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Abstract

Recursive Phase Estimation with Applications to Heartbeat Processing

by Alec Reinhardt

In this thesis, we explore the estimation of nonlinear, time-varying phase. We first introduce

how to conceptualize and estimate phase using global techniques from Fourier analysis and

Functional Data Analysis, before going on to develop recursive formulations using a constrained

Extended Kalman Filter approach. We then evaluate the performance of the global and recursive

methods on a variety of simulated examples, and discuss respective limitations of each. In general,

we find that the recursive methods can outperform traditional estimation techniques in high-noise

settings, and may be better suited to tracking local phase variations. Finally, we illustrate how

the recursive models may be applied in order to robustly process and analyze heartbeat signals.
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1 Introduction

1.1 Background

The automatic processing of heartbeat recordings is a complex and well-studied area within

biomedical engineering and statistics. Depending on what kind of information is extracted,

processing methods are instrumental for development of di↵erent kinds of classification schemes,

including the detection of cardiac arrhythmias, the biometric recognition of individuals based

on their heartbeat, and the monitoring of di↵erent behavioral states [3] [7] [12]. This thesis

comes out of a long-term study which aims to use Doppler ultrasound fetal heartbeat signals as

a real-time behavioral classifier, with the ultimate goal of assessing risk of autism in utero using

these processing pipelines.

In order to go about tackling this problem, there is a more general question which needs to be

addressed. That is, how do we come up with a robust and adaptive framework for characterizing

heartbeat signals (and other waveforms) in real time? We propose that the notion of phase

(defined below) can give us a useful, clinically relevant representation of heartbeat signals, since

it provides information about naturally-occurring fluctuations in heart rate which have previously

been studied as indicators of physiological and behavioral status [6] [12]. In particular, we wish

to develop a flexible method to track nonlinear phase distortions across intra-beat and inter-beat

time intervals.

1.2 Defining Phase

In plain terms, phase can be thought of as a measure of how far we are along a waveform

with respect to a starting time [14]. More generally, we may define the phase as a smooth,

monotonically-increasing function of time, �(t), representing the state of an underlying dynamical

system, which can uniquely represent all versions of a waveform with a given amplitude function,

A(t). Furthermore, we note that the derivative of phase, �0(t) = !(t) gives the instantaneous

frequency of the waveform, another useful measure of wave dynamics.

Here, it is important to mention that phase and amplitude are mutually-dependent concepts

and are only clearly defined when we consider them as parameters of a known reference function
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or a set of reference functions known as a basis. For instance, we may consider the simple family

of sine waves given by

Asin(�(t)) = Asin(!t+ �0) (1)

which, for a given frequency !, are completely described by some constant amplitude A and

phase o↵set �0. This representation gives rise to Fourier analysis, in which we decompose signals

based on the amplitudes and phases of multiple sinusoidal basis functions, each with a given

frequency (see Section 2.1).

Alternatively, we may wish to represent sinusoidal phase and amplitude as nonlinear functions

corresponding to one overall waveform (rather than a decomposition of multiple sinusoidal bases).

This can be expressed in the following complex exponential form

A(t)ej�(t) = A(t)[cos(�(t)) + jsin(�(t))] (2)

However, for each of these instances, we claim that the choice of representing phase in terms

of sine waves can be considered an arbitrary one. Thus, for cases where the underlying waveform

is more complex or specific in structure, we would like to define and estimate phase in a way

that is more relevant to particular applications (e.g. processing heartbeat signals). By extension,

we may also wish to characterize relative temporal alignment, or phase variability, for functions

which in general are not periodic in nature.

1.3 Motivation

Various approaches exist for globally estimating the phase of a signal in both the sinusoidal and

non-sinusoidal case, of which a select few are discussed in the following section [9]. However,

there has been less attention given to recursive approaches, which may o↵er benefits for tracking

the local behavior of phase and for use in real-time processing systems [21].

Therefore, in this thesis, we aim to develop techniques for recursively estimating the phase of

an arbitrary function embedded in noise using the Extended Kalman Filter [19]. We evaluate the

performance of these methods on simulated examples and show correspondence to global tech-
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niques for phase and phase variability estimation. Applications related to analysis of heartbeat

signals are considered.

2 Theory

Before introducing our recursive framework, we discuss global methods for phase estimation,

both in the sinusoidal and non-sinusoidal case.

2.1 Sinusoidal Phase Estimation

Classically, the phase (or phase components) of a sinusoidal waveform embedded in additive

Gaussian noise is estimated using methods from Fourier analysis. We describe here three of the

most standard techniques, ordered in terms of how local (i.e. nonlinear) their phase estimates

are.

2.1.1 Discrete Fourier Transform

For a discrete-valued signal xn of length N, its Discrete Fourier Transform (DFT) is defined as

[8]

F{xn} =
N�1X

n=0

xne
�i2⇡kn/N = Xk (3)

and gives the frequency-domain representation of the signal. Namely, the DFT allows for the

estimation of constant amplitude and phase parameters of sinusoidal components of the form (1)

across di↵erent frequencies. The phase estimate for the k-th sinusoidal component is given as

the angle of the complex-valued spectral representation, Xk.

Note that the DFT is invertible, meaning these spectral representations may be transformed

back into the time-domain representation (i.e. the signal xn). This inverse is given by

F
�1

{Xk} =
1

N

N�1X

k=0

Xke
i2⇡kn/N = xn (4)

Because the phase and amplitude estimates obtained from the DFT are constants, this method

is only suitable for estimation when we have stationary periodic signals – i.e. the waveform retains
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its properties over time.

2.1.2 Short-Time Fourier Transform

As a more suitable approach for phase and amplitude estimation of non-stationary signals, we

may use the Short-Time Fourier Transform (STFT). This method is based on taking the DFT

over overlapping, windowed segments of the signal, and is given for the discrete time signal xn

by [13]

X(m,!) =
1X

n=�1
x(n)w(n�m)e�j!n (5)

where m is a time index, ! is frequency, and w is a chosen window function.

This transformation gives a time-frequency representation of the signal which allows for time-

varying amplitude, frequency, and phase estimation across multiple major components (e.g.

harmonics). However, the STFT comes with its own key limitation, namely a tradeo↵ in temporal

resolution and frequency resolution due to the Heisenberg Uncertain Principle 1. Practically, this

means it is not possible to get the true instantaneous phase estimate for arbitrarily local phase

distortions.

