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Abstract 
 

Understanding immune-aging in myeloma and its precursor states  
 

By Sayalee V. Potdar 
 
 

Myeloma and its precursor monoclonal gammopathy (MGUS) are more common in individuals 

with Black ancestry and associated with immune dysfunction. Mechanisms linking immune 

dysfunction to racial ancestry or malignant transformation remain unclear. Here we show that 

blood/marrow T cells from myeloma patients exhibit enhanced capacity for inflammatory cytokine 

production and proliferation including in cells with phenotypes previously linked to T-cell 

exhaustion. In chronologically age-matched cohorts, myeloma patients have greater aging-

associated immune changes compared to MGUS patients. MGUS patients with Black ancestry 

exhibit greater immune- aging compared to White counterparts. Myeloma T cells exhibit altered 

inflammatory phospho-proteomic signaling and was associated with distinct transcriptional 

profiles of immune and tumor cells in the bone marrow. Immune-aging correlated with responses 

to SARS CoV-2 vaccination, providing a correlation between immune aging and immune function 

in vivo. Maladaptive immune-aging may underlie racial predisposition and impact malignant 

transformation and immune responses in MM.  
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Chapter 1: Introduction 

 

1.1 Myeloma and evolution from precursor states 

Cancer has a major impact on human health and is a leading cause of death worldwide. In 2024, 

there were nearly 2 million new cases diagnosed in the United States alone, with about 0.6 

million dying from the disease. Multiple myeloma (MM), which is the focus of this dissertation, 

had about 36,000 new cases in 2024, and contributed to 1.8% of all new cancer cases and 2% of 

all cancer deaths, with a 60% 5-year survival rate (1). 

Multiple myeloma (MM) is a hematological lymphoid malignancy, which remains incurable, is 

the second most common hematological malignancy after leukemia and its development is a 

multistep process that begins in bone marrow (BM) (2). Hematopoietic stem cells undergo 

differentiation in the BM and secondary lymphoid organs and become B cells, and eventually 

differentiate into plasma cells. Normal plasma cells in the BM can undergo genetic alterations 

such as chromosomal translocations and progress to a premalignancy clonal asymptomatic 

disorder called Monoclonal gammopathy of undetermined significance (MGUS) (2-4). MGUS is 

heterogenous, much like MM, and is classified based on the involved immunoglobulin (M-

protein): non–immunoglobulin M (IgM) such as IgG and IgA, IgM, and light chain, and can 

progress to MM at a rate of 1% per annum (5). MGUS consistently precedes the development of 

MM, with or without an identified intervening stage, referred to as smoldering multiple myeloma 

(SMM) (6, 7) 
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Figure 1.1: Evolution of a plasma cell to a myeloma cell. A schematic showing the multistep 

progression of a normal plasma cell in a human bone marrow undergoing genomic instability 

events and progressing to a premalignant stage known as MGUS. These MGUS cells further 

undergo genetic and epigenetic changes as well as external changes in the tumor 

microenvironment (TME) to ultimately progress to the malignant myeloma stage.  
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The International Myeloma Working Group (IMWG) has defined that the clinical diagnosis of 

MM requires the presence of one or more myeloma-defining events (MDEs) in addition to 

evidence of 10% or more clonal plasma cells. MDE consists of CRAB features (HyperCalcemia, 

Renal insufficiency, Anemia, or lytic Bone lesions) and three specific biomarkers: clonal bone 

marrow plasma cells of 60% or higher, serum free light chain (FLC) ratio of 100 or higher 

(provided involved FLC level is ≥100 mg/L), and more than one focal lesion on magnetic 

resonance imaging (8). The clinical diagnosis for MGUS and SMM differ from MM (Table 1) 

 

Table 1: IMWG classification for MGUS, SMM and MM. 

Criteria MGUS SMM MM 
CRAB Features Absent Absent Present 

% clonal plasma cells in 
the BM 

<10% 10-60% >10% 

Serum monoclonal 
plasma cells 

<30 g/L >30 g/L - 

 
 

For the clinical diagnosis of MM, the following CRAB features need to be present (9). 

- HyperCalcemia: Serum calcium >1 mg/dL higher than upper limit of normal or >11 

mg/dL  

- Renal insufficiency: Creatine clearance <40 mL/min or serum creatinine > 2 mg/dL 

- Anemia: Hemoglobin value of >2 g/dL below the lower limit of normal, or a hemoglobin 

value <10 g/dL 

- Bone lesions: one or more osteolytic lesions on skeletal radiography, CT, or PET-CT 

 

 
The evolution of a normal plasma cell to a malignant myeloma cell with identifiable precursor 

states serve as a useful tool to understand human cancer progression. The stage of  “precancer” 
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has been a challenge for the cancer research community because while this early neoplastic stage 

is distinguishable from normal tissues owing to molecular and phenotypic alterations, resulting 

in abnormal cells that are at least partially self-sustaining and function outside of normal cellular 

cues that constrain cell proliferation and survival, defining it very early hinges on pathology and 

does not take into consideration the genetic and molecular alterations it harbors (10).  However, 

it is vital to understand the biology of these precancerous states to clinically intervene at the 

earliest opportunities and to prevent cancer progression. In the case of MGUS, about 3% of the 

general population have it and there is a 1% per year progression rate from MGUS to MM. A 

nationwide cancer screening trial in 2009 demonstrated that MGUS could be consistently 

documented, and samples could be collected before the diagnosis of MM (3). MGUS is not 

resectable but both tumor and non-tumor compartments from the patient bone marrow can be 

readily isolated for research. Over the last decades, with the advent of sequencing, more light has 

been shed on the genetic make-up and additional tissue-specific biomarkers of MM and its 

precursor stages (11). Cytogenetic and gene-profiling studies have revealed that most of the 

alterations seen in MM are already present at the MGUS stage (12-14). Gene-expression 

profiling of MGUS cells revealed that purified plasma cells from MGUS are much closer to MM 

cells than normal plasma cells, with harbor overexpression of DNA metabolism and cell cycle 

control genes (15). Like MGUS, SMM cells also harbor aberrations similar to MM, and the 

presence of specific chromosome abnormalities such as del(17p), t(4:14), 1q gains, and 

hyperdiploidy seem to correlate with increased risk of disease progression (16, 17).  

Studies comparing plasma cells from MGUS and MM cohorts have revealed increasing 

proportion of clonal plasma cells with genetic abnormalities, consistent with the expansion of 

preexisting clones at the transition of MGUS to MM since only a small fraction of clonal plasma 
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cells present in MGUS carried cytogenetic abnormalities (18). Studies tracking patients with 

MGUS who progressed to clinical MM show that genomic alterations and intraclonal 

heterogeneity is established at the MGUS stage and that this progression, in most cases, did not 

involve new somatic mutations (19, 20). 

 

1.2 Tumor microenvironment 

More than 120 years ago, Stephen Paget postulated the hypothesis of the “seed-and-soil”, 

emphasizing the role of a permissive microenvironment for cancer progression (21, 22). The BM 

consists of cellular (immune, endothelial, adipocytes, mesenchymal stem cells, reticular, and 

osteolineage cells) and noncellular components, extracellular matrix (ECM), and soluble factors, 

all of which maintain homeostatic hematopoiesis. In MM, this homeostasis is disrupted, and the 

BM can aid MM tumor cells in tumor growth, survival, migration, drug-resistance, loss of 

immune function etc (23). Plasma cells require extrinsic factors for their migration to and 

survival in the BM, to play a central role in the humoral immune protection of humans (24). In 

the case of MM, these tumor cells proliferate and colonize in the TME and recirculate, and 

finally egress from the BM during the extramedullary stages of the disease (25). 

Despite harboring complex genomic alterations and clonal evolution, MGUS remains clinically 

asymptomatic. This suggests the possibility that changes in growth rate and malignant 

transformation may depend in part on extrinsic factors such as interactions of tumor cells with 

the tumor microenvironment (TME). To understand this, a study from the Dhodapkar lab looked 

at the growth of primary human pre-neoplastic and malignant plasma cells together with non-

malignant cells in vivo (26). A genetically humanized mice model known as MIS(KI)TRG was 

utilized for this study. These are immune-deficient mice with 5 knock-in human alleles (M-CSF, 
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IL-3, GM-CSF, Thrombopoietin and SIRPα) and exhibit superior multi-lineage engraftment of 

human hematopoietic stem cells, including innate immune cells. Isolated MGUS tumor cells 

showed progressive growth in the BM upon xenotransplantation in these mice, supporting the 

concept that the observed clinical stability of MGUS lesions may indeed depend predominantly 

on tumor-extrinsic growth controls, emphasizing the role of the immune system and the TME in 

myeloma disease progression (26).  

 

1.3 Role of the immune system in MGUS and myeloma 

 

1.3.1 Introduction to cancer immune surveillance  

Over the last century, it has been well established that the immune system plays a fundamental 

role in the most, if not all cancers. In 1909, Paul Ehrlich proposed that the immune system 

usually suppresses tumor formation, a concept known as the "immune surveillance" hypothesis, 

which is relevant to this day. This concept was then enriched in the 1950s by Burnett and 

Thomas who showed that the body’s immune system is vital in identifying and eliminating 

diseases cells, including tumor cells (27). Cancer immune surveillance is an important host 

protection mechanism to inhibit carcinogenesis and to maintain cellular homeostasis. In the 

interaction of host and tumor cells, three essential phases known as the “Three E’s” have been 

proposed: elimination, equilibrium and escape (28, 29).  

Elimination is the first phase where both the innate and adaptive arm of the immune system work 

in tandem to detect and destroy cancer cells, before they become malignant. These tumor cells 

express stress-induced molecules such as surface calreticulin, tumor antigens in context of MHC 

class I molecules, that are recognized by CD8 T cell and, and/or NKG2D ligands recognized by 
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NK cells. DCs take up and cross-present tumor antigens to T cells and these activated effector 

cells release IFN-γ that can mediate anti-tumor effects by inhibiting tumor cell proliferation and 

angiogenesis. Tumor-specific CD4 T cells produce IL2 and home to the tumor site, and aid the 

effector activity of these CD8 T cells. (30). If this phase successfully eradicates the cancer cells, 

it completes immunoediting process without progression to the subsequent phases.  

Equilibrium is the second stage, and the longest phase where the host immune system and any 

tumor cell variant that has survived the elimination phase enter a dynamic equilibrium, wherein 

lymphocytes and cytokines such as IL2 and IFN-γ exert potent selection pressure on the tumor 

cells that is enough to contain, but not fully extinguish, a tumor bed. The immune system holds 

this tumor bed containing many genetically unstable and mutating tumor cells in a stage of 

functional dormancy which also has tumor promoting cytokines such as IL-10 and IL-23 (29, 

31). This results in a heterogenous tumor population that has reduced immunogenicity. 

Escape is the third phase of cancer immunoediting where the host immune system fails to restrict 

tumor outgrowth, leading to a clinically malignant stage. Tumor cells evade immune recognition 

using mechanisms like the loss of tumor antigens, MHC class I or co-stimulatory molecules, 

express molecules of increased resistance (STAT-3), survival (anti-apoptotic molecule bcl2), 

immunosuppression and secrete cytokines such as VEGF, TGF-β, IL-6, M-CSF that enhance 

angiogenesis (29, 32). 

 

1.3.2 Immune surveillance and recognition in MGUS and MM 

Evidence for immune surveillance and recognition in MM and its precursor stages has been 

established in both from murine models as well clinical patient samples. The application of the 3 

Es in MM progression is an area of active research, with T cells and NK cells playing important 
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roles in elimination, the MGUS and SMM disease state representing the equilibrium phase, and 

clinical MM representing the escape phase (33).  

