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Abstract

Synthetic Trajectory Generation via Clustering-Based Semi-supervised Generative
Adversarial Networks
By Minxing Zhang

Analyzing human mobility data and gaining insights from it is crucial for city planning
and epidemic modeling. Synthetic trajectory generation is the task of generating large-
scale fake trajectories that mimic the real ones by preserving all essential properties.
As one of the fundamental problems in geoscience, it plays a vital role in studying
population flow. Analyzing individual movements helps understand the traffic or pub-
lic transportation system and may be used to predict the future position of a moving
object. However, the limited open real-life human mobility data with complicated
properties invalidates existing approaches. Moreover, effectively capturing the modal-
ity patterns (moving purpose, transportation mode, etc.) of the real-life trajectories
and generating synthetic trajectories with these modality patterns preserved is also
a critical issue. Third, there is a short of a systematic way to measure whether the
transitional information from one location to another has been effectively captured in
the generated trajectories. Given a user’s incomplete sequence of visits, the existing
generation model has yet to be tasked with predicting the following few locations. To
address these challenges, we propose a Clustering-based Semi-supervised Gener-
ative Adversarial Network (CS-GAN) that, based on limited actual trajectories
reported by users, can generate synthetic trajectories which mimic the real ones by
preserving all the essential properties. Our proposed model leverages the idea of clus-
tering and semi-supervised GANs to capture real-life modality patterns. Moreover, we
develop a novel transitional probability-related metric to measure whether the synthetic
trajectories capture the transitional information. We also conducted an ablation study
to verify the effectiveness of our proposed generation model in predicting the possible
subsequent few visits given an incomplete sequence of visits. Extensive experiments
have been conducted on real-world datasets and demonstrated our model’s superiority
in performance over state-of-the-art models.
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Chapter 1

Introduction

Analyzing human mobility data and gaining insights from it is crucial for city planning

and epidemic modeling [1]. As one of the fundamental problems in geoscience, mobility

simulation plays a vital role in studying population flow. Analyzing individual move-

ments helps understand the traffic or public transportation system and may be used

to predict the future position of a moving object. Recently, the worldwide outbreak of

COVID-19 further stimulated the demand for mobility simulation [6]. The trajectory

data records individuals’ interaction with each other, which is a critical factor in pre-

venting the spread of disease at an early stage. Furthermore, mobility data also has

unique commercial values. For example, recommendation systems rely on population

flow to identify where to place the advertisement. Considering the huge potential of

mobility patterns, trajectory simulation has aroused wide attention recently.

However, mobility simulation advances face several significant limitations: 1) Data

limitation. Training an effective synthetic trajectory generation model typically ne-

cessitates the availability of large-scale real-life trajectories reported by users. However,

access to large-scale, high-quality mobility trajectory data is obstructed due to privacy

issues and commercial concerns [2]. 2) Preservation of real-life modality patterns.
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Real-world trajectories always consist of various modalities with semantics meanings;

for instance, in terms of moving purpose modalities, real-life trajectories may consist of

shopping, going to work, going back home, etc. Regarding transportation mode modali-

ties, real-life trajectories may include walking, running, biking, driving, etc. Yet current

research cannot generate synthetic trajectories that preserve such modality patterns.

3) Systematic metric to measure the transitional information. A single human

daily trajectory consists of multiple transitions. Effectively capturing the transitional

probability from one location to another from the actual trajectories and generating

synthetic trajectories that preserve similar transitional patterns contribute significantly

to traffic forecasting, epidemic modeling, urban planning, etc. However, recent advance-

ments fail to develop a systematic metric to measure the transitional probability from

one location to another. 4) Predicting the following possible location based

on an incomplete sequence of visits. Developing an effective generation model to

generate a group of trajectories that preserves all the essential properties reflects the

generation model’s power on a global scale. However, given an incomplete sequence of

an individual user’s trajectory on a local scale, whether the aforementioned generation

model can effectively predict the possible subsequent few visits based on the existing

incomplete ones is still a critical problem.

Therefore, simulating realistic mobile trajectories has become a fundamental topic

of recent research. To address these challenges, we propose a Clustering-based Semi-

supervised Generative Adversarial Network (CS-GAN) that, based on limited

actual trajectories reported by users, can generate synthetic trajectories which mimic

the real ones by preserving all the essential properties. Our proposed model leverages

the idea of clustering and semi-supervised learning to capture real-life modality pat-

terns. Moreover, we develop a novel transitional probability-related metric to measure

whether the synthetic trajectories capture the transitional information. We also con-
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ducted an ablation study to verify the effectiveness of our proposed generation model

in predicting the possible subsequent few visits given an incomplete sequence of visits.

In short, the key contributions of this paper are summarized as follows:

1. Developing a Clustering-based Semi-supervised Generative Adversarial

Network (CS-GAN). The idea of clustering is leveraged to obtain modality

labels for each actual trajectory. By assigning the generated trajectories to the

{k + 1}-st cluster, we extend the semi-supervised GANs to generate synthetic

trajectories with modality information preserved. The popular recurrent neural

networks (RNNs) serve as the generation and discrimination backbone with the

addition of reinforcement learning (policy-gradient) and Monte Carlo search with

a roll-out policy to enhance the power of our proposed model.

2. Proposing a novel transitional probability-related metric to measure

whether the synthetic trajectories capture the transitional information.

It builds the transitional Origin-Destination Matrix for both the actual trajecto-

ries and the generated ones, takes the difference, and leverages the Frobenius

Norm to measure how well the transitional information is captured.

3. Designing a next location prediction task to evaluate the ability to

capture the incomplete sequence information and extend it to predict

the next visit on an individual trajectory-level scale. We leverage our

proposed generation model to conduct the next location prediction task: given

an incomplete sequence of visits, what is the accuracy of successfully predicting

the following few locations?

4. Conducting comprehensive experimental analysis to validate the ef-

fectiveness of the proposed model. Extensive experiments on two real-world
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datasets, the GeoLife Dataset, and the PeopleFlow Dataset, demonstrate that our

proposed framework achieves superior results in synthetic trajectory generation.