2.1.3 Hilbert Transform

Due to the limitation of the DFT and STFT for estimating local phase changes, we consider the

Hilbert Transform as the primary Fourier-based method for obtaining estimates of the phase and

amplitude functions of a sinusoidal waveform of the form (2).

In discrete time, the Hilbert Transform is conveniently expressed via the DFT and inverse

DFT [8]. Namely, we have

H(xn) = F
�1
D {�jsgn(N/2� k)sgn(k)FD{xn}} (6)

From this transform, we can define the complex-valued analytic signal zn as

1This tradeo↵ always exists for the discrete-time STFT, but it can be properly balanced by choosing di↵erent
window functions
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zn = xn + jH(xn) = Ane
j�n (7)

and obtain the wrapped instantaneous phase �
wr
n using

�
wr
n = arg(zn) = tan

�1(H(xn)/xn) (8)

Note that the Hilbert phase estimate is “wrapped” in the sense that the inverse tangent

function is only defined modulo pi, i.e. �
wr
n 2 (�⇡,⇡]. To obtain a more useful representation,

we need to transform, or unwrap, �wr
n such that its tangent is preserved but it is monotonically

increasing for increasing n. This is a well-studied problem known as Phase Unwrapping Problem

which can be nontrivial when the signal-to-noise ratio (SNR) is high [15].

In addition to the problem of Phase Unwrapping, the Hilbert Transform has the key limitation

that it is not easily interpretable for signals which are non-sinusoidal or contain multiple frequency

components. An illustration of this is shown in section 4.1.

2.2 General Phase Estimation

Given that Fourier techniques may not always be appropriate for analyzing arbitrary waveforms

or temporal deviations from a non-periodic curve, we require a more general technique for phase

estimation. In particular, we are interested in modeling an observed signal x(t) as a phase and

amplitude-distorted instance of some underlying (non-sinusoidal) reference function ỹ(t), i.e.

x(t) ⇠ A(t)ỹ(�(t)) (9)

In order to address this problem more concretely, we introduce some theory from Functional

Data Analysis (FDA). In particular, we will frame this phase estimation problem in relation to

the constrained optimization problem known as Curve Registration, which was posed in terms

of FDA by Ramsay and Silverman [17] [18]. Note that the optimization technique described

below can be viewed as a generalization to other kinds of curve-alignment methods, including

landmark-based registration and Dynamic Time Warping [4].
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2.2.1 Curve Registration

Suppose we are given a set of time-varying curves, and we wish to characterize how these curves

di↵er from one another, both in terms of amplitude variation (i.e. di↵erences along the y-axis)

and phase variation (i.e. di↵erences along the t-axis).

In general, Curve Registration seeks to find the so-called warping functions, h(t), which map

a curve’s observed time onto some common reference time in such a way that minimizes phase

variation between all the warped curves. For our purposes, we will assume that amplitude

variation between phase-aligned curves is linear – that is, amplitude deviations can be described

with a scaling and shifting factor. In this case, we can relate each observed curve xi(t) to a

common template curve ỹ(t) with the following model

ỹ(t) = aixi(hi(t)) + bi + ✏i (10)

where hi(t) is the warping function of the i-th curve, ai is the scale factor, bi is the shift factor,

and ✏i is a noise term.

The constraint for the Curve Registration problem comes from the form of the warping

functions. In particular, as is the case with our notion of phase, we expect that these functions

are continuous, invertible, and monotonically increasing, since the flow of time is unidirectional

and we wish to recover any given curve from its temporally-transformed counterpart. In fact,

we can think of these warping functions, or more specifically, their inverses, as a kind of general

phase, since they summarize temporal location along the reference curve y(t).

In [17], Ramsay and Li proposed using a class of functions given by

h(t) = c0 + c1

Z t

0
e

R t
0 w(s)ds

d⌧ (11)

to represent monotonically-increasing warping functions, where w(t) is some unconstrained func-

tion representing the relative curvature of h(t).

From these expressions, the overall FDA optimization problem can be expressed as a global

minimization of the squared error between the reference curve y(t), and each warped curve, after
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scaling and shifting has been applied. In addition, we add a regularization factor � to avoid

estimates which have an overly large relatively curvature. In the case where all scale and shift

factors ai and bi are equal, we may perform this optimization using the target function

F�(ỹ, xi|hi) =

Z
||ỹ(t)� xi(hi(t))||

2
dt+ �

Z
w

2
i (t)dt (12)

from which the minimum is obtained by changing parameters of wi(t). A more robust criterion

when the values of ai and bi may vary for each curve, is based on maximizing the correlation be-

tween the observed curve and unwarped template, and can be expressed as a minimum eigenvalue

criterion as in [18] (p. 139-140).

Limitations

While Curve Registration gives a solid framework for phase variability estimation, it may not

always be suitable for practical purposes since it is a global optimization scheme which can be

computational expensive. Furthermore, the globally formulated constraint of monotonicity on

the warping function h(t) may be unwieldy or too restrictive in some cases. Thus, we would like

to shift from this global formulation to a recursive one, where we can impose local constraints in

order to get monotonically increasing phase or inverse warping function estimates. Additionally,

recursive approaches are advantageous in that they can incorporate information about state

dynamics and thus may ultimately result in a more intuitive formulation of FDA.

2.3 Recursive Estimation

In order to develop this recursive framework, we first introduce the general approach for solving

recursive estimation problems (Bayesian filtering), followed by a specific implementation of this

approach known as the Extended Kalman Filter (EKF) [1] [19].

2.3.1 Bayesian Filter

In general, the problem of recursive estimation of an underlying state (e.g. warping function

parameters) given a set of observations can be solved using a Bayesian filter [1]. Formally, the

Bayesian filter provides a way for estimating the posterior distribution p(xk|Z1:k) for a random
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variable xk representing some underlying dynamical state and Z1:k representing realizations (i.e.

observations) of a random variable zk up to the current time point.

