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Abstract 

 

The Novel Use of Structural Equation Modeling to Investigate  

Oxidative Stress, its Determinants, and its Association with Colorectal Adenomas 

 

By Ronald Eldridge 

 

Despite strong basic science evidence demonstrating the role of oxidative stress in 

carcinogenesis, the results of epidemiologic studies addressing this issue are unconvincing.  

Oxidative stress is a complex, multifaceted, incompletely understood process that is unobservable 

in vivo.  Numerous biomarkers of in vivo oxidation have been used in research, but none of these 

serve as a comprehensive measure.  Structural equation modeling (SEM) offers the possibility of 

measuring oxidative stress through a latent (unobserved) variable derived from the shared 

covariance of multiple imperfect biomarkers, modeled in a system of a priori specified structural 

(causal) equations.   

The primary objective of this dissertation was to investigate the validity and utility of the 

SEM method to study oxidative stress, its determinants, and its health effects.   

In the first study, using three different datasets, I investigated whether a SEM would 

suitably identify and characterize oxidative stress from five a priori selected biomarkers: F2-

isoprostanes, fluorescent oxidation products, mitochondrial DNA copy number, gamma-

tocopherol, and C-reactive protein.  From the resulting characterization of the latent variable, and 

its associations with pro- and antioxidant exposures, I determined that the latent variable could be 

justifiably called “oxidative stress”.   

In the second study, I investigated the association between the latent oxidative stress 

variable and newly diagnosed colorectal adenoma.  Based on the data from two colonoscopy-

based cross-sectional studies, oxidative stress was strongly associated with colorectal adenoma 

with an odds ratio of 2.61 and a 95% confidence interval of 1.25-5.46 per standard deviation 

change in oxidative stress.   

In the third study, I critically evaluated the causal assumptions of SEM when applied to 

studies of biologic pathways and constructs.  Through multiple Monte Carlo simulations, I 

examined measurement error, selection bias, and unmeasured confounding using the previously 

examined models as case studies.   

Compared to previous studies that relied on more traditional analytic techniques, the 

SEM method allows for a better measure of oxidative stress, and yielded a stronger association 

with colorectal adenoma.  The methodology can be applied to other oxidative stress-related health 

outcomes, or possibly extended to other areas of research where it is necessary to combine 

different, but imperfect measurements to describe a complex biologic phenomenon. 
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CHAPTER 1. BACKGROUND AND RESEARCH PLAN 

SECTION 1. BACKGROUND  

1.1. Oxidative Stress  

Reduction and oxidation (redox) are basic chemical reactions of transferring electrons 

from one molecule to another thereby changing their redox state. Oxidation of molecules is a 

normal biologic process that occurs constantly throughout cellular life. An example is cellular 

respiration, where glucose (C6H12O6) is oxidized into water (H2O) and carbon dioxide (CO2) for 

the purpose of obtaining cellular energy. During this process, the formation of highly reactive 

molecules called reactive oxygen species (ROS) or reactive nitrogen species (RNS), can occur 

during the mitochondrial electron transport chain cascade (1). These reactive compounds have 

necessary roles in cellular signaling but can be damaging when not tightly controlled. For 

instance, hydrogen peroxide (H2O2) is necessary for endogenous production of thyroid hormones 

and acts as an intracellular messenger (2). It serves as a substrate in the iron or copper-dependent 

Fenton reaction (H2O2 + Fe
2+

 (or Cu
+
) → OH• + OH

-
 + Fe

3+
 (or Cu

2+
)), which creates hydroxyl 

radicals (OH•), the most reactive and damaging ROS. When ROS and RNS are “free” they can 

interact with cellular DNA, proteins, and other molecules resulting in mutations and/or abnormal 

cellular function, with one possible outcome being carcinogenesis (3, 4). Exposure to known 

environmental carcinogens (e.g., cigarette smoke or radiation) also leads to the formation of ROS. 

Protection against ROS-induced damage can be achieved through detoxification enzymes or 

extrinsic antioxidant molecules that reduce the ROS and return the cell to redox homeostasis (1). 

Many of the known protective antioxidant molecules (e.g., selenium, vitamin E, or vitamin C) are 

obtained through healthy human nutrition and supplementation.  

Oxidative stress has long been defined as an imbalance between pro-oxidants (those that 

oxidize molecules and form ROS) and antioxidants (those that reduce molecules and inhibit ROS 
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formation) in the favor of the former (5). More recently this definition of oxidative stress was 

amended to account for an alternative mechanism – a disruption of thiol-redox circuits, which 

leads to aberrant cell signaling and dysfunctional redox control without involving ROS-induced 

macromolecular damage (6). This newer definition allows research to focus on specific cell types, 

molecular pathways and interventions but makes it difficult to examine and quantify oxidative 

stress in large epidemiologic studies. The larger studies tend to focus on markers of oxidation and 

oxidation products (disease-oriented research) or antioxidants and antioxidant enzymes (nutrition 

research)(6).  

Evidence from basic science indicates that oxidative stress may contribute to the 

development of cardiovascular disease and cancer, and may influence the rate of aging (3, 7, 8). 

These findings provided the biologic rationale for observational studies and clinical trials of 

antioxidants, which yielded inconsistent results. The most notable cancer prevention trials of 

antioxidants were the Alpha-Tocopherol Beta-Carotene (ATBC) study, the Beta-Carotene and 

Retinol Efficacy Trial (CARET), the Selenium and Vitamin E Cancer Prevention Trial 

(SELECT), and the Women’s Health Study (WHS), which tested a number of agents including β-

carotene, vitamin E, vitamin C, selenium, retinol, zinc, riboflavin, and molybdenum (9). All four 

of these large clinical trials have resulted in null or harmful effects of the interventions on the 

primary outcomes of interest. There are many theories as to why the RCTs found null results; 

selection of high risk subjects versus population average risk subjects, incorrect dosage of 

intervention, poor adherence to treatment, and incorrect timing or length of treatment are some 

examples. However, one theory is that the complex nature of the oxidative stress causal pathway 

makes it difficult for the common parallel-arm or even factorial designs of RCTs to adequately 

represent the effects of oxidative stress-related exposures (9). The multi-factor complexities, and 

the biologic interactions involving these exposures, make it difficult to isolate a single causal 

effect (10, 11) when so many are highly correlated with each other. One proposed approach for 
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dealing with multiple pro- and antioxidant exposures is to create a combination variable, called 

oxidative balance score (OBS) (12). 

The OBS is a single composite variable that is comprised of positively weighted 

antioxidant exposures and negatively weighted pro-oxidant exposures. The individual variables 

are z-score standardized or categorized based on study population distributions of each variable, 

weighted, then summed together to form one composite score. The weights are chosen a priori 

using a variety of approaches. Past use of OBS has resulted in larger and more consistent 

measures of association compared to the corresponding estimates for individual pro- and 

antioxidant variables with regards to all cause mortality, cancer mortality, incident colorectal 

adenoma, and colorectal cancer (12-17).  An advantage of the OBS method is that it avoids the 

problem of collinearity between variables which can be problematic when modeling exposures 

individually.  Although OBS is a useful tool for investigating multi-factor oxidative stress 

exposures, the method does have drawbacks. First, the variable categories and standardizations 

can be highly data driven, although biologic cut points can be used if known a priori. Second, 

weights for the variables are either completely arbitrary, derived from previous literature which 

tends to be conflicting, or derived from regression coefficients which are completely data driven. 

None of these three methods provides the researcher with pre- or post-analysis evidence of 

validity. Third, any interactions involving score components are usually not taken into account  

because one must incorporate interactions into the score variable, and also specify whether those 

interactions are synergistic or antagonistic; and this information is rarely, if ever, available.  And 

lastly, because the OBS includes many behavioral characteristics such as smoking and alcohol 

drinking history, medication use, and sometimes even physical activity, there is little to no 

guarantee that such a composite variable is representing oxidative stress wholly or even partially, 

rather than just healthy lifestyle (18). Even if the OBS is representing oxidative stress, it most 
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certainly is also representing other biologic mechanisms involved in carcinogenesis (19-25). 

Separation of these mechanisms is impossible using the OBS method. 

Another method of studying the effects of multiple factors that may act through a 

common pathway or pathways is to use structural equation modeling with a latent (unmeasured) 

variable. The following sections of this communication discuss this methodology in general and 

specifically how it can be applied to a study of oxidative stress and colorectal adenoma.  

1.2. Structural Equation Modeling 

 Structural equation modeling (SEM) is a multivariate modeling technique combining path 

and measurement analyses. This methodology requires that researchers specify the structural 

(causal) relationships between modeled variables, both observed and latent, and then allows 

estimating those causal parameters from non-experimental data under certain assumptions. 

Although its origins date back to the early 1900s with published works by Sewell Wright on path 

analysis and Charles Spearman on factor analysis, formal application of the technique was not 

seen until the 1980s with publication of textbooks and computer programs(26-28). The power of 

SEM resides in its ability to estimate multiple parameters at once, while simultaneously reducing 

measurement error through the creation of latent variables. 

Path analysis is a general term used to describe any multivariate regression technique 

applied in the assessment of causal/structural dependencies between manifest variables. A path 

model is commonly but not exclusively depicted as a causal directed acyclic graph (cDAG) where 

the arrows represent the causal effects and the nodes represent the variables. A simple Markovian 

example is shown below (Figure 1.1), where A causes B, and where both A and B cause C and 

where the Ui are errors/disturbances. The variable A is called an exogenous variable because its 

causes (other than error) are not depicted in the model, while B and C are called endogenous 

variables, because their causes are depicted in the model (26, 27). Each arrow is a direct effect 
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from one variable to another and the path A-B-C is an indirect effect of A on C through the 

mediating variable B. The total effect of A on C would be the direct effect added to the indirect 

effect. Path analysis simultaneously estimates the effect of each of the arrows along with overall 

model fit (26, 27). Identifiability is a term used to describe the ability to estimate unbiased direct 

and indirect effects. Requirements for identifiability are no unmeasured confounding of the total 

effect and of the intermediate and outcome effect (29-31).  

                              

Figure 1.1. A simplified path model of three variables 

 

The term “measurement analysis” describes any multivariate technique used to combine 

multiple correlated variables into a single latent variable representing an unmeasured construct.  

Common measurement analysis methods are confirmatory or exploratory factor analysis (CFA, 

EFA) and principle components analysis. The difference between CFA and EFA are a priori 

decisions as to how many latent factors to retain, and the relationship between the predictors and 

the factors (26, 27). The measurement model is depicted by observed/manifest variables, usually 

represented by squares or rectangles that are caused by unobserved/latent variables, usually 

represented by circles or ovals. A simple example is shown below (Figure 1.2) where A is the 

latent variable and is predicting three manifest variables, B, C and D with corresponding error 
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terms. The diagram below is an example of assuming local independence - where the correlation 

between B, C, and D is exclusively explained by the latent variable A. The arrows between the 

latent and manifest variables are called factor loadings. 

                   

Figure 1.2. A simplified measurement model of three observed and one latent variable 

 

SEM is a powerful analysis tool, but it does have limitations and requires a number of 

assumptions. First, the researcher must assume causal relationships between variables although 

the data to support causality (or at least temporality) may not be available. Additionally, every 

path included and excluded is based on explicit or implicit assumptions about the direct effects, 

indirect effects, and confounding associations. SEM allows for easy estimation of direct and 

indirect effects and although the assumptions are well established (29-34), there is much less 

literature on when and where these assumptions are plausible and possible solutions when they 

aren’t (32, 33). In addition, SEM has statistical weaknesses by forcing a researcher to assume an 

underlying distribution for every endogenous variable rather than just a single outcome as is done 

in normal regression methods. Additionally, the simultaneous estimation method can cause 

convergence problems and an inability to estimate parameters, especially in smaller data sets. 

Finally, as latent variable’s representation of the unmeasured construct is solely dependent upon 
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the selection of the indicator variables, shared error of the predictors will result in residual error 

in the latent variable.  

The main strength of SEM is its multivariate properties that allow estimating numerous 

effects simultaneously.  SEM is also well suited for the calculation of direct and indirect effects 

provided that the underlying causal structure is correct (35). Although there are concerns about 

calculations of direct and indirect effects, sensitivity analyses may help assess the robustness of 

conclusions (32, 33). SEM is also well suited for inclusion of latent variables. The technique can 

reduce error through measurement analysis while estimating the effects on and from a latent 

construct. Lastly, the multivariate nature allows for relative statistical tests of nested models and 

absolute tests of model fit, both overall and with regards to the latent variable(26, 27). 

1.3. Oxidative Stress Biomarkers 

Most ROS, especially the hydroxyl radical (OH•), are difficult to measure directly. The 

available methods of directly measuring ROS (electron spin resonance or spin trapping) are 

impractical for large epidemiologic studies (36). Therefore, epidemiologists are more likely to 

measure the end products of ROS interactions with macromolecules. These end products of 

oxidation can be similar or can differ (6); they can be specific (37) or general (38); but they all 

are imperfect measures with regards to oxidative stress. There are numerous biomarkers; of those, 

F2-isoprostanes, fluorescent oxidation products, mitochondrial DNA copy number and γ-

tocopherol, are available for analyses outlined in the present proposal.   

F2-isoprostanes (FIP) are prostaglandin-like compounds that are formed by the free-

radical peroxidation of arachidonic acid (Figure 1.3). FIP are considered a reliable and specific 

biomarker of lipid peroxidation that can be measured in either blood plasma or urine. FIP 

concentration is considered the gold standard in vivo biomarker of lipid peroxidation because it is 

specific, stable compared to malondialdehyde, demonstrates a dose-response relationship with 
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oxidant injury, and is independent of dietary lipid content (37, 39, 40). Despite the biologic 

evidence linking oxidative stress to colorectal neoplasia, studies evaluating the association 

between FIP and adenomatous polyps reported inconsistent results (41, 42). FIP have been shown 

to be positively associated with factors assumed to affect oxidative stress but have mixed results 

with regards to dietary antioxidants (40, 42-44). However, a recent finding from a pilot clinical 

trial showed that an antioxidant cocktail of α-tocopherol, β-carotene, vitamin C, 

selenomethionine, riboflavin, niacin, zinc, and manganese, could have differential effects on FIP 

by smoking status with decreased levels in non-smokers but increased levels in smokers (45).  

 

Figure 1.3. F2-isorprotanes formation from arachidonic acid (40) 

 

Plasma fluorescent oxidation products (FOP) measure oxidized DNA, proteins, and lipids 

(46, 47). This non-specific mixture of oxidation end-products only recently was introduced as a 

possible biomarker for oxidative stress (38). The assay is very stable (39) and correlates with 

factors and conditions known to be associated with differing concentrations of oxidative stress 

markers (creatinine, total cholesterol, smoking, hypertension, CVD) (38). The presumed 
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advantage of FOP compared to FIP is that it reflects oxidation of all macromolecules (including 

DNA), not just lipids (48). The main disadvantages of FOP as a biomarker include the relative 

scarcity of data supporting its use and the poor understanding of the underlying biochemical 

mechanisms that result in its production in vivo (38).   

Mitochondrial DNA (MtDNA) is the double-stranded DNA in the human mitochondria 

that code for proteins responsible for cellular respiration and apoptosis (49, 50). Each cell has 

multiple mitochondria and each mitochondrion has multiple copies of DNA. Among healthy 

cells, the copy number of nuclear DNA is fairly stable (49). By contrast, MtDNA copy number is 

highly variable because MtDNA has limited repair capacity and is highly susceptible to damage 

due to its close proximity to the ROS created by the electron transport chain (49, 50). MtDNA has 

been implicated in the carcinogenic process and there is good evidence that MtDNA is altered as 

a cause or result of cancer, including colorectal carcinoma (49-54). One recent study found an 

increased risk of colorectal cancer in individuals with high pre-diagnosis MtDNA copy number 

(55).  However there are limited studies relating MtDNA copy number to other biomarkers of 

oxidative stress (56) or to colorectal adenoma. 

Gamma-tocopherol (Gtoc) is one of eight structurally related forms of vitamin E. 

Chemically, Gtoc is an antioxidant with a slightly lower potency than that of alpha-tocopherol 

(57). However, there are mixed results regarding the effects of Gtoc supplementation on oxidative 

stress biomarkers with some studies finding positive associations (58-60) and others finding null 

(61). More importantly, the non-supplementation plasma levels of Gtoc may in fact be a marker 

of oxidative stress as they are positively associated with FIP and C-reactive protein (CRP) (62). 

The current theory is that the primary metabolite of Gtoc, γ-carboxyethyl-hydroxychroman (γ-

CEHC), may mediate the antioxidant and anti-inflammatory effects of Gtoc (60), and that the 

degradation of Gtoc by cytochrome P450 can be altered by oxidative stress (57). Therefore, 

plasma levels of Gtoc may in fact be a better representation of underlying conditions rather than 
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dietary intake. With regards to colorectal adenoma, Ingles et al. reported a positive association 

between higher plasma Gtoc levels and adenoma (63). 

1.4. Relation between Oxidative Stress and Inflammation  

Chronic inflammation is closely linked with oxidative stress (3, 4, 64, 65). The 

mechanism behind ROS formation and inflammation is not completely understood. It is 

recognized that inflammatory leukocytes can undergo a “respiratory burst” at the site of tissue 

damage or infection ROS levels resulting in localized oxidative stress (65). Conversely, 

consistently low to moderate levels of ROS can increase production of the nuclear transcription 

factor NF-κβ, which in turn increases the production of inflammatory cytokines (3, 65). However, 

higher levels of ROS tend to inhibit NF-κβ (65). Despite the lack of complete knowledge of how 

ROS and inflammation affect each other, it is clear that they are closely related. 

C-reactive protein (CRP) is an acute-phase, non-specific blood protein that rises in 

response to pro-inflammatory stimuli. A cross-sectional study has shown that lifestyle factors 

correlated with oxidative stress are also similarly correlated with CRP (43). Moreover, CRP has 

been positively correlated with oxidative stress biomarkers: circulating oxidized low density 

lipoprotein, oxidized mononuclear cells, free-oxygen radical test (FORT) results, and urinary FIP 

(66-69). Other oxidative stress biomarkers, such as the glutathione/glutathione disulfide ratio 

(GSH/GSSG), are not correlated with CRP, an observation  suggesting that different biomarkers 

represent different oxidative processes with variable relation to inflammation (68). Thus CRP 

may be linked to lipid oxidation (as measured by FIP & FORT) but not to thiol oxidation process 

(as measured by GSH/GSSG) (68). Serum level of CRP is frequently used as a predictor of 

cardiovascular disease as well as atherosclerosis (70, 71). There is also evidence to suggest it 

could be a marker of inflammation in the colon, particularly for Crohn’s disease, and to a lesser 

extent for ulcerative colitis (72). In a meta-analysis, CRP is reported to be weakly associated with 
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colorectal cancer incidence (73-75). In contrast, prospective studies do not suggest an association 

between CRP and colorectal adenoma (76-78).  

 

SECTION 2. DISSERTATION RESEARCH PLAN 

2.1. Objectives 

 The primary objective of this proposal is to explore the novel use of a SEM with a latent 

variable to investigate a simplified causal pathway of oxidative stress to colorectal adenoma 

(Figure 1.4). Using pooled cross-sectional studies, I will model a simplified pathway of pro- and 

antioxidant exposures, oxidative stress and colorectal adenoma. Oxidative stress will be a 

continuous latent variable from the combined correlation between four biomarkers measuring 

products of oxidation (FIP, FOP, MtDNA, and Gtoc) and one biomarker measuring inflammation 

(CRP). This latent outcome variable will also be used as the exposure of interest for colorectal 

adenoma risk. Adenoma status will be a dichotomous variable determined through routine 

colonoscopy. The validity of the latent variable will be assessed along with the assumptions and 

potential biases. The overall objectives of this dissertation will be achieved by addressing the 

following specific aims. 

2.2. Specific Aims 

Aim 1: To assess whether a latent variable constructed from FIP, FOP, MtDNA, Gtoc, and CRP 

will suitably identify and characterize oxidative stress. 

Aim 2: To investigate whether the latent oxidative stress variable is associated with colorect 

adenoma. 
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Aim 3: To critically evaluate the causal assumptions and quantitatively investigate the potential 

biases of the SEM method as it applies to studies of biologic phenomena. 

Hypotheses 

 We hypothesize that most individual OBS components will have moderate effects on the 

latent oxidative stress variable. We also hypothesize that oxidative stress latent variable will have 

a small, to moderate effect on colorectal adenoma. We don’t expect the assumptions and biases to 

drastically alter our conclusions from either the first or second aim.   