The rest of the paper is organized as follows. We first report the related work

in Chapter 2. Then, we formulate the problem of synthetic trajectory generation in

Chapter 3. Next, we present our Clustering-based Semi-supervised Generative

Adversarial Network (CS-GAN) in Chapter 4 and evaluate the effectiveness of our

model in Chapter 5. Finally, we conclude the paper in Chapter 6.
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Chapter 2

Related Work

2.1 Generative Adversarial Networks

To simulate the fine-grained movement of a large number of individuals in daily life,

model-based methods are proposed to capture the regularity of human mobility behav-

iors [3]. Another research stream proposes model-free methods for trajectory-generating

and privacy-preserving with the generative adversarial network (GAN). [8] proposes a

non-parametric generative model for location trajectories that can capture high-order

geographic and semantic features of human mobility. The generator and the discrim-

inator are Convolutional Neural Network (CNN) layers. The generated images are

transformed into a sequence of trajectories during the generation process, and the lo-

cation information is embedded into the images for the discriminator. [10] presents an

end-to-end LSTM-TrajGAN model to generate privacy-preserving synthetic trajectory

data for data sharing and publication. [2] leverages the self-attention networks as the

backbone of the generator, utilizes the prior knowledge of human mobility patterns, and

considers the effects of the urban structure during the generation process to integrate

the domain knowledge of human mobility regularity utilized in the model-based meth-
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ods. Instead of generating a discrete sequence of visits, a DeltaGAN [12] framework is

proposed to generate a continuous sequence of visits to better capture temporal irreg-

ularity in human mobility behaviors by leveraging the idea of the spatiotemporal point

process. Based on the idea of reinforcement learning, the SeqGAN [13] model becomes

one of the state-of-the-art strategies for synthetic trajectory generation by treating the

output of the discriminator as a reward sent back to the generator.

2.2 Semi-supervised Learning

Semi-supervised learning [15] is a type of machine learning that lies between supervised

and unsupervised learning, which refers to leveraging a small portion of labeled data

with the rest of the training data unlabeled to train a model.

Moreover, for the general generation task, semi-supervised GAN [7] gains popularity

by treating the discriminator network as a multi-class classifier. During the training

phase, the generator and the discriminator are trained on a dataset with inputs be-

longing to one of the k classes. Then, the discriminator is asked to predict which of

the k + 1 classes the input belongs to, where an extra {k + 1}-st fake class is added to

correspond to the outputs of G.

2.3 Reinforcement Learning

Under the umbrella of machine learning, reinforcement learning (RL) [5] considers how

an agent can take actions in an environment to maximize the reward it receives. RL

does not need labeled data as supervised learning requires. Instead, basic reinforcement

learning is modeled as a Markov decision process (MDP) [9] with a set of environment

and agent states, S; a set of actions, A, of the agent, the transition probability of

transitioning from state s to the next state s′ given the current action a, and the
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immediate reward obtained by the agent after transitioning from state s to state s′ by

taking action a.
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Chapter 3

Problem Setting

3.1 Normal Synthetic Trajectories Generation

People’s mobility patterns are reflected by the aggregation of individual spatiotemporal

trajectories. A single trajectory Y can be defined as a list of visiting records Y =

[y1, y2, y3, ..., yi, ..., yn], where yi denotes the i-th visit of the trajectory, which is a ordered

pair (timei, locationi), timei denotes the timestamp of the i-th visit, locationi denotes

the user’s location of the i-th visit, represented by the region’s Grid ID.

Thus, the problem of synthetic trajectory generation can be defined as:

Definition 1. Given a set of trajectories collected from the real world, train a θ-

parameterized generator Gθ to generate a set of synthetic trajectories that mimic the

real-world trajectories by preserving all the essential properties. The generation of each

synthetic trajectory Y = [y1, y2, y3, ..., yi−1, yi, ..., yn] is a sequential decision process: the

generation of the visit yi is determined by the multiplication of the probability of each

previously generated visits [y1, y2, y3, ..., yi−1], which can be expressed as:

pθ(Y ) =
n∏

i=1

pθ(yi|y1, y2, y3, ..., yi−1) (3.1)
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where pθ denotes the probability distribution of the generator.

Besides the generator, we also train a ϕ-parameterized discriminator Dϕ to play a

“Two Player Game”: the generator Gθ and discriminator Dϕ, are trained together. The

generator generates a batch of trajectories, and these, along with real trajectories, are

provided to the discriminator and classified as real or fake. The generator is trained to

fool the discriminator in terms of not being able to distinguish the generated trajectories

from the real ones, while the discriminator is trained to classify the real trajectories

as real or generated trajectories as fake. The discriminator is updated to get better at

discriminating real and generated trajectories in the next round, and the generator is

also updated based on how well, or not, the generated trajectories fool the discriminator.

In short, the optimization objective can be expressed as:

min
Gθ

max
Dϕ

EY∼pd(Y )[log(Dϕ(Y ))] + EY∼Gθ(Y )[log(1−Dϕ(Y ))] (3.2)

where pd denotes the probability distribution of the real trajectories and Y denotes an

individual trajectory.

3.2 Synthetic Trajectories Generation with Modal-

ity Patterns Preserved

Real-world trajectories always consist of various modalities with semantics meanings,

either distinguished by their moving purposes, such as shopping trajectories, trajectories

of going back home, trajectories of going to school, etc., or transportation modes, such

as walking, biking, running, driving, etc. How to generate synthetic trajectories that

mimic the real ones and simultaneously preserve the modality patterns has not been

clearly specified by the current trajectories generation problem definition, as specified
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in Definition 1, and thus there is no potent approach to address them.

Thus, to address the aforementioned problem, we first adjust the problem definition

of synthetic trajectory generation:

Definition 2. Given a set of trajectories collected from the real world, train a θ-

parameterized generator Gθ to generate a set of synthetic trajectories that mimic the

real-world trajectories by preserving all the essential properties and preserving the real-

world modality patterns. The generation of each synthetic trajectory Y = [y1, y2, y3, ..., yi−1, yi, ..., yn]

is a sequential decision process: the generation of the visit yi is determined by the mul-

tiplication of the probability of each previously generated visits [y1, y2, y3, ..., yi−1], which

can be expressed as:

pθ(Y ) =
n∏

i=1

pθ(yi|y1, y2, y3, ..., yi−1) (3.3)

where pθ denotes the probability distribution of the generator.