In order for this filtering problem to be tractable, we make the following assumptions about

random variables xk and zk:

• The PDFs p(xk), p(xk+1|xk), and p(zk|xk) are defined for all k, 1  k  n, and p(x0) is

known

• xk is a discrete-time Markov process,

i.e. p(xk|x0, x1, . . . , xk�1) = p(xk|xk�1)

• xk can be expressed as a function of the previous state xk�1, along with current and

previous time point and a noise with a known PDF variable through a given state model

• zk can be expressed as a function of xk and a noise variable with a known PDF through a

given measurement model

• The noise variables from the state and measurement model and x0 are mutually indepen-

dent

Given these assumptions, we employ Bayes’ rule to derive the a pair of recursive equations

which can be used to find p(xk|Z1:k), namely:

p(xk+1|Z1:k) =

Z
p(xk+1, xk|Z1:k)dxk

=

Z
p(xk+1|xk, Z1:k)p(xk|Z1:k)dxk

=

Z
p(xk+1|xk)p(xk|Z1:k)dxk (13)

p(xk+1|Z1:k+1) = p(xk+1|zk+1, Z1:k)

=
p(zk+1|xk+1, Z1:k)p(xk+1|Z1:k)p(Z1:k)

p(zk+1, Z1:k)

/ p(zk+1|xk+1)p(xk+1|Z1:k) (14)
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In order to utilize these equations, we require expressions for the PDFs p(xk+1|xk) and

p(zk|xk). Most often, we do this by deriving them from the state and measurement models after

introducing further assumptions about state and measurement noise.

2.3.2 Extended Kalman Filter

The Extended Kalman Filter (EKF) is a widely-used special case of a Bayesian Filter where the

state and measurement noise PDFs (and thus all subsequent PDFs involved in the estimation

of p(xk|Z1:k)) are assumed to be Gaussian [19]. Formally, the general state-space model for an

EKF can be expressed in terms of a (di↵erentiable) state function f and measurement function

h with the following state-space model :

xk+1 = f(xk, uk) + wk (15)

zk = h(xk) + vk (16)

where wk and vk are the respective state and measurement noise variables, which have the

following statistical properties (N represents a multivariate normal distribution given by a mean

and covariance matrix)

wk ⇠ N (0, Qk) (17)

vk ⇠ N (0, Rk) (18)

E(wkvk) = 0 (19)

Furthermore, we initialize xk with a starting state estimate x0 and state covariance matrix

P0 – i.e. x0 ⇠ N (x0, P0) – and assume it is uncorrelated with both wk and vk.

The EKF estimates the posterior of the state xk through a prediction and update step which

are each based on a Taylor-series linearization of the nonlinear state and measurement functions.

The corresponding solutions have the form
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Prediction Step

x̂k|k�1 = f(x̂k�1|k�1, uk) (20)

Pk|k�1 = FkPk�1|k�1F
T
k +Qk (21)

Update Step

Kk = Pk|k�1H
T
k (HkPk|k�1H

T
k +Rk)

�1 (22)

x̂k|k = x̂k|k�1 +Kk(zk � h(x̂k|k�1)) (23)

Pk|k = (I �KkHk)Pk|k�1 (24)

Here, x̂k|k�1 is the predicted state estimate with covariance Pk|k�1, x̂k|k is the updated (i.e.

posterior) state estimate with covariance Pk|k, and Kk is the Kalman gain matrix. Because the

EKF relies on linearization, we set Fk and Hk to be the Jacobians of the state and measurement

function, respectively, evaluated at the most recently estimated state value, i.e.

Fk =
@f

@x

����
x̂k�1|k�1

(25)

Hk =
@h

@x

����
x̂k|k�1

(26)

Note that when the state space model is linear, these Jacobians do not depend on state

estimates, and we are left with the optimal linear filter, i.e. the Kalman filter [1].

3 Methods

In this section, we propose two di↵erent state space models which make use of the EKF to

recursively estimate of the instantaneous phase of some known reference curve ỹ(t). In both

formulations, we consider modeling an observed signal x(t) as a phase-distorted, amplitude scaled,

and vertically shifted noisy instance of the reference curve using the model
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x(t) ⇠ aỹ(�(t)) + b (27)

These formulations, which we call the Raw Phase Model and Phase Function Model, di↵er in

how they represent the phase estimates, and thus can be useful for di↵erent kinds of applications.

In particular, the Raw Phase Model includes a simple form of state dynamics based on the

instantaneous frequency; this formulation may be altered if we have prior knowledge about the

dynamical form of the phase, for instance in cases of polynomial or oscillatory phase signals. On

the other hand, the Phase Function Model does not contain state dynamics, but still allows for

locally-imposed constraints on an estimated continuous phase function.

Following our formulations, we also show how to impose constraints of monotonicity and, if

needed, bounded endpoints, using a projection method. Finally, we discuss practical consider-

ations, including choice of model parameters and methods for utilizing these models to obtain

phase estimates when the true reference curve ỹ(t) is not known a priori.

3.1 Model 1: Raw Phase Model

Let us assume for now that we are given the form of a continuous, di↵erentiable, and periodic

template function, denoted ỹ(t), along with its first derivative, ỹ
0(t), and its period, T. We

first consider the problem of estimating the raw value of the phase of ỹ(t) at a discrete set of

observed time points t1:n. In this case, we assume that the observed values, Z1:n, represent noisy

discretizations of a phase-distorted template curve, whose amplitude may also be scaled and

shifted by some constant amounts over the time interval.

3.1.1 State Space Model

Define the state variable at time tk to be xk = [�k,!k, ak, bk]T , where �k is the raw phase value of

ỹ, !k is frequency, ak is an amplitude scaling constant, and bk is an amplitude shifting constant.

We assume that these parameters represent discrete values of underlying functions �(t), !(t),

a(t) = a, and b(t) = b.

