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Abstract 
 
 

Health Effects of Air Pollutant Mixtures on Overall Mortality Among the Elderly 
Population Using Bayesian Kernel Machine Regression (BKMR) 

By Haomin Li 
 
 
 

Background: It is well documented that fine particles matter (PM2.5), ozone (O3), and 
nitrogen dioxide (NO2) are associated with a range of adverse health outcomes. However, 
most epidemiological studies have focused on understanding their additive effects, 
despite that individuals are exposed to multiple air pollutants simultaneously that are 
likely correlated with each other.  
 
Method: We applied a novel method - Bayesian Kernel machine regression (BKMR) and 
conducted a population-based cohort study to assess the individual and joint effect of air 
pollutant mixtures (PM2.5, O3, and NO2) on all-cause mortality among the 1,406,185 
Medicare population in 15 cities with 656 different ZIP codes in the southeastern US.  
 
Results: The results suggest a strong association between pollutant mixture and all-cause 
mortality, mainly driven by PM2.5. The positive association of PM2.5 with mortality 
appears stronger at lower percentiles of other pollutants. An interquartile range change 
in PM2.5 concentration was associated with a significant increase in mortality of 1.7 (95% 
CI: 0.5, 2.9), 1.6 (95% CI: 0.4, 2.7) and 1.4 (95% CI: 0.1, 2.6) standard deviations (SD) when 
O3 and NO2 were set at the 25th, 50th, and 75th percentiles, respectively.  
 
Conclusion: BKMR analysis did not identify statistically significant interactions among 
PM2.5, O3, and NO2. However, since the small sub-population might weaken the study 
power, additional studies (in larger sample size and other regions in the US) are in need 
to reinforce the current finding. 
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1.	Introduction	

Ambient	air	pollution	is	a	major	public	health	concern	and	estimates	to	be	responsible	for	

7.6%	 of	 all	 deaths	worldwide	 in	 2016	 (WHO,	 2016).	 Air	 pollution	 is	 a	 complex	mixture	

composed	of	both	solid	particles	(e.g.,	fine	particles	matter	-	PM2.5)	and	gaseous	pollutants	

(e.g.,	ozone	-	O3,	nitrogen	dioxide	-	NO2).	PM2.5,	O3,	and	NO2	account	for	by	far	the	greatest	

health	burden	globally	(Fann	et	al.,	2012;	Plass	et	al.,	2019;	Li	et	al.,	2021).	In	particular,	long-

term	exposure	to	these	air	pollutants	is	associated	with	increased	morbidity	and	mortality	

of	various	diseases	(Faustini	et	al.,	2014;	Cohen	et	al.,	2017;	Burnett	et	al.,	2018).		

Over	the	past	decades,	extensive	research	has	focused	on	the	adverse	health	effects	of	PM2.5	

and	O3,	and	most	recently	NO2,	with	the	effect	of	each	pollutant	often	modelled	in	isolation	

(Crouse	et	al.,	2015;	Orioli	et	al.,	2018;	Barzeghar	et	al.,	2020;	Wei	et	al.,	2020).	However,	in	

realistic	scenarios,	the	study	populations	are	invariably	exposed	to	a	mixture	of	multiple	air	

pollutants	simultaneously.	Furthermore,	the	joint	concentration-response	(C-R)	relationship	

between	the	multi-pollutant	exposure	and	the	health	outcome	can	be	highly	nonlinear,	and	

often	exhibiting	non-trivial	patterns	of	between-pollutant	 interaction	 (Bobb	et	 al.,	 2015).	

Indeed,	recent	investigations	found	evidence	of	nonlinear	associations	between	long-term	

exposure	to	air	pollution	and	mortality	and	morbidity	(Li	et	al.,	2018;	Vodonos	et	al.,	2018;	

Shi	et	al.,	2020;	Yu	et	al.,	2020).		

To	 this	 end,	 the	 traditional	 approaches	 to	 pollution	 mixture	 modeling	 have	 relied	 on	

multivariable	 parametric	 regression,	 which	 estimates	 the	 independent	 effect	 of	 each	

pollutant	 as	 linear	 terms,	 adjusting	 for	 the	 confounding	 effect	 of	 the	 other	 co-pollutants	

(Brook	et	al.,	2007;	Tolbert	et	al.,	2007;	Chen	et	al.,	2010).	However,	if	multiple	pollutants	

exhibit	 a	 non-trivial	 correlation	 structure	 and	 complex	 nonlinear	 relationship	 with	 the	
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outcome,	 this	 approach	 will	 be	 suffer	 the	 issue	 of	 multicollinearity	 and	 model	

misspecification	 (Allen,	 1997;	 Wang	 et	 al.,	 2014).	 On	 the	 other	 hand,	 nonparametric	 or	

latent-variable	approaches	have	also	been	proposed	to	better	account	for	the	within-mixture	

correlation	 structure	 or	 the	 nonlinear	 effect	 of	 the	 pollutants.	 The	 examples	 include	

recursive	partitioning	(Loh,	2011),	supervised	principal	component	analysis	(Roberts	and	

Martin,	 2006),	 and	 the	 latent	 class	 analysis	 (Proust-Lima	 et	 al.,	 2007).	 However,	 these	

methods	either	rely	on	explicit	assumptions	on	the	functional	form	of	the	C-R	relationship,	

or	 lose	 statistical	 efficiency	quickly	as	 the	data	dimension	 increases	 (Hastie	 et	 al.,	 2009).	

