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Abstract 

 

Preliminary Assessment of Personal Time Activity Patterns and Change of Traffic Pollutant 
Exposure: A multi-month cohort and panel based study 

 

By Seongmin Shim 

 

 

Introduction: The evaluation of time-activity patterns is important in estimating personal 
exposure to air pollution, especially since the pollution levels may vary by location and the 
person has different temporal and locational patterns. Past studies have used traditional surrogate 
methods that were focused on data collected from centralized monitoring locations, which did not 
accurately characterize the pollutant variability we see nowadays. Recent studies have shown a 
trend in measuring personal exposure at the individual level by focusing on the microenvironment 
of each subject. Our study evaluated the usage of such methods in a small cohort and validated 
the association between personal exposure and background concentrations.  

Methods: Data was collected from 51 subjects at the Georgia Institute of Technology campus. We 
collected particulate matter (PM2.5), nitrogen oxide (NOx), and black carbon (BC) concentrations 
over a 48-hr data collection cycle. At the same time weekly geospatial and activity data was 
collected using geospatial trackers. The statistical analysis was conducted to evaluate and validate 
the association between personal exposure and time-activity patterns.  

Results: The data showed the subjects spent a majority of their time within an indoor 
microenvironment and showed bimodal patterns in terms of distance from the pollutant source. 
Concentrations also were different by week during the data collection period and seemed to be 
associated with background levels, but not at a statistically significant level. We also found that 
there were significant associations between personal pollutant exposure and indoor 
microenvironments, background pollutant concentrations measured at centralized location, and 
for PM2.5 the distance from the Connector.  

Discussion: Our study did have certain limitations that became evident during the analysis due to 
mechanical and instrumental errors that occurred during the data collection process. The 
similarity in the subjects’ time-activity patterns and microenvironment emphasized the 
importance of personal monitoring compared to the traditional methods. As a part of a multi-
tiered study we hope to further investigate the relation personal exposure data has with other 
factors that are related to exposure and health, such as metabolomics data. 
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Introduction 
 
 Globally, air pollution is one of the main risk factors impacting public health in 

urban areas. In 2012, the World Health Organization (WHO) estimated that 3.7 million 

premature deaths were caused by ambient (outdoor air pollution) worldwide (WHO, 

2012). In 2013, the WHO concluded that air pollution (e.g. Particulate Matter) was 

carcinogenic to humans heightening concern as a major environmental health risk.   

Although air pollution is particularly burdensome in low- and middle-income 

countries, it does not eliminate the fact that it is associated with health effects on 

populations not necessarily belonging to those countries. In the United States, the 

Environmental Protection Agency (EPA) estimated that greater than 45 million people 

lived within a “near” distance from major roadways during 2009 (EPA, 2014). This 

number has increased over the past couple of years, as urban areas have become more 

densely populated. Recent demographic trends also point to increases in urban traffic 

activity, development, and industrialization resulting in higher pollutant emissions and 

increased levels of potential hazard exposures to the population (EPA, 2014).  

Previous studies have shown that people who live, work, or have activities in an 

environment with elevated air pollution levels are at increased risk from a range of acute 

and chronic health effects. In particular, an extensive amount of research has been 

published linking elevated risks of lung cancer, cardiovascular disease, and hospital 

admissions for asthma with traffic related pollution (Byrd et al., 2016; Jinsart et al., 

2002; Langrish et al., 2012; Puett et al, 2014). Although susceptibility to air pollution 

health effects varies considerably, exposure to air pollution affects the entire population 

and is difficult to control given it complex fate in the atmosphere.   
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Most near road air pollution studies, especially in an urban environment, use 

outdoor ambient air pollution levels and centralized monitoring stations as surrogates of 

personal exposure (McCreddin, Alam, and McNabola, 2015; Steinle, Reis, and Sabel, 

2013; Van Roosbroeck et al., 2008). Depending on the study design, the traditional 

surrogate method may introduce a wide array of errors into an epidemiologic analysis 

associated with exposure misclassification. Other studies have used land use regression or 

distance decay regression strategies as a means of estimating personal exposure to 

pollutants (Montagne et al., 2013; Su et al., 2009). But with high spatial variability and 

reactivity of individual pollutants, it is also likely that these spatiotemporal modelling 

approaches are also subject to various exposure errors, and may not accurately capture 

pollutant hotspots, including those associated with dense traffic patterns and population 

levels (Yunesian et al., 2006). The findings from these studies point to considerable 

remaining uncertainty regarding how best to measure and assign exposure to traffic 

pollutants in air pollution epidemiologic studies.  