 

Figure 1.4. The theorized model of the latent oxidative stress variable and colorectal adenoma 

2.3. Data Sources 

Aim 1 

Aim 1 will use three pooled study populations:  non-cases from the Markers of 

Adenomatous Polyps (MAP) studies I and II (n=707) (described in aim 2), and participants in the 
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cross-sectional Study of Race, Stress, and Hypertension (SRSH). SRSH is a pilot study that 

recruited approximately 324 subjects from three racial /ethnic groups: Whites (n=124), African 

Americans (n=99), and West African immigrants (n=101).  The White and African American 

subjects were a random sample from the Georgia Cancer Study (GCS), a pilot state-wide cohort 

study of approximately 800 participants recruited in 2007-08. West African immigrants were 

recruited de novo in 2011 from Atlanta churches. The recruitment and data collection protocol for 

the West African subjects followed that of the GCS. Consented subjects filled out questionnaires 

about medical history and demographics but did not provide dietary or supplement information.  

All subjects also underwent anthropometric and blood pressure measurements.  Blood was drawn, 

processed, and analyzed for all dietary and oxidative stress biomarkers in the same laboratories 

using the same methods as was done in the MAP I and II (described in aim 2).  

Aim 2 

The data used to investigate aim 2 will be pooled from two similarly conducted cross-

sectional studies of newly diagnosed colorectal adenoma: the Markers of Adenomatous Polyps I 

and II (MAP I and MAP II), for a combined study population of 707 persons of whom 233 had 

were diagnosed with colorectal adenoma and 312 were controls (162 missing adenoma status) 

(15).  The subjects for the two MAP studies were recruited from community gastroenterology 

practices in Winston-Salem and Charlotte, North Carolina and in Columbia, South Carolina.  

Patients with no prior history of colorectal neoplasms were invited to participate in the study 

when they were scheduled to undergo elective colonoscopy. Before their colonoscopy, all 

consenting subjects completed mailed questionnaires that collected information on their 

demographic characteristics, medical history, and habits. Diet and use of supplements were 

assessed through a modified Willet food frequency questionnaire (FFQ). In addition, all 

participants provided blood samples that were processed, stored at -70°C, and analyzed for 

dietary and oxidative stress biomarkers by high-performance liquid chromatography with the 



 

14 
 

exception of MtDNA copies. The MtDNA biomarker was analyzed in 2013 by Dr. Thyagarajan’s 

laboratory at the University of Minnesota using real time quantitative PCR. The complete 

laboratory method has been previously published (55). Cases were defined as subjects diagnosed 

as having at least one colon or rectal adenomatous polyp. Controls were subjects free from all 

adenomas. Details of the data collection and laboratory methods have been previously published 

(79-81).  Nearly all MAP study participants were non-Hispanic whites. 

Aim 3 

 The critical evaluation of SEM assumptions will be done theoretically through directed 

acyclic graph theory and will therefore not require data sources (82). The quantification of 

potential bias will be done by simulated populations. Using the Monte Carlo simulation feature in 

the Mplus statistical program (83), I will create 500 populations of 1,000 subjects each for every 

combination of specified parameters. The ausal parameters of interest will be set while biasing 

parameters will be altered to provide a potential range of bias. I will consider potential bias from 

information, selection, and confounding.  

2.4. Research Plan 

Aim 1 

 The following section explains the research plan for assessing the suitability of the latent 

oxidative stress variable. It first describes the latent variable, and then the exposures used to 

validate the latent variable. It also describes the tests of invariance that will be conducted. 

Oxidative stress Latent Variable 

The oxidative stress variable in this analysis is composed of one latent factor indicated by 

five continuous blood biomarkers: FIP, FOP, MtDNA, CRP, Gtoc (Figure 1.5). The indicators 

will be tested for normality and log transformed if needed. The latent factor will be scaled by 
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standardization. Assumptions are that the residuals of the indicators are Gaussian, have an 

expected value of zero, are uncorrelated with each other (local independence) and are 

uncorrelated with the latent factor. The following are the matrix equations and the diagram of the 

latent factor (η): 

yi =νi + Λi η + εi     where         

;       

  

                    

 Figure 1.5. A Depiction of the oxidative stress latent variable  

Exposures 

 Two sets of exposures will be used to investigate their associations with the latent 

variable. The primary set of exposures will consist of age, sex, race, body mass index (BMI), 
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smoking history, drinking history, regular aspirin use, and regular non-steroidal anti-

inflammatory (NSAID) use. Of these, age, BMI, smoking, and drinking are theorized to increase 

oxidative stress, while aspirin and NSAID use are theorized to decrease oxidative stress. The 

secondary set of exposures will consist of plasma measures of α-carotene, β-carotene, α-

tocopherol, β-cryptoxanthin, lycopene, and lutein. All are theorized to decrease oxidative stress. 

The primary exposures will be modeled without the secondary exposures due to the possibility 

that some plasma antioxidants are intermediates between a primary exposure and oxidative stress. 

Invariance testing 

Before pooling study populations, I will assess invariance of the latent variable. Multiple 

groups SEM (MG-SEM) analyses, a form of interaction testing, will be performed using non-

cases subjects from the MAP study and the SRSH data. MG-SEM is a simultaneous estimation of 

the model among G number of groups, similar to that of stratified Cox models (26, 27). The MG-

SEM will be used to test invariance with regard to the four biomarker factor loadings (FIP, FOP, 

MtDNA, CRP, Gtoc) on the single latent factor model, and then assess the regression parameters 

of the exposure variables. Levels of invariance fall under four categories of increasing strength: 

configural, weak factorial, strong factorial, and strict factorial (26, 27). Each level denotes added 

equality restriction(s) placed on the model to test where there might be statistical differences in 

the latent factor with regards to the G groups.  

Configural invariance places no restrictions and just demonstrates that the general model 

can be replicated. Weak factorial invariance establishes equal factor loadings by testing the 

equality Λ
(0)

xxx = Λ
(1)

xxx while letting all other parameters vary. Strong factorial invariance 

establishes equal factor loadings and intercepts by testing the equalities Λ
(0)

xxx = Λ
(1)

xxx and ν
(0)

xxx 

= ν
(1)

xxx while letting the indicator residuals vary. Strict factorial invariance is met by testing the 

loadings, intercepts, and residual variances, Λ
(0)

xxx = Λ
(1)

xxx ; ν
(0)

xxx = ν
(1)

xxx ; θ
(0)

xxx = θ
(1)

xxx (26, 
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27); The “build up” strategy will be employed by starting with configural invariance and 

increasing the number of equalities until significant differences are found. All tests of 

significance will be determined by χ
2
 tests along with consideration to relative improvement 

among generally accepted SEM fit statistics (CFI, TLI, RMSEA, SMR)(26, 27). Once the level of 

invariance is determined between the two datasets, differences in regression parameters can be 

tested and interpreted. The following diagrams are depictions of invariance testing of the 

oxidative stress latent variable between two groups. 

Variables that will be tested for SEM group differences will draw comparisons by study 

data source, sex, and race in an attempt to maximize stratified group populations. The following 

tests will be performed: 

1) Non-Hispanic Whites versus African Americans versus West Africans in SRSH 

2) SRSH versus MAP datasets 

3) Men versus Women 

The statistical analyses for aim 1 will be performed using the latest version of Mplus 

software. The analyses will run on the dataset(s) specified and use the default setting of missing 

at random (MAR) for all missing data on any of the variables. All tests of statistical significance 

will be evaluated at the <0.05 p value level. 

Aim 2 

 The following section explains the research plan for investigating the association between 

the latent oxidative stress variable and colorectal adenoma. It describes the structural model for 

estimating the effects, and the sub-analyses. The statistical plan for the latent variable is the same 

as in aim 1 and is presented there.  

Structural Model 
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The proposed structural model for aim 2 includes two endogenous variables (colorectal 

adenoma and oxidative stress) and a yet undetermined number of exogenous variables made up of 

exposures and potential confounders. Variables that will be considered are the primary and 

secondary exposures in aim 1. In addition, variables not available or not considered in the SRSH 

dataset such as, vitamin C, fiber, total energy intake, poly-unsaturated fatty acid intake, physical 

activity, plasma cholesterol, and family history of colorectal cancer will be considered. The 

theoretical model of Figure 1.4 depicts the potential confounding variables as causes of the 

exposure variables, however these relationships will be modeled as binary covariance for 

statistical purposes (shown in Figure 1.6). This change removes the need to specify an underlying 

statistical distribution for each of the exposure variables and will have no ramifications on the 

estimation of the causal effects on oxidative stress or colorectal adenoma. The following are the 

equations and diagram of the modified structural model: 

 

η = α1 + γEi1XEi1 + γCi1XCi1 + εη 

logit [CA] = α2 + β21η + γE2iXEi2 + γCi2XCi2 + εCA 
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Figure 1.6. A depiction of the structural model used in aim 2. 

 

The above model is identified by the two-step rule (26, 27): first for the latent variable, 

then for the structural portion. When structural portion of the model is identified any identified 

latent variables are then assumed to be manifest variables. The latent variable portion of my 

model is identified by the three-indicator rule (26, 27) – that any single latent variable can be 

identified with at least 3 indicators. The structural portion of the model is identified by the 

recursive rule (26, 27) – that the model is acyclic and has no correlated error terms (i.e., 

Markovian).  

Sub-analyses 

An alternative theory is posited to include two latent variables (η1 and η2) representing 

two distinct phenomena of oxidation. The two variables will be indicated by the same four 

biomarkers and will be allowed to co-vary (double-headed arrow) because there is no a priori 

reason to believe one latent factor would cause the other. The structural model will include the 
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addition of causal arrows from all exposure and confounding variables to the second latent 

variable in addition to a causal arrow from the second latent variable to colorectal adenoma. The 

two theories will be qualitatively evaluated for plausibility by assessing meaningful predictors of 

each latent factor. Ideally, each predictor should not have large and meaningful factor loadings on 

more than one latent variable. A quantitative evaluation between the two models will be 

performed by a χ
2
 test with multiple degrees of freedom. 

The alternative model’s identification rules are not as simple as the main model. Because 

there are four indicators for two latent variables, which can meet the requirements for the two-

indicator rule (26, 27), and because the model is still Markovian, we expect but are not certain 

that the model will be identified. Even if the model is identified, the estimation may not converge 

to a solution. If either does not happen, then the alternative model will be excluded from the 

analyses.  

The statistical analyses for aim 2 will be performed using the latest version of Mplus 

software (83). The analyses will run on the full study dataset and use the default setting of 

missing at random (MAR) for all missing data on any of the variables. All tests of statistical 

significance will be evaluated at the <0.05 p value level. 

Aim 3 

The following section explains the research plan for assessing the causality assumptions 

and potential biases of SEMs used in studies of biologic phenomena. Throughout this aim, I will 

use the studies of aim 1 and aim 2 as real world example case-studies. 

Causality Assumptions 

The causality assumptions will be qualitatively assessed through DAG theory (82). The 

focus will be on the assumptions centered around the latent variable, and the potential violations 
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of those assumptions. I will consider the potential ramifications due to violations of an exposure 

variable directly causing a biomarker (not mediated by oxidative stress), a biomarker sharing a 

common cause with adneoma (not oxidative stress), and two biomarkers sharing a common cause 

(not oxidative stress).  These three potential violated assumptions are shown in Figure 1.7 with 

dotted lines. 

 

Figure 1.7. SEM assumptions and potential violations.  

Potential Biases 

Potential bias by sources of information, selection, and unmeasured confounding will be 

assessed by Monte Carlo data simulation. For each type of bias, there will be a simulated model 

and an analysis model. The simulated model will simulate the potential bias in the target 

population, while the analysis model will be model the theoretical study (biased model). To 

simplify the model, in each scenario, oxidative stress will be treated as a measured variable, 

rather than a latent one. 

 The investigation of information bias will focus on the temporality assumption made in 

aims 1 and 2, and will consider non-differential and differential bias of the effect of oxidative 

stress on adenoma, and the effect of BMI on oxidative stress. The non-differential bias will 
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assume the direction of causality as theorized in aim 2 (Figure 1.8), while the differential bias will 

consider the possibility of adenoma affecting oxidative stress (Figure 1.9). To model these biases, 

measured oxidative stress must be related to a causally relevant oxidative stress measurement; the 

same applies for BMI. This will be done by either direct causes in the case of BMI, or by a 

common cause in the case of oxidative stress. The correlation, and thereby the resulting bias, will 

be changed by altering the strength of the effects. The differential bias model will also include a 

direct effect of adenoma to measured oxidative stress. Values of the parameters will be chosen 

and data simulated to provide a potential range of bias. The analysis model will model only 

variables at time point 3 (Figure 1.8). 

The investigation of selection bias will focus on disease-free survival to study inclusion. 

This will be modeled as conditioning on disease-free survival that is caused by both the exposure 

and an unmeasured risk factor for colorectal adenoma (Figure 1.10). The causal effects of interest 

are the effects of exposure to oxidative stress, exposure to adenoma, and oxidative stress to 

adenoma; these will be set. The effects and conditions that will be changed to give a range of bias 

will be, the effect of exposure on survival, unmeasured risk factor on survival (inverse of 

exposure), the unmeasured risk factor on adenoma, and the survival probability. The analysis 

model will condition on survival (S=1) and will model exposure, oxidative stress, and adenoma. 

The investigation of unmeasured confounding will focus on unmeasured confounding of 

the effect from oxidative stress to colorectal adenoma. This will be modeled as an unmeasured 

common cause of both variables (Figure 1.11). The effects of exposure on oxidative stress, 

exposure on adenoma, and oxidative stress on adenoma will be set. The effect of the unmeasured 

variable on oxidative stress and on adenoma will be changed to provide a potential range of bias. 

The analysis model will only model exposure, oxidative stress, and adenoma. 
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Figure 1.8. Non-differential information bias of BMI, oxidative stress, and colorectal adenoma 

 

 

Figure 1.9. Differential information bias of BMI, oxidative stress, and colorectal adenoma 
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Figure 1.10. Selection bias due to disease-free survival to study inclusion 

 

 

Figure 1.11. Unmeasured confounding of oxidative stress on adenoma effect 
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SECTION 3. NOVELTY, SIGNIFICANCE, AND IMPACT 

 Colorectal cancer is the 2
nd

 most common invasive malignancy in the United States (84). 

Early detection and removal of pre-cancerous lesions is a major reason for decreasing colorectal 

cancer incidence and mortality in the past 20 years (84). Nearly 95% of all sporadic cases of 

colorectal cancer develop from adenomatous polyps and the lifetime risk for developing a polyp 

is approximately 20% (85). Many Risk factors for colorectal cancer are thought to be modifiable 

with changes in behavior and diet (low physical activity, obesity, high meat consumption, low 

fruit and vegetable consumption) and this is an important area of research (86).  

There were seven studies that investigated the association between oxidative stress 

biomarkers and colorectal neoplasia (41, 45, 73, 76-78, 87). In addition a number of studies 

investigated the effects of antioxidants on oxidative stress or colorectal cancer/adenoma risk (9, 

16, 40, 44, 88-92). Despite the numerous studies, the novelty of the proposed dissertation is the 

application of the SEM with the oxidative stress latent variable. To date, no published studies of 

oxidative stress biomarkers used as indicators for a latent variable are available and there are very 

few published studies of applying a SEM to model a simplified cancer pathway.  

The benefits of applying SEM to a simplified cancer pathway include simultaneous 

estimation of a latent biomarker variable and testing of the underlying causal theory. If for 

instance, the oxidative biomarkers are formed by a latent construct that is not an intermediate 

between the oxidative exposure variables and colorectal adenoma, one of two things will likely 

happen: 1) the latent construct will be formed with high correlations with the indicators and low 

regressions with the exposure variables and colorectal adenoma, or 2) the latent construct will be 

formed with low correlations with the indicators and higher regressions with the exposure 

variables. By including the additional information of the theorized pathway, the study data will 

provide statistical evidence as to whether the latent biomarker is in fact an intermediate. 
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Additionally, if the latent biomarker is an intermediate, the SEM can add useful new information 

to the existing data on the relationship of the biomarkers to each other (38-41, 68). The general 

method of SEM can be applied to other areas of cancer epidemiology as long as there are viable 

theoretical models of the causal pathway and the ability to measure relevant biomarkers.  

The proposed studies may generate new information about specific pro- and antioxidants 

and their effect on oxidative stress and provide clarification about the presence or absence of a 

causal link between oxidative stress and colorectal adenoma.  The use of SRSH, in addition to 

MAP, will help assess if the effects of oxidative stress-related exposures on oxidative stress differ 

by sex or race/ethnicity. The evaluation of causal assumptions and potential biases proposed in 

aim 3 may improve the methodological understanding of the SEM method and its applicability to 

studies of biologic phenomena.  
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CHAPTER 2. USING MULTIPLE DETERMINANTS AND BIOMARKERS TO OBTAIN A 

BETTER MEASUREMENT OF OXIDATIVE STRESS: A LATENT VARIABLE 

STRUCTURAL EQUATION MODEL APPROACH 

ABSTRACT  

Background:  Oxidative stress is a complex, multifaceted biologic process measured by 

imperfect biomarkers.  No single biomarker can completely represent oxidative stress because 

each biomarker reflects only some aspects of this phenomenon.  The analytical technique of 

structural equation modeling (SEM) can provide a solution to this problem by modeling a latent 

(unobserved) oxidative stress variable, constructed from the covariance of multiple biomarkers. 

Methods:  Using three pooled cross-sectional datasets, we modeled a latent oxidative stress 

variable from five biomarkers:  F2-isoprostanes (FIP), fluorescent oxidation products (FOP), 

mitochondrial DNA copy number (MtDNA copy number), γ-tocopherol (Gtoc), and C-reactive 

protein (CRP).  We validated the latent oxidative stress variable by assessing its relation to pro-

/antioxidant exposures, and illustrated the utility of this method. 

Results:  FIP, Gtoc, and CRP primarily characterized the latent oxidative stress variable.  

Obesity, smoking, aspirin use, and β-carotene were statistically significantly associated with 

oxidative stress in the theorized directions.  The same exposures were weakly and inconsistently 

associated with the individual biomarkers. 

Conclusions:  Our results suggest that the use of SEM with latent variables decreases the 

individual biomarker-specific variability and may produce a better measure of oxidative stress.  

This methodology can be applied to similar situations, in other areas of research, where it is 

necessary to combine different, but imperfect measurements to describe a complex biologic 

phenomenon. 
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INTRODUCTION 

 The biologic process of oxidative stress is complex and incompletely understood.  It is 

commonly defined as a disruption in the pro- and antioxidant balance, in favor of the former (5).  

Basic biology studies indicate that the pro-/antioxidant imbalance leads to increased production of 

reactive oxygen species (ROS), and that higher levels of ROS may in turn contribute to the 

initiation, promotion, and progression of carcinogenesis (2-4, 65, 93, 94).  Contrary to the 

existing in vitro evidence, findings from human observational studies are inconsistent (90, 95-99), 

and randomized clinical trials of supplementary antioxidants have reported null or even harmful 

effects (9).   

 Certain lifestyle choices and demographic characteristics are thought to influence 

oxidative stress.  Tobacco smoke is a known pro-oxidant (100).  Pure alcohol is recognized as a 

pro-oxidant (101, 102), but as alcoholic beverages contain polyphenols and other antioxidant 

compounds (103, 104), and the net effect of alcohol consumption is unclear (43).  Increased age 

and higher levels of obesity are also associated with higher levels of oxidative stress (105-107).  

On the other hand, aspirin use, vitamin C, vitamin E, and carotenoids are thought to act as 

antioxidants, either directly (by scavenging ROS), or indirectly (by assisting endogenous 

antioxidant enzymes), or both (1, 3, 88, 108, 109).  Despite any inconsistent findings, these 

factors are thought to demonstrably influence in vivo oxidation and are used to validate 

biomarkers of oxidative stress (38, 40, 43, 110). 

 Because oxidative stress cannot be directly observed in humans, many biomarkers of this 

process have been proposed.  The epidemiologic literature tends to focus on two types of 

biomarkers:  1) those that measure determinants of oxidative stress such as dietary pro- and 

antioxidants (biomarkers of exposure); and 2) those that measure products of ROS–induced 
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reactions (biomarkers of oxidation) or other events associated with oxidative stress (6).  Only a 

limited number of biomarkers can measure several aspects of oxidative stress (e.g., oxidation of 

lipids, proteins and DNA), but these biomarkers are vulnerable to measurement error from non-

oxidative stress processes (38, 46, 47).  All of the biomarkers contribute to the understanding of 

oxidative stress, but since no single biomarker can reflect the oxidative stress phenomenon in its 

entirety (6, 111, 112), standard analytical methods limit a researcher to measuring only part of it. 

 Structural equation modeling (SEM) may overcome limitations of previous biomarker 

studies by offering a novel approach towards measuring and characterizing oxidative stress.  SEM 

is a multivariate analytic technique that models a particular construct as an underlying latent 

(unobserved) variable derived from the shared covariance of multiple indicator (observed) 

variables (26, 27).  The latent variable and indicator variables are modeled in a system of 

structural (causal) equations specified a priori (35), and the latent variable is identified from the 

modeled causal effects
1
 it has on observed variables (26, 27).  For example, the concept of 

oxidative stress can be modeled as a latent variable regressed on multiple biomarkers.  If the 

biomarkers truly represent oxidative stress as an underlying causal construct, SEM should 

characterize it using estimated regression coefficients, called loading factors. 