Studies utilizing mass cytometry and single cell transcriptomics have shown that MGUS BM 

carries phenotypic alterations in immune cells including T, B, natural killer (NK), and myeloid 

cells (34, 35). Early studies of the bone marrow TME in MGUS provided one of the earliest 

examples of the presence of preneoplasia-specific T cells in humans (36). MGUS-specific 

CD4 and CD8 T cell response was detected in T cells from the BM whereas T cells from MM 

marrow lack this tumor-specific rapid effector function (37). Another study from the Dhodapkar 

lab looking at antigen-specific response in patients showed that MGUS but not MM patients or 

healthy donors were able to mount a humoral and cellular immune response against SOX2, 

which plays a critical role in self-renewal in embryonal stem cells. In addition, the absence of 

anti-SOX2 T cells is significantly associated with future progression to active MM, highlighting 

the importance of tumor-specific T cells for preventing myeloma progression (38). In addition to 

changes in T cells, the TME in MGUS also consists of alterations in innate immune cells, with 

enrichment of distinct subsets of innate lymphoid cells, which are widely known to impact T-cell 

function (39).  

In murine models, engraftment of MGUS and MM patient bone marrow transplanted into 

MIS(KI)TRG mice, MGUS tumor cells exhibited progressive growth, suggesting that the dormant 

nature of the MGUS cells in patients is regulated in part by tumor-extrinsic controls, including 

the immune system (26). In another study using a V-kappa*MYC-CD226 murine model for 

myeloma, it was found that the CD226-dependent response was mediated by both NK and CD8+ 

T cells in a perforin and interferon gamma-dependent manner, thus providing an anti-tumor 

response (40).  
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All clinically diagnosed cancers have an established immunosuppressive milieu that allows 

tumor cells to evade antitumor immunity, and the MM TME is no different. However, there is 

data supporting the presence of immune surveillance in the MM TME, in both, the innate and the 

adaptive arm (41).  In a preclinical model of syngeneic stem cell transplant for MM, it was 

observed that TIGIT immune checkpoint blockade led to the prevention of CD8+ T cell 

exhaustion and successful immune control of MM, supporting the role of immune system in 

tumor control (42).  

 

1.3.3 T cells in Myeloma 

T cells have been known to be altered in MM and to consequently have a role in the 

immunodeficiency associated with the disease, since T cells play a vital role in exerting anti-

tumor effects. Several studies have shown that in both MM and MGUS, there is a decrease in the 

PB CD4/CD8 T cell ratio, which is due to both the decrease in absolute and relative numbers of 

CD4 T cells and an increase in relative numbers of CD8 T cells (41, 43, 44). Overall, there is an 

increase in the proportions of memory T cells and depletion of naïve counterparts relative to age 

matched healthy controls and memory T cells from both MGUS and myeloma patients exhibit 

greater terminal-effector differentiation. However, memory T cells in MGUS show greater 

enrichment of stem-like TCF1/7hi cells (45). Both MGUS and MM have shown to have higher 

Tregs as compared to age matched healthy controls, and that there is an elevated level of CD38hi 

T regs in MM patients (46, 47). There is an increase in T helper type 1 (Th1) cells in the BM in 

both MGUS and MM patients and is consistent with findings of an increased Th1/Th2 ratio 

observed in the PB of MM patients (48, 49). There have also been several studies demonstrating 

the increase of Th17, a pro-inflammatory T cells in both PB and BM, but specially in the BM 
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where they are implicated in the development of MM lytic bone lesions via their production of 

IL-17 (50-52). These Th17 cells significantly inhibit the production of pro-inflammatory Th1 

cytokines such as IFN-γ, suggesting a role in maintaining immune suppression in the tumor 

microenvironment (50, 52). 

As MGUS progresses to MM, there is an attrition of TCF1hi stem-like memory T cells (53, 54). 

In addition, there is an accumulation of senescent T cells expressing high levels of lytic genes 

such as granzyme A, senescence-associated genes such as KLRG, and proinflammatory 

cytokines, which may indicate towards the loss of immune surveillance in myeloma (45).  

T cell clonality has important clinical and research value and is of interest in understanding 

myeloma immunology. CD8 T cells in myeloma patients, at various stages of their disease, were 

found to be specific for cancer germline gene antigens and their frequency correlated with tumor 

burden (55). Other studies using clonotypic assays have also demonstrated that T cell clonality 

has prognostic implications in MM by showing that tumor-specific CD8 T cells have strong 

immune responses and are correlated with both disease burden and clinical outcomes in MM 

patients (56). In both PB and BM, studies have shown that clonal CD8 T cell expansions are 

more frequent in precursor disease patients compared with MM patients, suggesting that 

cytotoxic T cell dysfunction correlates with the progression of disease (37, 57) 

When looking at long-term survivors of MM, studies have shown that these survivors have 

significantly higher frequencies of clonal cytotoxic T cell expansion, higher Th17 cells and lower 

Tregs in their circulation as compared to patients with a shorter follow-up (58, 59).  

All this data indicates that there are drastic alterations in the T cell compartment as the disease 

progression, and these changes need to be delineated further to improve treatment strategies.  
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1.4 Aging and cancer  

 

1.4.1 Hallmarks of Aging 

Much like the hallmarks of cancer, aging too is driven by several factors, all of which are active 

areas of research. In 2023, after decades of aging research, the field established 12 hallmarks of 

aging that fall under 3 major categories: Primary, antagonistic and integrative (60). The primary 

hallmarks of aging progressively accumulate with time, and consist of genomic instability, 

telomere attrition, epigenetic alterations, loss of proteostasis and disabled macroautophagy (61). 

The antagonist hallmarks are responses to damage and comprise of deregulated nutrient-sensing, 

mitochondrial dysfunction and cellular senescence. Finally, integrative hallmarks are those that 

when the accumulated damage inflicted by the primary and antagonistic hallmarks cannot be 

compensated anymore and they are stem cell exhaustion, altered intercellular communication, 

chronic inflammation, and dysbiosis. All the 12 hallmarks of aging interact with one another to 

speed up the process of aging. However, age-related diseases in humans have higher chances to 

co-occur and share genomic characteristics when they are causally linked to the same hallmark 

rather than to different hallmarks (62).  

Another important aspect of aging is to understand the difference between biological age and 

chronological age, with biological age being regarded as being more accurate than chronological 

age in determining chronic health outcomes. Chronological age refers to the amount of time a 

person has lived for, whereas the biological age of a person is more nuanced, and is a 

combination of several factors and biomarkers such epigenetic alteration and DNA methylation 

(63-65).  
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1.4.2 Links between Aging and Cancer 

Aging is considered one of the most significant risk factors for various malignant diseases and 

the prevalence of these diseases increases as adults age, reaching a peak around 85 or 90 years, 

when the incidence of new cancer diagnoses starts to decline (1). People over the age of 65 make 

up 60% of all new cancer diagnoses and 70% of cancer deaths and with advances in healthcare 

maximizing human life expectancy and the elderly population continues to grow, cancer rates are 

predicted to increase in the coming years (66). Adults over the age of 65 years with a cancer 

diagnosis exhibit an increased incidence of comorbidities and aging-related conditions compared 

with those without cancer and their younger counterparts (67). This may be due to two reasons: 

A certain individual may have a higher disposition to cancer if they have a higher biological 

aging or the development of malignancy may result the deterioration of general health due to 

long-distance effects of the cancer on other organs, causing rapid aging (60). Aging and cancer 

research done in tandem alludes to the fact that they either share or diverge in several disease 

mechanisms and biological processes (Table 2) (68-70) 

 

Table 1.2: Shared Hallmarks between Aging and Cancer 

Hallmark Aging Cancer 
Genomic Instability Increased Increased 

Epigenetic alterations and 
reprogramming such as DNA 

methylation, chromatin remodeling 
and histone modifications 

Present Present 

Cellular senescence Increased Increased 
Inflammation Chronic inflammation Tumor-promoting inflammation 

T cell alterations such as TCR 
diversity and effector T cells 

Present Present 

Dysbiosis Present Present 
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1.4.3 Effect of aging on T cells 

T cells are crucial for immune functions and prevent disease progression in most living 

organisms and so an aged T cell system is characterized by progressive dysfunction, higher 

vulnerabilities to infection and cancer as well as increased autoimmunity (71). The thymus plays 

a vital role in the maturation and selection of a diverse T cell repertoire and as we age, we 

undergo thymic involution due to reduction in thymic mass (72). This results in a diminished 

generation of naive T cells that reach circulation, a compensatory clonal expansion of high-

differentiated memory, and an exhaustion of stem cell-like T cells, all of which compromises the 

adaptive immune response (73). Along with an increase in memory T cells as we age, there is 

also an alteration in the phenotype of cells and the cytokines they produce. Studies indicate that 

there are increased levels of memory cells producing type I (TNF and IFNg – particularly in 

CD28- CD8+ T cells) and type II (IL4 and IL10) cytokines, leading to a pro-inflammatory state 

(74).  

Like with other cell types, T cells also undergo genetic and epigenetic alterations with age, and 

this can lead to several clinical manifestations. Chromosomal alterations in aging T cells and 

mutations in hematopoietic stem cells are linked with an increased incidence of T cell leukemia 

(73). Mitochondrial dysfunction, which is another major feature of aging T cells, can cause 

genomic instability, resulting in telomere attrition and the reduced activity of DNA repair 

enzymes (75, 76). Telomere length is a well-established indicator of cell proliferation and thus its 

“age” and attrition is seen in both CD4 and CD8 T cells as we age, and this affects primarily 

naive, early differentiated and the lymphoid progenitor cell subsets (77). Another important 

aspect of T cell aging is the reduction in TCR repertoire due to the reduction of the number of 
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naïve T cells and clonal expansion of terminally differentiated effectors, which hampers the 

body’s immune response (78).  

For a long time, the field believed that the accumulation of memory T cells is a result of aging and 

remain quiescent till they received the right antigenic stimulation. However, this idea has been 

revisited since cumulative evidence supports the notion that cytokine-activated T cells, known as 

‘virtual memory T cells’ present similar phenotypes to conventional antigen-experienced memory 

cells and accumulate with aging in mice and tend to show features of senescence (79, 80). 

However, this is still an active area of research, especially in human samples.  

 

1.4.4 Inflammatory signatures seen in aging and cancer 

Increased chronic inflammation or “Inflammaging” is a state of systemic chronic, low-grade 

inflammation that develops in older individuals without any overt infection (81). Chronic 

inflammation has systemic manifestations, as well as with pathological local phenotypes such as 

arteriosclerosis, neuroinflammation, osteoarthritis etc. There are several mechanisms of chronic 

inflammation such as Reactive Oxygen Species (ROS), ER stress, Insulin resistance, NF-kB 

signaling, TLR signaling, misfolded proteins, NLRP3 inflammasomes, and pro-inflammatory 

miRNAs. All these mechanisms interact with other hallmarks of aging via a complex network of 

signaling pathways, potentially accelerating aging (82). 

Sequencing studies have shown that immune function in patient blood declines with enhanced 

inflammation, identifying an age associated T cell population that is composed of exhausted 

memory cells and mediates pro-inflammatory effects via granzyme K (83). Pro-inflammatory 

cytokines in T cells such as IFN, TNF-α, IL1 and IL6 are commonly elevated with age, due to a 

dysregulation in the mTOR pathway (84-86). In the context of viral infections, pro-inflammatory 
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type 1 IFNs inhibit telomerase activity and act as drivers of T cell senescence (87). With aging, 

there are many inflammation-enabling systemic alterations in T cell populations like the 

hyperfunction of pro-inflammatory Th1/17 cells, defective immunosurveillance which has a 

negative impact on the elimination of virus-infected, malignant or senescent cells, loss of self-

tolerance, and the reduced maintenance and repair of biological barriers (88-90).  

