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Abstract 
 

Magnitude and Mathematics: Number, Space, and Mathematical Achievement 
 

By Sonia G. Rao 
 

 
There has been substantial research on nonverbal number estimation in adults,  

including the possibility that individual differences in numerical estimation abilities may 

correlate with mathematical performance. Additionally, there is some evidence that spatial and 

numerical processing systems overlap in what is called a general magnitude system (GMS). If a 

GMS exists, then it is conceivable that nonverbal spatial estimation abilities may correlate with 

math achievement as well. This study is the first to examine this relation between magnitude 

estimation, both spatial and numerical, and math achievement in adults at one point in time. 

Preliminary support was found for a relation between both spatial and numerical acuity and math 

performance, opening the possibility that number and space have a common processing 

mechanism relating to math performance.   
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Magnitude and Mathematics: Number, Space, and Mathematical Achievement 

 

“How is it possible simultaneously to view mathematics as a system of transparent truths and as a 

tangle of relations between opaque entities?”  

      -Feigenson, Dehaene, & Spelke (2004) 

 One of the most puzzling aspects of mathematics is the apparent coexistence of both 

accessible and enigmatic concepts.  Additive principles, for instance, are understood even by infants 

and nonhuman animals (Wynn, 1992; Rumbaugh, Savage-Rumbaugh, & Hegel, 1987), and it goes 

without saying that most adults do not find it difficult to understand why the summation of “4” and 

8” cannot equal “1.” On the other hand, certain domains of mathematics are only understood after 

excessive schooling and practice; multiplication tables, algebraic formulas, and negative numbers, 

for instance, are not intuitive concepts. It would not be surprising for us to meet someone with a 

strong math education who needs to use a tip calculator at a restaurant, nor would it be 

incomprehensible that someone may forget whether the multiplication of 7 x 8 is equal to 56 or 48. 

Certain mathematical abilities, then, are taken for granted, and others do not become automatic even 

after years of training. How does this system of mathematics arise and what facilitates our 

comprehension of it? Why is it that some people are better at understanding mathematics than 

others?  What factors are related to higher math performance? These questions, while they will not 

be answered in full by this study, are the impetus for this research, which examines the relation 

between lower-level magnitude processing (i.e., estimation) and higher-level mathematical 

achievement (e.g., calculation).   

Approximate Number System  
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 The notion of an approximate number system (ANS) may hold some explanatory power in 

discerning the origins of numerical understanding and the mechanisms that underlie math 

achievement. The ANS refers to the ability to represent and approximate number nonverbally: that 

is, without counting (Feigenson, Dehaene, & Spelke, 2004; Dehaene, 1997). This approximate 

number system is, at least to some extent, abstract, and thus remains consistent regardless of how 

numerical information is presented, that is, via visual or auditory modalities (Barth, Kanwisher & 

Spelke, 2003; Dehaene, Dehaene-Lambertz & Cohen, 1998). One of the major hallmarks of the ANS 

is its imprecision; representations and approximations of number, in accordance with Weber’s law, 

grow increasingly fuzzy as numerical magnitude grows progressively larger (Dehaene, 1997; 

Dehaene et al. 1998; Feigenson et al. 2004; Pica, Lemer, Izard, & Dehaene, 2004). Accordingly, the 

representation of the number “5” will be more precise than the number “50,” as the ANS’ 

imprecision increases with progressively larger numerical magnitudes. This imprecision is 

particularly salient when making comparisons, or discriminations, of these numerical 

representations, as accuracy decreases as the distance between number sets diminishes—this 

phenomenon is known as the distance effect (Dehaene et al., 1998). For example, in studies where 

adults are presented with arrays of dots and asked to discriminate which set is greater in number 

(Halberda, Mazzocco & Feigenson, 2008; Hurewitz, Gelman & Schnitzer, 2005), participants are 

slower and more inaccurate in making discriminations as the numerical difference between dot 

arrays decreases (i.e. between 10 and 20 as opposed to 10 and 12).  Conversely, they are faster and 

more accurate in making these discriminations as the numerical difference between dot arrays 

increases. These distance effects persist when comparing symbolic representations of number (i.e. 

Arabic numerals). Moyer and Landauer (1967), for example, showed that when adults are asked to 
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compare two Arabic numerals, they are slower and more error-prone in their discrimination when 

the numbers are closer in magnitude (i.e. 9 and 10) than when they are farther apart (i.e. 9 and 4).  

 Although distance effects in number discrimination are fairly robust, observed even in infants 

(Xu & Spelke, 2000; Xu, Spelke, & Goddard, 2005) and animals (Rumbaugh, Savage-Rumbaugh, & 

Hegel, 1987), there is some evidence for individual differences in ANS acuity (Halberda et al., 

2008). In other words, some evidence suggests that certain individuals have a more “fine-tuned” 

ANS than others in that they are able to reliably make numerical discriminations at very low ratio 

differences. If presented with various arrays of dots in a way that prevents counting, for instance, 

they may be able to judge which set is greater in number when sets differ by a ratio of 7:8; others, 

however, may not be able to make this discrimination reliably and instead may be limited to a easier 

ratio difference (i.e., 3:4) at which they can make numerical discriminations above chance.  

Individual differences in ANS acuity may be expressed as a Weber fraction, which indicates the 

amount of error in numerical discrimination based on the just noticeable difference between two sets 

of numbers (Cordes, Gelman, Gallistel, & Whalen, 2001; Halberda et al., 2008; Pica et al., 2004). In 

other words, the lowest difference between numbers, or lowest ratio, that an individual can reliably 

discriminate allows for an assessment of the precision of one’s ANS. For example, if an individual 

can reliably discriminate number sets down to a ratio difference of 9:10 and another individual can 

only reliably discriminate number sets down to a ratio difference of 1:2, then we would conclude the 

former individual has a higher ANS acuity than the latter.   

 In addition to its imprecision, the other major hallmark of the ANS is its independence from 

a learning process (Dehaene, 1997; Dehaene et al., 1998; Feigenson et al., 2004; Pica et al., 2004). 

Infants as young as six months of age are capable of discriminating numbers that vary by a 1:2 ratio 

difference and, like adults, have a threshold ratio at which performance on number discrimination 
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tasks diminishes. Six-month-olds, for example, can only make discriminations between numbers that 

vary by a 1:2 ratio (Xu & Spelke, 2000; Xu, Spelke, & Goddard, 2005), whereas 10-month-olds can 

discriminate ratios up to 2:3, suggesting that discrimination capabilities become more refined 

throughout development. As infants have no explicit training in number understanding, mathematics, 

or counting, their judgments must be based on an internal conception of magnitude that is subject to 

the same Weber-like restrictions of an adult ANS. It is probable, then, that infants already possess an 

ANS, albeit a less refined version, that assists them in discriminating numbers.  

Similarly, studies with nonhuman animals show that they are capable of making number 

discriminations in the absence of explicit mathematical training, suggesting that they, too, make 

numerical judgments based on an internal understanding of magnitude similar to the ANS in 

humans. Rats, for instance, are capable of demonstrating number discrimination by lever pressing, 

and, like infants and adults, their precision on these tasks decreases as the ratio difference between 

number sets decreases (Gallistel & Gelman, 1992; Meck & Church, 1983). Studies of nonhuman 

primates show that chimpanzees are capable of understanding number and proportion (Woodruff & 

Premack, 1981) as well as using additive principles to compare magnitudes of food (Rumbaugh, et 

al., 1987). These demonstrations of numerical understanding in chimpanzees are limited to lower 

numbers, and the use of additive principles to compare food piles is more difficult when the sums are 

close together (i.e., 1+1 and 2+1); these restrictions are highly similar to those associated with the 

human ANS.  

Although it is possible to train animals to perform tasks we associate with higher-level 

mathematical reasoning, such as representing and manipulating numerical values symbolically, such 

training is extensive and produces limited results; this suggests that animals do not automatically 

rely on advanced mathematical reasoning for numerical discrimination tasks (Dehaene et al., 1998; 
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Dehaene 1997).  It would seem likely, then, that animals depend upon an ANS-like mechanism, 

subject to similar Weber-like constraints as the human ANS, to make numerical decisions. The 

presence of an ANS-like mechanism in animals, particularly its presence in non-human primates, 

suggests that the human ANS is an ancient, evolutionary-based system that may be biologically 

determined and perhaps even innate; this further underscores the separation of ANS from learning 

processes.  