Therefore,	they	are	not	suitable	for	modeling	a	nonlinear,	high-dimensional	C-R	relationship	

whose	 function	 form	 is	 a	 priori	 unknown.	 Hence,	 a	 flexible	 and	 yet	 statistically	 efficient	

method	is	needed	to	properly	account	for	the	nonlinear	and	interactive	health	effect	among	

multiple	 concurrent	 air	 pollution	 exposures,	 for	 the	 purpose	 of	 generating	 rigorous	 and	

informative	statistical	evidence	to	facilitate	evidence-based	regulatory	decisions.	

In	 this	 work,	 we	 apply	 the	 Bayesian	 kernel	 machine	 regression	 (BKMR),	 a	 novel	 semi-

parametric	modeling	approach	to	flexibly	capture	the	joint	effect	of	the	mixture	components,	

allowing	for	potential	interactions	and	nonlinear	effects. As	a	statistical	model,	BKMR	offers	

two	 appealing	 advantages	 when	 compared	 to	 the	 previous	 purely	 parametric	 or	

nonparametric	approaches.	First,	 it	handles	 the	 joint	effect	of	multiple	pollutants	using	a	

kernel	machine	regression	model,	thereby	capturing	the	potentially	complex	and	nonlinear	

joint	dose-response	curve	of	multiple	exposures	while	maintaining	good	statistical	power.	

Second,	it	allows	for	the	disentangling	of	the	joint	effect	of	pollutant	mixture	into	its	main-

effect	and	interactive-effect	components	while	properly	accounting	for	model	uncertainty	

(Bobb	et	 al.,	 2015).	As	 a	 result,	 for	 the	purpose	of	 studying	 the	health	effect	of	pollutant	
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mixture,	BKMR	allows	researchers	to	investigate	(1)	the	joint	effect	of	the	pollutant	mixture	

as	a	whole,	(2)	the	individual	C-R	relationship	of	each	mixture	component	adjusting	for	the	

other	pollutants,	and	finally	(3)	the	relative	contribution	of	each	individual	pollutant	to	the	

overall	effect.	This	can	provide	a	comprehensive	view	of	the	statistical	structure	underlying	

the	effects	of	multiple	pollutants.	Recently,	there	is	emerging	evidence	for	employing	BKMR     	

to	 estimate	 the	 mixed	 chemicals	 and	 health	 outcomes,	 such	 as	 systemic	 autoimmune	

rheumatic	 makers,	 cardiovascular	 endpoints,	 and	 neurodevelopmental	 outcomes,	 birth	

outcomes	 (Domingo-Relloso	et	 al.,	 2019;	Ashrap	et	 al.,	 2020;	Yin	et	 al.,	 2020;	Zhao	et	 al.,	

2020).	However,	the	BKMR	approach,	to	the	best	of	our	knowledge,	has	not	yet	been	utilized	

in	studies	on	air	pollution	and	all-cause	mortality.	

The	health	effects	of	air	pollutant	mixtures	among	the	elderly	population	are	of	particular	

interest	in	the	southeastern	United	States	(SEUS),	because	a	large	fraction	of	the	US	elderly	

that	are	considered	to	be	most	vulnerable	to	air	pollution	have	moved	to	this	area	with	mild	

weather.	However,	due	 to	 the	computational	 limitation	of	BKMR	when	dealing	with	 large	

datasets(Bobb	et	al.,	2015),	we	focused	our	study	on	elderly	population	in	North	Carolina,	

South	Carolina,	and	Georgia,	which	could	represent	the	older	population	in	the	SEUS.		In	this	

analysis,	we	conducted	a	population-based	cohort	study	of	the	Medicare	beneficiaries	(aged	

65	or	over)	in	15	cities	in	SEUS	and	applied	the	BKMR	method	to	estimate	the	joint	effect	of	

three	 predominant	 air	 pollutants	 (i.e.,	 PM2.5,	 O3,	 and	 NO2)	 on	 all-cause	mortality,	 and	 to	

disentangle	the	health	effect	of	individual	pollutants	from	that	of	the	overall	mixture.	

	

2.	Methods	

2.1.	Study	Population	
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We	obtained	the	health	data	from	the	Centers	for	Medicare	and	Medicaid	Services.,	which	

contains	 the	 information	 of	more	 than	 96%	of	 population	 aged	 65	 years	 or	 older	 in	 the	

United	States.	Our	study	population	included	1,406,185	Medicare	enrollees	residing	in	15	

cities	 with	 656	 different	 ZIP	 codes	 in	 North	 Carolina,	 South	 Carolina,	 and	 Georgia	 from	

January	1st,	2000	to	December	31st,	2010.		The	enrollees	entered	the	Medicare	cohort	when	

they	turned	65,	and	were	followed-up	until	death,	censoring,	or	the	end	of	the	study	period.	

