
Distribution Agreement

In presenting this thesis or dissertation as a partial fulfillment of the re-
quirements for an advanced degree from Emory University, I hereby grant
to Emory University and its agents the non-exclusive license to archive,
make accessible, and display my thesis or dissertation in whole or in part in
all forms of media, now or hereafter known, including display on the world
wide web. I understand that I may select some access restrictions as part
of the online submission of this thesis or dissertation. I retain all ownership
rights to the copyright of the thesis or dissertation. I also retain the right
to use in future works (such as articles or books) all or part of this thesis or
dissertation.

Signature:

Slawomir A. Goryczka Date

Secure and Privacy-Preserving Distributed Data Release

By

Slawomir A. Goryczka
Doctor of Philosophy

Computer Science and Informatics

Li Xiong, Ph.D.
Advisor

Shun Yan Cheung, Ph.D.
Committee Member

Benjamin C. M. Fung, Ph.D.
Committee Member

Vaidy Sunderam, Ph.D.
Committee Member

Accepted:

Lisa A. Tedesco, Ph.D.
Dean of the Graduate School

Date

Secure and Privacy-Preserving Distributed Data Release

By

Slawomir A. Goryczka
M.S., Computer Science, Emory University, Atlanta, 2013

M.S./B.S., Mathematics, AGH University of Science and Technology, Kraków, 2007
M.S./B.S., Computer Science, AGH University of Science and Technology, Kraków, 2006

Advisor: Li Xiong, Ph.D.

An abstract of
A dissertation submitted to the Faculty of the

James T. Laney School of Graduate Studies of Emory University
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in Computer Science and Informatics

2014

Abstract

Secure and Privacy-Preserving Distributed Data Release
By Slawomir A. Goryczka

The rapidly increasing prevalence of distributed data-driven applications
highlights security and privacy issues in storing and processing sensitive
data. Although manipulating raw data may violate privacy of their owners,
techniques for processing and using privacy-preserving data descriptions can
help. It remains a challenge, however, to ensure that adapted and new
solutions are efficient, secure, and preserve privacy of data owners without
disclosing confidentiality of data providers.

This dissertation proposes a new notion of m-privacy that addresses
situations in which data providers may act as adversaries. To verify if such
adversaries are capable of breaching privacy, we introduce novel strategies
and an adaptive algorithm to select and use the most efficient approach.
In addition, we design an algorithm to anonymize data to be m-private,
i.e., any m colluding parties cannot compromise privacy. All verification
and anonymization algorithms are implemented to be run in distributed
environments by a trusted third party.

For settings without a trusted third party, we introduce new secure mul-
tiparty computation protocols that implement m-privacy verification and
anonymization algorithms. For each protocol, we prove its security, ana-
lyze its communication complexity, and evaluate its overall performance for
various settings.

This dissertation also describes a new two-phase algorithm to release dif-
ferentially private histograms for records with customized privacy levels. We
adapt a v-optimal partitioning algorithm to make it usable with differential
privacy, and experimentally evaluate its performance.

Finally, for settings without a trusted third party, this dissertation pres-
ents a new distributed differential privacy mechanism that achieves collusion
resistance with small overhead. We also define an enhanced fault tolerant
and secure scheme for multiparty aggregation operations, and we employ
it to implement our differential privacy mechanism in distributed environ-
ments. Both the privacy mechanism and the fault tolerant scheme are ex-
tensively analyzed and experimentally evaluated.

Secure and Privacy-Preserving Distributed Data Release

By

Slawomir A. Goryczka
M.S., Computer Science, Emory University, Atlanta, 2013

M.S./B.S., Mathematics, AGH University of Science and Technology, Kraków, 2007
M.S./B.S., Computer Science, AGH University of Science and Technology, Kraków, 2006

Advisor: Li Xiong, Ph.D.

A dissertation submitted to the Faculty of the
James T. Laney School of Graduate Studies of Emory University

in partial fulfillment of the requirements for the degree of
Doctor of Philosophy

in Computer Science and Informatics
2014

Acknowledgments

First, I would like to thank my advisor, Prof. Li Xiong. Her insight
and guidance were invaluable in exploring areas of research described in this
dissertation. I would like to thank her for enormous hours we spent together
discussing and addressing different privacy and security challenges. Also, I
thank her for her patience, support, and all the words of encouragement that
helped me to overcome doubts and tough moments of despair over last years.
I would also like to thank my committee members, Prof. Vaidy Sunderam,
Prof. Shun Yan Cheung and Prof. Benjamin C. M. Fung, for their valuable
suggestions and comments. Discussions with them greatly helped me shape
this dissertation. Additionally, I would like to thank Vaidy for his support,
especially over last months. I would like to thank Prof. Ken Mandelberg,
Prof. James Lu, Prof. Michelangelo Grigni, Prof. Eugene Agichtein, and
Prof. Dominic Thomas. The knowledge and expertise they shared with me
is a foundation of my studies and my teaching experience. I am grateful
to all faculty, staff, and colleagues, who I met during my studies at Emory
University. They build an exceptional and unique community of researchers
that encourages everyone to ask questions, challenge propositions, verify
ideas, and prove new theorems. I would like to thank to all my students for
the honor of being their teacher. I also thank my colleague, Pawe l Jurczyk,
for inspiring me to return to academia, and for revealing new and exciting
challenges in privacy and security. Finally, I owe my thanks to my family
and all my friends, who helped and supported me every time I needed it
over last years.

Contents

Contents

List of Figures

List of Tables

List of Algorithms

1 Introduction 1

1.1 Motivation . 1

1.1.1 Application Scenarios . 1

1.1.2 Challenges . 5

1.2 Contributions . 7

1.2.1 Syntactic Privacy Notions in Distributed Environments 8

1.2.2 Semantic Privacy Notions (Di�erential Privacy) in Distributed Envi-

ronments . 11

1.3 Organization . 13

2 Related Work 14

2.1 Data Privacy . 14

2.1.1 Syntactical Privacy Notions . 14

2.1.2 Di�erential Privacy . 15

2.2 Security of Computations . 16

2.2.1 Secure Multiparty Computations . 16

2.2.2 Secret Sharing Schemes . 17

2.2.3 Encryption Schemes . 17

2.3 Secure Multiparty Computations with Di�erential Privacy 18

2.4 Secure Multiparty Data Statistics with Di�erential Privacy 19

3 Distributed Data Aggregation with m-Privacy 20

3.1 Introduction . 20

3.2 m-Privacy De�nition . 23

3.2.1 m-Privacy . 24

3.2.2 Monotonicity of Privacy Constraints 25

3.3 m-Privacy Veri�cation . 28

3.3.1 Adversary Space Enumeration . 29

3.3.2 Heuristic Algorithms for EG Monotonic Constraints 30

3.3.3 m-Privacy Veri�cation Algorithm for Non-EG Monotonic Constraints . 35

3.3.4 The Worst-Case Time Complexity . 36

3.3.5 The Average Time Complexity . 37

3.4 Anonymization for m-Privacy . 44

3.5 Experimental Evaluation . 47

3.5.1 Experiment Setup . 47

3.5.2 m-Privacy Veri�cation . 48

3.5.3 m-Privacy Anonymization . 51

3.5.4 m-Privacy Veri�cation Experiments for non-EG Monotonic Constraints 55

3.5.5 m-Privacy Anonymization Experiments for non-EG Monotonic Con-

straints . 56

4 Secure Multiparty Data Aggregation with m-Privacy 61

4.1 Introduction . 61

4.2 Secure Privacy Constraint Veri�cation Protocols 62

4.2.1 Secure k -Anonymity Veri�cation . 62

4.2.2 Secure l -Diversity Veri�cation . 63

4.3 Secure m-Privacy Veri�cation Protocols . 65

4.3.1 Secure Leader Election Protocol . 66

4.3.2 Secure Sorting and Adaptive Ordering 67

4.3.3 Secure m-Privacy Veri�cation Protocol 68

4.4 Secure m-Privacy Anonymization Protocols 71

4.4.1 Secure Provider-aware Anonymization Protocol 71

4.4.2 Secure Fitness Score Protocol . 74

4.5 Experimental Evaluation . 75

4.5.1 Experiment Setup . 76

4.5.2 Secure m-Privacy Veri�cation . 77

4.5.3 Secure m-Privacy Anonymization . 78

5 Distributed Data Aggregation with Customized Di�erential Privacy 80

5.1 Di�erential Privacy . 80

5.1.1 Query Sensitivity . 81

5.1.2 m-Privacy and Di�erential Privacy . 81

5.2 Customized Privacy Budget . 82

5.3 Di�erentially Private Histograms . 83

5.3.1 Data-driven Histograms . 85

5.3.2 Privacy- and Data- Driven Histograms 85

5.3.3 Strategies of Spending Privacy Budgets 88

5.4 Experimental Evaluation . 90

5.4.1 Settings . 90

5.4.2 Partitioning . 91

5.4.3 Partitioning Methods . 92

5.4.4 Histogram Building Approaches . 95

6 Secure Multiparty Data Aggregation with Customized Di�erential Priva-

cy 96

6.1 Motivation . 96

6.2 Distributed Di�erential Privacy Mechanisms 99

6.2.1 Distributed Laplace Mechanism . 99

6.2.2 Geometric Mechanisms . 102

6.2.3 Distributed Noise Approximation Mechanisms 105

6.2.4 Diluted Distributed Mechanisms . 106

6.2.5 Comparison . 107

6.3 Security Schemes . 108

6.3.1 Secret Sharing Schemes . 108

6.3.2 Perturbation-Based Protocols . 110

6.3.3 Homomorphic Encryption . 111

6.3.4 Enhanced Fault Tolerant Scheme . 113

6.3.5 Comparison . 116

6.4 Experimental Evaluation . 118

6.4.1 Experiments Setup . 118

6.4.2 Privacy . 119

6.4.3 Security . 122

7 Conclusions and Future Work 128

7.1 Summary . 128

7.1.1 Syntactic Privacy Notions in Distributed Environments 128

7.1.2 Semantic Privacy Notions in Distributed Environments 129

7.2 Future Work . 130

Books and Journals . 132

Electronic Resources . 144

List of Figures

1.1 An example of a third party surveillance scenario: a town square with people

(circles) divided into 3 zones monitored by data providers (colored and shaded

circles). 2

1.2 Collecting, preparing, and releasing privacy preserving data descriptions by

a trusted third party (TTP). 4

1.3 Preparing and releasing privacy preserving data descriptions by collaborating

data providers running secure multiparty computation (SMC) protocols with

insecure communication and computation resources. 5

3.1 Two types of distributed data publishing settings for four providers. 21

3.2 The domain of coalitions for data providers {P1, P2, P3, P4} and its simpli�ed

representation for n providers with two types of pruning. Plus signs represent

coalitions that cannot breach privacy, while minus signs coalitions that can

breach privacy of given anonymized data records. 29

3.3 Adaptive ordering for e�cient pruning and an example run of the binary

m-privacy veri�cation algorithm. 31

3.4 Runtime (logarithmic scale) vs. power of m-privacy for |TG|/nG = 10. 48

3.5 Runtime (logarithmic scale) vs. power of m-privacy for |TG|/nG = 50. 49

3.6 Runtime (logarithmic scale) vs. number of data providers for |TG|/nG = 10. . 50

3.7 Runtime (logarithmic scale) vs. number of data providers for |TG|/nG = 50. . 50

3.8 Runtime (logarithmic scale) vs. |TG|/nG. 51

3.9 Runtime (logarithmic scale) vs. the average �tness score of data providers. . . 51

3.10 Runtime vs. power of m-privacy. 52

3.11 Query error vs. power of m-privacy. 52

3.12 Runtime (logarithmic scale) vs. |T | for anonymization algorithms. 53

3.13 Runtime (logarithmic scale) vs. |T | for di�erent veri�cation strategies. 54

3.14 Runtime and query errors vs. k in m-privacy with respect to k-anonymity. . . 55

3.15 Runtime and query errors vs. l in m-privacy with respect to l -diversity. 55

3.16 Runtime (logarithmic scale) vs. power of m-privacy. 56

3.17 Runtime (logarithmic scale) vs. number of data providers. 56

3.18 Runtime (logarithmic scale) vs. power of m-privacy. 57

3.19 Query error vs. power of m-privacy. 57

3.20 Runtime (logarithmic scale) vs. number of records. 58

3.21 Query error vs. number of records. 58

3.22 Runtime (logarithmic scale) and query errors vs. k in k -anonymity used in a

privacy constraint C. 59

3.23 Runtime (logarithmic scale) and query errors vs. t in t-closeness used in a

privacy constraint C. 59

4.1 Computation time (logarithmic scale) vs. power of m-privacy. 77

4.2 Computation time (logarithmic scale) vs. number of data providers. 78

4.3 Computation time vs. power of m-privacy. 79

4.4 Computation time vs. number of data providers. 79

5.1 V-optimal partitioning of privacy budgets among 3 buckets using (a) the

average and (b) the minimum as a target value of each bucket. 88

5.2 Saturation of the example record privacy budgets for buckets. 89

5.3 Partitions of records by AV G and MIN methods for binomially distributed

privacy budgets. 91

5.4 Partitions of records by AV G and MIN methods for inversed exponentially

distributed privacy budgets. 92

5.5 Query error for histograms built from di�erent partitionings of records with

binomially distributed privacy budgets vs. number of buckets k. 92

5.6 Query error for histograms built from di�erent partitionings of records with

budgets drawn from normal distribution vs. number of buckets k. 93

5.7 Query error for histograms built from di�erent partitionings and for di�erent

number of buckets k for records with inversted exponentially distributed

budgets. 94

5.8 Query error (logarithmic scale) for histograms with records having di�erent

average privacy budgets, which were drawn from binomial distribution. 94

5.9 Query error for di�erent methods of building histograms for four partitions

and two di�erent distributions of privacy budgets. 95

6.1 System settings with distributed data contributors Di, which contribute their

values xi and noise shares Ri to securely compute a function f and ensure

di�erential privacy of data subjects. 97

6.2 The average noise share generation times in microseconds for di�erent

mechanisms and platforms. 120

6.3 The average noise share generation times in microseconds for di�erent δ and

γ, run on the server. 121

6.4 The average magnitude of redundant noise for di�erent rate of required noise

shares γ (α = 0.1), and di�erent privacy budgets α (γ = 10/32). 122

6.5 The average runtimes of a protocol for di�erent encryption key sizes k

(n = 32) and di�erent number of participants n (k = 128). 123

6.6 The average runtimes for di�erent Shamir's scheme threshold t (n = 32) and

privacy mechanisms. 124

6.7 The average runtimes for di�erent numbers of participants and fault tolerant

security schemes. 125

6.8 The average local computation times (logarithmic scale) for data preparations

in di�erent security schemes on di�erent platforms. 125

6.9 The average runtimes for di�erent numbers of nodes and security schemes. . . 126

List of Tables

1.1 Contributions. 8

1.2 m-Adversary and m-privacy example. 9

3.1 Experiment parameters and default values for experiments with EG and

non-EG monotonic constraints, which are outside and within parentheses,

respectively. 47

4.1 Experiment settings and default values of SMC protocols. 76

5.1 Example records with di�erent privacy budgets. 83

6.1 Comparison of complexity, fault tolerance level, and max. allowed collusion

for SMC schemes with n parties. 116

6.2 Default values of experiment parameters. 119

List of Algorithms

1 The top-down m-privacy veri�cation algorithm. 33

2 The binary m-privacy veri�cation algorithm. 34

3 The veri�cation algorithm of m-privacy w.r.t. any C. 36

4 The provider-aware anonymization algorithm. 45

5 The secure k-anonymity veri�cation protocol. 62

6 The secure l-diversity veri�cation protocol. 64

7 The Secure Leader Election protocol (SLE). 66

8 The secure m-privacy veri�cation protocol w.r.t. EG monotonic constraint

C for top-down, bottom-up, and direct algorithms; code run by the leading

provider P ′. 69

9 The secure provider-aware anonymization protocol. 72

10 The secure �tness score protocol. 75

11 The PSD: a greedy heuristic of �nding the k-histogram of (x1, . . . , xi), based

on [22]. 86

12 The dynamic programming algorithm SSE∗ of �nding the optimal k-histogram

of (x1, . . . , xi) for a given de�nition of the function SSE. Based on [47]. 87

13 The createBucket algorithm of creating a saturated bucket. 89

14 The data aggregation and recovery procedures of the EFT scheme, which is

run by an untrusted party. 114

15 The encryption function run by a party i contributing xi at time t with

encryption keys exchanged with parties Ni of the EFT scheme. 115

16 The recovery protocol run by a party i contributing xi at time t with neighbors

Ni and Faulted parties failing of the EFT scheme. 115

1

Chapter 1

Introduction

1.1 Motivation

The rapidly increasing prevalence of distributed data-driven applications has highlighted

security and privacy issues in storing and processing sensitive data. Although manipulating

raw data in distributed settings may violate privacy of data owners, we can still employ

di�erent techniques to prepare, maintain, and use privacy-preserving descriptions of data,

e.g., anonymized databases, database statistics, data mining models. Such demand

to perform more privacy-preserving computations in distributed settings has increased

signi�cantly. To address these emerging requirements, new privacy mechanisms need to

be developed, and existing techniques need to be adapted to distributed environments.

1.1.1 Application Scenarios

Ensuring security and privacy in the process of preparing and using descriptions of

distributed and sensitive data is a challenge, largely due to the absence of mutual trust

among distributed, autonomous data owners and providers. All descriptions of data are

subject to at least two privacy constraints: 1) privacy of data subjects or owners, and 2)

con�dentiality of data providers. For example, consider a system that integrates publicly

available �ight schedules with sensitive information about booked tickets. Data users, e.g.,

researchers that study patterns of disease spreading along communication routes, cannot

process such data until a consent from every passenger is given. However, if such data

2

could be made available without divulging personal details, e.g., through obfuscation or

aggregation, many bene�ts would accrue.

A few other scenarios in which release of sensitive data, modi�ed to protect privacy

would be useful, are described below.

Syndromic Surveillance. The terrorist attacks in 2001 and following years, and various

disease outbreaks, such as the 2009 outbreak of H1N1 Flu [99], and the outbreak in Germany

of Escherichia coli [101] have prompted much attention in syndromic surveillance systems

[15, 89, 97]. In a simple scenario, a public health agency collects data from individual

visitors that report their In�uenza cases (self surveillance). The collected data, e.g., the

daily number of In�uenza cases, is monitored and analyzed to detect seasonal epidemic

outbreaks. Both participation of a person and details of medical diagnosis are example of

highly sensitive data, and privacy of their owners should be protected. Ensuring that data

are collected and processed in a secure and privacy-aware manner is a challenge, but could be

very valuable for users and researchers, if made available with high utility and high privacy

guarantees.

Intelligence Data Collection. In numerous situations, intelligence gathering is performed

in crowd settings both non-deliberately by the general public and by principals, who are

anonymously embedded in the crowd. A canonical example is an uprising in a major city

under hostile governmental control. The general public may use smart devices to report on

various �eld data (third party surveillance [52]) as shown in Figure 1.1.

Figure 1.1: An example of a third party surveillance scenario: a town square with people
(circles) divided into 3 zones monitored by data providers (colored and shaded circles).

In Figure 1.1, the shaded circles that represent data providers whose identity and location

3

should be hidden, and the open circles represent targets or data subjects about whom generic

or abstract data should be reported, but personal data should not be divulged. There may

also be agents among the crowd, reporting similar data using popular media (e.g. Twitter)

to avoid identi�cation. In either scenario, the number of participants reporting data may

change over time, but that shall neither compromise their security, nor reveal their identity.

Collaborative Medical Data Aggregation. Consider a scenario in which a group of

hospitals would like to collaborate in order to evaluate medical treatments of a rare illness.

They cannot share their patient records among themselves without getting consent from all

patients, but they can anonymize their records and use them instead. There may be also

patients with records in multiple hospitals, and joining their data from di�erent sources

without their consent should not be possible. In addition, employees of one hospital may

have a history of working for another hospital, hence they may have knowledge about some

patients from their former place of work. That knowledge could be used by them, while

analyzing anonymized data, which could lead to a privacy breach. To address this threat

each hospital can anonymize their data records independently and then aggregates them

with other hospitals. Alternatively, they can anonymize their data records in collaboration,

i.e., hospitals would securely aggregate and then anonymize their data. In either case all

privacy and security risks have to be carefully analyzed and addressed.

Generalized Settings. All above examples have similar goals and the same actors: data

providers (hospitals, agents, patients) and data owners or subjects (patients, individuals).

Notice that for some scenarios data owners are also data providers. In all examples

data providers would like to anonymize data and/or compute some data statistics without

exposing to third parties any sensitive data. Anonymized data are created from original

data by applying suppression, generalization, or perturbation, such that no data recipient

is able to learn anything about any data owner, except what can be derived from the �nal

result [38]. Thus, we generalize above examples into one with the goal of preparing a data

description (e.g., anonymized data, data statistics), which preserves both privacy of data

owners, or subjects and con�dentiality of data providers.

One approach to ful�ll the goal is to �nd a trusted third party (TTP) that will collect data

4

from all providers and then perform necessary computations, or transformations to ensure

that sensitive data is not disclosed (Figure 1.2). Employing a TTP to do computations

addresses some, but not all challenges. For example, a few data providers can be attackers

that collude in order to increase their chances of success. In addition, each data provider

may have di�erent privacy requirements, which need to be ful�lled. On top of that, a TTP

may be unreliable or even unavailable, e.g., �nding a TTP for a group of hospitals to share

their data without consent from every patients may be impossible, unless such access is

granted by law.

anonymized

dataset

privacy

preserving

data

statistics

TTP
data provider

data

provider

data

provider

data provider

data provider

data provider

Figure 1.2: Collecting, preparing, and releasing privacy preserving data descriptions by a
trusted third party (TTP).

When a TTP is not available all computations need to be executed by untrusted third

parties or data providers without disclosing any sensitive data. Therefore, an important

challenge is to protect the privacy of data owners and subjects, when a data aggregator is

untrusted or not present. If the TTP is not present, providers may collaborate to perform a

secure multiparty computations (SMC) protocol that returns the same outcome as it would

be returned by the TTP. Each SMC protocol is described as a sequence of computations

and exchanging messages among data providers.

Figure 1.3 depicts a general scenario with a group of data providers participating in

5

anonymized

dataset

privacy

preserving

data

statistics

SMC
data provider

data

provider

data

provider

data provider

data provider

data provider

Figure 1.3: Preparing and releasing privacy preserving data descriptions by collaborating
data providers running secure multiparty computation (SMC) protocols with insecure com-
munication and computation resources.

an SMC protocol that returns anonymized dataset, or privacy preserving data statistics.

In such settings, each data provider is connected to others using insecure communication

channels. In addition, we assume that each provider is semi-honest (honest-but-curious)

[39], i.e., it follows every step of an SMC protocol, but may use all intermediate results and

its own data to breach privacy of remaining data providers and individuals. As a �nal result

of our setting the SMC protocol returns a privacy-preserving description of data.

1.1.2 Challenges

Privacy Challenges. To model privacy threats for data providers and data owners we need

to de�ne a potential attacker and its background knowledge. A potential attacker can be

external or internal. In either case predicting possible background knowledge of an attacker

is a challenge. For example, some third parties may corrupt a small fraction of anonymized

records, which may lead to a privacy breach [87]. In the most restrictive setting, we assume

that all but one data record are corrupted. The fewer data records are breached, the more

utility of original data can be preserved in its description. Finding a reasonable tradeo�

between level of privacy restrictiveness and utility of data is a main privacy challenge for all

6

settings.

If a TTP is present, it needs to also evaluate risks of colluding data providers, i.e.,

providers that share their data, which may increase their chances in breaching privacy.

Preserving privacy in a TTP scheme in the presence of colluding providers is a challenge

that got very little attention so far.

Traditional syntactic approaches to data anonymization, such as removing identifying

attributes, generalizing, or perturbing individual attribute values, preserve truthfulness of

data, i.e., if needed an anonymized record can be linked with its original record. Many

syntactic privacy notions utilize these approaches to counter various attacks, e.g., [57, 60,

85]. An important challenge for such notions in the distributed setting is to model the

background knowledge of attackers. Notice that data providers may be among potential

adversaries as well. In addition, if adversaries collude, they may share their data records,

which increases their attacking power. To preserve privacy of remaining data owners attacked

by a coalition of adversaries, new privacy mechanisms are needed.

Recently introduced semantic approaches protect participation of data owners in any

computed statistics. They do not preserve truthfulness of data, but they also make no

assumptions about background knowledge of attackers, i.e., they assume the worst-case

scenario, in which such attacker knows all but one record. Semantic mechanisms employ

di�erent techniques to ensure data privacy, among which are perturbation and random

sampling, e.g., di�erential privacy [28, 62]. A challenge for semantic privacy notions is to

ensure that by removing a single record from a dataset all evidences of its presence are

removed as well.

Applying semantic privacy notions to distributed settings with unreliable and colluding

data providers introduces additional challenges. To address some of them, all data providers

should participate in data anonymization in the same way, as we do not know which of

them is reliable and not colluding. For example, each data provider needs to participate in

perturbation process, in order to ensure that necessary level of perturbation is achieved even

when a few participants have failed. Reliability of distributed systems is usually achieved by

replicating necessary actions. Requiring participation of fewer providers to ensure enough

perturbation, results in introducing additional and redundant noise. Finding a distributed

7

protocol that generates enough noise/perturbation with a small magnitude of redundant

noise is an important challenge, which needs to be addressed to ensure scalability of the

protocol. On top of that, di�erent data providers (or data owners) may require di�erent

levels of privacy, e.g., in di�erential privacy level of required privacy is expressed by its

parameter, which is often called a �privacy budget�. For such settings new approaches

are needed to e�ciently release an integrated view of the data, while guaranteeing such

customized level of privacy requirements.

Security Challenges. Both distributed settings, with and without a TTP, give rise to many

data privacy and security challenges [52, 68, 77, 84]. If a TTP is present, then ensuring secure

communication between each data provider and the TTP is the most important challenge.

For scenarios without a TTP all data providers need to agree on security schema and

the protocol they will run. They may decide to choose a speci�c secret sharing scheme,

encryption scheme, or perturbation scheme. Each of these schemes has its own challenges,

but few of them are common for all schemes, e.g., colluding data providers, or unreliable

communication channels. An additional group of issues is related to performance of protocols

and security schemes, e.g., communication complexity of many protocols in Shamir's secret

sharing scheme may be very high.

In addition, con�dentiality of data providers should be also guaranteed, as any

information about them and about data they provide may harm their security. Therefore,

information about participating data providers is also sensitive and should be protected,

which introduce additional challenges.

1.2 Contributions

Our contributions cover two dimensions of presented challenges: 1) di�erent distributed

data settings, i.e., with and without a TTP, 2) two groups of privacy notions: syntactic

and semantic. In particular, we propose new solutions for anonymization of distributed

datasets using syntactic notions. We introduce an m-privacy notion and corresponding

algorithms to address the challenges when data providers may act as adversaries. We

also introduce solutions to compute statistics of distributed data with respect to semantic

8

privacy notions. We propose new algorithms to address the challenge when di�erent data

providers or data owners have varied (customized) requirement of di�erential privacy. Our

proposed algorithms are implemented for centralized scenarios, i.e., they can be run by

a TTP (Table 1.1). In addition, we de�ne new secure multiparty computation (SMC)

protocols that implement these algorithms in a distributed environment, i.e., they can be

run collaboratively by data providers and untrusted third parties without involving any

TTP. All our algorithms and protocols are collusion resistance, i.e., they securely generate

privacy-preserving data description in settings with a group of colluding data providers. The

key contributions for proposed settings are presented in Table 1.1.

Table 1.1: Contributions.
Privacy notions TTP SMC

Syntactic m-privacy: [102], [41] distributed m-privacy protocols:
[102], [42]

Semantic customized di�erential privacy:
[93]

distributed customized
di�erential privacy protocols:
[43], [94], [75]

1.2.1 Syntactic Privacy Notions in Distributed Environments

We assume that data records are horizontally distributed among data providers and each

record has an owner or a subject, whose identity should be protected. Each record attribute

is either an identi�er, which directly identi�es the owner, or a quasi-identi�er (QID), which

may identify the owner if joined with a publicly known dataset, or a sensitive attribute,

which values should not be possible to link with their data owners or subjects. A data

recipient also has access to anonymized data as well as to some background knowledge, which

represents any publicly available information about released data, e.g., Census datasets. For

example, Table 1.2 presents data contributed by hospitals P1, P2, P3, and P4 that wish to

collaboratively anonymize their respective patient databases T1, T2, T3, and T4. In each

database, Name is an identi�er, {Age, Zip} is a quasi-identi�er, and Disease is a sensitive

attribute. Notice that one record, owned by Olga, is contributed by two providers P2 and

P4, and is represented as a single record in anonymized dataset.

Syntactic privacy notions guarantee that an identi�er can be linked to a sensitive value

9

Table 1.2: m-Adversary and m-privacy example.
T1

Name Age Zip Disease
Alice 24 98745 Cancer
Bob 35 12367 Epilepsy
Emily 22 98712 Asthma

T2

Name Age Zip Disease
Olga 32 98701 Cancer
Mark 37 12389 Flu
John 31 12399 Flu

T3

Name Age Zip Disease
Sara 20 12300 Epilepsy
Cecilia 39 98708 Flu

T4

Name Age Zip Disease
Olga 32 98701 Cancer
Frank 33 12388 Asthma

T ∗
a

Providers Name Age Zip Disease
P1 Alice [20-30] ***** Cancer
P1 Emily [20-30] ***** Asthma
P3 Sara [20-30] ***** Epilepsy

P2 John [31-34] ***** Flu
P2, P4 Olga [31-34] ***** Cancer
P4 Frank [31-34] ***** Asthma

P1 Bob [35-40] ***** Epilepsy
P2 Mark [35-40] ***** Flu
P3 Cecilia [35-40] ***** Flu

T ∗
b

Providers Name Age Zip Disease
P1 Alice [20-40] ***** Cancer
P2 Mark [20-40] ***** Flu
P3 Sara [20-40] ***** Epilepsy

P1 Emily [20-40] 987** Asthma
P2, P4 Olga [20-40] 987** Cancer
P3 Cecilia [20-40] 987** Flu

P1 Bob [20-40] 123** Epilepsy
P4 Frank [20-40] 123** Asthma
P2 John [20-40] 123** Flu

only with limited probability. During anonymization identi�ers are suppressed and QIDs

are modi�ed to achieve required privacy notion C, e.g., k-anonymity [80, 85], l-diversity [60],

and t-closeness [57]. A table achieves C, if every of its QI group achieves C as well, where a

QI group is a group of records with the same QID values. Attacks are run by attackers, i.e.,

a single or a group (a coalition) of external and internal entities that would like to breach

privacy of data using their background knowledge, as well as anonymized data. Privacy

10

is breached if any attacker learns anything about data that cannot be derived from the

background knowledge, anonymized dataset, and corrupted data records.

In our running example, T ∗
a is one possible anonymization that guarantees k-anonymity

and l-diversity (k = 2, l = 2), i.e., each group of anonymized records with the same QID

(QI group) has at least 2 records in it, and there are at least 2 �well represented� sensitive

values. Notice that the de�nition of l-diversity, which we use, de�nes �well represented�

sensitive values as distinct values, i.e., l-diversity holds if each QI group contains records

with at least l distinct sensitive values.

An attacker from the hospital P1 may remove from T ∗
a all records provided by P1. In

the �rst QI group there will be only one remaining record, which belongs to a patient

between 20 and 30 years old. By using quasi-identi�er attributes to join this record with the

background knowledge BK (e.g. part of the Census database), P1 can identify Sara as its

owner (highlighted in the table) and her disease as Epilepsy. In practice, the attacker would

use more attributes as quasi-identi�ers and maximal BK to mount the linking attack [86]. In

general, multiple providers may collude with each other, thereby having access to the union

of their data, or a user may have access to multiple databases, e.g., a physician switching

hospitals, and using information about her former patients.

To address this type of attack, we introduce a notion ofm-privacy with respect to (w.r.t.)

a privacy constraint C, which ensures that any coalition of m providers is not able to breach

privacy of records provided by remaining parties [41]. For example, in Table 1.2 T ∗
b is

an anonymized table that satis�es m-privacy (m = 1) with respect to k-anonymity and

l-diversity (k = 2, l = 2). We also prove that both problems of m-privacy veri�cation and

anonymization, in the general setting, are computationally hard. For m-privacy veri�cation,

we propose a few di�erent strategies and an adaptive algorithm of selecting an e�cient

approach to be used. We also propose an algorithm to anonymize data, such that its

result is m-private w.r.t. any C. All veri�cation and anonymization algorithms have been

implemented to be run in a distributed environment by a TTP.

SMC Protocols for m-Privacy. For settings without a TTP, we introduce a group of

new secure multiparty computation protocols [102]. Our protocols implement m-privacy

11

veri�cation algorithms as well as m-privacy anonymization algorithm. For each protocol, we

prove its security and analyze its communication complexity. In addition, for all protocols

we extensively test their performance in a distributed environment [42].