In the context of age-related diseases such as cardiovascular diseases, genomic instability, which 

is a hallmark of aging, favors clonal hematopoiesis of indeterminate potential (CHIP), with the 

expansion of myeloid cells that often bear a proinflammatory phenotype (91). A 3-year 

longitudinal study in older individuals to characterize pro and anti-inflammatory cytokines 

showed that there are systemic defects in JAK-STAT signaling pathways, due to elevated levels 

of basal phospho-STAT proteins (92).  

It has been well established that tumor-promoting inflammation in the tumor microenvironment 

is one of the enabling characteristics of cancer development. Genomic instability and other factor 

contribute to oncogene activation, which results in the expression of proinflammatory 

transcription factors (such as NF-κB, STAT3 or HIF1α) within tumor cells. These activated 

transcription factors mediate the expression of key cytokines and chemokines such as TNFα and 

IL-6 as well as inflammatory enzymes like COX-2, forming a complex network of inflammatory 

responses within the TME. In response these chemokines, the innate and adaptive immune arm 

are recruited to mediate an immune response. Inflammatory enzymes catalyze key steps in 

prostaglandin synthesis, which further regulate several physiological processes involved in 

cancer-related immunity and inflammation, thus driving tumorigenesis (93, 94). Thus, in cancer-

related inflammation, multiple pathways are involved in trying to suppress effective anti-tumor 

immunity.  



 
 

16 

1.4.5 Immune aging and vaccine response 

Vaccines contain antigens that are either derived from the pathogen or produced synthetically to 

represent components of the pathogen to effectively mount an immune response in the event of 

any exposure to a specific pathogen (95). For a vaccine to be effective, the immune system must 

retain its ability to generate immune memory so that the host can produce a rapid and specific 

response to the pathogen when encountered again. However, as discussed before, aging 

compromises the ability of the immune system, including humoral immunity, to respond 

sufficiently to pathogens and cancers and thus, dampens vaccine response. There have been many 

studies done in humans showing that younger people had higher protective titers against influenza 

(96), there was a strong decline in TBE and tetanus titers with age and that people over the age of 

60 were unable to mount a response (97) and in a study assessing vaccination-induced changes in 

the human B-cell repertoire and pneumococcal IgM and IgA antibody at different ages, it was 

found that IgA and IgM responses were significantly impaired in the old subjects (98). In the 

context of the COVID-19 infection, age is associated with reduced efficacy of vaccines and linked 

to higher risk of severe infection (99, 100). Reduced immunogenicity was observed following the 

vaccination with virus geometric mean titer (GMT) values being higher in younger individuals 

than their older counterparts (101). A study looking at the efficacy of the SARS-CoV-2 vaccine in 

two geriatric animal models showed that there was reduced protection in the geriatric animal 

population (102).  

 

1.4.6 Age calculators 

Biological aging is not linear, but rather a result of complex systems working together and 

understanding it is vital in predicting disease risk and evaluating aging interventions. Since the 
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1980’s, there has been a lot of interest in identifying reliable biomarkers which are age 

dependent to accurately evaluate an individual’s biological age (103). Currently there are several 

“age calculators” or “molecular aging clocks” that utilize biomarkers (genomic, epigenomic, 

transcriptomic, proteomic etc), mathematical models and machine learning algorithms to try to 

accurately predict the biological/physiological age of an individual. 

- DNAmAge: One of the most common “age calculators” that researchers have explored 

are epigenetic age calculators, since DNA methylation is one of the most established 

aging biomarkers (104, 105). These “epigenetic clocks” (Horvat clock and Hannum 

clock) were the first openly available datasets for DNA methylation patterns from 

multiple human tissues ranging from prenatal tissues to those from centenarians and is 

referred to as DNAmAge (64, 106). Studies examining if an epigenetic clock can predict 

cancer incidence or mortality have shown that these are stronger predictors for cancer 

mortality than cardiovascular disease and that there is a dose-responsive relationship 

between increased DNAmAge and cancer incidence and mortality; for each one-year 

increase in the difference between chronological and epigenetic age, there was a 6% 

increased risk of developing cancer within three years and a 17% increased risk of 

cancer-associated mortality in the next five years (107, 108). While promising, these 

epigenetic clocks have several drawbacks like a correlation with certain blood cell types 

that also show age-related change and not accounting for tissue variability as epigenetic 

aging can differ between tissues, which has led to a gap in knowledge about mortality 

prediction in any other tissues barring blood (109). Hannum’s blood-based age estimator 

was also designed for adult blood samples, leading to biased estimates in children.  
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To improve the accuracy of these epigenetic clocks by accounting for phenotypic changes 

due to physiological dyregulation, a phenotypic age estimator called DNAm PhenoAge 

was designed. This phenotypic age estimator was constructed by generating a “phenotypic 

age” which was a weighted average of 10 clinical characteristics: chronological age, 

albumin, creatinine, glucose and C-reactive protein levels, lymphocyte percentage, mean 

cell volume, red blood cell distribution width, alkaline phosphatase and white blood cell 

count, instead of chronological age and then a penalized regression model like that of 

DNAmAge was used. The DNAm PhenoAge is a greater predictor of mortality, health span 

or cardiovascular disease (110). Another DNA methylation age clock known as the 

"DNAm GrimAge" came about in 2013, which is a mortality risk estimate and is a linear 

combination of chronological age, sex, and DNAm-based surrogate biomarkers for seven 

plasma proteins and disease promoting exposures such as smoking pack-years (94).  While 

the DNAm GrimAge clock outperformed previous epigenetic clocks while predicting 

mortality risk, it is not a very informative predictor of chronological age and like the 

previous models, is not adjusted for cell-type heterogeneity (111).  

- GlycanAge: Over the last two decades, several large-scale studies have shown reliable 

effects of aging on protein glycosylation as measured from human serum or plasma (112, 

113). Glycosylation is a key post-translational mechanism that regulates function of 

immunoglobulins, with multiple systemic repercussions to the immune system, making 

this assessment valuable. The GlycanAge index was associated with health variables such 

as fibrinogen, HbA1c, BMI, triglycerides and uric acid after correction for age and sex 

and had less variance than other age predictors such as telomere length. However, these 

were not longitudinal studies and so it was hard to predict whether aging caused the 
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observed changes in IgG glycosylation or if these glycosylation changes in IgG 

contribute to aging by promoting inflammation (112).  

- IMM-AGE: This aging calculator was developed to assess immune aging, by considering 

immunosenescence and different compartment of the immune system, that age at 

different rates (114). Alpert et al conducted a longitudinal study of blood samples from 

135 healthy adults over a period of 9 years and by mass cytometry, changes in the 

circulating immune-cell subpopulations were assessed. They showed that while immune-

cell frequencies changed at different rates, there were 33 immune cell subsets that 

consistently correlated with age across their 9 years of data collection and bucketed them 

as those that went up with age (CD57+ CD8 T cells, CD8 and CD4 effector T cells, 

Tregs, PD1+ CD8 T cells etc) and those that decreased with age (Naïve CD8 and CD4 T 

cells, CXCR5+ CD4 T cells, CD27+ CD8 T cells, B cells etc). They also identified a 

gene signature that correlated with IMM-AGE. They also cross verified their algorithm to 

test the association between IMM-AGE and cardiovascular disease and utilized the 

Framingham Heart Study, which has over 2000 participants between the ages of 40 and 

90 years (115). They calculated the DNA methylation age of these participants and 

conducted correlation studies with IMM-Age and found that IMM-Age was >500-fold 

more significant than DNA methylation age in predicting overall survival, highlighting 

the pivotal role of immune aging in survival. 
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1.5 The epidemiology of Myeloma 

1.5.1 Myeloma and aging 

Myeloma is predominantly a disease of older adults with the median age at diagnosis being 

70 years and only less than 2% of patients are less than 40 years old (116, 117). With advances 

in medicine and the world’s aging population increasing, myeloma is becoming more prevalent. 

MGUS, the precursor state, has been detected in about	5% of individuals ≥70 years of age (2). 

Age is also an important determinant of treatment approaches in myeloma, including whether the 

patient is eligible for autologous haemopoietic stem cell transplantation (ASCT) and most 

randomized trials limit this to patients ≤65 years of age. However, several studies have 

demonstrated similar outcomes with ASCT in older patients, alluding to the fact that the 

biological age of a patient is more relevant than the chronological age while determining the 

eligibility (2, 118).  

 

1.5.2 Myeloma and race 

The incidence of multiple myeloma is 2–3-times higher in black individuals than in white 

individuals, with the median age at diagnosis being 66 years in blacks and 70 years in 

whites (119). This racial difference is seen only the incidence rate and no racial survival disparity 

among blacks and whites was seen. A study of 365 participants showed that MGUS is 

significantly more common in blacks, and more often has features associated with higher risk of 

progression to MM (120). Since these racial differences are seen in the precursor state, there 

have been studies showing that the excess risk of multiple myeloma in black patients is due to an 

increase in the risk of MGUS rather than an increase in the risk of progression from MGUS to 

multiple myeloma (121).  This racial disparity is even more evident amongst patients younger 
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than 50 years where rates of myeloma are 2.6 times higher in Black men and 3.3 times higher in 

Black women than the rates for White men and women, respectively (122).  

These differences can be divided into two broad groups: biological or social determinants. 

Biological determinants include factors such as hereditary (First-degree relatives of patients with 

myeloma have a 2–3 times higher risk of developing the disease), genetic variance, obesity (this 

is one of the known risk factors for myeloma and nearly 48% black adults are clinically obese, as 

compared to 34% whites) and other myeloma-specific biological differences such as black 

MGUS patients having lower levels of monoclonal protein, an earlier age of onset, lower 

prevalence of IgM MGUS, and a higher frequency of abnormal serum free light chain (sFLC) 

ratios compared to their white counterparts (123).  

Understanding and addressing these racial disparities are vital for researchers and physicians 

deliver effective treatments, because currently, these health disparities greatly affect the clinical 

care that black patients get compared to their white counterparts (123).  
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1.6 Summary, scope, and goals for this project 

Despite significant advances in immunotherapy, multiple myeloma (MM) remains to be an 

incurable malignancy. The immune system's critical role in eliminating malignant cells 

underscores the importance of understanding immune dysfunction in myeloma progression and 

treatment resistance. While recent single-cell transcriptomic studies of MM and its precursor 

state, monoclonal gammopathy of undetermined significance (MGUS), have suggested T-cell 

exhaustion based on murine chronic viral infection models, functional validation of these 

exhaustion signatures remains incomplete. 

The first aim of this dissertation is to comprehensively characterize blood and bone marrow T 

cells in MGUS and MM through functional and single-cell transcriptomic analyses, providing 

deeper insights into immune dysfunction beyond traditional exhaustion paradigms, and the 

implications of the signatures that we see. The second aim addresses a critical gap in myeloma 

research: despite higher incidence and earlier onset of myeloma in Black individuals, this 

population remains understudied. We seek to elucidate the immunological basis for racial 

disparities in myeloma incidence by examining distinct immune signatures between racial groups 

in both MGUS and MM patients. 

Through these investigations, we aim to advance the understanding of T cell biology in MM 

while addressing crucial questions about racial disparities in myeloma pathogenesis and 

progression. These insights may inform the development of more effective therapeutic strategies 

in the clinic. 
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Chapter 2: T cells from Myeloma patients lack global exhaustion 
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2.1 Key Findings 

• T cells from myeloma and MGUS patients retain their capacity to be polyfunctional after 

TCR stimulation. 