The	study	outcome	was	all-cause	mortality.	For	each	beneficiary,	we	extracted	 individual	

information	on	age	at	baseline,	sex,	race,	Medicaid	eligibility	(a	proxy	for	low	socioeconomic	

status	-	SES),	ZIP	code	of	residence,	and	date	of	death	(up	to	December	31st,	2010)	from	the	

Medicare	enrollment	file.	ZIP	code	of	residence	and	calendar	year	were	further	used	to	link	

the	health	records	with	air	pollutant	concentrations	and	covariates. This	study	was	approved	

by	the	Institutional	Review	Board	of	Emory	University	and	a	waiver	of	informed	consent	was	

granted.	

	

2.2.	Air	Pollution	Exposures	

We	applied	previously	estimated	daily	ambient	PM2.5,	O3,	and	NO2	levels	from	2000-2016	at	

1	 km	 spatial	 resolution	 in	 the	 contiguous	 U.S.	 using	 well-validated	 ensemble	 machine	

learning	model,	which	integrated	multiple	predictor	variables	and	three	machine	learning	

algorithms	(Di	et	al.,	2019b,	a;	Requia	et	al.,	2020).	Briefly,	at	the	first	stage,	we	respectively	

fit	a	neural	network,	random	forest,	and	gradient	boosting	with	more	than	100	predictor	

variables.	 Predictor	 variables	 included	 satellite-based	 measurements,	 meteorological	

variables,	chemical	transport	model	simulations,	and	land-use	variables,	and	the	model	was	

trained	 at	 all	monitoring	 stations	 in	 the	 U.S..	 Then,	 for	 each	 air	 pollutant	 of	 interest	we	
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combined	 the	 pollutant	 estimates	 from	 three	machine	 learners	 in	 a	 generalized	 additive	

geographically	weighted	model	and	generated	the	final	predictions.	This	ensemble	learning	

approach	was	found	to	achieve	excellent	model	performance,	with	10-fold	cross-validation	

R2	of	0.86,	0.90,	and	0.79	for	PM2.5,	O3,	and	NO2,	respectively. Based	on	the	daily	predictions	

at	1	km2	grid	cells,	we	estimated	the	daily	concentrations	in	a	ZIP	code	by	averaging	these	

gridded	predictions	whose	centroids	fall	within	the	boundary	of	a	given	ZIP	code.	We	further	

calculated	 the	 annual	 averages	 for	 PM2.5	 and	NO2	 as	well	 as	 the	warm-season	 (May	1	 to	

October	31)	average	for	O3	from	2000	to	2010	in	each	ZIP	code.	For	each	Medicare	enrollee,	

we	assigned	the	mean	of	the	annual	or	warm-season	average	pollutant	concentrations	across	

the	years	they	were	in	the	cohort,	according	to	the	ZIP	code	of	residence.		

	

2.3.	Covariates	

We	derived	daily	air	temperature	and	relative	humidity	data,	at	a	spatial	resolution	of	32	km	

×	32	km,	across	the	US	from	the	North	American	Regional	Reanalysis	(NARR)	from	2000-

2010.	We	matched	each	ZIP	code	centroid	to	the	nearest	32	km	grid	cell,	and	assigned	the	

daily	 meteorological	 data,	 and	 then	 calculated	 the	 annual	 average.	 Seven	 ZIP	 code-level	

variables,	 including	population	density,	percent	Black,	percent	of	the	population	with	less	

than	a	high	 school	degree,	 percent	below	 the	poverty	 level,	median	house	value,	median	

household	 income,	 and	 percent	 of	 owner-occupied	 housing	 units	were	 derived	 from	 the	

2000	U.S.	Census	and	the	2010	U.S.	Census.	We	also	obtained	county-level	variables,	smoking	

rate	and	body	mass	index	(BMI),	from	the	2000-2010	Behavioral	Risk	Factor	Surveillance	

System	(BRFSS).	These	county-level	variables	were	matched	to	ZIP	codes	whose	centroids	

fell	within	the	county	boundary.	
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2.4.	Statistical	Analysis	

We	modeled	 the	mortality	 outcome	 as	 z-scored.	 The	 statistical	 analysis	 consisted	 of	 two	

stages:	 In	the	 first	stage,	we	applied	the	BKMR	method	to	estimate	the	city-specific	 joint-

effect	of	exposure	mixtures	on	mortality;	in	the	second	stage,	we	estimated	the	global	health	

effect	across	all	cities	by	pooling	the	city-specific	effect	estimates	using	weighted	average	

ensemble.	Medicare	enrollees	might	have	more	than	one	observation	since	the	data	were	

recorded	per	individual	per	year.	To	fit	the	BKMR	model,	we	collapsed	the	data	among	each	

enrollee	by	extracting	the	ultimate	death	information,	taking	the		minimum	of	the	age	(i.e.,	

age	 at	 enrollment),	 and	 calculating	 the	 mean	 of	 annual	 or	 warm-season	 air	 pollution	

exposure	levels	and	the	rest	covariates over the study period.		