1.2.2 Semantic Privacy Notions (Di�erential Privacy) in Distributed En-

vironments

For many scenarios, e.g., participatory sensing [11] and data surveillance [35], data subjects

would like to hide their participation in computed statistics especially if it would bring

negative consequences to them. In such settings, information about participation is sensitive

and should be protected from linking with the data owner as well as the contributed

data itself. In order to satisfy such a privacy requirement, we employ di�erential privacy,

which is a semantic privacy notion that assures a strong and provable privacy guarantee

for aggregated data regardless of background knowledge. To use di�erential privacy,

independence of data subjects needs to be assumed, i.e., deleting one subject's data is

equivalent of hiding all evidence of her participation in the dataset. Without such assumption

hiding all evidence of participation would require modifying dependent records or removing

them. Furthermore, we assume that no deterministic statistics about the participating data

subjects have been previously released. If any additional information has been publicized

earlier, it has to be taken into account to ensure that di�erential privacy for anonymized data

is achieved. Under such assumptions, di�erential privacy guarantees negligible change of

perturbed computation results, when a single data subject opts out of the data collection. A

common way of achieving di�erential privacy is perturbation of results by carefully calibrated

noise. Security of privacy-preserving statistics aggregation needs to be ensured either by a

TTP or by an SMC protocol [38].

Data Statistics. The level of privacy preserved by di�erential privacy is de�ned by its

parameter � a privacy budget. We allow each data provider to customize its privacy budget

value and to set it to any value that will be accepted by data owners, and which is spent while

answering queries. Such a setting can also be an outcome of a query workload that covers

di�erent subsets of records by each di�erentially private query. Therefore, every query has to

12

be issued with a privacy cost that will be subtracted from budgets of all records participating

in this query execution. Notice that if each data owner is also a data provider, then the

number of di�erent values of privacy budgets can be enormous.

For such customized privacy budget settings, we propose a new two-phase approach. In

the �rst phase, data records are deterministically grouped (partitioned) according to their

required privacy level, and in the second phase, for each partition a di�erentially private

histogram is generated. This approach maximizes utilization of the privacy budget by each

record, therefore reduces the noise of the resulting histograms. Such customization of privacy

budgets is very helpful in pricing privacy and compensating data owners for their loss of

privacy. For example, a researcher pays individuals in order to use their data records to

compute data statistics. In such settings, e�cient managing of record budgets is crucial

to prepare accurate statistics. Notice that records are distributed among semi-honest and

mutually untrusted data providers. They are forbidden from sharing data records, but they

can collaborate in order to perform any secure computations that will not breach privacy of

their record owners.

Collusion Resistant SMC Protocols. Existing di�erential privacy mechanisms do not

address all challenges of settings with distributed data. For example, dealing with colluding

data providers receives very little attention, and to address it a naïve approach is often

chosen, i.e., each provider ensures di�erential privacy of its data independently. Such solution

adds a high magnitude of redundant noise, which may be avoided. We introduce a new

di�erential privacy mechanism, which generates small amount of redundant noise that is

necessary to ensure collusion resistance [43].

For settings without a TTP, we de�ne an enhanced fault tolerant secure scheme (EFT),

which is e�cient, secure, and can be used to de�ne a variety of secure multiparty aggregation

operations. The new di�erential privacy mechanism has been implemented in a distributed

environment using secure EFT scheme. Both, privacy mechanism and our new security

scheme have been extensively analyzed and tested.

13

1.3 Organization

The remainder of this dissertation discusses all contributed privacy mechanisms as well as

security schemas and protocols. First, Chapter 2 gives an overview of research in related

areas.

Then, Chapter 3 introduces m-privacy w.r.t. a privacy constraint as a new collusion

resistant privacy notion for settings with a TTP. Then, m-privacy is analyzed and tested

for any privacy constraints, but especially for equivalence-group monotonic constraints, i.e.,

constraints that remain ful�lled for a group of anonymized records when a new record is

added to that group. We also propose algorithms to verify and anonymize datasets with

respect to m-privacy.

In Chapter 4, we present all m-privacy veri�cation and anonymization algorithms

implemented as secure multi-party protocols. Security of protocols is proved, and their

performance is analyzed and tested extensively.

Next, Chapter 5 introduces a new method of preparing di�erentially private data

histograms. Presented method has two phases, in the �rst one data are partitioned based on

their privacy budget, and in the second one, based on data. Such approach allows to choose

partitioning algorithms for each phase independently to adapt them to the distribution of

privacy budgets as well as to the distribution of attribute values.

Chapter 6 provides new methods of ensuring semantic privacy in distributed environment

with colluding data providers and limited reliability of resources. In this chapter, we analyze

and test security schemes and privacy mechanisms, which are used to compute data statistics

in such distributed environments. The new approach of ensuring di�erential privacy by

distributed noise generation is very e�cient in terms of performance and the magnitude of

redundant noise.

Finally, Chapter 7 concludes and describes a few potential future directions of our

research.

14

Chapter 2

Related Work

Both research areas, data privacy and security of computations experience tremendous

growth and are very advanced in their development. However, exploration of their

overlapping is still in its infancy.

2.1 Data Privacy

Roots of data privacy research are mainly in the database community. Increasing needs for

protecting sensitive information has motivated many researchers to �nd new techniques of

data manipulation without compromising privacy of their subjects.

2.1.1 Syntactical Privacy Notions

A large body of privacy preserving data analysis and publishing literature [33] assumes

limited background knowledge of attackers and de�nes privacy using relaxed adversarial

notion [60] by considering speci�c types of attacks. Representative principles include k-

anonymity [80, 85], l-diversity [60], and t-closeness [57]. In [87], authors have modeled the

instance level background knowledge as corruption, and studied perturbation techniques

under these syntactic privacy notions.

In [48, 49, 67], authors studied distributed anonymization for vertically partitioned data

with k-anonymity. Zhong et al. [98] studied classi�cation of data collected from individual

data owners (each record is contributed by di�erent data owner), while maintaining k-

15

anonymity. Jurczyk et al. [51] proposed a notion called l′-site-diversity to ensure anonymity

for data providers in addition to privacy of the data subjects.

Gal et al. [34] proposed a new way of anonymization of multiple sensitive attributes,

which could be used to implement m-privacy w.r.t. l-diversity with providers as one of

sensitive attributes. However, this approach uses the same privacy requirements for all

sensitive attributes, while our notion of m-privacy has no such limitation.

Nergiz et al. [69] proposed a look ahead approach in anonymizing horizontally distributed

data. In their approach providers disclose some information about data in order to decide,

if collaborative anonymization will gain more information than individual one. We leave for

the future research applying the look ahead approach to colluding scenarios considered with

m-privacy.

In [10] authors designed an anonymization algorithm for frequent itemsets. Since

the support function is monotonic, they took advantage of the dual-pruning to improve

performance of their approach. The main di�erence with our approach (Chapter 3) is the

goal of constraint veri�cations. To �nd frequent itemsets, all itemsets need to be decided

either by checking or pruning. Thus, after simple modi�cations (e.g., not using early stop)

our approach can �nd frequent itemsets, and the dual-pruning algorithm can verify newly

presented notion of m-privacy. However, in either case, it will not be an e�cient approach.

2.1.2 Di�erential Privacy

The notion of di�erential privacy was de�ned in [31]. Authors proposed a method of

achieving it by perturbing results of computations with Laplace distributed noise. Several

works studied the problem of distributed data aggregation with di�erential privacy. For

example, Dwork et al. developed distributed algorithms of noise generation, in which random

shares are drawn from either binomial or Poisson distributions [30].

McSherry implemented the Laplace mechanism in his framework PINQ and introduced

a composition theorem [62]. The theorem describes how the privacy budget of each data

record is spent, when data are used to answer multiple di�erent queries with di�erential

privacy costs.

In [90], Xiao et al. proposed several approaches that reduce relative errors of noisy

16

statistics, while still ensuring their di�erential privacy. Their algorithm obtains estimates of

the query answers with large noise and iteratively re�nes its estimates to minimize relative

errors.

In [91], Xiao and Tao presented the concept of personalized anonymity for attribute

generalization. Their technique minimize generalizations and satisfy data subject privacy

requirements with e�ciency.

In [65], Mohammed et al. generated contingency tables (multidimensional histograms).

Counts in such tables are perturbed in order to achieve di�erential privacy. Their non-

interactive approach is �exible and can be adapt to use di�erent criteria in building

contingency table records. However, authors did not consider con�gurations of attribute

values that are not represented in the dataset, i.e., their original count is equal to zero.

They probabilistically generalize records and introduce noise to preserve di�erential privacy

of data owners. Values of each attribute are generalized to the same level of their taxonomy

trees for all records.

Alhadidi et al. presented a secure two-party differentially-private data release algorithm

for horizontally partitioned data [4]. Di�erential privacy of released data is achieved by an

exponential mechanism [63]. The mechanism is used in domains where noise perturbation

is not possible.

2.2 Security of Computations

Security of computations has been a challenge since the �rst computer network was built

and a distributed computer system established. Empowered by the cryptography community

and other communities, ensuring security of computations becomes a very active research

topic.

2.2.1 Secure Multiparty Computations

Secure two-party computations have been de�ned by Yao, who presented a solution to

the Millionaires' Problem, where two millionaires want to �nd out, who is richer without

disclosing their actual wealth [96]. Yao's protocol has been generalized to secure multiparty

17

computations (SMC) in [40] and to scenarios with active adversaries in [58]. Protocols

implemented in a general SMC scheme are computationally expensive. However, many

specialized and e�cient protocols have been developed for variety of speci�c operations.

E�cient SMC protocols have been also introduced for aggregation operations, e.g., a secure

sum, a secure union, and a secure scalar product [20, 59].

2.2.2 Secret Sharing Schemes

Shamir introduced the �rst distributed secret sharing scheme [81]. A secret is decomposed

into n shares, by randomly generating a polynomial of order s, such that its value in zero

is equal to the secret. A set of at least s distinct points and values of the polynomial in

such points are securely distributed. Any group of s shares are enough to interpolate the

polynomial and to reveal the secret. Notice that having there are no limits on number of

generated shares. The Shamir's secret sharing scheme, with secure communication channels,

is information-theoretically secure [6].

Note that Shamir scheme was introduced only for integer numbers. Catrina et al. adapts

his scheme to use �oaring point numbers, by implementing di�erent arithmetic operation

protocols [18].

Brun and Medvidovic introduced a distributed secret sharing scheme using a concept of

�tiles� [9]. In their scheme data are represented by tiles, which are distributed in an untrusted

network. Each tile discloses a single bit of data, but the scheme is generally secure if at least

half of them are not corrupted. Note that some statistical information is always revealed

with revealing each tile.

2.2.3 Encryption Schemes

Paillier [71] presented an additively homomorphic cryptosystem that computes the encrypted

sum using for this only encrypted numbers. Its threshold variant has been introduced

by Damgård et al. [24] and used to implement an electronic voting system. Hazay et al.

presented a threshold Paillier scheme for two-party settings [46]. Cramer et al. applied

homomorphic encryption cryptosystems to many secure protocols [23].

18

Pedersen et al. compared encryption-based and secret sharing schemes used in privacy

preserving data mining [72]. They presented both schemes, but their comparison does not

include performance evaluations and does not cover the latest security schemes and privacy

mechanisms.

Chu et al. proposed a threshold security scheme to collect data in a wireless sensor

network [19]. In their scheme, encryption keys are symmetric and valid only for a requested

period of time. The scheme is not homomorphic, i.e., a data recipient needs to decrypt all

ciphertexts before aggregating them, therefore she has to be trusted.

2.3 Secure Multiparty Computations with Di�erential Pri-

vacy

Combining bene�ts of both data privacy and security of computations is a relatively new

direction of research. A third party that uses large scale systems and manages sensitive data

has to preserve privacy of data subjects and ensure that any computation will leak nothing,

i.e., all distributed and local computations will be secure.

Ács et al. applied privacy-preserving and secure data aggregation to the smart metering

system [1]. Their scheme was inspired by previous work on secure sensor data aggregation

in wireless networks [16, 17]. The scheme uses di�erential privacy model and homomorphic

properties of a modulo addition-based encryption scheme to ensure privacy of results and

security of computations.

In a similar scenario individual users collect and aggregate time-series data. PASTE is

the system that implements that and ensures di�erential privacy of results [76]. Di�erential

privacy is achieved by perturbing the most signi�cant coe�cients of the discrete Fourier

transform of the query answers by a Distributed Laplace Perturbation Algorithm (DLPA).

Each participant generates partial noise that is a vector of four Gaussian random variables.

Security of computations is ensured by the threshold Paillier cryptosystem.

Shi et al. also utilized a homomorphic encryption scheme and minimized its commu-

nication complexity by generating an encryption key from the current round number and

the existing key [83]. Their privacy mechanism is distributed and ensures approximate

19

di�erential privacy with noise drawn from the discrete two-sided geometric distribution [37].

Mohammed et al. presented a secure two-party differentially-private data release

algorithm for vertically partitioned data in the semihonest adversary model [64]. Di�erential

privacy of released data is achieved by an exponential mechanism [63].

2.4 Secure Multiparty Data Statistics with Di�erential Priva-

cy

Jagadish et al. introduced a dynamic programming algorithm to create a single dimensional

v-optimal histogram for a given number of buckets [47].

Barak et al. introduced algorithms, in which they compute frequency matrix, and apply

Fourier transform to it, and add Laplace noise in this domain [5]. To eliminate negative

coe�cients, authors employed linear programming to �nd values, which minimizes additional

perturbation introduced to data.

Hay et al. improved accuracy of di�erentially private histograms by using a constrained

inference postprocessing tuning [45].

Xu et al. employed partitioning to lower the noise magnitude of di�erentially private

histogram [95].

Xiao et al. used the wavelet transformation to introduce a Privelet method [92]. After

transforming data they added polylogarithmic noise to achieve di�erential privacy.

Cormode et al. introduced a new heuristic for di�erentially private spatial decompositions

(PSD), which can be employed to build a multidimensional histogram with privacy

guarantees [21, 22]. Both DPCube introduced by Xiao et al. in [93] and PSD belong

to the family of Binary Space Partitioning (BSP) techniques.

In [44], Haddadi et al. discussed challenges and some potential avenues for addressing

issues in privacy analytics. Authors proposed a framework that distributes execution of

veri�ed queries within a community of data providers. Although authors describe results

aggregation and a few approaches to dilute them in order to achieve di�erential privacy,

they do not consider distributed noise generation as a possible approach.

20

Chapter 3

Distributed Data Aggregation with

m-Privacy

3.1 Introduction

Two settings are commonly used to anonymize and publish horizontally distributed

data. In the �rst setting (anonymize-and-aggregate) data providers anonymize their data

independently and then aggregate them (Figure 3.1a). A more desirable approach (aggregate-

and-anonymize) that saves more data utility is collaborative data publishing [33, 48, 49, 66],

in which providers securely aggregate their data and then anonymize them (Figure 3.1b),

using either a trusted third-party (TTP) or Secure Multi-party Computation (SMC)

protocols [39, 59].

For either scenario an external attacker P0 has access only to anonymized data T ∗ and

some background knowledge (BK), which represents any publicly available information

about anonymized data. Both T ∗ and BK are not enough to breach privacy of any data

subject. However, an attacker P1 that is working for a data provider has an advantage

of knowing T1 as well as T ∗ and BK. Such additional knowledge is useless when each

data provider anonymized its dataset independently, but may allow a privacy breach for

the scenario, when data are �rst aggregated and then anonymized. Preserving privacy of

data records in such environment is more challenging when providers and external attackers

21

(a) Anonymize-and-aggregate. (b) Aggregate-and-anonymize.

Figure 3.1: Two types of distributed data publishing settings for four providers.

collaborate.

Our goal is to publish an anonymized view of the integrated data, T ∗, which will be

immune to attacks. Attacks are run by attackers, i.e., a single or a group (a coalition)

of external or internal entities that wants to breach privacy of data using background

knowledge, as well as anonymized data. Privacy is breached if one learns anything about

data.

Many privacy notion C are designed to protect against certain type of attacks. Therefore,

achieving C by an anonymized dataset guarantees that data owners of its records are

protected against this type of attacks.

De�nition 3.1 (Dataset Achieving a Privacy Constraint). For syntactical privacy notions,

an anonymized dataset T ∗ achieves C if and only if every group of records with the same

quasi-identi�er attribute values (quasi-identi�er equivalence group, QI group) achieves C as

well.

Existing Solutions. Collaborative data publishing can be considered as a multi-party

computation problem, in which multiple providers wish to compute an anonymized view of

their data without disclosing any private and sensitive information. We assume the data

providers are semi-honest [39, 59], which is commonly assumed in distributed computations.

A trusted third party (TTP) or Secure Multi-Party Computation (SMC) protocols [49] can

22

be used to guarantee lack of intermediate information disclosure during the anonymization.

However, neither TTP nor SMC protects against inferring information from the anonymized

data.

The problem of inferring information from anonymized data has been widely studied

in a single data provider settings [33]. A data recipient that is an attacker, e.g., P0,

attempts to infer additional information about data records using the published data, T ∗,

and background knowledge, BK. For example, k-anonymity [80, 85] protects against identity

disclosure attacks by requiring each QI group (De�nition 3.1) to contain at least k records,

i.e., each group contains at least k records, which quasi-identi�ers have the same values. l-

Diversity requires each QI group to contain at least l �well-represented� sensitive values [60],

and t-closeness, which requires the distribution of a sensitive attribute in each QI group

to be close to the global distribution [57]. Di�erential privacy [27, 29] guarantees that the

presence of a record cannot be inferred from a statistical data release, while assuming very

little about background knowledge of attackers.

New Challenges. Collaborative data publishing introduces a new attack that has not been

studied so far. Each data provider, such as P1 in Figure 3.1, can use both, anonymized data

T ∗, and its own data T1 to infer additional information about other records. Compared to

the attack by the external recipient, each provider has additional data knowledge of its own

records, which can help with the attack. This issue can be further worsened when multiple

data providers collude with each other.

In the social network or recommendation setting, a user may attempt to infer private

information about other users using the anonymized data or recommendations assisted by

some background knowledge and her own account information. Malicious users may collude

or even create arti�cial accounts as in a shilling attack [12].

Contributions. We de�ne and address a new type of �insider attack� by an m-adversary,

i.e., a coalition of m colluding data providers or data owners that attempts to infer data

records contributed by others. Notice that a 0-adversary models the external data recipient,

who has access only to the external background knowledge. Since each provider holds a

subset of the overall data, this inherent data knowledge has to be explicitly modeled, and

23

considered when the data are anonymized.

We address the new threat introduced by m-adversaries, and make several important

contributions. First, we introduce the notion ofm-privacy that explicitly models the inherent

data knowledge of an m-adversary, and protects anonymized data against such adversaries

with respect to a given privacy constraint. For example, in Table 1.2 T ∗
b is an anonymized

table that satis�es m-privacy (m = 1) with respect to k-anonymity and l-diversity (k = 2,

l = 2).

Second, for scenarios with a TTP, to address the challenges of checking a combinatorial

number of potential m-adversaries, we present heuristic algorithms for e�cient m-privacy

veri�cation given a set of records. Our approach utilizes e�ective pruning strategies

exploiting the equivalence group monotonicity property of privacy constraints, and adaptive

ordering techniques based on a novel notion of privacy �tness. We also present a data

provider-aware anonymization algorithm with adaptive strategies of checking m-privacy

ful�llment, to ensure high utility and m-privacy of sanitized data with e�ciency.

3.2 m-Privacy De�nition

In this section we formally describe our problem setting. Then, we present our m-privacy

de�nition with respect to a privacy constraint to prevent inference attacks by m-adversary,

followed by properties of our new privacy notion.

Let T = {t1, t2, . . .} be a set of records with the same attributes gathered from n data

providers P = {P1, P2, . . . , Pn}, such that Ti ⊆ T are records provided by Pi. Let AS be a

sensitive attribute with a domain DS .

If the records contain multiple sensitive attributes, then we could treat each of them

as the sole sensitive attribute, while others would be included to the quasi-identi�er [60].

However, in our scenarios we use an approach, which preserves more utility without

sacri�cing privacy [34].

Our goal is to publish an anonymized table T ∗ while preventing any m-adversary from

inferring AS for any single record. An m-adversary is a coalition of data users with m data

providers cooperating to breach privacy of anonymized records.

24

3.2.1 m-Privacy

To protect data from external recipients with certain background knowledge BK, we

assume a given privacy requirement C is de�ned as a conjunction of privacy constraints:

C1 ∧ C2 ∧ . . . ∧ Cw. If a group of anonymized records T ∗ satis�es C, we say C(T ∗) = true.

By de�nition C(∅) is true, and ∅ is private. Any of the existing privacy principles can be

used as a component constraint Ci.

In our example (Table 1.2), the privacy constraint C is de�ned as C = C1 ∧ C2, where

C1 is k-anonymity with k = 2, [85], and C2 is l-diversity with l = 2, [60]. Both anonymized

tables T ∗
a and T ∗

b satisfy C, although as we have shown earlier, T ∗
a may be compromised by

an m-adversary such as {P1}.

We now formally de�ne a notion of m-privacy with respect to a privacy constraint C,

which, whether achieved, is enough to protect the anonymized data against m-adversaries.

The notion explicitly models the inherent data knowledge of anm-adversary, the data records

they jointly contribute, and requires that each QI group, excluding any of those records

owned by an m-adversary, still satis�es C.

De�nition 3.2 (m-Privacy with respect to C). Given n data providers, a set of records T ,

and an anonymization mechanism A, an m-adversary I (m 6 n − 1) is a coalition of m

providers, which jointly contribute a set of records TI . A(T) satis�es m-privacy with respect

to a privacy constraint C if and only if, any anonymized superset of records A(T ′) from

non-m-adversary providers satis�es C, i.e.,

∀I ⊂ P, |I| = m, ∀T ′ : T \ TI ⊆ T ′ ⊆ T, C(A(T ′)) = true

Corollary 3.3. For all m 6 n− 1, if A(T) is m-private, then it is also (m− 1)-private. If

A(T) is not m-private, then it is also not (m+ 1)-private.

Notice that this corollary describes monotonicity ofm-privacy with respect to the number

of adversaries, and is independent from the privacy constraint C and records. In the next

section we investigate monotonicity of m-privacy with respect to records for a given value

of m.

25

m-Privacy with Duplicate Records. m-Privacy can be also guaranteed when there are

duplicate records (such as records from a patient transferred between hospitals). In our

initial example Olga has records in two hospitals P2 and P4 (Table 1.2). For such cases, the

duplicates are treated as a single record shared by a few providers. If any of the providers

is a member of an m-adversary, the record will be considered as a part of its background

knowledge.

m-Privacy and Syntactic Privacy Constraints. Let C be a syntactic privacy

constraint, i.e., a constraint that preserves data truthfulness at the record level, e.g., k-

anonymity, l-diversity, t-closeness [57]. T ∗ satisfying C will only guarantee 0-privacy w.r.t.

C, i.e., C is not guaranteed to hold for every QI group after excluding records belonging to

any data provider (De�nition 3.1). Thus, each data provider may be able to breach privacy

of records provided by others. These guarantees are enough when there is a single data

provider, but when there are many data providers they are insu�cient. In our example from

Table 1.2, T ∗
a satis�es only 0-privacy w.r.t. C, while T ∗

b satis�es 1-privacy w.r.t. the same

C. Thus, T ∗
b preserves privacy (de�ned by C) from being breached by malicious data users

and any single data provider.

m-Privacy is de�ned w.r.t. a privacy constraint C, and hence it will inherit all strengths

and weaknesses of C. For example, if C is de�ned as k-anonymity, then ensuring m-privacy

w.r.t. C will not protect against homogeneity attacks [60] and deFinetti attack [53]. m-

Privacy w.r.t. C protects against privacy attacks issued by any m-adversary if and only

if, C protects against the same attacks by an external data recipient. m-Privacy notion

is orthogonal to the privacy constraint C being used, and enhances privacy it de�nes to

distributed settings, where up to m data providers collude.

3.2.2 Monotonicity of Privacy Constraints

Monotonicity of privacy constraints is de�ned for a single equivalence group of records,

i.e., a group of records that QI attributes share the same generalized values. Let A1

be a mechanism that anonymizes a group of records T into a single equivalence group,

T ∗ = A1(T).

26

Generalization based monotonicity of privacy constraints has been already de�ned in

the literature (De�nition 3.4) [57, 60]. Its ful�llment is crucial for designing e�cient

generalization algorithms [56, 57, 60, 85]. We will refer to it as generalization monotonicity.

De�nition 3.4 (Generalization Monotonicity of a Privacy Constraint [57, 60]). A privacy

constraint C is generalization monotonic if and only if, for any two equivalence groups A1(T)

and A1(T
′) that satisfy C, their union satis�es C as well,

C(A1(T)) = true

C(A1(T
′)) = true

⇒ C(A1(T) ∪ A1(T
′)) = true

Notice that in the de�nition of generalization monotonicity there is an assumption

that original records have been already anonymized into equivalence groups, which are

used for further generalizations. We introduce more general and record-based de�nition of

monotonicity in order to facilitate the analysis, and design e�cient algorithms for verifying

m-privacy w.r.t. C.

De�nition 3.5 (Equivalence Group Monotonicity of a Privacy Constraint, EG Monotoni-

city). A privacy constraint C is EG monotonic if and only if, for a group of records T such

that its equivalence group A1(T) satis�es C, and any group of records T̃ , their anonymized

union satis�es C,

C(A1(T)) = true ⇒ ∀T̃ , C(A1(T ∪ T̃)) = true

Notice that T̃ can be any set of records, which makes EG monotonicity more general

than generalization monotonicity. If a constraint is EG monotonic, it is also generalization

monotonic, but vice versa does not always hold. k-Anonymity and l-diversity, which

requires l distinct values of sensitive attribute in a QI group, are examples of EG and

generalization monotonic constraints. Entropy l-diversity [60] and t-closeness [57] are

examples of generalization monotonic, but not EG monotonic constraints at the same time.

For example, consider a subset of two anonymized records with 2 di�erent sensitive values

satisfying entropy l-diversity (l = 2), i.e., the distribution of sensitive attribute values in

27

the QI group is uniform. Entropy l-diversity is not EG monotonic, because it will not

hold if we add records that change the entropy of sensitive values signi�cantly. However,

it is generalization monotonic because it will still hold if two QI groups satisfying entropy

l-diversity (l = 2) are (generalized) into a new group.

Corollary 3.6. If all constraints in a conjunction C = C1∧C2∧. . .∧Cw are EG monotonic,

then the constraint C is EG monotonic.

Similar corollary holds for generalization monotonicity. In our example, C is de�ned as

a conjunction of k-anonymity and l-diversity. Since both of them are EG monotonic [60], C

is EG monotonic as well.

Theorem 3.7. m-Privacy with respect to any constraint C is EG monotonic if and only if,

C is EG monotonic.

This theorem holds also when applied for generalization monotonicity. Proofs of this

theorem for both EG and generalization monotonicities de�ned with respect to records and

not m are as follows.

Proof of Theorem 3.7 for EG monotonicity. Assume T is a set of records provided by

P = {P1, . . . , Pn} providers, and A is an anonymization mechanism that returns records,

which are m-private w.r.t. C (0 6 m 6 n − 1). Thus, A(T) is m-private w.r.t. C, and

C(A(T)) = true.

Suppose m-privacy w.r.t. C is EG monotonic, and let T̃ be a superset of T . Then based

on the de�nition of EG monotonicity (De�nition 3.5), and ful�llment of m-privacy w.r.t.

C by A(T), A(T̃) is m-private w.r.t. C as well. In particular, A(T̃) is 0-private w.r.t. C

(Corollary 3.3), i.e., A(T̃) ful�lls C, and thus C is EG monotonic.

Conversely, suppose C is an EG monotonic privacy constraint applied to the de�nition of

m-privacy, and let T̃ be a superset of T . Assume I ⊂ P is a coalition ofm attackers providing

TI (TI ⊂ T ⊂ T̃) records, |I| = m, and A(T) ism-private w.r.t. C, then C(A(T \TI)) = true.

Furthermore, T ⊂ T̃ implies that A(T) ⊂ A(T̃), and A(T \TI) ⊂ A(T̃ \TI), which together

with EG monotonicity of C, show that C(A(T̃ \TI)) = true. Thus, A(T̃) is m-private w.r.t.

C, and we conclude that m-privacy is EG monotonic.

28

Proof of Theorem 3.7 for generalization monotonicity. Assume that all records contributed

by n providers P = {P1, . . . , Pn} are split into two sets T1 and T2 (T1 ∩ T2 = ∅), and A is

an anonymization mechanism that returns anonymized records, which are m-private w.r.t.

C (0 6 m 6 n− 1). Thus, A(T1), and A(T2) are m-private w.r.t. C.

Suppose m-privacy w.r.t. C is generalization monotonic. Then based on the de�nition of

generalization monotonicity (De�nition 3.4), A(T1∪T2) is m-private w.r.t. C. In particular,

A(T1) ∪A(T2) is 0-private w.r.t. C (Corollary 3.3), i.e., C(A(T1) ∪A(T2)) = true. Because

C(A(T1)) = true and C(A(T2)) = true, then C is generalization monotonic.

Conversely, suppose C is a generalization monotonic privacy constraint applied to

the de�nition of m-privacy. Assume I ⊂ P is a coalition of m attackers providing TI

(TI ⊂ T1 ∪ T2) records. |I| = m, and A(T1), and A(T2) are m-private w.r.t. C, then

C(A(T1 \TI)) = true, and C(A(T2 \TI)) = true. Furthermore, generalization monotonicity

of C implies that C(A(T1 \TI)∪A(T2 \TI)) = true. Thus, A(T1)∪A(T2) is m-private w.r.t.

C, and we conclude that m-privacy is generalization monotonic.

Corollary 3.8. If a constraint C is EG monotonic, then the de�nition of m-privacy w.r.t.

C (De�nition 3.2) may be simpli�ed such that only T ′ = T \ TI are checked, i.e.,

∀I ⊂ P, |I| = m,C(A(T \ TI)) = true

Indeed, if A(T \ TI) satis�es C, then EG monotonicity of C guarantees that any

anonymized superset of T \ TI satis�es C as well. Thus, A(T) ful�lls de�nition of m-

privacy w.r.t. C. In addition, if a coalition I is unable to breach privacy, then any

its sub-coalition with fewer records cannot do so either (De�nition 3.5). Unfortunately,

generalization monotonicity of C is not enough to guarantee this property. 1.

3.3 m-Privacy Veri�cation

Checking whether a set of anonymized records satis�es m-privacy w.r.t. a privacy constraint

C creates a potential computational challenge due to the combinatorial number of m-

1Generalization monotonicity of C does not guarantee ful�llment of C for a QI group of two (or more)
sets of records, where at least one of them has a QI group that does not ful�ll C.

29

adversaries and variety of privacy de�nitions of C. In this section, we �rst analyze the

problem by modeling the adversary space. Then, we present heuristic algorithms with

e�ective pruning strategies and adaptive ordering techniques for e�ciently checking m-

privacy w.r.t. an EG monotonic constraint C. Finally, we present implementation of

introduced algorithms that can be run by a trusted third party (TTP) to verify m-privacy

w.r.t. EG monotonic and non-EG monotonic privacy constraints.

3.3.1 Adversary Space Enumeration

Given a set of nG data providers, the entire space of m-adversaries (m varying from 0 to

nG − 1) can be represented using a graph shown in Figure 3.2. Each node at layer m

represents an m-adversary of a particular combination of m providers. The number of all

possible m-adversaries is given by
(
nG
m

)
. Each node has parents (children) representing their

direct super- (sub-) coalitions. For simplicity the space is depicted as a diamond, where a

horizontal line at a level m corresponds to all m-adversaries, the bottom node to 0-adversary

(external data recipient), and the top line to (nG − 1)-adversaries.

m=0

m=1

m=2

m=3 n-1

0

m

Figure 3.2: The domain of coalitions for data providers {P1, P2, P3, P4} and its simpli�ed
representation for n providers with two types of pruning. Plus signs represent coalitions
that cannot breach privacy, while minus signs coalitions that can breach privacy of given
anonymized data records.

In order to verify m-privacy w.r.t. a constraint C for a set of records, we need to check

ful�llment of C for all records after excluding any possible subset of m-adversary records.

When C is EG monotonic, we only need to check C for the records excluding all records

from any m-adversary (Corollary 3.8), i.e., adversaries on the horizontal line. For example,

in Figure 3.2, given m, all coalitions that need to be checked are below and at the green

30

horizontal line. For each possible coalition we need to check scenarios where any possible

subset of their records is excluded from anonymized data. If C is EG monotonic, then it is

su�cient to check only coalitions at the green horizontal line.