The generation of the set of synthetic trajectories that preserve the real-world modal-

ity patterns can be treated as: given a modality m ∈ M , the set of all modalities, mini-

mizing the proportion of trajectories belonging to modality m between the synthetic ones

and the real ones, which can be express as:

min
∑
m∈M

Proportionreal(m)− Proportiongen(m) (3.4)

where Proportionreal(m) denotes the proportion of trajectories in the real ones belong-

ing to modality m and Proportiongen(m) denotes the proportion of trajectories in the

generated ones belonging to modality m.
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Chapter 4

Proposed Framework

4.1 Clustering

Given an individual trajectory Y = [y1, y2, y3, ..., yi, ..., yn] as a sequence of visits, each

visit yi is often associated with several modalities with semantic meanings; for instance,

the transportation mode (walking, running, car, airplane, etc.) or the moving purpose

(shopping, going to school, going back home, etc.). Thus, given an input trajectory

Y , we can represent it via two regimes: 1) A global feature FG denoting the general

modality, and 2) a group of local features FL = [f1, f2, f3, ..., fi, ..., fn] with fi denoting

the modality of the i-th visit. In this paper, we explore the global representation of the

trajectory.

However, it is not always the case that the modality information for each trajectory

is provided. How to develop a model that, in the absence of modality information,

effectively generates synthetic trajectories that preserve the modality patterns of the

real ones, as elaborated in Section 4.2, becomes a critical problem and has yet to be

well addressed. Our proposed model can effectively address the problem by leveraging

a clustering-based technique based on the semantics feature of each trajectory, i.e., the
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average speed, to capture the modality information without ground-truth features.

4.1.1 Clustering in the absence of Modality Features

Given that the modality information for each real trajectory is not provided, we believe

that average speed is a potent attribute to capture the modality pattern of each trajec-

tory on a global scale. Thus, we propose a speed-computation algorithm, illustrated in

Algorithm 1, to obtain the average speed of each real trajectory. Then, we leverage the

K-means Clustering algorithm to cluster the real trajectories based on average speed

and obtain the cluster label for each trajectory.

Algorithm 1: Speed-computation Algorithm

Data: A trajectory Y, bounding box bbox, horizontal resolution horizontal n,
vertical resolution vertical n, time resolution time res

Result: Computed speed of trajectory Y
Compute a reference matrix to find the centered point (in latitude and
longitude) given a region’s Grid ID based on bbox, horizontal n, and
vertical n;
Initialize the average speed to be 0 ;
Initialize the count of transitions ;
for n = 1 : N − 1 do

Obtain the current visit’s Region ID rn;
Obtain the next visit’s Region ID rn+1;
Find the centered point cn of rn;
Find the centered point cn+1 of rn+1;
if cn != cn+1 and both cn and cn+1 are not unknown then

Compute the haversine distance dist between cn and cn+1;
average speed ← dist/time res+average speed;
count ← count+1

end

end
average speed ← average speed/count;
return average speed
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4.2 Generator

We leverage recurrent neural networks (RNNs) as the backbone of our generator Gθ

to generate synthetic trajectories. More specifically, to generate a trajectory, the

generator first generates the starting location by either randomly selecting from the

entire probability distribution of the locations or simply selecting the first location.

Then, to generate the next location loci based on the previously generated locations

loc1, loc2, loc3, ..., loci−1, our proposed generator consists of an embedding function e(·)

to map the sequence of previously generated locations into embedding representations,

a mapping function g(·) to map the embedded sequence into hidden states, and finally

a predicting function z(·) to map the hidden states to the probability distribution of

location, which can be written as:

p(loci|loc1, loc2, loc3, ..., loci−1) = Gθ(loc1, loc2, loc3, ..., loci−1)

= G(z(g(e(loc1, loc2, loc3, ..., loci−1)))).

(4.1)

More specifically, the function e(·) takes the previously generated locations loc1,

loc2, loc3, ..., loci−1 and outputs the embedded representations, which can be written

as:

loc1, loc2, loc3, ..., loci−1 = e(loc1, loc2, loc3, ..., loci−1). (4.2)

Then, the proposed function g(·), which is the gated recurrent unit (GRU) frame-

work, maps the embedding representations of the previously generated locations to a

sequence of hidden states h1, h2, h3, ..., hi−1, which can be written as:

pred(loci), hi−1 = g(loc1, loc2, loc3, ..., loci−1). (4.3)

Finally, the predicting function z(·) maps the pred(loci) into the output probability
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distribution of locations with a soft-max output later to determine the most probable

next location, which can be expressed as:

p(loci|loc1, loc2, loc3, ..., loci−1) = z(pred(loci)). (4.4)

4.3 Discriminator

4.3.1 k + 1 Cluster Labels

As elaborated in section 4.1, we leverage the clustering technique to split the entire

real-world trajectories into k clusters, denoting k distinct modalities, and thus are able

to obtain the cluster label for each real-world trajectory. In this way, we have k cluster

labels.

For the generated trajectories from the generator, we assign the cluster label ”k + 1”

denoting the fake class.

Thus, we have in total k + 1 cluster labels, where the first k clusters denote the k

modalities in the real trajectories and the {k + 1}-st cluster denotes the fake class.

4.3.2 Semi-supervised Learning-based Discriminator

Leveraging the idea of semi-supervised learning, our proposed discriminator Dϕ func-

tions as a multi-class classifier. Given a trajectory, which is either from the group of

generated trajectories from the proposed generator or from the real ones, as input, our

proposed discriminator aims to distinguish: 1) whether it is real or fake and 2) given

it is real, the specific cluster it belongs to. More specifically, given the trajectory gen-

erated from the generator, our discriminator aims to classify it into the {k+ 1}-st fake

cluster; given the trajectory from the real ones, our discriminator aims to classify it

into the specific modality cluster it belongs to among the k real clusters.
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To capture the entire sequence information, we first leverage bidirectional recurrent

neural networks (RNNs) to comprehensively evaluate the input trajectory, and then

followed by dense layers to output the probability of being classified into each cluster,

which can be written as:

p(clusterY ) = Dϕ(Y ) = D(zd(gd(ed(Y ))))

= D(zd(gd(ed(⟨loc1, loc2, loc3, ..., locn⟩))))
(4.5)

where p(clusterY ) denotes the output probability distribution of k + 1 clusters corre-

sponding to input trajectory Y , ed(·) denotes a embedding function, gd(·) denotes a

mapping function, and zd(·) denotes a predicting function.