	

2.4.1.	Stage	I:	Estimating	City-specific	Nonlinear	Health	Effect	using	BKMR	

To	 properly	 capture	 the	 potential	 interaction	 and	 nonlinear	 effects	 among	 mixture	

components,	 we	 employed	 the	 BKMR	method	 to	 flexibly	model	 the	 association	 between	

multi-pollutant	mixtures	and	all-cause	mortality	for	each	of	the	15	cities	(Bobb	et	al.,	2015).	

Specifically,	for	each	individual	 ,	BKMR	models	the	relation	between	the	health	

outcome	 ,	the	background	covariates	 	and	the	exposures	of	interest	 	as:	

						(1)	

where	 	is	 the	health	outcome	of	all-cause	mortality,	 	is	a	set	of	 	potential	confounders	

(e.g.,	sex,	age,	and	race)	and	 	is	a	vector	of	 	pollutant	components	(i.e.,	PM2.5,	O3,	and	NO2).	

Here	 	is	a	flexible	nonparametric	function	that	represents	the	nonlinear	C-R	exposure-
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response	relationship	that	accommodates	the	interactions	among	exposures	and	is	using	the	

kernel-machine	regression	(Liu	et	al.,	2007).		

To	this	end,	BKMR	estimates	the	model	in	Equation	(1)	via	Bayesian	inference	to	account	for	

uncertainty	due	to	estimation	of	a	high-dimensional	set	of	exposures	and	multiple-testing	

penalty	 (Bobb	 et	 al.,	 2015).	 Briefly,	 BMKR	 models	 the	 nonlinear	 function	 	using	 a	

Gaussian	process	model	with	a	radial	basis	 function	(RBF)	kernel,	and	also	estimates	 the	

individual	 contribution	 of	 each	 pollutants	 by	 placing	 a	 spike-and-slab	 priors	 onto	 the	

pollutant	 components	 .	 The	 posterior	 estimation	 is	 conducted	 via	Markov	 chain	Monte	

Carlo	(MCMC)	sampling.	To	estimate	the	contribution	of	individual	pollutant	to	the	health	

effect	 of	 the	 overall	 mixture,	 we	 followed	 the	 recommendation	 of	 the	 BMKR	 authors	 to	

consider two	 approaches:	 (1)	 The	marginal	 nonlinear	 C-R	 curve	 between	 the	 individual	

pollutant	and	the	health	outcome,	by	fixing	the	health	effect	of	other	mixture	components	at	

the	25!" ,	50!" ,	and	75!"quantiles,	and	(2)	the	posterior	inclusion	probability	(PIP),	which	is 

the	probability	that	a	particular	pollutant	within	the	mixture	was	included	in	the	model	by	

the	spike-and-slab	variable	selector	in	the	posterior	sample.	More	details	of	kernel-machine	

regression	and	PIP	are	provided	in	the	supplemental	materials.	

2.4.2.	Stage	II:	Estimating	Global	Health	Effect	via	Weighted	Average	Ensemble	

Since	 it	 is	 computationally	 intensive	 to	 fit	 a	BKMR	model	 to	 the	 entire	population	 in	 the	

dataset,	we	applied	an	ensemble	approach	to	estimate	the	global	effect	by	pooling	the	city-

specific	health-effect	estimates	used	a	weighted	average	ensemble	method.	Specifically,	we	

aggregate	all	the	city-specific	effect	estimates	with	weights	proportional	to	their	number	of	

observations.	
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2.5.	Sensitivity	Analysis	

We	conducted	three	sensitivity	analyses	 to	assess	 the	robustness	of	our	results.	First,	we	

omitted	a	different	 set	of	 covariates	 in	each	model	and	compared	 the	effect	estimates,	 in	

order	to	assess	the	importance	of	omitted	covariates.	Second,	we	further	adjusted	for	the	

Normalized	Difference	Vegetation	Index	(NDVI),	an	indicator	for	surrounding	greenness.	We	

obtained	the	monthly	NDVI	values	at	0.05°	(~5	km)	resolution	from	the	MODIS	satellite	and	

calculated	 the	 annual	 averages	 based	 on	 all	 covered	 grids	 for	 each	 ZIP	 code. Third,	 we	

conducted	a	subgroup	analysis	by	geographical	location.	

All	statistical	analyses	were	conducted	using	R	software,	version	3.6.1	and	mainly	completed	

by	the	‘bkmr’	package	(Bobb	et	al.,	2018),	version	0.2.0.	

	

3.	Results	

3.1.	Study	Population	Characteristics 

Our	cohort	consisted	of	1,406,185	Medicare	enrollees	aged	65	years	and	older	residing	in	

656	different	ZIP	codes	in	the	southeastern	US.	From	2000	to	2010,	a	total	of	416,340	deaths	

were	 recorded	 in	 this	 study.	The	participants	were	41.8%	male,	 75.9%	white,	 and	had	a	

mean	age	of	67.0	(standard	deviation,	SD=1.4)	years	at	baseline.	During	the	study	period,	the	

overall	annual	mean	PM2.5,	NO2,	and	warm-season	O3	concentrations	across	15	cities	were	

13.1	 ppb	 (SD=2.0),	 21.6	 ppb	 (SD=7.3),	 and	 47.3	 ppb	 (SD=3.4),	 respectively.	 We	 found	

significant	 Pearson	 correlations	 (t-test,	 P<0.05)	 among	 three	 pollutants,	 with	 positive	

pairwise	 correlation	coefficients.	 Specifically,	 the	 correlation	 coefficients	are	0.7	between	

PM2.5	and	NO2,	0.8	between	PM2.5	and	O3,	and	0.6	between	NO2	and	O3	(Supplementary	Figure	
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1).	 Table	 1	 summarizes	 the	 demographic	 characteristics	 and	 average	 pollutant	

concentrations	in	this	study.	