Given an EG monotonic constraint, the straight forward way of verifying m-privacy

is to sequentially generate all possible
(
nG
m

)
m-adversaries and then check privacy of the

corresponding remaining records (a direct algorithm). In the worst-case scenario, when m =

nG/2, the number of checks is equal to the central binomial coe�cient
(nG
nG/2

)
= O(2nGn

−1/2
G).

Thus, the direct algorithm is not e�cient enough and we propose a few heuristics that utilize

two strategies and limit the number of privacy checks, i.e., pruning and adaptive ordering.

3.3.2 Heuristic Algorithms for EG Monotonic Constraints

In this section, we present heuristic algorithms for e�ciently checkingm-privacy w.r.t. an EG

monotonic constraint. Then, we modify them to checkm-privacy w.r.t. a non-EG monotonic

constraint.

The key idea of our heuristics for EG monotonic privacy constraints is to e�ciently search

through the adversary space with e�ective pruning such that not all m-adversaries need to

be checked. This is achieved by two di�erent pruning strategies, an adversary ordering

technique, and a set of search strategies that enable fast pruning.

Pruning Strategies. The pruning is possible thanks to the EG monotonicity of m-privacy

(Corollaries 3.3, and 3.8). If a coalition is not able to breach privacy, then all its sub-

coalitions will not be able to do so as well, and hence do not need to be checked (downward

pruning). On the other hand, if a coalition is able to breach privacy, then all its super-

coalitions will be able to do so as well, and hence do not need to be checked (upward

pruning). In fact, if a sub-coalition of an m-adversary is able to breach privacy, then the

upward pruning allows the algorithm to terminate immediately as the m-adversary will be

able to breach privacy (early stop). Figure 3.2 illustrates the two pruning strategies where

+ represents a case when a coalition does not breach privacy and − otherwise.

Adaptive Ordering of Adversaries. In order to facilitate the above pruning in both

directions, we adaptively order the coalitions based on their attack powers (Figure 3.3(a)).

31

This is motivated by following observations. For downward pruning, super-coalitions of

m-adversaries with limited attack powers are preferred to be checked �rst as they are less

likely to breach privacy, and hence increase the chance of downward pruning. In contrast,

sub-coalitions of m-adversaries with signi�cant attack powers are preferred to be checked

�rst as they are more likely to breach privacy, and hence increase the chance of the early

stop.

(a) Adaptive ordering. (b) First steps of the binary algorithm with veri�ed
coalitions of attackers depicted as numbered red
dots.

Figure 3.3: Adaptive ordering for e�cient pruning and an example run of the binary m-
privacy veri�cation algorithm.

To quantify privacy ful�llment by a set of records, which we use to measure the attack

power of a coalition and privacy of remaining records, we introduce the privacy �tness score

w.r.t. C for a set of records. It also used to facilitate the anonymization, which we will

discuss in the following section.

De�nition 3.9 (Privacy Fitness Score). Privacy �tness FC for a set of anonymized records

T ∗ is a level of ful�llment of the privacy constraint C. A privacy �tness score is a function

f of privacy �tness with values greater or equal to 1 only if C(T ∗) = true,

scoreFC(T ∗) = f (FC1(T
∗), FC2(T

∗), . . . , FCw(T
∗))

Notice that privacy �tness score can be de�ned by any function that follows the above

de�nition. The de�nition depends on privacy constraint C, therefore it cannot be exactly

formulate without knowing the C. In our setting, C is de�ned as (k-anonymity ∧ l-diversi-

32

ty). The privacy �tness score is de�ned as a weighted average of the two �tness scores with

α ∈ (0, 1). When C(T ∗) = false, scoreFC(T ∗) = max(1 − ϵ, FC(T
∗)), where ϵ is small. In

our example scoreFC
is de�ned as follow:

scoreFC
(T ∗) = (1− α) · |T

∗|
k

+ α · |{t[AS] : t ∈ T ∗}|
l

(3.1)

The privacy �tness score quanti�es the attack power of attackers. The higher their

privacy �tness scores are, the more likely they are able to breach the privacy of the remaining

records. In order to maximize the bene�t of both pruning strategies, the super-coalitions

of m-adversaries are generated in the order of ascending �tness scores (ascending attack

powers), and the sub-coalitions of m-adversaries are generated in the order of descending

�tness scores (descending attack powers) (Figure 3.3(a)).

Now we present several heuristic algorithms that use di�erent search strategies, and hence

utilize di�erent pruning directions. All of them use the adaptive ordering of adversaries to

enable fast pruning. Notice that for a record contributed by many providers (duplicated

records), if any of them is an attacker then the record is considered as it would have been

provided only by the attacker.

The Top-Down Algorithm. The top-down algorithm (Algorithm 1) checks the coalitions

in a top-down fashion using downward pruning, starting from (nG − 1)-adversaries, and

moving down until a violation by an m-adversary is detected or all m-adversaries are pruned

or checked.

The Bottom-Up Algorithm. The bottom-up algorithm is similar to the top-down

algorithm. The main di�erence is in the sequence of coalition checks, which is in a bottom

up fashion starting from 0-adversary, and moving up (line 3). The algorithm stops whether

a privacy violation by any adversary is detected (early stop) or all m-adversaries are checked

(lines 6 to 9).

The Binary Algorithm. The binary algorithm (Algorithm 2), inspired by the binary

search algorithm, checks coalitions between (nG − 1)-adversaries and m-adversaries, and

takes advantage of both upward and downward prunings (Figure 3.3b). The goal of each

iteration is to search for a pair of coalitions Isub and Isuper, such that Isub is a direct sub-

33

Algorithm 1: The top-down m-privacy veri�cation algorithm.
Data: A set of anonymized records T ∗ provided by P1, . . . , Pn, an EG monotonic C,

a privacy �tness scoring function scoreF , and the m.
Result: true if T ∗ is m-private w.r.t. C, false otherwise.

1 sites = sort_sites(P , increasing_order, scoreF)
2 use_adaptive_order_generator(sites, m)

3 foreach i = n− 1, n− 2, . . . ,m do
4 while is_m-privacy_verified(T ∗, i) = false do
5 I = next_coalition_of_size(i)
6 if privacy_is_breached_by(I) = false then
7 prune_all_sub-coalitions_of(I)

8 if is_m-privacy_verified(T ∗, m) = true then
9 return true

10 return false

coalition of Isuper, and Isuper breaches privacy, while Isub does not. Then, Isub and all its

sub-coalitions are pruned (downward pruning), Isuper and all its super-coalitions are pruned

(upward pruning) as well.

Algorithm 2 works as follows. First, it starts with (nG − 1)-adversaries, �nds the �rst

coalition of attackers that violates privacy, and assigns it to Isuper (lines from 4 to 7). Then,

it �nds an Isub, i.e., a sub-coalition of Isuper, which does not breach privacy (line 8). At

each step, a new coalition I : Isub ⊂ I ⊂ Isuper (such that |I| = |Isuper|+|Isub|
2 ; line 12) is

checked (line 13). If I can breach privacy, then Isuper is updated to I (line 14). Otherwise,

Isub is updated to I (line 16). The algorithm continues until the direct parent-child pairs

Isuper and Isub are found (line 11). Then pruning in both directions is performed (lines 17

and 18), and the algorithm starts the next iteration. The algorithm stops when m-privacy

can be determined (line 3).

Adaptive Selection of Algorithms. Each of the above algorithms focuses on di�erent

search strategy, and hence utilizes di�erent pruning. Which algorithm to use is largely

dependent on the characteristics of a given group of providers. Intuitively, the privacy

�tness score (Equation 3.1), which quanti�es also the level of privacy ful�llment of the

group, may be used to select the most suitable veri�cation algorithm. The higher the �tness

score, the more likely m-privacy will be satis�ed, and hence the top-down algorithm with

downward pruning will signi�cantly reduce the number of adversary checks. De�ning the

34

Algorithm 2: The binary m-privacy veri�cation algorithm.
Data: Anonymized records T ∗ from providers P , an EG monotonic C, a �tness

scoring function scoreF , and the m.
Result: true if T ∗ is m-private w.r.t. C, false otherwise.

1 sites = sort_sites(P , increasing_order, scoreF)
2 use_adaptive_order_generator(sites, m)

3 while is_m-privacy_verified(T ∗, m, C) = false do
4 Isuper = next_coalition_of_size(nG − 1)
5 if privacy_is_breached_by(Isuper, C) = false then
6 prune_all_sub-coalitions(Isuper)
7 continue

8 Isub = next_sub-coalition_of(Isuper,m)

9 if privacy_is_breached_by(Isub, C) = true then
10 return false // early stop

11 while is_coalition_between(Isub, Isuper) do
12 I = next_coalition_between(Isub, Isuper)
13 if privacy_is_breached_by(I,C) = true then
14 Isuper = I
15 else
16 Isub = I

17 prune_all_sub-coalitions(Isub)
18 prune_all_super-coalitions(Isuper)

19 return true

35

exact strategy of choosing the m-privacy veri�cation approach can be done based on the

background knowledge (data statistics) or during computations, i.e., when characteristics of

data contributed by each provider are computed. We utilize such an adaptive strategy in

the anonymization algorithm (discussed in Section 3.4), and experimentally evaluate it.

3.3.3 m-Privacy Veri�cation Algorithm for Non-EG Monotonic Con-

straints

If a privacy constraint C applied to the de�nition of m-privacy (De�nition 3.2) is not EG

monotonic, then pruning strategies are not useful. The only way to verifym-privacy w.r.t. C

for this setting is to check all possible sets of records that can be used by any m-adversary in

attacks (attacking records). The domain of privacy checks is expanded to cover all possible

sets of attacking records. However, the adaptive ordering of providers is still very useful in

�nding an m-adversary that breaches privacy. Coalitions of m-adversaries with signi�cant

attack powers are preferred to be generated �rst as they are more likely to breach privacy,

and hence increase the chance of the early-stop.

A general veri�cation algorithm form-privacy w.r.t. any C (Algorithm 3) works as follow.

For each cardinality of m-adversary, starting from 0, it generates all possible coalitions of

adversaries (lines 1 to 2). Then, for each coalition it generates all possible subsets of the

coalition records such that each provider participates to this set with at least one record (line

4). Finally, it veri�es if such subsets can be used in attacks to breach privacy (line 5). If the

attack is successful, then no further checks are necessary, and the algorithm returns negative

answer (early stop, line 6). After verifying that all possible subsets of records provided by

any m-adversary are not enough to breach privacy, the algorithm returns positive answer.

Notice that for a given i-adversary the algorithm does not generate all possible subsets

of its records (line 4). Subsets, with not all providers participating their records, are skipped

because they have been already veri�ed. Each attacker, which is not using any of its records

for the privacy attack can be treated as a non-attacker. But that setting has been already

checked while considering smaller coalitions, therefore it is skipped.

36

Algorithm 3: The veri�cation algorithm of m-privacy w.r.t. any C.
Data: Anonymized records T ∗ from providers P , and the m.
Result: true if T ∗ is m-private w.r.t. C, false otherwise.

1 foreach i = 0, 1, . . . ,m do
2 foreach I ∈ ordered_coalitions_of_size(i) do
3 TI =

∪
Pj∈I records_of(Pj)

4 foreach S ∈ 2TI : providers_of(S) = I do
5 if privacy_does_not_hold_for(T ∗ \ S) then
6 return false // early stop

7 return true

3.3.4 The Worst-Case Time Complexity

In this section, we derive the time complexity for the m-privacy w.r.t. C veri�cation

algorithms in terms of the number of privacy checks. Since all algorithms involve multiple

checks of privacy for various records, we assume that each check of C takes a constant time.

Formally, it can be modeled by an oracle, which performs a check for given records in O(1)

time. For a particular de�nition of C, time complexity of a single privacy veri�cation should

be also taken into account.

EG Monotonic m-Privacy. All the above veri�cation algorithms have the same worst-

case scenario, in which all super-coalitions of m-adversaries violate privacy, while all sub-

coalitions of m-adversaries do not. Hence, neither adaptive ordering nor pruning strategies

are useful. For these settings, the direct algorithm will check exactly
(
nG
m

)
possible

m-adversaries before con�rming m-privacy, where nG is the number of data providers

contributing to the group. This is the minimal number of privacy veri�cations for this

scenario. The bottom-up algorithm will check 0-adversary (external data recipient) up to

all m-adversaries, which requires
∑m

i=0

(
nG
i

)
= O (nm

G) checks. The top-down algorithm

will check all (nG − 1)-adversaries �rst, then smaller coalitions up to all m-adversaries,

which requires
∑m

i=nG−1

(
nG
i

)
= O

(
nnG−1−m
G

)
checks. The binary algorithm will run

(
nG
m

)
iterations and within each O(log (nG −m)) privacy checks. Thus, the total time complexity

is equal to O (nm
G log (nG −m)).

Non-EG Monotonic m-Privacy. In order to verify m-privacy w.r.t. non-EG monotonic

constraint C for a group of anonymized records provided by parties P , the maximal number

37

of privacy checks follows the formula,

m∑
i=0

∑
I⊂P
|I|=i

∏
Pj∈I

(
2|Tj | − 1

)
= O(2|T |) (3.2)

where Tj is a set of records provided by Pj , and T is a set of all records from all providers.

3.3.5 The Average Time Complexity

Computing the average time complexity for majority algorithms is very di�cult. Finding

the exact average time complexity depends on many factors, therefore we estimate the lower

bound of the average complexity time E. For a set of anonymized records T ∗ provided by

nG parties let all adversary coalitions that breaches m-privacy w.r.t. C be supersets of a

single x-adversary X, which breaches privacy as well. If such coalition does not exist, then

we take x = nG. Values of x, m, and nG are parameters in our computations. The number

of all possible x-adversaries for x < m is equal to
∑m−1

x=0

(
nG
x

)
, and for x > m is equal to∑nG−1

x=m

(
nG
x

)
. The number of all privacy checks for an x-adversary (x < m) is denoted by

Hm(x), and for x > m by HM (x),

E(m,nG) =

∑m−1
x=0

(
nG
x

)
Hm(x) +

∑nG−1
x=m

(
nG
x

)
HM (x)

2nG
(3.3)

The top-down Algorithm. For (x > m) anonymized records T ∗ are m-private w.r.t. C,

and the top-down veri�es all (nG−1)-coalitions applying downwards pruning when possible,

and also checks all coalitions that violate privacy. After all those checks m-privacy w.r.t. C

is veri�ed. The number of privacy checks for a single value of x follows the formula:

Hm(x) =

nG−x−2∑
i=1

(
nG − x

i

)
+ nG − 1

=

nG−x∑
i=0

(
nG − x

i

)
+ x− 3

= 2nG−x + x− 3 (3.4)

When x < m anonymized records T ∗ are not m-private w.r.t. C. Similar like for the

38

above case the top-down algorithm veri�es all (n−1)-coalitions, and those with more thanm

providers that breaches privacy. Then it checks a single m-adversary that breaches privacy

(m-adversaries that do not breach privacy have been already pruned), and stops. Thus, for

a single x-adversary the number of privacy checks can be computed using the same formula

as above after subtracting coalitions of size smaller or equal to m plus one check for the

m-coalition.

HM (x) = 2nG−x + x− 2−
m−x∑
i=1

(
nG − x

i

)
(3.5)

Thus, the lower bound of the average number of privacy checks follows,

E(m,nG) =

[
m−1∑
x=0

(
nG

x

)
Hm(x)

+

nG−1∑
x=m

(
nG

x

)
HM (x)

]
/2nG

=

[
2nG ·

nG−1∑
x=0

(
nG

x

)
· 2−x +

nG−1∑
x=0

(
nG

x

)
x

−2

nG−1∑
x=0

(
nG

x

)
−

m−1∑
x=0

(
nG

x

)

−
m−1∑
x=0

(
nG

x

)m−x∑
i=1

(
nG − x

i

)]
/2nG (3.6)

Then applying the binomial theorem
∑nG

x=0

(
nG
x

)
rx = (1 + r)nG for r = 1/2, and the

following formula,
∑nG

k=0 k
(
nG
k

)
= 2nG−1nG [7] we obtain,

E(m,nG) = 2−nG
[
2nG ·

(
(3/2)nG − 2−nG

)
(3.7)

+2nG−1nG − nG − 2(2nG − 1)

−
m−1∑
x=0

(
nG

x

)(
1 +

m−x∑
i=1

(
nG − x

i

))]

= (3/2)nG +
nG

2
− 2− nG − 1

2nG

− 1

2nG

m−1∑
x=0

(
nG

x

)(
1 +

m−x∑
i=1

(
nG − x

i

))

39

Values of E(m,nG) vary for di�erent m, for example,

E(1, nG) = (3/2)nG + nG/2 + nG2
1−nG − 2

= O((3/2)nG) (3.8)

E(nG − 1, nG) = (3/2)nG + nG/2− 2− nG − 1

2nG

−2−nG

nG−1∑
x=0

(
nG

x

)(
2nG−x − 1

)
= (3/2)nG + nG/2− 2− nG − 1

2nG

−
nG−1∑
x=0

(
nG

x

)
· 2−x

+2−nG

nG−1∑
x=0

(
nG

x

)
= (3/2)nG + nG/2− 2− nG − 1

2nG

−(3/2)nG + 2−nG + 1− 2−nG

= nG/2− 1− nG − 1

2nG

= O(nG) (3.9)

The lower bound of the average time complexity varies from linear to exponential for

di�erent values of m. Thus, for the top-down algorithm m is a signi�cant parameter of the

expected average computation time.

The bottom-up Algorithm. Similar like for the top-down algorithm we compute the lower

bound of the average complexity time for the bottom-up algorithm. The same assumptions

hold. When x > m, then all coalitions of up to m providers need to be considered, and

HM (x) =
∑m

i=0

(
nG
i

)
. For x < m, the algorithm veri�es all coalitions with up to (x − 1)

providers, and some coalitions with x adversaries. SinceX can be any x-adversary with equal

probability, then on average half of x-adversaries will be checked before �nding the one that

breaches privacy. Thus, number of privacy checks is equal to Hm(x) =
∑x−1

i=0

(
nG
i

)
+
(
nG
x

)
/2,

40

and the lower bound of the average number of privacy checks follows,

E(m,nG) = 2−nG

nG−1∑
x=m+1

(
nG

x

) m∑
i=0

(
nG

i

)
(3.10)

+ 2−nG

m∑
x=1

(
nG

x

)[x−1∑
i=0

(
nG

i

)
+

(
nG

x

)
/2

]

E(m,nG) varies a lot for di�erent m, for example,

E(1, nG) = nG + 1− (nG + 1)2 + 2

2nG+1

= O(nG) (3.11)

E(nG − 1, nG) > 2−nG ·
nG−1∑
x=1

(
nG

x

)(
nG

x

)
/2

= 2−nG−1 ·

[
nG∑
x=0

(
nG

x

)2

− 2

]

= 2−nG−1 ·
(
2nG

nG

)
− 2−nG

> 2−nG−1 4nG

√
4nG

− 2−nG

=
2nG

4
√
nG

− 2−nG

= O
(
2nGn

−1/2
G

)
(3.12)

The direct Algorithm. Similar like for above algorithms we compute the lower bound of

the average complexity time for the direct algorithm. The same assumptions as above hold.

In addition, we assume that all m-adversaries are checked in a random order. When x > m,

then all m-adversaries need to be considered, hence HM (x) =
(
nG
m

)
.

For x < m, the algorithm veri�es m-adversaries until �nding one that breaches privacy.

Among
(
nG
m

)
m-adversaries there are

(
nG−x
m−x

)
that can breach privacy. Thus, assuming

independence of privacy veri�cations, probabilities of not breaching privacy p and breaching

41

privacy q follow formulas,

p = 1−
(
nG−x
m−x

)(
nG
m

) (3.13)

q =

(
nG−x
m−x

)(
nG
m

) (3.14)

Given x the average number of privacy checks Hm(x) follows the formula,

Hm(x) = q + 2pq + 3p2q + . . .+

(
nG

m

)
p(

nG
m)−1q

= q

(nG
m)∑

k=1

kpk−1

= q
(p− 1)

(
nG
m

)
p(

nG
m) − p(

nG
m) + 1

(p− 1)2
(3.15)

The overall average number of privacy checks follows the Equation 3.3, and can be simpli�ed,

E(m,nG) =

∑m−1
x=0

(
nG
x

)
Hm(x) +

∑nG−1
x=m

(
nG
x

)
HM (x)

2nG

=

m−1∑
x=0

(
nG

x

)1−
((

nG−x
m−x

)
+ 1
)
p(

nG
m)

2nGq

+

(
nG

m

)(
1−

∑m−1
x=0

(
nG
x

)
+ 1

2nG

)
(3.16)

For m = 1 values of p, q, and E(1, nG) follow formulas,

p = 1−
(
nG−x
1−x

)
nG

(3.17)

q =

(
nG−x
1−x

)
nG

(3.18)

E(1, nG) =
1− (nG + 1) · 0nG

2nG
+ nG(1− 21−nG)

= nG +
1− 2nG

2nG

= O(nG) (3.19)

42

For m = nG/2 values of p, q, and E(nG/2, nG) follow formulas,

p = 1−

(nG−x
nG/2−x

)(nG
nG/2

) (3.20)

q =

(nG−x
nG/2−x

)(nG
nG/2

) (3.21)

E(
nG

2
, nG) =

nG
2

−1∑
x=0

(
nG

x

)1−
((

nG−x
nG/2−x

)
+ 1
)
p
(nG
nG/2)

2nGq

+

(
nG

nG/2

)(
1/2 +

(nG
nG/2

)
− 1

2nG

)
(3.22)

Because x < nG, and 0 <
((

nG−x
nG/2−x

)
+ 1
)
p
(nG
nG/2) < 1, and

(
nG

nG/2

)
> 2nG√

2nG
(one of the

Stirling's approximation results) we bound E(nG/2, nG) as follows,

E(nG/2, nG) = O
(
2nGn−1

G

)
(3.23)

The binary Algorithm. For the binary algorithm we use di�erent settings in order to

compute possible lower bound of the average time complexity. Instead a single x-adversary

X, we assume that every x-combination of providers can breach privacy of remaining records.

For x 6 m all m-adversaries are able to break the privacy (due to upward pruning).

Therefore, for each size of the coalition up to m providers only one privacy check will

be performed. For x > m the algorithm will �nish the current iteration after �nding an x-

adversary. In order to do so, it will run log2 (nG −m− 1) privacy checks. Then, it will prune

downwards all subcoalitions of x-adversary, including
(

x
x−m

)
m-adversaries. The minimal

number of iterations that are necessary to prune all m-adversaries is equal to
(
nG
m

)
/
(

x
x−m

)
.

Thus, the expected number of privacy checks follows the formula,

E(m,nG) =
m+ 1

nG − 1
(3.24)

+

(
nG

m

)
log2(nG −m− 1)

nG − 1

nG−1∑
x=m+1

(
nG
x

)(
x
m

)

43

E(1, nG) =
2

nG − 1
+

nG log2(nG − 2)

nG − 1

nG−1∑
x=2

(
nG
x

)
x

> 2

nG − 1
+ nG

log2(nG − 2)

(nG − 1)2
(2nG − nG − 2)

= O

(
2nG · log2 nG

nG

)
(3.25)

E(
nG

2
, nG) =

nG/2 + 1

nG − 1

+

(
nG

nG/2

)
log2(

nG
2 − 1)

nG − 1

nG−1∑
x=nG/2+1

(
nG
x

)(
x

nG/2

)
> nG/2 + 1

nG − 1
+ 2nG−4 ·

log2(
nG
2 − 1)

nG − 1

= O

(
2nG · log2 nG

nG

)
, for nG > 4 (3.26)

E(nG − 2, nG) = 1 (3.27)

Non-EG Monotonic m-Privacy. The maximal number of privacy checks required to

verify m-privacy w.r.t. non-EG monotonic constraint C for a group of anonymized records

provided by P parties follows the Equation 3.2.

An m-adversary I can use any of its records in its attacks. Thus, to ensure m-privacy,

all possible subsets of these records for each possible combination of attackers need to be

considered. Number of all possible subsets of adversary records is exponential to total

number of anonymized records, and equal to,

m∑
i=0

∑
I∈P
|I|=i

∏
R∈I

2|records_of(R)| (3.28)

However, some privacy checks are repeated, and therefore redundant. If one of the

malicious providers from an m-adversary does not use any of its records in an attack, then

this provider could be treated as a non-attacker, which is equivalent to a scenario with an

(m−1)-adversary that has been already veri�ed. Thus, to avoid unnecessary privacy checks

44

all scenarios with an adversary that does not participate any records in the attack, are

skipped.

Privacy for adversarial coalitions are checked starting from the 0-adversary, then the

number of attackers is increased gradually, similar as in the bottom-up algorithm. Each

scenario has a di�erent coalition of adversaries that actively participate in attacks using

di�erent subsets of their records. Thus, each scenario is unique, and required for veri�cation.

By skipping redundant privacy checks for an i-adversary I, we verify only scenarios,

where a data provider R may use in the attack any but the empty subset of its records. For I,

the number of possible sets of records used in attacks is equal to
∏

R∈I
(
2|records_of(R)| − 1

)
.

Summing up over all possible coalitions of all possible sizes proves that the maximal number

of privacy checks follows the Equation 3.2.

Conclusions. The average time complexity analysis is more involved, and its results depend

on the parameter m. For each of them the lower bound of the average time complexity is

O(nG), but the upper bound is di�erent, that is O ((3/2)nG) for the top-down, O
(
2nGn

−1/2
G

)
for the bottom-up, O

(
2nGn−1

G

)
for the direct, and O

(
2nG log2 nG

nG

)
for the binary. Thus,

adapting veri�cation strategy to di�erent settings is crucial to achieve, on average, a low

runtime.

3.4 Anonymization for m-Privacy

After de�ning the m-privacy veri�cation algorithms, we can use them to anonymize a

horizontally distributed dataset, while preserving m-privacy w.r.t. C. In this section, we

present a baseline anonymization algorithm, and then our approach that utilizes a data

provider-aware algorithm with adaptive veri�cation strategies to ensure high utility and

m-privacy for anonymized data. We also present an SMC protocol that implements our

approach in a distributed environment, while preserving security.

For a privacy constraint C that is generalization monotonic, m-privacy w.r.t. C

is also generalization monotonic (Theorem 3.7), and most existing generalization-based

anonymization algorithms can be easily modi�ed to guarantee m-privacy w.r.t. C. The

adoption is straightforward, every time a set of records is tested for privacy ful�llment,

45

we check m-privacy w.r.t. C instead. As a baseline algorithm to achieve m-privacy, we

adapted the multidimensional Mondrian algorithm [56] designed for k-anonymity. The

main limitation of such adaptation is that groups of records are formed oblivious of the

data providers, which may result in over-generalization in order to satisfy m-privacy w.r.t.

C.

Anonymization Algorithm. We introduce a simple and general algorithm based on the

Binary Space Partitioning (BSP) (Algorithm 4). Similar to the Mondrian algorithm, it

recursively chooses an attribute to split data points in the multidimensional domain space

until the data cannot be split any further without breaching m-privacy w.r.t. C. However,

the algorithm has three novel features: 1) it takes into account the data provider as an

additional dimension for splitting; 2) it uses the privacy �tness score as a general scoring

metric for selecting the split point; 3) it adapts its m-privacy checking strategy for e�cient

veri�cation. The pseudo code for our provider-aware anonymization algorithm is presented

in Algorithm 4.

Algorithm 4: The provider-aware anonymization algorithm.
Data: Records T provided by Pj (j = 1, . . . , n), QI attributes Ai (i = 1, . . . , q), the

m, and a constraint C
Result: Anonymized T ∗ that is m-private w.r.t. C

1 π = get_splitting_points_for_attributes(Ai)

2 π = π ∪ get_splitting_point_for_providers(A0)

3 π′ = {ai ∈ π, i ∈ {0, 1, . . . , q} : are_both_split_subpartitions_m-private(T, ai)}
4 if π′ is ∅ then
5 T ∗ = T ∗ ∪ A1(T)
6 return T ∗

7 Aj = choose_splitting_attribute(T , C, π′)
8 (T ′

r, T
′
l) = split(T , Aj)

9 Run recursively for T ′
l and T ′

r

Provider-Aware Partitioning. The algorithm �rst generates all possible splitting points,

π, for QI attributes and data providers (lines 1 to 2). In addition to the multidimensional

QI domain space, we consider the data provider of each record as its additional attribute A0.

For instance, each record t contributed by data provider P1 will have t[A0] = P1. Introducing

this additional attribute adds also a new dimension for partitioning. Using A0 to split data

points decreases number of providers in each partition, and hence increases the chances that

46

more sub-partitions will be m-private, and feasible for further splits. This leads to a more

precise view of the data, and have a direct impact on the anonymized data utility. To �nd

the potential split point along this dimension, we impose a total order on the providers, e.g.,

sorting the providers alphabetically or based on the number of records they provide, and

partition them into two groups with approximately the same size.

Adaptive Veri�cation for EG-Monotonic m-Privacy. m-Privacy is then veri�ed for

all possible splitting points, and only those satisfying it are added to a candidate set π′

(line 3). In order to minimize the time, our algorithm adaptively selects an m-privacy

veri�cation strategy using the �tness score of the partitions. Intuitively, in the early stage

of the anonymization algorithm, the partitions are large and likely m-private. The top-

down algorithm, which takes advantage of the downward pruning, may be used for fast

privacy veri�cation. However, as the algorithm continues, the partitions become smaller, the

downward pruning is less likely, and the top-down algorithm will be less e�cient. The binary

algorithm may be used instead to take advantage of upward pruning. We experimentally

�nd the threshold of privacy �tness score for selecting the best algorithm, and con�rm the

bene�t of this strategy.

Privacy Fitness Score Based Splitting Point Selection. Given a non-empty candidate

set π′ (Algorithm 4), the privacy �tness score (De�nition 3.9) is used to �nd the best split

(line 7). Intuitively, if the resulting partitions have higher �tness scores, they are more

likely to satisfy m-privacy, and allow further splitting. Notice that the �tness score does

not have to be exactly the same function used for adaptive ordering in m-privacy check.

For example, if in the Equation 3.1, the weight parameter used to balance �tness values of

privacy constraints, should have, most likely, di�erent value. After choosing the splitting

point, the partition is divided, and the algorithm is run recursively on each sub-partition

(lines 8 and 9).

47

3.5 Experimental Evaluation

3.5.1 Experiment Setup

We merged the training and testing sets of the Adult dataset2 into a single data set. Records

with missing attribute values have been removed. All remaining 45,222 records have been

used in experiments. The Occupation has been chosen as a sensitive attribute AS . This

attribute has 14 distinct values. Records are randomly distributed among n providers

following uniform or exponential distribution for non-EG and EG monotonic constraints,

respectively.

Privacy Constraints. We note again that m-privacy is orthogonal to the privacy

constraints being used, and these are chosen to demonstrate the feasibility and e�ciency

of our approach. The EG monotonic privacy constraint is de�ned as a conjunction of

k-anonymity [85] and l-diversity [60]. Both m-privacy veri�cation and anonymization

algorithms use privacy �tness scores (Equation 3.1), but with di�erent values of the weight

α. Values of α can be de�ned in a way that re�ects restrictiveness of privacy constraints.

The impact of the weight to overall performance was experimentally investigated and values

of α for the most e�cient runs have been chosen as default.

All experiments have performed on Sun Microsystems SunFire V880 with 8 CPUs, 16 GB

of RAM, and running Solaris 5.10. All algorithm parameters, and their default values are

listed in the Table 3.1.

Table 3.1: Experiment parameters and default values for experiments with EG and non-EG
monotonic constraints, which are outside and within parentheses, respectively.
Name Description Veri�cation Anonymization

m Power of m-privacy 5 (3) 3 (1)
n Number of data providers � 10 (5)
nG Number of data providers contributing

to a group
15 (5) �

|T | Total number of records � 45222 (30)
|TG| Number of records in a group {150, 750} (25) �
k Parameter of k-anonymity 50 (4) 30 (4)
l Parameter of l-diversity 4 (3)
t Parameter of t-closeness (0.5) (0.5)

2The Adult dataset has been prepared using the Census database from 1994, http://archive.ics.uci.
edu/ml/datasets/Adult

http://archive.ics.uci.edu/ml/datasets/Adult
http://archive.ics.uci.edu/ml/datasets/Adult

48

Metrics. The e�ciency of algorithms is measured by their runtime. To evaluate the utility

of the anonymized data, we used the query error metric de�ned similar to prior work [22, 91].

2,500 queries have been randomly generated, and each query had qd predicates pi, de�ning

a range of a randomly chosen quasi-identi�er, where qd ∈
[
2, q2
]
and q is the number of

quasi-identi�er attributes,

SELECT t FROM T ∗ WHERE p1 AND . . . AND pqd;

Query error is de�ned as the normalized di�erence in the results Q coming from anonymized

and original data: query_error = (Q(T ∗)−Q(T))/Q(T).

3.5.2 m-Privacy Veri�cation

The objective of the �rst set of experiments is to evaluate the e�ciency of di�erent algorithms

for m-privacy veri�cation given a group of records TG with respect to C.