Using the relationship �
0(t) = !(t) for phase function �(t) and frequency function !(t), we

can write the Taylor series expansion of �(t) about time tk as
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�(t) = �(tk) + (t� tk)!(tk) +
(t� tk)2

2
!
0(tk) + . . . (28)

which implies for discrete values

�k+1 = �k +�tk!k +
�tk

2

2
!
0
k + . . . (29)

Since we are primarily dealing with signals that are nearly-periodic, we make the assumption

that the frequency function !(t) is approximately constant for time di↵erence much smaller than

period T; formally, this is expressed as |!(t+�t)� !(t)|/|!(t)| ⇡ 0 for �t << T . Thus, we can

treat the higher-order terms of the Taylor expansion as state noise and are left with the following

state-space model:

xk+1 = f(xk) + wk = Akxk + wk =

2

66666664

1 �tk 0 0

0 1 0 0

0 0 1 0

0 0 0 1

3

77777775

2

66666664

�k

!k

ak

bk

3

77777775

+ wk (30)

zk = h(xk) + vk = akỹ(�k) + bk + vk (31)

Since the state equation is linear, we use Fk = Ak for the EKF prediction step. The mea-

surement equation, however, is nonlinear, so we need an expression for the Jacobian to use for

the EKF update step, namely,

Hk =
@h

@x

����
x̂k|k�1

=


âk|k�1ỹ

0(�̂k|k�1) 0 ỹ(�̂k|k�1) 1

�
(32)

Monotonicity Constraint

Given that the true phase function �(t) is monotonically increasing across time, we have that

!(t) = �
0(t) > 0. Thus, we can impose the constraint that !k > 0 for all k. Note that applying

this constraint at each iteration of the EKF is a soft constraint of sorts, because the posterior

phase estimates for the current time point will not change (only later phase estimates will be
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a↵ected).

In order to avoid estimating frequencies which would be subject to aliasing, we also constrain

!(t) to be less than the Nyquist frequency fs/2 for sampling rate fs =
1

�tk
.

3.2 Model 2: Phase Function Model

Our second model considers the problem of recursively estimating the parameters of a function

representing the phase of the periodic waveform ỹ(t). This method can also be thought of as a

recursive analog to curve registration in FDA, where here we are estimating the inverse warping

functions, h�1(t), that optimally map template time onto observed time. However, unlike FDA

curve registration where the reference curve is defined for one period (finite time) and each

instance of the phase distorted reference curve is known a priori, we allow the EKF method to

uncover multiple instances of the template waveform within a single phase-distorted signal. To

show correspondence with FDA curve registration, we impose endpoint constraints that allow

for unwarping when the number of periods spanned by each observed curve is known (e.g. if we

have a set of curves each representing one period of the template).

3.2.1 B-Spline Functions

In order to develop this method, we require a basis function representation of the phase �(t)

which can describe smooth, arbitrarily local distortions. B-Splines provide a natural choice of

basis because they are (d-1)-times continuously di↵erentiable for order d, and their locality can

be easily adjusted by changing the number and position of control points, or knots. Furthermore,

as we will see, B-splines can lend themselves well to imposing local monotonicity constraints, as

well as endpoint constraints.

Given a set of n = J + d+ 1 strictly increasing knots K = (K1, ...,Kn), a B-Spline function

can be defined as a weighted sum of J nonnegative piecewise polynomial functions of degree

d. Each B-spline basis, denoted bi(t) for i = 1, 2, ..., J , is nonzero for t 2 [Ki,Ki+d+1) and

zero elsewhere. Carl de-Boor showed that these basis functions can be defined recursively for

increasing order d as follows, with bj,�(t) representing the j-th �-degree basis [5]:
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Cox-de Boor formula

bj,0(t) =

8
>><

>>:

1 Kj  t < Kj+1

0 otherwise

(33)

bj,�(t) =
t�Kj

Kj+�+1 �Kj
bj,��1(t) +

Kj+� � t

Kj+� �Kj+1
bj+1,��1(t) (34)

These expressions imply that for a given t 2 [Kj ,Kj+1], the value of the unweighted B-spline

function can be obtained from d+1 of the J bases, namely: bj�d(t), bj�d+1(t), . . . , bj(t). We can

compute the row vector of these d+1 basis values, denoted bj,d(t), as in [11]:

bj,d(t) = Bj,1(t)Bj,2(t)...Bj,�(t)...Bj,d(t) (35)

where each Bj,�(t) is a � ⇥ (� + 1) matrix defined as

Bj,�(t) =

2

66664

Kj+1�t
Kj+1�Kj+1��

t�Kj+1��

Kj+1�Kj+1��
0 · · ·

. . .
. . .

0 · · ·
Kj+��t

Kj+��Kj

t�Kj

Kj+��Kj

3

77775
(36)

The overall B-spline function f(t) is defined for t 2 [Kd+1,KJ+1) as

f(t) = bj,d(t)xj,d (37)

where j indexes the knot interval such that t 2 [Kj ,Kj+1) and xj,d 2 R(d+1)⇥1 is the coe�cient

vector over that knot interval.

Monotonicity Constraint

In order to impose a monotonicity constraint, we will also require the form of the first derivative

of the B-spline function. This is given by
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@

@t
fd(t) =

8
>>>>>>>>>><

>>>>>>>>>>:

@
@tbd+1,d(t)xd+1,d t 2 [Kd+1,Kd+2)

@
@tbd+2,d(t)xd+2,d t 2 [Kd+2,Kd+3)

· · ·

@
@tbJ,d(t)xJ,d t 2 [KJ ,KJ+1)

(38)

@

@t
bj,d(t) = dBj,1(t) . . .Bj,d�1(t)B

0

j,d(t) (39)

where each Bj,� is defined above, and B0
j,d(t) is the element-wise derivative of Bj,d(t), i.e.:

B0
j,d(t) =

2

66666664

�1
Kj+1�Kj+1�d

1
Kj+1�Kj+1�d

0 · · ·

0 Kj+2�t
Kj+2�Kj+2��

t�Kj+2��

Kj+2�Kj+2��
. . .

. . .
. . .

0 · · ·
�1

Kj+d�Kj

1
Kj+d�Kj

3

77777775

(40)

In the EKF model (given below), we will consider imposing the monotonicity constraint

on the B-spline phase function one of two ways. Either we can constrain the derivative to be

positive at the current timepoint after each update step of the EKF, or we can impose a global

constraint by restricting the B-spline coe�cients x to be increasing values. For verification that

increasing coe�cient values leads to monotonically increasing B-spline functions of first order,

see Appendix.

Endpoint Constraints

We may also wish to constrain the B-spline function so that the values at each endpoint di↵er

by a fixed amount. This is especially useful for comparing the EKF results to the FDA Curve

Registration results, where we set the di↵erence in endpoints to be equal to one period of the

template waveform. Additionally, these constraints may allow for more accurate estimates of

interbeat phase distortions (i.e. microstructure) when the number of observed beats is known

(or approximately known). The form for imposing these constraints can be easily obtained from

the B-spline evaluation vectors, bj,d, for known ending time points.
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3.2.2 State-Space Model

Now that we know the form of the B-spline functions and we have natural ways of constraining

them to be monotonically increasing or bounded at the endpoints, we can define our state space

model.