	

3.2.	BKMR	Analysis	

We	first	examine	the	nonlinear	health	effect	estimate	of	the	overall	pollutant	mixtures	on	all-

cause	mortality.	Specifically,	in	Figure	1,	we	estimate	the	posterior	mean	and	associated	95%	

credible	 intervals	 of	 the	 estimated	 change	 in	 (z-scored)	 all-cause	 mortality	 when	 three	

pollutants	were	set	at	a	particular	percentile	compared	to	when	three	pollutants	were	all	at	

their	 50th	 percentile.	 As	 shown,	 we	 found	 that	 the	 estimated	 risk	 of	 all-cause	 mortality	

increased	 with	 a	 simultaneous	 increase	 of	 three	 pollutants,	 from	 25th	 percentile	 to	 75th	

percentile	(i.e.,	an	interquartile	range	[IQR]),	as	compared	to	when	all	pollutants	are	at	their	

median	values	(i.e.,	50th	percentile),	indicating	a	positive	joint	effect	of	pollutant	mixtures.	

Particularly,	when	all	 three	pollutants	at	or	above	 their	65th	percentile,	 the	 joint	effect	of	

PM2.5,	O3,	and	NO2	on	mortality	was	statistically	significantly	different	(i.e.,	its	95%	credible	

intervals	do	not	overlap	with	zero)	than	when	all	three	pollutants	at	their	median	values.	

To	disentangle	which	pollutant	dominates	the	overall	effect	of	the	mixtures,	we	calculated	

the	PIP	of	the	mixture	components		PM2.5,	O3,	and	NO2.		We	observe	the	pollutant	mixture	as	

a	whole	(i.e.,	PM2.5,	O3,	and	NO2)	to	be	strongly	associated	with	all-cause	mortality,	with	the	

PIP	values	higher	than	or	equal	to	0.5	most	of	the	time.	To	test	the	effect	of	pollutant	mixtures	

rigorously,	we	performed	a	hypothesis	test	(Liu	et	al.,	2007;	Deng	et	al.,	2018),	with	the	null	

hypothesis	as	no	effect	of	pollutant	mixtures.	Given	the	large	sample,	we	subsampled	150	

independent	 datasets,	 each	 with	 500	 individuals	 without	 replacement.	 We	 performed	

hypothesis	testing	in	each	dataset	and	obtained	150	p-values.	We	then	combined	the	results	
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from	these	150	independent	tests	using	Fisher’s	method	and	the	resulting	p-value	was	less	

than	 .	Among	all	models,	 99.3%,	86.7%,	 and	84.0%	of	PIPs	were	higher	 than	 the	0.5	

thresholds	for	PM2.5,	O3,	and	NO2,	respectively	(Figure	2a).	We	then	sought	to	figure	out	the	

dominant	pollutant	by	changing	the	threshold	of	PIP	value	which	we	used	to	determine	the	

variable	to	be	included	or	not.	That	is,	we	considered	a	pollutant	to	be	important	only	when	

its	associated	PIP	is	greater	than	a	threshold	𝜏.	As	shown	in	Figure	2b,	as	we	increase	the	

threshold	𝜏	from	0	to	1,	we	observed	that	PM2.5	always	had	the	greatest	proportion	of	PIP	

values	that	were	larger	than	the	threshold,	indicating	that	PM2.5	has	a	stronger	explanatory	

power	for	all-cause	mortality	compared	with	O3	and	NO2	.	

We	next	investigated	the	importance	of	the	pollutant	mixture	in	contributing	to	the	health	

outcome	by	estimating	the	change	in	the	risk	of	all-cause	mortality	associated	with	an	IQR	

increase	in	a	single	pollutant	level,	while	the	other	pollutants	are	fixed	at	25th,	50th,	or	75th	

percentile	levels,	respectively.	We	found	that	PM2.5	is	the	only	pollutant	displaying	a	positive	

and	significant	effect	in	this	study	(Figure	3).	The	association	between	PM2.5	and	mortality	

appears	stronger	at	lower	percentiles	of	other	pollutants.	Specifically,	An	IQR	change	in	PM2.5	

concentration	is	associated	with	a	significant	increase	in	mortality	of	1.7	(95%CI:	0.5,	2.9),	

1.6	(95%CI:	0.4,	2.7)	and	1.4	(95%CI:	0.1,	2.6)	SDs	when	O3	and	NO2	are	set	at	the	25th,	50th,	

and	 75th	 percentiles,	 respectively.	 In	 addition,	 the	 effect	 estimates	 in	 Figure	 3	 suggested	

possible	interaction	of	the	pollutant	mixture,	despite	the	lack	of	statistical	significance	(due	

to	highly	overlapping	confidence	intervals).	Specifically,	we	found	that	the	effects	of	PM2.5	on	

mortality	decreased	as	NO2	and	O3	both	increased	from	their	25th	to	their	75th	percentiles.	