 The overall goal of this study was to assess whether a latent variable can suitably identify 

and characterize oxidative stress.  To achieve this goal, we addressed the following three specific 

research objectives.  First, we assessed the content validity (26) of the latent variable by 

examining which markers had strong and weak oxidative stress loading factors.  Next, we 

assessed construct validity (26) by investigating the associations of the latent variable with 

                                                           
1
 The authors would like to clarify the term “effects” in this context.  As SEM is constructed under causal 

assumptions, the model estimated regression parameters are interpreted as effects (i.e. direct effect, 
indirect effect, total effect).  The term does not mean that the SEM estimates reflect the causal effects 
that would have been observed under a well conducted randomized clinical trial, where the model 
assumptions would then differ.  It is important to keep in mind that SEM estimated “effects” should not 
be interpreted as evidence of a causal link. 
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recognized pro-/antioxidant exposures.  Finally, we compared those exposure associations to 

corresponding associations with the individual biomarkers.  Assessing these differences allowed 

us to determine whether the latent variable provided new information, not offered by any 

individual biomarker.   

To address the overall goal and each of the specific objectives, we used data from three 

cross-sectional studies that had collected demographic and behavioral data and measured plasma 

biomarkers of oxidative stress as well as biomarkers of relevant pro- and antioxidant exposures.  

The following four biomarkers of oxidation products and one biomarker of inflammation were 

selected a priori to identify and characterize oxidative stress:  F2-isoprostanes (FIP) – a marker of 

lipid peroxidation; fluorescent oxidation products (FOP) – a marker of non-specific oxidation 

(lipids, proteins, DNA); mitochondrial DNA copy number (MtDNA copies) – a marker cellular 

ROS-induced damage; γ-tocopherol (Gtoc) – a marker of metabolic response to oxidative stress; 

and C-reactive protein (CRP) – a marker of acute inflammation response.  All five biomarkers 

were theorized to increase in response to oxidative stress. 

MATERIALS and METHODS 

Study Populations 

Study of Race Stress and Hypertension (SRSH)  

SRSH is a cross-sectional pilot study of 324 adult subjects across three different racial 

and ethnic groups:  Non-Hispanic Whites (n = 124), African Americans (n = 99), and West 

African immigrants (n = 101).  The West Africans (WA) were recruited in 2011 from multiple 

Atlanta, GA churches with ties to the West African immigrant population; the actual recruitment 

took place after church services or during a church festival.  Non-Hispanic Whites (NHW) and 

African-Americans (AA) study subjects of similar age range were selected from among 

participants in the previously completed the Georgia Cancer Study (GCS) conducted at Emory 
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University.  The GCS was a feasibility study in which approximately 800 adult participants were 

recruited at health fairs and similar events across the state of Georgia in 2007 - 2008.  The 

recruitment and data collection for the West African immigrants and for GCS participants 

followed the same protocol.  Eligibility for both studies included being a resident of the State of 

Georgia and age at recruitment between 25 and 74 years. 

Markers of Adenomatous Polyps (MAP) study I and II 

 The Markers of Adenomatous Polyps I and II (MAP I and II) cross-sectional studies were 

conducted by the same principal investigator (RMB) using almost identical protocols.  The 

methods for the two studies are described in detail elsewhere (79-81).  Participants for MAP I (n 

= 474) were recruited from community gastroenterology practices in Winston-Salem and 

Charlotte, North Carolina, while MAP II (n = 233) was conducted among patients who received 

care at the Consultants in Gastroenterology, PA, a large, private practice clinic in Columbia, 

South Carolina.  Eligible subjects were persons 30 - 74 years of age with no prior history of 

colorectal neoplasms who were scheduled to undergo elective colonoscopy.  The study eligibility 

criteria were identical in both MAP studies.  Cases (total n = 233) were subjects who were 

diagnosed with an incident colon or rectal adenoma at the time of their colonoscopy procedure.  

Controls (total n = 312) were all subjects who were free from all types of polyps during 

colonoscopy.   

Data Collection 

Questionnaire data 

 For the SRSH study, all eligible subjects filled out a questionnaire at the time of data 

collection immediately following informed consent.  For the MAP studies, the questionnaires 

were mailed to eligible subjects prior to the colonoscopy procedure.  Both questionnaires 

collected similar information on demographic characteristics, medical history, use of medications 
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and personal habits.  Unlike SRSH the MAP studies also included a 153-item Willet Food 

Frequency Questionnaire to collect information on diet and nutritional supplement use.   

Biomarker data  

 The blood collection protocol was similar in the SRSH and MAP studies.  Blood was 

drawn into a pre-chilled Vacutainer tube then plunged into ice and covered to protect against light 

exposure.  The samples were immediately transported to the study lab where they were 

immediately spun in a refrigerated centrifuge.  Plasma and serum were separated and aliquotted 

into cryovials, and sealed with o-ring caps after inert gas displaced any oxygen in the vial.  

Samples were then stored at -80°C. 

All biomarker analyses were performed by the Molecular Epidemiology and Biomarker 

Research Laboratory at the University of Minnesota (Minneapolis, MN).  Plasma levels of α-

carotene, β-carotene, α-tocopherol, γ-tocopherol, β-cryptoxanthin, lycopene, and lutein were 

assessed by high-performance liquid chromatography (113).   

Plasma FIP concentrations were measured using a gas chromatography-mass 

spectrometry method (114). The FIP were extracted from the participants’ samples using 

deuterium (4)-labeled 8-iso-prostaglandin F2 alpha as an internal standard with unlabeled, 

purified F2-isoprostane as a calibration standard.  FOP were measured in plasma samples by the 

modified Shimasaki method as previously described (39, 115).  A mixed solution of plasma and 

ethanol/ether was centrifuged for 10 minutes at 3,000 rpm after which 1.0 ml of supernatant was 

added to cuvettes for spectrofluorometric readings.  Relative fluorescence intensity in units per 

milliliter of plasma at 360/430nm wavelengths was calculated by a spectrofluorometer.  Quinine 

sulfate diluted in 0.1 N H2SO4 was used for calibration. Approximately 22% of the samples were 

serum rather than plasma due to a limited remaining supply of plasma samples from the study 

population.  This was not expected to affect the FOP measurement or analysis as there was a high 
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level of correlation between a random sample of subjects on whom we measured FOP in both 

serum and plasma (r = 0.9; p < 0.001).  High sensitive CRP was measured using latex-enhanced 

immunonephelometry on a Behring nephelometer II (BN-II) analyzer (inter-assay CV 4%; 

Behring Diagnostics, San Jose, CA).  MtDNA copy number was analyzed in 2013 using real-time 

quantitative polymerase chain reaction (qPCR) as described previously (55).  For the qPCR 

method we used two primers, one for MtDNA and one for nuclear DNA.  The ratio of MtDNA to 

nuclear DNA was determined using serial dilution of a healthy referent genomic DNA sample. 

Structural Equation Model and Statistical Methods 

All SEMs were analyzed with Mplus software version 7.1, a statistical package 

developed specifically for these types of analyses (83).  All SEM analyses originated from the 

baseline model where we theorized one continuous latent factor (here onward termed oxidative 

stress) composed of five continuous indicator variables chosen a priori:  FIP, FOP, CRP, MtDNA 

copy number, and Gtoc.  We standardized oxidative stress (mean = 0, variance = 1) to estimate 

loading factors for all five biomarkers.  To aid empirical identification, the continuous indicator 

variables for oxidative stress were mathematically transformed to have similar variances; this 

transformation did not affect standardized results.  All models were linear regressions with 

maximum likelihood estimation.  A two-sided 0.05 p-value indicated statistical significance.   

Before pooling the study populations, we first tested whether oxidative stress differed 

between the three race/ethnicity groups (NHW, AA, WA) in the SRSH dataset (Model 1), and 

then tested whether it differed between the three individual datasets (MAP I and II, and SRSH) 

(Model 2).  This was done to assure that the latent variable was constructed the same way across 

groups; this is referred to as invariance testing.  Mathematically, this can be expressed as whether 

the expected value for the indicator variables (y), conditional on the latent factor (η), are equal 

when group variables (g) are ignored or not ignored (116, 117). 
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     (1) 

If equation 1 holds, then the indicator variables are said to be invariant to group g, and a 

researcher can validly use the same metric and scale of the latent factor across the groups.  We 

tested invariance within SRSH, and between MAPs and SRSH, to determine whether the 

biomarkers were indicators of the same concept across groups and to assess the feasibility of data 

pooling. 

Invariance testing is done by setting unstandardized parameters equal to each other across 

groups and comparing nested models with respect to χ
2
 tests and according to other common 

SEM fit statistics, such as the root mean squared error of approximation (RMSEA), the 

comparative fit index (CFI), the Tucker-Lewis index (TLI), and the standardized root mean 

square residual (SRMR).  Equality constraints follow a hierarchy of weak factorial, strong 

factorial and strict factorial invariance (118).  Each respective level increases the number 

equalities applied across groups.  Weak factorial invariance assumes equality of biomarker 

loading factors, while strong factorial invariance additionally assumes equality of biomarker 

intercepts.  Strict factorial invariance assumes invariance for the biomarker residual covariances.  

It is argued that weak factorial invariance is required for any group comparison, while strong 

factorial invariance is required for group comparisons among means (118).  The exception is 

partial factorial invariance where only some biomarkers differ across groups (119).  In this case a 

researcher has to make a qualitative determination of group equality. 

Invariance testing was based on the following models and data sources. 

Model 1:  Stratifying by the three race/ethnicity groups (NHW, AA, WA), oxidative 

stress was modeled in relation to age (continuous, years), sex (binary), and body mass 

index (BMI) (<25, 25-<29.9, and ≥30 kg/m
2
).  We analyzed only SRSH data (n = 286).  
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Model 2:  Stratifying by the three study populations (MAP I and II, and SRSH), oxidative 

stress was modeled in relation to age, sex, and BMI as predictor variables in the same 

fashion as in Model 1.  The analytic dataset for this model included NHW non-cases from 

the MAP studies and all subjects from SRSH (n = 455). 

For Models 1 and 2, weak and strong factorial invariance were tested first.  If those tests 

were statistically significant, partial invariance was tested setting individual biomarker equalities.  

In partial invariance testing, we employed a “bottom-up” strategy starting with full inequality and 

then progressively added model restrictions.  When we tested individual equalities the loading 

factor was set to be equal across all three groups with 2 degrees of freedom (df).  If that 

restriction failed a test for statistical significance, the equality was set equal across two of the 

three groups (df = 1).  Throughout the analyses we used the nested χ
2
 test, with consideration for 

overall model fit statistics (RMSEA, CFI, TLI, SRMR).  We reported both the unstandardized 

and the standardized loading factors (denoted λu and λs, respectively) for each biomarker along 

with their 95% confidence intervals (CI).  The standardized loading factors were standardized to 

oxidative stress and each biomarker respectively.  They are interpreted as a λs standard deviation 

(s.d.) change in the biomarker per one s.d. change in the latent oxidative stress variable. 

After determining invariance, we evaluated content and construct validity of the latent 

oxidative stress variable.  Content validity was deemed sufficient if more than one biomarker had 

moderate to strong loading factors, thereby indicating oxidative stress as their latent common 

cause.  For construct validity, specific exposures (increased age, higher BMI, smoking, and 

drinking) were assumed to exert positive effects on oxidative stress, while others (aspirin use, α-

carotene, β-carotene, α-tocopherol, β-cryptoxanthin, lycopene, and lutein) were expected to have 

negative effects.  We then qualitatively compared the theorized and estimated directions of all 

moderate or strong exposure effects.  Construct validity was deemed sufficient if most variables 

predicted oxidative stress in the theorized directions.   The behavioral and demographic exposures 
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were analyzed in Model 3, and the plasma antioxidant exposures were analyzed in Model 4.  

These models were analyzed separately because some of the plasma measures were thought to be 

on the causal pathway between behavioral variables and oxidative stress.  For plasma exposure 

variables (βs), we reported the estimated model effects standardized to oxidative stress and each 

measured variable respectively.  The effects of exposures measured by plasma markers are 

interpreted as βs s.d. change in latent oxidative stress per one s.d. change in the respective 

exposure variable.  For behavioral and demographic exposures we reported the effects 

standardized only to oxidative stress (βs).  These are interpreted as βs s.d. change in oxidative 

stress per one unit change in the respective exposure. 

For content and construct validity the following models and datasets were analyzed. 

Model 3:  Oxidative stress was modeled with the following variables as independent 

exposures: age (continuous, years), sex (binary), BMI (< 25, 25 - 29.9, and ≥ 30 kg/m
2
), 

smoking history (never, former, current), drinking history (never, former, current), aspirin 

use (binary), non-steroidal anti-inflammatory drug use (NSAID) (binary) (Figure 2.1).  

We pooled data on the NHW non-cases from both MAP studies and on all subjects from 

SRSH (n = 413). 

Model 4:  Oxidative stress was modeled with the following continuous plasma exposures:  

α-carotene, β-carotene, α-tocopherol, β-cryptoxanthin, lycopene, and lutein (Figure 2.2).  

The model adjusted for all exposure variables in Model 3.  As in model 3, data on the 

NHW non-cases from both MAP studies and on all subjects from SRSH (n = 382) were 

pooled. 

 In the final model we investigated whether the latent oxidative stress variable provided 

extra information beyond what can be obtained from evaluating individual biomarkers.  This was 

achieved by comparing the model estimated effects of age, sex, BMI, smoking, drinking, and 
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aspirin and NSAID use on oxidative stress (Model 3) to the corresponding associations with each 

of the five individual markers:  FIP, FOP, CRP, MtDNA copy number, and Gtoc (Model 5).  A 

simple mean of the five associations for each exposure was calculated and reported. 

Model 5:  All five biomarkers were individually modeled on the behavioral and 

demographic exposures in Model 3:  age, sex, BMI, smoking history, drinking history, 

aspirin use, and NSAID use (n = 413). 

RESULTS 

 The SRSH population had a total of 324 subjects (NHW = 124, AA = 99, WA = 101).  

The average age of the population was 47.2 years with the WA participants on average five years 

younger than the NHW or AA participants.  The proportion of women was the highest in the 

NHW subgroup (69.4%), followed by the WA (59.1%) and the AA (48.9%) subgroups.  The 

proportions of obese (BMI ≥ 30), overweight (BMI 25 – 29.9), and normal weight (BMI < 25) 

did not differ greatly by race; 39.4% of all subjects were obese and 38.1% were overweight.  

Smoking and drinking history differed among the three groups with WA subjects having the 

highest proportions of never smokers and never drinkers.  Plasma biomarkers of α-carotene, β-

carotene, and lycopene were substantially higher among WA study subjects compared to those in 

the other two subgroups (Table 2.1).   

 As shown in Table 2.2, the pooled datasets from MAPs and SRSH included 482 NHW 

subjects.  There was little difference in the average age between the MAP I and II study 

populations (both 56 years), but the SRSH participants were on average approximately 8 years 

younger.  MAP II had the lowest proportion of women at 50.7%, while women comprised 66.0% 

and 69.4% of the MAP I and SRSH participants, respectively.  The proportion of obese subjects 

was 34.8% in the pooled study population and did not vary meaningfully by study population.  

However, the proportion of normal weight and overweight subjects did differ by study 
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population, with MAP I and SRSH having the highest (42.1%) and the lowest (23.1%) 

proportions of normal weight persons, respectively.  Smoking and drinking behaviors differed by 

study population.  SRSH had no current smokers, but had the highest proportion of current 

drinkers (69.3%).  MAP I had the lowest proportion of current drinkers (40.9%) but the highest 

proportion of current smokers (22.3%). 

 The SRSH subjects were racially and ethnically diverse, so we tested oxidative stress 

invariance across racial/ethnic subgroups in that study before pooling the data.  Across the three 

racial/ethnic groups, the oxidative stress factor loadings for Gtoc and MtDNA copy number were 

invariant.  Additionally, the factor loadings for FOP and CRP were invariant across NHW and 

AA, while FIP was invariant across AA and WA subjects (Table 2.3 – Model 1).  Among NHW, 

oxidative stress was characterized by positive, statistically significant loading factors for FIP (λs = 

0.56; 95% CI: 0.31 - 0.81), CRP (λs = 0.43; 95% CI: 0.25 - 0.61), and Gtoc (λs = 0.31; 95% CI: 

0.16 - 0.46); the loading factor for MtDNA copy number was positive but not statistically 

significant (λs = 0.11; 95% CI: -0.11 - 0.32), and the corresponding estimate for FOP was 

negative and not statistically significant (λs = -0.07; 95% CI: -0.20 - 0.05).  The FIP loading 

factor among AA, compared to among NHW, was weaker and not statistically significant (λs = 

0.17; 95% CI: -0.09 - 0.43), while the λs for CRP was stronger (0.59; 95% CI: 0.42 - 0.76); the 

results for MtDNA copy number, Gtoc and FOP were similar.  Oxidative stress loading factors 

differed markedly in WA subjects compared to those in NHW and AA.  The most meaningful 

changes were for FOP, for which there was a statistically significant positive factor loading (λs = 

0.56; 95% CI: 0.15 - 0.98), and for CRP, for which there was a negative, non-statistically 

significant factor loading (λs = -0.14; 95% CI: -0.58 - 0.30).  Overall, we observed partial 

invariance between NHW and AA for four of the five biomarkers, and partial invariance between 

AA and WA, for three of the five biomarkers.  However, as FIP was not invariant between NHW 

and AA, we restricted the other models to NHW. 
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 Before pooling the data from the SRSH and the two MAP studies we tested oxidative 

stress invariance across the three study populations.  We found that MtDNA copy number, Gtoc, 

and FOP loading factors were invariant across all three studies, CRP was invariant between MAP 

I and SRSH, and FIP was invariant between SRSH and MAP II (Table 2.4 – Model 2).  Despite 

the differences in the biomarker loading factors, oxidative stress was similarly characterized in all 

three populations.  FIP had the strongest positive loading, followed by CRP and Gtoc, which had 

statistically significant but more moderate factor loadings; MtDNA copy number and FOP were 

null.  The partial invariance of loading factors was sufficient to warrant testing the invariance of 

the model intercepts.  There was intercept invariance for Gtoc and FOP across all three studies, 

and FIP invariance between MAP I and II.  The intercept for CRP was borderline statistically 

significant across all three studies (p = 0.05; data not shown).  Given the partial loading factor 

invariance and the partial intercept invariance in Model 2, the pooling of data on NHW 

participants from all three studies was deemed feasible. 

 Using the pooled data we assessed content validity of oxidative stress from the biomarker 

factor loadings, and construct validity from the estimated exposure effects on latent oxidative 

stress.  As in Model 2, oxidative stress was characterized by positive, statistically significant 

factor loadings from FIP (λs = 0.66; 95% CI: 0.53 - 0.78), Gtoc (λs = 0.51; 95% CI: 0.38 - 0.63), 

and CRP (λs = 0.44; 95% CI: 0.32 - 0.56).  Different from that in Model 2, the loading factor for 

MtDNA copy number was negative and weak, but borderline statistically significant (λs = -0.18; 

95% CI: -0.35 - 
-
0.01) (Table 2.5 – Model 3). 

We assessed construct validity of oxidative stress from behavioral and demographic 

exposure variables (Model 3) and from plasma antioxidant levels (Model 4).  In Model 3, the 

associations of BMI, a history of smoking, and regular aspirin use with oxidative stress were 

statistically significant and in the theorized directions; the associations of higher age and regular 

NSAID use with oxidative stress were null (Table 2.5).  Compared to normal weight individuals, 
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obesity (BMI ≥ 30) had the strongest model effect on oxidative stress among all predictors (βs = 

1.11; 95% CI: 0.80 - 1.42), with overweight having a slightly less pronounced effect (βs = 0.56; 

95% CI: 0.26 - 0.87) with p for trend < 0.01.  For smoking history there was also a statistically 

significant trend in the theorized direction, with βs estimates of 0.16 (95% CI: -0.13 - 0.45) for 

former smoking and 0.40 (95% CI: 0.02 - 0.78) for current smoking (p for trend  = 0.02).  

Regular aspirin use had a negative model effect on oxidative stress (βs = -0.39; 95% CI: 
-
0.68 - 

-

0.11).  A history of drinking had a negative model effect on oxidative stress (βs = -0.24; 95% CI: -

0.66 - 0.18, for former drinking; βs = -0.46; 95% CI: 
-
0.79 - 

-
0.14, for current drinking).  In Model 

4 we included plasma antioxidant exposures.  Higher levels of β-carotene, α-carotene and α-

tocopherol were inversely associated with oxidative stress, although the estimates for the latter 

two were not statistically significant.  Higher levels of lycopene were positively associated with 

oxidative stress (Table 2.5).   