In order to assess air pollution exposure, especially at the personal and at an 

increased spatiotemporal resolution, several crucial aspects must be evaluated and 

estimated. Of these, time spent in various microenvironments, including indoors, 

outdoors, at work or school, serves as one of the most critical predictors of exposure to 

outdoor pollution. The lack of data on microenvironments can contribute uncertainty and 

bias to quantifying personal exposure and risk estimation (Breen et al., 2014). Previous 

studies have utilized global positioning system data to obtain time-activity patterns within 

distinct microenvironments as a means of addressing this limitation (Dias and Tchepel, 

2014).  
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The Dorm Room Inhalation to Vehicle Emissions (DRIVE) study was designed to 

evaluate which components of heterogeneous traffic primary pollutant mix predominately 

at near road sites and the suitability of using near road indicators as primary traffic 

surrogates in small cohort epidemiological studies. The study was conducted in a traffic 

pollutant hotspot in Atlanta, Georgia, the Georgia Institute of Technology (GIT) campus 

in the Downtown Connector area.   

The present analysis is a preliminary assessment of the personal exposure data 

and its association with other measures of traffic pollution. Specifically, the analysis 

focuses on utilizing a small cohort and distinct microenvironments, which will be the 

campus and surrounding structures, to characterize pollution both using personal 

monitors and centralized monitoring stations. In order to do so the current analysis aims 

to examine differences in activity patterns and personal exposure when stratified by 

dormitory and evaluate the association between personal pollutant exposure levels as well 

as other exposure factors that may affect exposure to pollution in this near road setting. 

At the same time our main goal was to evaluate the near road setting, by determining if 

proximity and location from a roadway was a good proxy of exposure to pollution and to 

estimate how well central monitoring stations reflects corresponding personal exposures.  
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Methods 
 
 Data collection for DRIVE was conducted at and around an emission hotspot in 

Atlanta, GA. The study was conducted on the GIT campus, which is located within the 

geographic core of Atlanta, adjacent to the Downtown Connector. The Connector 

consists of two major interstate highways, the I-75 and I-85 that run along the GIT 

campus perimeter, and thus represents an ideal near road emission setting. According to 

the Georgia Department of Transportation, an average of 320,370 vehicles pass through 

the Connector on a daily basis, including approximately 16,000 trucks.  

 For this present study there are two exposure tiers of interest: personal exposures 

(including student participants from two dormitories on campus) and outdoor 

measurements (i.e., roadside monitoring station). The dorms were chosen based on their 

proximity to the Downtown Connector.  Similar to many of the GIT student dormitories, 

the Perry-Matheson dormitory, is located in 20 meters from the Connector and served as 

an ideal location for characterizing and quantifying near road emissions. A second dorm, 

Woodruff, is located on the West end of the campus and is approximately 1400 meters 

from the Connector. Lastly, we collected measurements from roadside monitoring 

stations, situated in a mobile trailer, located on the edge of the Connector, roughly 10 

meters from the Connector. Another central monitoring location site was located 2300 

meters away from the Connector, which we referred to as the Jefferson Street site.  

 



5 
 

Participant Recruitment 
 
 For the entire study a panel of 62 students living in the two dorms were recruited, 

27 from Perry-Matheson and 35 from Woodruff. Recruitment occurred on-site at the 

dorms by researchers in accordance to pre-established protocols and the Biomedical 

Institution Review Board at Emory University. Before finalizing enrollment, potential 

subjects had to undergo a preliminary health screening and were given an informed 

consent procedure for participation. Enrolled subjects were offered compensation for 

completing the 12-week data collection process and participating in the study. Once 

enrolled the subjects were given a baseline questionnaire to establish demographical 

information, preliminary health, and time-activity patterns. Subjects were then informed 

of the weekly personal exposure participation and were able to volunteer through a 

schedule system that was distributed via electronically. Of the 62 participating student 

subjects, 51 students chose to participate in the personal exposure sampling (Table 1). 
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Table 1.  
Demographical information of the subjects that participated in the personal exposure sampling session over 
the data collection period.  

Variable 
Overall  
(n = 51) 

Perry-Matheson  
(n = 23) 

Woodruff  
(n = 28) 

Age, Mean (SD) 19.3 (0.85) 19.2 (0.9) 19.4 (0.8) 
BMI (SD) 23.3 (3.0) 22.7 (3.1) 23.9 (2.9) 
Gender, n (%)   

Female 24 (47.1) 11 (47.8) 13 (46.4) 
Male 27 (52.9) 12 (52.2) 15 (53.6) 

Grade, n (%)   
Freshman 29 (56.9) 16 (69.6) 13 (46.4) 

Sophomore 14 (27.5) 2 (8.7) 12 (42.9) 
Junior 7 (13.7) 4 (17.4) 3 (10.7) 
Senior 1 (2.0) 1 (4.3) 0 (0.0) 

Health Status, n (%)   

Fair 5 (10.0) 1 (4.3) 4 (14.8) 
Good 17 (34.0) 9 (39.1) 8 (29.6) 