• T cells in the MM marrow are enriched for phenotypes of advanced differentiation and 

exhibit distinct functional phenotypes such as GM-CSF and IL17-producers, previously 

implicated in tissue inflammation or bone disease. 

• T cells from myeloma and MGUS patients retain their proliferative capacity after TCR 

stimulation 

 

2.2 Introduction 

T cell exhaustion is a state of dysfunction seen during chronic infections when T cells exhibit a 

reduced capacity to secrete cytokines, proliferate and have an increased expression of inhibitory 

immune checkpoints such as PD1, TIM3, LAG3, CTLA4 and TIGIT (124). CD8 T cell 

exhaustion was first described with chronic LCMV infection using murine models during which 

virus-specific CD8 T cells persist but lack effector function (125). Another murine chronic 

LCMV model showed that virus-specific CD8 T cells initially develop the ability to perform 

effector functions but with persistent chronic infection, these functions are lost in a hierarchical 

manner during chronic infection with some functions that are exhausted early (e.g., IL-2, 

cytotoxicity, and proliferation), whereas others (e.g., IFN-γ) persist longer (126). While there are 

many similarities in exhausted T cells in chronic viral infections and tumors such as inhibitory 

immune checkpoints and transcriptional programs such as TOX, there are several differences 

like the tumor microenvironment. Exhausted T cells from chronic viral infection have a stronger 

type I interferon signal as compared to those in tumors (127) Within, TCF1+ self-renewing 
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population that terminally differentiated exhausted T cells are derived from, in tumors, they lack 

expression of CXCR5 (128).   

T cells in MM patients express inhibitory immune checkpoints such as PD-1, TIGIT etc, which 

is a well-established hallmark of T cell exhaustion (129, 130). However, this data has been 

mostly extrapolated from models of chronic viral infection, and whether the research established 

in these viral models can be translated to tumor settings is still an active area of research due to 

established differences between the two. In addition, functional validation in single-cell 

transcriptomic/immunophenotypic studies is limited.  

The clinical success of endogenous T cell therapies in myeloma patients argues against global T 

cell exhaustion and demonstrates the active anti-tumor effects of immune system in MM (131) 

Patient T cells have been redirected in the clinic in the form of chimeric antigen receptor (CAR) 

T cells against MM-associated targets such as B-cell maturation antigen  (BCMA) and GPRC5D 

and have yielded positive results (132) Similarly, the FDA has approved several bispecific 

antibody therapies for relapsed/refractory MM, including teclistamab (targeting BCMA), 

talquetamab (targeting GPRC5D), and elranatamab (targeting BCMA), which have demonstrated 

significant clinical efficacy (133). These findings underscore the importance of further 

evaluating MM T cell functionality. 

 

2.3 Results 

To understand the functional properties of immune cells in patients with plasma cell disorders, 

we combined functional assays with immune profiling in biospecimens from MGUS, newly 

diagnosed MM (NDMM) and age-matched healthy controls. We employed single-cell mass 

cytometry to study the capacity of T cells from blood/marrow to produce cytokines (IFN-g, TNF-
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a, IL2, GM-CSF and IL17) following stimulation by anti-CD3/CD2/CD28 antibodies. First, we 

looked at cytokine production in CD4 T cells, where CD4 T cells from NDMM/MGUS patients 

in both blood and bone marrow retained capacity for production of all cytokines (Figure 2.1) 

 

 

 

 

Fig 2.1: Cytokine production in CD4 T cells post CD2/3/28 antibodies. Cytokine secretion 

(GM-CSF, IL2, IFN-g, TNF-a, and IL17) by BM (A) and PB (B) CD4 T cells following TCR 

stimulation in BMMNCs and PBMCs from HC (n=10), MGUS (n=12) and MM (n=17). Each dot 

represents unique patient sample. Box plots represent median with Q1-Q3 and error bars as min-

max. P-values were calculated using a two tailed Mann Whitney. ns, not significant. 
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Next, we performed FlowSOM, which is a clustering algorithm for visualization and analysis of 

cytometry data, used to distinguish cell populations in an unsupervised way (134). FlowSOM 

analysis of CD4 T cells identified 3 metaclusters (MC) enriched in the myeloma bone marrow, 

MC2 with CD57+ memory T cells and two cytokine-producing MCs, MC10 expressing GM-

CSF, and MC8 with polyfunctional phenotype secreting IL2, IFN-g, IL17 and TNF-a, which 

also expressed markers such as PD-1, LAG-3 and TIGIT previously linked to T cell exhaustion 

(Figure 2.2) 

Similarly, CD8 T cells from NDMM/MGUS patients in both blood and bone marrow retained 

capacity for production of all tested cytokines (Figure 2.3). FLOWSOM done on CD8 T cells 

identified 3 MCs as enriched in MM marrow, of which MC4 and MC6 had a TEMRA 

phenotype, while MC5 exhibited polyfunctional phenotype including IL17 (Figure 2.4). Most of 

the IFN-g and TNF-a producing CD8 T cells in MM marrow had a terminal effector phenotype 

and KLRG1+ differentiated T cells-maintained capacity for cytokine production (Figure 2.5) 
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Fig 2.2: FLOWSOM in CD4 T cells post CD2/3/28 antibodies. FlowSOM clustering of mass 

cytometry data on BM CD4+T cells from MGUS (n=12) and MM (n=17), A: Showing proportions 

of metaclusters in MGUS/MM patients. B: Cluster heatmaps showing phenotypes. Each dot 

represents unique patient sample. Box plots represent median with Q1-Q3 and error bars as min-

max. P-values were calculated using a two tailed Mann Whitney. ns, not significant. 
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Fig 2.3: Cytokine production in CD8 T cells post CD2/3/28 antibodies. Cytokine secretion 

(IL2, IFN-g, TNF-a, and IL17) by BM (A) and PB (B) CD8 T cells following TCR stimulation in 

BMMNCs and PBMCs from HD (n=10), MGUS (n=12) and MM (n=17). Each dot represents 

unique patient sample. Box plots represent median with Q1-Q3 and error bars as min-max. P-

values were calculated using a two tailed Mann Whitney. ns, not significant. 
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Fig 2.4: FLOWSOM in CD8 T cells post CD2/3/28 antibodies. FlowSOM clustering of mass 

cytometry data on BM CD8+T cells from MGUS (n=12) and MM (n=17), A: Showing proportions 

of metaclusters in MGUS/MM patients. B: Cluster heatmaps showing phenotypes. Each dot 

represents unique patient sample. Box plots represent median with Q1-Q3 and error bars as min-

max. P-values were calculated using a two tailed Mann Whitney. ns, not significant. 
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Fig 2.5 Cytokine producing CD8 T cells in MM marrow have a terminal effector phenotype. 

Mononuclear cells from MM bone marrow (n=17) were stimulated with CD2/3/28 beads and 

examined for cytokine secretion using mass cytometry. (A) Cytokine secretion in CD8 bone 

marrow from different T cell subsets. (B) Representative dot plots for unstimulated and stimulated 

CD8+ T cells from MM bone marrow.  
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Next, we examined the capacity of T cells from MGUS and MM patients to proliferate after TCR 

stimulation. CFSE was used as a cell tracer and flow-cytometry was performed 7 days after anti-

CD3/CD2/CD28 stimulation, along with age-matched healthy controls (HC). Both circulating as 

well as bone-marrow T cells from patients with MGUS/MM also exhibited capacity for T cell 

proliferation in culture, again supporting lack of global T cell exhaustion. 

 

Fig 2.6 CFSE proliferation in CD4 and CD8 T cells post CD2/3/28 stimulation. T cell 

proliferation following TCR stimulation. g. Representative plot showing proliferation of CFSE-

labeled PB T cells. Bar graphs show proliferating CD4 and CD8 T cells in blood (A: HC n=10, 

MGUS n=7 and MM n=7) and BM (B: MGUS n=5 and MM n=5). Bar graphs represent mean+/- 

SEM. Each dot represents unique patient sample. P-values were calculated using a two tailed Mann 

Whitney. 



 
 

33 

2.4 Discussion 

Together these data demonstrate that T cells from MM and its precursor MGUS respond well to 

TCR stimulation, and these T cells from both, blood and bone marrow are polyfunctional and can 

proliferate. This suggests lack of global exhaustion, even though it has been previously shown 

that T cells in MM patients express inhibitory immune checkpoints such as PD-1 (130).  

The cytokine data demonstrates that T cells in the MM marrow are enriched for phenotypes of 

advanced differentiation and exhibit distinct functional phenotypes such as GM-CSF and IL-17 

producers. MM-enriched cell types such as Th-GM cells may promote tissue inflammation, as in 

autoimmunity and recruit myeloid cells during the MGUS-MM transition (135, 136). Similarly, 

Th-17 cells have been linked to lytic bone disease, which is a hallmark of malignancy in MM 

(50, 51) producers. All this data implicates that T cells from MM, especially in the bone marrow 

lack global T cell exhaustion, and rather show markers of tissue inflammation linked to aging, 

which is discussed in detail in Chapter 3. 

 

2.5 Materials & Methods 

Patients and specimen collection: 

Peripheral blood and bone marrow specimens were obtained from patients with myeloma and 

MGUS following informed consent approved by Emory Institutional Review Board. De-

identified blood specimens from healthy donors were also purchased from New York Blood 

Center, All-Cells and LifeSouth Community Blood Center. Mononuclear cells (MNCs) were 

isolated using Ficoll density gradient centrifugation.  
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Intracellular cytokine analysis: 

MNCs from patients with MGUS, myeloma or healthy controls were thawed and rested for 1 

hour in RPMI+5%PHS and then stimulated using ImmunoCult Human CD3/CD28/CD2 T Cell 

Activator (StemCell Technologies) in RPMI media containing Golgistop (BD Biosciences) for 4 

hours. Immunophenotyping and cytokine analysis was performed utilizing a 38-marker mass 

cytometry panel (Table 2.2) as described above.  

T cell proliferation: 

MNCs were thawed and rested for 1 hour in RPMI+5%PHS and labeled with CellTrace CFSE 

(Invitrogen) to track proliferation. Cells were cultured in RPMI+5%PHS for 6 days either alone 

or with anti-CD2/3/28 beads (Miltenyi T Cell Activation/Expansion Kit, human). Cells were 

analyzed for CFSE dilution as a marker for proliferating T cells using flow cytometry. Markers 

used are indicated in Table 2.3 

Statistical analysis 

Statistical analysis of CyTOF and flow cytometry was performed using Cytobank and GraphPad 

Prism. Two-tailed Mann–Whitney was used to compare data between groups.  
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Table 2.1: Antibody panel for Intracellular cytokine analysis  
 

   Antibody  Clone  Vendor     Antibody  Clone  Vendor  

1  CD45  HI30   Standard Biotools  27  CCR7  G043H7  Standard Biotools  

2  CD107a  H4A3  Standard Biotools  28  #IL-17A  BL168  Standard Biotools  

3  #IL-2  
MQ1- 
17H12  Standard Biotools  29  CD3  UCHT1   Standard Biotools  

4  CD69  FN50  Standard Biotools  30  *#Granzyme K  GM26E7  Biolegend  

5  #TNFa  Mab11  Standard Biotools  31  CD38  HIT2  Standard Biotools  

6  #IFNg   B27  Standard Biotools  32  CXCR4  12G5  Standard Biotools  

7  CD57  HCD57  Standard Biotools  33  CD25  3C7  Standard Biotools  

8  HLADR HI30 Standard Biotools  34  KLRG1  SA231A2  Biolegend  

9  CD4  RPA-T4   Standard Biotools  35  CD56  NCAM16.2  Standard Biotools  

10  CD8  RPA-T8  Standard Biotools  36  #Perforin  B-D48  Standard Biotools  
11  *#TCF1  7F11A10  Biolegend  37  #Granzyme B  GB11   Standard Biotools  