When the results from Model 3 were compared to the regression estimates for the 

individual biomarkers (Model 5) the effects of exposures on the latent oxidative stress variable 

differed considerably from those for the individual markers (Table 2.6).  For almost all exposures 

other than age and NSAID use (for which the estimates were null) the βs estimates in relation to 

the latent oxidative stress variable were stronger than any individual biomarker-specific 

coefficient; and all were much stronger than the simple mean (μ).  For example, the SEM effect 

of obesity on oxidative stress was twice as strong as the mean of regression coefficients-specific 

estimates (βs = 1.11 vs. 0.45 respectively).  Additionally, the magnitudes and directions of the 

associations between an exposure with each biomarker varied considerably.  For instance, the 

associations of aspirin use with FIP, Gtoc, CRP, FOP, and MtDNA were -0.29, -0.27, -0.03, 0.11, 

and 0.26, respectively.  Likewise, gender was strongly associated with FIP (0.73), moderately 

associated with CRP (0.38), and weakly or not associated with Gtoc (0.17), FOP (0.16), and 

MtDNA (0.06).   
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DISCUSSION 

In this study using SEM we identified a latent oxidative stress variable that was 

characterized primarily by three (FIP, CRP, and Gtoc) of five (FOP and MtDNA copy number) a 

priori selected biomarkers of oxidative stress.  Plasma FIP is a well-known biomarker of 

oxidative stress, sometimes referred to as the “gold standard” indicator of lipid peroxidation (37, 

40, 120).  CRP, while recognized as a non-specific biomarker of inflammation, is correlated with 

FIP and other biomarkers of oxidative stress (43, 66-69).  Oxidative stress is also closely linked 

with inflammation as it can increase many inflammatory transcription factors, such as nuclear 

factor kappa B (NF-κB) and interleukin-8 (IL-8) (65, 121).  Chemically, Gtoc has antioxidant 

properties (57), but findings regarding Gtoc supplementation in relation to markers of oxidative 

stress have been mixed (58-61).  It is possible that circulating levels of plasma Gtoc are more 

representative of its metabolism by cytochrome P450 than its intake levels.  There is evidence 

that oxidative stress and inflammation may negatively alter the metabolism of Gtoc (57, 60), 

thereby increasing its levels in the circulation.  Circulating levels of plasma Gtoc are positively 

associated with FIP and CRP (43), and Cooney et al. proposed that measured levels are more 

indicative of the presence of underlying conditions than of being a cause of those conditions (62).  

FOP has been proposed as a non-specific marker of lipid, protein, and DNA oxidation (46, 47).  

Because this sensitive, stable biomarker (39) has been linked to pro-oxidant behaviors (38), it was 

included as an oxidative stress indicator variable.  MtDNA copy number is a marker of structural 

variation in MtDNA (122) and was included as an indicator variable because of the role of 

mitochondria in ROS production (123) and its association with thiobarbituric acid-reactive 

substances – an oxidative stress biomarker (56).   

Based on the evidence about the biochemical processes influencing FIP, CRP, and Gtoc 

levels, and on the observed shared covariance of these markers in the SEM, we conclude that 

these three biomarkers share a common cause, which may be justifiably called “oxidative stress.”  
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The roles of mtDNA copy number and FOP are unclear, and these two biomarkers contributed 

little to the characterization of the latent oxidative stress variable in the present study.  

In the analyses to evaluate pro- and antioxidant exposures and their relation to oxidative 

stress, almost all of the estimated associations involving our primary exposures were either null 

or in the theorized direction.  In particular, our analysis indicated that oxidative stress was 

positively associated with BMI and smoking, observations that are consistent with the prior 

evidence.  Higher levels of obesity are known to be positively associated with oxidative stress 

biomarkers (107).  Smoking is also known to increase oxidative stress (100), and has been 

positively associated with FIP, CRP, and Gtoc in previous studies (43, 62, 105, 124).  According 

to the “oxidative stress theory”, increased macromolecular oxidation by the ROS influences the 

rate of aging (125).  Although the link between oxidative stress and aging is plausible, the 

observed associations between higher age and biomarkers of oxidation are inconsistent (43, 105, 

126), and in the present study, age was not a predictor of the latent oxidative stress variable.  As 

inflammation and ROS production are closely linked (65), aspirin use is expected to reduce 

oxidative stress (108, 127), and our findings are consistent with this.  

A somewhat unexpected result was the inverse association between alcohol consumption 

and oxidative stress.  Although this may have been a chance finding, the observed result for 

alcohol warrants further evaluation.  While pure alcohol is pro-oxidant (101, 102) many alcoholic 

beverages contain polyphenols which could decrease oxidative stress or inflammation (103, 104).  

The opposite effects of pure alcohol and certain alcoholic beverages may explain the inconsistent 

literature comparing oxidative stress biomarkers in drinkers and non-drinkers (43, 128).  

In the analyses involving plasma antioxidant levels, the results were less convincing than 

those for obesity, smoking, and aspirin.  Although the nutrients assessed in the present study have 

antioxidant properties (129), the associations of the nutrients with biomarkers of oxidative stress 
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remain inconsistent (40, 88, 130).  In the present study, α-carotene, β-carotene, and α-tocopherol 

were all inversely associated with oxidative stress, but only the β-carotene-oxidative stress 

association was at least moderately strong.  The results for lutein and β-cryptoxantin were null, 

and contrary to expectation, the association of lycopene with the latent oxidative stress variable 

was positive.  The result for lycopene is difficult to explain, but could be attributable to potential 

interactions with other antioxidants, smoking, or other variables that were not included in the 

models (45, 131).   

Another important observation in the present study is the consistently stronger 

associations of pro- and antioxidant exposures with the latent oxidative stress variable relative to 

the corresponding associations with the individual biomarkers that comprise the latent variable.  

These results suggest that the latent variable provides unique information not attainable by any 

individual biomarker.  Furthermore, the inconsistent magnitudes and directions of the 

associations between the exposures and the individual biomarkers may explain the inconsistent 

biomarker-specific associations in previous studies, and justify the use of SEM in future research.  

We observed that the oxidative stress latent variable varied by race/ethnicity, and was 

associated with gender.  FOP was the strongest positive loading factor for WA immigrants, but 

null for NHW or AA.  FIP was the strongest loading factor for NHW but not for AA or WA.  

Gtoc was the only biomarker that was consistently linked to oxidative stress across the three 

racial/ethnic groups.  Additionally, we observed that oxidative stress was higher among women 

than among men.  Biologically, this is plausible since sex hormones may influence oxidative 

stress (132-134), but the epidemiologic evidence for this is mixed; FIP is likely higher in women 

(43, 105), but the findings for CRP in these regards are inconsistent (135-137).  It appears that the 

observed differences and similarities in loading factors and predictors of oxidative stress across 

the sex and racial/ethnic groups are worth further study. 
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Perhaps the most important limitation of our study is the cross-sectional design.  This 

design feature precludes determining the temporal relation between the determinants and markers 

of oxidative stress; although for the purposes of SEM it must be assumed that exposure precedes 

the outcome.  Only a properly designed follow-up study can definitively ascertain the sequence of 

events to justify the cause-and-effect assumptions required for SEM-based analyses.  Also, to 

obtain a sufficient population size, we pooled data from three studies.  The invariance testing 

demonstrated that the model measured similar latent constructs among NHW subjects in all three 

studies; however, the results did differ across race/ethnicity groups, and thus our findings can 

only be generalized to NHW.  We cannot be sure that the latent variable in this study reflects 

exclusively, or wholly, the construct of oxidative stress and that oxidative stress is completely 

characterized by the available biomarkers.  Given the close interrelation of oxidative stress with 

inflammation and the importance of CRP in these data, it is also possible that the latent variable 

in this study represents inflammation or some combination of inflammation and oxidative stress.  

On the other hand, it is worth pointing out that regular NSAID use in this study was positively 

associated with CRP but not with the latent oxidative stress variable. 

In conclusion, based on the prior evidence about the biochemical processes influencing 

FIP, CRP, and Gtoc levels, and on the observed shared covariance of these measures in the SEM, 

we conclude that these three biomarkers share a common cause, which may be justifiably called 

“oxidative stress.”  The roles of mtDNA copy number and FOP are unclear, and these two 

biomarkers appear to contribute little to the characterization of the latent oxidative stress variable.  

Our study illustrates how SEM methodology allows construction of a composite biomarker-based 

latent variable, and permits answering research questions that cannot be addressed by evaluating 

one biomarker at a time.  The methods used in the present study can be applied to similar 

situations and in other areas of research in which it is necessary to combine different, but 

imperfect measurements to describe a complex biologic phenomenon.  



 

45 
 

    

Figure 2.1. Structural equation model of primary exposures on oxidative stress in three pooled 

datasets  

 

Figure 2.2. Structural equation model of secondary exposures on oxidative stress in three pooled 

datasets; not shown are age, sex, BMI, smoking, drinking, aspirin, NSAID covariates  
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Table 2.1.  Selected baseline characteristics of subjects stratified by race in the Study of Race, 
Stress, and Hypertension 

 
NHW (n = 124) AA (n = 99) WA (n = 101) Total (n = 324) 

Variable 
μ or 

n 
% or 
s.d. 

μ or 
n 

% or 
s.d. 

μ or 
n 

% or 
s.d. 

μ or 
n 

% or 
s.d. 

Age, years 48.4 13.0 48.7 10.6 43.5 11.0 47.2 11.9 

Sex (% women) 86 69.4 46 48.9 55 59.1 195 60.8 

BMI, kg/m2 
       < 25 28 23.1 18 19.2 20 23.0 70 22.4 

25 - 29.9 47 38.8 43 45.7 27 31.0 119 38.1 

≥ 30 46 38.0 33 35.1 40 46.0 123 39.4 

Smoker 
        Never 53 59.6 40 28.6 88 92.6 188 75.8 

Ever 36 40.5 16 71.4 7 7.4 60 24.2 

Drinker 
        Never 13 14.8 13 24.1 43 46.7 72 29.8 

Former 14 15.9 22 40.7 28 30.4 65 26.9 

Current  61 69.3 19 35.2 21 22.8 105 43.4 

Aspirin use 68 76.4 18 32.7 19 19.6 59 23.7 

NSAID use 21 23.6 15 27.3 15 15.5 68 27.3 

Plasma biomarkers 
       α-carotene, μg/dl 2.7 3.4 3.3 3.0 25.9 17.0 10.9 15.0 

β-carotene, μg/dl 11.1 8.9 15.9 16.8 40.1 27.2 22.5 22.9 

α-tocopherol, mg/dl 1.0 0.29 1.1 0.28 0.8 0.19 1.0 0.28 

Lutein, μg/dl 16.0 7.8 25.8 12.6 23.6 9.5 21.1 10.5 

Lycopene, μg/dl 33.4 13.8 35.8 15.4 65.9 27.0 45.3 24.8 

β-cryptoxanthin,μg/dl 5.7 3.9 9.6 16.8 8.6 5.0 7.7 9.1 

Ferritin, mg/dl 116.9 128.0 127 104.6 139.9 352.0 128.1 224.5 

Cholesterol, mg/dl 193.4 39.0 216 46.4 188.8 38.6 197.9 42.4 

FIP, pg/ml 82.5 41.0 51.1 20.1 33.8 9.0 56.7 34.6 

FOP, avg. std. ref. adj. 0.04 0.02 0.04 0.01 0.05 0.02 0.04 0.02 

CRP, μg/ml 3.9 8.2 3.6 4.4 2.7 5.7 3.4 6.5 

MtDNA, rel. nucl.DNA 3.2 0.7 2.9 0.9 3.4 0.8 3.2 0.8 

Gtoc, mg/dl 0.22 0.09 0.25 0.11 0.14 0.05 0.20 0.09 
Symbols and abbreviations:  NHW = non-Hispanic whites; AA = African Americans; WA = West African 
immigrants; μ = mean; s.d. = standard deviation; BMI = body mass index; NSAID = non-steroidal anti-
inflammatory drug; FIP = F2-isoprostanes; FOP = fluorescent oxidation products; CRP = C-reactive 
protein; MtDNA = mitochondrial DNA; Gtoc = γ-tocopherol; avg. std. ref. adj. = average standard 
reference adjusted; rel. nucl. DNA = MtDNA relative to nuclear DNA; 
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Table 2.2.  Baseline characteristics of non-Hispanic white subjects in three datasets 

 
MAP I (n = 212) MAP II (n = 146) SRSH (n = 124) Total (n = 482) 

Variable μ or n 
% or 
s.d. 

μ or 
n 

% or 
s.d. 

μ or 
n 

% or 
s.d. μ or n 

% or 
s.d. 

Age 56.7 10.3 55.2 8.0 48.4 13.0 54.1 11.0 

Sex (% women) 140 66.0 74 50.7 86 69.4 300 62.2 

BMI, kg/m2 
       < 25 88 42.1 42 29.8 28 23.1 158 33.6 

25 - 29.9 46 22.0 56 39.7 47 38.8 149 31.6 

≥ 30 75 35.9 43 30.5 46 38.0 164 34.8 

Smoker 
        Never 86 42.6 66 46.5 53 59.6 205 47.3 

Former 71 35.2 58 40.9 36 40.5 165 38.1 

Current  45 22.3 18 12.7 0 0.0 63 14.6 

Drinker 
        Never 87 41.8 27 19.0 13 14.8 127 29.0 

Former 36 17.3 29 20.4 14 15.9 79 18.0 

Current  85 40.9 86 60.6 61 69.3 232 53.0 

Aspirin use 65 31.0 56 39.7 68 76.4 142 32.3 

NSAID use 65 31.0 52 36.9 21 23.6 151 34.3 

Plasma biomarkers 
       α-carotene, μg/dl 3.5 3.8 3.4 3.1 2.7 3.4 3.3 3.5 

β-carotene, μg/dl 16.2 15.6 17.7 17.7 11.1 8.9 15.3 15.1 

α-tocopherol, mg/dl 1.16 0.51 1.34 0.71 1.00 0.29 1.17 0.55 

Lutein, μg/dl 16.9 8.6 15.6 6.7 16.0 7.8 16.3 7.8 

Lycopene, μg/dl 26.7 13.9 26.0 11.0 33.4 13.8 28.3 13.4 

β-cryptoxanthin 6.6 5.2 8.0 7.3 5.7 3.9 6.8 5.7 

Cholesterol, mg/dl 207.7 38.3 203.7 42.4 193.4 39.0 202.7 40.1 

FIP, pg/ml 87.4 36.6 82.1 33.4 82.5 41.0 84.7 37.0 

FOP, avg. std. ref.adj. 0.05 0.10 0.04 0.01 0.04 0.02 0.04 0.06 

CRP, μg/ml 5.6 6.3 4.1 5.4 3.9 8.2 4.5 5.6 

MtDNA, rel.nucl.DNA 0.9 1.0 4.3 1.7 3.2 0.7 2.6 2.1 

Gtoc, mg/dl 0.23 0.11 0.18 0.09 0.22 0.09 0.21 0.10 
Symbols and abbreviations:  MAP = Markers of Adenomatous Polyps; SRSH = Study of Race, Stress, 
Hypertension; μ = mean; s.d. = standard deviation; BMI = body mass index; NSAID = non-steroidal anti-
inflammatory drug; FIP = F2-isoprostanes; FOP = fluorescent oxidation products; CRP = C-reactive protein; 
MtDNA = mitochondrial DNA; Gtoc = γ-tocopherol; avg. std. ref. adj. = average standard reference 
adjusted; rel. nucl. DNA = MtDNA relative to nuclear DNA; 
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Table 2.3.  Test for oxidative stress weak factorial invariance stratified by race in the Study of Race, Stress, and 
Hypertension          

  No weak factorial invariance 
  

 

Among Non-Hispanic White 
(n=121) Among African American (n = 93) Among West Africans (n = 101) 

  

 
λu λs 

95% 
LCI 

95% 
UCI λu λs 

95% 
LCI 

95% 
UCI λu λs 

95% 
LCI 

95% 
UCI 

Model Fit 
Statistics 

MtDNA  -0.18 -0.05 -0.52 0.43 0.23 0.13 -0.15 0.42 0.70 0.13 -0.20 0.46 χ2 pvalue 0.05 

FIP 3.23 0.60 0.36 0.84 0.24 0.24 -0.09 0.57 0.10 0.06 -0.31 0.44 RMSEA 0.06 

FOP -0.62 -0.13 -0.37 0.10 -0.13 -0.10 -0.41 0.21 3.39 0.61 0.21 1.01 CFI 0.76 

CRP 1.29 0.44 0.22 0.65 0.62 0.55 0.17 0.93 -0.44 -0.12 -0.50 0.26 TLI 0.66 

Gtoc 1.65 0.39 0.17 0.61 0.55 0.28 0.01 0.55 1.21 0.47 0.14 0.80 SRMR 0.10 

               

 
Partial weak factorial invariance 

  

 
λu λs 

95% 
LCI 

95% 
UCI λu λs 

95% 
LCI 

95% 
UCI λu λs 

95% 
LCI 

95% 
UCI 

  MtDNA  0.35 0.11 -0.11 0.32 0.35 0.12 -0.12 0.36 0.35 0.07 -0.07 0.21 χ2 pvalue 0.10 

FIP 2.66 0.56 0.31 0.81 0.28 0.17 -0.09 0.43 0.28 0.18 -0.08 0.44 RMSEA 0.05 

FOP -0.30 -0.07 -0.20 0.05 -0.30 -0.14 -0.37 0.09 3.04 0.56 0.15 0.98 CFI 0.82 

CRP 1.12 0.43 0.25 0.61 1.12 0.59 0.42 0.76 -0.51 -0.14 -0.58 0.30 TLI 0.77 

Gtoc 1.16 0.31 0.16 0.46 1.16 0.34 0.17 0.51 1.16 0.46 0.20 0.72 SRMR 0.10 
Symbols and abbreviations:  λu = unstandardized loading factor; λs = standardized loading factor; LCI = lower confidence interval; UCI = upper confidence 
interval; χ

2
 = Chi-squared; RMSEA = root mean squared error of approximation; CFI = comparative fit index; TLI = Tucker-Lewis index; SRMR = standardized root 

mean square residual; FIP = F2-isoprostanes; FOP = fluorescent oxidation products; CRP = C-reactive protein; MtDNA = mitochondrial DNA; Gtoc = γ-
tocopherol; 
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Table 2.4.  Test for oxidative stress weak factorial invariance stratified by study population in 
Model 2             

  No invariance 
  

 
Among MAP II (n = 136) Among MAP I (n = 201) Among SRSH (n = 118) 

  

 
λu λs 

95% 
LCI 

95% 
UCI λu λs 

95% 
LCI 

95% 
UCI λu λs 

95% 
LCI 

95% 
UCI 

Model Fit 
Statistics 

MtDNA  -0.67 -0.16 -0.41 0.08 0.07 0.05 -0.17 0.26 0.06 0.05 -0.43 0.52 χ2 pvalue 0.30 

FIP 4.43 0.93 0.75 1.12 1.93 0.60 0.44 0.76 -2.48 -0.60 -0.84 -0.36 RMSEA 0.02 

FOP 0.10 0.12 -0.11 0.35 0.50 0.11 -0.08 0.30 0.14 0.13 -0.10 0.37 CFI 0.97 

CRP 3.06 0.61 0.44 0.78 1.56 0.41 0.27 0.56 -1.29 -0.44 -0.65 -0.22 TLI 0.96 

Gtoc 2.42 0.51 0.34 0.68 1.64 0.43 0.26 0.60 -1.28 -0.39 -0.61 -0.17 SRMR 0.06 

               

 
Partial invariance 

  

 
Among MAP II (n = 136) Among MAP I (n = 201) Among SRSH (n = 118) 

  

 
λu λs 

95% 
LCI 

95% 
UCI λu λs 

95% 
LCI 

95% 
UCI λu λs 

95% 
LCI 

95% 
UCI 

  MtDNA  -0.03 -0.01 -0.09 0.07 -0.03 -0.02 -0.20 0.17 -0.03 -0.02 -0.23 0.20 χ2 pvalue 0.24 

FIP 3.74 0.86 0.66 1.06 2.00 0.61 0.45 0.76 3.74 0.75 0.59 0.90 RMSEA 0.03 

FOP 0.03 0.04 -0.15 0.23 0.03 0.01 -0.03 0.04 0.03 0.03 -0.10 0.15 CFI 0.96 

CRP 2.96 0.61 0.43 0.80 1.55 0.40 0.27 0.53 1.55 0.45 0.30 0.60 TLI 0.94 

Gtoc 1.78 0.40 0.27 0.53 1.78 0.46 0.34 0.57 1.78 0.45 0.32 0.59 SRMR 0.07 
Symbols and abbreviations:  MAP = Markers of Adenomatous Polyps; SRSH = Study of Race, Stress, and Hypertension; λu = unstandardized loading factor; λs = 
standardized loading factor; LCI = lower confidence interval; UCI = upper confidence interval; χ

2
 = Chi-squared; RMSEA = root mean squared error of 

approximation; CFI = comparative fit index; TLI = Tucker-Lewis index; SRMR = standardized root mean square residual; FIP = F2-isoprostanes; FOP = fluorescent 
oxidation products; CRP = C-reactive protein; MtDNA = mitochondrial DNA; Gtoc = γ-tocopherol; 
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Table 2.5.  Estimated model effects of exposure variables on latent oxidative stress, and 
loading factors for oxidative stress in three pooled datasets 