Let hk represent J coe�cients of a degree d B-spline function with an increasing knot sequence

K = (K1, . . . ,KJ+d+1). For simplicity, we will assume that knots are uniformly spaced and

defined such that Kd+1  t1 and KJ+1 > tn for the observed starting and ending time points,

t1 and tn, respectively.

For greater ease of imposing the increasing-coe�cient monotonicity constraint, we define a

new state variable xk to represent consecutive di↵erences of the spline coe�cients, namely

xk = L
�1

hk (41)

for lower triangular matrix L 2 RJ⇥J with all nonzero elements equal to 1. Thus, we can obtain

monotonicity by restricting the last J � 1 elements of xk to be greater than 0. Now letting

x̃k = [xk, ak, bk]T be the overall state variable with amplitude scale factor ak and shift factor bk,

we write the state-space model as

x̃k+1 = Akx̃k + wk (42)

zk = h(x̃k) + vk = akỹ(CkLxk) + bk + vk (43)

where Ak = I, and Ck = [01⇥(j�d�1),bj,d(tk),01⇥(J�j)] gives the value of the J B-spline bases

at time tk 2 [Kj ,Kj+1) ⇢ [Kd+1,KJ+1).

Lastly, to linearize the measurement function for the update step, we use the following Jaco-

bian:
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Hk =
@h

@x

����
ˆ̃xk|k�1

=

2

666666666664

âk|k�1ỹ
0(CkLx̂k|k�1)(C

(1)
k + C

(2)
k + . . .+ C

(J)
k )

...

âk|k�1ỹ
0(CkLx̂k|k�1)(C

(J)
k )

ỹ(CkLx̂k|k�1)

1

3

777777777775

T

(44)

3.3 State Constraints

The constraints on monotonicity that we have discussed can each be expressed as linear inequality

constraints of the form (see Appendix for particular choices of constraint matrices)

Dxk  d (45)

We impose these constraints within the EKF using a projection method, as presented in [20],

which we then feed into the next prediction step. This projection is found by minimizing

(x� x̂k|k)
T
W (x� x̂k|k) (46)

subject to the constraint in (45), where W is a positive definite weighting matrix and x̂k|k is

the posterior unconstrained state estimate. For linear equality constraints, the solution to this

projection is given by

x
c
k = x

uc
k �W

�1
D

T (DW
�1

D
T )�1(Dx

uc
k � d) (47)

While inequality constraints typically require more steps, often utilizing active set methods,

we note here that our constraint matrices D either consist of one row, or constrain each state

parameter independently. Thus, to impose our constraints, we simply check if the inequality

constraint is satisfied, and if not, solve the projection for corresponding equality constraint.

When implementing these constraints within the EKF, we choose W = P
�1
k for the current

state estimate covariance Pk, which gives a minimum variance filter [20].
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3.4 Practical Considerations

Model Parameters

The two models we have laid out depend on a variety of parameters, including the state and

measurement noise covariance matrices, Q and R, the initial state estimate covariance matrix

P0, the degree and number of knots of the B-spline function, and the given template curve ỹ(t).

Broadly speaking, the choice of these parameters can adjust one of three things: the locality

or nonlinearity of the phase estimates (i.e. how rapidly the phase functions vary), the number

of curve features which can be properly aligned, and in some cases, the stability and accuracy

of the EKF results. For instance, a higher choice of the state noise of the frequency estimate !k

in the Model 1 is more suitable when we expect to have more nonlinear phase, whereas a higher

choice of the state noise for the amplitude factors may allow for more detrending (but should be

carefully chosen to avoid overfitting amplitude and giving poor phase results).

For the heartbeat simulations presented in the next section, we obtain simulated electro-

cardiogram (ECG) waveforms as numerical solutions of the dynamical model proposed in [16].

Furthermore, we set B-spline knots to be uniformly spaced, with the number of knots chosen to

have approximately 2-3 knots within each beat cycle so as to provide some information about

inter-beat phase. Exact choices of parameters for each presented simulation are given in the

Appendix; these choices were determined by experiment.

Initial Phase Estimates

Another issue with our EKF formulations is that they can be subject to biased estimates of the

initial phase o↵set. One method for getting around this is to use a Kalman Smoother, which

essentially runs the EKF in both directions, adjusting constraints and state models accordingly.

The resulting estimates for both the forward and backward EKF may then be weighted together

according to their respective state estimate covariance matrices Pk [2].

Obtaining Template Curves

Lastly, there is the fundamental problem of obtaining a proper choice of ỹ(t) when we do not

have a good a priori representation. One crude method that works when we have a known set of
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curves is the Procrustes algorithm as originally proposed by Ramsay and Silverman, which uses

the cross-sectional average of those curves as an initial guess of template, registers each curve to

that template, and iteratively obtains new templates after each registration step [17].

We can come up with an analogous algorithm using our EKF models when we do not know

the set of curves in advance. In particular, we consider the case of ECG or ECG-like signals,

where there are dominant peaks occurring within each beat cycle. In these cases, we can first run

our EKF with an impulse function as our template 2 to segment individuals beats. Following this,

we obtain a more refined estimate of the template curve in a similar manner to the Procrustes

algorithm (i.e. using cross-sectional average of each waveform period). Note that since we

require ỹ(t) to be di↵erentiable and periodic, we can fit the averaged curve with a smoothing

spline function (i.e. B-spline function) and constrain its endpoints to be equal so that it can be

made periodic without losing continuity.

4 Numerical Studies

In this section, we present various simulated examples which show the performance of the EKF

methods across di↵erent kinds phase-distorted signals. These numerical examples are used to

show the correspondence between each of the discussed methods for phase estimation (i.e. Fourier

methods, global FDA optimization, and the EKFs), and the respective limitations and guiding

factors behind each one. Illustrations of how to use the EKF methods for recursive curve regis-

tration and iterative ECG template uncovering are also shown.

4.1 Sinusoidal Examples

We simulated three classes of noisy sinusoidal signals corresponding to increasing phase com-

plexity: namely, linear phase, quadratic phase (i.e. chirp signals), and cubic B-spline phase. In

each case, we applied three methods of phase estimation – the Hilbert Transform, Model 1 EKF,

and Model 2 EKF – and calculated the error between estimates and the known phase function.