 If the ANS is a biologically determined, evolutionary by-product that allows us to estimate 

number through an innate understanding of magnitude, then it is possible that a relationship exists 

between the ANS and higher-level math processes. More specifically, it is possible that our initial 

understanding of number resides in an innate ANS, which becomes the foundational basis upon 

which we build more complex concepts of number and mathematics (Dehaene, 1997; Feigenson et 

al., 2004; Gallistel & Gelman, 1992) As Gallistel and Gelman (1992) argue, the symbolic 

representations of number do nothing to help us understand the mathematical operations in which we 

use them. Nothing about the appearance of the number 4 and the number 1, for instance, gives us 

any indication that their combination is 5 and could not possibly be 3. What makes mathematical 

operations meaningful for us, then, is an internal understanding of magnitude associated with each 

numerical symbol (Gallistel & Gelman, 1992). In this light, our symbolic concept of number, and, by 

extension, the mathematical operations in which these concepts are used, could be mapped onto our 

innate understanding of numerical magnitudes, or our ANS (Dehaene, 1997; Feigenson et al., 2004; 

Gallistel & Gelman, 1992).  

Several studies suggest an intersection between processes associated with ANS and higher-

level mathematical thinking. Symbolic representation of number, for instance, is thought to be a 

more advanced mathematical concept as it assigns arbitrary symbols to various levels of numerical 
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magnitudes. The number 3, for example, is an arbitrary Arabic symbol assigned to a given 

magnitude that can be manipulated in higher-level mathematical operations (i.e. 3+x, 3/x, etc.). As 

discussed earlier, Moyer and Landauer (1967) showed that the discrimination of numbers presented 

as Arabic symbols (i.e. 3 and 8) is subject to the same distance effects that appear when 

discriminating physical representations of number presented in a way that prevents counting (i.e. 

briefly presented arrays of dots). The fact that distance effects appear in both discriminations relying 

on the ANS and in those relying on an understanding of symbolic number suggests a common or 

analogous processing mechanism for approximate and symbolic representations of number, further 

underscoring the relatedness of the ANS and higher-level mathematical processing.  

This overlap between the ANS and higher-level math processes is also suggested by the 

flexibility adults demonstrate when moving from symbolic to approximate numerical representations 

(and vice versa). Whalen, Gallistel, and Gellman (1999) found that when asked to press a lever “x” 

amount of times at a pace too fast to count, adults were able to rely on their ANS to approximate the 

number of presses. Similarly, if a number of tones were presented at a pace too fast to count, adults 

were able to provide an estimate of the number of tones using Arabic symbols. Both studies from 

Whalen et al. (1999) and Moyer and Landauer (1967) suggest some level of overlap between the 

primitive ANS and higher-level mathematical processing, as constraints associated with ANS 

manifest themselves even when number is represented symbolically and adults are able to move 

flexibly from symbolic to approximate numerical representations.  

It should be noted that there are several theories accounting for the process by which 

mathematical concepts such as number symbols are mapped onto a preexisting, nonverbal number 

sense. These theories remain controversial, as the data remain mixed and not enough is known yet 

about the relationship between the ANS and higher-level mathematical understanding (see Rips et 
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al., 2008 for a review). This study, as it will become clear in the upcoming pages, is concerned with 

elucidating the association between the ANS and mathematical reasoning, an important first step in 

ultimately understanding the mechanisms by which these two may be mapped.   

Approximate Number System and Mathematical Achievement 

 Although substantial research has been done on the ANS and its relation to mathematically-

related tasks, few studies have examined the relation between the ANS and mathematical 

achievement. In a recent study, Haldberda, Mazzocco, and Feigenson (2008) examined whether 

individual differences in ANS acuity related to differences in individuals’ level of mathematical 

achievement as measured by standardized testing. Interestingly, ANS acuity scores for 14-year-olds 

correlated with mathematical achievement scores dating all the way back to kindergarten. ANS 

acuity was assessed by presenting a participant with two sets of dots on a computer screen, in this 

case yellow and blue, and asking him or her to indicate which set had the greater number of dots. 

These arrays of dots were presented very rapidly at 200 ms, so as to make counting impossible. 

Differences in number magnitude between the blue and yellow sets differed according to either a 

1:2, 3:4, 5:6, or 7:8 ratio. Individual Weber fractions were obtained from accuracy scores on this 

ANS acuity task and were then correlated with mathematical achievement scores measured by either 

the Woodcock-Johnson III (WJ-III) Calculation subtest or the Test of Early Math Achievement 

(TEMA). These findings underscore the relation between ANS and more advanced mathematical 

thinking that had been suggested previously (i.e. Dehaene, 1997).  

 One particular question that arises when examining the Halberda et al. (2008) study is the 

conceptualization of “math achievement.” Correlations were only reported between ANS acuity 

scores and a few choice subtests from the TEMA or WJ-III, which seems to narrow the operational 

definition of mathematical achievement. The WJ-III, in particular, has four subtests available to 
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assess mathematical ability; however, in this study only correlations with one subtest, Calculation, 

were reported. Mathematical understanding involves far more than just calculation skills; it also can 

refer to a whole host of other abilities including (but not limited to) the ability to represent and 

manipulate objects geometrically, perform mental math, and apply mathematical knowledge to solve 

everyday problems. When assessing mathematical competency, then, it seems more applicable to 

include several measures of mathematical achievement so as to arrive at a more nuanced picture of 

an individual’s competency that reflects ability in a multiplicity of mathematical domains. We can 

then determine to what extent ANS acuity relates to the several different components of 

mathematical achievement. The conceptualization of math achievement is an important issue, and is 

one we will address again in the coming pages dealing with the design of this particular study.  

 

 The Case for Space  

 While we have discussed the relation between the ANS and mathematical achievement, there 

does seem to be another quality, in addition to the ANS that could relate to mathematical 

competence: spatial acuity. There is evidence that suggests the ability to make spatial judgments 

(e.g., individual element size and cumulative surface area), like numerical judgments, is present in 

infants as young as six months of age (Brannon, Lutz, & Cordes, 2006; Clearfield & Mix, 1999; 

Feigenson, Carey, & Spelke, 2002; Gao, Levine, & Huttenlocher 2000) and in nonhuman animals 

(Cheng, 1986, Goutex et al. 2001, Tommasi & Polli, 2004, Vargas et al. 2004).  

 Animal research has shown that rats (Cheng, 1986), rhesus monkeys (Goutex et al. 2001), 

domesticated chicks (Tommasi & Polli, 2004), and even goldfish (Vargas et al. 2004) are capable of 

making spatial judgments. All animals in these studies were placed in a rectangular or rhombus-

shaped enclosure and expected to search for food (or, in the case of the goldfish, an exit into a larger 
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aquarium) in a specific corner, which they had been trained to locate. The layout of the enclosure 

was such that two corners were geometrically identical; that is, in the case of the rectangular 

enclosure, two corners would have the longer wall on the left side and a shorter wall on the right. 

Following training, the animal was disoriented and placed back into the enclosure, requiring it to 

reorient itself and locate the corner containing the food or exit.  In all studies, the animal in question 

searched equally for food or an exit in the geometrically identical corners, suggesting they were 

attending to spatial stimuli to orient themselves and locate the correct corner (Cheng, 1986; Goutex 

et al. 2001; Tommasi & Polli, 2004; Vargas et al. 2004). Although it is unknown whether these 

spatial judgments are subject to any Weber-like constraints (i.e., less accuracy when the length of the 

walls is more similar), this research does provide support the theory that spatial judgments have 

evolutionary roots, and, like the ANS, may be innate.   

 Infant studies have shown both the existence of infant spatial judgments and their adherence 

to Weber’s law. Using a habituation paradigm, Feigenson, Carey, and Spelke (2002) showed that 

six-month-old infants were capable of detecting a 1:2 difference in cumulative surface area, as 

indicated by longer looking times in trials that presented a novel image differing from the 

habituation images by a 1:2 difference in cumulative surface area. Similarly, Clearfield and Mix 

(1999) found six-month-olds dishabituated to test stimuli that differed from the habituation stimuli in 

cumulative contour length (i.e., perimeter) by a 1:2 ratio.  These spatial discriminations in infants are 

subject to the same ratio limits as their numerical discriminations, as six-months’ discrimination of 

surface area differences fail with harder ratios (e.g., 2:3), which is the identical ratio limit associated 

with numerical discrimination in infants of this age range (Brannon et al., 2006).   

Though there are similarities between the ANS and spatial processes, including their 

existence in both infants and animals as well as their adherence to Weber’s law, there is considerable 
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evidence to suggest that these processes are not only similar, but overlap. This overlap between 

spatial and numerical processing is most salient in studies that examine the size congruity effect, a 

phenomenon in which the physical size of Arabic numbers interferes with one’s ability to make 

numerical discriminations (Banks & Flora, 1977).  Henik and Tzelgov (1982) found that, when 

simultaneously presenting adults with the numbers “3” and “5” the physical size of the numbers had 

an effect on the time it took adults to determine which number was larger in magnitude. If spatial 

information was congruent with magnitude differences, i.e. “3” was smaller in physical size than 

“5,” reaction times were very fast. Conversely, adults were much slower to make numerical 

judgments if the spatial information was incongruent with magnitude difference, i.e. when “3” was 

larger in physical size than “5.” Interestingly, this interference of spatial information on numerical 

judgments was applicable in the reverse as well; numerical information was also found to interfere 

with spatial judgments of physical magnitude (Henik & Tzelgov, 1982). For instance, adults were 

much slower to determine a difference in physical size if the larger number was “3” and the smaller 

number “5.” Such interference of numerical information on spatial judgments and vice versa 

suggests that they have a common processing mechanism, or, at the very least, that they are separate 

processes with interfering outputs (Henik & Tzelgov, 1982).  