Very Good 22 (44.0) 9 (39.1) 13 (48.1) 
Excellent  6 (12.0) 4 (17.4) 2 (7.4) 

Medical  
Conditions, n (%)   

Yes 37 (74.0) 15 (65.2) 22 (81.5) 
No 12 (24.0) 7 (30.4) 5 (18.5) 

Refused 1 (2.0) 1 (4.3) 0 (0.0) 
Time Spent  
Outdoors (Daily Average), n (%)   

Less than 1 hour 4 (8.0) 2 (8.7) 2 (7.4) 
1-2 hours 21 (42.0) 11 (47.8) 10 (37.0) 
3-4 hours 18 (36.0) 8 (34.8) 10 (37.0) 

5 hours or more 7 (14.0) 2 (8.7) 5 (18.5) 
Time Spent in 
Vehicle (Daily Average), n (%)   

Less than 1 hour 20 (40.0) 8 (34.8) 12 (44.4) 
1-2 hours 27 (54.0) 14 (60.9) 13 (48.1) 
3-4 hours 2 (4.0) 1 (4.3) 1 (3.7) 

5 hours or more 1 (2.0) 0 (0.0) 1 (3.7) 
Sleep  
(Daily Average), n (%)   

Less than 6 hours 1 (2.0) 0 (0.0) 1 (3.7) 
6-8 hours 30 (60.0) 14 (60.9) 16 (59.3) 

9-12 hours 19 (38.0) 9 (39.1) 10 (37.0) 
Work/Employed,  
n (%)   

Yes 41 (82.0) 20 (87.0) 21 (77.8) 
No 9 (18.0) 3 (13.0) 6 (22.2) 
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Outdoor and Roadside Monitoring 
 
 The outdoor sampling measurements provided an opportunity to characterize 

pollutant gradients across campus and were collected from a highly instrumented 

stationary roadside site located 10 meters from the Connector and the Jefferson Street 

monitoring site (JST), located 2300 meters away from the Connector. JST has been used 

to generate population exposure estimates in previous studies (Edgerton et al., 2005; 

Solomon et al., 2003), which focused on longitudinal associations and is broadly 

representative of Atlanta’s urban background pollutant levels. Samples collected from the 

stationary sites include PM2.5 mass, elemental carbon (EC), BC, and NOx, NO2, and a 

wide array of other organic compounds.  

Prior to the 12-week sample collection period, the DRIVE field staff collected EC 

concentrations over a 1-month period. Results showed that the EC concentrations at the 

stationary site were approximately 3.8 times higher on average than the JST site and was 

consistent with previous findings (Yan et al., 2009). The EC concentrations over the 24-

hour period also validated the location as a traffic pollutant hotspot throughout the day 

and that it was the most ideal location for a roadside monitoring station. Standard 

measurements along with advanced instrumentation components, were placed within the 

stationary roadside trailer during the sample collection period. PM2.5 mass was collected 

using semi-continuous measurements (TEOM). BC samples were collected using the 

Magee Scientific Aethalometer and was logged using the WinWedge Pro software. Since 

the aethalometer measures BC concentration using aerosol-related light absorption, 

attenuation was defined as –ln(I/I0), where I0 is the light intensity of incoming light and I 

is the light intensity after passing through the filter. Continuous NOx measurements were 
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sampled via TAPI NOx 200A (Thermo-Scientific) and were adjusted for sampling time 

(via Cell Phone Eastern Standard Time). Once data was collected, offset correction and 

calibration was applied to the NO and NO2 data. 

 

Personal Exposure 
 
 Personal exposure data was collected from a total of 51 different student subjects; 

23 from Perry-Matheson and 28 from Woodruff (Table 1). The sampling sessions were 

scheduled over the 12-week long data collection period. During each sampling week 

between 3 and 6 student subjects participated in an intensive personal exposure sampling 

session. For each subject, two 48-hour integrated personal PM2.5, EC and NO2 exposures 

were collected starting Monday morning and continuing until Friday morning (Monday 

AM – Wednesday AM; Wednesday AM – Friday AM). Subjects were given a personal 

exposure pouch (≈ 3 lbs) on Monday morning; on Wednesday, field staff met with 

subjects to replace filters and batteries for the second 48-hour sampling period. 