Results for each class of sinusoidal signal are shown in Figures 1, 2, and 3, respectively.

2Alternatively, we may start with a simulated ECG template curve, which we use to iteratively find a a
template curve more suited to that particular ECG signal
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Class MSE (Hilbert) MSE (EKF 1) MSE (EKF 2)

Linear 2.51⇥ 10�4 1.08⇥ 10�5 1.01⇥ 10�6

Quadratic 4.17⇥ 10�4 3.47⇥ 10�5 2.71⇥ 10�5

Cubic B-Spline 3.51⇥ 10�4 6.42⇥ 10�5 1.87⇥ 10�6

Table 1: Mean squared errors in phase estimates for Hilbert method, EKF Model 1, and EKF
Model 2 for three classes of sinusoidal signals.
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Figure 1: Linear Phase Sine Wave with mean-zero Gaussian noise (sd = .1). True normalized
phase function is given by �(t) = 10t � .2. Phase estimates are shown with o↵sets of 1 period
for ease of visibility.

In all shown cases, the mean squared errors were highest for the Hilbert method and lowest

for the Phase Function EKF model (see Table 1). However, as seen in Figure 4, the Hilbert

transform performs better than the EKF methods for the linear phase case when the amount of

noise is very low; as more noise is injected, the EKF methods become more suitable as choices of

models and ultimately perform similar to each other. Additionally for the nonlinear cases, the

Hilbert transform method exhibits more artefacts at the edges.

Note that while the Phase Function Model generally performs better than the Raw Phase

Model for relatively low levels of noise, this discrepancy is especially present in the nonlinear

phase cases. This makes sense given that we formulated Model 1 in a way that is best suited for

near-linear phase estimation.

Figure 5 provides an example for why the Hilbert transform is only appropriate in select cases.

Here, we have a sine wave with two harmonic components – in this case y(t) = sin(4⇡t)+sin(2⇡t)
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Figure 2: Quadratic phase sine wave with mean-zero Gaussian noise (sd = .1). True normalized
phase function is given by �(t) = 5t2 + t+ .1. Phase estimates are shown with o↵sets of T=1 for
ease of visibility.
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Figure 3: Sine wave with monotonically increasing cubic B-spline with J=10 coe�cients in
Gaussian noise (sd = .1). Phase estimates are shown with o↵sets of T=1 for ease of visibility.
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Figure 4: Performance of phase estimation techniques for increasing noise variances in the linear
sinusoid case.

– with nonlinear phase given by an increasing spline function. The Hilbert estimate for this signal

picks up the double-beat structure (as evident from the phase reconstructed signal), but does not

provide an adequate, continuous characterization of the overall phase evolution of the double-beat

waveform (see sharp cuto↵s between sub-beat components).
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Figure 5: Phase estimates for double beat sinusoid with cubic B-spline phase function. Hilbert
estimates are shown in wrapped form for ease of visibility.

4.2 Recursive Curve Registration

Next, we simulated how the Phase Function EKF Model performs relative to global FDA opti-

mization on a multi-component sinusoidal signal. For each method, we constrained the di↵erence

in endpoints for the phase function (i.e. inverse warping function) to be equal to T = 1, and used

cubic B-splines with J = 10 coe�cients to obtain estimates of the phase function (either directly

for the EKF and or using the integral constraint for FDA). For this example, the template curve

was given by ỹ(t) = sin(2⇡t) + sin(4⇡t) + sin(6⇡t), and the true inverse warping functions were

set as one-parameter exponential functions of the form

h
�1(t|�) =

1

�
log

⇥
t(e� � 1) + 1

⇤
(48)

As seen in Figure 6, curve registration was successfully applied in both the FDA and EKF

approaches. We note that, potentially due to the flexibility of the locally-constrained B-spline

state functions, the recursive method performed slightly better than the FDA method. The

corresponding averages in mean squared errors across all 6 inverse warping function estimates

were 1.42⇥ 10�7 for the EKF method and 1.97⇥ 10�5 for the FDA method.

To get a sense of how the EKF estimates unfold over time, the inverse warping function

estimates are shown after 50% of the data has been processed (Figure 7) and after 100% of data

has been processed (Figure 8). We note here that monotonicity was applied locally using the
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Figure 6: Result of curve registration using the FDA and EKF approaches for a three-component
sinusoid template. Endpoint constraints are imposed to prevent registered curves from exceeding
0 to 1 range

derivative formulation, so only the parts of the function up to the current time point are expected

to be increasing.
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Figure 7: Inverse warping functions and unwarped template curves after 50% of data has been
processed by EKF. Solid lines represent EKF estimates, while dashed lines represent FDA es-
timates of inverse warping functions. Note that monotonicity constraint is local, and does not
apply to future curve values, unlike endpoint constraints.
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Figure 8: Inverse warping functions and unwarped template curves after 100% of data has
been processed by EKF. Solid lines represent EKF estimates, while dashed lines represent FDA
estimates of inverse warping functions.
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4.3 Simulated ECG Signals

Lastly, we applied the recursive techniques to simulated noisy electrocardiogram (ECG) signals.

Broadly speaking, these signals can be described in terms of five major landmarks within each

heartbeat cycle, known as the P, Q, R, S, and T wave [16]. The most dominant of these waves

is the R wave, which is most frequently used to estimate heart rate (HR) and beat-to-beat

variability. However, the relative positioning of these R waves alone does not fully encapsulate the

micro-structure phase variability across local time scales. Therefore, we applied our techniques of

recursive phase estimation to determine whether or not local, nonlinear phase distortions could

be estimated from simulated ECG data. As seen in Figure 9, nonlinear phase distortions were

reasonably estimated by both EKF models using a known ECG waveform as a template, with

mean squared errors of 1.72 ⇥ 10�4 for the Model 1 phase estimates, and 1.07 ⇥ 10�5 for the

Model 2 phase estimates.

However, since in practice we do not known the particular ECG waveform of a real signal

in advance, we demonstrate the results of the proposed refinement method in Figure 10. Here,

the initial choice of template function was an impulse-like wave of the form ỹ(t) = sin(⇡t)100.