In another study asking adults to compare magnitudes of dot arrays (Hurewitz et al., 2006), 

spatial information was shown to interfere with adult participants’ nonverbal numerical judgments 

(ANS) and numerical information with nonverbal spatial judgments. Adults were slower, for 

instance, to determine the set of dots that was larger in number if the smaller number set was larger 

in cumulative surface area. Similarly, adults were slower to determine which set of dots was larger in 

cumulative surface area if the larger surface area set was smaller in number. Like Henik and 

Tzelgov’s (1982) study, these results suggest a common processing mechanism or overlapping 
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outputs for numerical and spatial information; however, in this case the numerical processing in 

question is more specific to ANS than symbolic number understanding.  

 Additionally, functional Magnetic Resonance Imaging (fMRI) and electroencephalography 

(EEG) studies have suggested that approximate number and spatial processing have common 

neurological underpinnings located in the right inferior parietal cortex (Dehaene & Cohen, 1999a; 

Dehaene & Cohen, 1999b; Dehaene et al. 1999; Walsh, 2003). Transcranial magnetic stimulation 

(TMS) studies have shown that inhibiting parietal functioning has a detrimental effect on both spatial 

and numerical processing, suggesting a shared location in the cortex (Bjoertomt, Cowey, & Walsh, 

2002; Gobel, Walsh, & Rushworth, 2001). Extending these experimental results further, Walsh 

(2003) proposed that space and number (along with time) are part of a more general magnitude 

system dedicated to overall magnitude processing, whether it be spatial, numerical, or temporal 

magnitudes. A general magnitude system, if it exists, would help explain why spatial and numerical 

information can confound one another, as well as why spatial and numerical processes seem to be 

localized in the parietal cortex (Walsh, 2003). Furthermore, if numerical and spatial processes were 

indeed component parts of a general magnitude system, it is plausible that spatial acuity, like number 

acuity, would be related to mathematical achievement. In other words, the more refined one’s spatial 

acuity abilities are, the higher level of his or her mathematical achievement. If both spatial acuity 

and ANS acuity were found to be related to mathematical achievement, this would provide further 

support for the numerical and spatial processes being interrelated component parts of a general 

magnitude system.  

This Study 

 The purpose of this study is threefold; I first want to replicate Halberda, Mazzocco, and 

Feigenson’s (2008) finding that there are individual differences in ANS acuity, and relatedly, 
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whether individual differences in ANS acuity correlate with mathematical achievement. Second, I 

am interested in whether nonverbal spatial acuity, like ANS acuity, is related to mathematical 

achievement. Third, I am curious to see the extent to which number and spatial acuity correlate with 

different types of mathematical understanding (e.g., calculation, geometry, estimation, etc.)  

This study will be similar in structure to that of Halberda et al. (2008), however with a few 

significant changes. First, in addition to ANS acuity tasks, this study will also include spatial acuity 

tasks. Second, a larger battery of standardized tests will be used to assess mathematical achievement. 

In addition to the Calculation subtest from the WJ-III, three more WJ-III math subtests will be used, 

as well as three subtests from the KeyMath Diagnostic Assessment.  The use of additional WJ-III 

subtests as well as those from KeyMath provides the opportunity to see if any specific mathematical 

skills are more or less correlated with spatial acuity, and also allows for a broader operational 

definition of “mathematical achievement.” Third, this study is the first of its kind to examine the 

relation between magnitude processing and mathematical achievement in adults at one point in time, 

and therefore will provide a valuable perspective on the nature of this interaction.  My hypotheses 

for this study are as follows:  

H1: There will be individual differences in ANS acuity. 

 H1A: If a relation between ANS acuity and mathematics exists, there will be  

 correlations between ANS acuity levels and the standardized test scores measuring  

mathematical achievement, consistent with Halberda et al. (2008).    

H2. There will be individual differences in spatial acuity. 

 H2A: If a relation between spatial acuity and mathematics exists, there will be 

 correlations between spatial acuity levels and the standardized test scores  

 measuring mathematical achievement, consistent with Halberda et al. (2008) 
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H3: If a general magnitude system is related to mathematical achievement, then both spatial 

acuity and ANS acuity levels will correlate with standardized test scores measuring 

mathematical achievement.   

H4: Some subtests of the WJ-III and KeyMath will be more correlated with ANS acuity 

and/or spatial acuity than others. Although Halberda, Mazzocco, and Feigenson (2008) found 

WJ-III Calculation subtest scores correlated with ANS acuity, there is evidence suggesting 

that calculation skills are perhaps more learning-based and rely on other parts of the parietal 

lobe, specifically those associated with language (Dehaene & Cohen, 1999; Dehaene et al., 

1991). In this light, certain subtests such as Mental Computation and Estimation may be 

more highly correlated with ANS and/or spatial acuity because they require use of estimation 

skills associated with nonverbal numerical and spatial judgments.  

Methods 

Participants 

Participants were recruited from two introductory psychology courses and one cognitive 

development course at Emory University. In exchange for participation, they received research credit 

that contributed to their grade in one of these courses. The majority of the 37 participants in this 

study were female (62.2%) and psychology majors (51.2%). The next three most common majors 

were undecided (16.3%), business (7.0%), and economics (7.0%). The average age of participants 

was 19.27 years (SD = 1.08), and the average number of mathematics courses taken at a college level 

was 1.92 (SD = 1.32). Average SAT math scores were relatively high (M = 707.10, SD = 52.54), as 

were SAT verbal scores (M = 683.55, SD = 60.36) and ACT math scores (M = 30.0, SD = 2.58).  All 

procedures were approved by the local ethics committee. 

Procedure 
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Before beginning the study, participants signed a consent form, which outlined the tasks 

associated with their participation, as well as a math education background form, which asked 

participants to list previous math courses taken since high school and provide their SAT and/or ACT 

scores. Although data from the math education background form was not used in the final analyses, 

it was collected for pilot work for future research.  Once finished with these forms, participants first 

completed a computerized task that assessed numerical and spatial estimation ability, and then they 

underwent a battery of standardized tests that assessed mathematical competence. On average, the 

total testing time for each participant was one hour and 40 minutes.  

Computerized tasks: number and space estimation. The purpose of the computerized task 

was to assess each participant’s ability to make numerical and spatial estimations without relying on 

explicit calculation strategies. To this end, the computerized portion was divided into two tasks: one 

that involved estimating numerical values (Number Task) and another that involved estimating the 

cumulative surface area (Space/Area Task). In both the Number and Space/Area Tasks, participants 

were asked to make ordinal judgments; that is, to choose the larger set with respect to number or 

cumulative surface area. The order of the Number and Space/Area Tasks was counterbalanced so 

that half the participants received the Number Task followed by the Space/Area task and half 

received the Space/Area task followed by the Number Task.  

 Stimuli. For both the Number and Space/Area Task, participants were shown images 

containing both brown and blue circles. The blue and brown colors used were controlled for 

luminance so that one color was not more salient than the other. Images were presented on a 30 x 

37.5 cm computer screen at a visual angle of 1.36. In each image, the brown circles differed from the 

blue circles in terms of total number or cumulative surface area depending on the task. On the 

Number Task, one set of circles, either blue or brown, was larger in number than the other set, with 
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equivalent cumulative surface area for each trial. Cumulative surface area varied across trials (Figure 

1). In the Space/Area Task, one set of circles, either blue or brown, had a larger cumulative surface 

area than the other set, with total number of circles held constant across both groups. The total 

number of circles varied across trials (Figure 2). The controls for each task helped to ensure that 

participants made numerical or spatial judgments without an influence from the other variables, for 

instance numerical information interfering with spatial judgments, and vice versa. The color 

assigned to the larger number or larger surface area was counterbalanced across trials. Differences in 

either surface area or number between the two color groups were of one of the following ratios: 1:2, 

3:4, 5:6 7:8, and 9:10 (see Tables 1 and 2). An equal number of trials, 26, were assigned to each ratio 

in both the Number and Space/Area Task. Additionally, the spacing of circles on each image was 

varied; specifically, they could be considered either clustered or spread out. Spacing was 

counterbalanced across tasks and ratios.   