Given an entire input trajectory, similar to our proposed generator Gθ, our discrim-

inator Dϕ first consists of an embedding function ed(·), which takes the entire locations

of the input trajectory Y , ⟨loc1, loc2, loc3, ..., locn⟩, and outputs the embedded represen-

tations, which can be written as:

Y = ⟨loc1, loc2, loc3, ..., locn⟩ = ed(Y ) = ed(⟨loc1, loc2, loc3, ..., locn⟩). (4.6)

Then, our proposed discriminator leverages a function gd(·), which is the gated recur-

rent unit (GRU) framework, and maps the embedding representations of the locations

to the hidden state hn, which can be written as:

, hn = g(Y ) = g(⟨loc1, loc2, loc3, ..., locn⟩). (4.7)

Finally, the predicting function z(·), which consists of a stack of U fully connected

layers FCu, where u = 1, 2, ..., U , followed by nonlinear activation function σ, maps the

hn into the output probability distribution of clusters to determine the most probable
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cluster the trajectory belongs to, which can be expressed as:

p(clusterY ) = z(hn). (4.8)

4.4 Model Training

4.4.1 Reinforcement Learning-based Training

The normal training algorithm of GANs via gradient back-propagation does not per-

form well due to the discreteness of the output from the generator. To address the

problem, we interpret the trajectories generation problem via reinforcement learning.

More specifically, we treat our proposed generator as the agent, the group of current

generated locations as the state, generating the next location based on the previously

generated locations is the action, and the probability of ”fooling” the discriminator is

the reward. Despite the fact that the generator Gθ(yi|y1, y2, y3, ..., yi−1) is stochastic,

given the current state s and the action a, the transition to the next state is determin-

istic:  δas,s′ = 1 for the next state s′;

δas,s′′ = 0 for other states s′′.

Leveraging the idea of reinforcement learning, our proposed generatorGθ(yi|y1, y2, y3, ..., yi−1)

to generate the next location based on the previously generated location aims to max-

imize its expected end reward:

J(θ) = E[Rn|θ, s0] =
∑
y1∈Y

Gθ(y1|s0) · TGθ
Dϕ

(s0, y1) (4.9)

where Rn is the reward gained for the complete trajectory Y with n visits, TGθ
Dϕ

(s0, y1)

is the action-value function and thus represents the expected accumulative reward from
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starting from the state s0 and taking the action y1, following policy Gθ.

More specifically, the reward is based on the output of the discriminator. According

to Equation 4.5, the output of the discriminator is the probability distribution of k+1

clusters (k real clusters and the {k + 1}-st fake cluster) given the input trajectory Y .

Thus, the summation of the probability for trajectory Y of being classified into the k

real clusters represents the probability of “fooling” the discriminator and thus should

be treated as the reward, which can be written as:

RDϕ(Y ) =
∑
c∈C

p(clusterY (c)) (4.10)

where C denotes the group of k real clusters and p(clusterY (c)) denotes the probability

of the trajectory Y being classified into cluster c.

However, given the current state y1, y2, y3, ..., yi−1 and the action to generate the next

location yi, where i < n, which is an incomplete sequence, how to connect the aforemen-

tioned RDϕ(Y ) to the current action-value function TGθ
Dϕ

(s = y1, y2, y3, ..., yi−1, a = yt)

becomes a problem. Given that the input trajectory Y to the discriminator to compute

the reward must be a complete sequence of the trajectory of total n visits, we decide

to leverage Monte Carlo search with a roll-out policy (we use Gθ) to generate the un-

known last n− i locations. More specifically, given the previously generated locations

y1, y2, y3, ..., yi−1, the next location yi is generated by a deterministic process based on

current state s and action a; a group of next locations yi+1, yi+2, yi+3, ..., yn is generated

by the roll-out policy (generator Gθ) based on the current state. Leveraging the idea

behind the Monte Carlo search with the roll-out policy, we can generate a complete

sequence of trajectory for the discriminator to generate reward based on Equation 4.10.

Thus, given the task of generating the next location yi based on the previous lo-

cations y1, y2, y3, ..., yi−1 and i < n, we first leverage the Monte Carlo search with a
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roll-out policy (Gθ) to generate the complete sequence of visits Y . Then, for i = n, we

compute the reward and thus have:

TGθ
Dϕ

(s = {y1, y2, y3, ..., yi−1}, a = yt) = RDϕ(Y ) =
∑
c∈C

p(clusterY (c)). (4.11)

Thus, we can compute the gradient of the generator’s objective function with respect

to θ from Equation 4.9:

∇θJ(θ) = E{y1,y2,y3,...,yi−1}∼Gθ

(∑
yt∈Y

∇θGθ(yt|{y1, y2, y3, ..., y4}) · TGθ
Dϕ

(s = {y1, y2, y3, ..., yi−1}, a = yt)

)
(4.12)

In this way, we can update the generator’s parameter θ:

θ = θ + α · ∇θJ(θ) (4.13)

where α is the learning rate.

Then, as the objective of the discriminator is to minimize the multi-class classifica-

tion loss by classifying the real trajectories as real and generated trajectories as fake,

we have:

min
ϕ
−EY∼pd(Y )[logDϕ(Y )]− EY∼Gθ(Y )[log(1−Dϕ(Y ))] (4.14)

where Dϕ(Y ) denotes the total probability of the trajectory Y being classified into the

k real classes, and 1−Dϕ(Y ) denotes the probability of the trajectory Y being classified

into the {k + 1}-st fake class.

Thus, the objective function of the discriminator can be further written as:

min
ϕ
−EY∼pd(Y )[log(

∑
c∈C

p(clusterY (c)))]− EY∼Gθ(Y )[log(p(clusterY (k + 1)))] (4.15)

where C denotes the group of k real clusters, p(clusterY (c) denotes the probability of the
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discriminator to classify the trajectory Y into cluster c, and p(clusterY (k + 1) denotes

the probability of the discriminator to classify the trajectory Y into the {k+1}-st fake

class.