To	further	investigate	the	potential	nonlinear	C-R	relationship	and	possible	interaction	of	

the	 mixture,	 we	 estimated	 both	 univariate	 and	 bivariate	 C-R	 functions.	 Figure	 4	
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demonstrated	 the	 univariate	 C-R	 functions	 and	95%	 credible	 intervals	 (shaded	 area)	 for	

each	 pollutant	 with	 the	 other	 pollutants	 fixed	 at	 the	 median	 values.	 We	 observed	 a	

significantly	increasing	C-R	relationship	with	very	tight	credible	bands	for	PM2.5	within	the	

range	9µg/m3	to	17	µg/m3,	and		the	curve	flattened	at	the	lower	and	higher	levels	with	large	

uncertainties.	On	the	other	hand,	the	data	do	not	support	a	significant	association	of	O3	or	

NO2	with	mortality,	due	to	the	large	uncertainty	in	the	C-R	curves	for	both	O3	and	NO2.	 The 

high credible intervals for NO2 and O3 possibly due to weaker exposure estimation since these 

pollutants are more spatially heterogeneous compared to PM2.5.	

Finally,	we	assessed	the	bivariate	C-R	functions	for	the	three	pollutants	to	investigate	the	

possible	interactions	(Figure	S2).	The	slopes	for	each	pollutant	are	similar	at	varying	levels	

of	 the	 other	 pollutants,	 suggesting	 a	 lack	 of	 statistically	 significant	 interaction	 between	

individual	pollutants.	Notice	that	the	gaps	between	the	C-R	curves	for	O3	or	NO2	were	large	

for	different	levels	of		PM2.5	(row	1,	columns	2	and	3),	while	the	gaps	between	the	C-R	curves	

for		PM2.5		were	small	for	different	levels	of		O3	or	NO2.	This	suggests	that	PM2.5	has	stronger	

association	with	mortality	compared	to	O3	or	NO2	.		

	

4.	Discussion	

During	 the	 past	 decades,	 extensive	 studies	 have	 evaluated	 the	 individual	 health	 effect	 of	

long-term	exposure	to	PM2.5,	O3,	and	NO2.However,	few	studies	investigated	the	joint	effects	

of	pollutant	mixture	in	terms	of	mortality.	In	this	study,	we	assessed	the	individual	and	joint	

effects	 between	 three	 pollutants	 and	 all-causes	 mortality	 among	 1,406,185	 Medicare	

beneficiaries	 aged	 65	 years	 or	 older	 in	 the	 southeastern	 US.	 The	 results	 of	 Pearson’s	

correlation	for	annual	PM2.5,	O3,	and	NO2	exposure	among	15	southeastern	cities	suggested	
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that	the	concentrations	of	three	pollutants	were	strongly	correlated	with	each	other.	Thus,	

the	 traditional	 regression	 model	 might	 not	 converge	 or	 produce	 an	 imprecise	 effect	

estimates	 due	 to	 collinearity	 (Bellavia	 et	 al.,	 2019).	 In	 our	 analysis,	 to	 investigate	 the	

potential	 nonlinear	 and	 non-additive	 relationship	 between	 pollutants	 and	 all-cause	

mortality	as	well	as	identify	potential	interaction	between	pollutants,	we	applied	the	BKMR	

method	to	estimate	the	effects	of	PM2.5,	O3,	and	NO2	(Bobb	et	al.,	2015).	To	the	best	of	our	

knowledge,	this	is	the	first	study	to	use	the	BKMR	method	to	evaluate	the	joint	effect	of	multi-

pollutant	on	all-cause	mortality.	

	

Using	the	BKMR	model,	we	found	a	positive	joint	effect	of	overall	pollutant	mixtures	on	all-

cause	mortality.	 In	particular,	 the	 joint	associations	of	 three	pollutants	were	significantly	

positive	when	three	pollutants	at	or	above	 their	65th	percentile,	as	compared	 to	all	 three	

pollutants	at	their	median	values	(Figure	1).	Further,	the	PIP	values	indicated	that	the	overall	

pollutant	 mixture	 was	 strongly	 associated	 with	 all-cause	 mortality.	 In	 addition,	 each	

pollutant	displayed	a	strong	effect	with	the	PIP	value	higher	than	0.5	most	of	time	(PIP	value	

larger	than	0.5	is	plausibly	an	important	predictor	of	outcome).	Among	the	three	pollutants,	