12  CD14  RMO52   Standard Biotools  38  CD16  3G8   Standard Biotools  

13  CD127  A019D5   Standard Biotools  

  
  
  

  
  
  
  

  
  
  
  

  
  
  

  
  
  
  

  
  
  
  

  
  
  

  
  
  
  

  
  
  
  

  
  
  

  
  
  
  

  
  
  
  

14  LAG3  11C3C65  Standard Biotools  

15  CD45RA  HI100  Standard Biotools  

16  TIGIT  MBSA43  Standard Biotools  

17  CD27  L128  Standard Biotools  

18  CD11c  Bu15  Standard Biotools  

19  #GM-CSF  
BVD2- 
21C11  Standard Biotools  

20  CD28  CD28.2  Standard Biotools  

21  #Tbet  D6N8B  Standard Biotools  

22  #CTLA-4  14D3  Standard Biotools  

23  *#EOMES  WD1928  
ThermoFisher  

Scientific  
24  CD45RO  UCHL1  Standard Biotools  

25  PD-1  EH12.2H7  Standard Biotools  

26  NKG2D  ON72   Standard Biotools  

  
  
All metal conjugated antibodies purchased from Standard Biotools  
*Purified antibodies were purchased from Biolegend/ThermoFisher Scientific, and metal tagged using Standard 
Biotools metal conjugation kit following manufacturers methods and titrated prior to use.   
#Intracellular markers   
After antibody staining, cells were incubated with intercalation solution and mixed with EQ Four Element 
Calibration Beads (Cat. #201708)   
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Table 2.2: Antibody panel for Proliferation Assays 
  

Antibody  Species Reactivity  Vendor  Clone  Dilution  
CD3  Human  Biolegend  HIT3a  1:50  
CD4  Human  Biolegend  RPA-T4  1:50  
CD8  Human  Biolegend  SK1  1:50  

  
Other dyes used:  

- LIVE/DEAD Fixable Violet Dead Cell Stain (ThermoFisher Scientific)  

- CellTrace CFSE (Invitrogen)  
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Chapter 3: Immune cells from Myeloma patients are immune aged 
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3.1 Key Findings 

• T cells from MM patients exhibit greater immune-aging compared to age-matched MGUS 

cohorts and exhibit an inflammatory phenotype. 

• Black MGUS patients have a higher age-associated immune score (AAIS) as compared to 

their age-matched white counterparts. 

• Vaccine response in MM patients correlated with immune-aging: Patients with a higher 

AAIS has a dampened response to the SARS-Cov2 vaccine. 

 

3.2 Introduction 

As we age, the human body undergoes several changes, one of which is dramatic alterations in 

the immune system. The aging immune system has several known features such as a dampened 

response to infections, cancers and an increase in an inflammatory signature (137). Features 

observed in MM T cells post TCR stimulation in Chapter 2 did not support global T cell 

exhaustion that is often implicated in cancer, but rather tissue inflammation linked to aging. 

Immune-aging has been an area of active research in the field myeloma since myeloma affects 

the elderly, and charactering the immune system is vital in leveraging immune-based therapies 

such as monoclonal antibodies, bispecific antibodies and CAR-T cells. Furthermore, the clinical 

success of these T cell therapies in myeloma patients argues against global T cell exhaustion 

(131).  

As discussed in the introduction to this dissertation, there are several age calculators that 

consider the alterations that accumulate as we age, such as immune responses decline with age, it 

is important to characterize age-related alterations in the innate and adaptive immune cell 

populations, antigen receptor repertoires and tumor microenvironments (114, 138). Since MM 
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disproportionally affects individuals of black ancestry, it is vital that any aging calculator that is 

developed represents healthy donors of black ancestry as well as those of white ancestry (123). 

To overcome this, we designed an immune-age calculator that reflected this racial diversity using 

modalities such as linear regression modeling and mass cytometry analysis and studied a cohort 

of 100+ healthy donors across 7 decades of life to quantify age-associated immune changes. To 

comprehensively characterize immune system alterations during malignant transformation, we 

employed multi-modal analyses combining CITE-seq transcriptomic and proteomic profiling of 

MM and MGUS patients. We validated our findings through phosphoproteomic analysis and the 

assessment of vaccine responses in MM patients, revealing novel insights into disease 

progression and racial disparities in MM pathogenesis. 

 

3.3 Results 

Aging of the immune system is associated with altered immune composition, which has been 

utilized to quantify immune aging. As prior studies quantifying immune aging did not include 

racially diverse cohorts to reflect our myeloma and MGUS cohort, we first analyzed a cohort of 

healthy individuals (n=107) (Table 3.1) across 7 decades of life utilizing a custom mass cytometry 

panel to identify immune phenotypes that correlated with age (Table 3.5). 37 immune cell subtypes 

were manually gated and then using p <0.001 as a cut-off, we narrowed down 19 cell subtypes 

(Figure 3.1). Specimens from MGUS/MM patients were analyzed with the same panel and data 

from aging-associated variables were interpolated to compute aging-associated immune score 

(AAIS) in MM/MGUS patients like methods described earlier. Patient characteristics are described 

in Table 3.2. 
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Table 3.1: Healthy donor characteristics used for Immune-age calculator 
 

Healthy Controls 

Total samples n=107 
Median Age in yrs (Range) 28 (0.1-71) 

  Variables n (%) 

Sex Female  56 of 106 (53%) 
Male  50 of 106 (47%) 

Race White 48 of 97 (48%) 

Black 39 of 97 (40%) 

Other 10 of 97 (12%) 
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Fig 3.1 Calculation for aging-associated immune score. Blood specimens from 107 healthy 

donors across 7 decades of age were analyzed using mass cytometry.  

A. Manually gated 37 cell subsets were analyzed for correlation with chronologic age. Bars 

in pink show cell types with p<0.001. Cell types marked with asterisks are not included in 

the 15 cell subsets. 
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B. Linear regression plot showing correlation between PC1 value and chronologic age for 19 

cell subsets 

C. Linear regression plot showing correlation between PC1 value and chronologic age for 15 

cell subsets 

D. Linear regression plot showing correlation between PC1 value for 15 cell subsets and 19 

cell subsets 
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Table 3.2: Patient characteristics  
 

 

P value for age was calculated using Kruskal-Wallis ANOVA test between MGUS, NDMM 

(MM_1) and MM following SARS CoV-2 vaccination (MM_2). P values for proportions were 

calculated using Chi-Squared test and comparisons were made between MGUS, MM_1 and 

MM_2. For cytogenetic risk, only the MM cohorts were compared. For race, White vs all others 

were combined to perform Chi-Squared test. 
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In a cohort of MGUS (n=36) and newly-diagnosed MM (NDMM) patients (MM_1, n=41) matched 

for chronologic age (Chr Age), NDMM patients had significantly higher aging-associated immune 

score (AAIS) compared to MGUS. Together, these data suggest that malignant transformation in 

MM may be associated with progressive immune aging. Both MGUS and MM are more common 

in individuals with Black ancestry. Black MGUS patients also had higher AAIS compared to age-

matched white counterparts, however no race-dependent differences were observed for the 

NDMM cohort. Together these data suggest an impact of racial ancestry on immune-aging 

trajectories may begin early in MGUS and provide insights into prior studies showing MM 

development at an earlier age in Black patients.  
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Fig 3.2 Chronological ages and Aging-associated immune score (AAIS) in patients. 

A. MGUS (n=36) and newly-diagnosed MM patients (MM_1) (n=41).  

B. Black (n=16) and white (n=18) MGUS patients. 

Each dot represents unique patient sample. P-values were calculated using a two tailed Mann 

Whitney. 
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To further understand transcriptional changes associated with immune aging phenotypes, we 

analyzed BM cells from MM/MGUS patients with cellular indexing of transcriptomes and epitopes 

(CITE-seq) sequencing (Figure 3.3). Patients were then divided into immunologically 

younger/older cohorts based on median AAIS. These groups were comparable in terms of 

chronological age. Immune composition of different cell types did not differ between 

younger/older MGUS/MM cohorts, except for a higher proportion of CD16+ monocytes in older 

MGUS patients (Figure 3.4). We compared transcriptomes of immunologically younger/older 

cohorts to identify differentially expressed pathways in specific cell types (Figure 3.5). Pathway 

analysis of differentially-expressed genes in CD4/CD8 T cells between immunologically 

younger/older MM patients revealed greater PD1 signaling in older MM patients, while interferon-

response signatures were enriched in older MGUS and MM patients. Enriched pathways in 

myeloid and tumors cells from immunologically-older MM patients were also consistent with 

greater immune activation. All pathways for MM and MGUS have been listed in Tables 3.3 and 

3.4. 
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Fig. 3.3. CITE-Seq analysis for BMMCs from MGUS (n=14) and MM (n=9) patients 

a. CITE-seq QC and analysis pipeline 

b. Uniform manifold approximation and projection (UMAP) graph for all cells sequenced 

based on the transcriptome. 60 distinct clusters could be identified and were then classified 

into cell types using ADT staining overlayed with Azimuth BM  

c. UMAP showing antibody staining for cell type markers 

d. Chronological ages for MGUS patients: Immune young (n=7) and immune old (n=7) and 

MM: Immune young (n=4) and immune old (n=4), based on AAIS above/below median 
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Fig. 3.4. Immune composition based on CITE-Seq in BM between immune young/old 

MGUS/MM patients. Patients were classified as immune young/old based on AAIS above/below 

the median for the group. Data shown as percent in total cells excluding the tumor compartment 

a. Cell distribution in MGUS patients: Immune young (n=7) and immune old (n=7) 

b. Cell distribution in MM patients: Immune young (n=4) and immune old (n=5) 

Each dot represents unique patient sample. P-values were calculated using a two tailed Mann 

Whitney. 
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Fig. 3.5. Age-related changes in transcriptional profiles in MM and MGUS BM: Top enriched 

pathways based on pathway analysis (hallmark:_H, Reactome:_R) of differentially expressed 

genes analyzed by single cell transcriptomics of bone marrow cells from immune-old (n=5) (AAIS 

60-82 yrs) and immune-young (n=4) (AAIS 37-54 yrs) MM patients and immune-old (n=7) (AAIS 

33-60 yrs) and immune-young (n=7) (AAIS 13-32 yrs) MGUS patients in CD4 T cells, CD8 T 

cells, Myeloid cells and Tumor cells. Pathways in pink are enriched in immune-aged and those in 

blue are enriched in immune-young. 
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Table 3.3 Pathways upregulated in Immune-Old vs Immune-Young in MM patients 
 
MM 
Patients 

Pathway FDR q-value Enriched in 
ImmuneOld 
vs Immune 
Young 

CD4 T cells HALLMARK_INTERFERON_ALPHA_RESPO
NSE 

0.00613503 Immune Old 

 HALLMARK_INTERFERON_GAMMA_RESP
ONSE 

0.00306752 Immune Old 

 REACTOME_PD_1_SIGNALING 0 Immune Old 
 REACTOME_TCR_SIGNALING 0.00045758 Immune Old 
 HALLMARK_EPITHELIAL_MESENCHYMA

L_TRANSITION 
0.00292799 Immune Young 

CD8 T cells REACTOME_TCR_SIGNALING 0 Immune Old 
 REACTOME_PD_1_SIGNALING 0 Immune Old 
 REACTOME_INTERFERON_GAMMA_SIGN