4.4.2 Model Pre-training

Due to the complicated nature of human mobility data, training a powerful generator

with a large number of parameters that can generate synthetic trajectories that mimic

the real ones in a time-efficient manner is hard. Thus, to accelerate the training process

and improve the overall model’s performance, we perform model pre-training on both

the generator and the discriminator.

To pre-train the generator, we leverage the idea behind maximum likelihood estima-

tion (MLE) and pre-train the generator on the real trajectories. We aim to minimize

the negative log-likelihood loss between the generated ones and the real ones.

To pre-train the discriminator, we mix the real trajectories with the generated tra-

jectories in an equal proportion. Then, we pre-train the discriminator to minimize the

negative log-likelihood loss between the predicted cluster labels and the ground-truth

cluster labels (one of the k clusters for the real trajectory and the {k+1}-st cluster for

the generated trajectory).

4.4.3 Algorithm Pseudocode

Based on reinforcement learning-based training and model pre-training, we have our

entire CS-GAN algorithm illustrated in 2.
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Algorithm 2: CS-GAN Framework for Synthetic Trajectory Generation

Data: Real group of trajectories Y, noise distribution PZ, number of classes k,
batch size b, total number of iterations T , number of iterations TG to
train the generator, number of iterations TD to train the discriminator

Result: A well-trained generator Gθ for synthetic trajectory generation
Initialize parameters of the generator Gθ and the discriminator Dϕ;
Perform KM-means clustering on the real group of trajectories Y based on k
number of classes and thus obtain k centroids;
Conduct pre-training of the generator Gθ via MLE using Y ;
Conduct pre-training of the discriminator Dϕ via minimizing the negative log
likelihood loss ;
for t = 1 : T do

for t = 1 : TG do
Use the generator to generate b synthetic trajectories {Gθ(zi)}bi=1 from
PZ;
Assign clustering labels to ”fake” (the {k + 1}-st cluster) of the b
generated trajectories;
Compute the reward of the b generated trajectories via Equation 4.11;
Update θ via policy gradient Equation 4.13 ;

end
for t = 1 : TD do

Sample b real trajectories {Yi}bi=1 from Y;
Obtain clustering labels with respect to the k centroids of the b sampled
trajectories;
Use the generator to generate b synthetic trajectories {Gθ(zi)}bi=1 from
PZ;
Assign clustering labels to ”fake” (the {k + 1}-st cluster) of the b
generated trajectories;
Update ϕ via Equation 4.15 ; /* Update the parameters of

Discriminator w.r.t the NLL of Discriminator’s outputs on

the combined minibatch of size 2b */

end

end
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Chapter 5

Evaluation

For this study, we utilize real-world datasets to evaluate our proposed model for an-

swering the following questions:

Q1. What are the similarities and differences between the GeoLife Dataset and the

PeopleFlow Dataset in terms of both the individual trajectory-level information: trajec-

tory speed, cumulative distance, number of distinct visits, and modality pattern-level

(clustering-level) information?

Q2. How effective is our proposed CS-GAN model in terms of generating synthetic

trajectories compared with the state-of-the-art approach?

Q3. How would the resulting similarities and differences between the datasets affect

the proposed CS-GAN’s and the state-of-the-art model’s performance?

Q4. How does our proposed CS-GAN model perform on the next location prediction

task compared to the state-of-the-art approach?
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5.1 Experimental Setup

5.1.1 Data.

We experiment on two real-world datasets (open GeoLife Dataset [14] and semi-open

PeopleFlow Dataset [11]) to verify the effectiveness of our proposed model.

1. GeoLife Dataset: This GPS trajectory dataset was collected in the (Microsoft

Research Asia) Geolife project by 182 users over three years (from April 2007 to

August 2012). This dataset contains 17,621 trajectories with a distance of about

1.2 million kilometers and a total duration of 48,000+ hours.

2. PeopleFlow Dataset: This data is based on 2008 Tokyo Metropolitan Area PT

Data (provided by Tokyo Metropolitan Circle Transportation Planning Council)

and is lent by the University of Tokyo CSIS.

5.1.2 Comparison Methods.

We compare our proposed CS-GAN model with different variations of the state-of-the-

art SeqGAN [13] model, which extends the idea of reinforcement learning and Monte

Carlo search to generate a discrete sequence of trajectory. The SeqGAN model is the

cornerstone of our proposed CS-GAN model: we extend the baseline SeqGAN model

with clustering and semi-supervised GANs. Our intuition is that by leveraging the idea

of clustering and semi-supervised GANs, our proposed CS-GAN model can generate

more realistic synthetic trajectories by preserving both the individual trajectory-level

information and the modality information compared with the existing method, and

thus we select the SeqGAN model and its variations as baselines. Thus, the SeqGAN

model with its different variations are the comparison methods:

1. SeqGAN: we train a SeqGAN model on the entire real trajectories.
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Table 5.1: Model Hyper-parameters

Model Hyper-parameters
Embedding Dimension Hidden Dimension Bidirectional Pre-training Epoch

Generator 32 32 False 150
Discriminator 64 64 True 75

2. Pre-clustering + SeqGAN: we conduct clustering on the real trajectories and train

an individual SeqGAN model on each cluster.

3. SeqGAN + Post-clustering: we train a SeqGAN model on the entire real trajec-

tories and then conduct clustering on the generated trajectories.

5.1.3 Implementation Details.

As our CS-GAN model leverages the idea of clustering to split the real trajectories into

k modalities, we extend the elbow method to select the optimal k for each dataset: k

is set to 6 for the PeopleFlow Dataset and 4 for the GeoLife Dataset.

Batch size is set to 32, dropout is set to 0.2, adversarial training epoch is set to 75,

the learning rate is set to 1e−2, and other generator/discriminators’ hyper-parameters

are indicated in Table 5.1.

5.1.4 Evaluation Metrics.

We define 8 metrics to evaluate the quality of the synthetic trajectories in different

aspects. 4 of them are defined in previous works [4, 8], which measure the individual

trajectory-level information:

• P (r): Probability of a trajectory visiting location r.

• P (r, t): Probability of a trajectory visiting location r at time t.