Attack Power. In this experiment we compare m-privacy veri�cation heuristics against

di�erent attack powers. We use two di�erent groups of records with relatively small and

large average numbers of records per data provider. Figure 3.4 shows the runtime with

varying m for all heuristics for the former group of records.

0 2 4 6 8 10 12 14
1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

1E+6

binary

top−down

baseline

bottom−up

m

time [ms]

Figure 3.4: Runtime (logarithmic scale) vs. power of m-privacy for |TG|/nG = 10.

The group has 150 records, and small average �tness score per provider (equal to 0.867),

which re�ects to a high probability of privacy breach by a large m-adversary. In most cases

the binary algorithm achieves the best performance due to its e�cient upward and downward

49

pruning. However, performance of the top-down algorithm is comparable with binary for

m > nG/2.

0 2 4 6 8 10 12 14
1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

1E+6

1E+7
binary

top−down

baseline

bottom−up

m

time [ms]

Figure 3.5: Runtime (logarithmic scale) vs. power of m-privacy for |TG|/nG = 50.

Figure 3.5 shows the runtime with varying m for all heuristics for the group 750 records,

and a larger average �tness score per provider (equal to 2.307). Therefore intuitively, it

is very unlikely that an m-adversary may breach privacy, and the downward pruning can

be applied often. This intuition is con�rmed by results, which show that the top-down

algorithm is signi�cantly faster than other heuristics. Since the remaining algorithms do not

rely only on the downward pruning, they have to perform an exponential number of checks.

We can also observe a clear impact of m, e.g., m ≈ nG/2 incurs the longer run.

Number of Contributing Data Providers. In this experiment we analyze the impact

of increasing number of data providers, nG, on the di�erent algorithms for the small and

large set of records, respectively. Notice that the average number of records per provider is

constant. Figure 3.6 and Figure 3.7 show the runtime of di�erent heuristics with varying

nG.

We observe that increasing the number of contributing data providers has di�erent

impact on di�erent algorithms in both group settings. In the �rst group (Figure 3.6),

the execution time for each algorithm grows exponentially. In this case the group of records

has a low privacy �tness score, and is very vulnerable to attacks. Increasing the number of

providers will make the domain of possiblem-adversaries, which are considered exponentially

bigger.

Similar trend is found for the other group (Figure 3.7) for binary, direct, and bottom-up

50

Figure 3.6: Runtime (logarithmic scale) vs. number of data providers for |TG|/nG = 10.

Figure 3.7: Runtime (logarithmic scale) vs. number of data providers for |TG|/nG = 50.

algorithms. For the top-down algorithm runtime grows linearly with the number of providers,

which is due to its e�ective use of downward pruning.

The Average Number of Records Per Provider. In this experiment we systematically

evaluate the impact of the average number of records per provider (|TG|/nG) on the e�ciency

of the algorithms. Figure 3.8 shows runtime with varying |TG|/nG (nG is constant while |TG|

is being changed) for di�erent heuristics. We observe that for groups with small average

number of records per provider, both direct and bottom-up algorithms are very e�cient as

the group is likely to violate m-privacy. For groups with the large average number of records

per provider, i.e., when |TG|/nG > 15, the top-down algorithm outperforms others.

Figure 3.9 presents the runtime with varying the average �tness score of contributing

providers. It yields an almost identical trend as the result for average number of records

per provider (Figure 3.8). In fact, they are linearly correlated (R2 = 0.97, scoreF =

0.04 · |TG|/nG + 0.33) due to the de�nition of our privacy �tness score.

51

Figure 3.8: Runtime (logarithmic scale) vs. |TG|/nG.

0 0.5 1 1.5 2 2.5
1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

1E+6

binary

adaptive

top−down

direct

bottom−up

avg privacy fitness score of providers

time [ms]

Figure 3.9: Runtime (logarithmic scale) vs. the average �tness score of data providers.

Adaptive Strategy. Based on the above results, we use the following parameters for the

adaptivem-privacy checking strategy used in our anonymization experiments. If the average

�tness score of contributing providers in a group is less than 0.85 (|TG|/nG < 15), we use

the binary algorithm, while for other cases the top-down is our choice.

3.5.3 m-Privacy Anonymization

This set of experiments compares our provider-aware algorithm with the baseline algorithm,

and evaluates the bene�t of provider-aware partitioning for m-privacy w.r.t. an EG

monotonic constraint.

Attack Power. We �rst evaluate both anonymization heuristics with varying attack power

m. Figure 3.10 shows the runtime with varying m for both algorithms. As a reference

we added results of anonymization applied independently by each data provider. Since its

52

runtime and query error are independent of m, and can be run in parallel, it outperform

other approaches, but anonymized data have low utility.

We observe that the provider-aware algorithm signi�cantly outperforms the baseline

algorithm. This fact may look counter intuitive at the �rst glance � our algorithm considers

one more candidate splitting point at each iteration, thus the execution time should be

longer. However, in each iteration of the provider-aware algorithm, the additional splitting

point along data providers, if chosen, reduces the number of providers for each subgroup,

and hence reduces m-privacy veri�cation time signi�cantly (as observed in Figure 3.6 and

Figure 3.7). In contrast, the baseline algorithm preserves the average number of providers

in each subgroup which incurs a high cost for m-privacy veri�cation. As expected, both

algorithms show a peak cost when m ≈ n/2.

0 1 2 3 4 5 6 7 8 9 10
0E+0

2E+5

4E+5

6E+5

8E+5

1E+6 baseline

provider−

aware

independent

m

time [ms]

Figure 3.10: Runtime vs. power of m-privacy.

0 1 2 3 4 5 6 7 8 9 10
0.100

0.105

0.110

0.115

0.120

0.125

0.130

0.135

baseline

provider−

aware

independent

m

query error (qd = 2)

Figure 3.11: Query error vs. power of m-privacy.

Figure 3.11 shows also the query error of the two algorithms with varying m. Intuitively,

53

a higher attack power m should increase the query error as the data need to be generalized

further to satisfy m-privacy. Our intuition is con�rmed by the result of the baseline

algorithm, but is disproved for the provider-aware algorithm. The constant values of the

query error looks counter intuitive, but can be explained. The baseline algorithm, oblivious

of the provider information, results in more generalized groups with increasing m. In

contrast, the provider-aware algorithm takes into account the data providers, and returns

groups with smaller number of contributing providers (on average 1 for k = 15). Therefore,

it maintains a more precise view of the data, and signi�cantly outperforms the baseline

algorithm. The query error may increase with m eventually, but it will not be as signi�cant

growth as for the baseline algorithm.

Number of Data Records. This set of experiments evaluates algorithms for di�erent

dataset sizes. Figure 3.12 shows the runtime with varying number of records for both

algorithms. As a reference we added results of anonymization applied independently by

each data provider. However, its query error (not presented), is on average 40% greater

than for data anonymized by running other algorithms.

As expected, the runtime for both algorithms grows with the number of records.

However, the baseline algorithm has a higher growth rate than the provider-aware algorithm.

This di�erence is caused by the signi�cant reduction of the veri�cation time in our algorithm,

which limits the number of providers represented in each group. The query error (not

presented) is at the same rate for both algorithms.

4k 8k 12k 16k 20k 24k 28k 32k 36k 40k
0E+0

1E+5

2E+5

3E+5
baseline

provider−

aware

independent

|T|

time [ms]

Figure 3.12: Runtime (logarithmic scale) vs. |T | for anonymization algorithms.

Adaptive m-Privacy Veri�cation. In this experiment we evaluate the bene�t of the

54

adaptive selection of a m-privacy veri�cation algorithm. Figure 3.13 presents runtimes of

adaptive anonymization algorithm using selected veri�cation strategies with varying |T |. For

small values of |T |, the algorithm using adaptive veri�cation strategy follows the binary, and,

for more records, the top-down algorithm, as we expected. However, for values of |T | > 300,

our algorithm outperforms the non-adaptive strategies. The reason is that anonymization

of numerous records requires veri�cation of m-privacy for many subgroups of di�erent sizes.

Adapting to such variety of groups results in higher e�ciency comparing to the choice of a

single strategy.

30 300 3000
1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

1E+6

1E+7

1E+8

1E+9

adaptive

binary

top−down

|T|

time [ms]

Figure 3.13: Runtime (logarithmic scale) vs. |T | for di�erent veri�cation strategies.

Impact of Privacy Constraints. We performed a set of experiments evaluating the

impact of the privacy constraints on the utility of data using anonymization algorithms for

m-privacy. In our experiments, the constraint is de�ned as a conjunction of k-anonymity

and l-diversity. Figure 3.14 and Figure 3.15 show runtime and query errors with varying

privacy constraint restrictiveness (varying k and l, respectively).

As expected, more restrictive constraints, i.e., greater values of k or l, require more

records or more distinct values of the sensitive attribute in each QI group, and thus results

in higher query error. However, execution times are shorter comparing to weaker privacy

constraints, which is a consequence of fewer partitions.

55

0 4 8 12 16 20 24 28 32 36 40 44 48 52
0E+0

1E+5

2E+5

3E+5

4E+5

5E+5

6E+5

baseline
provider−
aware

k

time [ms]

0 4 8 12 16 20 24 28 32 36 40 44 48 52
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

baseline
provider−
aware

k

query error (qd = 2)

Figure 3.14: Runtime and query errors vs. k in m-privacy with respect to k-anonymity.

0 2 4 6 8 10
0E+0

1E+5

2E+5

3E+5

4E+5

baseline
provider−
aware

l

time [ms]

0 2 4 6 8 10
0.100

0.102

0.104

0.106

0.108

0.110

0.112

0.114

0.116

baseline
provider−
aware

l

query error (qd = 2)

Figure 3.15: Runtime and query errors vs. l in m-privacy with respect to l -diversity.

3.5.4 m-Privacy Veri�cation Experiments for non-EG Monotonic Con-

straints

The goal of this set of experiments is to evaluate the e�ciency and complexity of the m-

privacy veri�cation algorithm w.r.t. a non-EG monotonic constraint C.

Attack Power. In this experiment we present the impact of the m-privacy power m for

di�erent sets of records. We use four di�erent sets of records, generated randomly and

independently from each other. Figure 3.16 shows the runtime with varying m for di�erent

sets of records. For each set the maximal runtime is reached in the maximal value of m for

which records are m-private (m = 2 for |TG| = 15, and m = 3 for others). For lower values,

the runtime increases exponentially, while for greater values drops signi�cantly, which is

caused by early identi�cation of attacking records that can breach privacy (early stop).

Number of Contributing Data Providers. In this experiment we analyze the impact of

56

Figure 3.16: Runtime (logarithmic scale) vs. power of m-privacy.

increasing the number of data providers, nG, while preserving the average number of records

per provider for m-privacy veri�cation (m = 3). Figure 3.17 shows the runtime with varying

nG for a few di�erent values of the average number of records per provider. As expected, the

m-privacy veri�cation runtime increases exponentially with number of contributing providers

for m-private sets of records (m = 3). For sets, which are not m-private, i.e., for nG = 3,

and for nG = 5 with |TG|/nG = 5, their runtimes are very low, due to early �nding a set of

attacking records that breaches privacy.

Figure 3.17: Runtime (logarithmic scale) vs. number of data providers.

3.5.5 m-Privacy Anonymization Experiments for non-EG Monotonic

Constraints

In this set of experiments we analyze performance of the m-privacy anonymization

algorithms w.r.t. a non-EG monotonic constraint C for di�erent parameter values. The

57

privacy constraint is de�ned as a conjunction of k-anonymity [85] and t-closeness [57].

Attack Power. We �rst evaluate the impact of varying size of malicious coalitions.

Figure 3.18 and Figure 3.19 show, respectively, the runtime and query errors for di�erent

powers of m-privacy, i.e., the parameter m.

0 1 2 3 4
1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

1E+6

1E+7
baseline
provider−
aware

m

time [ms]

Figure 3.18: Runtime (logarithmic scale) vs. power of m-privacy.

As expected, runtimes for both algorithms increase exponentially with m (Figure 3.18).

The provider-aware algorithm runs slightly longer, which is expected due to consideration

of additional splits of records, but the query error is signi�cantly lower.

0 1 2 3 4
0.10

0.12

0.14

0.16

0.18

0.20

baseline
provider−
aware

m

query error (qd = 2)

Figure 3.19: Query error vs. power of m-privacy.

We expect that increasing restrictiveness of the m-privacy would increase query error

as well (Figure 3.19). This intuition is con�rmed for low values of m, but for (m > 2)

query errors slightly decrease, and maintain the same level of values. This counter-intuitive

behavior is a side e�ect of the dataset size, for which it is very likely to get an anonymized

m-private (m = 3) dataset, which is also m-private (m = 4). The same reason stays behind

58

a higher error rate for m-private (m = 2) anonymized dataset.

Number of Data Records. The goal of this experiment is to evaluate our algorithm

for di�erent number of records. Each bigger set of records is a superset of the smaller set

considered earlier. Figure 3.20 and Figure 3.21 present runtime and query error results for

di�erent numbers of records, respectively.

10 15 20 25 30 35 40
1E+0

1E+1

1E+2

1E+3

1E+4

baseline
provider−
aware

|T|

time [ms]

Figure 3.20: Runtime (logarithmic scale) vs. number of records.

10 15 20 25 30 35 40
0.10

0.12

0.14

0.16

0.18

0.20
baseline
provider−
aware

|T|

query error (qd = 2)

Figure 3.21: Query error vs. number of records.

Figure 3.20 con�rms our intuition that the runtime increases exponentially with the

number of records. Dynamics of these growths, which are represented by slopes of lines

in the chart, is correlated with m. The greater the m is, the more dynamically runtime

increases for both algorithms.

Query error depends less on the size of the dataset (Figure 3.21). At the �rst glance this

seems to be counter-intuitive, but it can be explained. Adding records increases query error,

but only up to some point, after which the anonymization algorithm is able to generate more

59

QI groups, and the error of query answers decreases. Thus, the query error is a periodic-like

function of the dataset size. For all scenarios the provider-aware algorithm performs at least

as good as the baseline algorithm, and achieves lower query errors for larger datasets.

Privacy Constraints. We also perform a set of experiments evaluating the impact of the

privacy constraint restrictiveness on the utility of anonymized data. In these experiments

we evaluate our algorithm for di�erent levels of privacy constraints restrictiveness, i.e., k-

anonymity and t-closeness. Notice that the restrictiveness of k-anonymity is proportional to

values of k (i.e., increasing k makes it more restrictive), while t-closeness is disproportional

to values of t (i.e., increasing t makes it less restrictive). Figure 3.22 and Figure 3.23 show

runtime and query error, while varying k and t values, respectively.

1 2 3 4 5 6 7 8 9 10
1E+0

1E+1

1E+2

1E+3

1E+4

baseline
provider−
aware

k

time [ms]

1 2 3 4 5 6 7 8 9 10
0.10

0.12

0.14

0.16

0.18

0.20

baseline
provider−
aware

k

query error (qd = 2)

Figure 3.22: Runtime (logarithmic scale) and query errors vs. k in k -anonymity used in a
privacy constraint C.

0 0.2 0.4 0.6 0.8 1
1E+0

1E+1

1E+2

1E+3

1E+4

baseline
provider−
aware

t

time [ms]

0 0.2 0.4 0.6 0.8 1
0.10

0.12

0.14

0.16

0.18

0.20

baseline
provider−
aware

t

query error (qd = 2)

Figure 3.23: Runtime (logarithmic scale) and query errors vs. t in t-closeness used in a
privacy constraint C.

We expect that increasing k will reduce runtime due to less splits of records that can be

60

performed. At the same time the query error will increase, because of the presence of bigger

equivalence groups in the anonymized data. Our expectations are generally con�rmed by

experiments. Only for k > 6 query errors are constant or decrease (baseline for k = 10). The

reason of that is, again, small size of the dataset. After some number of splits, further splits

are not possible due to privacy constraints, and obtained QI groups meet more restrictive

privacy constraints than required. Thus, query errors as well as runtimes for those scenarios

would be the same. Notice that modifying k impacts privacy �tness scores and choices of

attributes used to split records, hence for k = 10 the baseline algorithm runs in a di�erent

way than for k = 9, and returns results with lower query errors.

Experiments con�rm also that our algorithm returns anonymized data with the same

or better utility than the baseline algorithm in all scenarios. The price for preserving more

utility is just a slight increase of the runtime.

61

Chapter 4

Secure Multiparty Data Aggregation

with m-Privacy

4.1 Introduction

In Chapter 3 we assumed that there is a trusted third-party (TTP) that collects data from all

providers and runs all necessary algorithms. For settings without such party, data providers

need to run an SMC protocol. We assume that all providers are semi-honest (honest but

curious), i.e., they follow each protocol they run, but inspect all intermediate results of

computations.

In this chapter we present SMC protocols for that implement all presented m-privacy

veri�cation and anonymization algorithms as well as subprotocols to verify privacy ful�llment

and anonymize records. SMC protocols are designed and implemented in the Shamir's secret

sharing scheme [81], but encryption and other secure schemas are also employed. In a secret

sharing scheme, the owner of a secret message s prepares and distributes n shares, such that

each party gets a few shares (usually one). An algorithm reconstructing s requires any r

shares as its input. To prevent any coalition of up to m providers to reveal intermediate

results, we set r = m+1. Notice that receivers of shares do not have to be neither providers

nor trusted. They could be run as separate processes within a distributed environment

(e.g. cloud) and computations still would stay information-theoretically secure [6]. The

62

implementation and complexity analyzes have been built on top of the SEPIA framework [14,

103].

4.2 Secure Privacy Constraint Veri�cation Protocols

To allow using any privacy constraint in our m-privacy veri�cation protocol, secure privacy

veri�cation is implemented as a separate protocol, and results of its runs are disclosed.

Some secure m-privacy veri�cation protocols designed for a speci�c privacy constraint C

may disclose less intermediate computation results than our approach, but will be limited

only to a single privacy constraint and will not be able to deal with other constraints.

In addition, changing C requires redesigning the whole protocol from scratch. Presenting

veri�cation protocols for any privacy constraint is out of the scope of this paper, but we

present secure protocols to verify k-anonymity and l-diversity. All implementations use

Shamir's secret sharing [81] as their main scheme. For a few subprotocols we use encryption

(commutative, homomorphic, etc.), and other secure schemas for e�ciency. Assume that

there are nG data providers, and each data provider Pi provides Ti records.

4.2.1 Secure k-Anonymity Veri�cation

To securely verify k-anonymity, the leader counts all records s = |T | using the secure sum

protocol [20, 71, 82], and securely compares s with k. Our implementation of the secure

sum protocol uses only Shamir's secret sharing scheme (Algorithm 5).

First, all data providers run secure sum protocol in order to compute total number of

records s. To avoid disclosing s it is stored in distributed shares [s] (line 1). Finally, all

providers securely compare [s] with k [14, 103]. As the result, each provider gets a share of

1 if k-anonymity holds or a share of 0 otherwise (line 2).

Algorithm 5: The secure k-anonymity veri�cation protocol.
Data: P1, . . . , PnG providing T1, . . . , TnG records respectively.
Result: Each Pi gets [1]i if s > k, [0]i otherwise.

1 [s] = secureSum (|T1|, . . . , |TnG |)
2 return 1− lessThan([s], k)

63

Theorem 4.1. Assuming security of subprotocols, the k-anonymity veri�cation protocol is

secure against at most m attackers.

Proof. Assuming secure communication channels, the Shamir's secret sharing scheme were

proven correct and information-theoretically secure [6]. Thus, knowing up to m shares of

any value does not disclose it. Correctness and security of both secureSum and lessThan

subprotocols were proven in [14]. The protocol does not reveal anything, but the result of

the comparison s > k.

Complexity Analysis. Computation complexity of the protocol is equal to the sum of

complexities for both subprotocols. In [14] complexities are given as functions of secure

multiplications. Each secure multiplication requires additional shares generation, and secret

reconstruction, which take O(mnG) time. Assuming that number of bits used to represent a

number in our protocols is constant, secure comparison protocol requires constant number of

multiplications, i.e., its time complexity is O(mnG). Secure sum protocol (including shares

generation) has the same complexity. Thus, the overall time complexity is O(mnG).

While running the secureSum subprotocol nG(nG − 1) messages are sent. Additionally,

the lessThan subprotocol requires constant number of multiplications, therefore total

number of messages is equal to nG(nG − 1). Thus, the total communication complexity

is equal to O(n2
G).

4.2.2 Secure l-Diversity Veri�cation

The goal of this protocol is to securely verify if the total number of sensitive values from

all records, is at least l (Algorithm 6). The protocol has two phases. In the �rst phase,

each data provider Pi �nds the set of sensitive values Si of its records. Then, it randomly

generates pi fake values, and adds them to Si (line 1). Notice that each provider generates

fake values from a di�erent domain. In the last step of this phase, the leader runs the secure

size of set union subprotocol to compute s̄, i.e., the size of the set of sensitive values of all

records with a few additional fake values (line 2). The subprotocol is run in the same way

as the secure size of set intersection [20, 88] with a few minor modi�cations. Notice that the

64

use of commutative encryption scheme in the subprotocols ensures that duplicated sensitive

values are properly handled.

In the second phase, all providers securely compute the number all fake values (line 3).

Then, they securely check if the number of sensitive values is not less than l, i.e, if s̄− [p] > l.

The results are stored by providers as shares of 1 if l-diversity holds or shares of 0 otherwise

(line 4).

Algorithm 6: The secure l-diversity veri�cation protocol.
Data: Each Pi has records Ti.
Result: Each Pi gets [1]i if |

∪nG
i=1 Si| > l, [0]i otherwise.

1 Si = {t[As] : t ∈ Ti} ∪ generate_fake_values(pi)
2 s̄ = secureSizeOfUnion (S1, . . . , SnG)
3 [p] = secureSum (p1, . . . , pnG)
4 return 1− lessThan(s̄− l, [p])

Theorem 4.2. Assuming security of subprotocols, the l-diversity veri�cation protocol is

secure against up to m attackers except an upper bound of the number of sensitive values.

Proof. Using commutative encryption scheme in implementation of the secureSizeOfUnion

subprotocol guarantees its correctness and security. Adding distinct fake values ensures that

the local number of sensitive values will not be disclosed. Since each data provider generates

di�erent fake values, the sum of their counts is equal to the count of their union. The only

information that is revealed, is s̄, i.e., the upper bound of the number of sensitive values.

However, allowing large and random number of fake values guarantees the low probability

of guessing the real number of sensitive values. The second phase of the protocol utilizes

Shamir's secret sharing scheme for secure sum, and comparison subprotocols, which are

secure [6, 14]. Thus, the protocol is also secure.

Complexity Analysis. The �rst steps of the protocol require 2nG rounds of both commu-

nication and encryptions. Thus, if there are at most dS sensitive values, and up to pS fake

values, the time complexity is equal to O(nG(dS + pS)). Time complexity of the secure sum

protocol implemented using secret sharing scheme is equal to O(mnG).

While computing s̄ all providers exchange 2nG messages. Both secureSum and lessThan

protocols generate 2nG(nG−1) messages, and the overall communication complexity is equal

65

to O(n2
G).

Secure Privacy Veri�cation. Above protocols return the veri�cation result as shares of

[1] if privacy constraint is ful�lled, and [0] otherwise. Each provider holds a single share for

a constraint Ci. Any r = m+ 1 providers are able to check if C = C1 ∧ . . . ∧ Cw holds, by

securely multiplying their results for all constraints, and comparing it against zero [14]. If

the �nal reconstructed value is equal to 1, then C holds, otherwise it does not.

The ful�llment of each privacy constraint is kept secret, and only the ful�llment of

their conjunction is disclosed. Given results of privacy checks for all w constraints in the

conjunction, the time complexity is equal to O(rwnG), and communication complexity is

equal to O(n2
G).

Overall the time complexity for our running example is equal to O((wm+m+ pS)nG),

while the communication complexity is equal to O(n2
G).

4.3 Secure m-Privacy Veri�cation Protocols

In this section we present secure multiparty protocols to verify m-privacy w.r.t. a privacy

constraint C. Notice that a secure m-privacy veri�cation protocol for a non-EG monotonic

constraint is an extension of the bottom-up approach (Algorithm 8).

Notice that the TTP can recognize duplicated records, and treats them in the appropriate

way. For SMC protocols all records are unique, and duplicates are not detected.

To compute sums we run a secure sum protocol, which securely computes the sum of

numbers held by providers. Implementation of such protocol is based on Shamir's secret

sharing scheme, and has been introduced in SEPIA framework [14, 103]. Another protocol

that is provided by SEPIA is secure comparison, which securely compares two numbers. By

running this protocol for a set of numbers, we �nd the minimum and maximum values in

the set, and set its elements in order.

In our protocols we also use secure size of set union subprotocol, which is a slight

modi�cation of the secure size of set intersection protocol [20]. The modi�cation is to count

all distinct encrypted items, and not only ones that are contributed by every provider.

66

Correctness, security, and complexity of these protocols and their implementations have

been proven in [14, 20].

4.3.1 Secure Leader Election Protocol

All protocols are initiated by a leader P ′, i.e., a chosen provider, which is found by running

a secure leader election protocol (SLE). Our SLE protocol (Algorithm 7) runs a secret sum

protocol over randomly generated numbers in order to elect the leader. The implementation

utilizes Shamir's secret sharing scheme, and does not disclose any information about data

and its providers. The leader is considered untrusted, therefore any honest but curious party

(also external) can participate in the election. Each data provider can simulate, monitor,

and verify the leader actions to detect any malicious behavior. After running this protocol,

each provider knows index of the leader from the list of all providers. In our algorithm

[ri] = ([ri]1, . . . , [ri]n) represents a vector of shares generated for a number ri, which is

owned by a provider Pi.

The protocol that is run by Pi works as follows. First, Pi generates a random number

ri, which shares are then distributed among other providers such that [ri]j is sent to Pj .

Then, Pi sums up all ith shares, in order to compute [r]i, and collaboratively reconstruct

r =
∑n

i=1 ri. Finally, the leader is identi�ed as Pr (mod n).

Algorithm 7: The Secure Leader Election protocol (SLE).
Data: A list of n data providers P .
Result: A chosen leader in P .

1 ri = get_natural_random_number()

2 [ri] = get_secret_shares(ri)
3 To each Pj ∈ P sends [ri]j , and receives [rj]i from it.
4 Sums up all ith shares:

∑n
i=1[ri]j = [

∑n
i=1 ri]j = [r]j

5 r =reconstruct([r])
6 return Pr (mod n)

Security. The SLE protocol is secure as long as communication channels among providers

are secure [14]. With such assumption, and without loosing generality, let consider the

worst-case scenario, i.e., I = {P1, . . . , Pn−1} are malicious, and collude.

Since each data provider participates a random number ri in order to compute r =

67

∑n
i=1 ri, colluding providers I are not able to bias the value of r. The presence of rn in the

sum guarantees that r is uniformly random, and unbiased.

Although malicious providers I can modify all shares they have access to, there

modi�cations will not bias the randomness of rn, which is enough to guarantee unbiased

randomness of r. Due to lack of access to nth share [rn]n, their modi�cations of other

shares change rn (and r) randomly. Thus, such random modi�cation of rn does not bias the

randomness of the leader choice.

Complexity. Complexity of generating n shares, which are enough to reconstruct the

original value, is equal to O(n), and is caused by generating a polynomial of degree n,

and generating n shares. Summing up n shares has complexity O(n). Reconstruction of

r requires running Lagrange interpolation algorithm, which complexity is equal to O(n2).

Thus, the overall computation complexity is equal to O(n2).

Each provider, e.g. Pi, sends (and receives) (n− 1) shares before computing [r]j . Then,

[r]j is further sent to (n − 1) providers, while receiving other shares of r. Thus, Pi sends

(and receives) (2n− 2) messages. The overall computation complexity is equal to O(n2).

4.3.2 Secure Sorting and Adaptive Ordering

The main responsibility of the leader is to determine m-privacy ful�llment with as little

privacy checks as possible. Our heuristic minimizes the number of privacy checks by utilizing

EG monotonicity of C and adaptive ordering of m-adversary generation (Section 3.3.2). To

de�ne such order, P ′ runs any sorting algorithm, which sorts providers by �tness scores of

their local records, with all comparisons run securely.

Applying the adaptive ordering heuristic uncovers the order of �tness scores of data

providers. Without such ordering more privacy checks need to be performed.

Our implementations of secure sorting protocol utilizes the Shamir's secret sharing

scheme with r shares required to reconstruct a secret. To ensurem-privacy we set r = m+1.

Thus, for nG data providers the protocol requires running a sorting algorithm, which takes

O(nG log nG) secure comparisons. Each secure comparison has the same complexity, i.e.,

requires a few secure multiplications, where each multiplication takes O(m2) time [14]. Thus,

68

the secure sorting time complexity is equal to O(m2nG log nG). Each secure multiplication

requires passing nG(nG − 1) messages in total, although only (m+ 1)2 of them are needed

to get the result. Thus, the communication complexity is equal to O(n3
G log nG).

Notice that if we allow disclosing �tness score values from all providers, then all

complexities can be signi�cantly reduced to O(nG lognG) for time complexity, and O(nG)

for communication complexity.

4.3.3 Secure m-Privacy Veri�cation Protocol

After �nding the order of data providers, the leader P ′ starts verifying privacy for di�erent

coalitions of attackers, which are generated in speci�c order. A general scheme of secure m-

privacy veri�cation is the same for all heuristic algorithms (Algorithm 8). Common steps are

as follows. In the main loop P ′ veri�es privacy of records for m-adversaries until m-privacy

can be decided (line 3). Notice that in order to determine m-privacy w.r.t. EG monotonic

C, it is enough to check privacy for all scenarios with exactly m attackers (Corollary 3.8).

In the loop, P ′ generates, and broadcasts a coalition of potential adversaries I, so each

party can recognize its status (attacker/non-attacker) for the current privacy check. Then,

the leader runs the secure privacy veri�cation protocol for I (line 6). If privacy could be

breached, and I has no more than m data providers, then the protocol stops, and returns

negative answer (line 7). Otherwise, the information about privacy ful�llment is used to

prune (upwards or downwards) a few potential m-adversaries (line 9). Finally, if m-privacy

w.r.t. C can be decided, P ′ returns the result of the veri�cation (line 10).

Secure m-Privacy Veri�cation for the binary Algorithm. Similar to other m-privacy

veri�cation algorithms the binary algorithm can be easily implemented as an SMC protocol.

The protocol is run by the leading provider. Results of privacy checks are announced to

other providers. Thus, each of them is able to recognize when m-privacy is determined or

the protocol should be run further. For the binary algorithm, secure m-privacy veri�cation

protocol is also run by P ′, which executes all steps of the Algorithm 2. The only di�erence

is privacy veri�cation, which is implemented as an SMC protocol.

Proposition 4.3. Assuming security of subprotocols, all m-privacy protocols are secure

69

Algorithm 8: The secure m-privacy veri�cation protocol w.r.t. EG monotonic
constraint C for top-down, bottom-up, and direct algorithms; code run by the leading
provider P ′.
Data: List of providers P , an EG monotonic C, and the m.
Result: true if A1 (T) is m-private w.r.t. C, false otherwise.

1 sites = securely_sort_providers(P , increasing_order, scoreF)
2 use_adaptive_order_generator(sites, m)

3 while is_m-privacy_decided() == false do
4 I = generate_next_coalition(P)
5 Broadcast coalition I.

// Runs secure privacy verification protocol.

6 privacy_breached = is_privacy_breached_by(I)
7 if privacy_breached and |I| 6 m then
8 return false // early stop

9 prune_coalitions(I, privacy_breached)

10 return is_m-private()

except revealing results of potential attacks of generated m-adversaries.

Proof. Results of all privacy checks are publicly known, and, by applying pruning, one

can determine privacy of records for a few potential m-adversaries. Thus, the security

disclosure depends on data, and the sequence of generated m-adversaries I is very important

to minimize it. In this proof, we analyze security for all heuristics that are presented above

(Section 3.3.2).

All generated m-adversaries can be partitioned into two groups by the result of privacy

check: 1) the m-adversary, and all its subsets, cannot breach privacy of remaining records,

2) the m-adversary, and all its supersets, can breach privacy of remaining records.

If the records are m-private w.r.t. C, then direct and bottom-up algorithms make the

veri�cation protocol fully secure. Ful�llment of m-privacy implies that all veri�ed coalitions

have size up to m, and are in the group 1), i.e., there is no security breach. On the contrary,

both top-down and binary algorithms consider coalitions of more than m providers from

both groups. Coalitions from group 1) can have any size, but all coalitions from group

2) contain more than m providers. Thus, these two algorithms disclose both positive and

negative results of possible attacks from coalitions of di�erent size.

If the records are not m-private w.r.t. C, i.e., there is an m-adversary that can breach

privacy, perfect security of the protocol cannot be guaranteed. Due to pruning property all

70

heuristics reveal information about all coalitions from group 1), and about a single coalition

of size up to m from group 2). In addition, top-down and binary algorithms reveal also

results of privacy checks for coalitions from group 2) having more than m providers.