ALING 
0.0357775 Immune Old 

 HALLMARK_INTERFERON_ALPHA_RESPO
NSE 

0.01585563 Immune Old 

 REACTOME_G1_S_DNA_DAMAGE_CHECK
POINTS 

0.094865119 Immune Old 

 HALLMARK_EPITHELIAL_MESENCHYMA
L_TRANSITION 

0.051705554 Immune Young 

Myeloid 
cells 

HALLMARK_ALLOGRAFT_REJECTION 0.00433228 Immune Old 

 HALLMARK_COMPLEMENT 0.08844044 Immune Old 
 REACTOME_GENERATION_OF_SECOND_

MESSENGER_MOLECULES 
0.00695171 Immune Old 

 REACTOME_ARACHIDONIC_ACID_METAB
OLISM 

0.09362445 Immune Young 

 REACTOME_CLATHRIN_MEDIATED_ENDO
CYTOSIS 

0.08603592 Immune Young 

Tumor HALLMARK_ALLOGRAFT_REJECTION 0 Immune Old 
 REACTOME_IMMUNOREGULATORY_INTE

RACTIONS_BETWEEN_A_LYMPHOID_AND
_A_NON_LYMPHOID_CELL 

0 Immune Old 

 HALLMARK_EPITHELIAL_MESENCHYMA
L_TRANSITION 

0.00398362 Immune Young 

 HALLMARK_UV_RESPONSE_DN 0.00324853 Immune Young 
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Table 3.4 Pathways upregulated in Immune-Old vs Immune-Young in MGUS patients 
 
MGUS 
Patients 

Pathway FDR q-value Enriched in 
ImmuneOld 
vs Immune 
Young 

CD4 T cells HALLMARK_INTERFERON_GAMMA_RESP
ONSE 

0.02336653 Immune Old 

 HALLMARK_INTERFERON_ALPHA_RESPO
NSE 

0.017578891 Immune Old 

 HALLMARK_MITOTIC_SPINDLE 0.014533921 Immune Young 
CD8 T cells REACTOME_NEUTROPHIL_DEGRANULATI

ON 
0.06828997 Immune Old 

Myeloid 
cells 

HALLMARK_INTERFERON_GAMMA_RESP
ONSE 

0 Immune Old 

 HALLMARK_INTERFERON_ALPHA_RESPO
NSE 

0 Immune Old 

 HALLMARK_G2M_CHECKPOINT 0 Immune Young 
 HALLMARK_E2F_TARGETS 0.00322403 Immune Young 
Tumor HALLMARK_ESTROGEN_RESPONSE_EARL

Y 
0.0032069 Immune Old 

 REACTOME_INITIAL_TRIGGERING_OF_CO
MPLEMENT 

0.01080602 Immune Young 

 REACTOME_COMPLEMENT_CASCADE 0.00669137 Immune Young 
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To further validate transcriptional evidence of enhanced inflammation in MM at a proteomic level, 

we performed single-cell phosphoproteomic analysis at baseline and following in-vitro stimulation 

in a cohort of MM and age-matched healthy donors. T cells and CD16+/CD16- monocytes from 

MM expressed higher baseline levels of several phosphoproteins (pSTAT1, pSTAT3, pSTAT5, 

pERK and p38) (Figure 3.6) 

 

Following stimulation with LPS and interferon-a, MM T cells exhibited reduced fold increase in 

phosphoproteins compared to healthy controls (Figure 3.7). In contrast, myeloid cells 

(particularly CD16+ monocytes) expressed higher levels of phosphoproteins relative to age-

matched healthy donors (Figure 3.7). These data further support enhanced basal inflammatory 

sigaling in MM immune cells and are remarkably similar to phosphoproteomic profiles described 

in studies of immune aging (92). 
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Fig. 3.6. Detection of phosphoproteins at baseline (pSTAT1, pSTAT3, pSTAT5, p38 and 

pERK) by mass cytometry in circulating CD3+T cells (A), CD14+16- monocytes (B) and 

CD14+16+ monocytes (C) in HC (n=10) and MM (n=6) at baseline. Bar graphs represent mean+/- 

SEM. Each dot represents unique patient sample. P-values were calculated using a two tailed Mann 

Whitney 
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Fig 3.7. Detection of phosphoproteins (pSTAT1, pSTAT3, pSTAT5, p38 and pERK) 

following stimulation with LPS and interferon-a by mass cytometry in circulating CD3+T cells, 

CD14+16- monocytes and CD14+16+ monocytes in HC (n=10) and MM (n=6)  

Left panels: median metal intensity (MMI) following stimulation. 

Right panels: Fold change compared to baseline (shown in Fig. 2d-f).  

Bar graphs represent mean+/- SEM. Each dot represents unique patient sample. P-values were 

calculated using a two tailed Mann Whitney. 
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Reduced immune response to vaccines has been recognized as a major consequence of immune 

aging in humans (139). To evaluate the impact of immune aging phenotypes in MM on immune 

function in vivo, we analyzed a cohort of MM patients (MM_2, n=83) who had received SARS 

CoV-2 vaccination (140). This cohort comprised of an equal split of white and black and male and 

female patients. Biospecimens from this cohort were analyzed to assess immune aging. Evaluation 

of immune aging in this cohort was based on 15 aging-associated subsets analyzed in these patients 

(Fig 3.1). As with the initial MM cohort, patients in this cohort had significantly higher AAIS 

compared to MGUS patients of similar chronologic age (Fig 3.8). Patients who developed vaccine-

induced immunity, defined as positive titers for receptor-binding domain (RBD) antibodies, had 

lower AAIS compared to patients lacking these responses (Fig 3.8). 
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Fig 3.8. Impact of immune aging on vaccine response in myeloma patients 

A: Chronologic age (ChrAge) and Aging-associated immune score (AAIS) in MM patients who 

developed receptor-binding domain (RBD)-binding antibodies following SARS CoV-2 

vaccination (RBD+; n=69) versus those who did not (RBD-; n=14). 

B: ChrAge and AAIS in MGUS (n=36) and MM patients who had received SARS CoV-2 

vaccination (MM_2) (n=83).  

Each dot is a unique patient. P values were calculated using 2 tailed Mann Whitney. ns, not 

significant. 
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3.4 Discussion  

These data demonstrate that in spite of transcriptional similarities with exhausted T cells described 

in prior studies (131), T cells in MM marrow lack global T-cell exhaustion as was discussed in 

Chapter 2, where we demonstrated functional validation to show this phenotype. This implicates 

that transcriptome-based studies showed be followed with functional validation for the phenotypes 

observed. For example, PD1 signaling in MM T cells that was upregulated in the immune-old 

cohort may reflect aging, as opposed to canonical T-cell exhaustion (141). MM also is associated 

with greater immune aging compared to MGUS. The inflammatory state observed in the cytokine 

profiling and transcriptomic studies was further validated using phospho-proteomic analysis, 

where MM immune cells showed increased baseline inflammation-associated phosphoproteins 

and altered responses following activation. 

MM and MGUS are more common in individuals with black ancestry, and this is an area of active 

exploration in the field (123). We see that MGUS patients with black ancestry exhibited enhanced 

immune aging. These data therefore support potential contribution of immune aging in malignant 

transformation, as well as racial predisposition with earlier onset of MM in black individuals. 

Finally, to evaluate the impact of immune aging on immune function in vivo, we analyzed another 

cohort of MM patients undergoing SARS-Cov2 vaccination. Immune but not chronologic aging 

was associated with responses to vaccination.  

These findings provide novel insights into immune system alterations during malignant 

transformation and establish crucial links to racial predisposition in MM pathogenesis. Our work 

demonstrates significant correlations between immune aging signatures and in vivo immune 

function, as shown by vaccine response in these patients. These discoveries enhance our 
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understanding of immune dysfunction in multiple myeloma while highlighting the clinical 

relevance of racial disparities in disease progression. 

Future investigations should focus on elucidating the molecular mechanisms driving accelerated 

immune aging in multiple myeloma and determining how these alterations impact the efficacy of 

emerging immunotherapeutic approaches. Understanding these mechanisms may prove critical 

for optimizing treatment strategies and improving outcomes across diverse patient populations. 

Additionally, longitudinal studies examining the evolution of immune dysfunction throughout 

disease progression could provide valuable insights for therapeutic intervention timing and 

selection. 
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Materials & Methods 

Patients and specimen collection: 

Peripheral blood and bone marrow specimens were obtained from patients with myeloma and 

MGUS following informed consent approved by Emory Institutional Review Board. De-

identified blood specimens from healthy donors were also purchased from New York Blood 

Center, All-Cells and LifeSouth Community Blood Center. Mononuclear cells (MNCs) were 

isolated using Ficoll density gradient centrifugation.  

Immunophenotyping with single-cell mass cytometry (CyTOF): 

Immunophenotyping was performed utilizing a 37-marker mass cytometry panel (Table 2.1). 

PBMCs were stained with cell surface antibodies, fixed, permeabilized, and washed in 

accordance with the manufacturer's cell-surface and nuclear staining protocol as previously 

described (140). After antibody staining, cells were incubated with intercalation solution, mixed 

with EQ Four Element Calibration Beads and acquired using a Helios mass cytometer (all from 

Standard Biotools). Gating and data analysis were performed using Cytobank 

(https://www.cytobank.org). Dead cells and doublets were excluded using cisplatin intercalator 

and DNA content with iridium intercalator.  

Development of immune-age calculator 

PBMCs from a cohort of 107 healthy donors spanning seven decades of life (age range 0–75 

years, Sex: 50 males and 56 females, Race: 48 White, 39 Black, 10 Others and 10 Undisclosed) 

(Table 3.3) were analyzed by mass cytometry using a 37-marker panel (Table 3.5). 37 distinct 

cell populations were identified using manual gating and analyzed for association with 

chronologic age. Of these, 19 immune cell markers (Fig 3.1) exhibited significant age-associated 
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changes identified through three analytical approaches: Pearson correlation coefficients, 

generalized additive models (GAM), and simple linear regression. Pearson correlations 

quantified the strength of association between age and each marker, while GAMs captured non- 

linear trends using the mgcv package in R (version 4.3.0). Simple linear regression models 

(lm(Age ~ cell)) were used to assess linear relationships between age and each marker. Selection 

of the 19 markers was based on the strength of the coefficients and the significance of p-values 

(< 0.001) from these models. Immune cell markers percentages from each donor were used as 

input for principal component analysis (PCA), performed using the `prcomp` function from the 

stats package in R (version 4.3.0). The first principal component (PC1) was selected to calculate 

the Immune-Age of the samples. A linear regression model (lm(Age ~ PC1)) was developed 

using PC1 as the independent variable and age as the dependent variable. Model training 

included repeated cross-validation (CV) to ensure robustness.  

CITE-seq library prep: 

BMMCs (n=23) were thawed, incubated at 37°C for 1 hour to rest. Cells were stained using a 

TotalSeq-C antibody cocktail (Table 3.6) following the 10X Genomics protocol for Chromium 

Single-Cell Immune Profiling with Feature Barcoding Technology (ver. 1.0). Single cells were 

isolated using the Chromium Controller (10X Genomics). Gene expression and CITE-seq 

libraries were prepared using the following kits from 10× Genomics: Chromium Next GEM 

Single Cell 5’ Kit v2 (PN-1000263), Chromium 5’ Feature Barcode Kit (PN-1000541), 

Chromium Single-Cell 5′ Library Construction Kit (PN-1000190), Chromium Next GEM Chip K 

Single Cell Kit (PN- 1000287), Dual Index Kit TT Set A (PN-1000215) and Dual Index Kit TN 

Set A (PN- 1000250). Sequencing was conducted on an Illumina NovaSeq 6000 at a targeted 

depth of 50,000 reads/cell for GEX libraries and 5000 reads/cell for CITE-seq libraries.  
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CITE-seq Data Analysis: 

Initial demultiplexing of raw base calls by sample index was performed by Cell Ranger 

MKFASTQ Software suite (10x Genomics Cell Ranger v7.0.1) (142). The FASTQ files were 

aligned to reference genome GRCh38 (GENCODE v32/Ensembl 98), barcoded for unique UMI, 

filtered, deduplicated, and converted into count matrix of gene expression and surface proteins 

using Cell Ranger Multi pipeline v7.0.1 (available at 10x website). Removal ambient RNA 

contamination and batch effect from the count matrix data we used SoupX (143). The raw and 

filtered feature matrices were used as an input for SoupX. The contamination rate was calculated 

using autoEstCont() and the counts were corrected by adjustCounts() command. The resultant 

matrix was used for downstream analysis. Quality control and dimensionality reduction were 

performed in R v4.3.0 (https://www.r-project.org) using the Seurat package v5.1.0 (144). As 

initial QC of 23 samples (MGUS n=14 and MM n=9) filtered out the cells that expressed < 200 

genes, > 65000 UMI count or > 10% mitochondrial genes; respectively for each sample. 