 Design. The computerized task was run through E-Prime software (Psychological Software 

Tools, Pittsburgh, PA). The task was divided into four blocks, two devoted to the Number Task and 

two devoted to the Space/Area Task.  At the beginning of each section, participants were presented 

with an instructional screen explaining the task and allowing for questions of the experimenter 

before they began. For the Number Task, participants were asked to indicate which color of circles 

was largest in number. For the Space/Area Task, participants were asked to indicate which color of 

circles was greater in cumulative surface area. Participants were then given 10 practice trials 

followed by 60 test trials for each section, for a total of 40 practice trials and 240 test trials across all 

four blocks of the two tasks.     

 For each trial, a blank screen was presented for 250 milliseconds followed by the test image 

for 250 ms, and then a blank screen that gave participants unlimited time to indicate their answer. 



16 
 

Each image was presented for such a short amount of time to prevent participants from counting or 

using any other strategy other than instinctual estimation.  Responses were indicated using a color-

coded keyboard that had one blue and one brown sticker, each covering the left and right keys (e.g. 

blue on the left and brown on the right). These stickers were switched after completion of each 

block, so that one section of both the Number and Space/Area Tasks was allotted for the right key to 

be associated with ‘brown’ and left key to be associated with ‘blue,’ and one section of both the 

Number and Space/Area Task allotted for the reverse. Whether the left key or the right key started 

with the brown sticker was counterbalanced across participants and experimental conditions so that 

any participant could be given one of four possible trials: area tasks first with the right key 

associated with brown first, area tasks first with left key associated with brown first, number tasks 

first with right key associated with brown first, and number tasks first with left key associated with 

brown first. The entire computerized task took approximately 20 minutes to complete.  

Standardized Testing. Once finishing the computerized portion of the experiment was 

completed, each participant was given a battery of standardized tests selected from the Woodcock-

Johnson III Tests of Achievement (WJ-III) and KeyMath-3 Diagnostic Assessment (KeyMath-3). 

For each participant, all WJ-III subtests were administered prior to those from KeyMath-3. This was 

because use of the KeyMath-3 subtests was exploratory, and if unforeseen time constraints arose 

during the study it was important to ensure that all Woodcock-Johnson III subtests had been 

completed. Two participants did not have enough time to complete the final KeyMath subtest, 

Mental Computation/Estimation, and one participant did not have enough time to complete any 

KeyMath subtests.  

Woodcock-Johnson (III) Tests of Achievement. Each participant completed six subtests of 

the Woodcock-Johnson III Tests of Achievement, four of which pertained to mathematical aptitude 
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and two of which pertained to vocabulary knowledge. Each subtest was administered according to 

the guidelines set forth by the Woodcock-Johnson III Tests of Achievement manual.  

Mathematical subtests. The four mathematical subtests from the Woodcock-Johnson 

III Tests of Achievement were: Calculation, Math Fluency, Applied Problems, and 

Quantitative Concepts. The Calculation subtest has a median reliability of .89 and is 

comprised of 45 problems that assess addition, subtraction, multiplication, and division 

ability; it also includes some questions on geometric, trigonometric, logarithmic, and calculus 

operations, though there are fewer questions of these types. (Mather & Woodcock, 2001).  

The Math Fluency subtest (reliability = .92) is a timed test which measures a participant’s 

ability to solve addition, subtraction, multiplication, and division problems quickly and 

accurately; each participant had three minutes to complete 160 simple arithmetic problems 

such as “5x4” or “4+3.” The Applied Problems subtest (reliability = .95) assesses 

participants’ ability to solve mathematical story problems, requiring them to attend to the 

relevant information necessary to solve each problem using mainly addition, subtraction, 

multiplication, and division principles.  The Quantitative Concepts subtest (reliability = .90) 

was divided into two sections, the first of which assessed a participant’s knowledge of 

mathematical concepts and symbols and the second the participant’s ability to find patterns in 

numerical sequences.  

Scores from each mathematical subtest could be combined with others to obtain 

cluster scores, which provide a more comprehensive picture of mathematical aptitude. For 

each participant, three cluster scores were obtained using an aggregate of standard scores 

from various mathematical subtests: Broad Math, Math Calculation Skills, and Math 

Reasoning. The Broad Math cluster score (reliability = .96) was formed from a combination 
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of Calculation, Math Fluency, and Applied Problems; it is considered a more comprehensive 

measure of math achievement. The Math Calculation Skills cluster score (reliability = .94), a 

combination of Calculation and Math Fluency, served as a general measure of computational 

skills and basic mathematical knowledge. Finally, the Math Reasoning cluster score 

(reliability = .97) measured a participant’s level of math knowledge and reasoning; it was 

obtained through combining Applied Problems and Quantitative Concepts. 

Vocabulary subtests. The two vocabulary subtests in the Woodcock Johnson III Tests 

of Achievement were Picture Vocabulary and Reading Vocabulary. The Picture Vocabulary 

subtest (reliability = .90) assessed lexical knowledge through the identification of objects 

(Mather & Woodcock, 2001). The Reading Vocabulary subtest (reliability = .92) was divided 

into three sections: Synonyms, Antonyms, and Analogies. The Synonyms section required 

reading words out loud and providing synonyms, the Antonyms section reading words aloud 

and providing antonyms, and the Analogies section reading three words of an analogy aloud 

and providing the fourth word to complete the analogy.  

Procedure. The Woodcock-Johnson allows for subtests to be administered in any 

order provided the experimenter completes each subtest before moving on to the next 

(Mather & Woodcock, 2001), and in this study all math subtests were administered first 

followed by vocabulary subtests. Each participant received the Woodcock-Johnson subtests 

in the following order: first, Calculation, followed by Math Fluency, Applied Problems, 

Quantitative Concepts, Picture Vocabulary, and Reading Vocabulary. Though the basal and 

ceiling values varied depending on the subtest, each participant, regardless of the subtest, 

received one point for every correct answer and zero points for every incorrect or omitted 

answer to obtain a raw score for each mathematical subtest. These scores were then entered 
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into Compuscore® and Profiles Program, a Woodcock-Johnson software, in order to obtain a 

standard score for each subtest. Compuscore® was also used to obtain cluster scores using 

the mathematical subtests.  

 KeyMath-3 Diagnostic Assessment. In addition the Woodcock-Johnson subtests, 

participants completed three subtests from KeyMath-3 Diagnostic Assessment Form A (KeyMath-3 

DA): Numeration, Geometry, and Mental Computation and Estimation. The Numeration subtest 

assessed a participant’s basic mathematical competence, using an assortment of questions that 

required an understanding of basic arithmetic, geometry, fractions, numerical estimation, and 

mathematical terminology. The Geometry subtest assessed a participant’s geometry understanding 

by asking him or her to calculate dimensions of simple shapes, rotate objects mentally, and identify 

similarities and differences between two or more objects. The Mental Computation and Estimation 

subtest required the participant to mentally compute mathematical problems to either give an exact 

or estimate of the answer, and therefore provided an assessment of a participant’s ability to perform 

mental math. When asked to give an estimate answer, participants had to provide an answer within a 

range provided by KeyMath. For each subtest, the basal was three and the ceiling was four; one 

point was given for every correct answer, and zero points for every incorrect or omitted answer to 

compile a raw score. Raw scores were converted to scaled scores using KeyMath-3 DA Normative 

and Interpretive Tables.  

Results 
 
ANS Acuity and Math Achievement  

 The first hypothesis concerning the ANS was that there would be individual differences in 

ANS acuity. In accordance with previous studies on the ANS, it was expected that performance on 

the Number Task would improve as the ratio difference between number sets increased (Barth, 
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Kanwisher & Spelke, 2003; Cordes, Gelman & Gallistel, 2001; Halberda, Mazzocco, & Feigenson, 

2008). The data do suggest that performance improved as the ratio difference between numbers 

increased because when plotting all participant data (Figure 3), the resulting slope significantly 

differs from zero (t (36) = 7.852, p <.001).  Average performance at all ratios was significantly 

above chance with exception of performance at Ratio 7:8 (M = .49, SD = .11) which not significantly 

different from chance (t (36) = -.578, p = .567) and Ratio 5:6 (M = .53, SD =. 12) which was also not 

significantly different from chance (t (36) = 1.38, p = .177). Interestingly, average performance 

seems to hover around 50-60%, but significantly above chance (t (36) = 2.41, p < .05), for the four 

lowest ratio differences (M = .54, SD = .04) before jumping to 80% at the highest ratio difference of 

1:2 (Figure 3). The average performance at ratio 1:2 (M = .76, SD =.16)  was significantly different 

from the average performance of all other ratio differences  (t (36) = -8.08, p < .001). That 

performance makes a significant jump from just over 50% to 80% only at the highest ratio difference 

may suggest that these adults are atypically inept at making numerical discriminations; 14-year olds 

in Halberda et al.’s (2008) study responded at a performance level just above 60% for their hardest 

ratio difference of 7:8, and we would expect adult acuities to have been at least this high. Another, 

more likely reason for these adults’ atypically low performance could be that this number 

discrimination task was particularly difficult for some other reason distinct from an inability to make 

numerical discriminations (see general discussion).  