Notice that for a potential attacker, �nding a coalition that is able to breach privacy, is

more important than �nding a coalition that cannot do so. Thus, both direct and bottom-

up algorithms are more secure than others. Among them bottom-up have more chances to

identify the smallest coalition that is able to breach privacy. Thus, direct is our choice for

maximum privacy scenarios. For other settings, our anonymization algorithm adaptively

chooses the veri�cation algorithm.

Computation Complexity. Electing the leader is a separate task, which can be run once

for all privacy veri�cations. Its time complexity is equal to O(mnG).

In Algorithm 8, a single loop iteration executes following operations: generating next

coalition of attackers (O(log nG)), broadcasting generated coalition (O(log nG)), verifying

if m-privacy can be determined (O(nG)), and pruning (O(nG)). Among them privacy

veri�cation has the highest complexity. Assuming that its time complexity is equal to V

(computed below), and complexity of a single veri�cation loop is equal to V = V +O(nG).

The direct algorithm will check privacy for at most
(
nG
m

)
possible m-adversaries. Thus,

the complexity of m-privacy veri�cation is equal to O (V · nm
G). The bottom-up algorithm

will check 0-adversary (external data recipient) up to all m-adversaries, which requires∑m
i=0

(
nG
i

)
= O (nm

G) checks, therefore for this case complexity is equal to O (V · nm
G). The

top-down algorithm will check all (nG − 1)-adversaries �rst, then smaller coalitions down

to all m-adversaries, which requires
∑m

i=nG−1

(
nG
i

)
= O

(
nnG−1−m
G

)
checks, and the overall

complexity of the protocol is equal to O
(
V · nnG−1−m

G

)
. The binary algorithm will run(

nG
m

)
iterations with O(log (nG −m)) privacy checks in each of them. Thus, when used, the

protocol time complexity is equal to O (V · nm
G log (nG −m)).

Communication Complexity. During each loop iteration of the m-privacy veri�cation

protocol (Algorithm 8) the leader sends (nG − 1) messages to providers with information

if they should act as attackers or not. Assume that VC is a communication complexity

for a privacy veri�cation protocol (computed below), and VC = VC + nG − 1 is the total

71

communication. Thus, the total communication complexities depend on the number of

privacy checks, which is di�erent for each algorithm, i.e., direct, O (VC · nm
G); bottom-up,

O (VC · nm
G); top-down, O

(
VC · nnG−1−m

G

)
; and binary, O (VC · nm

G log (nG −m)).

4.4 Secure m-Privacy Anonymization Protocols

Algorithm 4 can be executed in a distributed environment by a TTP or by all providers

running an SMC protocol. In this section we present a secure protocol for semi-honest

providers. As an SMC schema we use Shamir's secret sharing, but, when needed, we employ

also encryption.

4.4.1 Secure Provider-aware Anonymization Protocol

The protocol uses already existing SMC protocols. The �rst step for all providers is to elect

the leader P ′ by running a secure election protocol (Algorithm 7, [79]), which then runs

Algorithm 9.

The most important step of the protocol is to choose an attribute used to split records

based on �tness scores of record subsets. Splitting is repeated until no more valid splits can

be found, i.e., any further split would return records that violate the privacy.

Secure anonymization protocol runs as follows. First, the median of each attribute Ai

is found by running the secure median protocol (line 4, [2]). All records with the Ai values

less than the median, and some records with the Ai values equal to the median establish

the distributed set T s,i. Remaining records de�ne the distributed set T g,i. Then, m-privacy

w.r.t. C is veri�ed for T s,i by running the secure veri�cation protocol, i.e., either Algorithm

8 or 3 (line 8). If A1

(
T s,i

)
is m-private w.r.t. C, then the same veri�cation protocol is run

for T g,i (line 11). If A1

(
T g,i

)
is also m-private w.r.t. C, then this split becomes a candidate

split. For each candidate split, minimum �tness score of T s,i and T g,i is computed (secure

�tness score protocol is described below). Among candidate splits, the one with the maximal

�tness score is chosen, and the protocol is run recursively for its subpartitions (lines 21 to

22). If no such attribute can be found for any group of records, the protocol stops.

Secure m-privacy anonymization protocol calls three di�erent SMC subprotocols: the

72

Algorithm 9: The secure provider-aware anonymization protocol.
Data: A set of distributed records T , a set of QI attributes Ai (i = 1, . . . , q), m, a

privacy constraint C.
Result: An anonymized view of distributed records A (T) that is m-private w.r.t. C.

1 imax = −1
2 [fmax] = [0]
3 foreach i ∈ {0, . . . , q} do
4 Find the median value si of Ai in the set T (using secure median protocol).
5 Send si and Ai to other providers.

6 Locally split set Tj into T s,i
j = {t ∈ Tj : t[Ai] < si}, and

T g,i
j = {t ∈ Tj : t[Ai] > si}.

7 Locally distribute records {t ∈ Tj : t[Ai] = si} among T s,i
j and T g,i

j to reduce their
uneven distribution.

8 Securely verify m-privacy w.r.t. C of a distributed set T s,i =
∪n

j=1 T
s,i
j (using

Algorithm 8 or 3).
9 if T s,i is not m-private w.r.t. C then
10 continue

11 Securely verify m-privacy w.r.t. C of a distributed set T g,i =
∪n

j=1 T
g,i
j (using

Algorithm 8 or 3).
12 if T g,i is not m-private w.r.t. C then
13 continue

14 [f(T s,i)] =secure_fitness_score(T s,i)

15 [f(T g,i)] =secure_fitness_score(T g,i)

16 [f] = min([f(T s,i)], [f(T g,i)])
17 if reconstruct(lessThan([fmax], [f])) == 1 then
18 [fmax] = [f]
19 imax = i

20 if imax > 0 then
21 Run this protocol for T s,imax .
22 Run this protocol for T g,imax .

73

secure median [2, 13], the secure m-privacy veri�cation (Section 4.3), and the secure �tness

score (Algorithm 10). The last protocol needs to be de�ned for each privacy constraint C

(described below). For the sake of this analysis, we assume that all these protocols are

perfectly secure, i.e., all intermediate results can be inferred from the protocol outputs.

At each anonymization step following values are disclosed: medians si of all QID

attributes, ful�llment of m-privacy w.r.t. C for records split according to every computed

median, and, for m-private splits, the order of privacy �tness scores of all veri�ed subsets of

records. Medians of all QID attributes need to be revealed to allow each provider de�ning

its local subgroups of records. Announcing results of m-privacy veri�cation for distributed

sets of records allow each provider to accept or to drop candidate splits. The best splitting

attribute is the one that maximizes �tness scores of split record groups.

Theorem 4.4. The m-privacy anonymization protocol is secure except median values for

each attribute, m-privacy ful�llments for records split by these medians, and the order of

�tness score values for m-private QI groups.

Proof. To prove formally that the m-privacy anonymization protocol is secure, we assume

that all subprotocols are secure, and present a simulator that, using outputs of the protocol

and subprotocols, computes intermediate results. Each party splits its records based on the

received median values si. Obtained subsets are used only by secure m-privacy veri�cation,

and secure �tness score protocols. Disclosing the order of �tness scores form-private subsets

of records allows the simulator to choose the splitting attribute, which has the maximal

�tness score value.

If none of possible splits is m-private, then the simulator �nishes splitting the current set

of records. No other intermediate and undisclosed results are computed during the protocol

computation. Finally, since the secure median protocol, and the m-privacy veri�cation

protocol, as well as the secure �tness score protocol are assumed to be secure, and from the

composition theorem [39] the m-privacy anonymization protocol is secure as well.

Complexity Analysis. Before analyzing complexity of the secure anonymization protocol,

let us make a note about complexity of the secure median protocol. A secure median

protocol for an attribute Ai uses the binary search to �nd the median. To verify if the

74

median is found, one needs to make sure that there are n/2 records with values of Ai not

greater and not less than the value, i.e., if both sets split by the value are n/2-anonymous

(Algorithm 5). The time complexity of such protocol is equal to O(n2 log(domain(Ai))).

The communication complexity is also equal to O(n2 log(domain(Ai))).

Time complexity of the m-privacy anonymization protocol depends on complexities of

the secure median protocolMT , them-privacy veri�cation protocol VT , and the secure �tness

protocol FT . Assuming the worst-case scenario (maximal number of splits) for |T | records

and q QID attributes, the time complexity is equal to O(|T |(q + 1)(VT + 2 · VT + 2 · FT)).

For our running example the overall time complexity is equal to O(|T |(q + 1)(n2 + npS)).

Communication complexity heavily depends on used subprotocols. MC , VC , and FC

denote communication complexities for the secure median, the m-privacy veri�cation, and

the �tness score protocols, respectively. The communication complexity for the m-privacy

anonymization protocol is equal to O(|T |(q+1)(3+MC +VC +FC)), which for our running

example is equal to O(|T |qn2).

4.4.2 Secure Fitness Score Protocol

Many privacy constraints (including ones we have used in our running example) base on

threshold values T . In order to securely compare �tness scores of constraints, they need to

be scaled, e.g., using the least common multiple (lcm) of all threshold values. After that

the secure �tness score can be computed by running the following protocol (Algorithm 10).

The elected leader computes the least common multiple of all thresholds from the privacy

constraints (line 1). Then, values measured, and compared with thresholds in each privacy

constraints can be securely computed (line 3), and scaled (line 4). Shares of the minimal

one are scaled back, and returned (line 5).

In our running example, we require ful�llment of k-anonymity and l-diversity. Thus,

for Pi, γ1 = |T |, and γ2 is equal to the number of distinct sensitive values of local records

T . In order to compute γ1 and γ2, we run secure k-anonymity, and l-diversity protocols

(Algorithm 5 and Algorithm 6 respectively). However, in both protocols we skip comparison

of computed values with their thresholds (k and l, respectively), and return shares of such

values.

75

Algorithm 10: The secure �tness score protocol.
Data: T � thresholds from all w constraints, data records T .
Result: Shares of the minimal �tness score value.

1 lcm =least_common_multiple(T0, T1, . . . , Tw)
2 foreach i ∈ {0, . . . , w} do
3 Securely compute γi, i.e., value measured for Ci, and T
4 [Fi] = multiplicate([γi], lcm/Ti)
5 return reconstruct (min([F1], . . . , [Fw])) /lcm

The Shamir's secret sharing scheme, with secure communication channels, is information-

theoretically secure [6]. Correctness and security of the multiplicate subprotocol has

been discussed in details in [14]. The above protocol reveals the �tness score value.

However, if this protocol is used as a subprotocol, and revealing of the minimal �tness

score value is not necessary, then the protocol would return shares of the minimal value, i.e.,

min([F1], . . . , [Fw]).

Complexity Analysis. Computation complexities of shares generation, as well as

multiplication for n providers, are equal to O(n2) each [14]. Secure minimum protocol

requires (log2w) comparisons, which takes O(n2) time. Thus, the overall time complexity

is equal to O(n2 log2w) +
∑w

i=1 time_complexity(γi). For our running example, the time

complexity is equal to O(n2 + npS), where pS is the maximal number of fake values in the

l-diversity protocol.

While running the above protocol, each data provider exchanges w(n− 1) messages for

all multiplications. Secure minimum protocol is implemented using lessThan comparison

subprotocol, and hence its communication complexity is equal to O(n logw) [14]. Therefore,

the overall communication complexity is the sum of all such complexities and is equal to

O(wn2)+
∑w

i=1 communication_complexity(γi), which for our running example is equal to

O(n2).

4.5 Experimental Evaluation

We run two sets of experiments for m-privacy w.r.t. C with the following goals: 1) to

compare, and evaluate the di�erent m-privacy veri�cation algorithms, and 2) to evaluate,

76

and compare the proposed anonymization algorithm with the baseline algorithm in terms of

both utility and e�ciency.

4.5.1 Experiment Setup

We merged the training and testing sets of the Adult dataset1. Records with missing values

have been removed. All remaining 45,222 records have been randomly distributed among n

providers. As a sensitive attribute AS we have chosen Occupation with 14 distinct values.

To implement SMC protocols, we have enhanced the SEPIA framework [14, 103], which

utilizes Shamir's secret sharing scheme [81]. Security of communication is guaranteed by

the SSL using 128-bit AES encryption scheme. For the secure l-diversity protocol we have

used commutative Pohlig-Hellman encryption scheme with a 64-bit key [73].

Privacy Constraints. The EG monotonic privacy constraint is de�ned as a conjunction

of k-anonymity [85] and l-diversity [60]. Privacy �tness score is de�ned by Equation 3.1. All

algorithm parameters, and their default values are listed in the Table 4.1.

Table 4.1: Experiment settings and default values of SMC protocols.
Name Description Veri�cation Anonymization

m Power of m-privacy 3 3
n Number of data providers � 10
nG Number of data providers contributing to

a group
10 �

|T | Total number of records � 1000
|TG| Number of records in a group 150 �
k Parameter of k-anonymity 30 30
l Parameter of l-diversity 3 3

All experiments have been performed on the local network of 64 HP Z210 with 2 quad-

core CPUs, 8 GB of RAM, and running Ubuntu 2.6 each. The e�ciency of protocols is

measured by their computation time.

1The Adult dataset has been prepared using the Census database from 1994, http://archive.ics.uci.
edu/ml/datasets/Adult

http://archive.ics.uci.edu/ml/datasets/Adult
http://archive.ics.uci.edu/ml/datasets/Adult

77

4.5.2 Secure m-Privacy Veri�cation

The objective of the �rst set of experiments is to evaluate the e�ciency of di�erent heuristics

in generating attacker coalitions for privacy veri�cation. Notice that computation times are

presented in seconds, not milliseconds.

Attack Power. In this experiment, we compare m-privacy veri�cation heuristics against

di�erent attack powers, and di�erent number of data providers.

0 1 2 3 4 5 6 7 8 9 10
1E+0

1E+1

1E+2

1E+3
binary

top−down

direct

bottom−up

m

time [s]

Figure 4.1: Computation time (logarithmic scale) vs. power of m-privacy.

Figure 4.1 shows computation time with varying m for all heuristics. Similar to the TTP

implementation, the secure protocols for the top-down and binary algorithms demonstrate

the best performance. The di�erence between these two approaches is negligible for most

values of m. The direct approach is not that e�cient as the above algorithms except small

and large values of m. The bottom-up approach is useful only for very small values of m.

Numbers of messages that are generated, while running protocols (not shown), are

between 104 and 106 for di�erent m, and con�rm our conclusions.

Number of Contributing Data Providers. In this experiment we analyze the impact

of increasing number of data providers, nG, on di�erent algorithms.

Figure 4.2 shows the runtime of di�erent heuristics with varying nG.

As expected, the computation time increases exponentially with the number of data

providers. Di�erences among approaches are not signi�cant, and as above top-down and

binary algorithms are more e�cient than other approaches. The bottom-up heuristic is the

78

0 2 4 6 8 10 12 14
1E−2

1E−1

1E+0

1E+1

1E+2

1E+3

1E+4
binary

top−down

direct

bottom−up

n

time [s]

G

Figure 4.2: Computation time (logarithmic scale) vs. number of data providers.

slowest among others.

4.5.3 Secure m-Privacy Anonymization

This set of experiments compares estimates of our provider-aware and the baseline

approaches, and evaluates the overhead of our solution. Due to high runtime of protocols,

we estimated their computation times using runs of TTP algorithms, and computation times

of subprotocols.

As a comparison, we implemented an independent approach in which each provider

anonymizes its data on its own. We observe that its runtime is independent of m and n,

and equals to 1.2 seconds (not shown). However, the query error is signi�cantly worse than

for the collaborative setting (Section 3.5.3).

Attack Power. We �rst evaluate both anonymization heuristics with varying attack power

m.

Figure 4.3 shows the estimated computation time with varying m for both approaches.

As expected for EG monotonic constraints, increasing m results in stopping anonymization

process signi�cantly earlier. In addition, both approaches have comparable computation

times with negligible di�erences.

Number of Data Providers. In this experiment, we estimate computation times for

di�erent number of data providers n, but with the same average number of records per

79

0 1 2 3 4 5 6 7 8 9 10
1E+4

1E+5

1E+6

1E+7

baseline

provider−
aware

m

time [s]

Figure 4.3: Computation time vs. power of m-privacy.

provider (|T |/n = 100).

0 2 4 6 8 10 12 14
1E+2

1E+3

1E+4

1E+5

1E+6

1E+7

1E+8

1E+9
baseline

provider−
aware

n

time [s]

Figure 4.4: Computation time vs. number of data providers.

Figure 4.4 shows estimated time with varying the number of providers for both

algorithms. As expected, the computation time is similar for both approaches, and increases

exponentially with n.

80

Chapter 5

Distributed Data Aggregation with

Customized Di�erential Privacy

While introducing m-privacy, we assumed that attackers corrupted a few records and they

use that knowledge in their attacks. In the worst-case scenario all but one data providers

would collude and each provider would have to achieve privacy of their records independently.

However, even then attackers may learn if a record describing a data subject is in the dataset

or not, which is already a valuable information. Therefore, privacy of data subjects is

protected, only if a data recipient does not learn anything about them including their

participation in the data collection.

5.1 Di�erential Privacy

Similar motivation inspired Dwork et al. to de�ne di�erential privacy, which is the state-of-

the-art semantic privacy model that gives a strong and provable privacy guarantee [27, 29,

30, 54]. Di�erential privacy assures an individual that her participation in the data collection

can be guessed only with negligible probability regardless prior knowledge of an attacker.

Informally, the attacker that knows all but one records and the result of computations, is

not able to �nd out, if the remaining record has been used in computations or not. Formally,

di�erential privacy is de�ned as follows.

81

De�nition 5.1 ((α, δ)-Di�erential Privacy [28, 30, 54]). A randomized mechanism A

satis�es δ-approximate α-differential privacy, which is denoted also as (α, δ)-differential

privacy, if for any neighboring databases D1 and D2, where D1 can be obtained from D2 by

either adding or removing one record, and any possible output set S,

Pr[A(D1) ∈ S] 6 eα · Pr[A(D2) ∈ S] + δ

If δ = 0, then the mechanism satis�es α-di�erential privacy.

Dwork et al. introduced Laplace privacy mechanism that adds Laplace distributed noise

to the �nal results and hence achieves di�erential privacy [28]. For results, which are integers,

Ghosh et al. proposed a geometric mechanism, which integer noise is drawn from the two-

sided symmetric geometric distribution [37].

5.1.1 Query Sensitivity

Let D ∈ D be a database, and Q be an aggregated query, e.g., a count query. In addition,

let R be real numbers, Z be integer numbers, N be natural numbers, and N be a random

variable (r.v.) representing noise.

All privacy mechanisms introduce perturbation to results of an aggregation query Q.

Such perturbation is carefully calibrated with respect to the global sensitivity of Q, which

is de�ned as follows.

De�nition 5.2 (Global Sensitivity [31]). The sensitivity of any aggregate function Q : D →

R, is equal to ∆Q = maxD1,D2 ||AQ(D1)−AQ(D2)||1 for all D1, D2 di�ering in at most one

record.

5.1.2 m-Privacy and Di�erential Privacy

m-Privacy with respect to any syntactic privacy constraint C can be used to compute

privacy-preserving microdata, i.e., to anonymize data such that its truthfulness is preserved.

On the other hand, di�erential privacy preserves privacy of data owners in macrodata, i.e., in

data statistics. At the same time it assumes the worst case scenario, i.e., all but one records

82

are compromised. A similar scenario for m-privacy is when each data provider contributes

a single record and (m = n − 1), i.e., all but one data providers collude. Other than that

both notions have no common properties.

5.2 Customized Privacy Budget

Di�erential privacy (DP) is often used as a notion of privacy by many data providers. The

level of privacy preservation in DP is de�ned by a privacy budget. Each dataset has its

privacy budget set to a certain value αi. Every time a query with a speci�ed di�erential

privacy parameter α is issued against a dataset i, the answer is perturbed by adding noise

that magnitude depends on α if (α 6 αi), or is dropped (or drawn randomly), otherwise.

In the former case, after the query is answered the e�ective budget is reduced by α, i.e., we

spent α from the current privacy budget αi to answer the query. If the α is not speci�ed, we

set α = αi. If the query is issued against a few datasets, then we consider min(αi) as their

overall privacy budget. The amount of budget that is spent to answer a statistical query

over sensitive data describes the distribution of noise added to its result. The more budget

is spent, the more accurate answer is returned.

Often queries are issued against a subset of sensitive data, hence the budget is spent only

by the selected subset of data records. Thus, the distribution of the budget αi over all data

records depends on query workload and is not uniform (Table 5.1). In addition, data owners

may independently customize privacy budgets of their records and set them based on their

subjective judgements. Thus, we assign a privacy budget to each record independently from

other records and any of its sensitive attribute values. Notice that the value of the privacy

budget should not be correlated with any sensitive information, which would make it also

sensitive. In our example (Table 5.1) a sensitive attribute Salary is not correlated with the

privacy budget.

For both scenarios (multiple queries and personalized budgets) privacy budget of data

records may vary. Treating all records as a single dataset limits budgets they can spend to

the minimal budget among records, e.g., 0.01 for Table 5.1. This approach is not optimal,

since a few records will still have a non-zero budget, which would not be spent. Spending

83

Table 5.1: Example records with di�erent privacy budgets.
Name Age Zip Salary Budget αi

Alice 22 02152 70000 0.01
Emily 32 02112 180000 0.02
John 31 02130 105000 0.05
Olga 27 02114 110000 0.07
Frank 36 02232 90000 0.09
Bob 35 01245 140000 0.11
Mark 33 04323 110000 0.14
Cecilia 39 02121 100000 0.15

all budgets would improve utility of computation results. On the other hand, considering

each data record as an independent dataset would saturate budgets of all records. However,

the total amount of noise added to results would reduce utility signi�cantly.

Finding a strategy that generates the optimal buckets of data records is the main goal of

this chapter. The optimal partitioning is de�ned as the one, which minimizes the di�erence

between results generated from noisy and original datasets. We ensure privacy of data

records by accessing them only through a di�erentially private interface. We implement such

interface as a multidimensional DP-preserving histogram, and study di�erent approaches of

generating it.

5.3 Di�erentially Private Histograms

For given data records we want to build a multidimensional DP-preserving histogram, which

will be as similar as possible to the optimal histogram without privacy guarantees, but with

the same number of buckets. Notice that there are two sources of errors in histograms,

approximation of records' distribution within a bucket and noise introduced to ensure

di�erential privacy. If the number of buckets is a parameter, then increasing it would reduce

approximation error, but at the same time it would increase the total amount of noise.

Reducing the number of buckets would reduce the noise error, but it would also increase

the approximation error. Hence �nding the optimal number of buckets is a tradeo� between

approximation and noise errors. We measure errors using variance of their distributions,

therefore for a given number of buckets a histogram is optimal, if and only if it is v-optimal.

84

De�nition 5.3 ([74]). In a v-optimal histogram H, a weighted variance of the source values

is minimized. That is, the quantity V (H) =
∑k

j=1 njVj is minimized, where nj is the number

of entries in the bucket j and Vj is the variance of the source values in the bucket j.

The de�nition of v-optimality is very general, and can be applied to any error that can

be characterize with variance. For DP-preserving histograms variance Vj of the bucket j is

a sum of variances of approximation error V A
j and noise V N

j .

Notice that di�erential privacy for the bucket j is achieved by adding to its count

noise drawn from the Laplace distribution with the mean 0 and the scale 1/αj , where

αj = mini(αj,i), and αj,i is the privacy budget for a record i in the bucket j, and

xj =
∑

i(xj,i). Therefore, V N
j = 2/α2

j and V A
j is de�ned as the average sum of squared

errors (SSE),

V A
j = E((xj,i − E(xj,i))2)

=

nj∑
i=1

(xj,i − E(xj,i))2

nj

= SSEj/nj (5.1)

In [95], Xu et al. assumed that all records have the same privacy budgets (∀i,jαj,i = α),

and they de�ned the weighted variance as
∑k

j=1 SSEj for k buckets. For such settings

authors proposed algorithms to build optimal DP-preserving single dimensional histograms.

Inspired by their approach, we relaxed their assumptions by allowing multidimensional

histograms, and customized privacy budgets. Such relaxation is necessary to perform

complex tasks that produce privacy-preserving results.

Privacy Budget as an Attribute. For data records, the expected value E(xj,i) is de�ned

as the average (Equation 5.1), i.e., E(xj,i) = xj/nj , where xj =
∑

i(xj,i). However, the

expected value of privacy budget is de�ned by the minimum, i.e., E(αj,i) = αj , where

αj = mini(αj,i). We apply both data and privacy budget to the de�nition of v-optimality

(De�nition 5.3), however to avoid confusion with the original de�nition, and to emphasize

di�erences, we will use the notion of generalized v-optimality.

Notice that privacy budget and its de�nition of the expected value apply to all algorithms

85

of computing v-optimal histogram introduced in [47]. Authors used the average as the most

common de�nition of the expected value, but they also mentioned other possible functions,

including multidimensional ones.

Our goal is to build a generalized v-optimal multidimensional histogram H, which

minimizes the variance of all errors V (H), and is subject to privacy budget limitations.

Notice that we do not set the number of buckets k, but keep it as an additional parameter.

Since approximation error and noise variances reach maximum values for di�erent k (k = n

and k = 1, respectively), then the minimal variance is reached for kopt ∈ {1, . . . , n}.

5.3.1 Data-driven Histograms

The straightforward solution (denoted as NO) is to consider privacy budgets as not

important and use a heuristic to compute a histogram. In such approach the maximal

privacy budget that can be spent is the minimal value of the budget among all records.

If records have di�erent privacy budgets, then they will not be able to spend all of it.

A multidimensional histogram is generated by a greedy top-down partitioning algorithm

(Algorithm 11), which partitions records until the variance of record buckets decreases. The

algorithm was initially introduced by Cormode et al. in [22] as PSD. Such solution increases

odds that privacy budget of each bucket will be low, i.e., a bucket will have a record with

low privacy budget. As baselines we used a single cell/bucket histograms (single_cell) and

histograms with unit cells/buckets (cells_histogram). Both of these baseline approaches

are independent of the data.

5.3.2 Privacy- and Data- Driven Histograms

In order to consider privacy while creating histograms, we propose a new two-phase method

of building histograms that take into account both privacy and data. In the �rst phase,

we partition records based on their privacy budget values using di�erent algorithms. In our

approach (MIN) we modi�ed the original v-optimal histogram building algorithm presented

in [47], by using minimum as the expected value of the privacy budget (Algorithm 11). As

baselines we use random partitioning (RND), the original algorithm from [47] (AV G), and

we skipped partitioning (NO). In the second phase, we build histogram using methods

86

Algorithm 11: The PSD: a greedy heuristic of �nding the k-histogram of (x1, . . . , xi),
based on [22].

Input: (x1, . . . , xi) ∈ buckets
Input: k

1 foreach j ∈ {1, . . . , k} do
2 v = ∞
3 Bmin

1 = null
4 Bmin

2 = null
5 foreach B ∈buckets do
6 foreach attribute a do
7 B1, B2 = splitMinV ariance(B, a)
8 currentV ariance = variance(B1, B2)

9 if currentV ariance < min(variance(B), v) then
10 v = currentV ariance
11 Bmin

1 = B1

12 Bmin
2 = B2

13 if v = ∞ then
14 return buckets

15 buckets = buckets \{B}
16 buckets = buckets ∪{ Bmin

1 , Bmin
2 }

17 return buckets

presented in the previous section (single_cell, PSD, cells_histogram). Combining

di�erent approaches for each phase we identify the best performing one. For example,

all histograms that have been built with single_cell are privacy-driven histograms, while

all histograms created by NO algorithm are data-driven.

Privacy-aware Data Partitioning. The goal of this phase is to group records with similar

privacy budgets, such that the amount of wasted budget is minimized. In the extreme case,

each partition has only one record, which is able to spend all its privacy budget. However,

in this setting the amount of generated noise could be signi�cant, which is not optimal.

To spend as much budget as possible by each record and to avoid generating too many

partitions, we introduced the MIN algorithm that partitions records based on their privacy

budgets.

The remaining degree of freedom in the MIN algorithm is the order of records, while

creating a histogram. Considering all possible combinations of n records among k buckets

has too high complexity to be computed e�ciently. However, since privacy budget of a

87

bucket is determined by the minimal budget record from that bucket, we can skip many

combinations. Currently we sort all records in the ascending order of their privacy budgets.

Notice that sorting records in the descending order of privacy budgets generates the same

histograms.

Notice that in [47] authors used in their de�nition of the sum of squared errors (SSE)

the average as a function describing the expected value. For privacy budget, the expected

value is minimum, therefore for a bucket j, i.e.,

SSEj = SSE(αj,1, . . . , αj,nj) =

nj∑
i=1

(αj,i −min
i
(αj,i))

2 (5.2)

With such de�nition of the SSEj , the MIN algorithm is de�ned as follows.

Algorithm 12: The dynamic programming algorithm SSE∗ of �nding the optimal
k-histogram of (x1, . . . , xi) for a given de�nition of the function SSE. Based on [47].

Input: (x1, . . . , xi)
Input: k

1 if k = 0 then return 0
2 minSSE = ∞
3 foreach j ∈ {k-1, . . . , i} do
4 currentSSE = SSE∗((x1, . . . , xj), k − 1) + SSE(xj+1, . . . , xi)
5 if currentSSE < minSSE then
6 minSSE = currentSSE
7 buckets [k − 1] = (xj+1, . . . , xi)

8 return minSSE

Comparing Partitioning Algorithms. Running the original AV G algorithm (with the

SSE de�ned using the average value) to �nd the v-optimal histogram of privacy budgets

with 3 buckets (A, B, and C) as shown in Figure 5.1.

With such partitioning 0.14 of privacy budget will not be spent (0.0175 on average).

Running Algorithm 12 for the same data and also 3 buckets would produce buckets as show

in Figure 5.1 With such partitioning only 0.12 of privacy budget will not be spent (0.015 on

average).

88

Alice Emily John Olga Frank Bob Mark Cecilia
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

V−optimal partitioning of records using the averagebudget

bucket C

bucket B

bucket A

(a)

Alice Emily John Olga Frank Bob Mark Cecilia
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

V−optimal partitioning of records using the minimumbudget

bucket C

bucket B

bucket A

(b)

Figure 5.1: V-optimal partitioning of privacy budgets among 3 buckets using (a) the average
and (b) the minimum as a target value of each bucket.

5.3.3 Strategies of Spending Privacy Budgets

Despite our e�orts to minimize variance of privacy budget distribution, records in each

bucket may have di�erent privacy budgets. The privacy budget of a bucket is always equal

to the minimum budget among all records. However, we utilize privacy budgets from all

records using saturation or sampling. Such approach helps to improve quality of �nal results,

which is very important if the variance of records distribution to the histogram is high.

Budget Saturation. The goal of the budget saturation is to create buckets with records,

which privacy budgets are not greater than γ from their minimum, i.e., in bucket j

∀iαj,i < mink αj,k + γ. Parameter γ controls granularity of budget partitioning. For γ

equal to zero, the number of buckets would be equal to the number of distinct privacy

budgets. If di�erences between budgets are small, a few buckets would have very small

privacy budget, and would introduce the amount of noise, which would lower the overall

utility of results.

We propose a new method of saturating privacy budgets by running Algorithm 13. Note

that the function copy copies a record and sets for a new privacy budget for it. Given a

bucket j we create an empty bucket j′. A record xj,i with privacy budgets equal or greater

than (mini(αj,i)+ γ) is copied into a bucket j′, with a new privacy budget (αj,i−mini αj,i).

At the same time the budget of xj,i is reset to mini αj,i. After processing all records from

the bucket j, the algorithm is run iteratively with new buckets, i.e., j = j′.

89

Algorithm 13: The createBucket algorithm of creating a saturated bucket.
Input: γ
Input: bucket j

1 j′ = {}
2 αj = mini(αj,i)
3 foreach i = 1, . . . , nj do
4 if αj,i + γ > αj then
5 j′ = j′ ∪{ copy(xj,i, αj,i− αj) }
6 αj,i = αj

7 return j′

Applying Algorithm 13 to our example dataset (Table 5.1) for γ = 0.05 and records

sorted on privacy budget, we would group records into three buckets A, B, and C as it is

shown in Figure 5.2.

Alice Emily John Olga Frank Bob Mark Cecilia
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Distribution of records among buckets

bucket C
bucket B
bucket A

budget

Figure 5.2: Saturation of the example record privacy budgets for buckets.

Note that each record from the second or the third buckets was copied from the �rst

bucket. Sum of privacy budgets from all copies of a record is equal to its overall privacy

budget.

Undersampling and Oversampling. Having a bucket of records with di�erent privacy

budgets we still want to utilize as budget as possible. At the same time, we want to drop

records with too small budget, i.e., the budget that could noise the �nal result substantially.

To meet these requirements we use undersampling and oversampling of records.