Additional doublet were removed from these bone marrow samples using DoubletFinder (145). 

These adjusted cell counts for each sample were merged (cell count n= 130317) for downstream 

analysis. Merged object was normalized and scaled with SCTransform using method 

glmGamPoi, regressing mitochondrial percentage with ‘vst’. Surface protein assays were 

normalized across cells using centered log ratio transformation. Next, Principal component 

analysis was calculated using RunPCA and 1:45 PCs were used for clustering on manual 

inspection by elbow plot. The merged dataset is integrated using the harmony (146). The 

integrated object was refined based on the Jaccard similarity using the FindNeighbors function 

on harmony corrected PCA embeddings.  
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Resolution parameter for graph-based clustering was chosen based on Clustree inspection. 

Finally for visualization, UMAP dimensional reduction were calculated using 45 principal 

components with resolution of 1.4 to identify 60 cell clusters. These clusters were further 

classified into major categories, B, T cells (CD4 and CD8), NK, Myeloid (CD16+ and CD16-), 

pDCs, hematopoietic stem/progenitor cells (HSPCs), B cell precursors and tumor cell types, 

based on the protein expression of lineage-associated markers and Azimuth BM reference 

datases (144) Figure 3.3 shows steps used for QC and data processing.  

For comparing transcriptomes from immunologically old/young patients, AAIS was computed 

using mass cytometry data from paired blood samples. The dataset was grouped as MM-old (n = 

5) vs MM-young (n = 4) and MGUS-old (n = 7) vs MGUS-young (n = 7) based on AAIS being 

above/below the median for the group. For each cell subpopulation, differentially expressed 

genes between old vs. young were identified using FindMarker function, method MAST from 

Seurat package. We used the average log2 fold change of +/- 0.585 and p-values < 0.05 for all 

signature genes to estimate the enrichment of each cell subpopulation group. Pathway analysis of 

significantly differentially expressed genes between clusters of interest was performed using the 

preranked workflow with gene set enrichment analysis (GSEA) software and the Molecular 

Signature Database (MSigDB) from the Broad Institute.  

Phospho-CyTOF: 

MNCs from myeloma patients and age-matched healthy controls were thawed and rested in 

RPMI+5%PHS for 1 hour. 3 million cells from each sample were either left unstimulated or 

stimulated with a cocktail of IFNα (50ng/mL) (Sigma-Aldrich) and LPS (5ug/mL) (MD 

Bioproducts) and incubated at 37 °C for 15 minutes. Cells were then fixed using 1.6% 
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formaldehyde and stained for surface markers followed by methanol fixation , permeabilization 

and staining for phosphoproteins per manufacturers protocol (Table 3.7). Cells were incubated 

with intercalation solution, mixed with EQ Four Element Calibration Beads and acquired using a 

Helios mass cytometer (all from Standard Biotools). Gating and data analysis were performed 

using Cytobank (https://www.cytobank.org). Dead cells and doublets were excluded using 

cisplatin intercalator and DNA content with iridium intercalator.  

 

Detection of SARS-CoV-2 spike RBD binding antibodies (147) 

Recombinant SARS-CoV-2 RDB was coated on Nunc MaxiSorp plates at a concentration of 1 

μg/mL in 100 uL phosphate-buffered saline (PBS) at 4°C overnight. Plates were blocked for two 

hours at room temperature in PBS/0.05%Tween/1% BSA (ELISA buffer). Serum or plasma 

samples were heated to 56°C for 30 min, aliquoted, and stored at −20°C before use. Samples 

were serially diluted 1:200 in dilution buffer (PBS-1% BSA-0.05% Tween-20). 100 μL of each 

dilution was added and incubated for 30 minutes at room temperature. 100 uL of horseradish 

peroxidase-conjugated isotype and subclass specific secondary antibodies, diluted 1 to 2,000 in 

ELISA buffer, were added and incubated for 30 minutes at room temperature. Development was 

performed using 0.4 mg/mL o-phenylenediamine substrate (Sigma) in 0.05 M phosphate-citrate 

buffer pH 5.0, supplemented with 0.012% hydrogen peroxide before use. Reactions were stopped 

with 1 M HCl and absorbance was measured at 490 nm. Between each step, samples were 

washed four times with 300 uL of PBS-0.05% Tween. Prior to development, plates were 

additionally washed once with 300 uL of PBS. Secondary antibodies used for development were 

as follows: anti-hu-IgM-HRP, anti-hu-IgG-HRP, and anti-hu-IgA-HRP (Jackson Immuno 
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Research, and Mouse anti-hu-IgG1 Fc-HRP, Mouse anti-hu-IgG2 Fc-HRP, Mouse anti-hu-IgG3 

Fc-HRP, or Mouse anti-hu-IgG4 Fc-HRP (Southern Biotech). 
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Table 3.5: Antibody panel for Immunophenotyping  
 

 Antibody Clone Vendor  Antibody Clone Vendor 

1 CD45 HI30 Standard Biotools 27 CD38 HIT2 Standard Biotools 

2 *CD28 CD28.2 Biolegend 28 CD127 A019D5 Standard Biotools 

3 *CXCR5 J252D4 Biolegend 29 CD19 HIB19 Standard Biotools 

4 CD45RA HI100 Standard Biotools 30 CD3 UCHT1 Standard Biotools 

5 CD31 WM59 Standard Biotools 31 *#GZM K GM26E7 Biolegend 

6 CD4 RPA-T4 Standard Biotools 32 IgM MHM-88 Standard Biotools 

7 CD8 RPA-T8 Standard Biotools 33 #GZN B GB11 Standard Biotools 

8 CD20 2H7 Standard Biotools 34 HLADR L243 Standard Biotools 

9 *#TOX REA473 Miltenyi Biotec 35 PD-1 EH12.2H7 Standard Biotools 

10 CD25 2A3 Standard Biotools 36 CD56 NCAM16.2 Standard Biotools 

11 IgD IA6-2 Standard Biotools 37 CD16 3G8 Standard Biotools 

12 *#EOMES WD1928 ThermoFisher 
Scientific 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

13 CD21 BL13 Standard Biotools 

14 BDCA2 201A Standard Biotools 

15 #TCF1 7F11A10 Biolegend 

16 CD27 L128 Standard Biotools 

17 CD14 HCD14 Standard Biotools 

18 CD33 WM53 Standard Biotools 

19 CCR7 G043H7 Standard Biotools 

20 #TBET D6N8B Standard Biotools 

21 CLEC9a 8F9 Standard Biotools 

22 CD11c Bu15 Standard Biotools 

23 CD57 HCD57 Standard Biotools 

24 CD95 DX2 Standard Biotools 

25 CD45RO UCHL1 Standard Biotools 

26 NKG2D ON72 Standard Biotools 

 
  
All metal conjugated antibodies purchased from Standard Biotools  
*Purified antibodies were purchased from Biolegend/ThermoFisher Scientific/Miltenyi Biotec, and metal tagged 
using Standard Biotools metal conjugation kit following manufacturers methods and titrated prior to use.   
#Intracellular markers   
After antibody staining, cells were incubated with intercalation solution and mixed with EQ Four Element  
Calibration Beads (Cat. #201708)   
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Table 3.6: TotalSeq-C antibody panel used for CITE-Seq 
 

  Antibody Clone   Antibody Clone 

1 CD117 (c-kit) 104D2 29 CD10 HI10a 

2 CD226 (DNAM-1) 11A8 30 CD45 HI30 

3 CD223 (LAG-3) 11C3C65 31 CD19 HIB19 

4 CD314 (NKG2D) 1D11 32 CD38 HIT2 

5 CD303 (BDCA-2) 201A 33 CD161 HP-3G10 

6 CD274 (B7-H1, PD-L1) 29E.2A3 34 IgD IA6-2 

7 KLRG1 (MAFA) 2F1/KLRG1 35 CD11b ICRF44 

8 CD20 2H7 36 CD185 (CXCR5) J252D4 

9 CD16 3G8 37 CD1c L161 

10 CD66b 6/40c 38 HLA-DR L243 

11 CD14 63D3 39 CD194 (CCR4) L291H4 

12 CD123 6H6 40 CD141 
(Thrombomodulin) M80 

13 CD370 
(CLEC9A/DNGR1) 8F9 41 Ig light chain κ MHK-49 

14 CD209 (DC-SIGN) 9E9A8 42 Ig light chain λ MHL-38 

15 CD127 (IL-7Ra) A019D5 43 CD138 (Syndecan-1) MI15 

16 TIGIT (VSTM3) A15153G 44 CD27 O323 

17 CD25 BC96 45 CD33 P67.6 

18 CD294 (CRTH2) BM16 46 CD57 QA17A04 

19 CD21 Bu32 47 CD56 (NCAM) QA17A16 

20 CD244 (2B4) C1.7 48 CD4 RPA-T4 

21 CD79b (Igβ) CB3-1 49 CD8a RPA-T8 

22 CD28 CD28.2 50 CD11c S-HCL-3 

23 CD279 (PD-1) EH12.2H7 51 CD155 (PVR) SKII.4 

24 CD69 FN50 52 CD45RO UCHL1 

25 CD183 (CXCR3) G025H7 53 CD3 UCHT1 

26 CD196 (CCR6) G034E3 54 CXCR4 12G5 

27 CD197 (CCR7) G043H7 55 4-1BB 4B4-1 

28 CD45RA HI100   

  

TotalSeq-C antibodies were purchased from BioLegend and used following manufacturers 
methods.   
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Table 3.7: Antibody panel for Phospho-CyTOF analysis  

 
 Antibody Clone Vendor 

1 CD45 H130 Standard Biotools 

2 CD19 H1B19 Standard Biotools 

3 HLA-DR L243 Standard Biotools 

4 CD20 H1 Standard Biotools 

5 CD56 NCAM16.2 Standard Biotools 

6 #p-STAT5 47 Standard Biotools 

7 CD123 6H6 Standard Biotools 

8 #p-STAT1 4a Standard Biotools 

9 #p-38 D3F9 Standard Biotools 

10 #p-STAT3 4/p-STAT3 Standard Biotools 

11 CD11c Bu15 Standard Biotools 

12 CD14 M5E2 Standard Biotools 

13 CLEC9a 8F9 Standard Biotools 

14 CD66b 80H3 Standard Biotools 

15 CD33 WM53 Standard Biotools 

16 CD16 3G8 Standard Biotools 

17 
BDCA3 
(CD141) M80 Standard Biotools 

18 CD11b ICRF44 Standard Biotools 

19 CD8 SK1 Standard Biotools 

20 CD3 UCHT1 Standard Biotools 

21 #pERK D13.14.4E Standard Biotools 

22 CD4 SK3 Standard Biotools 

 
  
  
All metal conjugated antibodies purchased from Standard Biotools  
#Intracellular markers   
After antibody staining, cells were incubated with intercalation solution and mixed with EQ Four Element 
Calibration Beads (Cat. #201708)   
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Chapter 4: General Discussion and Closing Remarks 

4.1 Introduction 

The overall goal of this dissertation was to better understand immune alterations in MM and its 

precursor state MGUS, and to illustrate correlations with age-associated immune dysfunction 

seen in patients. While there have been significant advances in the field’s understanding of the 

role that the immune system plays in myeloma progression, leading to significant treatment 

improvements, myeloma remains incurable (148, 149). The therapeutic potential of the immune 

system in myeloma progression has been demonstrated by the evidence of anti-tumor responses 

in both MGUS and MM TME (37, 150), the clinical success of immunomodulatory drugs 

(lenalidomide, pomalidomide) and monoclonal antibodies (Daratumumab, Isatuximab etc) (151) 

and the recent success of CAR-T cells and T- cell targeting bispecific antibodies (132, 152) in 

the treatment of myeloma patients. This clinical success also argues against T-cell exhaustion, a 

phenotype based large on comparisons with transcriptomic signatures from murine chronic viral 

infection models (131).  