Using this initial template, the location of dominant R peaks was identified by running the Phase

Function EKF Model on a simulated ECG with low signal-to-noise ratio; the phase estimates

for this initial iteration corresponded with a mean squared error of 0.0121 and a mean error of

0.0855. After refining the template curve using a smoothing spline (order 3, 15 coe�cients),

the resulting phase estimates had a mean squared error of 4.93 ⇥ 10�4 and a mean error of

.0072, indicating that more accurate results were achieved following refinement. We note that

the initial iteration gave systematically biased phase estimates with errors greater than zero for

nearly all observed time points. This can be explained by the fact that the initial impulse curve

is symmetric about its peaks, whereas the ECG waveform is not.

Comments

It is worth mentioning that the the EKF results can depend heavily on whether or not we

implement constraints. This is particularly important when we have uncertainty about amplitude

variation, and thus require a method for “guiding” the phase estimates in a way that reduces
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Figure 9: Simulated ECG Curve with phase distortions modeled by an increasing cubic B-spline
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Figure 10: Illustration of iterative EKF process used to get refined estimates of underlying
template curve. Initial estimates are given by the blue curves, whereas red curves come from
refinement using averaged initially-identified beat intervals.
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Figure 11: Results of EKF Functional Phase Model with and without derivative constraints when
initial amplitude uncertainty is high (P=104)

ambiguity in our state. Figure 11 provides an example for how important this guiding process

can be in the case where we set the initial covariance of amplitude parameters to be high. We

also mention, but do not illustrate here, that constraints may aid in accuracy when the template

function is highly nonlinear.

Additionally, it is worth mentioning that the problem of optimizing EKF model parameters

for a given data set merits further attention. This is especially important because it may allow for

more adaptive modeling techniques, where initial choices of model parameters can be corrected

over time.

5 Discussion

5.1 Conclusions and Limitations

Our results using simulated data indicate that the constrained Extended Kalman Filter may be

used as a reasonably robust tool for the recursive estimation of the phase of a noisy waveform,

particularly in cases when underlying template structure is known or approximately known.

Furthermore, we have presented examples for how these approaches can achieve better results

than standard methods like the Hilbert transform with signal-to-noise ratio is low. By imposing

appropriate constraints, these methods also e↵ectively function as a recursive analog to FDA

curve registration, but with potential advantages for modeling local phenomena.
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That being said, the proposed models come with several limitations, mostly stemming from

the fact that the EKF approximates systems which may be quite nonlinear in nature using a

linearization. This can lead us to rely heavily on parameter tuning, which may prevent models

from being easily generalizable to broad classes of nonlinear and nonstationary signals. As a

more robust alternative, it may be worthwhile to use Machine Learning methods for parameter

tuning, or studying how nonlinear filters, like the Gaussian filter, may be used to tackle the

problem of recursive general phase estimation.

5.2 Theoretical Considerations

Here, we note a few other conceptual frameworks which were considered for addressing the

problem of recursive phase estimation but ultimately not applied in this thesis due to practical

limitations.

For one, we know that we can represent a sine or cosine wave as the solution to a second-order

linear di↵erential equation of the form

ẍ = �k
2
x (49)

Therefore, for at least one of the cases presented above (i.e. the linear phase, sinusoidal case),

we may come up with a linear state-space model to track the dynamics of the observed signal

recursively. This is advantageous because it means we can use an optimal Kalman Filtering

approach for state estimation, versus an EKF which in general is not optimal. However, it is

not obvious how to utilize this dynamical formulation when the sinusoidal phase is nonlinear (or

naturally, when the reference function is non-sinusoidal).

Another kind of estimation scheme which was partially derived but ultimately not applied

here involves the use of a dual-state Bayesian filter, where we wish to estimate both the template

curve ỹ(t) and its phase recursively, without placing additional assumptions on the starting guess

of ỹ(t). Ultimately, this is worth further study as a step towards a completely recursive version

of Functional Data Analysis that does not rely on template-approximation heuristics like the

Procrustes algorithm.
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5.3 Further Applications

Finally, we discuss further applications which may make use of recursive phase estimation tech-

niques. In particular, we are interested in analyzing a variety of heartbeat signals which have

high amounts of noise and thus may not be easily processed using traditional methods like peak

picking. One specific application which we began to explore involves a cross-validation scheme

on di↵erent individuals in order to compare phase deviations in heartbeat microstructure. Given

that most classification schemes of this nature are based either on morphological di↵erences (i.e.

amplitude variation) [7] or interbeat phase variation (i.e. heart rate variability) [6], assessing

microstructure phase variation would be a novel application worth further study.

Another interesting application related to fetal heartbeats is the quantification of phase syn-

chrony between the fetal and maternal heartbeats [10]. That is, can the phase nonlinearities

between the heartbeat waveforms of the mother and fetus be represented as an interconnected

dynamical system? For this to work using recursive approaches, methods for recursive separation

of fetal heart beat and maternal heart beat signals are required.

Finally, as stated in the Introduction, the ultimate motivation behind this thesis was to

develop pipelines for real-time behavioral classification of fetuses and infants at-risk of autism.

As next steps for conducting this research, we plan to use the presented processing methods in

order to characterize how the fetal heartbeat responds to external social stimuli like the mother’s

voice, in controlled laboratory settings.
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7 Appendix

Increasing Coe�cients

For first-order B-spline functions, the following holds for 2  j  J :

@

@t
bj,1(t)xj,1 =


�1

Kj+1�Kj

1
Kj+1�Kj

�
2

64
x
(1)
j

x
(2)
j

3

75 =
1

�Kj
(x(2)

j � x
(1)
j ) (50)

from which we obtain the following monotonicity constraints on the first degree B-spline function

fd=1(t)

@

@t
fd=1(t) > 0 =)

8
>>>>>>>>>><

>>>>>>>>>>:

(x(2)
2 � x

(1)
2 )/�K2 > 0

(x(2)
3 � x

(1)
3 )/�K3 > 0

. . .

(x(2)
J � x

(1)
J )/�KJ > 0

(51)

=) x
(1)

< x
(2)

< . . . < x
(J) (52)

Thus, monotonicity over the domain [Kd+1,KJ+1) is obtained by restricting the B-spline coe�-

cients to be increasing.

State Constraints

Model 1: Bounded Frequency

0 


0 1 0 0

�
xk  fs/2 (53)

Model 2 – Increasing Coe�cients (1st order):
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2

66666664

�1 1 0 . . . 0 0

0 �1 1 . . . 0 0
...