 Each individual pouch consisted of three data collection components and were 

easily attachable to the strap of a backpack or bag, corresponding to the breathing zone of 

the student subject with minimal discomfort or alteration to their daily activity. PM2.5 was 

collected using a personal nephelometer (μPEMs)(MicroPEM v 3.2A, RTI), which also 

contained a 25mm Teflon filter (37mm Teflo, Gelman Sciences) to facilitate gravimetric 

mass measurements. The μPEMs collected particles through a sampling inlets at a 0.5 

liter per minute (LPM) flow rate. Particle mass was collected onto the filters, which were 

used for the gravimetric analysis of personal PM2.5 exposure. Continuous measurements 

of particle mass concentrations was also collected using the nephelometer within the 
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μPEMs, at 10 second sampling intervals. All collected data was compiled using the 

μPEMs docking station program and transferred onto a secured study database. At the 

end of each individual sampling session, the μPEMs were cleaned and batteries along 

with the filters were replaced. Filter particle mass was measured within a temperature 

(18° – 24° C) and humidity (RH: 40±5%) controlled weighing room by a trained DRIVE 

lab technician. The gravimetric filter mass was then used as a correction factor for the 

nephelometer data and zero-shifted to take into account instrument offset. Personal NO2 

exposures were collected using a passive sampler that contained cellulose filters coated 

with triethanolamine (Ogawa & Company, 1998), which were analyzed using 

spectrophotometric methods.  

 Geospatial patterns were collected through portable global positioning system 

(GPS) trackers that were attached to the side of the sampling pouch. GPS data tracked 

locations continuously over the two consecutive 48-hour cycles. Locations or stationary 

points were defined as points where a given subject stayed for more than five minutes, 

were marked with their corresponding longitudinal and latitudinal inputs, and labeled as 

‘waypoints’. We chose to use GPS trackers instead of diaries or questionnaires to analyze 

time-activity patterns to eliminate any recall bias that may have occurred. Past studies 

have shown success with monitoring time-activity patterns using GPS, over traditional 

survey methods (Glasgow et al., 2014; Nethery et al., 2014; Wu et al., 2010). Distance 

from the waypoints to the Connector were calculated using the ArcGIS program and were 

quantified as the shortest linear distance from a given waypoint to the Connector. 

Batteries in each of the GPS units were exchanged between each cycle to ensure 

maximum collection duration. Once the collection cycle was complete, data was 
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downloaded and converted using the Past-Track 10 software, which allowed the creation 

of datasets containing temporally-resolved spatial locations for each subject during their 

personal sampling period. The logged GPS data was then utilized to aid in quantifying 

time spent in various microenvironments and proximity to traffic sources as potential 

modifiers of personal exposures. Specifically, each GPS location was categorized into an 

indoor or outdoor environment and into a campus area (near, center, far, or other) using 

ArcGIS.  

 

Data and Statistical Analysis 
 
 Data that was collected during the sampling period was stored in a locked location 

until transferred and copied into a secure database that could only be accessed by 

authorized study staff. All continuous data was evaluated using temporal averages of all 

measures (e.g., 1-hr, 24-hr average for pollutant concentrations and mass). The baseline 

questionnaire and spatiotemporal data that was collected from the GPS were processed 

and used to calculate the time spent in different microenvironments (e.g. indoor and 

outdoor) within the GIT campus, along with establishing any preliminary health 

conditions or factors that may have effected outcome. For the present study the main aim 

was to evaluate how well traffic indicators measured at a centralized stationary site 

reflects personal exposure measurements. Therefore, factors that affected the strengths of 

association including time activity patterns and locational proximity to the roadway were 

evaluated. Once data was collected using the individual programs for each method, 

calculations and analysis were conducted using R Statistical Computing Program (Ver 

3.2.2).  
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The establishment of dormitory stratification data was examined and estimated by 

calculating the individual time weighted average distance for the subjects at each 

waypoint location. Validation and comparison of the means of subsets of the data were 

conducted using t-tests. We used multivariate linear regression models for the analysis of 

the associations between personal exposures and exposure factors of interest, including 

roadside concentrations. All linear regression modelling was conduct using the R 

statistical platform. The primary regression model focused on spatiotemporal covariates 

that were determined, a priori, and personal exposure concentrations were modeled as the 

dependent variable. Within the model, roadside and JST concentrations were included as 

dependent variables:  

χsti = αs + βΖsti + θJST + ƐST 

where αs is the intercept, χsti denotes the corresponding measurement for the ith 

participant, and β is the coefficient of interest that describes the influence of predictor or 

factor Ζsti. The factors of Ζsti that will be examined include: indoor microenvironments, 

locational microenvironments, and distance from Connector. The θJST represents the 

background pollutant concentration measured from the JST site and ƐST denotes random 

normal error.  

 

Results 
 
 In total, 116 48-hour integrated PM2.5 and NO2 samples were collected from a 

total of 51 subjects for each pollutants. GPS data was collected from 40 subjects, 20 

subjects from each dorm, over the course of 11 weeks. During the collection period one 
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of the GPS devices malfunctioned and was not able to record data, therefore there were 

less GPS samples compared to the PM2.5 and NO2. Each cycle was on average 2,873 

minutes long (weekly was 5746.22 minutes) and was collected every week during the 

sampling period, excluding Fall Break (October 13th – October 17th, 2014) and 

Thanksgiving (November 26th – November 28th, 2014). 