Model estimated effects on oxidative stress 
 

 
βs 95% LCI 95% UCI p-value Model Fit Statistics 

Age < 0.01 -0.01 0.01 0.93 χ2 pvalue < 0.01 

Sex (vs. Men) 0.80 0.53 1.08 < 0.01 RMSEA 0.05 

BMI, kg/m2 
    

CFI 0.73 

< 25 referent 
   

TLI 0.64 

25 - 29.9 0.56 0.26 0.87 < 0.01 SRMR 0.04 

≥ 30 1.11 0.80 1.42 < 0.01 
  Smoking 

      Never referent 
     Former 0.16 -0.13 0.45 0.27 

  Current 0.40 0.02 0.78 0.04 
  Drinking 

      Never referent 
     Former -0.24 -0.66 0.18 0.26 

  Current -0.46 -0.79 -0.14 0.01 
  Aspirin use -0.39 -0.68 -0.11 0.01 
  NSAID use 0.02 -0.26 0.29 0.91 
  Plasma markers 

      α-carotene -0.15 -0.31 0.01 0.06 
  β-carotene -0.37 -0.53 -0.21 <0.01 
  α-tocopherol -0.13 -0.27 0.01 0.06 
  Lutein 0.08 -0.06 0.23 0.25 
  Lycopene 0.26 0.14 0.39 <0.01 
  β-cryptoxanthin 0.09 -0.05 0.22 0.22 
  

 

 
Loading factors for Oxidative Stress 

  

 
λs 95% LCI 95% UCI p-value 

  MtDNA  -0.18 -0.35 -0.01 0.04 
  FIP 0.66 0.53 0.78 < 0.01 
  FOP 0.09 -0.05 0.23 0.21 
  CRP 0.44 0.32 0.56 < 0.01 
  Gtoc 0.51 0.38 0.63 < 0.01     

Symbols and abbreviations:  λs = standardized loading factor; βs = standardized model effect; LCI = 
lower confidence interval; UCI = upper confidence interval; χ

2
 = Chi-squared; RMSEA = root mean 

squared error of approximation; CFI = comparative fit index; TLI = Tucker-Lewis index; SRMR = 
standardized root mean square residual; FIP = F2-isoprostanes; FOP = fluorescent oxidation products; 
CRP = C-reactive protein; MtDNA = mitochondrial DNA; Gtoc = γ-tocopherol; BMI = body mass index; 
NSAID = non-steroidal anti-inflammatory drug; 
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Table 2.6.  Estimated regression parameters of exposures on individual oxidative stress 
biomarkers in three pooled datasets 

 
FIP Gtoc CRP FOP MtDNA  

 Exposure βFIP βGtoc βCRP βFOP βMtDNA μall 

Age < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 

Sex (vs. Men) 0.73** 0.17 0.38** 0.16 0.06 0.30 

BMI, kg/m2 
      < 25 referent 

 25 - 29.9 0.31* 0.33** 0.40** -0.05 0.32* 0.26 

≥ 30 0.79** 0.58** 0.56** 0.09 0.25 0.45 

Smoking 
      Never referent 

 Former 0.13 0.19 -0.10 -0.03 -0.13 0.01 

Current 0.24 0.12 0.19 0.29 -0.38* 0.09 

Drinking 
      Never referent 

 Former 0.17 -0.55** 0.04 -0.10 0.42* < 0.01 

Current -0.07 -0.46** -0.22 0.07 0.42** -0.05 

Aspirin use -0.29** -0.27** -0.03 0.11 0.26** -0.04 

NSAID use -0.10 -0.10 0.26* 0.07 0.13 0.05 
Symbols and abbreviations:  βxxx = standardized regression coefficient for biomarker; μall = simple mean of 
all biomarkers; FIP = F2-isoprostanes; FOP = fluorescent oxidation products; CRP = C-reactive protein; 
MtDNA = mitochondrial DNA; Gtoc = γ-tocopherol;  BMI = body mass index; NSAID = non-steroidal anti-
inflammatory drug; 

*
significance at the p=0.05 level; 

**
significance at the p=0.05 level  
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CHAPTER 3. A NEW LOOK AT OXIDATIVE STRESS AND ITS ASSOCIATION WITH 

COLORECTAL ADENOMA: A LATENT VARIABLE, STRUCTURAL EQUATION 

MODELING APPROACH 

ABSTRACT 

Background:  Oxidative stress has been implicated in many adverse health conditions including 

colorectal adenoma and carcinoma.  This complex multifaceted phenomenon is usually measured 

by imperfect biomarkers resulting in weak and inconsistent associations with health outcomes.  

The analytic technique of structural equation modeling (SEM) can reduce measurement error of 

individual biomarkers through a latent construct and may demonstrate stronger associations.   

Methods:  Using a pooled dataset of two previously conducted cross-sectional studies (Markers 

of Adenomatous Polyps I and II; n = 526), we modeled a latent oxidative stress variable from five 

biomarkers: F2-isoprostanes (FIP), fluorescent oxidation products (FOP), mitochondrial DNA 

copy number (MtDNA), γ-tocopherol (Gtoc), and C-reactive protein (CRP).  Using SEM, we 

modeled a simplified causal pathway of pro-/antioxidant exposures, oxidative stress, and 

colorectal adenoma. 

Results:  The latent oxidative stress variable was strongly and positively associated with 

colorectal adenoma (odds ratio = 2.61, 95% confidence interval: 1.25-5.46).  Oxidative stress was 

characterized by positive loading factors from FIP, Gtoc, and CRP.  Additionally, BMI and other 

exposure variables were associated with colorectal adenoma in a pathway mediated by oxidative 

stress. 

Conclusion:  A better measurement of oxidative stress can be attained through SEM with latent 

variables.  Oxidative stress is positively associated with colorectal adenoma, and exposure 

variables are likely to be associated with adenoma through this mechanism.  The SEM 

methodology can be applied to studying other oxidative stress-related health outcomes.  It can be 
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extended to other areas of research where it is necessary to combine different, but imperfect 

measurements to describe a complex biologic phenomenon. 
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INTRODUCTION 

Oxidative stress has long been defined as an imbalance between exogenous and 

endogenously produced pro- and antioxidants, resulting in excess reactive oxygen species (ROS) 

(5).  Increased ROS, produced from the chemical and biological processes of oxidative stress, 

have been implicated in many adverse effects on human health (2), including the initiation, 

promotion, and progression of carcinogenesis (3, 4, 65, 93, 94, 138).  The basic science evidence 

that has given rise to the oxidative stress-induced neoplasia hypothesis, has not been consistently 

confirmed in the epidemiologic literature (90, 95-99).  Furthermore, the attempts to prevent 

oxidative stress-induced cancer through supplementary antioxidant interventions in human 

clinical trials have yielded null results, or sometimes even demonstrated harmful effects (9).  The 

inconsistent results across basic science, epidemiologic, and clinical trials research points to a 

lack of knowledge on how to influence or measure oxidative stress in humans.  

Measurement of oxidative stress is normally done through biomarkers, as this complex 

phenomenon is not directly observable in vivo (36).  There are numerous biomarkers of oxidative 

stress, many of which reflect a specific biologic or chemical aspect of this process (6).  As 

oxidative stress is multifaceted (139), reliance on any single biomarker may be inadequate (111, 

112).  Additionally, there are numerous determinants of oxidative stress, but few have shown 

consistent results with biomarkers or health outcomes (38, 40, 43, 90, 95, 140).  Because of the 

inconsistency, researchers investigating the burden of oxidative stress exposures have proposed to 

combine oxidative stress measurements, and pro-/antioxidant behavioral characteristics, into a 

score variable (10, 12-14, 141).  Using this approach, studies have demonstrated that an oxidative 

balance score (OBS) had stronger associations with colorectal neoplasia than the corresponding 

associations of the individual variables when considered alone (16-18, 142). 
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 Although studies have found stronger associations between health outcomes and the 

OBS, it remains unclear whether the score truly captures oxidative stress-related exposures, or is 

just a measure of general good health.  It is possible that individual antioxidant nutrients can 

influence carcinogenesis through mechanisms other than oxidative stress (19-21), and it is a 

certainty that behavioral variables such as smoking, drinking, and medication use may directly 

affect many carcinogenic pathways (22-25).  A recent study by Kong et al. found that, in addition 

to colorectal adenoma, OBS was associated with plasma F2-isoprostanes (FIP), fluorescent 

oxidative products (FOP), and C-reactive protein (CRP); however only the results for FIP and 

CRP were in the theorized directions (18).  The unexpected result of FOP confirms that further 

study of oxidative stress, its determinants and biomarkers, and colorectal adenoma is warranted.   

In a previous study, we used the analytic method of structural equation modeling (SEM) 

to obtained a measurement of oxidative stress using a latent (unobserved) variable, composed of 

various biomarkers of oxidation (143).  SEM is a multivariate technique that models theoretical 

structural (causal) pathways, specified a priori, in observational data (26, 27).  The method 

frequently incorporates the use of latent variables as measurements of unobservable constructs.  

For instance, a researcher could construct a theoretical model where specific pro-/antioxidant 

exposures have direct effects
2
 on oxidative stress, which in turn could have direct effects on 

colorectal adenoma.  The two direct effects would make up one indirect effect from exposures to 

adenoma mediated by oxidative stress. The advantage of SEM is its ability to reduce 

measurement error through latent variables, and simultaneously estimate multiple parameters 

through complex likelihoods (26, 27).   

                                                           
2
 The authors would like to clarify the term “effects” in this context.  As SEM is constructed under causal 

assumptions, the model estimated regression parameters are interpreted as effects (i.e. direct effect, 
indirect effect, total effect).  The term does not mean that the SEM estimates reflect the causal effects 
that would have been observed under a well conducted randomized clinical trial, where the model 
assumptions would then differ.  It is important to keep in mind that SEM estimated “effects” should not 
be interpreted as evidence of a causal link. 
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In this study, we assessed whether a latent variable of oxidative stress is associated with 

newly diagnosed colorectal adenoma.  We were also interested in two secondary questions: 1) 

How does latent oxidative stress variable in this analysis compare to our previous study (143), 

which used a somewhat different dataset and did not include adenoma as the outcome of interest; 

and 2) Do pro-/antioxidant exposures have indirect associations with colorectal adenoma, 

mediated by oxidative stress.  To address these questions, we used pooled data from two cross-

sectional colorectal adenoma studies which collected demographic and behavioral data, as well as 

plasma biomarkers of oxidative stress.  The following four biomarkers of oxidation products and 

one biomarker of inflammation were selected a priori to identify and characterize oxidative 

stress: F2-isoprostanes (FIP) – a marker of lipid peroxidation; fluorescent oxidation products 

(FOP) – a marker of non-specific oxidation (lipids, proteins, DNA); mitochondrial DNA copy 

number (MtDNA) – a marker of cellular damage; γ-tocopherol (Gtoc) – a marker of metabolic 

response to oxidative stress; and C-reactive protein (CRP) – a marker of acute inflammation 

response.  All five biomarkers were theorized to increase in response to oxidative stress. 

MATERIALS and METHODS 

Study Population 

 Markers of Adenomatous Polyps (MAP) study I and II 

 The Markers of Adenomatous Polyps I and II (MAP I and II) cross-sectional studies were 

conducted by the same principal investigator (RMB) using almost identical protocols.  The 

methods for the two studies are described in detail elsewhere (79-81).  Participants in the MAP I 

study (n=474) were recruited from community gastroenterology practices in Winston-Salem and 

Charlotte, North Carolina, while those in the MAP II study (n=233) were recruited among 

patients who received care at Consultants in Gastroenterology, PA, a large, private practice clinic 

in Columbia, South Carolina.  Eligible subjects were persons 30-74 years of age with no prior 
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history of colorectal neoplasms who were scheduled to undergo elective, outpatient colonoscopy.  

The study eligibility criteria in the two studies were identical.  Cases (n = 233) were subjects 

diagnosed with an incident colon or rectal adenoma at the time of their colonoscopy procedure.  

Controls (n = 312) were all subjects free from all types of polyps during colonoscopy.  Subjects 

with hyperplastic polyps (n = 70) were defined as missing information on the outcome of interest.  

Data Collection 

Questionnaire data 

 Before undergoing the colonoscopy procedure, all consenting subjects completed a 

mailed questionnaire regarding their demographic characteristics, medical history, use of 

medications, and habits. This questionnaire included, but was not limited to, smoking and 

drinking history, aspirin and non-steroidal anti-inflammatory (NSAID) use, and physical activity 

(PA). In addition, diet and nutritional supplement intakes were assessed through a modified 153-

item Willet Food Frequency Questionnaire.  Intakes of polyunsaturated fatty acids (PUFA), 

vitamin C, and fiber, were estimated as a total of diet and supplement use (144, 145). 

Biomarker data 

 All participants provided blood samples that were drawn into red-coated, pre-chilled 

Vacutainer tubes, plunged into ice, and protected from light sources.  Upon immediate delivery to 

the lab, the samples were centrifuged under refrigeration, after which plasma and serum were 

separated and aliquotted into O-ring-capped, amber-colored cryopreservation vials filled with 

inert gas.  The samples were stored at -70°C until analysis.   

All biomarker analyses were performed by the Molecular Epidemiology and Biomarker 

Research Laboratory at the University of Minnesota (Minneapolis, MN).  Plasma FIP 

concentrations were  measured using a gas chromatography-mass spectrometry (GC-MS) method 
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(114). The FIP were extracted from the participants’ samples using deuterium (4)-labeled 8-iso-

prostaglandin F2 alpha as an internal standard with unlabeled, purified F2-isoprostane as a 

calibration standard.  FOP were measured in plasma samples by the modified Shimasaki method 

as previously described (39, 115).  A mixed solution of plasma and ethanol/ether was centrifuged 

for 10 minutes at 3,000 rpm after which 1.0 ml of supernatant was added to cuvettes for 

spectrofluorometric readings.  Relative fluorescence intensity in units per milliliter of plasma at 

360/430nm wavelengths was calculated by a spectrofluorometer.  Quinine sulfate diluted in 0.1 N 

H2SO4 was used for calibration. Approximately 22% of the samples were serum rather than 

plasma due to limited supply of plasma in the study population.  This was not expected this to 

affect the FOP measurement or analysis as there was a high level of correlation between a random 

sample of subjects on whom we measured FOP in both serum and plasma (r =0.9; p<0.001).  

High sensitive CRP was measured by latex-enhanced immunonephelometry on a Behring 

nephelometer II (BN-II) analyzer (inter-assay CV 4%; Behring Diagnostics, San Jose, CA).  

MtDNA was analyzed in 2013 by real-time quantitative polymerase chain reaction (qPCR) as 

described previously (55).  For the qPCR method we used two primers, one for MtDNA and one 

for nuclear DNA.  The ratio of MtDNA to nuclear DNA was determined by serial dilution of a 

healthy referent genomic DNA sample. 

Structural Equation Model and Statistical Methods 

All SEMs were analyzed with the Mplus software version 7.1 statistical package, which 

was developed specifically for these types of analyses (83).  Other analyses were performed with 

SAS software version 9.3 (146).  All missing data on outcome variables were assumed to be 

missing at random (Mplus default setting) (147).  Due to the racial homogeneity of the study 

populations, all analyses were restricted to non-Hispanic whites.  A two-sided p-value <0.05 

indicated statistical significance.   
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All SEM analyses originated from the baseline model in which we theorized one 

continuous latent factor (here onward termed oxidative stress) composed of five continuous 

indicator variables chosen a priori: FIP, FOP, CRP, MtDNA, and Gtoc.  The baseline model 

included a direct effect from oxidative stress to colorectal adenoma, as well as the following 

potential confounding variables: age, sex, BMI, smoking, drinking, aspirin use, non-steroidal 

anti-inflammatory (NSAID) use, and a variable designating study population (Figure 3.1).  

Oxidative stress was standardized (mean=0, variance=1) in order to estimate loading factors for 

all five biomarkers.  To aid empirical identification, the continuous indicator variables for 

oxidative stress were mathematically transformed to have similar variances; this transformation 

did not affect standardized results.  Unless stated otherwise, all models were estimated using a 

generalized linear logit SEM under maximum likelihood estimation. A drawback of this method 

is that it does not provide usual SEM fit statistics (root mean squared error of approximation 

(RMSEA), the comparative fit index (CFI), the Tucker-Lewis index (TLI), and the standardized 

root mean square residual (SRMR)).   

Before pooling the data on the two study populations, we first tested whether the 

construction of the latent oxidative stress variable in the baseline model differed between the 

MAP I and MAP II datasets, and between men and women.  This approach is called invariance 

testing and it is done by setting unstandardized loading factors (λu) equal across groups (117, 118, 

143).  Generalized linear probit models, under weighted least squares estimation (WLSMV), 

were used for testing invariance because they provide SEM fit statistics in addition to nested χ
2
 

difference tests for binary outcomes.  The results of these tests influenced the decision to model 

direct effects of sex and study population on each biomarker rather than on oxidative stress 

(Figure 3.1). 
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The following three models were used to estimate the association between oxidative 

stress and colorectal adenoma.  Each subsequent model added more covariates.  All ordinal 

variables were categorized by sex-specific tertile cut points.   

Model 1: The baseline model of oxidative stress and colorectal adenoma included the 

following covariates: age (continuous, years), sex (binary), BMI (<25, 25-29.9, ≥30 

kg/m
2
), smoking (never, former, current), drinking (never, former, current), aspirin use 

(binary), non-steroidal anti-inflammatory (NSAID) use (binary), and study population 

(binary); n = 526. 

Model 2: The partially adjusted model included the variables from the baseline model as 

well as the following: reported physical activity (ordinal), total energy intake (ordinal), 

total fiber intake (ordinal), plasma cholesterol levels (continuous, mg/dl); n = 469.  

Model 3: The fully adjusted model included total vitamin C intake (ordinal), and total 

poly-unsaturated fatty acid intake (PUFA) (ordinal) in addition to the covariates in the 

partially adjusted model; n = 469. 

In addition to the estimated direct effect of oxidative stress on colorectal adenoma, we 

assessed model-specific direct effects of exposure on oxidative stress.  We also estimated and 

reported indirect effects for exposures on colorectal adenoma, mediated by oxidative stress (148).  

The estimated standardized direct effect from oxidative stress to colorectal adenoma is interpreted 

as the change in odds of colorectal adenoma, per one standard deviation (s.d.) change in oxidative 

stress.  Estimated direct effects from exposures to oxidative stress (γs) are interpreted as the s.d. 

change in oxidative stress per one unit change in exposure.  Indirect effect estimates are 

interpreted as the change in odds of colorectal adenoma per one unit change in exposure, 

mediated by oxidative stress. 
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On the basis of  prior evidence and biologic theory, we considered an alternative model 

with two oxidative stress latent variables representing two different processes, possibly oxidative 

stress and inflammation (oxstress1, oxstress2) (Figure 3.2).  To identify the two latent variables, 

FIP was restricted to load to only one of the latent constructs.  We repeated the model changing 

the restriction from FIP to Gtoc, and then again from Gtoc to CRP to see if the results changed.  

The model with two-latent factors was examined to assess whether each factor had a distinct 

biomarker pattern with little or no cross-loadings.  

RESULTS 

 Selected baseline characteristics of the MAP I and II study populations are presented in 

Table 3.1. The average age of the combined study population was 56.8 years.  Fifty-three percent 

of the subjects were women, and the average BMI was 28.0 kg/m
2
.  Most of the participants were 

never or former smokers (77%) and half were current drinkers (50.8%). 

 The tests for invariance revealed that the construction of the latent oxidative stress 

variable differed by sex and by study.  Among women, the unstandardized loading factors for FIP 

and CRP were higher and statistically significantly different from the respective loading factors 

for men (Table 3.2).  This difference however, did not result in a meaningful change in the 

characterization of oxidative stress on the standardized scale as estimates (λs) for FIP, Gtoc, and 

CRP were fairly similar between men and women (0.51, 0.69, 0.27 respectively for men; and 

0.61, 0.68, 0.49 respectively for women).  The test for study invariance revealed that in addition 

to FIP and CRP, the loading factor for MtDNA varied between the two study populations:  the 

MtDNA standardized loading was -0.27 in the MAP II study population, compared to 0.05 in the 

MAPI population.  Instead of using stratification, we allowed the variables for sex and study 

population to have direct effects on each biomarker rather than on oxidative stress (Figure 3.1).  
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The baseline model, under a probit distribution, demonstrated good fit (χ
2
 p-value = 0.91; 

RMSEA <0.01; CFI = 1.00; TLI = 1.06).     

 In all three models, oxidative stress was strongly, and positively associated with 

colorectal adenoma (Table 3.3).  In the baseline model, there was a twofold change in the odds of 

colorectal adenoma for each s.d. increase in oxidative stress with an estimated odds ratio (OR) of 

1.96 and a 95% confidence interval (CI) from 1.19 to 3.24.  This OR point estimate was 2.56 

(95% CI: 1.27-5.17) in the partially adjusted model, and increased further to 2.61 (95% CI: 1.25-

5.46) in the fully adjusted model. 