Records with a very small budget values are undersampled, i.e., dropped (or sampled with

low probability). Oversampling helps to saturate more privacy budget than is assigned to the

bucket. For example, a bucket has a privacy budget equal to α, and also it contains records

90

with higher budget. Thus, we generate a new bucket from records having a privacy budget

greater than α + ϵ. Values of their budget in the new bucket is reduced by α. Repeating

such procedure recursively, we ensure that each bucket has privacy budgets within ϵ length

range. Note that to avoid buckets with low privacy budget, will limit necessity of record

undersampling.

5.4 Experimental Evaluation

5.4.1 Settings

In our experiments we used a sample of 10,000 records from the Census dataset. Each record

is described by three categorical attributes martial status, sex, and salary. To every record

we have added one more numeric attribute budget with values equal to a privacy budget set

to this record. Values of the budget have been drawn from normal, inversed exponential,

and binomial distributions. All values that have been drawn outside of the budget values

range, are set to the closest value in the range.

Privacy Budget Distributions. When using normal distribution N(µ, σ), we set its

mean µ to the mean of all budget values, and standard deviation equal to σ = 0.1. Inversed

exponential distribution Exp(λ) for a range [a, b] is a distribution b − Exp(λ). We set

λ = 2
a+b . This distribution models population with majority of people that are willing to

share their privacy with others, i.e., they set high privacy budgets for their records. The

bimodal distribution is obtained from two normal distributions with di�erent means. In

our experiments we de�ned a range of all privacy budgets [a, b] and normal distributions as

N(µ1, 0.1) and N(µ2, 0.1), where µ1 = a+ b−a
4 , and µ2 = a+ 3(b−a)

4 .

Metrics. To compare quality of generated histograms we issue 100, 000 random queries

against each histogram and compute the average relative error, i.e., value 0.2 means that

answers from the privacy-aware histogram will be, on average, 20% o� from the real query

answer.

91

5.4.2 Partitioning

To evaluate our partitioning method (MIN) we compare it against two baseline methods

(NO, RND) and one non-privacy-aware method (AV G). The NO method does not

partition records at all, i.e., all records are in a single partition. RND is a random

partitioning, in which partition borders have been drawn randomly with uniform probability.

AV G is a v-optimal partitioning method introduced in [47]. In this method records are

partitioned based on their privacy budget values such that the variance of partitions is

minimal. Notice that the expected value for every partition is de�ned as the average privacy

budget among all records belonging to the partition. In our method MIN , we adapted the

v-optimal partitioning algorithms with some modi�cations. The most important is setting

the minimum privacy budget as the expected value for each partition.

0
0.04

0.08
0.12

0.16
0.2

0.24
0.28

0.32
0.36

0.4
0.44

0.48
0.52

0.56
0.6

0.64
0.68

0.72
0.76

0.8
0.84

0.88
0.92

0.96
1

0

100

200

300

400

500

600
AVG method (binomial distribution)

Bucket D
Bucket C
Bucket B
Bucket A

privacy budget

records

0
0.04

0.08
0.12

0.16
0.2

0.24
0.28

0.32
0.36

0.4
0.44

0.48
0.52

0.56
0.6

0.64
0.68

0.72
0.76

0.8
0.84

0.88
0.92

0.96
1

0

100

200

300

400

500

600
MIN method (binomial distribution)

Bucket D
Bucket C
Bucket B
Bucket A

privacy budget

records

Figure 5.3: Partitions of records by AV G and MIN methods for binomially distributed
privacy budgets.

Figure 5.3 shows partitioning by AV G and MIN methods for binomially distributed

privacy budget. The �rst partition generated by the AV G method has more records than

the �rst partition produced by our method MIN . Notice that the �rst partition contains

the record wit the minimal privacy budget.

Figure 5.4 shows results of partitioning by AV G and MIN methods for inverse

exponentially distributed privacy budget. Similar as for the binomial distribution, the �rst

partition of the AV G method has more records than the �rst partition of the MIN method.

Therefore, the AV G method partitions records in such way that more privacy budget (on

average) cannot be spent in computations.

92

0
0.04

0.08
0.12

0.16
0.21

0.24
0.28

0.32
0.36

0.4
0.44

0.48
0.52

0.56
0.6

0.64
0.68

0.72
0.76

0.79
0.84

0.88
0.92

0.96
1

0

100

200

300

400

500

600

700
AVG method (inversed exponential distribution)

Bucket D
Bucket C
Bucket B
Bucket A

privacy budget

records

0
0.04

0.08
0.12

0.16
0.21

0.24
0.28

0.32
0.36

0.4
0.44

0.48
0.52

0.56
0.6

0.64
0.68

0.72
0.76

0.79
0.84

0.88
0.92

0.96
1

0

100

200

300

400

500

600

700
MIN method (inverse exponential distribution)

Bucket D
Bucket C
Bucket B
Bucket A

privacy budget

records

Figure 5.4: Partitions of records by AV G and MIN methods for inversed exponentially
distributed privacy budgets.

5.4.3 Partitioning Methods

Responses to queries in privacy-preserving histograms are altered by approximation and

perturbation errors. Approximation error is inherent to all histograms, while perturbation

error depends on noise added to bucket counts. All three, distribution of privacy budgets

as well as partitioning method, and a method used to build a histogram have impact to the

overall error. In addition, the number of partitions k impacts overall error even more. For

small k, the approximation error is the largest one, while for large k, perturbation is the

main source of the error. Therefore, there is k for which the overall error is minimal, but

�nding it e�ciently is not trivial. However, our experiments suggest that the number of

buckets should be set around 3�4.

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

PSD partitioning

NO
RND
AVG
MIN

k

query error

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

Cells histogram partitioning

NO
RND
AVG
MIN

k

query error

Figure 5.5: Query error for histograms built from di�erent partitionings of records with
binomially distributed privacy budgets vs. number of buckets k.

93

Figure 5.5 shows relative query error for histograms generated by di�erent partitioning

methods and for binomial distribution of privacy budgets. For all but NO methods we

can �nd a local minimum of query errors for k ∈ [2, 4]. For greater k relative query error

increases due to greater perturbation error. Among all methods, our approach (MIN)

produces histograms with the smallest error for all methods of building histogram. We

present only results for PSD and cell histogram approaches, and skip one cell, i.e., no

partitioning approach. The AV G method generates partitions, which histograms answer

queries with more error than MIN , but less than random partitioning RND. The number

of buckets k, which generates the minimal error for MIN is equal to 4.

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0
PSD partitioning

NO
RND
AVG
MIN

k

query error

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0
Cell histogram partitioning

NO
RND
AVG
MIN

k

query error

Figure 5.6: Query error for histograms built from di�erent partitionings of records with
budgets drawn from normal distribution vs. number of buckets k.

Figure 5.6 shows query error for histograms generated by di�erent partitioning methods

and for privacy budgets drawn from the normal distribution N(0.5, 0.1). Similar to the

binomially distributed settings (Figure 5.5) both AV G and MIN methods generates

partitions for which histograms have the minimal error. However, results for MIN and

AV G are more similar, and for k = 2 and the PSD method as well as for k = 3 and the

cell histogram method the AV G partitioning generates histograms with lower query error.

The number of buckets k, which generates the minimal error is equal to 4.

Figure 5.7 shows query error for histograms generated by di�erent partitioning methods

and for privacy budgets drawn from the inversed exponential distribution. Similar as for

the binomial distribution, our MIN method generates histograms with the smallest error.

In addition, the minimal error is achieved for k equal to 3 or 4.

94

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

PSD paritioning

NO
RND
AVG
MIN

k

query error

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

Cells histogram partitioning

NO
RND
AVG
MIN

k

query error

Figure 5.7: Query error for histograms built from di�erent partitionings and for di�erent
number of buckets k for records with inversted exponentially distributed budgets.

Minimal Privacy Budget. For all previous experiments we drew privacy budgets from

the range [0.01, 1.0]. In this set of experiments we change the range from which budgets

are drawn. The distribution of budget values is binomial with maximums in 0.25 and 0.75

length of the range. Each range will have length equal to 0.5 and will start at di�erent value.

0.25 0.30 0.35 0.40 0.45 0.50
0.01

0.10

1.00

PSD partitioning
NO
RND
AVG
MIN

average privacy budget

query error

0.25 0.30 0.35 0.40 0.45 0.50
0.01

0.10

1.00

Cells histogram partitioning
NO
RND
AVG
MIN

average privacy budget

query error

Figure 5.8: Query error (logarithmic scale) for histograms with records having di�erent
average privacy budgets, which were drawn from binomial distribution.

Figure 5.8 shows in logarithmic scales query error for histograms generated by di�erent

partitioning methods. For both PSD and cells histogram approaches NO and RND

methods generate histograms with higher query error than AV G and MIN . Results for the

latter ones are similar, but in most settings histograms produced based on MIN partitions

preserve more utility, i.e., have lower query error.

95

5.4.4 Histogram Building Approaches

Each partition was used to generate a histogram using one of three methods. In the

single cell method, a partition is treated as a one-cell histogram. In the PSD method

we have adapted the method introduced in [21]. The cells histogram approach generates

the most �ne-grained histograms in which each bucket is a unite cube.

NO RND AVG MIN
0.0

0.2

0.4

0.6

0.8

1.0

1.2
Inversed exponential distribution

single cell
PSD
cells his−
togram

query error

NO RND AVG MIN
0.0

0.2

0.4

0.6

0.8

1.0

Binomial distribution
single cell
PSD
cells his−
togram

query error

Figure 5.9: Query error for di�erent methods of building histograms for four partitions and
two di�erent distributions of privacy budgets.

Figure 5.9 shows query error for di�erent heuristics of generating histograms. Query

error for single cell histograms are the highest. Cells histograms introduce histograms with

less error than one cell histograms, but more than ones generated by the PSD heuristic.

Notice that the di�erence between histograms built by PSD and cells histogram methods

introduce similar amount of error. It is caused by relatively dense distribution of points in

cells. For high dimensional histograms, the error of cell histograms would be even higher

comparing to histograms generated by the PSD method.

96

Chapter 6

Secure Multiparty Data Aggregation

with Customized Di�erential Privacy

6.1 Motivation

Participatory sensing and data surveillance [11, 35] are gradually integrated into an

inseparable part of our society. In many applications, a data aggregator may wish to collect

personal data from multiple individuals to study patterns or statistics over a population.

Data privacy and security issues arise frequently and increasingly in such surveillance

systems [52, 68, 77, 84]. An important challenge is how to protect the privacy of the

data subjects, when the data aggregator is untrusted or not present.

System Settings. We consider a dynamic set of data contributors that contribute their

own data (self surveillance) or other data (third party surveillance) in a surveillance system.

In our running example contributors Di (1 6 i 6 n) collect data xi independently, in order

to compute noisy f(x1, . . . , xn) (Figure 6.1). In the self surveillance scenarios the individuals

represented in the collected data (data subjects) are also data contributors. We assume that

collected data are used by an untrusted application or an application run by an untrusted

party for analysis and modeling (e.g. disease outbreak detection or intelligence analysis).

Privacy of data subjects is de�ned by di�erential privacy, which is the state-of-the-

art privacy notion [27, 29, 54] that assures a strong and provable privacy guarantee for

97

D1

D2

D4

D5Dn

SMC

(x1, R1)

(x2, R2)

(x4, R4)

(x5, R5)(xn, Rn)

...

f(x1, x2, ..., xn) + R

D3

(x3, R3)

Figure 6.1: System settings with distributed data contributors Di, which contribute their
values xi and noise shares Ri to securely compute a function f and ensure di�erential privacy
of data subjects.

aggregated data. To use it we assume independence of data subjects, i.e., deleting one

subject's data is equivalent to hiding all evidences of her participation in the dataset.

Furthermore, we assume that no deterministic statistics about the participating data

subjects have been previously released [54]. Under such assumptions di�erential privacy

requires ensuring negligible change of computation results, when a single data subject had

opted out of the data collection. Therefore, this assures an individual that any privacy breach

will not unveil existence of its record. A common way of achieving di�erential privacy is

perturbation of the aggregated statistics by calibrated noise R, such that f(x1, . . . , xn) +R

is returned (Figure 6.1).

Centralized Model. In a centralized model a trusted aggregator (TA), which is a TTP,

(e.g. CDC o�ces in the syndromic surveillance scenario) securely collects the data and

outputs perturbed aggregates with privacy guarantee. In such model, each data contributor

maintains a secure communication channel with the TA. Both security and privacy of

computations are guaranteed by the TA, but at cost of making it a single point of failure

for the entire system.

Decentralized Model. In a decentralized model without a TA (e.g. in the intelligence collec-

98

tion scenario), the data contributors perform aggregations and perturbations collaboratively

through protocols implemented in a secure multiparty computation (SMC) schemes

(Figure 6.1). Such protocols are reliable, but are also complex to design and run. In order

to securely aggregate information that contains personal data without involving the TA,

each protocol must ful�ll two important constraints: 1) preserve privacy of individuals or

data subjects whose data are being collected, and 2) ensure security of all data contributors

who should be anonymous and who need to protect their data from other contributors

and any untrusted aggregator. Notice that using privacy mechanisms to ensure both

constraints would make the �nal results useless. Using only security schemes to protect

both computations and data contributors would not guarantee privacy of data subjects

either. Therefore, privacy mechanisms and security schemes need to be employed together

in our scenarios.

Goals. In the simplest and the most naïve approach, each data contributor perturbs its own

data to guarantee their di�erential privacy independently. In such approach the noise in the

aggregated result is super�uous, therefore our goal is to �nd distributed privacy mechanisms,

which ensure privacy and minimize any redundant noise.

Distributed implementations of such mechanisms require security of computations that

is achieved by SMC schemes and their protocols. The protocol shall remain secure if a few

participants faulted, i.e., it should be fault tolerant. Therefore, SMC protocols that return

di�erentially private results guarantee that privacy of data subjects and data providers is

protected at all time.

Traditional approaches to data anonymization, such as removing identifying attributes,

generalizing, or perturbing individual attribute values, are susceptible to various attacks [33].

They preserve truthfulness of data, i.e., if needed an anonymized record can be linked with

its original record, but the privacy level they guarantee depends on background knowledge

of attackers. In addition, secure anonymization of distributed data is complex and in the

worst-case scenario every approach will be ine�cient. However, in many scenarios getting

anonymized data records is super�uous and their statistics are enough, e.g., the number of

records.

99

6.2 Distributed Di�erential Privacy Mechanisms

Di�erential privacy can be achieved by a few privacy mechanisms. An example of non-

perturbation mechanism that also achieves di�erential privacy is the exponential mechanism

[63], in which privacy is achieved by sampling a dataset. In [43], we studied various

distributed perturbation-based mechanisms that ensure di�erential privacy. In addition,

we identi�ed important features of such mechanisms, e.g., small redundant noise, the same

level of contribution by each provider in noise generation, and drawing noise from speci�ed

domain (integer or real numbers).

In distributed settings any group of data contributors is equally likely to collude, therefore

a mechanism shall ensure equal participation of each contributor in both computations and

perturbations in order to minimize power of such group in its potential attacks. Equal

participation in perturbing results means that all contributors generate the same level

of noise, i.e., all noise shares are independent and identically distributed (i.i.d.) random

variables.

In the simplest and the most naïve distributed approach, each data contributor perturbs

statistics of its own data to achieve di�erential privacy for them. In such approach some

noise in the aggregated result is redundant. Minimizing such redundant noise has been a

motivation to �nd more e�cient privacy mechanism.

6.2.1 Distributed Laplace Mechanism

Laplace Perturbation Algorithm. A common mechanism to achieve α-di�erential

privacy is the Laplace perturbation algorithm (LPA) [29]. LPA ensures that results of

an aggregated query Q are α-di�erentially private, by perturbing them with a r.v. L, which

is drawn from the Laplace probability distribution function Lap(θ, α) with mean θ and scale

α. The LPA mechanism is de�ned as follows.

De�nition 6.1 (Laplace Mechanism, LPA [31],[29]). For Q : D → Rk, the mechanism KQ

that adds independently generated noise L with distribution Lap(0,∆Q/α) to each of the k

100

output terms enjoys α-di�erential privacy,

Pr(L = x) =
α

2∆Q
e−|x|α/∆Q (6.1)

Notice that L can be also simulated by two exponential distributed random variables as

follows.

Lemma 6.2 ([55]). Let Xλ and Yλ be random variables with the exponential distribution, i.e.,

Pr(Xλ = x) = Pr(Yλ = x) = λe−λx for x > 0. Noise L in the LPA with the query sensitivity

∆Q and parameter α (De�nition 6.1) can be simulated as L =
∆Q

α (X1 − Y1) = Xλ − Yλ for

λ = α
∆Q

.

Laplace mechanism can be directly applied by the TA in a centralized model. In a

decentralized model the TA is not present and has to be simulated by data contributors. In

such model di�erential privacy is achieved by distributed perturbation Laplace algorithms

(DLPA). In DLPA each party generates partial noise, such that the aggregated noise follows

the Laplace distribution, which is enough to guarantee di�erential privacy.

Due to in�nite divisibility of Laplace distribution [55], a r.v. with such distribution can

be computed by summing up n other random variables. We utilize this property and study a

few algorithms named after distributions they use to draw partial noise, i.e., Gamma, Gauss,

and Laplace. Gamma and Gauss have been already introduced in [1, 76], respectively, while

Laplace is their alternative. We describe and compare all three DLPA mechanisms below.

Gamma DLPA. This mechanism utilizes in�nite divisibility of Laplace distribution and

generates partial noise by drawing it from the gamma distribution [1]. Formally, a Laplace

distributed random variable L ∼ Lap(θ, α) can be simulated by the sum of 2n random

variables as follows,

L =
θ

n
+

n∑
i=1

(Gi −Hi) (6.2)

where Gi and Hi are i.i.d. gamma distributed random variables with densities following the

formula (x > 0),

Pr(Gi = x) = Pr(Hi = x) =
(1/α)1/n

Γ(1/n)
x1/n−1e−x/α (6.3)

101

Γ is the gamma function, such that Γ(a) =
∫∞
0 xa−1e−xdx.

Notice that generating a r.v. with the gamma distribution requires drawing at least 2

random variables [3]. Assuming uniform distribution of its parameter a, on average 2.54

uniformly distributed random variables need to be drawn.

Gauss DLPA. A random variable L ∼ Lap(0, α) can be also simulated by 4 i.i.d. random

variables N1,N2,N3,N4, each is drawn from the normal distribution Gauss(0, α/2) with

variance (α/2) [55] and applied as follows,

L = N 2
1 +N 2

2 −N 2
3 −N 2

4 (6.4)

Since in�nite divisibility of the normal distribution is stable, drawing a single r.v.

Ni ∼ Gauss(0, α/2) (i = 1, 2, 3, 4) is simulated by the sum of n i.i.d. Gaussian random

variables Ni,j ∼ Gauss(0, α
2n) as follows,

Ni =

n∑
j=1

Ni,j (6.5)

The above formulas can be implemented in distributed settings, but secure computation

of squares of random variables is a challenge. An SMC protocol implementing such

computations has high complexity [76].

Generating a random variable from the Gaussian distribution requires, on average,

drawing a single uniformly distributed number [8]. Additional approaches, which are, on

average, more e�cient, but in the worst-case scenario are slow, have been described in [61].

Laplace DLPA. We propose a Laplace distributed di�erential privacy mechanism, which

reduces the amount of redundant noise in the �nal solution [43]. The mechanism simulates

drawing a Laplacian random variable L ∼ Lap(0, α) by r i.i.d. random variables Li ∼

Lap(0, α) and a B ∼ Beta(1, r − 1), as de�ned in the following formula,

L =
√
B ·

r∑
i=1

Li (6.6)

Notice that B is a single random variable, which is drawn with probability Pr(B = x) =

102

(r − 1)(1 − x)r−2 for x ∈ (0, 1). Assuming that at most m out of n data providers can be

inactive the mechanism shall be run with r = n−m, i.e., aggregated partial noise from n−m

providers shall be enough to ensure di�erential privacy. Partial noise generated by additional

providers is redundant, but very small comparing to other distributed di�erentially private

mechanisms that were studied.

6.2.2 Geometric Mechanisms

The geometric mechanism presented by Ghosh et al. is centralized, i.e., noise is generated

as a single random variable.

The LPA (De�nition 6.1) perturbs query results with noise drawn from the continuous

Laplace distribution. When returned results are expected to be integers, such mechanism

cannot be directly applied. To address this, Ghosh et al. introduced two privacy mechanisms

that ensure α-di�erential privacy by perturbing their results with integer noise and

truncating noisy value if needed [37]. Their mechanisms work only for queries with sensitivity

equal to one (e.g. count queries). We leave for future study �nding a discrete perturbation

mechanism for di�erent sensitivities.

De�nition 6.3 (Geometric Mechanism, GPA [37]). For a function Q : D → N, a parameter

ϵ ∈ (0, 1), the ϵ-geometric mechanism is an oblivious mechanism with integer range Z, de�ned

as follows. When the true query result is Q(D), the mechanism outputs Q(D) + N ∈ Z,

where N is a random variable drew from the following discrete GM(ϵ) distribution,

Pr(N = x) =
1− ϵ

1 + ϵ
ϵ|x| (6.7)

If the result of the query Q is limited to natural numbers Nm = {0, 1, . . . ,m}, i.e.,

Q : D → Nm, the perturbed output of the GPA is outside Nm with non-zero probability.

The truncated geometric mechanism (tGPA) that has range Nm avoids such inconsistencies

by �remaping� all negative outputs to 0 and all outputs greater than m to m, which formally

is de�ned as follows.

De�nition 6.4 (Truncated Geometric Mechanism, tGPA [37]). For an aggregated function

Q : D → N and parameter value ϵ ∈ (0, 1), the truncated ϵ-geometric mechanism has

103

range Nn = {0, 1, . . . , n}, when for each value Q(D) noise N is drawn from the following

distribution,

Pr(N = x) =


0 if x+Q(D) ̸∈ {0, 1, . . . , n}

1−ϵ
1+ϵϵ

|x| if x+Q(D) ∈ {1, . . . , n− 1}
1

1+ϵϵ
|x| if x+Q(D) ∈ {0, n}

The GPA is a discretized version of the LPA, in which noise is drawn from the Lap(∆Q/α)

distribution (ϵ = exp(−α/∆Q)) and ∆Q = 1 for both geometric mechanisms. Ghosh et al.

proved that both geometric mechanisms achieve α-di�erential privacy.

Distributed Geometric Mechanism. We proposed a distributed geometric mechanism,

in which n contributors participate i.i.d. noise shares to simulate ϵ-geometric mechanism for

ϵ ∈ (0, 1) and achieve α-di�erential privacy (α = −∆Q ln(ϵ)) [43].

In order to present the distributed GPA we prove that noise generated by the GPA can

be simulated as a di�erence between two exponentially distributed random variables. Then,

we show that such variables can be generated as sums of i.i.d. Pólya distributed random

variables.

Lemma 6.5. Let X and Y be geometrically distributed random variables with the probability

of success equal to (1 − ϵ), i.e., Pr(X = x) = Pr(Y = x) = ϵx(1 − ϵ). Noise N in the ϵ-

geometric mechanism (De�nition 6.3) can be simulated as N = X − Y.

Proof. We show that both N and (X − Y) have the same distribution, i.e., they have the

same moment-generating functions M , MN (t) = MX−Y(t) for all valid t.

MN (t) =
(1− ϵ)2et

(et − ϵ)(1− ϵet)
, for t < −ln(ϵ) (6.8)

Recall also that for any two i.i.d. random variables S and T , MS+T (t) = MS(t) ·MT (t).

In addition, for any constant a, MaS(t) = MS(at) [50]. Notice that the moment-

generation function for geometric distribution with the probability of success p is equal

104

to p(1− (1− p)et)−1 for t < −ln(p) [50].

MX−Y(t) = MX (t) ·MY(−t)

=
(1− ϵ)2et

(et − ϵ)(1− ϵet)
, for t < −ln(ϵ) (6.9)

Thus, MN (t) = MX−Y(t) and N = X − Y .

In order to de�ne DGPA we recall a Pólya distribution. Then we prove that such

distributed random variables can be used to generate i.i.d. noise shares, such that the �nal

noise follows the GM(ϵ) distribution, and therefore the DGPA achieves α-di�erential privacy

(α = − ln(ϵ)).

De�nition 6.6 (Pólya Distribution [50]). Let X be a random variable following the discrete

P ólya(r, p) distribution with parameters r ∈ R and p ∈ (0, 1). The probability distribution

function is de�ned as follows,

Pr(X = x) =

(
r + x− 1

r − 1

)
px(1− p)r

If r ∈ N, then the Pólya distribution is known as a negative binomial distribution NB(r, p).

If r = 1, then it is known as a geometric distribution with probability of success equal to

(1− p).

Theorem 6.7. Let n be a number of data contributors and Xi, Yi be i.i.d. random variables

following the P ólya(1/n, ϵ) distribution for i = 1, 2, . . . , n. A random variable N with the

distribution GM(ϵ) (De�nition 6.3) can be simulated by the following sum,

N =
n∑

i=1

(Xi − Yi)

Proof. Both NB and Pólya distributions are in�nitely divisible [50]. Therefore, the sum

of i.i.d. random variables Xi ∼ P ólya(ri, ϵ) follows the same distribution with parameters

r =
∑n

i=1 ri and ϵ.

If ri = 1/n, then both
∑n

i=1Xi and
∑n

i=1 Yi follow P ólya(1, ϵ) distribution, i.e.,

are geometrically distributed with probability of success equal to (1 − ϵ). Therefore, by

105

Lemma 6.5 we conclude the proof.

To draw a random variable Xi from P ólya(r, ϵ) distribution we utilize the Poisson-

Gamma mixture [50]. First, we randomly draw λ from the Gamma(r, ϵ/(1−ϵ)) distribution.

Then, we draw Xi from the Poisson distribution with parameter λ.

The ϵ-geometric mechanism draws noise from the two-sided geometric distribution

GM(ϵ), which can be simulated as a di�erence between two sums of n Pólya distributed

random variables. Therefore, if N ∼ GM(ϵ) and Xi,Yi ∼ P ólya(1/n, ϵ), then

N =
n∑

i=1

(Xi − Yi) (6.10)

Notice that both GM and Pólya distributions are discrete, therefore the noise in the proposed

geometric mechanism is an integer number as well.

6.2.3 Distributed Noise Approximation Mechanisms

Both LPA and GPA achieve δ-approximate α-differential privacy for all values of δ > 0

(De�nition 5.1). Using these mechanisms for relaxed settings (δ > 0) is not optimal, i.e.,

disturbance of the �nal result is super�uous. However, they can be modi�ed to introduce

less noise and still ensure required level of approximated α-differential privacy. One group

of modi�cations is to draw noise from approximated noise distribution.

In [30] authors presented two methods of achieving (α, δ)-di�erential privacy for any

values of α and δ > 0. One method utilizes a Poisson process to generate random

variables that approximate exponentially distributed random variables. The other method

ensures (α, δ)-di�erential privacy privacy by approximating Gaussian noise with binomially

distributed random variables. In both methods random variables are drawn by tossing

unbiased or biased coins, which has been implemented in distributed settings, but with

signi�cant communication and computation overheads [30]. Therefore, we skip these

mechanisms in our study and consider only diluted mechanisms, which also achieve (α, δ)-

di�erential privacy and are e�cient.

106

6.2.4 Diluted Distributed Mechanisms

Diluted mechanisms (De�nition 6.8) have been designed as mechanisms easily applicable in

distributed settings. In a diluted distributed perturbation mechanism (dDPA), each partial

noise Ni is drawn by each of n parties. All Ni are securely summed up and used as noise

to ensure approximated di�erential privacy. Notice that dDPA required that the rate of

non-colluding parties is at least equal to γ, which is a parameter of dDPA.

A diluted geometric mechanism (dGPA) has been introduced in [83], as a mechanism

that achieves (α, δ)-differential privacy. We generalize dGPA to a privacy mechanism that

uses a perturbation algorithm (PA) and ensures approximate di�erential privacy.

De�nition 6.8 (Diluted Mechanism, dPA). Let PA be a data perturbation algorithm used

by an α-di�erential privacy mechanism, a parameter α ∈ (0, 1), and Xi (i = 1, . . . , n) be

i.i.d. random variables drawn by PA for given α. A diluted mechanism (dPA) ensures (α, δ)-

di�erential privacy, by adding up to n random variables Ni de�ned as follows,

Ni =

 Xi,with probability β

0, with probability 1− β
(6.11)

where β(δ, γ) = min
{

1
γn log2(

1
δ), 1

}
, and γn is the minimal number of generated random

variables Ni.

In dGPA results are perturbed by at most n random variables Xi, which are drawn

from the discrete two-sided geometric distribution GM(exp(−α/∆Q)) (De�nition 6.3).

Each r.v. Xi ∼ GM(exp(−α/∆Q)) can be simulated by a di�erence of two geometrically

distributed random variables (Lemma 6.5). Therefore, drawing Ni by this mechanism

requires generation of at most three uniformly distributed random variables. The �rst r.v.

is used to decide, if Xi should be drawn. The second r.v., which is drawn from the uniform

distribution, establishes the sign of Xi, and the third one, which is drawn from the geometric

distribution, sets the value of Xi. On average for n tries, the Xi will be drawn βn times,

and the overall number of drawn random variables is equal to (n+ 2
γ log2(

1
δ)).

Any di�erentially private mechanism may be applied to the dPA to achieve approximated

107

di�erential privacy of perturbed data. For example, the diluted Laplace mechanism (dLPA)

calls the LPA mechanism to generate Xi with the same β(δ, γ) probability (De�nition 6.8).

Proving that such diluted mechanism achieves approximated di�erential privacy requires

repeating proofs from [83], with simple substitution of the noise generation function.

6.2.5 Comparison

All DLPA and DGPA mechanisms guarantee the same level of di�erential privacy, while

diluted and noise approximation mechanisms guarantee approximated di�erential privacy.

Drawing a noise share by each mechanism has di�erent computation cost and noise shares

have di�erent statistical characteristics.

To compare complexities of noise generation, we consider the number of random variables

that each party generates for each method. For the Laplace DLPA mechanism, each

party generates a single random variable, and one party generates 2 random variables,

i.e., 1 + 1/n random variables per party, which makes it the most e�cient mechanism. The

implementation of a gamma random number generator has an indeterministic number of

steps, and requires generating at least 2 (on average 2.54) uniformly distributed random

variables [3]. The Gauss mechanism requires each party to generate 4 di�erent Gaussian

distributed random variables.

Each diluted mechanism requires every party to generate at least one, and at most two

(LPA) or three (GPA) uniformly distributed random variables. Let γ be the minimal rate of

non-colluding contributing parties and δ be a parameter of approximated di�erential privacy.

Then, on average each party of dDLPA generates (1+ 1
γ log2(

1
δ)) random variables and each

party of dDGPA generates (1 + 1
γ log2(

1
δ)) random variables.

Redundant Noise. Distributed settings introduce additional challenges for privacy

mechanisms. One of them is collusion of participants that take advantage of shared data in

order to breach privacy. Since each provider knows its own data and also data from colluding

parties, we need to guarantee that results computed using data provided by non-colluding

parties achieve privacy. We assume that the rate of colluding parties in one group is less than

γ, therefore partial noise generated by γn parties is enough to ensure required di�erential

108

privacy. Since all n parties generate partial noise, which is aggregated in the �nal result,

noise from the remaining (1−γ)n parties is redundant. Notice that all parties generate i.i.d.

partial noise, therefore its mean and its variance are the same for each party.

If a privacy mechanism is implemented using a security scheme, then its parameters a�ect

the value of γ and vice versa (Table 6.1). In order to protect privacy of data subjects no

fewer than γn parties should be able to reconstruct (Shamir) or decrypt (Paillier) the �nal

result, therefore γ 6 s/n. Similarly, since the maximal number of colluding parties is smaller

than r for Ács and EFT schemes, noise of remaining parties should be able to guarantee

privacy, therefore γ 6 1 − r−1
n . For all schemes the value of γ limits fault tolerance levels.

If there are less then γn active parties, then computations are terminated, because their

results would not be di�erentially private. Thus, the fault tolerance levels for all protocols

are always less than (1− γ)n.

6.3 Security Schemes

Privacy mechanisms are not designed to provide security of computations. They can be used

to do so, but the amount of perturbation added by each of them would make the �nal result

useless. Therefore, to ensure security of data aggregation secure multiparty computation

(SMC) schemes and protocols are employed. An SMC protocol shall remain secure even if

a few participants are inactive, i.e., it should be fault tolerant. On top of that the SMC

protocol shall be e�cient and consume as little resources as possible.

We study three groups of secure schemes: secret sharing, homomorphic encryption, and

perturbation-based. Each group has its own advantages and disadvantages for di�erent types

of data aggregations. Inspired by two schemes we present a new hybrid security scheme.

6.3.1 Secret Sharing Schemes

Secret sharing schemes split a secret into multiple shares that are meaningless unless s of

them are collected and the secret is reconstructed. Any set of fewer than s shares discloses

nothing about the secret even for computationally unbounded adversary. The value of s

de�nes also the minimal number of colluding parties necessary to breach the security of

109

computations. After generation, shares are distributed, such that each contributor receives

a few (usually one) shares. They are then used in computations and combined to reveal the

�nal result.