 

GPS Results 
 

 

Figure 1. ArcGIS output of all waypoints within the GIT campus proximity. The green points represent 
stationary waypoints from Perry-Matheson subjects, whereas the blue points represent waypoints from 
Woodruff subjects.  

A total of 503 stationary waypoints were collected from the 40 subjects over the 

sampling period, resulting in an average of 12.6 waypoints/student with 214.5 minutes 

spent at each waypoint. There were 268 waypoints from the 20 Woodruff subjects, 

resulting in an average of 13.4 waypoints/student with 264.0 minutes spent at each 
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waypoint. In contrast, the 20 Perry-Matheson students logged 235 waypoints, resulting in 

an average of 11.8 waypoints/student with 158.0 minutes spent at each stop. We observed 

high concentrations of points near Perry-Matheson and near Woodruff dormitories 

(Figure 1), and at scattered points around the center of campus (250 to 1000 meters from 

the Connector). The central area of campus had the most waypoints, which was 178 

(35.38%) of total waypoints. When assessing the time-weighted data, stationary time was 

greatest in the Woodruff dorm area (39.4% of total stationary time).  

 

Figure 2. Total time percentage spent at 100 meter increment distances by dormitory. 

Figure 2 shows a clear bimodal pattern in time spent from the Connector, stratified 

between the subjects living in each of the two dormitories, indicating that a majority of 

the students’ times were spent within or near their respective dormitories. Woodruff 

subjects spent a total of 37.4% of their time within or near the Woodruff dorm location 

(1.4 km from the Connector). Conversely, students from the Perry-Matheson dorm spent 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0
‐9
9

1
0
0
‐1
9
9

2
0
0
‐2
9
9

3
0
0
‐3
9
9

4
0
0
‐4
9
9

5
0
0
‐5
9
9

6
0
0
‐6
9
9

7
0
0
‐7
9
9

8
0
0
‐8
9
9

9
0
0
‐9
9
9

1
0
0
0
‐1
0
9
9

1
1
0
0
‐1
1
9
9

1
2
0
0
‐1
2
9
9

1
3
0
0
‐1
3
9
9

1
4
0
0
‐1
4
9
9

1
5
0
0
‐1
5
9
9

1
6
0
0
‐1
6
9
9

1
7
0
0
‐1
7
9
9

1
8
0
0
‐1
8
9
9

1
9
0
0
‐1
9
9
9

2
0
0
0
‐2
0
9
9

2
1
0
0
‐2
1
9
9

2
2
0
0
‐2
2
9
9

2
3
0
0
‐2
3
9
9

2
4
0
0
‐2
4
9
9

2
5
0
0
+

To
ta
l T
im

e 
(%

)

Distance from Connector (m)

Perry Woodruff



14 
 

about 39.4% of their total time within or near the Perry-Matheson dorm location (10 m 

from the Connector). We also noted that a substantial fraction of time was spent near the 

central area of campus by the subjects, mainly due to the presence of academic and 

athletic facilities on this part of the GIT campus. Overall, between the two subject 

population approximately 10% of the total time was spent beyond the campus perimeter 

(farther than 1.6 km from the campus geospatial domain).  
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PM2.5, NO2, and BC Measurements  
 

 

Figure 3. Overall boxplots of each pollutant concentration (μg/m3) stratified by dorm. Black line indicates 
median and red dot indicates mean for each group. 

 

Initial analyses were conducted assessing differences in exposure distributions for the 

pollutants of interest stratified by dormitory (Figure 3). We evaluated the difference 

between the groups by using the Welch two sample t-tests for each pollutant, with no 

pollutants showing significant difference (p < 0.05). Following this analysis, we 

conducted a time-series analysis on for each of the pollutants over the course of the data 

collection period as a function of corresponding JST site concentrations that were 

measured concurrently. Results are shown in Figures 4, 5, and 6, in which we observed 
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changes in pollutant levels by week and the respective JST concentration measurements 

observed during that time.  

 

Figure 4. Time series boxplots of PM2.5 concentrations with JST measurements. 

 

 

Figure 5. Time series boxplots of NO2 concentrations with JST measurements. 
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Figure 6. Time series boxplots of BC concentrations with JST measurements. 

 The JST site measurements correspond to the background pollutant 

concentrations measured 2.3 kilometers away from the Connector. Compared to the 

overall boxplots of pollutant concentrations, we observed a pattern between the 

dormitories and the JST measurements for each respective pollutant. As there were 

elevated levels of pollutant concentrations being measured at the JST site, subjects from 

Woodruff experienced increased levels of pollutant exposure. We were also able to 

display that during the data collection period the concentrations of each group varied on a 

weekly basis.  