In order to assess whether there were individual differences in ANS acuity, ANS acuity 

scores were calculated. An individual’s acuity score was the ratio difference at which he or she could 

accurately differentiate between number sets 75% of the time. These acuity scores (M=1.79, SD= 

.44) were found by modeling each participant’s data so as to extract the ratio value that resulted 

when his accuracy was at 0.75, the same threshold value used by Halberda et al. (2008). Data were 
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either modeled to a linear or logarithmic function to extract the ratio value at 0.75, and, in the case of 

the ANS data, a linear function was used because it fit the data significantly better than a logarithmic 

function (t (36) =11.439, p < .001). Six participants were dropped from the analyses because their 

data could not be fit to a linear model. Ultimately, there were individual differences found in ANS 

acuity scores, with values ranging from 0.02 to 2.55 (Figure 4).  

 The second hypothesis concerning the ANS was that there would be a correlation between 

the individual differences in ANS acuity and mathematical achievement; that is, the lower the ratio 

an individual could discriminate 75% of the time, the higher his or her math standardized test scores. 

In order to examine the relation between ANS acuity and mathematical achievement, standardized 

scores from the WJ-III and standard scores from KeyMath (Table 3) were correlated with ANS 

acuity scores (Table 4).  Performance was relatively uniform for both the WJ-III (Figure 5) and 

Keymath (Figure 6) subtests. While none of these correlations were statistically significant, the WJ-

III Calculation, WJ-III Math Fluency, KeyMath Numeration, KeyMath Geometry, and Keymath 

Mental Computation/Estimation subtests all had correlations within the range of .117 and .326, 

which is noteworthy because all correlations in this range were found to be significant in Halberda, 

et al.’s (2008). As Halberda et al. (2008) tested over 60 participants and this study only included 31 

in its ANS analyses, the non-significance of this study’s correlations may be attributed to a lack of 

statistical power.  

Partial correlations controlling for more general intelligence factors, assessed by the WJ-III 

Picture Vocabulary and the WJ-III Reading Vocabulary subtests, were also performed to determine 

whether the correlation between ANS acuity and math achievement was due to differences in ANS 

acuity or more general performance factors (Table 5). In most cases, controlling for either Picture 

Vocabulary or Reading Vocabulary resulted in a decrease in correlations, and this decrease was 
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nearly always greater when Reading Vocabulary was controlled. These decreases in correlation 

when controlling for general intelligence factors could suggest that general cognitive abilities play, 

at least some role, in the relationship between ANS acuity and mathematical achievement. Further, 

the fact that correlations decrease more when Reading Vocabulary is controlled could suggest that 

the skills assessed in the Reading Vocabulary subtest are more entwined in mathematical processes 

than the skills assessed in the Picture Vocabulary subtest. It is important to keep in mind, however, 

that these fluctuations in the data may be the result of lack of power, and should thus be interpreted 

with caution. Even with correlation decreases when controlling for general intelligence factors, 

however, it is important to note that the correlations associated with the WJ-III Calculation, WJ-III 

Math Fluency, KeyMath Numeration, KeyMath Geometry, and Keymath Mental 

Computation/Estimation all remained within the .117 to .326 range found significant in Halberda et 

al. (2008).  

There were some instances where correlations increased when controlling for general 

performance factors, as was the case for the WJ-III Math Fluency subtest and WJ-III Broad Math 

and WJ-III Math Calculation Skills cluster scores (Table 5). Correlations for WJ-III Broad Math and 

WJ-III Math Calculation Skills showed particularly large changes when controlling for language 

measures moving from correlations that were close to 0 (r (29) = .078, p = .648 and r (29) =.009, p = 

.957, respectively) to values within the range of those found to be significant in Halberda et al. 

(2008). These increases in correlations when more general intelligence factors are controlled support 

the idea that the relation between ANS acuity and mathematical achievement is due to individual 

differences in ANS acuity rather than general cognitive performance factors.  In all three cases, 

correlations were lower when Reading Vocabulary was controlled, although for WJ-III Math 

Fluency this difference was only 0.01. Again, that the increase in correlations is less when Reading 
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Vocabulary is controlled as opposed to Picture Vocabulary is consistent with the notion that Reading 

Vocabulary assesses skills more deeply connected to mathematical processing; however, as indicated 

above, fluctuations in the data may be due to lack of statistical power and thus should be interpreted 

cautiously.  

Spatial Acuity and Math Achievement  

 The first hypothesis concerning spatial discrimination was that there would be individual 

differences in spatial acuity. As in the Number Task, it was expected that performance on the 

Space/Area task would increase as the ratio difference between sets increased, in accordance with 

Weber’s law and previous studies on spatial discrimination  (Brannon et al. 2006). For nearly all 

participants, performance on the Space/Area Task increased as the ratio difference of surface area 

increased (Figure 6). Performance leveled off as ratio differences approached the highest level of 2, 

which is consistent with standard psychophysical patterns of performance (Shepard, 1987; Stevens 

& Marks, 1965). Since overall performance on the Space/Area task was significantly better than the 

average performance on the Number Task (t (36) = 5.03, p <.001), it could be argued that 

participants were inherently better at making spatial discriminations. Another, perhaps more likely, 

possibility is that the spatial discrimination task was markedly easier for some other reason distinct 

from an inherent ability to make spatial discriminations more easily than numerical discriminations 

(see general discussion).  

To assess whether there were individual differences in spatial acuity, spatial acuity scores 

were calculated. An individual’s spatial acuity score was the ratio difference at which a he or she 

could accurately differentiate cumulative surface area between sets 75% of the time. In this case, a 

participant’s data was fit to a logarithmic model so as to extract the ratio value at 0.75 accuracy, 

since a logarithmic model fit the data significantly better than a linear model (t (36)=8.949, p<. 
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001). Nine participants were dropped from the analyses because their data could not be fit to a 

logarithmic model. There were individual differences found in spatial acuity scores, (M=1.65, SD=. 

44), ranging from 0.32 to 7.80 (Figure 7). 

 The second hypothesis concerning spatial discrimination was that individual differences in 

spatial acuity would correlate with math performance; more specifically, that the lower the ratio 

difference an individual could discriminate 75% of the time, the higher his or her scores on 

standardized math tests.  To assess this hypothesis, spatial acuity scores were correlated with 

standardized scores from the WJ-III and standard scores from KeyMath (Table 6). Although none of 

these correlations were statistically significant (at p < .05), several subtests reached levels within the 

range found to be significant in Halberda et al. (2008), including WJ-III Calculation, WJ-III Math 

Fluency, WJ-III Quantitative Concepts, WJ-III Math Calculation Skills, KeyMath Geometry, and 

KeyMath Mental Computation/Estimation.  Only one cluster score, WJ-III Math Calculation Skills, 

had a correlation within the range found significant in Halberda et al. (2008). As previously 

discussed, the non-significance of the correlations in this study could be attributed to a lack of 

power, given the low number of participants in our study compared to that of Halberda et al. (2008).   

 Partial correlations controlling for more general performance factors, assessed by the WJ-III 

Picture Vocabulary and the WJ-III Reading Vocabulary subtests, were also performed to determine 

whether the correlation between spatial acuity and math achievement was due to differences in 

spatial acuity or more general performance factors (Table 7). In many cases, several correlations 

decreased when controlling for general performance factors in comparison to those correlations 

found when intelligence factors were not controlled. It should be noted, however, that decreases in 

correlations found to be in the significant range for Halberda et al. (2008) remained well within that 

range, even with this decrease.  There was also a substantial number of correlation increases when 
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controlling for general performance factors, although no increases showed any marked difference 

that we saw in the ANS acuity data; all correlation increases happened to subtests that had higher 

correlations to begin with. Interestingly, as in the partial correlations with ANS acuity and 

mathematical achievement, decreases in correlation were larger when Reading Vocabulary was 

controlled and increases in correlation were larger when Picture Vocabulary was controlled. This 

pattern remains consistent with the possibility of skills assessed in the Reading Vocabulary subtest 

being more intimately connected with mathematical competence (see general discussion). However, 

as discussed earlier, these fluctuations in correlation values should be interpreted cautiously given 

that they do not reach statistical significance.   