• P (d): Probability of the accumulated distance of a trajectory equaling d.

• P (v): Probability of the number of distinct visits of a trajectory being v.
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For each probability metric, we compute the Jensen-Shannon Divergence between the

probability distribution of the real trajectories and that of trajectories generated by

our proposed model and baselines, which can be written as:

JSD(X||Y ) = H(
X + Y

2
)− H(X) +H(Y )

2
(5.1)

where X and Y are two probability distributions and H is the Shannon information.

Moreover, we define 4 new metrics to evaluate whether the transitional sequence

information and the modality pattern (clustering) information are preserved in the

synthetic trajectories, which :

• P (r1, r2): Probability of a trajectory transitioning from location r1 to location r2.

Given the entire Q regions, we build the Origin-Destination Matrix OD ∈ RQ∗Q

for both real and synthetic trajectories, where the element corresponding to row i

and column j of the Origin-Destination matrix denotes the transitional probability

from location i to location j. Then we take the Frobenius norm of the difference

between the two OD matrices, which can be written as:

P (r1, r2) = ||ODreal−ODfake||F =

√√√√ Q∑
i=1

Q∑
j=1

|ODreal(i, j)−ODfake(i, j)|2 (5.2)

where ODreal(i, j) denotes the element of the matrix ODreal corresponding to row

i and column j.

• P (c0i ): Proportion of trajectories within each cluster ci. We cluster the real tra-

jectories and, based on the resulting real centroids, cluster trajectories generated

by our proposed model and baselines. In this way, we have a distribution of the

proportion of trajectories in each cluster corresponding to the real trajectories

and another distribution of the proportion of trajectories in each cluster corre-
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sponding to the generated ones. Then, we compute the JS divergence between

the two distributions based on Equation 5.1.

• D,P (c1i ): D denotes the accumulated absolute distance between real and gener-

ated centroids. P (c1i ) denotes the proportion of trajectories within each cluster-

pair c1i . We cluster the real trajectories and trajectories generated by our proposed

model and baselines separately and pair the real centroids and the generated cen-

troids based on distance. Then, given two distributions, similar to P (c0i ), we

compute the JS divergence between the two distributions based on Equation 5.1.

5.2 Comparison between GeoLife and Peopleflow

Dataset

Generally, based on Figures 5.1a, 5.1b, 5.2a, 5.2b, and Table 5.2, we can conclude that in

terms of variety of the modalities, GeoLife 15min is less diverse while PeopleFlow 15min

is more diverse. The pattern can be reflected by the following individual analysis of

essential attributes: average speed, cumulative distance, distinct visit, and clustering

inertia.

5.2.1 Average Speed

As indicated in Figure 5.1a and Table 5.2, the average speed of GeoLife 15min is

5.324 km/h with a standard deviation of 5.744. In comparison, the average speed

of PeopleFlow 15min is 13.592 km/h with the most significant standard deviation of

8.303, which denotes that it consists of resting, walking, running, biking, and also driv-

ing trajectories. This pattern is reflected in the kernel density plot, where the blue

curve (PeopleFlow 15min) is flat and more equally distributed from 0 to 40 km/h.
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Thus, in terms of average speed, we can conclude that PeopleFlow 15min has the

most diverse speed distribution and modality patterns.

5.2.2 Cumulative Distance

The same pattern is reflected in the cumulative distance attribute. GeoLife 15min is

less diverse, and most of the trajectories have a speed of 8km/h. According to the

table, the average distance of 8.401 is relatively low, with a lower standard deviation of

9.340. PeopleFlow 15min has a more significant average cumulative distance of 27.662

km and a larger standard deviation of 26.494, which means most of the trajectories in

PeopleFlow 15min has a relatively large travel distance instead of staying in a single

region. The pattern is also reflected in the kernel density plot, where the blue curve is

flatter and lies to the right of the orange curves.

5.2.3 Distinct Visit

In terms of distinct visits, we can see from Figure 5.2a that both PeopleFlow 15min and

GeoLife 15min have roughly the same distribution; the orange curve (GeoLife 15min)

overlaps with the blue curve (PeopleFlow 15min), and this pattern is also verified from

the Table 5.2, where the average distinct visit and standard deviation are roughly the

same.

5.2.4 Clustering Inertia

As verified by the important trajectory attributes: speed, cumulative distance, and

distinct visit, we can conclude that PeopleFlow 15min has more diverse modalities

while GeoLife 15min is less diverse. To further verify the claim, we leverage the elbow

method to plot the clustering inertia with respect to the number of clusters. Based
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(a) Average Speed Distribution (b) Cumulative Distance Distribution

Figure 5.1: Dataset Comparison Visualization (Speed and Distance)

(a) Distinct Visits Distribution (b) Elbow Curve (Clustering Inertia)

Figure 5.2: Dataset Comparison Visualization (Visits and Elbow Curve)

on Figure 5.2b, we can see that the convergence speed of the red curve, which denotes

People 15min is slow while GeoLife 15min converges the fastest.

5.3 Effectiveness Comparison with the Baselines

We present the performance comparison of all baselines in Table 5.3. Based on the

table, our proposed model performs consistently the best over all the metrics on both

datasets.
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Table 5.2: Comparison between GeoLife data and PeopleFlow data using different
processing techniques

Data Comparison
Data Average Speed

(km/h)
Average Accumulated Dis-
tance (km)

Average Distinct
Visits

PeopleFlow 15min 13.592±8.303 27.662±26.494 7.123±3.895
GeoLife 15min 5.324±5.744 8.401±9.340 7.713±4.558

5.3.1 Global Comparison

Regarding the general comparison between our proposed model and baselines, on People 15min,

our model consistently outperforms the baselines over all the metrics. In particular, in

terms of the individual trajectory-level metrics, our model excels over the baselines on

average 21% in P (r), 11% in P (r, t), 40% in P (d), and 27% in P (v); in terms of the

transitional probability metric, our model outperforms the baselines on average 49% in

P (r1, r2); in terms of the modality patterns (clustering) metrics, our model excels over

the baselines on average 59% in P (c0i ), 57% in D, and 61% in P (c1i ).