 Pollutant concentrations were tested for distribution and skewness before 

proceeding with analysis. All pollutants of interest fell within the acceptable limits of 

normal univariate distribution (e.g. ±2 kurtosis). We then conducted univariate regression 

analysis for each individual pollutant with the corresponding variables of interest that 
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were selected beforehand; time weighted average distance, indoor microenvironment 

(total time percentage), near Connector microenvironment, far Connector 

microenvironment, central campus microenvironment, and background pollutant levels in 

urban Atlanta (JST site measurements). Figures 7 through 9, and Tables 2 through 4 

display the results of the univariate regression analysis.  

 

Figure 7. Univariate regression plots of the dependent variables and personal PM2.5 concentration (μg/m3). 
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Table 2.  
Univariate linear regression coefficients and statistical values for PM2.5. * symbolizes statistical 
significance (p = 0.05). 

  Coefficient Adjusted R2 p-Value   

Dorm 0.099 0.000 0.495   

Week 0.543 0.280 0.000 * 

Time Weighted -0.346 0.093 0.042 * 

Indoor -0.354 0.102 0.027 * 

Near Connector 0.016 0.000 0.924   

Far Connector 0.128 0.000 0.438   

Central Campus -0.206 0.017 0.208   

Outer Campus 0.006 0.000 0.972   

Jefferson Street 0.603 0.351 0.000 * 
 
 

 

Time-weighted average distance from the Connector, indoor microenvironment, and 

background PM2.5 concentrations were all shown to be statistically significant predictors 

of corresponding  personal PM2.5 exposures (p < 0.05) (Table 2). As shown in the 

univariate regression results, with the increase of time weighted average distance and 

time spent in an indoor microenvironment, we could expect a decrease in overall average 

personal PM2.5 exposure. In contrast, an increase in background concentration at JST was 

shown to be associated with an increase in corresponding personal PM2.5 exposures.  
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Figure 8. Univariate regression plots of the dependent variables and personal NO2 concentration (μg/m3). 

 

Table 3.  
Univariate linear regression coefficients and statistical values for NO2. * symbolizes statistical significance 
(p = 0.05).  

  Coefficient Adjusted R2 p-Value   
Dorm 0.259 0.048 0.066   
Week 0.644 0.403 0.000 * 
Time Weighted -0.303 0.065 0.073   
Indoor -0.355 0.103 0.026 * 
Near Connector -0.138 0.000 0.397   
Far Connector 0.179 0.006 0.270   
Central Campus 0.101 0.000 0.535   
Outer Campus -0.198 0.014 0.221   
Jefferson Street 0.602 0.350 0.000 * 
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For personal NO2 exposures, the univariate regression analysis displayed statistical 

significance (p < 0.05) for the indoor microenvironment and background NO2 

concentration predictors (Table 3). Similar to the personal PM2.5 results, the personal NO2 

concentrations can be expected to decrease with an increase in time spent in an indoor 

microenvironment and increase with elevated background concentration.  

 

Figure 9. Univariate regression plots of the dependent variables and personal BC concentration (μg/m3). 
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Table 4.  
Univariate linear regression coefficients and statistical values for BC. * symbolizes statistical significance 
(p = 0.05). 

  Coefficient Adjusted R2 p-Value   
Dorm 0.103 0.000 0.474   
Week 0.402 0.145 0.003 * 
Time Weighted -0.190 0.008 0.267   
Indoor -0.460 0.190 0.003 * 
Near Connector -0.039 0.000 0.813   
Far Connector 0.120 0.000 0.461   
Central Campus -0.131 0.000 0.421   
Outer Campus 0.007 0.000 0.968   
Jefferson Street 0.623 0.376 0.000 * 

 

 

For personal BC exposures, the results showed the week, indoor microenvironment, 

and JST predictors as significant (p < 0.05). Although the coefficients were different the 

trend was the same as well in the personal BC concentrations and NO2 concentrations. 

We would expect an increase in concentration as the background BC concentration was 

elevated during that sampling cycle and a decrease in personal BC exposure the further 

the subject is away from the Connector. Week was also evaluated as a predictor for each 

individual pollutant due to the varying concentration we observed during each week. For 

all three pollutants the univariate regression of the week variable was significant and had 

a positive correlation. Then using the results from the univariate linear regression model 

we created a multivariate model that examined the association between time-activity 

varying predictors and personal pollutant exposures. Specific results are displayed in 

Table 5 and 6. 
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Table 5.  
Multivariate linear regression of strong predictors with Personal PM2.5 concentration (μg/m3). * 
symbolizes statistical significance (p = 0.05). 