Correlations with Specific Mathematical Subtests  

 Our final hypothesis posited that some mathematical subtests would be more or less 

correlated with acuity scores than others, and the data are consistent with this possibility. The 

subtests WJ-III Calculation, WJ-III Math Fluency, KeyMath Geometry, and KeyMath Mental 

Computation/Estimation had consistently higher correlations with both spatial and numerical acuity 

scores. The cluster scores WJ-III Broad Math, WJ-III Math Calculation Skills and WJ-III Math 

Reasoning Skills also reached higher correlations with both spatial and numerical acuity scores.  On 

the other hand the WJ-III Applied Problems was a subtest with consistently low correlations with 

both spatial and numerical acuity scores. Certain subtests, such as the WJ-III Quantitative Concepts 

and KeyMath Numeration, showed some differentiation in relation to ANS and spatial acuity scores 

in that high correlations existed in one magnitude relationship but not the other. For example, the 

WJ-III Quantitative Concepts had a higher correlation with spatial acuity scores (r (26)= -.167, p = 

.422), however its correlation with ANS acuity scores was much lower (r (29) = -.092, p = .643). 

Similarly, KeyMath Numeration showed a much higher correlation with ANS acuity scores (r (29) = 
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-.272, p = .161) than with spatial acuity scores (r (26) = .004, p = .984). While these patterns are 

being drawn from nonsignificant correlations and thus must be interpreted carefully, it is interesting 

to note that, at least preliminarily, certain biases may exist in mathematics that favor a relation with 

either spatial or numerical processes but not both.  It is important to note, however, that the majority 

of these subtests were approaching significant relations with both spatial and numerical acuity 

scores, suggesting that special relationships between certain math abilities and certain magnitude 

acuities is more of a nuance than a rule.  

Discussion 

 Although none of our results were statistically significant, trends in these data provide 

preliminary support for the existence of individual differences in both ANS and spatial acuity, as 

well as correlations between these individual differences and mathematical achievement. 

Importantly, specific mathematical subtests (e.g., calculation) were more related to acuity scores 

than others (e.g., applied problems), suggesting that magnitude estimation (whether number or 

space) may vary in its relation to specific mathematical abilities.  These findings collectively support 

the idea of a general magnitude system (GMS) relating to several facets of mathematical 

achievement, and implications and theoretical questions surrounding these ideas will be discussed in 

greater detail below. Before arriving at these points of interest, however, it is necessary to discuss 

some less central results that were particularly puzzling.  

To begin, average performance on the Space/Area Task was considerably higher than 

performance on the Number Task. As briefly discussed above, there are two potential explanations 

for this discrepancy: either these participants were simply less adept at making numerical 

discriminations, or the Number Task was more difficult than the Space/Area Task. That these 

particular adults are unable to make numerical discriminations seems unlikely; all were students at a 
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selective university with high average SAT scores (M =683.55, SD = 60.36) and ACT scores (M = 

30.0, SD = 2.58). Although some literature suggests numerical discriminations are easier than spatial 

(Brannon, Abbott, & Lutz, 2004; Cordes & Brannon, 2008), these studies are in infants. Some adult 

studies (Hurewitz, Gelman, & Schnitzer, 2006) suggest that processing spatial information is far 

easier and more automatic than processing numerical information, however we must ultimately 

consider that  the average accuracy on the Number Task (M = .58, SD =. 10) was far lower than the 

average accuracy (about .76) for the 14-year olds in Halberda et al. (2008). Even if number 

information is more difficult to discriminate, we would expect adults to have at least the same, if not 

higher, average performance levels as teenagers.  

Perhaps the more likely reason for this difference in performance is that the Number Task 

was more difficult than the Space/Area Task, and with some scrutiny of the stimuli, it seems this 

may have been the case. As discussed in the Methods section, cumulative surface area was equal 

between the two sets of circles in the Number Task; this was to prevent surface area from facilitating 

numerical judgments, as the larger number of circles would necessarily have the larger cumulative 

surface area without this control. As a result, however, controlling for cumulative surface area may 

have created interference from individual circle sizes, making this task more difficult. Because each 

set of circles needed to have the same cumulative surface area, the set with the larger number of 

circles necessarily had smaller individual circles on average. For example, if one set of circles 

totaled 5 in number, the other totaled 6 in number, and both sets needed to have a cumulative surface 

area of 2.237 (see Figure 1), then the set with 5 circles had an average circle size of .238 cm2, while 

the set with 6 circles had an average diameter of .639 cm2. Spatial information in the form of circle 

size, thus, may have conflicted with numerical judgments because the larger set of circles in number 

was also the smallest in average size of circles. As we know from previous studies on spatial and 
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numerical judgments, when spatial information conflicts with numerical information, accuracy 

suffers (Henik & Tzelgov, 1982; Hurewitz, et al., 2006). 

Another puzzling finding less central to our main hypotheses was the overall decrease in 

partial correlations when reading vocabulary was controlled as opposed to picture vocabulary. As 

discussed earlier, these fluctuations should be interpreted cautiously because the findings to not meet 

statistical significance; however, this trend does coincide with some literature on mathematical 

achievement, particularly studies that assess math aptitude in patients with brain lesions. Dehaene 

and Cohen (1997) found that a patient with damage to parts of the brain associated with verbal 

processing had difficulty in tasks that required him to use knowledge encoded verbally (i.e. 

mathematical times tables), suggesting that there is a verbal processing component to mathematical 

achievement. Albeit speculative, the skills assessed in Reading Vocabulary could account for some 

of the verbal components necessary for math achievement. More participants would need to be 

added to the data to see if this trend persists.  

Theoretical Questions  

 The first major theoretical question to consider is the nature of a general magnitude system 

(GMS). What exactly does this GMS look like? Walsh (2003) makes two suggestions for the layout 

of a GMS, the first of which suggests space, number, (and time) are all processed individually and 

then compare and communicate information afterward. In this model, different dimensions of 

magnitude are all processed uniquely and the overlap between them occurs from communication 

after they are processed. The second model suggests that space, number, and time involve shared 

neural mechanisms, thus the overlap between them occurs during initial processing. There is also the 

possibility that these models are not mutually exclusive, and either elected for use separately or 

simultaneously depending on the stimuli being processed or perhaps an individual’s developmental 
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age. For example, number and space could exist as overlapping systems with more common 

processing mechanisms early in development, allowing for numerical cues to be extracted from 

spatial information, such as cumulative surface area. As individuals learn more about number and 

numerical concepts, the number processing mechanisms could become more differentiated from the 

spatial, connecting instead to areas associated with more explicit mathematical reasoning (i.e. 

language). As a result, connections between spatial and numerical processing occur as 

communication after the initial information has been processed.  

 Although this study cannot speak directly to neural mechanisms, the data seem more 

consistent with the idea that number and space share common processing mechanisms. Initially, it 

would seem that because this study assessed acuity levels separately for spatial and numerical 

discrimination, it necessarily treated space and number processes as separate entities potentially 

encompassed in a larger GMS. However, my results seem to show more support for a common 

processing mechanism for space and number. For example, in the Number Task, I have suggested 

that specific spatial cues (i.e. individual circle size) affected number acuity, perhaps leading to worse 

performance because of the inconsistent spatial information (i.e., the greater number set was smaller, 

on average, with respect to circle size). If spatial and numerical information is truly processed 

independently, then we would not expect any conflicting spatial information to be detrimental to 

numerical judgments; however, this did not seem to be the case. In fact, that our experimental 

controls were necessary at all (for surface area in the Number Task and number in the Space/Area 

Task) might be considered indirect evidence for an overlapping processing mechanism that must be 

manipulated in order to arrive at purely spatial or numerical judgments. 

 With respect to the layout of the GMS that relates to mathematical ability, our results again 

support a common processing mechanism. Only two of the eight subtests with correlations in the 



30 
 

range found significant by Halberda et al. (2008) were only related to either spatial or numerical 

acuity; the remaining six showed high correlations with both spatial and numerical acuity.  If the 

GMS consisted of disparate space and number processing systems, then we would likely see 

different relations between space, number, and the various mathematical subtests. It is important to 

note here that I have not completely ruled out general intelligence factors here, as I have only used 

two vocabulary subtests, so it is possible that commonalities in the spatial and ANS data reflect more 

general performance factors. However, the fact that, at least preliminarily, correlations between math 

and spatial acuity and math and ANS look fairly similar suggests more commonalities between 

spatial and numerical processing systems, which is more in line with Walsh’s (2003) conception of a 

GMS existing as a common processing mechanism between space, number and time. Again, it is 

important to further note that none of these results are significant, and an increase in the number of 

participants may alter this pattern even to the point of supporting the model of a GMS with separate 

number and space processing centers.  