Similarly, on GeoLife 15min, our model consistently outperforms the baselines over

all the metrics. In particular, in terms of the individual trajectory-level metrics, our

model excels over the baselines on average 30% in P (r), 16% in P (r, t), 25% in P (d),

and 1% in P (v); in terms of the transitional probability metric, our model outperforms

the baselines on average 48% in P (r1, r2); in terms of the modality patterns (clustering)

metrics, our model excels over the baselines on average 58% in P (c0i ), 66% in D, and

78% in P (c1i ).

5.3.2 Inner-cluster Comparison

Besides comparing the general performance by aggregating all the trajectories, we

also conduct inner-cluster comparisons for both datasets. We compare the individ-

ual trajectory-level and transitional probability metrics within each cluster and find
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that our model excels over the baselines greatly.

On People 15min, our proposed model consistently outperforms the baselines over

all the metrics for each cluster. For instance, in cluster 1, in terms of the individual

trajectory-level metric, our model excels over the baselines on average 19% in P (r), 15%

in P (r, t), 36% in P (d), and 25% in P (v). Furthermore, in terms of the transitional

probability metric, our model outperforms the baselines on average 30% in P (r1, r2).

Similarly, on GeoLife 15min, our proposed model consistently outperforms the base-

lines over all the metrics for each cluster. For instance, in cluster 0, in terms of the

individual trajectory-level metric, our model excels over the baselines on average 29%

in P (r), 16% in P (r, t), 57% in P (d), and 44% in P (v). Furthermore, in terms of the

transitional probability metric, our model outperforms the baselines on average 62% in

P (r1, r2).

5.3.3 Finding

Based on Table 5.3 and the above analysis, we can see the superiority of our model in

generating synthetic trajectories that preserve all the essential properties. In particu-

lar, our model is good at identifying and preserving the modality patterns (clustering

information). The power in identifying clusters renders our model achieves the high-

est performance in the clustering-level metrics: for instance, in terms of the modality

patterns (clustering) metrics on GeoLife 15min, our model excels over the baselines on

average 58% in P (c0i ), 66% in D, and 78% in P (c1i ). Moreover, the successful identifi-

cation and preservation of modality patterns enable our model to perform the best on

the transitional probability metric, as the explanation is intuitive: given a trajectory

with a specific modality, for instance, walking, the user cannot travel a significant dis-

tance and thus, there is merely a limited potential destination. Therefore, if the model

can identify the modality successfully, the transitional information can be successfully
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preserved.

Moreover, we realize that the state-of-the-art SeqGAN model is not good at identify-

ing clusters and thus cannot generate synthetic trajectories that preserve the modality

patterns. As illustrated in Section 5.2, in terms of the variety of the modality pat-

terns, GeoLife 15min is less diverse, while PeopleFlow 15min is more diverse. Then, as

reflected in Table 5.3, the general SeqGAN model outperforms the ”Pre-clustering +

SeqGAN” model on a global scale, and the ”SeqGAN + Post-clustering” model outper-

forms the ”Pre-clustering + SeqGAN” in terms of the inner-cluster comparison when

the dataset’s variety is low (GeoLife 1hour). However, as the variety of the dataset’s

modality increases (from the GeoLife 15min, which is less diverse, and to the more

diverse People 15min), the general SeqGAN model tends to perform less satisfying and

is surpassed by the ”Pre-clustering + SeqGAN” model on a global scale; similarly, in

terms of the inner-cluster comparison, the ”SeqGAN + Post-clustering” model is no

longer better than the ”Pre-clustering + SeqGAN” approach. As the dataset’s modal-

ity patterns become more diverse, only externally conducting the clustering first for the

SeqGAN to identify (”Pre-clustering + SeqGAN”) can guarantee the performance of

the SeqGAN model.

5.4 Next Location Prediction

5.4.1 Motivation

Section 5.3 successfully verifies that our proposed CS-GAN model consistently outper-

forms the baselines in generating a large number of synthetic trajectories by preserving

both the individual trajectory-level information and the modality information. Our

proposed model demonstrates power in generating trajectories on a global scale. How-

ever, whether our proposed model performs better in generating the next location given
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Table 5.3: Comparison with baselines on GeoLife and PeopleFlow data with clustering
based on average speed. The table shows the average statistics of 5 experiments. The
best performance is in boldface. The second-best is underlined.

PeopleFlow (2008 6:00 - 20:00 with 15 minutes time resolution)
Cluster ID Centroid Speed Proportion traj Method P(r) P(r,t) P(r1, r2) P(c0i ) D P(c1i ) P(d) P(v)
- - - SeqGAN 0.378 0.437 0.092 0.406 29.694 0.167 0.368 0.275
- - - Pre-clustering + SeqGAN 0.344 0.406 0.105 0.311 31.046 0.194 0.363 0.317
- - - Our 0.284 0.376 0.050 0.146 13.136 0.070 0.218 0.215
Cluster 1 4.497 27% SeqGAN + Post-clustering 0.460 0.482 0.160 - - - 0.576 0.597

Pre-clustering + SeqGAN 0.364 0.408 0.104 - - - 0.548 0.407
Our 0.334 0.379 0.092 - - - 0.360 0.374

Cluster 3 9.141 21% SeqGAN + Post-clustering 0.512 0.558 0.155 - - - 0.411 0.347
Pre-clustering + SeqGAN 0.424 0.475 0.093 - - - 0.454 0.339
Our 0.361 0.438 0.080 - - - 0.243 0.215

Cluster 0 14.590 20% SeqGAN + Post-clustering 0.553 0.614 0.109 - - - 0.382 0.251
Pre-clustering + SeqGAN 0.492 0.557 0.124 - - - 0.492 0.368
Our 0.433 0.521 0.072 - - - 0.264 0.162

Cluster 4 19.924 17% SeqGAN + Post-clustering 0.585 0.648 0.165 - - - 0.460 0.338
Pre-clustering + SeqGAN 0.511 0.586 0.129 - - - 0.442 0.265
Our 0.451 0.556 0.073 - - - 0.258 0.146

Cluster 2 25.868 11% SeqGAN + Post-clustering 0.564 0.639 0.122 - - - 0.432 0.273
Pre-clustering + SeqGAN 0.540 0.622 0.135 - - - 0.546 0.321
Our 0.471 0.587 0.087 - - - 0.325 0.181