 Latent oxidative stress was characterized by positive, statistically significant standardized 

loading factors from FIP (λs = 0.61, 95% CI: 0.51-0.71), Gtoc (λs = 0.57, 95% CI: 0.47-0.67), and 

CRP (λs = 0.40, 95% CI: 0.30-0.50); MtDNA and FOP loading factors were null (Table 3.4).  

This result did not change meaningfully in either the partially or fully adjusted models.   

Across all three models, several exposure variables were associated with oxidative stress.  

From the adjusted models, higher amounts of physical activity, total fiber, and vitamin C intakes 

were estimated to have negative effects on oxidative stress; the latter two were statistically 

significant (Table 3.4).  Conversely, higher cholesterol, PUFA, and total energy intakes were 

estimated to have positive effects on oxidative stress; all were statistically significant.  We used 

the baseline model to estimate model-defined indirect effects from exposure to colorectal 

adenoma, mediated by oxidative stress.  BMI was estimated to have a positive, statistically 

significant indirect effect on colorectal adenoma (for BMI ≥30: OR=2.64, 95% CI: 1.22-5.69; for 

BMI 25-29.9: OR=1.44, 95% CI: 1.03-2.01) (Table 3.3).  Estimates for aspirin use, and alcohol 

consumption were inverse but more modest, and estimates for smoking were null.  

 We explored three different two-factor models to assess whether the five biomarkers 

under study could identify two different oxidative stress constructs (oxstress1, oxstress2).  After 



 

63 
 

allowing FIP to only load to oxstress1, CRP had a statistically significant cross-loading with both 

factors (λs = 0.25, p-value = 0.03 for oxstress1; λs = 0.66, p-value = 0.04 for oxstress2).  When 

CRP was restricted to only oxstress1, Gtoc had a meaningful and but not statistically significant 

cross-loading (λs = 0.26, p-value = 0.07 for oxstress1; λs = 0.45, p-value < 0.01 for oxstress2).  

When Gtoc was restricted to oxstress1, no loading factors were significant for oxstress2.   

DISCUSSION 

 In the two pooled data from two cross-sectional studies, a latent oxidative stress variable 

had a strong and statistically significant positive association with newly diagnosed colorectal 

adenoma.  Oxidative stress was characterized by positive loading factors from F2-isoprostanes, γ-

tocopherol, and C-reactive protein.  Additionally, a number of pro-/antioxidant exposure variables 

were statistically significantly associated with oxidative stress in the theorized directions, and 

were indirectly associated with colorectal adenoma through oxidative stress.  To our knowledge, 

this is the first study to use SEM with latent variables to investigate the association between 

oxidative stress and a health outcome.  

 Numerous biomarkers of oxidative stress have been proposed and used in research over 

the last few decades (6, 36).  Each of these biomarkers usually reflects a specific aspect of in vivo 

oxidation without offering an overall measure of oxidative stress (111, 112).  A latent variable 

can overcome this problem by reducing the measurement error related to any single biomarker by 

modeling the shared covariance across multiple measures (26, 27).  SEMs allow constructing 

systems of structural equations where observed variables can either cause, or be causes of, the 

latent variable; however, they do not obviate the need for sound biologic theory.   

 With the use of SEM we identified a single latent variable, termed oxidative stress, 

primarily constructed from three (FIP, CRP, and Gtoc) of five (also FOP and MtDNA) a priori 

selected plasma biomarkers.  The characterization of oxidative stress was similar to our previous 
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analysis, in a slightly different dataset, that did not include the health outcome of colorectal 

adenoma (143).  By accurately reflecting lipid peroxidation, FIP serves as an established 

biomarker of oxidative stress (37, 40, 120).  Basic science evidence supports a close link between 

oxidative stress and inflammation (65), and while CRP is recognized as a non-specific biomarker 

of inflammation, it is correlated with FIP and other biomarkers of oxidative stress (66-69).  

Circulating levels of Gtoc are thought to be more indicative of underlying oxidative stress 

conditions rather than dietary intake (57, 60), and evidence supports a positive association 

between Gtoc and oxidative stress biomarkers (43, 62).  FOP and MtDNA, recently proposed as 

markers of oxidative stress (38, 47, 48, 56), did not co-vary with FIP, CRP, or Gtoc in a 

meaningful way, and therefore did not contribute to the characterization of the latent variable in 

our study population. 

In this study, the association between the latent oxidative stress variable and colorectal 

adenoma was stronger than what is currently reported for the individual biomarkers.  There are a 

few inconsistent reports of the association between FIP and colorectal adenoma.  Using binary 

FIP from sex-specific median cut points, Kong et al. found the plasma biomarker to be positively 

associated with adenoma reporting an odds ratio of 1.89 (18).  In contrast, Siamakpour-Reihani et 

al. reported null associations between four different urinary isoprostanes with colorectal adenoma 

in a prospective cohort study (41).  This discrepancy may be in part due to the differences in 

study design.  The Siamakpour-Reihani study measured FIP approximately 10-15 years before 

colonoscopy, while Kong et al. measured FIP shortly before colonoscopy.  Additionally, the 

disagreement between the two studies may be attributed to the differences in the analytic medium 

- spot urine samples in the Siamakpour-Reihani study versus plasma by Kong.  According to 

Halliwell and Lee, spot plasma and urine measurements of FIP are not interchangeable, and 

plasma samples are generally preferred (120).  Similar to FIP, data on the association between 

plasma Gtoc and colorectal adenoma are sparse.  One study reported higher levels of Gtoc in 
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persons with adenoma relative to sigmoidoscopy-conformed controls ; however that result was no 

longer statistically significant when fully adjusted for confounding variables (63).  Unlike Gtoc 

and FIP, CRP has been more frequently studied in relation to colorectal neoplasia.  A meta-

analysis of prospective studies that investigated the association of CRP with colorectal cancer 

found a weak but statistically significant odds ratio of 1.12.  There are fewer studies of CRP with 

adenoma and those studies have reported mostly null results (18, 76-78).   

While our study results differ from those reported elsewhere, the discrepancy has a 

plausible explanation.  It is possible that each biomarker is weakly associated with adenoma via a 

common cause.  If a latent variable measures that common cause (in this case oxidative stress) 

through the shared covariance of the biomarkers, a stronger association is expected.  

 In addition to our primary finding, our baseline model estimated that some variables were 

indirectly associated with adenoma, mediated by oxidative stress.  In our study, the inverse 

associations with colorectal adenoma through oxidative stress for both regular aspirin use, and 

alcohol consumption, were borderline statistically significant.  Aspirin use is a preventive agent 

against adenoma (149), and is associated with lower oxidative stress biomarkers (108), which is 

consistent with our results.  The reports on the association between alcohol consumption and 

oxidative stress are mixed (43, 128), but heavy alcohol use was found to be associated with 

higher risk of adenoma (85).  This evidence does not support our result and could be due to 

interactions or correlations with smoking, and or diet, that we did not model.  Among all 

exposure factors in the present study, higher BMI was most strongly associated with colorectal 

adenoma, mediated by oxidative stress.  This observation is in agreement with the current 

literature, which identifies obesity as an established risk factor for adenoma (150, 151) and 

demonstrates a link between obesity and oxidative stress through specific metabolic pathways 

(107).  Our results further raise the possibility that the positive association between obesity and 

colorectal adenoma is mediated by an oxidative stress pathway. 
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  While oxidative stress is a complex multifaceted process we were unable to model it in 

more than one latent construct.  With a two-factor SEM, there were consistent biomarker cross-

loadings, indicating that the two constructs were not adequately distinguishable.  This result does 

not exclude the possibility of multiple oxidative stress processes working in a complex network, 

but it does indicate that the five biomarkers in the present study were unable to identify more than 

one latent variable. 

 Perhaps the most important limitation of the current study is the use of prevalent, albeit 

newly diagnosed, adenoma cases coupled with required SEM assumptions.  This design feature 

precludes clear understanding of the sequence of events, but temporality of variables must be 

assumed in SEM.  Because collection of exposure information happened before the patient 

underwent a colonoscopy, knowledge of adenoma status did not affect the subjects’ questionnaire 

responses.  However, changes in blood measurements could have occurred after adenoma 

development.  The SEM method must assume the temporal and causal relation among variables, 

and there is no test or assurances that this assumption is met.  To obtain a sufficient sample size, 

we pooled data across two different study populations and did not stratify on gender.  The results 

of the invariance tests indicated that latent oxidative stress was only partially invariant between 

the two studies, and between men and women.  It is possible our results could differ if stratified 

with larger sample sizes.  Moreover, as almost all participants in the MAP I and II studies were 

non-Hispanic whites, we cannot generalize the results to other racial or ethnic groups.  Finally, 

we cannot be certain that our latent variable is exclusively, or wholly, a construct of oxidative 

stress.  This is a limitation of SEM that can be addressed only through models built with sound 

biologic theory, which we did to the best of our ability.  

 Future studies in this field should consider the noted limitations of the present study.  As 

colorectal neoplasms tend to grow slowly, only a prospective design, preferably with multi-year 

follow-up, is suitable for determining the temporal relation between blood biomarkers and tumor 
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initiation.  Also, given our findings from gender invariance testing, future research should 

consider the variability of oxidative stress in men and women, and account for that in sample size 

estimates.  Studies with more biomarkers of oxidative stress would allow for better 

characterization of the construct and its association with colorectal adenoma.  Such new studies 

might identify multiple oxidative stress constructs, which was not possible with the current data.  

Lastly, the logical next step would be to investigate the association between a latent oxidative 

stress variable and colorectal cancer. 

 In conclusion, this novel application of SEM has provided further evidence that 

colorectal adenoma is positively associated with oxidative stress.  This method has the ability to 

reduce individual variability of a single biomarker by modeling the shared covariance across 

multiple measures.  Further use of SEM analysis in colorectal adenoma and carcinoma studies 

could assist in understanding the role of oxidative stress in disease progression.  Based on the 

experience in the current study, the SEM methodology can be applied to studying other oxidative 

stress-related health outcomes.  It can also be extended to other areas of research where it is 

necessary to combine different, but imperfect measurements to describe a complex biologic 

phenomenon. 
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Figure 3.1. Graphical representation of baseline structural equation model  

 

Figure 3.2. Graphical representation of alternative structural equation model with 2 latent 

oxidative stress variables  
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Table 3.1. Selected baseline characteristics of non-Hispanic white subjects in the Markers of 
Adenomatous Polyps I and II datasets 

 
            

  

 
Cases (n=188) Controls (n=255) Missing (n=83) Total (n=526) 

 

μ or 
n 

% or 
s.d. 

μ or 
n 

% or 
s.d. 

μ or 
n % or s.d. 

μ or 
n 

% or 
s.d. 

Age, years 58.0 8.1 55.6 9.4 57.8 8.7 56.8 8.9 

Sex (% women) 77 41.0 163 63.9 35 42.2 275 52.3 

BMI, kg/m2 28.0 6.4 27.6 6.1 29.0 6.6 28.0 6.3 
Phys. act., MET-
hours/week 187 138 189 131 209 125 191 133 

Smoker 
        Never 50 26.6 128 50.2 22 26.5 200 38.0 

Former 78 41.5 95 37.3 32 38.6 205 39.0 

Current  60 31.9 32 12.6 29 34.9 121 23.0 

Drinker 
        Never 43 22.9 87 34.1 23 27.7 153 29.1 

Former 43 22.9 46 18.0 17 20.5 106 20.2 

Current  102 54.3 122 47.8 43 51.8 267 50.8 

Aspirin use 68 36.2 88 34.5 32 38.6 188 35.7 

NSAID use 41 21.8 90 35.3 22 26.5 153 29.1 

Dietary Intake 
        Total energy, kcal 2000 798 1830 892 2051 921 1925 868 

PUFA, gm 14.2 6.8 13.6 9.1 14.5 7.2 13.9 8.1 

Vitamin C, mg 269 348 269 309 254 282 266.4 319 

Fiber, gm 21.5 9.6 20.2 11.0 22.3 14.1 21.0 11.1 

Plasma levels 
        Cholesterol, mg/dl 203.6 35.6 204.2 39.8 208.4 39.7 204.7 38.3 

FIP, pg/ml 90.2 48.9 84.6 35.5 85.2 34.9 86.8 40.9 

FOP, avg. std.ref.adj. 0.05 0.11 0.04 0.02 0.06 0.14 0.05 0.09 

CRP, μg/ml 5.3 6.0 4.7 5.9 5.8 6.3 5.1 6.0 

MtDNA,rel.nucl.DNA 2.2 2.9 2.8 2.3 2.0 1.8 2.5 2.5 

Gtoc, mg/dl 0.23 0.11 0.20 0.11 0.21 0.10 0.21 0.11 
Symbols and abbreviations: μ = mean; s.d. = standard deviation; MET = metabolic equivalent; NSAID = 
non-steroidal anti-inflammatory drug; PUFA = poly-unsaturated fatty acid; FIP = F2-isoprostanes; FOP = 
fluorescent oxidation products in average standard reference adjusted; CRP = C-reactive protein; MtDNA 
= mitochondrial DNA in relative MtDNA to nuclear DNA; Gtoc = γ-tocopherol; 
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Table 3.2. Test for oxidative stress weak factorial invariance by sex MAP I and II study populations   

  No Invariance 
  

 
Among Men (n = 251) Among Women (n = 276) 

  

 
λu 95% LCI 95% UCI λs λu 95% LCI 95% UCI λs Model Fit Statistics 

MtDNA -1.03 -1.87 -0.19 -0.20 -1.28 -2.13 -0.42 -0.27 χ2 pvalue 0.26 

FOP 0.07 -0.20 0.33 0.06 0.19 -0.68 1.05 0.05 RMSEA 0.02 

FIP 1.46 0.88 2.03 0.50 3.15 2.45 3.85 0.61 CFI 0.96 

CRP 1.11 0.43 1.79 0.26 2.38 1.63 3.13 0.49 TLI 0.94 

Gtoc 3.70 2.36 5.05 0.73 3.39 2.60 4.19 0.67 
  

           

 
Partial Invariance 

  

 
Among Men (n = 251) Among Women (n = 276) 

  

 
λu 95% LCI 95% UCI λs λu 95% LCI 95% UCI λs 

  MtDNA -1.18 -1.79 -0.57 -0.23 -1.18 -1.79 -0.57 -0.25 χ2 pvalue 0.33 

FOP 0.08 -0.18 0.34 0.07 0.08 -0.18 0.34 0.02 RMSEA 0.02 

FIP 1.47 0.91 2.04 0.51 3.14 2.43 3.85 0.61 CFI 0.98 

CRP 1.15 0.45 1.85 0.27 2.38 1.63 3.13 0.49 TLI 0.96 

Gtoc 3.45 2.77 4.12 0.69 3.45 2.77 4.12 0.68     
Symbols and abbreviations: MAP = Markers of Adenomatous Polyps; λu = unstandardized loading factor; λs = standardized loading factor; LCI = lower 
confidence interval; UCI = upper confidence interval; χ

2
 = Chi-squared; RMSEA = root mean squared error of approximation; CFI = comparative fit index; TLI = 

Tucker-Lewis index;  FIP = F2-isoprostanes; FOP = fluorescent oxidation products; CRP = C-reactive protein; MtDNA = mitochondrial DNA; Gtoc = γ-tocopherol; 
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Table 3.3. Model estimated direct and indirect effects on colorectal adenoma 

 
ORs 95% LCI 95% UCI p-value 

 Oxidative stress direct effects 
     Baseline modela 1.96 1.19 3.24 0.01 

 

      Partially adjusted modelb 2.56 1.27 5.17 0.01 
 

      Fully adjusted modelc 2.61 1.25 5.46 0.01 
 

      Indirect effects mediated by oxidative stressd 
   BMI (kg/m2) 

     <25 referent 
    25-29.9 1.44 1.03 2.01 0.03 

 ≥30 2.64 1.22 5.69 0.01 
 Smoking 

     Never referent 
    Former 1.02 0.84 1.22 0.86 

 Current 1.23 0.95 1.59 0.13 
 Alcohol Drinking 

     Never referent 
    Former 0.76 0.56 1.04 0.09 

 Current 0.73 0.54 0.99 0.05 
 Aspirin use 0.79 0.62 1.01 0.06   

Symbols and abbreviations: ORs= standardized odds ratio; LCI = lower confidence interval; 
UCI = upper confidence interval; BMI = body mass index; 

a
adjusted for age, sex, BMI, 

smoking, alcohol consumption, aspirin, and non-steroidal anti-inflammatory use; 
b
additionally adjusted for physical activity, total fiber intake, total energy intake, and plasma 

cholesterol; 
c
additionally adjusted for total vitamin C intake, and poly-unstaturated fatty acid 

intake; 
d
estimated from baseline model and not standardized 
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Table 3.4. Model estimated effects on latent oxidative stress 

 
Baseline model 

 

 
γs 95% LCI 95% UCI p-value 

 Agea -0.004 -0.017 0.009 0.58 
 BMI (kg/m2) 

     <25 referent 
    25-29.9 0.54 0.28 0.80 <0.01 

 ≥30 1.44 1.18 1.69 <0.01 
 Smoking 

     Never referent 
    Former 0.02 -0.25 0.30 0.86 

 Current 0.30 0.00 0.61 0.05 
 Alcohol Drinking 

    Never referent 
    Former -0.41 -0.75 -0.06 0.02 

 Current -0.46 -0.75 -0.18 <0.01 
 Aspirin use -0.34 -0.58 -0.11 0.01 
 NSAID use -0.06 -0.31 0.19 0.62 
 

 
Partially adjusted model 

 Physical activityb -0.11 -0.24 0.01 0.08 
 Fiberb -0.42 -0.58 -0.25 <0.01 
 Total energyb 0.21 0.05 0.37 0.01 
 Cholesterola 0.009 0.006 0.011 <0.01 
 

 
Fully adjusted model 

 Vitamin Cb -0.34 -0.48 -0.21 <0.01 
 PUFAb 0.17 0.02 0.33 0.03 
 

 
Loading factors for oxidative stressc 

 

 
λs 95% LCI 95% UCI p-value 

 MtDNA -0.05 -0.15 0.05 0.34 
 FIP 0.61 0.51 0.71 <0.01 
 FOP 0.01 -0.11 0.13 0.84 
 CRP 0.40 0.30 0.50 <0.01 
 Gtoc 0.57 0.47 0.67 <0.01   

Symbols and abbreviations: MAP = Markers of Adenomatous Polyps; γs = standardized effect estimate; λs 
= standardized loading factor; LCI = lower confidence interval; UCI = upper confidence interval; BMI = 
body mass index; PUFA = poly-unsaturated fatty acid; FIP = F2-isoprostanes; FOP = fluorescent oxidation 
products; CRP = C-reactive protein; MtDNA = mitochondrial DNA; Gtoc = γ-tocopherol; 

a
continuous 

predictor; 
b
tertile predictor; 

c
estimates from the baseline model; 
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CHAPTER 4. ASSESSING THE CAUSAL ASSUMPTIONS AND METHODOLOGICAL 

CHALLENGES OF STRUCTURAL EQUATION MODELS IN EPIDEMIOLOGIC STUDIES 

OF BIOLOGIC CONSTRUCTS 

ABSTRACT 

 Structural equation models (SEMs) can be used to provide unique research perspectives 

for investigating biologic phenomena measured by imperfect biomarkers.  SEMs can be used to 

model biologic constructs through the shared covariance of multiple biomarkers in simplified 

causal models.  The drawback of SEM is its dependence on multiple assumptions, some of which 

may be quite strong.  In this communication, we explicate some of the model assumptions that 

may be common in SEM-based studies of biologic phenomena.  We also investigate potential 

error from information, selection, and confounding biases.  In SEMs, these biases can manifest 

themselves in ways that differ from those when using traditional regression analyses, and 

therefore must be appreciated differently.  For each bias we simulate data according to a specified 

model, and analyze the direction and magnitude of error.  It is important to critically evaluate the 

assumptions and biases of any SEM.  For studies of biologic phenomena, the SEM assumptions 

will likely center around the latent variable and the measured biomarkers that identify it.  Studies 

that employ a cross-sectional or case-control study design require careful attention to the 

possibility of reverse causation.  Sound biologic theory can best guide SEMs used to investigate 

biologic phenomena. 
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INTRODUCTION  

Epidemiologic studies often assess the effects of a biologic phenomenon on a health 

outcome, or conversely the effects of an exposure on the biologic phenomenon.  Examples of the 

former are studies of the effects of inflammation on cardiovascular disease (152); examples of the 

latter are studies of the possible effects of body mass index on oxidative stress (38, 43).  The 

biologic phenomena of interest in these studies are usually examined by measuring the 

corresponding biomarkers (e.g., cytokines for inflammation or products of oxidation for oxidative 

stress).  While biomarkers are commonly used in health research, often they are only imperfect 

measurements of the biologic phenomenon of interest.  Structural equation models (SEMs) with 

latent variables offer a possible way to study such imperfectly measured phenomena by using 

multiple biomarkers to characterize the phenomenon indirectly (26, 27).   