 In addition to discussing the possible formats of magnitude systems, it is also important to 

discuss the consistency of the other major concept in this study: mathematical achievement. This 

study broadened the operational definition of mathematical achievement to include more subtests 

than were reported in Halberda et al. (2008), including three additional WJ-III subtests and three 

subtests from KeyMath. I had initially predicted that some subtests would be more or less correlated 

with spatial/ANS acuity scores, and this seemed to be the case. While several of the subtests were 

correlated with both ANS/spatial acuity scores, one score, in particular, was not correlated with 

either acuity score: Applied Problems. This supports the idea that mathematics can be defined as 

several component parts spanning variety of abilities, as opposed to simply the calculation abilities 

reported in Halberda et al.’s (2008) paper, and further, that basic estimation processes employed 
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during numerical and spatial processing may not relate equally to all aspects of math. Additionally, 

these results also support the notion that magnitude systems can correlate with a variety of 

mathematical abilities rather than simply the ones we may consider to be the most obvious, for 

example, ANS with calculation and spatial acuity with geometry. It would be critical to determine 

whether increasing the power of this data set would result in stronger correlations for all subtests, or 

if certain subtests would emerge as more significant than others. Additionally, it would be 

informative to assess whether increased power would reveal more biases of subtests; for instance, 

that some subtests would only have significant correlations with ANS acuity as opposed to spatial 

acuity.  

The final major theoretical question that arises here is a question of directionality: is it the 

approximate number/spatial systems (or perhaps GMS) that impact mathematical achievement, or is 

it mathematical achievement impacting the precision of the approximate number/spatial systems? In 

other words, are people who have higher spatial/ANS acuity better at math because these estimation 

abilities serve as a foundation for higher-level mathematical reasoning, or is it because better math 

skills lead to a higher accuracy in estimation skills? Although this study cannot decisively answer 

questions of directionality, it is interesting to consider the plausibility and implications of each 

scenario.  

 Several researchers (Dehaene, 1997; Feigenson et al., 2004; Gallistel & Gelman, 1992; 

Haberda et al., 2008) are proponents of the notion that magnitude systems impact later mathematical 

achievement. The primacy of an approximation system, for instance, suggests that it is the founding 

point for all of mathematical thought; we begin with an innate mechanism for understanding 

quantity, and this mechanism serves as the basis for which we apprehend symbolic representations 

of number and the mathematical operations in which they are involved. This perspective provides a 
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nativist account on mathematical achievement; if math performance is based on the acuity of an 

innate magnitude system, then we are either endowed with the tools for mathematical success or we 

are not. Mathematical success, then, can be attributed to a highly refined magnitude approximation 

mechanism; those who are good at math may find success because they are able to represent 

numerical (and perhaps spatial) values more precisely, which comes in handy when it is time to 

manipulate these numbers mathematically. As the mathematician Wim Klein says (in Dehaene, 

1997), “Numbers are friends to me, more or less. It doesn’t mean the same for you, does it, 3,844? 

For you it’s just a three and an eight and a four and a four. But I say: ‘Hi, 62 squared!’” 

 Support for this nativist account comes in part from studies that attempt to change the 

precision of magnitude systems. For example, Dehaene (1997) attempted to eradicate the distance 

effect by having adults extensively practice a comparison task. Adults were asked to indicate using a 

keyboard whether the digit they were presented with was smaller or larger than “5,” pressing the 

left-hand key if the digit was smaller, and the right-hand key if the digit was larger. The task was 

fairly simple and straightforward in that only numbers used in the task were 1, 4, 6, and 9, so the task 

was essentially to push the left key for “1” and “4,” and push the right key for “6” and “9.” 

Surprisingly, even after 1,600 training trials, adults remained slower in indicating an answer if the 

numbers presented were closer to “5” (i.e. 4 or 6) than if they were farther away (i.e. 1 or 9). The 

fact that such a salient property of the ANS remains unaltered in spite of a direct attempt to change it 

makes the notion of mathematical experiences refining or changing the composition of the ANS or 

other magnitude systems seem unlikely.  Further cementing the unlikelihood of math achievement 

impacting magnitude systems is the fact that distance effects appear even when professional 

mathematicians make these numerical discriminations (Dehaene, 1997), suggesting that neither 

directed practice nor mathematical experience is capable of altering properties of magnitude 
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systems, namely the distance effect.  In this light, then, directionality of this relation between 

magnitude approximation and math achievement goes from basic approximation/estimation abilities 

(perhaps in the GMS) to knowledge of formal mathematics and not the other way around.  

 There is evidence, however, that mathematical achievement can in fact impact lower-level 

magnitude systems. More specifically, that more mathematical experience and/or achievement can 

lead to a refinement of the ANS. The most cogent evidence for this relation is found in cultural 

studies of individuals who live without knowledge of even basic mathematics. Peter Gordon’s work 

(2004) with members of the Pirahã tribe in Brazil provides a particularly salient example of the 

effect a lack of mathematical experience can have on the ANS. The Pirahã have an extremely limited 

counting system, with only words for 1 and 2, referring to the rest of quantities with a word that 

translates to “many.” Number words, even 1 and 2, are conceptualized with a degree of fuzziness; 

the word for “2”, for example, can also be used to refer to 3 or 4, and the number 4 itself represented 

by anywhere from 3 to 5 fingers. Given this highly imprecise system of number, it is no 

exaggeration to say members of the Pirahã do not have the extensive experience with formal 

mathematics and number as is seen in our culture and other more technologically-advanced societies.  

 When Gordon (2004) asked members of the Pirahã to perform tasks that assessed nonverbal 

numerical reasoning skills, he found their numerical estimation abilities were poor; they were only 

capable of representing numbers fewer than 3, and when the task required greater cognitive effort, 

even the ability to represent these small numbers was compromised. Gordon’s 

(2004) findings suggest that mathematical input can have an effect on the magnitude systems 

that support basic estimation processes; without exposure to a mathematical language that quantifies 

these magnitudes, and by extension to mathematical procedures and concepts, the Pirahã’s ANS may 

be less refined. The likely answer, then, for directionality of the magnitude/math relationship is that 
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it is bidirectional; some properties of our mathematical understanding may be founded in innate 

brain mechanisms, with basic estimation abilities serving as the foundation for later learning of 

various mathematical operations. In the opposite direction, formal training in number and 

mathematics can impact estimation abilities by refining them, and thus environmental experience 

molds our inherent conceptions of number.  

Further Directions and Conclusions  

 Future directions for studies on this magnitude/mathematics relation should consider 

correlating performance on duration tasks with mathematical achievement to see if the final link in 

the GMS according to Walsh (2003), time, is also correlated with math performance. If support were 

found for this relation, then these results would further cement the idea that a GMS is related to math 

performance. If no support is found, then either a GMS is not related to math or perhaps the 

landscape of the GMS shifts with math ability; in other words, number and space have common 

processing mechanisms that relate to math ability but are still disparate from temporal processes. In 

this instance, support for both models of the GMS would be found; some aspects of it are 

overlapping, and others remain separate processes. In any case, it would be interesting to see 

whether temporal processes have any relation to mathematical achievement  

 Further research may examine the directionality of this magnitude/mathematics relation. 

Taking more upper-level mathematics courses, for instance, may refine approximation systems; 

although Dehaene (1997) found that qualities of these approximation systems were static, only a 

handful of ratios were tested, and perhaps improvements could have been detected if more ratios 

were used. Additionally, Dehaene (1997) only used Arabic numbers in training individuals, so 

whether practicing numerical estimation abilities using non-symbolic stimuli (i.e., dot arrays) would 

lead to increased precision in numerical estimation is certainly another empirical question. If it were 
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possible to hone one’s estimation abilities through practice with dot arrays, for example, then it 

would be critical to assess whether this refinement in number discrimination affected mathematical 

understanding.   Findings from these studies could have enormous educational consequences, as 

understanding what mechanisms can be used to improve math understanding can lead to more 

effective math instruction in the classroom (i.e., focusing more on the magnitude properties of 

number rather than the symbolic).  