Cluster 5 34.627 4% SeqGAN + Post-clustering 0.576 0.654 0.114 - - - 0.461 0.220
Pre-clustering + SeqGAN 0.628 0.673 0.267 - - - 0.716 0.396
Our 0.553 0.646 0.093 - - - 0.455 0.184

GeoLife (2008 6:00 - 20:00 with 15 minutes time resolution)
Cluster ID Centroid Speed Proportion traj Method P(r) P(r,t) P(r1, r2) P(c0i ) D P(c1i ) P(d) P(v)
- - - SeqGAN 0.407 0.478 0.100 0.162 18.682 0.220 0.208 0.288
- - - Pre-clustering + SeqGAN 0.506 0.562 0.082 0.402 83.441 0.298 0.313 0.234
- - - Our 0.319 0.439 0.047 0.147 17.128 0.058 0.195 0.258
Cluster 2 2.498 55% SeqGAN + Post-clustering 0.505 0.555 0.191 - - - 0.297 0.432

Pre-clustering + SeqGAN 0.607 0.633 0.135 - - - 0.496 0.276
Our 0.403 0.487 0.058 - - - 0.237 0.402

Cluster 0 7.314 34% SeqGAN + Post-clustering 0.507 0.589 0.075 - - - 0.225 0.169
Pre-clustering + SeqGAN 0.563 0.626 0.140 - - - 0.336 0.252
Our 0.382 0.509 0.041 - - - 0.120 0.118

Cluster 1 14.784 10% SeqGAN + Post-clustering 0.540 0.597 0.097 - - - 0.293 0.210
Pre-clustering + SeqGAN 0.700 0.721 0.248 - - - 0.477 0.335
Our 0.507 0.586 0.092 - - - 0.319 0.229

Cluster 3 30.747 1% SeqGAN + Post-clustering 0.650 0.672 0.358 - - - 0.459 0.358
Pre-clustering + SeqGAN 0.487 0.560 0.335 - - - 0.705 0.423
Our 0.632 0.660 0.328 - - - 0.446 0.333
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Table 5.4: Comparison with baselines on GeoLife and PeopleFlow data on the task of
next location prediction. The best performance is in boldface.

Next Location Prediction on GeoLife Dataset
Model Accuracy@1 Accuracy@2 Accuracy@3 Accuracy@4 Accuracy@5 Accuracy@6 Accuracy@7 Accuracy@8
SeqGAN 0.842 0.913 0.934 0.944 0.951 0.956 0.959 0.963
Our 0.880 0.930 0.944 0.954 0.960 0.964 0.967 0.970

Next Location Prediction on PeopleFlow Dataset
Model Accuracy@1 Accuracy@2 Accuracy@3 Accuracy@4 Accuracy@5 Accuracy@6 Accuracy@7 Accuracy@8
SeqGAN 0.831 0.882 0.905 0.916 0.927 0.932 0.937 0.941
Our 0.888 0.912 0.921 0.927 0.933 0.936 0.940 0.942

a known but incomplete sequence of visits remains to be explored.

To address the question, we conduct the ablation study of the next location predic-

tion using our proposed model and the SeqGAN baseline.

5.4.2 Setting and Evaluation Metric

To evaluate the model’s effectiveness on the task of next location prediction, we leverage

the metric: accuracy@k, which denotes whether the ground-truth next location exists

in top k predicted locations given the predicted probability distribution of the entire n

locations from the generator. We set k from 1 (the ground-truth location is precisely the

predicted next location) to 8 and leverage both our proposed generator and SeqGAN’s

generator to generate the probability distributions of the next possible location given

the current location. The data is selected from the real trajectories.

5.4.3 Comparison and Finding

As indicated in Table 5.4, our proposed generator consistently performs better than

the baseline model on both datasets. Our model outperforms the baseline at most 5%

and at least 1%. More importantly, as k gets smaller, our model’s advantage is more

obvious. When k equals 1, our model performs 5% better than the SeqGAN model on

the GeoLife Dataset and 7% better on the PeopleFlow Dataset.
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Chapter 6

Conclusion and Discussion

6.1 Conclusion

Synthetic trajectory generation is an essential yet challenging task. How to effectively

generate trajectories that preserve all essential trajectory-level properties and simul-

taneously capture various modality patterns in the real world is still a highly open

research domain due to the complicated nature of real-world mobility patterns, limited

labeled mobility data, and complex generation models with corresponding deficiencies.

Besides, the lack of systematic metrics to measure whether the real-world transitional

information is preserved and the lack of ablation studies of the generation model on

the task of next location generation based on the incomplete sequence of visits in-

validates the existing trajectory generation model. This paper proposes a novel yet

generic framework, Clustering-based Semi-supervised Generative Adversarial

Network (CS-GAN); based on limited actual trajectories reported by users, our

proposed model can generate synthetic trajectories which mimic the real ones by pre-

serving all the essential properties. Our proposed model leverages the idea of clustering

and semi-supervised GANs to capture real-life modality patterns. Moreover, we de-
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velop a novel transitional probability-related metric based on the OD matrix and the

Frobenius norm to measure whether the synthetic trajectories capture the transitional

information. We also conduct ablation studies to verify the effectiveness of our proposed

generation model in predicting the possible subsequent few visits given an incomplete

sequence of visits. Extensive experiments and case studies on two real-world datasets

demonstrate our proposed model’s consistent and superior performance in synthetic

trajectory generation. Specifically, our proposed model outperforms other approaches

with significant improvement.

6.2 Discussion

Several deficiencies need to be conquered in future works to make our proposed model

more general and applicable:

1. The privacy of the real-life training trajectories is not guaranteed;

2. The model’s robustness is not guaranteed from adversarial samples;

3. The clustering strategy needs to be more powerful to capture the various modality

patterns in real-life trajectories fully.

These problems are prevalent and significantly affect the generalizability of the pro-

posed model in real life. Thus to address them, the future directions can be:

1. Adding differential privacy or levering other privacy-preserving strategies to pro-

tect the model from membership inference attacks;

2. Leveraging adversarial ML to test the robustness of ML against adversarial sam-

ples;
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3. Extending a multi-agent system to the generator by leveraging each separate agent

to generate synthetic trajectories belonging to a particular modality.
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