Couched in the counterfactual definition of causality, SEMs are functional causal models 

that allow for relatively easy statistical computation of theorized causal pathways (26, 35).  SEMs 

are composed of a system of structural equations that determine how a dependent variable is 

affected by its direct parents.  When multiple equations link together, the structural equations are 

called a structural model (35).  The structural model incorporates latent variables (unobserved, or 

poorly measured) by identifying them through their theorized causal relationships with observed 

variables (26).  The resulting SEM and its parameters can be estimated if parametric underlying 

distributions are assumed for each dependent variable.  These assumptions then allow for the 

simultaneous maximization of the combined likelihoods and estimation of model parameters.   

The estimated parameters in SEMs have causal interpretations within the model (26, 35) 

which often take the form of a “direct effect” or “indirect effect” of an explanatory variable on an 

outcome variable (26).  Substantial published research addresses the identification and estimation 

of direct and indirect effects, including the required assumptions for valid estimation (29-31, 34, 
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148, 153, 154).  However, the degree to which the SEM assumptions are met (155), and the effect 

of violations of these assumptions has not been extensively addressed for epidemiologic 

applications.  

In this communication, we use Monte Carlo simulations to explicate model assumptions 

and methodological challenges in SEMs when applied to epidemiologic research concerning 

biologic phenomena.  Specifically, we summarize the assumptions commonly made when SEMs 

are used to identify a latent variable that represents a particular biologic construct.  We also 

consider potential biases and their impact on the results of SEM-based studies.  For each of these 

issues, we provide a short background, describe the model used to quantify the strength of the 

assumption and the magnitude of bias, present analyses and results, and offer conclusions.  We 

also provide recommendations for future research.  Throughout the communication, we use a 

specific example of a previously completed cross-sectional study that examined oxidative stress 

as the biological phenomenon of interest (see chapters 2 and 3).  All Monte Carlo simulations 

were conducted using Mplus version 7.1 (83). 

SEM ASSUMPTIONS 

 SEMs with latent variables allow evaluating biologic phenomena that are not directly 

observed (i.e., constructs) by modeling the shared covariance of multiple measures (e.g., 

biomarkers); however, the analytical power of SEMs comes at the cost of having to make more 

assumptions than are required for traditional regression analyses.  SEMs are closely related to 

causal diagrams (also known as directed acyclic graphs - DAGs) and the two approaches share 

similarities in their causal assumptions (35, 155).  As in DAGs, each arrow in a SEM represents 

an explicit causal assumption about the two variables that begin and end that arrow (26, 35, 82).  

Further, every arrow omitted from a SEM or causal diagram also represents an explicit causal 
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assumption.  In this section, we explore some specific SEM assumptions that might be made 

when modeling a biologic construct.  

 SEM-based studies of biologic constructs typically involve assumptions that the latent 

variable is causally related to its determinants (e.g., antioxidant exposures) and its biomarkers, 

and also causally affects the health outcome.  For example, Figure 4.1a represents a very basic 

SEM involving one independent variable (body mass index – BMI), one latent variable (oxidative 

stress), the primary health outcome variable (colorectal adenoma) and five indicator variables that 

are biomarkers of oxidative stress (F2-isoprostanes – FIP, fluorescent oxidation products – FOP, 

C-reactive protein – CRP, γ-tocopherol – Gtoc, and mitochondrial DNA copy number – MtDNA 

copies).  For the purposes of this example, assume that each variable in the SEM precedes its 

effect, and that there is no measurement error, selection bias, or unmeasured confounding 

influencing the causal effects of interest:  BMI on oxidative stress, and oxidative stress on 

colorectal adenoma.   

 Even the relatively simple SEM (shown in Figure 4.1a) has many additional assumptions, 

such as absence of additional effects (depicted in Figure 4.1b), the appropriateness and 

plausibility of which need evaluation.  For example, the diagram in Figure 4.1a assumes the 

absence of any direct effect of BMI on colorectal adenoma (Figure 4.1b).  Without the direct 

effect, BMI can only affect adenoma through the mechanism involving oxidative stress, and any 

observed correlation in the study data between BMI and adenoma must come from that pathway.  

Another assumption reflected in Figure 4.1a is that BMI only has indirect effects on the 

biomarkers of oxidative stress.  However, as shown in Figure 4.1b it may be plausible that BMI 

has an effect on CRP not through the mechanism of oxidative stress.  Also, in Figure 4.1a, each 

biomarker is indirectly associated with colorectal adenoma and with other biomarkers because 

oxidative stress is a common cause.  However, it might be possible for a biomarker to associate 

with adenoma, or for two biomarkers to be related to each other by a mechanism other than 
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oxidative stress (Figure 4.1b).  In Figure 4.1a, any correlation between the biomarkers, and 

between the biomarkers and adenoma, is assumed to be from oxidative stress.  Thus, the 

assumptions reflected in Figure 4.1a may be appropriate, but their plausibility must be assessed, 

and compared with other possibilities. 

Another important assumption concerns the relationships between the latent oxidative 

stress variable and each biomarker.  In the SEM context, both Figures 4.1a and 4.1b reflect the 

assumption that the shared covariance of the five biomarkers (FIP, FOP, CRP, MtDNA, and 

Gtoc) can adequately characterize oxidative stress.  Essentially, the measurement of the latent 

oxidative stress variable is limited by information in these five biomarkers.  As a large number of 

oxidative stress biomarkers are used in research (6, 112, 156), it is possible that additional 

biomarkers could contribute further information and provide a better measurement of oxidative 

stress.  For these reasons each latent variable in a SEM requires justification via critical 

evaluation of its components.   

In the next sections of this communication, we evaluate some of the model assumptions 

that may be common in SEM-based studies of biologic phenomena such as oxidative stress.  We 

also investigate potential errors or problems with interpretation of findings resulting from failure 

to determine the sequence of events (temporality), information bias (misclassification or 

measurement error), selection bias, and uncontrolled confounding.   

TEMPORALITY AND INFORMATION BIAS 

A necessary requirement for the assumption of causality is that each cause must precede 

its effect.  In many observational, especially cross-sectional, studies this requirement is not 

assured.  This is a particular concern in cross-sectional studies that involve biomarker 

measurements and health outcomes.  For instance, in the previously mentioned (see chapter 3) 

cross-sectional study of plasma biomarkers of oxidative stress and their relation to colorectal 
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adenoma, all variables were measured at approximately the same time.  In particular, the 

biomarkers reflected oxidative activity at the time of, or just before their measurement, whereas 

adenomas developed over a longer period of time.  It is therefore likely that the outcome occurred 

before the biomarker (exposure) was measured.  If the cross-sectional observations are to be used 

to estimate an effect of oxidative stress on adenoma, the measured oxidative stress biomarkers 

must serve as a viable proxy for corresponding biomarkers that preceded the development of 

adenoma.  An imperfect correlation of the measured biomarkers with earlier biomarker levels is a 

possible source of measurement error.   

Another issue that can arise in cross-sectional studies is the possibility that the health 

outcome, in this case adenoma, could cause an increase in oxidative stress; this would represent a 

violation of the causal assumptions used in the SEM, and is referred to as “reverse causation”.  If 

oxidative stress during an earlier period is a cause of adenoma and then the adenoma later affects 

the subsequent level of oxidative stress, the measurement error will be differential.  Reverse 

causation is, where oxidative stress1 precedes and causes adenoma, and adenoma then affects 

subsequent, measured oxidative stress2.  The degree of measurement error will differ depending 

on the presence or absence of adenoma.    

Exposures may have also changed between the time adenoma developed and the time of 

measurement.  For instance, changes in weight may occur after the development but prior to the 

diagnosis of colorectal tumors (although this is less likely for adenoma).  Similar to the situation 

for biomarkers, information on exposures must be correlated with earlier exposures (ρ Ox stress, 

ρ BMI) that were present during a causally relevant time to be a viable proxy variable.  If a 

variable is categorical, measurement error is called misclassification. 

Measurement error and misclassification are important because they can cause 

information bias—erroneous effect estimates that result from errors in measurement (157).  To 
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quantify the potential magnitude of information bias, we assume different degrees of 

measurement error due, at least in part, to having measured exposure, oxidative stress, and 

colorectal adenoma at the same time, without accounting for temporal changes.  We quantify 

potential information bias due to measurement error, misclassification, and reverse causation.  

We consider an example involving causal effects of body mass index (BMI) (exposure), oxidative 

stress (intermediate), and colorectal adenoma (outcome).  Using simulation analyses we first 

consider the true causal model, and then the models that reflect different scenarios involving 

measurement error. 

True causal model  

 Figure 4.2 represents the assumed causal relationships between colorectal adenoma 

(binary), oxidative stress (Oxstress, continuous), and BMI (binary).  The subscripts (1, 2, 3) 

indicate time at measurement.  Time 3 represents when all three variables were measured (as in a 

cross-sectional study), while time 2 and time 1 are points in the past that were causally relevant 

for oxidative stress and adenoma.  In this example, we assume the DAG represents the true, 

causal relationships, and that there is no bias due to non-random selection or unmeasured 

confounding.  We also assume there is no additional measurement error other than that we 

explicitly represented.  For simulation purposes, we treat oxidative stress as a measured variable 

rather than a latent construct.  If oxidative stress were not measured directly, but rather only 

assessed based on biomarkers, we would expect the same pattern of biases. 

Information bias 

 The model in Figure 4.2 is used to simulate measurement error when reverse causation is 

not an issue.  In this simulation, the population effects of interest were those for BMI1 on 

Oxstress2, BMI2 on Oxstress3, and Oxstress2 on Adenoma3.  The population effects were set to the 

values depicted in the figure (1.25 standard deviation change [s.d.] in oxidative stress per unit of 
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BMI, 1.25 s.d. change in oxidative stress per unit of BMI, and a 2.0 increase in odds of adenoma 

per s.d. change in oxidative stress).  The causal effects of BMI1 on BMI2 and BMI2 on BMI3 

represented weight gain or loss during the time period in which adenoma developed, and as a 

result, potential misclassification of BMI3; stronger effects mean less misclassification.  In this 

model U is an unchanging binary variable that represents all other causes of oxidative stress 

present during the development of adenoma.  Approximately 30% of the population is assumed to 

have U = 1, and U is assumed to have equal effects on both Oxstress2 and Oxstress3.  The effects 

of U on oxidative stress created a correlation between Oxstress2 and Oxstress3; Oxstress2 is 

measured with error, since Oxstress3 is used as a proxy.  As with BMI, if U has strong effects on 

both oxidative stress measurements, the measurement error will be less pronounced. 

In the simulations, we considered different magnitudes of the effects of U on the Oxstress 

measurements, and of BMI1 on BMI2, and BMI2 on BMI3 to represent greater amounts of 

measurement error/misclassification.  These baseline effects were chosen to correspond with 

bivariate correlation coefficients (ρ) of approximately 0.90 between any two variables, and then 

lower values of 0.80, 0.70, 0.60, and 0.50 were considered, as noted in Table 4.1.  Five hundred 

populations of 1,000 subjects were simulated for each combination of parameters considered.  To 

analyze the simulated data, we modeled an effect of BMI3 on Oxstress3 and an effect of Oxstress3 

on Adenoma3 (representing the cross-sectional study design).  Information bias was estimated by 

comparing the average estimated parameters for the 500 populations to the true population 

parameters. 

 The degree of bias for the effects of BMI on oxidative stress, and oxidative stress on 

colorectal adenoma are shown in Table 4.1.  As the correlation between paired variables weakens, 

a larger amount of information bias is observed.  The estimated effect of oxidative stress on 

adenoma decreased from an odds ratio (OR) of 1.84 to 1.40 when the correlation between 

Oxstress2 and Oxstress3 decreased from 0.90 to 0.50.  Similarly, the estimated effect of BMI on 
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oxidative stress decreased from a 1.13 s.d. change in oxidative stress to 0.78 when the 

correlations across BMI decreased in the same fashion.  The results from Table 4.1 show bias 

towards the null for both estimated effects. 

Alternative model – reverse causation 

 If a health outcome developed before a biologic phenomenon (e.g., oxidative stress) was 

measured, the measured phenomenon could not have been a cause.  However, depending on the 

conditions, the health outcome could have been caused by the same biologic phenomenon at a 

previous time, but also affect later measurements of the phenomenon (“reverse causation”).  In 

our example, colorectal adenoma may take years to develop, whereas the five markers of 

oxidative stress measure oxidation over a comparatively shorter, more recent time frame.  

However, because of the cross-sectional study design the biomarker measurements could 

conceivably have been affected, in part, by the adenoma.   

   Reverse causation between oxidative stress and colorectal adenoma is represented in 

Figure 4.3.  As in Figure 4.2, U represents all external causes of oxidative stress and has equal 

effects on Oxstress1 and Oxstress2 so that they are correlated (ρOxstress), and BMI1 is a cause of 

BMI2 (ρBMI).  We also assumed that BMI1 is a cause of Oxstress1 and that BMI2 is a cause of 

Oxstress2 (in the cross-sectional study, all variables are measured at time 2).  Using the same 

parameters and simulation features as in the true causal model, we investigated the degree of 

potential bias due to reverse causation.  The correlation between Oxstress1 and Oxstress2 was set 

as in the primary model, but before adenoma affected Oxstress2.  Therefore, ρOxstress refers to the 

correlation between Oxstress1 and Oxstress2 if adenoma had had no effect on Oxstress2.  

 The degree of bias due to reverse causation is summarized in Table 4.2 and Figure 4.4.  

When the effect of adenoma increased Oxstress2 by 1.25 s.d. (β), the estimated effect of BMI on 

oxidative stress and that of oxidative stress on colorectal adenoma were both biased away from 
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the null.  The bias in the estimated effect of BMI on oxidative stress was moderate and did not 

vary greatly in either scenario: holding the BMI correlation constant at 0.90 while the oxidative 

stress correlation varied (range 1.37-1.42 s.d.), and holding oxidative stress correlation at 0.90 

while BMI correlation varied (range 1.34-1.37 s.d.).  In contrast to the effect of BMI on 

Oxstress2, the bias in the estimated effect of Oxstress2 on adenoma increased as the correlation 

became weaker.  This result suggests that the degree of bias in the estimated effect of oxidative 

stress on colorectal adenoma depends on the effect of adenoma on oxidative stress, and on the 

association between the two oxidative stress measurements.  The biased effect estimate as a 

function of these two properties is depicted in Figure 4.4.  As is shown in the figure, when the 

correlation between the two oxidative stress measurements is strong (0.90), the bias was small 

regardless of the effect of adenoma on Oxstress2.  However, when the correlation was weaker 

(0.80 and 0.70), the bias was stronger, especially when the effect of adenoma on Oxstress2 

increased. 

 In summary, the temporal and causal assumptions required in SEMs are important.  

Cross-sectional studies are likely to have a degree of measurement error due, in part, to the use of 

concurrently measured biomarkers as proxies for earlier, causally relevant values.  However, if 

reverse causation is not an issue, bias is likely towards the null.  The magnitude of bias depends 

on the correlation between the measured variables and their earlier, causally relevant 

counterparts.  In studies where reverse causation is a possibility, as hypothetically illustrated in 

our oxidative stress and adenoma example, the direction of bias can be away from the null.  When 

reverse causation is an issue, the magnitude of bias also depends on the strength of the effect of 

the outcome on the measured intermediate.  Longitudinal study designs can overcome some of 

these limitations by assuring that measured values precede their putative effects.  These types of 

studies can also characterize how biomarkers might change during the development and 

progression of disease.  If repeated measurements of biomarkers are not feasible, simple follow-
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up studies with measurement of biomarker levels at baseline, with adequate follow-up, can 

provide evidence concerning the temporal relationships between biomarkers and outcome. 

SELECTION BIAS  

Selection bias can affect essentially all epidemiologic studies, both observational (cross-

sectional, case-control, and follow-up) and experimental (clinical trials).  Exclusion criteria, 

competing risks, and selection based on disease-free survival can all create bias.  For 

observational studies of incidence, the usual approach is to exclude subjects who were not at risk 

for the outcome at the onset of the study (157); however, doing so can also create bias.  Suppose 

that the exposure does have an effect on the outcome.  Then selecting subjects who are disease-

free at the beginning of the study inherently conditions on an effect of the exposure and may 

create a selection bias if there are any unmeasured risk factors for the outcome (158).  This bias is 

illustrated in studies of obesity, end-stage renal disease (ESRD), and mortality, where, conditional 

on ESRD (an effect of obesity), the association between obesity and mortality is the opposite of 

what is expected, which is frequently called “reverse epidemiology” (159-161).  Despite the 

apparently paradoxical results, an examination of the causal relationships between variables 

reveals that “reverse epidemiology” is likely due to collider bias (structural selection bias) (158, 

161, 162).  Investigations into this type of bias suggest that it is expected to be influential under 

the non-null conditions unless all risk factors for an outcome are adjusted, a nearly impossible 

situation (162).   

 SEMs used to investigate biologic constructs are vulnerable to collider bias, much like 

conventional analyses of observational studies.  However, SEMs often involve some form of 

mediation analysis (i.e., estimation of direct and indirect effects) and under certain circumstances, 

this bias may manifest itself differently than in traditional regression analyses.  We present bias 

from this source using adenoma, oxidative stress, and a generic exposure as a case example. 
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 Figure 4.5 represents the causal relationships between an exposure (binary), oxidative 

stress (continuous), an uncontrolled harmful risk factor U (binary), and colorectal adenoma 

(binary).  To simplify the model we assumed the temporal and causal relationships as indicated in 

Figure 4.5, and the absence of measurement error or misclassification.  Given the model as 

summarized in Figure 4.5, DAG theory suggests a biasing path from exposure to adenoma, 

through survival and the U factor, when survival is conditioned on at the beginning of the study 

(82).  

 The SEM that incorporates the causal relationships in Figure 4.5 was considered to be the 

true causal model.  We then simulated selection bias, due to conditioning on survival.  In the 

simulation, the causal effects of interest were exposure on oxidative stress, exposure on adenoma, 

and oxidative stress on adenoma, and were set according to -0.634 s.d. change, a 1.42 OR, and a 

1.98 OR, respectively (also shown in Figure 4.5).  The causal effects of exposure on survival, of 

U on survival, and of U on adenoma were allowed to vary to illustrate the magnitude of selection 

bias under these different scenarios.  We considered five different odds ratio values for the effect 

of exposure on survival (β = 2.0, 3.5, 5.0, 7.5, and 10.0).  For each odds ratio, the effect of U on 

survival was taken to be the inverse of that OR (1/β = 0.91, 0.50, 0.29, 0.20, 0.13, 0.10).  We 

considered three different odds ratios for the effect of U on adenoma (γ = 1.1, 2.0, 3.5) and, 

additionally, considered three different values for the proportion of subjects who survived 

disease-free to the start of the study (survival = 0.90, 0.75, 0.60).  The probability of being 

exposed was set at 50%, identical to the probability of being exposed to U.   

For each combination of parameters, 500 populations were simulated with 1,000 subjects 

each.  The simulated data were analyzed with a model, selecting (conditioning) subjects who 

survived to the beginning of the study (survival=1); we did not include the U variable in the SEM 

so as to represent an unmeasured risk factor.  We estimated the effects of exposure on oxidative 
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stress and colorectal adenoma and of oxidative stress on colorectal adenoma, averaged across all 

500 populations.   

 The potential degree of bias due to conditioning on disease-free survival is displayed in 

Table 4.3.  In no scenario are the effects of oxidative stress on adenoma biased, and neither are 

the effects of exposure on oxidative stress.  Selection bias for the scenarios considered affected 

only the estimate of exposure on adenoma, and the bias was not particularly strong under most 

conditions.  Under a baseline survival probability of 0.90, in most scenarios the bias was less than 

10%.  Only when exposure had a strong effect on survival (OR ≥ 7.5), and U had strong effects 

on both adenoma (OR ≥ 2.0) and survival (OR ≤ 0.13), were effect estimates biased more than 

10%.  When the survival probability was lower (0.75 or 0.60), the potential bias was larger, but 

was still relatively modest unless strong effects on survival and adenoma were assumed. 

 In summary, the potential for selection bias is an important consideration for essentially 

all studies, including those investigating a biologic construct using SEMs.  However, for the 

scenarios considered, the bias was small, unless the causal effects on the collider and on the 

pathway to adenoma were strong.  While selection bias can present in different scenarios (e.g., 

differential loss to follow-up, sampling bias, participation bias), each one depicted in a DAG 

involves conditioning on a collider variable, thereby inducing a spurious association between the 

causes of the collider (158).  The overall conclusions, that the bias is dependent on its underlying 

causal effects, are transferable to other situations of selection bias. 