  Personal PM2.5 

  Coefficient 95% C.I. p-value 

Time Weighted -0.315 (-0.005, 0.000) 0.024 * 

Indoor -0.001 (-3.580, 3.566) 0.997   

Jefferson 0.618 (0.424, 1.167) 0.000 * 
 

Table 6.  
Multivariate linear regression of strong predictors with Personal NO2 and BC concentrations (μg/m3). * 
symbolizes statistical significance (p = 0.05) 

  Personal NO2 Personal BC 

  Coefficient 95% C.I. p-value Coefficient 95% C.I. p-value 

Indoor -0.189 (-8.703, 1.407) 0.152   -0.234 (-1.031, 0.057) 0.071   

Jefferson 0.590 (0.426, 1.106) 0.000 * 0.594 (0.692, 1.731) 0.000 * 
 

 For the multivariate linear regression analysis, measurements at the JST site were 

significant predictors of corresponding personal exposure for all three pollutants. As 

concentrations observed at the JST site increased, the personal pollutant levels also 

increased. Although not statistically significant, the negative coefficients for the indoor 

microenvironment predictor provides some anecdotal indication that decreases in 

personal pollutant exposures were associated with more time spent indoors. Unlike the 

other two pollutants, the personal PM2.5 model proved that the time weighted average 

distance was a significant predictor and validated that with we would observe decreased 

personal PM2.5 concentrations as we moved further away from the Connector.  
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Discussion 
 

The personal exposure analysis that was conducted as part of the current analysis 

serves as a baseline and preliminary assessment of the larger DRIVE aims with the 

overall goal of evaluating the suitability of novel multipollutant traffic indicators. For the 

current analysis, focusing on the personal exposure components of the study, we were 

able to follow a unique panel residing in close proximity to the Connector, and who spent 

a majority of their time in a near road microenvironment. With this in mind, the current 

analysis aimed to characterize the spatiotemporal variability throughout the 

microenvironment, as well as the level of exposure each subject experienced during the 

multi-month study.  

 Results from the GPS monitoring were consistent with our a priori expectations. 

The stationary points were scattered along campus but exhibited high densities at the two 

dormitory locations. Also, the duration at each point indicated that most of the 

participants spent a majority of their time at their respective dormitories and indoors 

(Figure 2). However, the findings do raise some concerns, especially with instrumental 

errors that occurred throughout the data collection period. When processed using ArcGIS, 

the GPS data appeared to lack spatial resolution in terms of accurately pinpointing 

waypoint locations and in some cases the movement of subjects. The waypoints that we 

had classified as “Red flag” during our analysis were those that seemed to lack the spatial 

precision were made a bit unclear of the microenvironment they were located. They 

consisted of approximately 38% of our total waypoints (193 in total). Previous studies 

have shown similar precision and data logging errors when compared to personal surveys 

or interviews, especially when working with personal GPS modules (Nethery et al., 



25 
 

2014). But most are attributable to the device’s capacity for positional accuracy in typical 

locations (indoor, outdoor, and in movement), factors that influence satellite reception 

(building material and type), acquisition time, battery life, and adequacy of memory for 

data storage (Wu, Fan, and Ohman-Strickland, 2010). Although the units that we had 

acquired for our study did not face a majority of the aforementioned issues, there is the 

potential that satellite reception and positional accuracy were the causes for our “Red 

flag” points.  

 The subjects that were recruited for the personal exposure data collection came 

from a specific sub-population, which eliminates the underlying inequalities 

(socioeconomic status and geography) we could have encountered with a more 

generalized population. Although there were the two subgroups, students living in both 

the Woodruff and Perry-Matheson dorms, within the entire subject population our results 

showed that broad time-activity patterns did not differ substantially on an individual 

basis. Most of the subjects, for example, spent a majority of their time within their 

respective dormitories and then spent the rest of their time either in class or moving 

through the GIT campus. Since the students showed similar time-activity patterns, the 

microenvironment variables did not significantly differ between the two groups, which 

may explain the lack of spatial variability other than the distance from the Connector 

between the two subgroups.  

 The predictors that were found significant do, however, support our and other 

previous expectations that being indoors reduces overall exposure to pollution generating 

outdoors, including traffic-related pollution and that spending time farther from a 

pollutant source also reduces overall levels of exposure. In our panel, this was 



26 
 

particularly true for PM2.5 exposures. For NO2 and BC, there was less of a difference in 

exposure between the two student groups.  

  For all of the traffic pollutants that were measured at the personal exposure level, 

we found that none were significantly different in terms of overall concentrations 

between the two subgroups. The week-by-week variability in exposures showed that the 

two subgroups’ personal pollutant levels were influenced most by the corresponding 

background pollutant levels measured at the JST location. Analysis also showed that the 

JST pollutants levels were positively and significantly associated and with corresponding 

personal exposure for each of the measured pollutants. These findings provide some 

degree of validation of the data quality for the personal exposure monitoring.  

 Unlike PM2.5, the personal exposure results for NO2 and BC did not exhibit a 

significant association with the distance (time-weighted distance) from the Connector. 