As an example of secret sharing schemes we present the Shamir scheme [81]. In this

scheme shares of di�erent secret numbers can be summed up to get shares of their sum,

which can be then reconstructed. Other arithmetic and set operations are also possible and

implemented [14, 103].

Shamir Scheme. Each participant implements and runs the same Shamir scheme protocol

with outline de�ned as follows. A participant i computes n shares of its local secret value

xi, by randomly generating a polynomial wi of order s, such that wi(0) = xi. For a set of

selected, and publicly known non-zero distinct points z1, . . . , zn, shares of xi are computed as

values of wi in these points, i.e., xi,j = wi(zj) for j = 1, . . . , n. Then, shares are distributed,

such that from all participants xi,j are sent to party j. After exchanging all shares, party

j computes a share of the result at zj , e.g., sums up received shares
∑

i xi,j . Finally, one

party collects at least s shares of the result, interpolates them to compute a polynomial w,

and reconstructs the result by computing w(0).

Notice that Shamir scheme was introduced only for integer numbers. Adapting the

scheme to �oating point numbers requires implementing di�erent arithmetic operation

protocols [18] or encoding �oating point numbers as integers, e.g., by multiplying them

by the same power of 10.

Security of Shamir scheme is based on the randomness of generated shares and security

of communication channels. Assuming that all communication channels are secure, Shamir

scheme is information-theoretically secure, i.e., is secure against computationally unbounded

attackers [6]. However, since e�cient implementation of secure communication channels

relies on encryption (e.g. a Secure Sockets Layer), the scheme is, in fact, computationally

secure, i.e., an attacker that uses current computer technology and available resources will

not be able to breach security.

Since disclosing any set of less than s shares does not reveal the secret, the scheme is

immune to collusion of less than s parties. Fault of any party may require identifying its

110

shares by other parties and dropping them, if a faulted party was able to distribute less

than s of its shares. If enough shares were distributed and parties faulted, the protocol is

continued. If decryption requires participation of more parties than are active, the protocol

is rerun.

Shamir scheme has low computation complexity, but since each participant sends at least

(n−1) shares to others, the amount of communication is relatively high and equal to O(n2).

An example framework that implements secure operations of Shamir scheme is SEPIA [14,

103].

6.3.2 Perturbation-Based Protocols

Perturbation-based protocols are an e�cient alternative for other protocols, but often they

require certain topology of connections, e.g., a ring. The main idea is to perturb input data

by adding some random noise, such that they become meaningless for any attacker, and then

perform computations on the noisy data. This approach achieves security by obfuscating

all intermediate results, but is vulnerable to collusion and is not fault tolerant. Fault of any

party requires rerunning the protocol by remaining active parties.

As an example of perturbation-based protocols, we consider the secure sum protocol [20].

In this protocol all parties are connected in a ring topology. Each party generates random

noise, which is added to its private input. The starting party, which is elected randomly,

sends its obfuscated value to its successor that adds its own obfuscated value and passes it

further. At the end, the starting party holds the sum of obfuscated values from all parties.

In the next phase, each party removes its noise from the obfuscated sum, which, at the end,

reveals the correct �nal sum.

Unfortunately, if two neighbors of the same party collude, they can easily discover

both the obfuscated value (the �rst phase) and the random noise (the second phase)

generated by the party. With such information they can compromise the value participated

by the party. Many enhancements have been introduced to this protocol to increase its

collusion resistance, e.g., shu�ing party positions in the ring, and dividing computations into

multiple rounds [20]. Although such enhancements may signi�cantly increase communication

complexity of protocols, they are still very e�cient.

111

6.3.3 Homomorphic Encryption

An encryption scheme is homomorphic, if it allows computations to be carried out on

ciphertext. Formally, for a given homomorphic encryption function E with respect to a

function f , the encrypted result of f can be obtained by computing a function g over

encrypted values of x1, . . . , xn, i.e.,

E(f(x1, . . . , xn)) ≡ g(E(x1), . . . , E(xn)) (6.12)

Homomorphism of an encryption scheme is very useful in distributed settings. An outline

of computing a value of f over distributed input xi is de�ned as follows. First, each party

encrypts its local data xi and sends E(xi) to a single party. Then, such party computes

the function g on encrypted data. Due to homomorphism of the encryption scheme, the

party gets the encrypted value of function f , which can be used for further computations or

decryption.

Fully homomorphic schemes allow secure multiparty computation of any function f . The

price for such �exibility in choosing f is high complexity of computations [26, 36]. However,

a few partially homomorphic schemes are e�cient enough to achieve both security and

performance goals, e.g., multiplicatively homomorphic ElGamal [32] and RSA [78] schemes.

Our choice of the encryption scheme is determined by the aggregation operation, which in

our scenarios is addition. Examples of additively homomorphic schemes are Paillier [71],

Ács [1], and Shi [83].

Paillier Scheme. The Paillier scheme is a probabilistic public-key encryption scheme [24,

46, 71], which works as follows. Initially, a single trusted third party (TTP) generates a

pair of public and private keys. A party i encrypts its local value xi using the encryption

function E and the public key. Then, all encrypted values are collected by any participant

or the TTP, which computes g(E(x1), . . . , E(xn)). The result can be decrypted or used in

further computations.

The original protocol has been enhanced to a threshold scheme, in which shares of a

private key are distributed, and any s out of n shares are su�cient to decrypt the ciphertext.

In such scheme the TTP is not necessary to decrypt the �nal result. Any s participants

112

can do so, by partially decrypting it using their shares of the private key, and combining

computed results. Details of key generation, encryption and decryption algorithms can be

found in [24, 46]. For settings where the TTP is not present, generation and distribution of

public and private keys can be also securely performed, by running a separate SMC protocol

[25, 70], e.g., Di�e-Hellman key exchange protocol [1].

Ács Scheme. The Ács scheme is a modulo addition-based encryption scheme [1], i.e.,

addition is the encryption function. Encryption keys are generated in pairs by two parties,

e.g., by running Di�e-Hellman key exchange protocol. Keys in each pair are inverse to each

other, i.e., they sum up to 0. Each party has r encryption keys, which inverses are held by

r other parties. Since in the �nal result all encryption keys are summed up, they cancel out

and no decryption is necessary.

Any group of less than r colluding parties is not able to disclose local value of any other

party. However, bigger groups can do so with non-zero probability. In the original scheme

introduced by Ács et al., fault of any participant requires rerunning all computations from

the beginning. The original scheme can be extended by a recovery subprotocol that �nalizes

computations and returns the correct result. We introduce and analyze such subprotocol as

part of our enhanced scheme described below.

Establishing r keys for each party before actual computations is ine�cient and requires

running a key exchange protocol by rn
2 pairs of parties. Unfortunately, reusing the same

keys leads to leaks in security especially when parties fault. The following scheme addresses

this requirement of using di�erent keys, by generating them from setup keys.

Shi Scheme. In the Shi scheme a separate decryption function is reduced to computing

the discrete logarithm of the output in order to get the �nal result [83]. If aggregated

value is used in further computations, decryption can be postponed until the �nal result is

computed. Similar to the Ács scheme, the method of generating encryption keys ensures

that the �nal result will be already decrypted. Although all parties need to participate to

compute the result, they do not need to communicate in order to establish encryption keys

for the next run of the protocol. For each run, an encryption key is computed from the

initially established key using a one-way function, e.g., a hashing function SHA-256. Such

113

approach minimizes communication among parties, but requires additional computations.

Since participation of all parties is necessary to �nalize computations, fault of any party

during computations makes the result useless, and the protocol has to be rerun by active

parties. Communication complexity is minimal, but computation complexity is high due to

key generation.

6.3.4 Enhanced Fault Tolerant Scheme

We proposed an enhanced fault tolerant (EFT) security scheme, which is e�cient, fault

tolerant, and collusion resistant. The EFT scheme is an encryption scheme with encryption

implemented by adding to or subtracting from the local data a uniformly distributed random

variable, which is secretly agreed between two parties. Since each party exchanges such

random variables with a few neighboring parties, encrypted value is secured unless all

neighboring parties collude. The result of data aggregation does not require decryption since

perturbation introduced by each party is canceled out by its inverse from a neighboring party.

This feature is also used to recover the result after a few parties became inactive. Thus, the

encryption function used in the EFT is very e�cient and does not require any decryption

function. In addition, to avoid reestablishing all encryption keys among neighboring parties

in the beginning of every computation round, the keys are computed from the initially agreed

secret keys and the publicly known current round number.

Each run of the protocol implemented in the EFT scheme is initiated by an untrusted

party, which want to aggregate data provided by contributors. Such party collects encrypted

local values and aggregates them. At the same time it detects if any party gets inactive.

When at least one participant is not able to �nish the protocol, the aggregator initiates

the recovery protocol by informing all active parties about the inactive ones. To recover

the result, parties prepare their recovery keys, which are aggregated with the previously

computed result.

EFT Details. In our scheme an untrusted data aggregator, which is an independent entity

or is simulated by any data contributor, initiates all protocol runs (Algorithm 14). After

aggregating values returned by all parties N it returns the �nal result (lines 1 to 6). If any

114

data contributor faults, the aggregator will detect it (line 5). The result will be decrypted

only partially and the aggregator will run the recovery subprotocol to compute the �nal

result (lines 7 to 9).

Algorithm 14: The data aggregation and recovery procedures of the EFT scheme,
which is run by an untrusted party.

1 sum = 0
2 Faulted = ∅
3 foreach j ∈ N do
4 sum + = get_encrypted_value_from(j, timeout)
5 if timeout happened or no connection with j then Faulted = Faulted ∪ {j}
6 if Faulted = ∅ then return sum
// Recovery subprotocol.

7 foreach j ∈ N do
8 sum + = get_recovery_key_from(j, Faulted)

9 return sum

Data contributors participate in the aggregation by running Algorithm 15. In the setup

phase, a contributor i establishes random keys ki,j with r randomly chosen parties Ni (lines

1 to 5). After �xing ki,j no further setup is needed, and no communication is generated.

During encryption, each ki,j is hashed with the current timestamp t, and the result is added

to, or subtracted from, the contributed value xi (lines 8 to 9). The result is sent back to the

aggregator.

Notice that only r collaborating neighbors Ni can breach security and reveal xi.

Therefore, when using a privacy mechanism with our scheme, the minimal number of noise

shares required to ensure privacy shall be at most r.

In the recovery process (Algorithm 16), each party gets the set of all faulted parties

(Faulted). For faulted neighbors the party computes its recovery key, which is the sum

of inverses of aggregated encryption keys (lines 3 to 4), drops connection with them (line

5), and removes them from its set of neighbors Ni (line 6). If all neighbors of a party i

faulted, then sending the recovery key to the aggregator would reveal the contributed value

xi. Therefore, before sending, the party subtracts xi from the recovery key, which will

remove it from the aggregated result.

Security. Security proofs of our scheme are the same as presented in [1]. Encrypted keys are

115

Algorithm 15: The encryption function run by a party i contributing xi at time t
with encryption keys exchanged with parties Ni of the EFT scheme.

1 if |Ni| < r then
2 N ′

i = connect_randomly_with_new_parties(r − |Ni|)
3 foreach j ∈ N ′

i do
4 ki,j = Diffie-Hellman_key_exchange(i, j)

5 Ni = Ni ∪ N ′
i

6 ciphertext = xi
7 foreach j ∈ Ni do
8 if id(i) > id(j) then ciphertext + = Hash(ki,j, t)
9 else ciphertext − = Hash(ki,j, t)

10 return ciphertext

Algorithm 16: The recovery protocol run by a party i contributing xi at time t with
neighbors Ni and Faulted parties failing of the EFT scheme.

1 recovery_key = 0
2 foreach j ∈ Faulted ∩ Ni do
3 if id(i) < id(j) then recovery_key + = Hash(ki,j, t)
4 else recovery_key − = Hash(ki,j, t)
5 disconnect_from(j)
6 Ni = Ni \ {j}
7 if Ni = ∅ then recovery_key = recovery_key − xi
8 return recovery_key

116

Scheme Communication
complexity

Fault tolerance
level

Max. collusion
(max. n− 2)

Shamir (s,n) n(n+ 1) n− s s− 1

Perturbation-
based (n)

3n 0 1

Paillier (s,n) 5n n− s s− 1

Ásc (r,n) 2n+ 2rn n r − 1

Shi (n) 2n 0 n− 2

EFT (r,n) 2n n r − 1

Table 6.1: Comparison of complexity, fault tolerance level, and max. allowed collusion for
SMC schemes with n parties.

computationally secure due to the hash function, e.g., SHA-256, which cannot be reversed

in a polynomial time. Notice that the EFT scheme is immune to collusion of less than r

parties. Increasing r ∈ [1, n) will increase security of the protocol, but will also reduce its

scalability. The value of r should be established based on probability of faults and should

be greater than the maximal number of colluding parties.

Complexity. If all parties are active and run our protocol, then they generate 2n messages

in only two rounds � one to collect encrypted values by an untrusted aggregator and

one to broadcast the �nal result. When a few parties faulted, a recovery process would

generate additional 3n messages to broadcast Faulted, collect recovery keys, and broadcast

the recovered result. Computational complexity of the EFT protocol is slightly higher

than complexity of the Ács scheme, due to additional computations. However, since

encryption keys are not reestablished before each computation, the communication overhead

is signi�cantly lower, while preserving fault-tolerance.

6.3.5 Comparison

To compare di�erent schemes we have implemented a secure sum protocol in each of them

and analyze their complexity and security characteristics.

A summary of the comparison is presented in Table 6.1. Shamir scheme does not require

signi�cant computational resources and its fault tolerance level depends on the number of

parties required to reconstruct the secret s. However, the high communication complexity

is a major drawback that limits its scalability. Additionally, all n2

2 communication channels

117

need to be secure.

Each perturbation-based protocol is suited for a speci�c computation and requires

participation of all parties. Thus, it is not fault tolerant and faults of any party requires

rerunning it. In addition, in the presence of colluding parties, the scheme does not ensure

security, which is its major weakness. However, such protocols are suitable for settings where

parties have limited resources, but are reliable.

Among homomorphic encryptions schemes Paillier and Shi incur high computation

overheads due to their heavy encryptions. Therefore, these schemes may be suitable for

scenarios in which participants have more computational power, and high scalability is

required. The minimal amount of communication is generated by Shi and our EFT scheme.

Shi scheme is immune to (n− 2) colluding parties, but will not be able to recover after fault

of any party. Paillier, Ács, and our schemes are fault tolerant with the level of protection

against colluding parties de�ned as a parameter. However, after initial setup our scheme

does not require any more communication, while in Ács scheme all encryption keys need to be

regenerated, which causes exchanging 2rn additional messages. Reestablishing encryption

keys before each computation (n messages) and decryption of results (2n messages) increase

signi�cantly the communication complexity of Paillier scheme. Among encryption schemes,

our EFT scheme is the most e�cient in terms of communication and computations, is also

fault tolerant, and is �exible in adjusting its collusion level. None of other schemes holds all

these properties.

Fault Tolerance. All schemes can be partitioned by their fault tolerance level into three

groups. Perturbation-based and Shi schemes are not fault tolerant, i.e., if any party faults,

the currently run protocol is stopped and run again.

Schemes from the other group deal with faults silently (e.g. Shamir and Paillier), i.e.,

they do not run any recovery protocol to retrieve �nal results, but continue computations.

However, if the number of active data contributors drops below s, then protocols

implemented in either of these schemes are stopped and rerun with decreased value of

s. Notice that s cannot be less then the maximal number of potential colluding data

contributors, and the number of noise shares necessary to achieve di�erential privacy.

118

Remaining two schemes, i.e., Ács and our EFT scheme, �nish computations and return

results regardless of any faulted participants. However, when a data contributor faults, all

remaining contributors shall run a recovery protocol, which we presents in Algorithm 16.

Collusion of Parties. Only Shi scheme remains secure after collusion of (n − 2) parties,

which is the maximal number of colluding parties. Collusion of any two or more parties may

breach security of Perturbation-based scheme. Rearranging topology of connections among

parties and dividing computations into multiple stages may improve collusion resistance

of this scheme to certain extent. For remaining schemes the maximal number of allowed

colluding parties is less than the number of encryption key shares required to reconstruct

the result (Shamir, Paillier) or the number of keys exchanged by each party with others

(Ács, EFT).

6.4 Experimental Evaluation

In this section, we present experimental evaluations of various privacy mechanisms and

security schemes used to implement a distributed secure sum protocol. Since the security

and privacy levels of schemes have been formally analyzed above, we mainly focus on their

performance. The questions we attempt to answer are: 1) How do the di�erent distributed

noise generation algorithms and privacy mechanisms compare with each other in terms of

e�ciency and redundant noise? 2) How do the di�erent secure computation scheme protocols

perform in various settings, and how do they scale, and compare with each other in terms

of computation and communication cost?

6.4.1 Experiments Setup

All experiments have been run using JVM 1.6. We evaluated local computations including

partial noise generation, and data preparation on three di�erent platforms: 1) a cluster of 64

HP Z210 nodes with 2 quad-core CPUs, 8 GB of RAM each, running Linux Ubuntu system,

2) a laptop with Intel Core 2 Duo T5500 and 2 GB of memory running Windows XP, and

3) a shared server Sun Microsystems SunFire V880, with 8 CPUs and 16 GB of memory

running SunOS 5.10. Notice that the sever assigns only limited amount of resources to our

119

applications. All protocols are evaluated in a distributed environment using the cluster of

nodes, which are connected by the 100Mbit network. All reported results are averaged from

1, 000 runs for security scheme and 1, 000, 000 tries for privacy mechanism experiments.

Our main software framework is built on top of SEPIA [14, 103], which uses Shamir secret

sharing scheme for secure distributed computations. We extended SEPIA and implemented

other SMC schemes and privacy mechanisms to achieve di�erential privacy of the �nal

results. We chose implementation of the Paillier scheme from the UTD Paillier Threshold

Encryption Toolbox [104]. Additionally, we used random number generators implemented in

the HPC library Colt [100]. All remaining schemes and mechanisms have been implemented

by authors. Default values of experiment parameters are listed in Table 6.2.

Name Description Default Value

n Number of running nodes. 32
k Size of encryption keys in bits. 128
r The number of encryption keys exchanged with neighboring

parties for Ács and EFT schemes.
3

s The minimal number of parties required to decrypt or
reconstruct results in a security scheme.

3

γn The minimal number of noise shares to achieve privacy for
privacy mechanism experiments, and the minimal number
of non-colluding parties.

8

δ A parameter of approximated di�erential privacy 0.1
The key size (in bits) of the AES encryption with RSA for
SSL communication channels.

128

Table 6.2: Default values of experiment parameters.

6.4.2 Privacy

The main goal of this experiment is to evaluate the overhead of the following mechanisms

(Section 6.2):

� distributed LPA (DLPA): Laplace, Gamma, and Gauss,

� distributed GPA (DGPA),

� diluted: Laplace (dLPA), geometric (dGPA).

120

DLPA and DGPA guarantee di�erential privacy of the �nal result, while diluted mechanisms

ensure approximated di�erential privacy. For all DLPA mechanisms the �nal result achieves

the same level of di�erential privacy, i.e., its �nal noise is drawn from the same distribution.

Therefore, we compare the local computation time of the three DLPA and the DGPA

geometric mechanisms, as well as their impact on the overall protocol performance.

Noise Share Generation. In order to ensure that enough noise is added to the �nal result,

each node adds its share of noise. The average generation time of such shares for di�erent

mechanisms is shown in Figure 6.2.

Laptop Server Node
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0 dGPA

dLPA
Geometric
Gamma
Gauss
Laplace

time [us]

Figure 6.2: The average noise share generation times in microseconds for di�erent
mechanisms and platforms.

Generating a single noise share by the Laplace DLPA is more e�cient than by

other mechanisms, which con�rms our expectations (Section 6.2.5). Drawing a uniformly

distributed r.v. and a few arithmetic operations are enough to generate a noise share in

Laplace DLPA mechanism with e�ciency. Notice that Laplace DLPA requires also a r.v.

drawn from the beta distribution, which is generated and broadcasted to all parties as part

of the setup message for each run, therefore it is not considered here. Geometric mechanism

requires drawing two random variables, one from Poisson and one from gamma distributions,

which makes it slower than most DLPA mechanisms. Gauss requires generating 4 normally

distributed random variables, while gamma, on average, requires slightly over 5 uniformly

distributed random variables [3].

121

E�ciency of diluted privacy mechanisms with default parameter values (Table 6.2),

which achieve δ-approximate α-di�erential privacy, is very high. Performance of noise

generation for diluted mechanisms depends on β(δ, γ, n), i.e., probability of generating noise

(De�nition 6.8), which, for default values of parameters, is approximately equal to 41.52%.

0 0.2 0.4 0.6 0.8 1
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
dLPA

dGPA

time [μs]

δ 0 0.2 0.4 0.6 0.8 1
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9 dLPA

dGPA

time [μs]

γ

Figure 6.3: The average noise share generation times in microseconds for di�erent δ and γ,
run on the server.

Figure 6.3 shows the average runtimes of noise generations for dLPA and dGPA with

di�erent δ and γ on the server. As expected, relaxing the approximate di�erential privacy

constraint (De�nition 5.1), i.e., increasing the value of δ, decreases both the probability of

noise generation β and the runtime. Similarly, increasing the fraction of non-colluding parties

γ also decreases β and the runtime. Since generating Laplace noise is more e�cient than

generating geometric noise, the dLPA is also more e�cient than dGPA, which is con�rmed

in our experiments.

Redundant Noise. To protect privacy of data subjects against colluding data providers,

we run privacy mechanisms requesting that shares of γn participants (γn = 10) are enough

to achieve privacy. Thus, our �nal results have some additional noise, which characteristics

are di�erent for each mechanism. In this experiment we compare redundant noise generated

by all privacy mechanisms (Figure 6.4).

Laplace, Gamma, and Geometric mechanisms generate similar amount of redundant

noise. Among them the Laplace mechanism generates slightly less noise than Gamma and

Geometric mechanisms for γ 6 0.6 and slightly more for γ > 0.6. All three mechanisms

generate signi�cantly less redundant noise than the Gauss mechanism for any γ and α.

122

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

10

20

30

40

50 Gauss

Gamma

Laplace

Geometric

dLPA/dGPA

redundant noise magnitude

γ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

5

10

15

20

25

30 Gauss

Gamma

Laplace

Geometric

dLPA/dGPA

redundant noise magnitude

α

Figure 6.4: The average magnitude of redundant noise for di�erent rate of required noise
shares γ (α = 0.1), and di�erent privacy budgets α (γ = 10/32).

For given settings redundant noise magnitudes of dLPA and dGPA are almost the

same, therefore we represent them as a single dashed line in Figure 6.4. DLPA and

DGPA mechanisms cannot be compared with diluted mechanisms, in which redundant

noise depends on β(γ, δ) (De�nition 5.1). However, we can compare characteristics of

their redundant noise. Since β is independent of α, redundant noise for diluted and other

mechanisms will decrease at the same rate as α is increasing. In diluted mechanisms γ

impacts redundant noise di�erently than other mechanisms. Requiring participation of

more non-colluding parties to achieve privacy (increasing γ) decreases redundant noise for

diluted mechanisms slower than for DLPA (except Gauss) and DGPA.

6.4.3 Security

In this group of experiments we evaluate performance of distributed aggregation protocols

for di�erent security schemes. Security levels guaranteed by each scheme have been already

discussed (Section 6.3).

Performance of Homomorphic Encryption Schemes. In this set of experiments we

evaluate homomorphic encryption schemes. In the setup phase encryption keys are generated

and distributed. To ensure maximal security of the Paillier and the Ács schemes in each

round new keys are used. If we lower security requirements, the same encryption key could

be reused a few times. Therefore, we set up the Paillier scheme to be run in two settings

named new key (maximal security) and reuse key (lower security).

123

0 32 64 96 128 160 192 224 256
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

[bits]

Paillier (new

key)

Paillier (reuse

key)

Acs/Shi/EFT

k

time [s]

0 8 16 24 32 40 48 56 64
0.0

0.2

0.4

0.6

0.8

1.0
Paillier (new

key)

Paillier (reuse

key)

Acs

Shi

EFT

n

time [s]

Figure 6.5: The average runtimes of a protocol for di�erent encryption key sizes k (n = 32)
and di�erent number of participants n (k = 128).

Figure 6.5 shows the average runtime of a single round for encryption keys of di�erent

sizes and di�erent amounts of participants. Since results of Ács, Shi, and EFT schemes are

very similar, we represent them as a single line, when evaluating schemes against di�erent

encryption key sizes. Generating and distributing a set of encryption keys in the Paillier

scheme is a very time consuming process. Increasing the key size k, signi�cantly increases

computation time for the new key scenario, and have a negligible overhead when one key is

used all the time in the reuse key scenario.

Despite the encryption overhead, the homomorphic encryption schemes scale well.

Adding new nodes, while keeping the same encryption key size, increases the average runtime

of all homomorphic encryption schemes linearly.

Shamir's Secret Sharing

In this experiment we evaluate the impact of the threshold t in the Shamir's secret sharing

scheme. The threshold t represents the number of shares that are necessary to reconstruct

the secret. Thus, its value de�nes the minimal number of colluding nodes that can break

security of the scheme. By modifying the value of t, one modi�es also the fault tolerance

level of the protocol (Table 6.1), but with a negligible impact on its performance.

Figure 6.6 shows the average runtimes of Shamir scheme protocols for di�erent threshold

t. Increasing t increases the runtime minimally. The results seem to be surprising, but are

explainable. Each participant while running the protocol sends messages to all remaining

124

0 3 6 9 12 15
0.10

0.12

0.14

0.16

0.18

0.20

0.22

Laplace
Gamma
Gauss
Diluted
Geometric

t

time [s]

Figure 6.6: The average runtimes for di�erent Shamir's scheme threshold t (n = 32) and
privacy mechanisms.

nodes, i.e., to (n − 1) nodes, regardless of t. The only time that is gained for smaller t

comes from reconstructing the result, which starts as soon as t shares are collected by a

node without waiting for remaining shares to arrive. However, since our network is fast and

reliable, the di�erence in runtimes are small.

Di�erences among privacy mechanisms are results of their implementation in the secret

sharing scheme. Gauss mechanism requires running additional subprotocols that securely

compute the sum of squared numbers.

Performance of Fault Tolerance Schemes. The goal of this experiment is to compare

performance of fault tolerant schemes, i.e., Shamir, Paillier, Ács, and our EFT, with one

data contributor faulting. Notice that we extended the original Ács scheme with the same

recovery subprotocol as used in the EFT scheme. Remaining schemes will rerun the protocol,

if any participant drops. We set r = s = γn = 3.

Figure 6.7 shows the average runtimes for fault tolerant protocols when a single data

contributor faulted. In such scenario the runtime of a protocol implemented in either Paillier

or Shamir schemes is reduced due to less communication and computation that is performed.

At the same time Ács and our scheme needed more time to run a recovery protocol and

retrieve the �nal result. Despite additional computations our scheme is as e�cient as Shamir

scheme for fewer contributors (n 6 32), but scales better when we increase n. Runtimes

125

0 8 16 24 32 40 48 56 64
0.0

0.2

0.4

0.6

0.8
Shamir
Paillier (new
key)
Acs
EFT

n

time [s]

Figure 6.7: The average runtimes for di�erent numbers of participants and fault tolerant
security schemes.

for the Ács scheme are slightly longer than for our scheme, which is caused by the need of

reestablishing encryption keys before each run.

Data Preparation Overhead. For all protocols majority of their computations are local

and prior to any communication with other parties. Therefore, before comparing protocols

for di�erent scenarios, we run an experiment to evaluate time needed by each node to prepare

its data before sending them to other nodes.

Laptop Server Node
1E−8

1E−7

1E−6

1E−5

1E−4

1E−3

1E−2
Paillier
Shamir
Acs
Shi
Fault−Tolerant
Perturbation−
based

time [s]

Figure 6.8: The average local computation times (logarithmic scale) for data preparations
in di�erent security schemes on di�erent platforms.

126

Figure 6.8 shows the average local computation time (logarithmic scale) for data

preparation of security schemes on di�erent platforms. The runtime includes all random

number generations, encryptions, and any other necessary computations. The Perturba-

tion-based scheme outperforms others by at least two orders of magnitude. In this scheme

each node generates at most one random number, which is a relatively easy task. Each

node running Shamir, or Ács, or Shi, or Fault-Tolerant scheme spends more time before

communicating with others. However, it is still two orders of magnitude faster than for the

Paillier scheme with 128-bit key. Notice that, we have measured only the encryption time,

and skipped the time spent on keys generation.

Overall Protocol Performance. In this experiment we compare the overall performance

for all security schemes and di�erent numbers of nodes. Since di�erent privacy mechanisms

have little impact on the overall performance, in all runs we use Laplace LDPA. Figure 6.9

shows runtimes of the distributed aggregation protocols implemented in di�erent security

schemes.

0 8 16 24 32 40 48 56 64
0.0

0.2

0.4

0.6

0.8

1.0

1.2
Perturba−
tion−based
Shamir
Paillier (new
key)
Acs
Shi
EFT

n

time [s]

Figure 6.9: The average runtimes for di�erent numbers of nodes and security schemes.

Notice that for security, all parties in both Paillier and Ács schemes reestablish their

encryption keys in each round. As the number of nodes increases, both Perturbation-based

and Shamir schemes do not scale well as the increasing communication cost becomes the

dominant overhead. Communication in the Perturbation-based scheme grows linearly with

127

number of participants (Table 6.1), but is synchronized, i.e., each participant (except the one

initiating computations) send a message after receiving it from the previous participant in the

ring. Such communication is not asynchronous, which impacts scalability. Communication

in the Shamir scheme grows quadratically with number of nodes (Table 6.1), which is

con�rmed in our experiments.

When the number of nodes is between 32 and 48, the secret sharing scheme outperforms

the Perturbation-based protocol. This may seem counter-intuitive at the �rst glance,

especially when we consider the large amount of communication required for exchanging

the secret shares in the secret sharing scheme. However, we note that nodes are connected

pair-wise in the secret sharing scheme, while they are connected in a ring topology in the Per-

turbation-based protocol. Thus, passing a message to all other nodes takes less time in the

former scheme. When the number of nodes increase further, the amount of communication

in the secret sharing scheme outweighs the bene�t of all-to-all connections topology and

hence it is outperformed by the Perturbation-based protocol again.

On the other hand, all homomorphic encryption schemes scale well due to their low

communication costs. However, the Paillier scheme has a signi�cant computation overhead

comparing to others, which limits its scalability. Among encryption schemes our scheme is

the fastest one, because in each round encryption keys do not have to be regenerated and

the encryption function has low time complexity.

128

Chapter 7

Conclusions and Future Work

7.1 Summary

In this dissertation we presented and addressed challenges of privacy preserving data release,

which have di�erent distributed data settings, and cover syntactic and semantic privacy

notions.

7.1.1 Syntactic Privacy Notions in Distributed Environments

For syntactic privacy notions we described and addressed challenges introduced by a set

of m colluding data providers (m-adversary) in collaborative data publishing. Privacy

threats introduced by m-adversaries are addressed by our new privacy notion, m-privacy,

de�ned with respect to a privacy constraint C. We also proved that both veri�cation of m-

privacy ful�llment and anonymization datasets in order to achieve m-privacy are, in general,

computationally hard.

To verify m-privacy w.r.t. any syntactic privacy notion C (Chapter 3) we presented

new heuristics and SMC protocols. A few of them check m-privacy for EG monotonic

privacy constraints, and use adaptive ordering techniques to improve computations e�ciency.

For non-EG monotonic constraints we introduced an algorithm, with minimal required

number of privacy checks. We also presented a provider-aware anonymization algorithm

with an adaptive veri�cation strategy to ensure high utility and m-privacy of anonymized

data. Experimental results con�rmed that our heuristics perform better or comparable with

129

existing algorithms in terms of e�ciency and utility.

We implemented all veri�cation and anonymization algorithms in two distributed data

settings, with and without a trusted third party (TTP). All secure multiparty computation

protocols have been presented in details with their security and complexity carefully analyzed

(Chapter 4). In addition, we extensively tested their performance and quality of anonymized

datasets. Implementations of algorithms for the TTP setting is available on-line for further

development [102].

7.1.2 Semantic Privacy Notions in Distributed Environments

In this dissertation we also studied settings with semantic privacy notions and new

challenges, which they introduce. One of them is customization of privacy settings for

di�erential privacy, i.e., we allow data providers to set their privacy budgets independently

(Chapter 5). Customized privacy budget can be also an outcome of a query workload that

covers only a subset of records by its queries. For such settings, we proposed a two-phase

approach to generate data histograms, which di�erential preserve privacy and maximizes

data utility. First, data are partitioned into v-optimal partitions based on records' privacy

budget. Then, each partition is used to create a data histogram using any state-of-the-art

algorithm with bucket counts perturbed to ensure di�erential privacy. Separating privacy

partitioning from data-driven methods of building histograms gave us �exibility in choosing

algorithms for each step independently. All presented algorithms have been evaluated

extensively in experiments.