PM2.5	had	the	greatest	proportion	of	PIP	values	that	were	always	larger	than	the	threshold,	

indicating	a	stronger	association	with	mortality	as	compared	with	O3	and	NO2.	In	the	single-

pollutant	analysis,	we	found	that	PM2.5	was	the	only	pollutant	that	presented	a	significantly	

positive	 effect	on	all-cause	mortality	 and	 its	 association	 increased	when	other	pollutants	

were	 at	 their	 lower	 quartile.	 In	 contrast,	 the	 relationship	 of	 O3	 and	 NO2	 with	 all-cause	

mortality	 is	 not	 statistically	 significant.	 The	 results	were	 consistent	with	 the	 conclusions	

yielded	from	the	univariate	C-R	function,	where	we	observed	a	significantly	increasing	and	
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nonlinear	relationship	for	PM2.5	as	well	as	non-significant	relationships	for	O3	and	NO2.	It	is	

worth	noting	 that	 the	pattern	of	 association	 in	 the	overall	 pollutant	mixture	 effect	 bears	

strong	resemblance	with	that	of	the	PM2.5.	This	might	be	explained	by	the	PIP	values	in	which	

PM2.5	was	identified	as	the	most	important	contributor	among	the	three	pollutants.	Another	

plausible	reason	is	that	we	observed	these	patterns	by	chance	since	the	variability	of	both	

whole-mixture	and	PM2.5	was	high	at	low	and	high	concentrations.	Overall,	the	BKMR	results	

provide	 evidence	 that	 the	 effects	 of	 PM2.5	 dominate	 the	 overall	 joint	 effects	 of	 pollutant	

mixtures,	especially	when	at	their	low	concentrations.	

		

Our	 finding	 suggested	 a	 significantly	 positive	 association	 between	 PM2.5	 and	 all-cause	

mortality,	which	was	consistent	with	findings	in	previous	studies	focusing	on	single	ambient	

air	pollutants.	For	example,	a	study	(Franklin	et	al.,	2007)	in	27	US	communities	reported	a	

1.21%	(95%	CI:	0.29,	2.14%)	increase	for	all-cause	mortality	with	a	10 μg/m3	 increase	in	

PM2.5;	A	Chinese	prospective	cohort	study	(Li	et	al.,	2018)	also	indicated	a	positive	effect	of	

PM2.5	(HR=1.08;	95%	CI:	1.06–1.09)	on	all-cause	mortality	among	adults	aged	65	years	and	

older	 in	 China.	 However,	 no	 significant	 association	 was	 observed	 for	 NO2	 in	 our	 study.	

Despite	several	epidemiological	studies	that	reported	a	positive	relationship	between	NO2	

and	all-causes	mortality	(Lipsett	et	al.,	2011;	Cesaroni	et	al.,	2013;	Beelen	et	al.,	2014),	it	is	

worth	noting	that	they	only	focused	on	a	single	pollutant	without	disentangling	the	effects	of	

NO2	from	other	pollutants.	This	limitation	was	highlighted	by	a	recent	review	conducted	by	

the	WHO	REVIHAAP	project	 (WHO,	2013).	The	REVIHAAP	project	assessed	 the	emerging	

evidence	 on	 the	 health	 effect	 of	 NO2	 and	 concluded	 that	 it	 is	 difficult	 to	 evaluate	 the	

individual	 effects	 of	 NO2	 since	 NO2	 is	 often	 highly	 correlated	 with	 other	 pollutants.	
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Consequently,	the	inconsistency	between	the	results	in	our	study	and	previous	studies	was	

likely	because	we	account	for	the	potential	nonlinear	and	non-additive	C-R	relationship	in	

our	model.		

	

The	association	between	O3	and	all-cause	mortality	was	also	insignificant	in	our	study.	The	

existing	evidence	for	association	between	O3	and	mortality	is	mixed.	A	cohort	study	(Jerrett	

et	 al.,	 2009)	with	 448,850	 subjects	 indicated	 that	 long-term	 exposure	 to	 ozone	was	 not	

associated	with	 all-cause	mortality,	while	 a	meta-analysis	 (Huangfu	 and	Atkinson,	 2020)	

incorporating	20	studies	for	O3	reported	a	weak	association	for	peak	O3	and	mortality.	Noting	

these	studies	are	unable	to	take	the	collinearity	problem	into	account,	our	study	therefore	

potentially	provides	a	more	valid	result	to	disclose	the	relationship	between	O3	and	all-cause	

mortality	(Hong	et	al.,	1999).	

		

To	explore	possible	interactions,	we	assessed	the	bivariate	C-R	function	and	found	there	are	

non-interactive	 effects	 among	 three	 ambient	 air	pollutants.	This	 result	 is	 consistent	with	

research	conducted	in	China	using	BKMR	to	investigate	the	association	between	pollutant	

mixture	and	cardiovascular	disease	(Tong	et	al.,	2018).	Notably,	we	observed	that	the	C-R	

curve	 of	 NO2	 presented	 a	 non-parallel	 trend	 at	 high	 concentration	 of	 NO2,	 presenting	 a	

steeper	slope	when	the	concentration	of	PM2.5	at	25th	percentile.	Since	no	prior	studies	have	

explored	 the	 potential	 interaction	 of	 air	 pollutant	 mixture	 on	 all-cause	 mortality,	 we	

hypothesized	 that	 this	 lack	 of	 statistically	 significant	 interaction	 might	 be	 due	 to	 the	

relatively	wide	 credible	 intervals.	 The	 sub-population	 exposed	 to	 high	 level	 air	 pollution	

were	likely	to	be	small	and	weaken	the	study	power,	which	would	distort	the	C-R	trend.	As	
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shown	in	Figure	5,	the	95%	CIs	were	quite	wide	at	high	concentration	levels.	Thus,	further	

research	on	air	pollutant	mixtures	 is	needed	 to	explore	 the	potential	 interactive	effect	 in	

pollutant	mixtures	and	especially	 focus	on	where	there	are	higher	numbers	of	people	co-

exposed	 to	 high	 levels	 of	 co-pollutants.	 The	 innovative BKMR	 approach	 can	 also	 be	

applicable	to	explore	the	joint	and	individual	effects	of	air	pollutants	and	other	risk	factors	

(e.g.	temperature,	and	physical	activity).	