 In sum, this study provides preliminary support for both spatial and ANS acuity, potentially 

having common processing mechanisms in a GMS, relating to several facets of mathematical 

achievement. This research is in agreement with Halberda et al. (2008) research on the ANS and 

mathematical achievement, and is the first to demonstrate this relation in adults. Future research 

should consider the final aspect of the GMS, temporal processing, in determining whether it is larger 

GMS or simply spatial and numerical processes alone that are relating to math ability. Additionally, 

this research contributes to the foundational knowledge regarding the relation between magnitude 

estimation and math achievement that is necessary to determine the directionality of this relation, 

which will undoubtedly provide greater insight into the nature of mathematical understanding and 

achievement. 
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Table 1 
 
Stimulus-related values used in the Number Task  

 
      Large Total Number of Circles                Small Total Number of Circles 

 
Ratio Set 1 Total Set 2 Total Surface Area  Set 1 Total Set 2 Total Surface Area 
        
1:2 9 18 5.157  4 8 3.493 
        
3:4 12 16 4.058  6 8 2.794 
        
5:6 15 18 2.896  5 6 2.237 
        
7:8 14 16 3.289  7 8 2.433 
        
9:10 19 20 4.003  9 10 2.621 

Note: All measurements are in cm. Within each ratio, one set was created using a large total number of 
circles on the screen, and one set was created using a small total number of circles on the screen. Set 1 
Total gives the total number of circles in set 1. Set 2 Total gives the total number of circles in Set 2. 
Surface Area gives the cumulative surface area for circles in Set 1 and Set 2, as surface area was 
equivalent for each set of circles in the Number Task.   
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Table 2 
 
Stimulus-related values used in the Space/Area Task  

 
 Large Total Number of Circles    Small Total Number of Circles 

 
 

Note: All measurements are in cm. Within each ratio, one set was created using a large total  
number of circles on the screen, and one set was created using a small total number of circles  
on the screen. Set 1 Area gives the cumulative surface area of the circles in Set 1. Set 2 Area  
gives the cumulative surface area of the circles in Set 2. Number gives the total number of  
circles in Set 1 and Set 2, as number was equivalent for each set of circles in the Space/Area task.  
 
 
 
 

Ratio Set 1 Area Set 2 Area Number  Set 1 Area Set 2 Area Number 
        
1:2 3.595 7.180 14  2.779 5.558 4 
        
3:4 3.673 4.898 12  2.488 3.317 5 
        
5:6 4.035 4.842 18  3.171 3.806 7 
        
7:8 4.106 4.692 20  3.627 4.144 8 
        
9:10 4.176 4.640 16  2.826 3.120 9 
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Table 3 
 
Scores from the WJ-III and KeyMath Subtests   
 
Subtest M SD 
   
WJ-III  Calculation 121.30 11.00 
   
WJ-III Math Fluency 111.03 13.87 
   
WJ-III Applied Problems 110.54 15.18 
   
WJ-III Quantitative Concepts 114.32 9.36 
   
WJ-III Picture Vocabulary 99.60 11.73 
   
WJ-III Reading Vocabulary 103.84 7.49 
   
KeyMath Numeration 13.14 2.26 
   
KeyMath Geometry 11.860 2.38 
   
KeyMath Mental Computation & Estimation 12.0 2.68 
   
WJ-III CS Broad Math 117.27 13.14 
   
WJ-III CS Math Calculation Skills 119.97 11.31 
   
WJ-III CS Math Reasoning Skills 113.87 12.35 

Notes: Scores from the WJ-III are standardized and scores from  
KeyMath are scaled.  
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Table 4 
 
Correlations between scores from WJ-III and KeyMath subtests ANS  
acuity scores 
  
Subtest r p 
   
WJ-III Calculation -.299 .103 
   
WJ-III Math Fluency -.234 .206 
   
WJ-III Applied Problems -.088 .636 
   
WJ-III Quantitative Concepts  -.107 .566 
   
WJ-III Reading Vocabulary -.100 .594 
   
WJ-III Picture Vocabulary -.020 .916 
   
KeyMath Numeration -.293 .116 
   
KeyMath Geometry -.261 .163 
   
KeyMath Mental Computation and Estimation -.346 .066 
   
WJ-III CS Broad Math .078 .648 
   
WJ-III CS Math Calculation Skills .009 .957 
   
WJ-III CS Math Reasoning Skills -.211 .210 

Note:  r values in bold indicate magnitudes within the range found  
to be significant in Halberda, Mazzocco, & Feigenson’s (2008) study. 
Negative values indicate that the higher performance on estimation  
tasks, the higher scores on mathematical tests.  
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Table 5 
 
ANS Partial Correlations Controlling for Reading Vocabulary or Picture Vocabulary    
 
              Picture Vocabulary Reading Vocabulary 
 r p   r P 
WJ-III Calculation -.279 .151   -.272 .161 

       
WJ-III Math Fluency -.247 .204   -.246 .207 
       
WJ-III Applied Problems -.088 .655   -.056 .779 
       
WJ-III Quantitative Concepts -.092 .643   -.058 .771 
       
KeyMath Numeration -.272 .161   -.255 .191 
       
KeyMath Geometry -.288 .137   -.261 .180 
       
KeyMath Mental Comp/Est -.347 .071   -.350 .068 
       
WJ-III  CS Broad Math -.213 .258   -.196 .300 
       
WJ-III  CS Math Calculation Skills -.325 .079   -.310 .095 
       
WJ-III  CS Math Reasoning -.119 .531   -.087 .646 

Note:  r values in bold indicate magnitudes within the range found to be  
significant in Halberda, Mazzocco, & Feigenson’s (2008) study, and their 
non-significance may be due to lack of power.  
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Table 6 
 
Correlations Between Subtests and Spatial Acuity Scores  
 
Subtest r P 
   
WJ-III Calculation -.227 .246 
   
WJ-III Math Fluency -.159 .419 
   
WJ-III Applied Problems -.072 .715 
   
WJ-III Quantitative Concepts  -.159 .419 
   
WJ-III Reading Vocabulary -.215 .273 
   
WJ-III Picture Vocabulary .043 .826 
   
KeyMath Numeration -.009 .966 
   
KeyMath Geometry -.217 .277 
   
KeyMath Mental Computation and Estimation -.209 .316 
   
WJ-III  CS Broad Math -.157 .424 
   
WJ-III  CS Math Calculation Skills -.236 .227 
   
WJ-III CS Math Reasoning Skills -.123 .532 

Note:  r values in bold indicate magnitudes within the range found  
to be significant in Halberda, Mazzocco, & Feigenson’s (2008) study, 
and their non-significance may be due to lack of power.  
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Table 7 
 
Spatial Partial Correlations Controlling for Reading Vocabulary or Picture Vocabulary 

 
Subtest           Picture Vocabulary Reading Vocabulary 

 r p  r p 

WJ-III Calculation -.215 .314  -.205 .161 

      
WJ-III Math Fluency -.143 .505  -.182 .395 
      
WJ-III Applied Problems -.095 .658  -.023 .913 
      
WJ-III Quantitative Concepts -.167 .437  -.102 .635 
      
KeyMath Numeration .004 .984  .102 .635 
      
KeyMath Geometry -.249 .242  -.146 .496 
      
KeyMath Mental Comp/Est -.204 .339  -.151 .481 
      
WJ-III CS Broad Math -.161 .422  -.123 .540 
      
WJ-III CS Math Calculation Skills -.232 .244  -.217 .277 
      
WJ-III CS Math Reasoning -.137 .496  -.070 .729 

Note:  r values in bold indicate magnitudes within the range found to be significant  
in Halberda, Mazzocco, & Feigenson’s (2008) study,and their non-significance may  
be due to lack of power.  
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Figure 1 
 

 
 
Figure 1. Example of stimuli used in the Number Task. In this example, the numerical difference varies 
by a ratio of 3:4, as there are 6 brown circles and 8 blue circles. Cumulative surface area is equivalent 
(2.794 cm2) for both sets of circles. The spacing of circles on the screen is spread out rather than 
clustered.  
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Figure 2 
 

 
 
Figure 2. Example of stimuli for the Space/Area Task. In this example, the difference in 
cumulative surface area between sets varies by a ratio of 3:4, as the brown set has a cumulative 
surface area of 3.317 cm2, and the blue set has a cumulative surface area of 2.488 cm2. The total 
number of circles is equivalent (5) for both sets of circles. Spacing is clustered rather than spread 
out.  
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Figure 3 
 

Average ANS Acuity as a Function of Ratio Differences
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Figure 3. Mean accuracy (proportion) on the Number Task for all participants at each ratio. 
Average accuracy hovers between 50 and 60 percent before jumping to nearly 80% at  
Ratio 1:2.  
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Figure 4 
 

 
     Figure 4. Frequency of ANS acuity scores for all participants  

   whose data could be modeled to a linear function. The higher an  
   individual acuity score, the lower the lower the ability to make 
   numerical discriminations.  
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Figure 5 
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Figure 5. Average performance for all participants on KeyMath Subtests. Scores are scaled, not  
standardized, meaning they have a M =10 and SD = 3.  
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Figure 6  
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Figure 6. Average performance for all participants on WJ-III subtests and cluster scores. Red 
bars indicate cluster scores; blue bars indicate subtests.  
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Figure 7 
 

Average Spatial Acuity as a Function of Ratio Differences
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Figure 7. Mean accuracy (proportion) on the Space/Area Task for all participants at each  
ratio. Average accuracy gradually increases as the ratio difference between sets increases.  
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Figure 8 
 

 
 
      Figure 8. Frequencies of spatial acuity scores for all participants 
     whose data could be modeled to a logarithmic function. The higher 
     an individual acuity score, the lower the ability to make number 
     discriminations.  
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