://www.cdc.gov/

ecoli/2011/ecoli0104/. 2011.

[102] m-Anonymizer: Collaborative Distributed Anonymization Library with m-Privacy.

http://www.mathcs.emory.edu/aims/m-anonymizer/. 2011.

[103] SEPIA: Security through Private Information Aggregation. http://sepia.ee.ethz.

ch

[104] UTD Paillier Threshold Encryption Toolboz: an Open Source Library. http://www.

utdallas.edu/ "mxk093120/paillier.

http://www.cdc.gov/h1n1flu/
http://acs.lbl.gov/software/colt
http://www.cdc.gov/ecoli/2011/ecoliO104/
http://www.cdc.gov/ecoli/2011/ecoliO104/
http://www.mathcs.emory.edu/aims/m-anonymizer/
http://sepia.ee.ethz.ch
http://sepia.ee.ethz.ch
http://www.utdallas.edu/~mxk093120/paillier
http://www.utdallas.edu/~mxk093120/paillier