Another challenge, which we addressed is collusion of data providers in distributed

settings with semantic privacy notions. We introduced a new privacy-aware method of

computing data statistics, in which each data provider generates only partial noise from the

same data distribution. After combining all partial noise values, the �nal result is perturbed

enough to achieve di�erential privacy, even when we remove records from a few providers. In

order to ensure that level of collusion resistance some redundant noise needs to be generated.

Our method is designed in a such way that it generates very little redundant noise comparing

to naïve and existing approaches.

To choose an e�cient security scheme and a privacy mechanism for distributed and

130

privacy-preserving computations a few privacy and security challenges needs to be addressed.

In this dissertations we introduced and evaluated a new, e�cient, and fault tolerant

scheme (EFT) to ensure reliability and collusion resistant of computations. Our security

scheme guarantees computational security and minimal communication together with a high

reliability of the system (Chapter 6). To address privacy challenges for distributed settings,

we proposed a new and e�cient distributed perturbation mechanism (Laplace DLPA), which

introduces only small amount of redundant noise. The choice of a privacy mechanism is

crucial to preserve utility of �nal results, and impacts performance signi�cantly for devices

with limited power and computation resources, e.g., mobile devices.

7.2 Future Work

The notion of m-privacy has ben introduced for horizontally partitioned datasets. Adapting

it to vertically distributed or ad-hoc created datasets are two interesting directions for future

research. Also, generalizing our approach to other kinds of data, such as set-valued data,

de�nes another interesting path to explore.

In times of shifting from stand-alone to mobile devices with limited amount of

resources, adapting both security schemes and privacy mechanisms to such new environments

introduces many new challenges. Existing approaches to perform privacy-preserving

computations have been designed mostly for computers with relatively amount of com-

putation resources and with reliable power source. Therefore, running such algorithms and

protocols without adapting them to mobile devices is suboptimal. Reducing complexity of

such computations and minimizing their communication overhead is also a very interesting

dimension of research.

Ensuring security and privacy of complex tasks is barely explored nowadays. Even for

simple tasks (e.g. creating a histogram) there are still some room for improvement their

performance.

An edge case of customized privacy budget setting is allowing each data owner to set its

own budget. That way privacy would be personalized for each data owner. Such variety of

di�erent privacy budget values de�ne a new environment for future studies. For example, to

131

improve utilization of privacy budget by each record, a new techniques of budget saturation

should be proposed and analyzed.

BIBLIOGRAPHY: BOOKS AND JOURNALS 132

Bibliography: Books and Journals

[1] Gergely Ács and Claude Castelluccia. �I have a DREAM!: di�erentially private

smart metering�. In: Proceedings of the 13th International Conference on Information

Hiding. IH'11. 2011, pp. 118�132. isbn: 978-3-642-24177-2.

[2] Gagan Aggarwal, Nina Mishra, and Benny Pinkas. �Secure Computation of the

kth-Ranked Element�. In: Proceedings of the 23rd International Conference on

the Theory and Application of Cryptographic Techniques: Advances in Cryptology.

EUROCRYPT'04. 2004, pp. 40�55. isbn: 978-3-540-21935-4.

[3] Joachim H. Ahrens and Ulrich Dieter. �Computer methods for sampling from gamma,

beta, Poisson and bionomial distributions�. In: Computing 12 (3 1974), pp. 223�246.

issn: 0010-485X.

[4] Dima Alhadidi, Noman Mohammed, Benjamin C. M. Fung, and Mourad Debbabi.

�Secure distributed framework for achieving ϵ-di�erential privacy�. In: Proceedings

of the 12th International Privacy Enhancing Technologies Symposium. Vol. 7384.

Lecture Notes in Computer Science. 2012, pp. 120�139. isbn: 978-3-642-31679-1.

[5] Boaz Barak, Kamalika Chaudhuri, Cynthia Dwork, Satyen Kale, Frank D. McSherry,

and Kunal Talwar. �Privacy, Accuracy, and Consistency Too: A Holistic Solution to

Contingency Table Release�. In: Proceedings of the 26th ACM SIGMOD-SIGACT-

SIGART Symposium on Principles of Database Systems. PODS'07. Beijing, China,

2007, pp. 273�282. isbn: 978-1-59593-685-1.

[6] Michael Ben-Or, Sha� Goldwasser, and Avi Wigderson. �Completeness theorems

for non-cryptographic fault-tolerant distributed computation�. In: Proceedings of the

BIBLIOGRAPHY: BOOKS AND JOURNALS 133

20th Annual ACM Symposium on Theory of Computing. STOC'88. Chicago, Illinois,

United States, 1988, pp. 1�10. isbn: 0-89791-264-0.

[7] George Boros and Victor Moll. Irresistible Integrals: Symbolics, Analysis and

Experiments in the Evaluation of Integrals. Cambridge University Press, 2004. isbn:

978-0521796361.

[8] George Edward Pelham Box and Mervin Edgar Muller. �A Note on the Generation

of Random Normal Deviates�. In: The Annals of Mathematical Statistics 29.2 (1958),

pp. 610�611.

[9] Yuriy Brun and Nenad Medvidovi¢. �Entrusting Private Computation and Data

to Untrusted Networks�. In: IEEE Transactions on the Dependable and Secure

Computing 10.4 (July 2013), pp. 225�238.

[10] Cristian Bucil , Johannes Gehrke, Daniel Kifer, and Walker White. �DualMiner: A

Dual-Pruning Algorithm for Itemsets with Constraints�. In: Proceedings of the eighth

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.

KDD'02. Edmonton, Alberta, Canada, 2002, pp. 42�51. isbn: 1-58113-567-X.

[11] Jesse Burke, Deborah Estrin, Mark Hansen, Andrew Parker, Nithya A. Ramanathan,

Sasank Reddy, and Mani B. Srivastava. �Participatory Sensing�. In: Workshop

on World-Sensor-Web (WSW): Mobile Device Centric Sensor Networks and

Applications. 2006.

[12] Robin Burke, Bamshad Mobasher, Roman Zabicki, and Runa Bhaumik. �Identifying

attack models for secure recommendation�. In: Beyond Personalization: A Workshop

on the Next Generation of Recommender Systems at the International Conferece on

Intelligent User Interfaces. San Diego, California, USA, 2005.

[13] Martin Burkhart and Xenofontas A. Dimitropoulos. �Fast Privacy-Preserving Top-k

Queries Using Secret Sharing�. In: Proceedings of 19th International Conference on

the Computer Communications and Networks. ICCCN'10. 2010, pp. 1�7.

BIBLIOGRAPHY: BOOKS AND JOURNALS 134

[14] Martin Burkhart, Mario Strasser, Dilip Many, and Xenofontas Dimitropoulos.

�SEPIA: Privacy-Preserving Aggregation of Multi-Domain Network Events and

Statistics�. In: USENIX Security Symposiun. USENIX, 2010.

[15] Baki Cakici, Kenneth Hebing, Maria Grünewald, Paul Saretok, and Anette Hulth.

�CASE: A framework for computer supported outbreak detection�. In: BMC Medical

Informatics and Decision Making 10.1 (2010), p. 14.

[16] Claude Castelluccia, Aldar C-F. Chan, Einar Mykletun, and Gene Tsudik. �E�cient

and provably secure aggregation of encrypted data in wireless sensor networks�. In:

ACM Transactions on Sensor Networks (TOSN) 5.3 (June 2009), 20:1�20:36. issn:

1550-4859.

[17] Claude Castelluccia, Einar Mykletun, and Gene Tsudik. �E�cient Aggregation

of encrypted data in Wireless Sensor Networks�. In: Proc. of the 2nd Annual

International Conference on on Mobile and Ubiquitous Systems: Networking and

Services. MobiQuitous 2005. MOBIQUITOUS'05. 2005, pp. 109�117. isbn: 0-7695-

2375-7.

[18] Octavian Catrina and Amitabh Saxena. �Secure computation with �xed-point

numbers�. In: Proceedings of the 14th International Conference on Financial

Cryptography and Data Security. FC'10. Tenerife, Spain, 2010, pp. 35�50. isbn: 3-

642-14576-0, 978-3-642-14576-6.

[19] Cheng-Kang Chu, Wen Tao Zhu, Sherman S. M. Chow, Jianying Zhou, and Robert

H. Deng. �Secure mobile subscription of sensor-encrypted data�. In: Proceedings of

the 6th ACM Symposium on Information, Computer and Communications Security.

ASIACCS'11. 2011, pp. 228�237. isbn: 978-1-4503-0564-8.

[20] Chris Clifton, Murat Kantarc�o§lu, Jaideep Vaidya, Xiaodong Lin, and Michael Y.

Zhu. �Tools for privacy preserving distributed data mining�. In: ACM SIGKDD

Explorations Newsletter 4 (2 2002), pp. 28�34. issn: 1931-0145.

[21] Graham Cormode, Cecilia Procopiuc, Divesh Srivastava, Entong Shen, and Ting Yu.

�Di�erentially Private Spatial Decompositions�. In: Proceedings of the 2012 IEEE

BIBLIOGRAPHY: BOOKS AND JOURNALS 135

28th International Conference on Data Engineering. ICDE'12. 2012, pp. 20�31. isbn:

978-0-7695-4747-3.

[22] Graham Cormode, Divesh Srivastava, Ninghui Li, and Tiancheng Li. �Minimizing

Minimality and Maximizing Utility: Analyzing Method-based Attacks on Anony-

mized Data�. In: Proceedings of the VLDB Endowment 3 (1�2 Sept. 2010), pp. 1045�

1056. issn: 2150-8097.

[23] Ronald Cramer, Ivan Damgård, and Jesper Buus Nielsen. �Multiparty Computation

from Threshold Homomorphic Encryption�. In: Proceedings of the 20th International

Conference on the Theory and Application of Cryptographic Techniques: Advances in

Cryptology. EUROCRYPT'01. 2001, pp. 280�299. isbn: 3-540-42070-3.

[24] Ivan Damgård and Mats Jurik. �A Generalisation, a Simpli�cation and Some

Applications of Paillier's Probabilistic Public-Key System�. In: Proceedings of the

4th International Workshop on Practice and Theory in Public Key Cryptography:

Public Key Cryptography. PKC'01. 2001, pp. 119�136. isbn: 3-540-41658-7.

[25] Ivan Damgård and Gert Læssøe Mikkelsen. �E�cient, Robust and Constant-

Round Distributed RSA Key Generation�. In: Theory of Cryptography. Ed. by

Daniele Micciancio. Vol. 5978. Lecture Notes in Computer Science. Springer Berlin

Heidelberg, 2010, pp. 183�200. isbn: 978-3-642-11798-5.

[26] Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. �Fully

Homomorphic Encryption over the Integers�. In: Proceedings of the 29th Annual

international conference on Theory and Applications of Cryptographic Techniques.

EUROCRYPT'10. French Riviera, France, 2010, pp. 24�43. isbn: 3-642-13189-1, 978-

3-642-13189-9.

[27] Cynthia Dwork. �A �rm foundation for private data analysis�. In: Communications

of the ACM 54.1 (2011), pp. 86�95. issn: 0001-0782.

[28] Cynthia Dwork. �Di�erential privacy�. In: Proceedings of the 33rd International

Conference on Automata, Languages and Programming � Volume Part II.

ICALP'06. 2006, pp. 1�12. isbn: 3-540-35907-9, 978-3-540-35907-4.

BIBLIOGRAPHY: BOOKS AND JOURNALS 136

[29] Cynthia Dwork. �Di�erential privacy: a survey of results�. In: Proceedings of the

5th International Conference on Theory and Applications of Models of Computation.

TAMC'08. Xi'an, China, 2008, pp. 1�19. isbn: 3-540-79227-9, 978-3-540-79227-7.

[30] Cynthia Dwork, Krishnaram Kenthapadi, Frank D. McSherry, Ilya Mironov, and

Moni Naor. �Our data, ourselves: privacy via distributed noise generation�. In:

Proceedings of the 25th Annual International Conference on The Theory and

Applications of Cryptographic Techniques. EUROCRYPT'06. 2006, pp. 486�503.

isbn: 3-540-34546-9, 978-3-540-34546-6.

[31] Cynthia Dwork, Frank D. McSherry, Kobbi Nissim, and Adam Smith. �Calibrating

noise to sensitivity in private data analysis�. In: Proceedings of the 3rd conference on

Theory of Cryptography. TCC'06. 2006, pp. 265�284. isbn: 3-540-32731-2, 978-3-540-

32731-8.

[32] Taher El Gamal. �A public key cryptosystem and a signature scheme based on discrete

logarithms�. In: Proceedings of CRYPTO 84 on Advances in Cryptology. 1985, pp. 10�

18. isbn: 0-387-15658-5.

[33] Benjamin C. M. Fung, Ke Wang, Rui Chen, and Philip S. Yu. �Privacy-preserving

data publishing: A survey of recent developments�. In: ACM Computing Surveys

(CSUR) 42.4 (2010), 14:1�14:53. issn: 0360-0300.

[34] Tamas S. Gal, Zhiyuan Chen, and Aryya Gangopadhyay. �A Privacy Protection

Model for Patient Data with Multiple Sensitive Attributes�. In: International Journal

of Information Security and Privacy 2.3 (2008), pp. 28�44.

[35] Simson L. Gar�nkel and Michael D. Smith. �Guest Editors' Introduction: Data

Surveillance�. In: IEEE Security & Privacy 4.6 (2006).

[36] Craig Gentry. �Fully homomorphic encryption using ideal lattices�. In: Proceedings

of the 41st Annual ACM Symposium on Theory of Computing. STOC'09. Bethesda,

MD, USA, 2009, pp. 169�178. isbn: 978-1-60558-506-2.

BIBLIOGRAPHY: BOOKS AND JOURNALS 137

[37] Arpita Ghosh, Tim Roughgarden, and Mukund Sundararajan. �Universally utility-

maximizing privacy mechanisms�. In: Proceedings of the 41st annual ACM symposium

on Theory of Computing. STOC'09. 2009, pp. 351�360. isbn: 978-1-60558-506-2.

[38] Oded Goldreich. Foundations of Cryptography: Volume 1. Basic Tools. Cambridge

University Press, 2007. isbn: 9780521035361.

[39] Oded Goldreich. Foundations of Cryptography: Volume 2. Basic Applications.

Cambridge University Press, 2004. isbn: 9780521830843.

[40] Oded Goldreich, Silvio M. Micali, and Avi Wigderson. �How to play ANY mental

game�. In: Proceedings of the 19th Annual ACM Symposium on Theory of Computing.

STOC'87. 1987, pp. 218�229. isbn: 0-89791-221-7.

[41] Slawomir Goryczka, Li Xiong, and Benjamin C. M. Fung. �m-Privacy for collaborative

data publishing�. In: 7th International Conference on Collaborative Computing:

Networking, Applications and Worksharing (CollaborateCom). CollaborateCom'11.

2011, pp. 1�10.

[42] Slawomir Goryczka, Li Xiong, and Benjamin C. M. Fung. �m-Privacy for

Collaborative Data Publishing�. In: IEEE Transactions on Knowledge and Data

Engineering 99.PrePrints (2013), p. 1. issn: 1041-4347.

[43] Slawomir Goryczka, Li Xiong, and Vaidy S. Sunderam. �Secure multiparty

aggregation with di�erential privacy: a comparative study�. In: EDBT/ICDT

Workshops. 2013, pp. 155�163. isbn: 978-1-4503-1599-9.

[44] Hamed Haddadi, Richard Mortier, and Steven Hand. �Privacy analytics�. In: ACM

SIGCOMM Computer Communication Review 42.2 (Mar. 2012), pp. 94�98. issn:

0146-4833.

[45] Michael Hay, Vibhor Rastogi, Gerome Miklau, and Dan Suciu. �Boosting the

Accuracy of Di�erentially Private Histograms Through Consistency�. In: Proceedings

of the VLDB Endowment 3.1-2 (Sept. 2010), pp. 1021�1032. issn: 2150-8097.

BIBLIOGRAPHY: BOOKS AND JOURNALS 138

[46] Carmit Hazay, Gert Læssøe Mikkelsen, Tal Rabin, and Tomas Toft. �E�cient RSA

key generation and threshold Paillier in the two-party setting�. In: Proceedings of

the 12th Conference on Topics in Cryptology. CT-RSA'12. San Francisco, CA, 2012,

pp. 313�331. isbn: 978-3-642-27953-9.

[47] Hosagrahar Visvesvaraya Jagadish, Nick Koudas, S. Muthukrishnan, Viswanath

Poosala, Kenneth C. Sevcik, and Torsten Suel. �Optimal Histograms with Quality

Guarantees�. In: Proceedings of the 24rd International Conference on Very Large

Data Bases. VLDB'98. 1998, pp. 275�286. isbn: 1-55860-566-5.

[48] Wei Jiang and Chris Clifton. �A secure distributed framework for achieving k-ano-

nymity�. In: The VLDB Journal � The International Journal on Very Large Data

Bases 15.4 (2006), pp. 316�333.

[49] Wei Jiang and Chris Clifton. �Privacy-Preserving Distributed k-Anonymity�. In:

Proceedings of the 19th annual IFIP WG 11.3 working conference on Data and

Applications Security. Vol. 3654. DBSec'05. Storrs, CT, 2005, pp. 166�177. isbn:

3-540-28138-X, 978-3-540-28138-2.

[50] Norman Lloyd Johnson, Adrienne W. Kemp, and Samuel Kotz. Univariate Discrete

Distributions. Wiley Series in Probability and Statistics. Wiley, 2005. isbn:

9780471715801.

[51] Pawel Jurczyk and Li Xiong. �Distributed Anonymization: Achieving Privacy for

Both Data Subjects and Data Providers�. In: Proceedings of the 23rd Annual IFIP

WG 11.3 Working Conference: Data and Applications Security XXIII. Vol. 5645.

Lecture Notes in Computer Science. 2009, pp. 191�207. isbn: 978-3-642-03006-2.

[52] Jerry Kang, Katie Shilton, Deborah Estrin, Je� Burke, and Mark Hansen. �Self-

Surveillance Privacy�. In: Iowa Law Review 97 (2012), pp. 809�847.

[53] Daniel Kifer. �Attacks on privacy and deFinetti's theorem�. In: Proceedings of the

2009 ACM SIGMOD International Conference on Management of Data. Providence,

Rhode Island, USA: ACM, 2009, pp. 127�138. isbn: 978-1-60558-551-2.

BIBLIOGRAPHY: BOOKS AND JOURNALS 139

[54] Daniel Kifer and Ashwin Machanavajjhala. �No free lunch in data privacy�. In:

Proceedings of the 2011 ACM SIGMOD International Conference on Management

of Data. SIGMOD'11. 2011, pp. 193�204. isbn: 978-1-4503-0661-4.

[55] Samuel Kotz, Tomasz J. Kozubowski, and Krzysztof Podgórski. The Laplace

Distribution and Generalizations: A Revisit with Applications to Communications,

Economics, Engineering, and Finance. Progress in Mathematics Series. Springer,

2001. isbn: 9780817641665.

[56] Kristen Lefevre, David J. Dewitt, and Raghu Ramakrishnan. �Mondrian multidimen-

sional k-anonymity�. In: ICDE. 2006.

[57] Ninghui Li and Tiancheng Li. �t-Closeness: Privacy Beyond k-Anonymity and l-

Diversity�. In: Proceedings of the 23rd International Conference on Data Engineering.

ICDE'07. 2007.

[58] Yehuda Lindell and Benny Pinkas. �An E�cient Protocol for Secure Two-Party

Computation in the Presence of Malicious Adversaries�. In: Proceedings of the 26th

Annual International Conference on The Theory and Applications of Cryptographic

Techniques. EUROCRYPT'07. Barcelona, Spain, 2007, pp. 52�78. isbn: 978-3-540-

72539-8.

[59] Yehuda Lindell and Benny Pinkas. �Secure Multiparty Computation for Privacy-

Preserving Data Mining�. In: The Journal of Privacy and Con�dentiality 1.1 (2009),

pp. 59�98.

[60] Ashwin Machanavajjhala, Johannes Gehrke, Daniel Kifer, and Muthuramakrishnan

Venkitasubramaniam. �l-Diversity: Privacy Beyond k-Anonymity�. In: Proceedings of

the 22nd International Conference on Data Engineering. ICDE'06. 2006, p. 24. isbn:

0-7695-2570-9.

[61] George Marsaglia and Wai Wan Tsang. �The Ziggurat Method for Generating

Random Variables�. In: Journal of Statistical Software 5.8 (Oct. 2000), pp. 1�7. issn:

1548-7660.

BIBLIOGRAPHY: BOOKS AND JOURNALS 140

[62] Frank D. McSherry. �Privacy integrated queries: an extensible platform for privacy-

preserving data analysis�. In: Proceedings of the 2009 ACM SIGMOD International

Conference on Management of Data. SIGMOD'09. Providence, Rhode Island, USA,

2009, pp. 19�30. isbn: 978-1-60558-551-2.

[63] Frank D. McSherry and Kunal Talwar. �Mechanism Design via Di�erential Privacy�.

In: Proceedings of the 48th Annual IEEE Symposium on Foundations of Computer

Science. FOCS'07. 2007, pp. 94�103.

[64] Noman Mohammed, Dima Alhadidi, Benjamin C. M. Fung, and Mourad Debbabi.

�Secure Two-Party Di�erentially Private Data Release for Vertically Partitioned

Data�. In: IEEE Transactions on Dependable and Secure Computing 11.1 (Jan. 2014),

pp. 59�71. issn: 1545-5971.

[65] Noman Mohammed, Rui Chen, Benjamin C. M. Fung, and Philip S. Yu.

�Di�erentially private data release for data mining�. In: Proceedings of the 17th

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.

KDD'11. San Diego, California, USA, 2011, pp. 493�501. isbn: 978-1-4503-0813-7.

[66] Noman Mohammed, Benjamin C. M. Fung, Patrick C. K. Hung, and Cheuk-Kwong

Lee. �Centralized and distributed anonymization for high-dimensional healthcare

data�. In: ACM Transactions on Knowledge Discovery from Data (TKDD) 4.4 (2010),

18:1�18:33.

[67] Noman Mohammed, Benjamin C. M. Fung, Ke Wang, and Patrick C. K. Hung.

�Privacy-Preserving Data Mashup�. In: Proceedings of the 12th International

Conference on Extending Database Technology: Advances in Database Technology.

EDBT'09. Saint Petersburg, Russia, 2009, pp. 228�239. isbn: 978-1-60558-422-5.

[68] Min Mun, Sasank Reddy, Katie Shilton, Nathan Yau, Je� Burke, Deborah Estrin,

Mark Hansen, Eric Howard, Ruth West, and Péter Boda. �PEIR, the Personal

Environmental Impact Report, As a Platform for Participatory Sensing Systems

Research�. In: Proceedings of the 7th International Conference on Mobile Systems,

Applications, and Services. MobiSys'09. Kraków, Poland, 2009, pp. 55�68. isbn: 978-

1-60558-566-6.

BIBLIOGRAPHY: BOOKS AND JOURNALS 141

[69] Mehmet Ercan Nergiz, Abdullah Ercüment Çiçek, Thomas B. Pedersen, and Yücel

Sayg�n. �A Look-Ahead Approach to Secure Multiparty Protocols�. In: IEEE

Transactions on Knowledge and Data Engineering 24 (2012), pp. 1170�1185. issn:

1041-4347.

[70] Takashi Nishide and Kouichi Sakurai. �Distributed Paillier Cryptosystem Without

Trusted Dealer�. In: Proceedings of the 11th International Conference on Information

Security Applications. WISA'10. Jeju Island, Korea, 2011, pp. 44�60. isbn: 3-642-

17954-1, 978-3-642-17954-9.

[71] Pascal Paillier. �Public-key cryptosystems based on composite degree residuosity

classes�. In: Proceedings of the 18th International Conference on Theory and

Application of Cryptographic Techniques. EUROCRYPT'99. 1999, pp. 223�238. isbn:

3-540-65889-0.

[72] Thomas B. Pedersen, Yücel Sayg�n, and Erkay Sava³. �Secret Sharing vs. Encryption-

based Techniques For Privacy Preserving Data Mining�. In: Joint UNECE/Eurostat

work session on Statistical Data Con�dentiality. 2007.

[73] Stephen C. Pohlig and Martin E. Hellman. �An improved algorithm for computing

logarithms over GF(p) and its cryptographic signi�cance (Corresp.)� In: IEEE

Transactions on Information Theory 24.1 (2006), pp. 106�110. issn: 0018-9448.

[74] Viswanath Poosala, Peter J. Haas, Yannis E. Ioannidis, and Eugene J. Shekita.

�Improved Histograms for Selectivity Estimation of Range Predicates�. In:

Proceedings of the 1996 ACM SIGMOD International Conference on Management

of Data. SIGMOD'96. Montreal, Quebec, Canada, 1996, pp. 294�305. isbn: 0-89791-

794-4.

[75] Layla Pournajaf, Li Xiong, Vaidy Sunderam, and Slawomir Goryczka. �Spatial Task

Assignment for Crowd Sensing with Cloaked Locations�. In: 15th IEEE International

Conference on Mobile Data Management (MDM). July 2014.

[76] Vibhor Rastogi and Suman Nath. �Di�erentially private aggregation of distributed

time-series with transformation and encryption�. In: Proceedings of the 2010 ACM

BIBLIOGRAPHY: BOOKS AND JOURNALS 142

SIGMOD International Conference on Management of Data. SIGMOD'10. 2010,

pp. 735�746. isbn: 978-1-4503-0032-2.

[77] Report of the August 2010 Multi-Agency Workshop on InfoSymbiotics/DDDAS, The

Power of Dynamic Data Driven Applications Systems. Workshop sponsored by: Air

Force O�ce of Scienti�c Research and National Science Foundation.

[78] Ronald L. Rivest, Adi Shamir, and Len Adleman. �A method for obtaining digital

signatures and public-key cryptosystems�. In: Communications of the ACM 21.2

(1978), pp. 120�126.

[79] Alexander Russell and David Zuckerman. �Perfect Information Leader Election in

log∗ n+O(1) Rounds�. In: Proceedings of the 39th Annual Symposium on Foundations

of Computer Science. Nov. 1998, pp. 576�583. isbn: 0-8186-9172-7.

[80] Pierangela Samarati. �Protecting Respondents' Identities in Microdata Release�. In:

IEEE Transactions on Knowledge and Data Engineering 13.6 (2001), pp. 1010�1027.

[81] Adi Shamir. �How to share a secret�. In: Communications of the ACM 22.11 (Nov.

1979), pp. 612�613. issn: 0001-0782.

[82] Rashid Sheikh, Beerendra Kumar, and Durgesh Kumar Mishra. �A Distributed

k-Secure Sum Protocol for Secure Multi-Party Computations�. In: Journal of

Computing 2 (3 Mar. 2010), pp. 68�72. issn: 2151-9617.

[83] Elaine Shi, T.-H. Hubert Chan, Eleanor G. Rie�el, Richard Chow, and Dawn Song.

�Privacy-Preserving Aggregation of Time-Series Data�. In: Proceedings of the 18th

Annual Network and Distributed System Security Symposium. NDSS'11. 2011.

[84] Katie Shilton. �Four Billion Little Brothers?: Privacy, mobile phones, and ubiquitous

data collection�. In: Communications of the ACM 52 (11 2009), pp. 48�53. issn:

0001-0782.

[85] Latanya Sweeney. �k-Anonymity: A Model for Protecting Privacy�. In: International

Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 10.5 (2002),

pp. 557�570. issn: 0218-4885.

BIBLIOGRAPHY: BOOKS AND JOURNALS 143

[86] Latanya Sweeney. Uniqueness of Simple Demographics in the U.S. Population. Tech.

rep. Carnegie Mellon University, 2000.

[87] Yufei Tao, Xiaokui Xiao, Jiexing Li, and Donghui Zhang. �On Anti-Corruption

Privacy Preserving Publication�. In: Proceedings of the 2008 IEEE 24th International

Conference on Data Engineering. ICDE'08. 2008, pp. 725�734. isbn: 978-1-4244-1836-

7.

[88] Jaideep Vaidya and Chris Clifton. �Secure set intersection cardinality with application

to association rule mining�. In: Journal of Computer Security 13 (4 July 2005),

pp. 593�622. issn: 0926-227X.

[89] Michael M. Wagner, Andrew W. Moore, and Ron M. Aryel, eds. Handbook of

Biosurveillance. Academic Press, June 2006. isbn: 978-0123693785.

[90] Xiaokui Xiao, Gabriel Bender, Michael Hay, and Johannes Gehrke. �iReduct:

Di�erential Privacy with Reduced Relative Errors�. In: Proceedings of the 2011 ACM

SIGMOD International Conference on Management of Data. SIGMOD'11. Athens,

Greece, 2011, pp. 229�240. isbn: 978-1-4503-0661-4.

[91] Xiaokui Xiao and Yufei Tao. �Personalized privacy preservation�. In: Proceedings

of the 2006 ACM SIGMOD International Conference on Management of Data.

SIGMOD'06. Chicago, IL, USA, 2006, pp. 229�240. isbn: 1-59593-434-0.

[92] Xiaokui Xiao, Guozhang Wang, and Johannes Gehrke. �Di�erential Privacy via

Wavelet Transforms�. In: IEEE Transactions on Knowledge and Data Engineering

23.8 (Aug. 2011), pp. 1200�1214. issn: 1041-4347.

[93] Yonghui Xiao, Li Xiong, Liyue Fan, and Slawomir Goryczka. �DPCube: Di�erentially

Private Histogram Release through Multidimensional Partitioning�. In: ArXiv e-

prints (Feb. 2012). eprint: 1202.5358.

[94] Li Xiong, Vaidy S. Sunderam, Liyue Fan, Slawomir Goryczka, and Layla Pournajaf.

�PREDICT: Privacy and Security Enhancing Dynamic Information Collection and

Monitoring�. In: Proceedings of the International Conference on Computational

Science. Vol. 18. ICCS'13. June 2013, pp. 1979�1988.

1202.5358

BIBLIOGRAPHY: BOOKS AND JOURNALS 144

[95] Jia Xu, Zhenjie Zhang, Xiaokui Xiao, Yin Yang, Ge Yu, and Marianne Winslett.

�Di�erentially private histogram publication�. In: The VLDB Journal � The

International Journal on Very Large Data Bases 22.6 (2013), pp. 797�822. issn:

1066-8888.

[96] Andrew Chi-Chih Yao. �How to generate and exchange secrets�. In: Proceedings of

the 27th Annual Symposium on Foundations of Computer Science. SFCS'86. IEEE,

1986, pp. 162�167.

[97] W. Katherine Yih, Swati Deshpande, Candace Fuller, Dawn Heisey-Grove, John Hsu,

Benjamin A. Kruskal, Martin Kulldor�, Michael Leach, James Nordin, Jessie Patton-

Levine, Ella Puga, Edward Sherwood, Irene Shui, and Richard Platt. �Evaluating

real-time syndromic surveillance signals from ambulatory care data in four states�.

In: Public Health Reports 125.1 (2010).

[98] Sheng Zhong, Zhiqiang Yang, and Rebecca N. Wright. �Privacy-enhancing k-

anonymization of customer data�. In: Proceedings of the 24th ACM SIGMOD-

SIGACT-SIGART Symposium on Principles of Database Systems. PODS'05.

Baltimore, Maryland, 2005, pp. 139�147. isbn: 1-59593-062-0.

BIBLIOGRAPHY: ELECTRONIC RESOURCES 145

Bibliography: Electronic Resources

[99] 2009 H1N1 Flu. http://www.cdc.gov/h1n1flu/. 2009.

[100] Colt: Open Source Libraries for High Performance Scienti�c and Technical

Computing in Java. http://acs.lbl.gov/software/colt.

[101] Investigation Update: Outbreak of Shiga toxin-producing E. coli O104 (STEC

O104:H4) Infections Associated with Travel to Germany. http://www.cdc.gov/

ecoli/2011/ecoliO104/. 2011.

[102] m-Anonymizer: Collaborative Distributed Anonymization Library with m-Privacy.

http://www.mathcs.emory.edu/aims/m-anonymizer/. 2011.

[103] SEPIA: Security through Private Information Aggregation. http://sepia.ee.ethz.

ch.

[104] UTD Paillier Threshold Encryption Toolbox: an Open Source Library. http://www.

utdallas.edu/~mxk093120/paillier.

http://www.cdc.gov/h1n1flu/
http://acs.lbl.gov/software/colt
http://www.cdc.gov/ecoli/2011/ecoliO104/
http://www.cdc.gov/ecoli/2011/ecoliO104/
http://www.mathcs.emory.edu/aims/m-anonymizer/
http://sepia.ee.ethz.ch
http://sepia.ee.ethz.ch
http://www.utdallas.edu/~mxk093120/paillier
http://www.utdallas.edu/~mxk093120/paillier