CONFOUNDING 

 Confounding is defined as the mixing of effects of an extraneous variable with those of 

the factor of interest so as to distort the observed result (157).  In DAG theory, confounding is 

often depicted as a variable that causes both the exposure of interest and the outcome of concern, 
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thereby creating a confounding path (82).  Even though confounding and a confounding path are 

not always the same, they are closely related (163). 

 Potential influence of confounding on an effect estimate is well recognized in 

epidemiology (157).  In observational studies where the goal is to estimate an effect, unmeasured 

confounding is a common concern.  However, when an exposure is properly randomized, with a 

large population, the effect estimate is expected to not be confounded (157).  For the SEM 

analyses, however, confounding may still be a concern, even in a randomized study if the 

unmeasured confounder influences the effects to and from the intermediate variable (29-34, 148).   

A DAG reflecting the causal relationships involving an exposure (binary), an 

intermediate oxidative stress variable (continuous), a binary unmeasured confounder (U) 

influencing the effect of oxidative stress on the outcome, and colorectal adenoma (binary 

outcome) is shown in Figure 4.6.  This model assumes that the exposure is a randomized 

intervention with 50% exposed, and therefore there should be no confounding of the total 

(overall) effect of the exposure on adenoma.  Additionally, we assumed temporal and causal 

relationships, and no measurement error or selection bias.   

To simulate confounding, oxidative stress was assumed to increase the risk odds of 

adenoma two-fold (OR = 2.0) for each s.d. increase, and the OR for exposure was assumed to be 

0.75.  The exposure was assumed to decrease oxidative stress by -0.50 s.d. (also shown in Figure 

4.6).  In the scenarios considered, we evaluated the magnitude of confounding for different 

effects of U on oxidative stress (β = 0.33, 0.66, or 1.0 s.d.), for different effects of U on adenoma 

(OR = 1.5, 2.0, 2.5), and for different frequencies of exposure to U (10%, 25%, 50%).  For each 

combination of parameters, 500 populations were simulated with 1,000 subjects each.  In the 

SEM used to analyze the simulated data, we did not include the U variable so that confounding 

remained uncontrolled.  We averaged the estimated effects of exposure on oxidative stress and 
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adenoma and of oxidative stress on adenoma from the 500 populations.  Comparing the estimated 

effects with the known population parameters provided a measure of potential confounding for 

each scenario. 

 The magnitude of potential confounding due to an uncontrolled confounder, for the 

effects of exposure on oxidative stress and adenoma is displayed in Table 4.4.  In no scenario was 

the effect of exposure on oxidative stress biased, and remained unchanged at -0.50 s.d.  However, 

the effect of oxidative stress on adenoma, and the effect of exposure on adenoma were both 

biased.  When the effect of U on oxidative stress was weak (0.33 s.d.), or when the effect of U on 

adenoma was weak (OR = 1.5), the magnitude of error in the observed effect of oxidative stress 

on adenoma was also weak (range = 2.5-8.5%).  The bias was strongest (19%) when U had a 

strong effect on both adenoma (OR = 2.5) and oxidative stress (1.0 s.d.).  The confounding error 

in the direct effect of exposure on adenoma was also present but was not as strong (range 1.3 - 

9.3%) as that for the corresponding effect of oxidative stress.  In scenarios with different 

proportions of subjects that were exposed to U, the observed magnitude of confounding differed 

slightly.   

 In summary, the magnitude of confounding in SEM-based analyses (regardless of the 

study design) depends on the effects of the uncontrolled confounder on both the intermediate and 

the outcome variable.  For confounding to meaningfully change an estimate of interest (> 10% 

error), these effects have to be strong.  Less important is the proportion of study subjects exposed 

to the unmeasured confounding factor. 

DISCUSSION 

 Valid estimation of effects involves making correct assumptions and avoiding biases.   

These considerations apply not only to traditional epidemiologic studies, but also to those 

analyzed using SEMs.  SEMs differ from traditional regression models both in terms of the 
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quantity and the quality of required assumptions, and in terms of the expected manifestations of 

biases.  In this communication, we have explicated some of the key assumptions and quantified 

some of the potential biases that are specific to SEM-based analyses. 

 SEMs with latent variables allows for the estimation of biologic constructs by modeling 

the shared covariance of multiple measures (including biomarkers).  This is a very powerful 

analytical tool, but one that requires many additional assumptions for valid estimation of effects.  

Not surprisingly, many of those assumptions center on the latent variable and its components.  

Important issues to consider include whether the shared covariance involving biomarkers or other 

measures is exclusively caused by the construct of interest, or whether they share an additional 

common cause.  Another important issue is whether exposures of interest can affect biomarkers, 

or co-vary with them, independent of the construct; the same issue arises with biomarkers and the 

outcome.  For all of the above reasons, the best guide to using SEMs is to start with a well-

defined underlying biologic theory.  In cancer research, cellular and molecular biology can 

provide the necessary empirical and theoretical evidence surrounding the biologic phenomenon to 

guide a SEM.  

 Not unlike traditional analytic methods, SEMs must deal with potential information, 

selection, and confounding biases.  In cross-sectional studies, particular attention should be paid 

to the possibility of reverse causation.  If the outcome can meaningfully affect the biomarker 

measurements, longitudinal or follow-up study designs remain the only option.  Selection bias, 

due to conditioning on disease-free survival, is another potential issue (162).  However, the 

magnitude of the induced bias depends strongly on the effect of the unmeasured factor on both 

the outcome and the likelihood of survival.  Potential confounding involving an intermediate is an 

important consideration when analyzing effects using a SEM.  Even under a randomized study 

design, unmeasured confounding of the intermediate’s effect on the outcome may introduce bias.  
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Careful consideration of all potential confounders, for exposure and intermediate, is required in 

an SEM. 

 Using the previous analyses in chapters 2 and 3 as examples allowed a semi-quantitative 

evaluation of the validity of those results and conclusions.  The assumptions that underscore the 

latent variable in both chapters are strong, as oxidative stress mediates all causes to the 

biomarkers.  If those assumptions are violated, then the latent variable could represent another 

biologic mechanism in addition to oxidative stress.  Given that CRP is an acute inflammation 

protein, violation of the assumptions could result in a latent variable consisting of oxidative stress 

and inflammation, a limitation we acknowledged in those chapters.  For biases, all could 

potentially affect our results.  The simulations in this chapter suggest that potential biases from 

selection and unmeasured confounding are not likely strong enough to refute our overall 

conclusions.  However, reverse causation is a real concern as it could have biased our chapter 3 

oxidative stress on colorectal adenoma estimate (OR = 2.61) away from the null.  This is also a 

recognized limitation in that chapter and future studies should consider follow-up designs to 

preclude this potential bias. 

SEMs may provide unique research opportunities for studies of biologic phenomena.  

However, there are particular concerns regarding potential biases and causal assumptions in the 

application of this method.  Some may be alleviated or mitigated by study design, but all require 

sound biologic theory.   
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Figure 4.1. SEMs demonstrating common causal assumptions in studies of biologic phenomena 
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Figure 4.2. Model of measurement error/misclassification of body mass index (BMI) and 

oxidative stress (Oxstress) over time  

Table 4.1.  Estimated biased effects of BMI on oxidative stress, and oxidative stress on colorectal 
adenoma from measurement error/misclassification from Figure 4.2 

  
Correlation between Oxstress2 and Oxstress3 

holding BMI correlations at 0.90 
  Causal Effects Population ρOxstress = 0.9 0.80 0.70 0.60 0.50 

BMI -> Oxstress 1.25 s.d. 1.13 1.13 1.13 1.13 1.13 

       Oxstress -> Adenoma 2.00 OR 1.84 1.73 1.57 1.49 1.40 

       

  
Correlation between BMI1 and BMI2, BMI2 and 

BMI3 holding Oxstress correlations at 0.90 
  

 
Population ρBMI = 0.9 0.80 0.70 0.60 0.50 

BMI -> Oxstress 1.25 s.d. 1.13 1.04 0.93 0.88 0.78 

       Oxstress -> Adenoma 2.00 OR 1.84 1.84 1.83 1.83 1.83 
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Figure 4.3. Model of reverse causation between adenoma and oxidative stress (Oxstress)  

Table 4.2.  Degree of bias from reverse causation when adenoma has a 1.25 standard deviation 
effect on oxidative stress from Figure 4.3 

  
Correlation between Oxstress1 and Oxstress2 

holding BMI correlations at 0.90 
  Causal Effects Population ρOxstress = 0.9 0.80 0.70 0.60 0.50 

BMI -> Oxstress 1.25 s.d. 1.37 1.40 1.41 1.42 1.41 

       Oxstress -> Adenoma 2.00 OR 1.97 2.02 2.19 2.29 2.44 

       

  
Correlation between BMI1 and BMI2 holding 

Oxstress correlations at 0.90 
  

 
Population ρBMI = 0.9 0.80 0.70 0.60 0.50 

BMI -> Oxstress 1.25 s.d. 1.37 1.37 1.35 1.35 1.34 

       Oxstress -> Adenoma 2.00 OR 1.97 1.96 1.96 1.95 1.95 
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Figure 4.4. Degree of bias due to reverse causation as a function of adenoma’s effect on oxidative stress and the correlation 

between measured oxidative stress and the causally relevant oxidative stress 
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Figure 4.5. Model of selection bias through conditioning on disease-free survival with an 

unmeasured risk factor for adenoma  
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Table 4.3.  Degree of bias from disease-free selection with an unmeasured risk factor for 
adenoma from Figure 4.5               

  
Baseline survival = 0.90 Baseline survival = 0.75 Baseline survival = 0.60 

  
Odds ratio (OR) effects of exposure on survival and 1/OR effects of Unknown risk factor (U) on survival 

Effects Causal OR = 2.0 3.5 5.0 7.5 10.0 2.0 3.5 5.0 7.5 10.0 2.0 3.5 5.0 7.5 10.0 

 
                                

 
  Effect of U on adenoma is OR = 1.1 Effect of U on adenoma is OR = 1.1 Effect of U on adenoma is OR = 1.1 

Oxst-
>C.A. 1.98 2.00 2.00 1.99 2.00 2.00 1.99 2.00 2.00 1.99 1.99 1.99 1.99 1.99 1.99 1.99 

Exp->C.A. 1.42 1.42 1.42 1.42 1.43 1.46 1.40 1.44 1.46 1.45 1.46 1.44 1.50 1.49 1.52 1.57 

Exp->Oxst -0.63 -0.63 -0.64 -0.64 -0.64 -0.63 -0.63 -0.63 -0.63 -0.63 -0.64 -0.63 -0.63 -0.63 -0.63 -0.63 

 
  

    
  

    
    

   
  

 
  Effect of U on adenoma is OR = 2.0 Effect of U on adenoma is OR = 2.0 Effect of U on adenoma is OR = 2.0 

Oxst-
>C.A. 1.98 1.98 1.97 1.97 1.98 1.98 1.97 1.98 1.98 1.97 1.98 1.97 1.98 1.98 1.98 1.99 

Exp->C.A. 1.42 1.43 1.45 1.48 1.52 1.56 1.43 1.48 1.54 1.59 1.64 1.42 1.51 1.56 1.67 1.78 

Exp->Oxst -0.63 -0.63 -0.64 -0.64 -0.64 -0.63 -0.63 -0.63 -0.63 -0.63 -0.64 -0.63 -0.63 -0.63 -0.63 -0.63 

 
  

    
  

    
    

   
  

 
  Effect of U on adenoma is OR = 3.5 Effect of U on adenoma is OR = 3.5 Effect of U on adenoma is OR = 3.5 

Oxst-
>C.A. 1.98 1.98 1.98 1.98 1.98 1.98 1.97 1.97 1.97 1.97 1.98 1.96 1.96 1.98 1.98 1.98 

Exp->C.A. 1.42 1.44 1.49 1.54 1.61 1.69 1.46 1.56 1.65 1.76 1.86 1.46 1.58 1.68 1.85 2.03 

Exp->Oxst -0.63 -0.63 -0.64 -0.64 -0.64 -0.63 -0.63 -0.63 -0.63 -0.63 -0.64 -0.63 -0.63 -0.63 -0.63 -0.63 
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Figure 4.6. Model of unmeasured confounding of the effect of oxidative stress on adenoma  
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Table 4.4.  Degree of bias from unmeasured confounder of the effect of oxidative stress on adenoma from Figure 4.6 
  

  
U on Oxstress = 0.33 s.d. U on Oxstress = 0.66  U on Oxstress = 1.0 

  
Changing odds ratios (OR) of U on Adenoma (1.5, 2.0, 3.5) 

Effects Causal OR = 1.5 2.0 2.5 1.5 2.0 2.5 1.5 2.0 2.5 

 
                    

 
  Probability of U exposed = 10% 

Exp -> OxStress -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 

Exp -> Adenoma 0.75 0.77 0.77 0.78 0.78 0.79 0.79 0.78 0.79 0.82 

Oxstress -> Adenoma 2.00 2.05 2.08 2.10 2.10 2.15 2.20 2.14 2.23 2.32 

 
  

         

 
  Probability of U exposed = 25% 

Exp -> OxStress -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 

Exp -> Adenoma 0.75 0.77 0.78 0.79 0.77 0.80 0.80 0.79 0.80 0.81 

Oxstress -> Adenoma 2.00 2.07 2.12 2.14 2.13 2.20 2.27 2.17 2.29 2.38 

 
  

         

 
  Probability of U exposed = 50% 

Exp -> OxStress -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 

Exp -> Adenoma 0.75 0.76 0.78 0.79 0.77 0.80 0.81 0.79 0.81 0.81 

Oxstress -> Adenoma 2.00 2.09 2.12 2.15 2.13 2.20 2.24 2.17 2.25 2.31 
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CHAPTER 5. DISCUSSION AND FUTURE DIRECTIONS 

OVERVIEW OF FINDINGS 

The overall goal of this dissertation was to assess the utility of structural equation models 

(SEMs) with latent variables to study oxidative stress, its determinants, and its association with 

colorectal adenoma.  Specifically, I wanted to know whether a latent variable identified from of 

F2-isoprostanes (FIP), fluorescent oxidation products (FOP), C-reactive protein (CRP), 

mitochondrial DNA (MtDNA) copy number, and γ-tocopherol (Gtoc), would provide a better 

measure of oxidative stress than could be provided via traditional analyses limited to observed 

variables.  Additionally, I was interested in the validity of causal assumptions and the magnitude 

of potential biases pertaining to the SEM method.  The objectives and goals of this dissertation 

were achieved through three distinct but related research projects. 

In the first project, I investigated whether a SEM would suitably identify and characterize 

oxidative stress from the five a priori selected biomarkers (FIP, FOP, CRP, MtDNA copy 

number, and Gtoc).  Using the cross-sectional Markers of Adenomatous Polyps (MAP) studies I 

and II, and the Study of Race Stress and Hypertension (SRSH), a latent variable was constructed, 

primarily from FIP, Gtoc, and CRP, suggesting a common cause of all three biomarkers.  

Additionally, the latent variable was statistically significantly associated with higher BMI and a 

history of smoking in the positive direction, and a history of drinking and regular aspirin use in 

the negative direction.  The latent variable was also associated with several plasma antioxidant 

markers in the theorized directions.  These results provided enough evidence to justifiably call the 

latent variable “oxidative stress”.  The associations of pro- and antioxidant exposures with 

oxidative stress were stronger than the respective associations with each biomarker individually.  

This observation demonstrates that the latent variable provides additional information not 
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obtainable by any single biomarker.  The results of the study also show that the SEM method may 

provide a better measurement of oxidative stress than traditional regression methods. 

In the second project, I examined the association between the latent oxidative stress 

variable and newly diagnosed colorectal adenoma.  The construction of the latent variable was 

similar to that in the first project.  In the SEM analyses, higher oxidative stress was strongly, 

statistically significantly associated with higher odds of colorectal adenoma after adjusting for 

potential confounders.  Moreover, higher BMI, a history of drinking, and regular aspirin use, 

were indirectly associated with colorectal adenoma mediated by oxidative stress.  The results of 

the second project demonstrate that the SEM method may produce a stronger association between 

oxidative stress and colorectal adenoma than what was reported in the literature. 

In the third project, using the previous sections of this dissertation as case examples, I 

critically evaluated the causal assumptions of SEMs when applied to studies of biologic 

phenomena.  Fundamental SEM assumptions involving the latent variable were explicated 

specifically with respect to potential systematic error introduced by information bias, conditional 

selection into the study (a.k.a. collider bias), and confounding was quantitatively assessed through 

Monte Carlo model simulations.  The results from the simulation analyses indicated that the 

magnitude of error from confounding or collider bias, which can be manifested differently in 

SEMs than in traditional regression models, is likely to be modest unless unadjusted factors have 

very strong effects on other variables.  The main concern with information bias in cross-sectional 

studies such as those used in this dissertation is reverse causation.  In our example, if adenoma 

did not affect concurrently measured levels of oxidative stress, then the bias was towards the null.  

Otherwise the bias is expected to be away from the null, and could be quite strong, depending on 

other factors.  It appears that SEMs require strong assumptions but may offer unique research 

perspectives for studies of biologic phenomena.   
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Overall, the results from the three projects were in support of the primary hypothesis that 

a latent variable composed of FIP, FOP, CRP, MtDNA copy number, and Gtoc, would be a valid 

measurement of oxidative stress.  The use of SEM with latent variables adds to the existing 

literature on oxidative stress by offering insights that cannot be obtained from more traditional 

regression analyses.  The latent oxidative stress variable was more strongly associated with a 

health outcome and with pro- and antioxidant exposures than any of its individual markers, and 

while the method makes strong assumptions, the potential biases were unlikely to completely 

explain the observed results. 

Implications and Future Directions 

Although SEMs are common in the fields of psychology, sociology, and economics, they 

are infrequently used in epidemiology (164).  The application of SEMs to study biologic 

processes and phenomena is rare (165), and to our knowledge the studies in this dissertation are 

the first to use SEMs to investigate oxidative stress.   

For measurement of oxidative stress, the next logical step is to include more biomarkers 

of oxidation.  Consideration of the findings in this dissertation should guide the additional 

biomarkers.  Adding 8-oxo-7,8-dihydro-2’-deoxyguanosine could enable the latent variable to 

better measure DNA damage, something we were unable to do with MtDNA copy number.  

Malondialdehyde or another lipid peroxidation biomarker could be used together with FIP for 

better identification of lipid peroxidation.  Oxidized proteins are a significant by-product of 

oxidative stress, and the addition of protein carbonyls could facilitate a more complete latent 

measure of oxidative stress.  Also, including inflammation biomarkers, such as interleukin 6 or 

tumor necrosis factor alpha, may allow for the identification of an oxidative stress and 

inflammation latent variable.  It is possible that with enough markers a SEM can be used to reveal 

multiple constructs that are inter-related in a network of biologic phenomena.  Before 
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constructing a more complex SEM, however, it is important to keep in mind that as the model is 

expanded the number of required assumptions becomes larger.  These additional assumptions 

would have to be backed by strong biologic theory. 

Other future areas of research regarding a latent variable of oxidative stress include using 

different explanatory variables or stratifying populations.  In this dissertation, the exposure 

variables were primarily questionnaire-based lifestyle factors but included some plasma 

antioxidant variables.  Although oxidative stress is affected by exogenous stimuli, it is also 

affected by endogenous enzymatic mechanisms (1).  Heritable genetic factors could influence 

oxidative stress through the modification of enzymes.  Future research of potential genetic 

alterations could find important associations with a latent oxidative stress variable.  Another area 

of research is constructing sex- or race-/ethnicity-specific latent oxidative stress variables.  In this 

dissertation, in which I used relatively small datasets, the loading factors for the latent variable 

were only partially invariant in men and women and across races/ethnicities.  It is possible that 

inherent biologic differences between men and women or across racial/ethnic groups affect the 

measurement of oxidative stress, necessitating stratification of the data in future studies with 

larger sample sizes.   

In the second study of this dissertation oxidative stress was strongly associated with 

colorectal adenoma.  This finding should be interpreted with caution because of the cross-

sectional study design.  It is possible that the measurements of oxidative stress were not causally 

relevant to the development of adenoma.  For future research follow-up studies with oxidation 

measurements assayed at study initiation should be considered.  Longitudinal study designs with 

multiple oxidative stress measurements over time would be more suitable for investigating 

changes in oxidative stress during the development of adenoma; however, such studies may not 

be feasible in large populations.  Since adenoma is a precursor to carcinoma, the next logical step 

would be a similar study of colorectal cancer.  However, colorectal carcinoma is more likely to 
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exert systemic effects, including an increase in oxidative stress, and for this reason, reverse 

causation becomes a particularly relevant concern.  If the goal is to estimate the effect of 

oxidative stress on colorectal cancer, a follow-up study becomes even more necessary.   

Basic science and clinical evidence indicate that oxidative stress can affect the risk of 

many different age-related conditions including several types of cancer and cardiovascular 

disease (7).  Thus, future research directions may include application of SEM with latent 

variables to investigate the role of oxidative stress in other health outcomes as well as, more 

generally, aging and longevity. 
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