The findings for PM2.5 validated previous studies that distance does play a crucial role in 

the variability in exposure levels observed across campus. But the NO2 and BC 

concentrations did not share the same results, which may have been due to the high 

background concentrations of the two pollutants being observed over the course of 11 

weeks. Since all three pollutants were measured using different instruments, calibrated 

differently, and quantified using different methods there is the possibility that 

measurement error or unspecified contamination may have affected the outcomes of the 

two pollutants.  

 The characterization and quantification of the exposures of interest is useful to 

gain an improved and developed understanding of the spatiotemporal aspects of personal 

exposure and urban traffic pollution, which is why we designed the study to categorize 
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the microenvironments into different groups. Of the microenvironment groups we 

assessed the near Connector, far Connector, central, and outer campus aimed to show a 

gradient and a quantified buffer zone for the pollutant variability. Although the time spent 

at each location varied along with the time weighted distances overall when associated 

with concentration there was no significant association with time spent in each of the 

microenvironments, indicating that the varied pollutant concentrations (coefficients from 

Tables 2,3, and 4) we see with the different microenvironments were not applicable with 

the respectable pollutant concentrations. This might be due to the high background 

concentrations we observed throughout the data collection period or from the fact that the 

distances that the perimeters that were established for each microenvironment were not 

sufficient to observe a clear pollution gradient. Overall, a further investigation is 

warranted to justify the role time spent in the various microenvironments on the GIT 

campus plays in predicting personal exposure.  

 Our study incorporates the diversity of microenvironments a person spends 

throughout the week and enables analysis of exposure in a realistic setting that includes 

everyday time-activity and location patterns. But despite the indoor microenvironment 

being significant we were not able to observe a major difference between the two 

subgroups in terms of personal exposure. This indicates that traditional measurement 

techniques that were mentioned above (centralized monitoring stations) may be 

insufficient in terms of quantifying levels of personal exposure. Especially for 

populations like the one included in the DRIVE study, who spend a majority of their time 

next to a well-defined traffic hotspot and pollutant source,  a centralized monitoring 

station would not have been able to provide an accurate estimate of exposure levels and 
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instead may have been biased. Similarly, use of a single roadside monitor failed to 

provide accurate indicators of differences in pollutant levels between the two subgroups.  

 

Limitations 
 
 Throughout the course of our data collection some bias may have arisen from the 

questionnaires, which may have led to a change in life style or staying away from 

pollutant sources. This may have led to an increased duration in indoor 

microenvironments or stationary points in general, due to the subjects’ concerns of being 

exposed to traffic pollutants. We are also faced with the potential challenge of having a 

convenience sample consisting of students. Although the spatial activities varied between 

the two dormitory subgroups, they still had similar temporal patterns and had a good 

amount of overlapping due to their schedules. There were indeed advantages of using 

such a focused population, since they are required to spend a majority of their time within 

the GIT campus environment therefore minimizing the effects of external factors that 

may have altered the pollutant levels. However, the similarity in lifestyles and the GIT 

campus possibly not being large enough to observe a clear concentration gradient may 

have been a reason why there was no overall significant difference between the two 

subgroups. Therefore an increased sample population, along with a more varied study 

population (faculty, students, and other nearby population) that spends a majority of their 

time near the pollutant source might have given us a better understanding of the 

spatiotemporal variability in a near road environment.  

Overall the technological advancements provided us with the advantage of using 

small, efficient, and less time consuming personal measurement methods that did not 
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interfere with each subject’s lifestyle. But a major shortcoming of using such devices is 

the lack of power or high sensitivity resolution measurements that we find with larger 

devices. We were able to observe this pattern with some of the devices we used, 

especially with the μPEM and GPS modules. Due to instrumentation constraints and 

mechanical errors, we were not able to collect the expected amount of data cycles. There 

is also the possibility that the filter samples might have been contaminated during 

processing or the devices were not cleaned properly, which may have resulted in offsets 

and improper logging of data. It is evident that further diagnostic surveillance and control 

procedures should be implemented to help to alleviate traffic pollutant levels all across 

urban Atlanta.  

 

Conclusion 
 
 In general, measuring personal exposure to air pollutants is a complex task  

requiring large amount of resources for personal monitoring, especially with such an 

active population that resides in close proximity to a pollutant source. The change in 

personal pollutant exposure was related to personal time-activity patterns among the 51 

students. Our study showed that using a single centralized monitoring station and 

corresponding pollutant variability models to determine the exposure levels on a personal 

scale was not sufficient enough and in certain cases could be biased towards those that 

are closer to pollutant sources. The similarity in exposure between the subjects displays 

the importance of unconventional and innovative measurements techniques used to 

quantify pollutant exposure. Moreover, our study outlined the importance of 

multidisciplinary models and study designs when conducting research on heterogeneous 



30 
 

air pollutant, like traffic pollutants, to deal with the complexity and dynamic nature they 

possess.   
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