MM and MGUS are more common in individuals with black ancestry, owing to several complex 

disparities in incidence, diagnosis, access to treatment and clinical trials, and underrepresentation 

in research, which ultimately impact outcomes (123). However, mechanisms linking immune 

dysfunction to racial ancestry or malignant transformation remain unclear.  

This dissertation elucidates the functional state of T cells in MM, revealing enhanced 

inflammatory cytokine production by bone marrow T cells, indicative of accelerated immune 

aging. These findings were corroborated through integrated analyses of bone marrow immune 

and tumor cell transcriptional signatures, phosphoproteomic profiling, and functional vaccine 

response studies. 
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4.2 Investigation of immune-aging in myeloma 

In efforts to functionally phenotype T cells from MGUS and myeloma bone marrow, we 

observed that after TCR stimulation, these T cells were polyfunctional and retained their ability 

to proliferate. This data indicated the lack global exhaustion in myeloma. Further 

characterization of T cells from myeloma BM revealed that they in fact have enhanced 

inflammatory cytokine production such as GMCSF and IL17, even in phenotypes previously 

thought to be “exhausted” such as PD-1 and LAG-3+ cells (Chapter 2).  

We hypothesized that these immunophenotypic changes such as increase in terminal effectors 

and inhibitory checkpoints previously described in MM may relate instead to altered trajectories 

of immune aging. Current knowledge of immune-aging in myeloma and how it affects disease 

progression is scarce, with some evidence pointing towards senescence in a clonal population of 

terminally differentiated T cells with low expression of the classic exhaustion markers PD-1 and 

CTLA4 (153) and an increase of senescent T cells and drop in the naïve T cell pool with 

subsequent lines of therapy (154). Using a cohort of nearly 300 racially diverse MM/MGUS 

patients/healthy controls, we found that MM is associated with greater immune aging as 

compared to chronologically age matched MGUS patients (Figure 3.2). These findings were also 

supported by transcriptomic analysis, where immunologically older MM and MGUS patients 

were enriched for PD1 and interferon-response signatures (Figure 3.5). Phospho-proteomic 

analysis further validated these findings where MM T cells and monocytes had higher baseline 

inflammatory signaling and a dampened response to stimulation as compared to age-matched 

healthy controls (Figure 3.6, Figure 3.7).  

Since the reduced responsiveness of vaccines is a hallmark of aging, we validated that with our 

MM cohort that received the SARS CoV-2 vaccination, where the group of patients who 
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developed vaccine-induced immunity were immunologically younger than those that did not 

(Figure 3.8).  

 

4.3 Racial differences in myeloma and its precursor states 

Myeloma and its precursor states affects black individuals more than white individuals and so to 

capture these racial differences, we ensured that the healthy donor cohort we used to validate 

functional differences as well as those used to create the immune-age calculator represented the 

MGUS and MM patient cohort with an equal split of white and black donors (Table 3.1, Table 

3.2). This ensured that the immune-age calculator captured the impact of racial differences on 

any age-associated immune changes. Black MGUS patients were immunologically older 

compared to age-matched white counterparts, but no race-dependent differences were observed 

in the newly diagnosed myeloma cohort (Figure 3.2). Together these data suggest an impact of 

racial ancestry on immune-aging trajectories may begin early in MGUS and provide insights into 

prior studies showing MM development at an earlier age in Black patients (2, 123).  

 

4.4 Future directions 

T cell exhaustion and its impact on anti-tumor immunity remains to be a critical area of 

investigation in MM research, as effective tumor recognition by T cells is fundamental for 

mounting robust anti-tumor responses. Although exhausted and senescent T cells share a similar 

dysfunctional role in antitumor immunity owing to the decrease in fitness of T cells, they are 

distinctly different in terms of phenotypic and functional characteristics during tumor progression 

(155, 156). Our data suggests a lack of global exhaustion, owing to the T cells abilities to respond 

to TCR stimulation, further validated by the clinical success of CAR-T cells and bispecific 
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antibodies (132). This suggests a need to systematically characterize the functional state of T cells 

in MM. T cells within the MM marrow are likely to be heterogeneous and consist of both tumor-

specific T cells (including neoantigen-specific T cells which as more likely to respond to 

checkpoint blockade therapies) and bystander T cells (150, 157). The re-activation and clonal 

expansion of tumor-reactive T cells are critical to the success of immune checkpoint blockade 

(ICB), adoptive transfer of TILs and immunomodulatory drugs (IMIDs) (158). Unfortunately, PD-

1 blockade as a single agent has been clinically underwhelming in the treatment of MM (159). 

MGUS has been characterized with an enrichment of stem-like memory T cells (TCF1+, TCF7+) 

which is lost as the disease progressed to myeloma (45) and higher levels of naïve T cells (160), 

showing that the MM bone marrow microenvironment is more immunosuppressive than MGUS. 

The spatial location of these T cells in the BM is key for their interactions with tumor cells and 

APCs, and high-dimensional spatial analyses have shown that T cell entry into MM clusters is 

regulated by CD2/58 co-stimulation and antigen-presenting CLEC9A+ dendritic cells (136). All 

these findings reinforce the need to better characterize the heterogeneity of T cells in MM 

progression. 

Similarly, there is a need to characterize the immune-aging phenotype that we observed in greater 

depth. While with the FlowSOM analysis, we were able to discern specific phenotypes such as 

within the CD4 T cells, there were CD57+ memory CD4 T and two cytokine-producing subsets 

and in CD8 T cells, a subset which showed a TEMRA phenotype and a polyfunctional MC which 

produced IL17, further functional validation of these specific populations is important to 

understand the inflammatory state of T cells.  

In addition to this, further functional validation of other T cell aging markers would provide 

deeper insight into myeloma T cell biology. Defects in telomere length leading to critically short 
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telomeres have been implicated in several age-related diseases, premature ageing syndromes, as 

well as in cancer (161). Aging T cells also exhibit an increase in DNA damage markers, such as 

γH2AX foci and β-galactosidase activity, both of which are strongly associated with cellular 

aging (73). γH2AX, a well-established marker of double-strand breaks (DSBs), contributes to 

genomic instability and has been implicated in chronic inflammatory conditions. Inflammation 

disrupts the balance between pro-inflammatory cytokines (TNFα, IL-6 etc) and anti-

inflammatory cytokines (IL-12, IFNγ etc), leading to the production of DNA-damaging reactive 

oxygen and nitrogen species. This exacerbates γH2AX accumulation and further drives immune 

dysfunction. (162). These insights open promising therapeutic avenues, including utilizing 

γH2AX as a biomarker to monitor immune aging and disease progression. Additionally, targeted 

interventions such as telomerase reactivation, DNA repair-enhancing therapies, and clinical 

strategies aimed at mitigating DSBs could be integrated with existing immunotherapies to 

enhance their clinical efficacy. 

Another important characteristic of T cell aging is the diminished generation of naive T cells, 

leading to a compensatory clonal expansion of memory T cells, and a reduction in the diversity 

of the peripheral T cell repertoire. This decline in T cell receptor (TCR) diversity has significant 

clinical implications, as it weakens immune responses to pathogens and malignancies. Our 

findings highlight a potential clinical opportunity: classifying patients into “immune-young” and 

“immune-old” populations. Patients with a more diverse TCR repertoire (characteristic of the 

“immune-young” group) are likely to exhibit stronger immune responses, including improved 

tumor recognition and clearance. This classification could serve as a predictive tool for 

immunotherapy outcomes, enabling more personalized therapeutic strategies. It has been shown 

that harvesting less mature autologous T cells prior to CAR-T cell manufacturing has been 
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associated with improved outcomes in MM (163). This is applicable to MGUS as well, where 

there is evidence that T cells from MGUS are able to mount immune responses and our data 

shows that MGUS patients have a lower immune-age score than MM patients (Figure 3.2) (37). 

Recent clinical trials and studies have begun to explore some earlier interventions in the context 

of SMM, with some observed benefits and delayed progression to MM in certain patient subsets 

treated with IMiDs such as lenalidomide (164, 165). Lenalidomide has been shown to increase 

the proportion of CD28 T cells in MM (166) and the accumulation of CD28- T cells is an 

established change associated with aging (167). Studies looking at the potential reversal of T cell 

aging have shown that p38 signaling, which is increased in terminally differentiated CD27-

CD45RA+ compared with the CD27-CD45RA- (EM) T cell populations, is involved in the 

induction of increased apoptosis and impaired telomerase activity in these populations after TCR 

activation (168). In our data, we see an increased expression of baseline p38 in MM T cells 

(Figure 3.6), and inhibition of p38 could have clinical potential, as an adjunct to allogenic T cell 

immunotherapies.  

MM is characterized by significant heterogeneity in clinical characteristics and cytogenetic 

abnormalities, which are found in most MM patients and their prognostic value has been well 

studied (169). Translocation t(4;14), t(14;16) and t(14;20) have been associated with poor 

prognosis, and their presence identifies high-risk (HR) disease, while patients with t(11;14), t(6;14) 

and/or trisomies are considered to have standard-risk (SR) disease (169). Mass cytometry done to 

characterize T cell heterogeneity revealed that TME of patients with trisomies is populated by 

more senescent/terminally differentiated and exhausted T cell subsets (160). The presence of 

trisomies is a negative prognostic factor in MGUS/SMM but a positive one in NDMM, after 

therapy has been administered, making them especially sensitive to lenalidomide (170). 
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Understanding the relationship between immune-aging and cytogenetic abnormalities may provide 

valuable insights into clinical outcomes. 

As previously discussed, the incidence of myeloma and its precursor states is 2–3-times higher in 

black individuals than in white individuals (119). In this dissertation we see that MGUS patients 

with black ancestry exhibited enhanced aging, which indicates racial predisposition with earlier 

onset of myeloma in black individuals. This has great clinical implications since several studies 

have shown that black patients face a delay in diagnosis, where the average length of time 

between MM diagnosis and start of treatment with a novel therapy is 5.2 months for black 

patients compared to 2.7 months for white patients (171).  

 

In summary, this dissertation advances our understanding of immune system function in 

myeloma and its precursor states. We identified distinct functional profiles of myeloma bone 

marrow T cells, characterized by enhanced inflammatory cytokines, proliferation, and phospho-

signaling, with transcriptomic validation. Our work revealed connections between immune aging 

in myeloma and its malignant transformation, racial predisposition, and vaccine response. These 

findings may prove instrumental in improving immune therapies for myeloma patients. 
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