0 0 0 . . . �1 1

3

77777775

hk =

2

66666664

0 1 0 . . . 0

0 0 1 . . . 0
...

0 0 0 . . . 1

3

77777775

xk � 0 (54)

Model 2 – Derivative Constraint

D =


01⇥(j�d�1),

@
@tbj,d(tk),01⇥(J�j)

�
(55)

0  lb  Dhk = DLxk  ub (56)

Model 2 – Endpoint Constraints (n periods, for period T)

Cj =


01⇥(j�d�1),bj,d(tk),01⇥(J�j)

�
(57)

D = CJ+1 � Cd+1 (58)

Dhk = DLxk = nT (59)

Simulation Parameters

The choice of model parameters for each presented simulation are given here. Subscripts indicate

which model the parameters correspond to (EKF Model 1 or EKF Model 2). Each example is

based on the following parameters:

• ỹ(t) - Chosen template function

• �(t) - True phase function

• Q - EKF state noise covariance matrix

• R - EKF measurement noise variance

• L - Length of signal
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• var(✏) - Simulated noise variance

• x0 - Initial state estimate

• P0 - Initial state covariance matrix

• d - Degree of estimated phase spline function

• J - Number of coe�cients in estimated phase spline function

Simulation 1: Linear Phase Sinusoid (Figure 1)

• ỹ(t) = sin(2⇡t)

• �(t) = 10t� .2

• Q1 = diag(1e-12,. . .,1e-12), Q2 = diag(1e-12,. . .,1e-12)

• R1 = 1, R2 = 1

• L = 5000

• d = 3

• J = 10

• var(✏) = .01

• x0 = 0

• P0=diag(100,. . .,10,10)

Simulation 2: Quadratic Phase Sinusoid (Figure 2)

• ỹ(t) = sin(2⇡t)

• �(t) = 5t2 + t+ .1
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• Q1 = diag(1e-12,1,1e-12,1e-12), Q2 = diag(1e-12,. . .,1e-12)

• R1 = 1, R2 = 10

• L = 5000

• d = 3

• J = 10

• var(✏) = .01

• x0 = 0

• P0=diag(100,. . .,10,10)

Simulation 3: B-Spline Sinusoid (Figure 3)

• ỹ(t) = sin(2⇡t)

• �(t) = Bspline(K, x = [-1 0 1 1.2 3.8 4.5 5 7 9 10], d=3), K uniformly spaced with K(4)=0

and K(J+1)=1

• Q1 = diag(1e-12,1,1e-12,1e-12), Q2 = diag(1e-12,. . .,1e-12)

• R1 = 1, R2 = 1

• L = 5000

• d = 3

• J = 10

• var(✏) = .01

• x0 = 0

• P0=diag(100,. . .,10,10)
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Simulation 4: Double Beat Sinusoid (Figure 5)

• ỹ(t) = sin(4⇡t) + sin(2⇡t+ ⇡/2)

• �(t) = Bspline(x=[-1 0 1 1.5 2 2.5 3 3.5 3.5 4.5], d=3)

• Q1 = diag(1e-5,1,1e-12,1e-12), Q2 = diag(1e-12,. . .,1e-12)

• R1 = 1, R2 = 1

• L = 5000

• d = 3

• J = 10

• var(✏) = .01

• x0 = 0

• P0=diag(100,. . .,10,10)

Simulation 5: Curve Registration (Figure 6)

• ỹ(t) = sin(2⇡t) + sin(4⇡t) + sin(6⇡t)

• �i(t) = (1/�i)log
⇥
t(e�i � 1) + 1

⇤
, �i = �2,�1,�.5, .5, 1, 2

• Q2=diag(1e-12,. . .,1e-12)

• R2=1

• L = 1000

• var(✏) = .05

• d = 3

• J = 10
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• x0 = 0

• P0=diag(100,. . .,10,10)

Simulation 6: ECG Simulation 1 (Figure 9)

• ỹ(t) given by [16] with default parameters and amplitude parameter ai=[.5 -1 30 -5 0.5]

• �i(t) = Bspline(K, x = [-1.5 0 1.2 3.1 4.2 5.9 7 8.3 10.1 11], d=3), K uniformly spaced with

K(4)=0 and K(J+1)=10

• Q1=diag(1e-12,1e-1,1e-12,1e-12), Q2=diag(1e-12,. . .,1e-12)

• R1 = 1, R2 = 1

• L = 5000

• var(✏) = .05

• d = 3

• J = 30

• x0 = 0

• P0=diag(100,. . .,1,1)

• Derivative constraint: lb=.5, ub=5

Simulation 7: ECG Simulation 2 / Refinement Method (Figure 10)

– For the true template, we simulate an ECG as in [16] with default parameters and amplitude

parameters given by ai = [.05� .13� .1.05].

Initial Run-through

• ỹ(t) = sin(⇡t)500
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• �(t) = 1.5t+ .04sin(⇡t)

• Q2=diag(1e-12,. . .,1e-12)

• R2 = 30

• L = 5000

• var(✏) = .05

• d = 3

• J = 15

• x0 = 0

• P0=diag(100,. . .,1,1)

• Derivative constraint: lb=1, ub=5

Second Run-through

• ỹ(t)=Bspline(K, x=[-0.0217, -0.0209, -0.0218, -0.0159, -0.0059, 0.0167, -0.0612, 0.1589, -

0.0883, 0.0149, -0.0023, 0.0431, -0.0058, -0.0226, -0.0215])

• �(t) = 1.5t+ .04sin(⇡t)

• Q2=diag(1e-12,. . .,1e-12)

• R2 = 1

• L = 5000

• var(✏) = .05

• d = 3

• J = 20

• x0 = 0
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• P0=diag(100,. . .,1e-12,10)

• Derivative constraint: lb=1, ub=5

Simulation 8: ECG Simulation showing e↵ect of constraint (Figure 11)

• ỹ(t) given by [16] with default parameters and amplitude parameter ai=[.5 -1 30 -5 0.5]

• �(t) = 1.5t+ .1t2

• Q2=diag(1e-12,. . .,1e-12)

• R2 = 1

• L = 5000

• var(✏) = .05

• d = 3

• J = 10

• x0 = 0

• P0=diag(100,. . .,1e9,1e9)

• Derivative constraint (for constrained estimate): lb=1