	

Our	study	has	several	strengths.	Firstly,	we	employed	a	flexible	statistical	method,	BKMR,	to	

evaluate	the	joint	and	individual	effects	of	the	pollutant	mixtures	and	visualize	the	potential	

nonlinear	C-R	 relationships	 and	 interactions	 among	pollutants.	 Secondly,	we	used	PIP	 to	

rank	 the	 importance	 of	 each	 pollutant	 and	 identify	 the	 “bad	 actor”	 Thirdly,	 this	 study	

assessed	 ambient	 pollutant	 concentrations	 using	 a	 well-validated	 ensemble	 machine	

learning	 model	 that	 could	 provide	 finer-resolution	 exposure	 estimates	 to	 reduce	 the	

potential	measurement	error.		

	

This	study	also	has	several	 limitations.	Firstly,	although	the	BKMR	model	can	capture	the	

nonlinear	and	non-additive	C-R	relationship	with	other	pollutants	fixed	at	a	certain	level,	the	

results	of	marginal	effect	can	be	biased	if	co-exposures	are	highly	correlated	(Zhang	et	al.,	

2019).	Secondly,	the	applicability	of	BKMR	to	large	scale	datasets	is	limited	since	it	requires	

	in	 time.	Therefore,	our	15-city	 study	has	 limited	generalizability,	particularly	given	

that	the	air	pollution	profiling	and	demographic	characters	vary	much	across	the	US.	Thirdly,	

we	 cannot	 rule	 out	 of	 the	 possibility	 of	 unmeasured	 confounding.	 For	 example,	 the	 co-
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existing	 chronic	diseases	 that	are	associated	with	both	air	pollution	and	 further	death	 in	

elderly	are	not	available	in	the	Medicare	enrollment	file.			

	

5.	Conclusion	

Using	BKMR,	we	assessed	the	individual	and	joint	effects	of	long-term	exposure	to	PM2.5,	O3	

and	 NO2	 on	 all-cause	 mortality	 in	 an	 elderly	 cohort.	 Our	 results	 suggest	 a	 significantly	

positive	association	between	pollutant	mixture	and	all-cause	mortality,	which	was	mainly	

driven	 by	 PM2.5.	We	 found	no	 interaction	 among	 the	 three	 pollutants.	Due	 to	 the	 lack	 of	

statistical	 significance,	 further	 studies	 are	needed	 to	 investigate	where	 there	 really	 is	 no	

interaction	relationship	among	the	three	pollutants.	
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Figure	Legends	

Figure	1.	Overall	effects	of	PM2.5,	O3,	and	NO2	with	95%	CI.	The	figure	shows	the	estimated	

change	in	risk	of	all-cause	mortality	when	three	pollutants	were	set	at	particular	percentiles	

(ranging	from	25th	to	75th)	compared	to	when	all	pollutants	are	all	at	their	50th	percentile.	

Figure	2.	(a)	The	histogram	of	PIP’s	for	PM2.5,	O3,	and	NO2;	(b)	PIP	trace	plot	for	PM2.5,	O3,	

and	 NO2.	 	 In	 this	 plot,	 each	 colored	 line	 represents	 a	 PIP	 trace	 for	 a	 certain	 variable.	

“threshold”	is	the	value	based	on	which	we	determine	the	variable	to	be	included	or	not.	For	

instance,	at	threshold	0.5,	we	categorize	PM2.5	as	selected	if	its	PIP	is	greater	than	0.5,	and	

discarded	if	less	than	0.5.	y-axis	is	the	proportion	of	the	PIP	counts	which	are	greater	than	a	

certain	 threshold.	 Therefore,	 as	 threshold	 approaches	 1,	 the	 proportions	 are	 decreasing.	

Moreover,	for	important	variables,	we	expect	their	proportions	to	be	as	large	as	possible.	

Figure	3.	Single-pollutant	association	with	mortality.	The	plot	shows	the	change	in	risks	of	

all-cause	mortality	with	an	95%	credible	inter	in	a	single	pollutant,	when	all	other	

pollutants	were	fixed	at	either	25th,	50th,	or	75th	percentile.	

Figure	 4.	 The	 univariate	 concentration-response	 functions	 with	 95%	 confidence	 bands	

(shaded	areas)	for	each	pollutant	(PM2.5,	O3,	and	NO2)	with	the	other	pollutants	fixed	at	the	

median.		

Figure	S1.	Graphical	display	of	the	pairwise	correlation	coefficients	between	PM2.5,	NO2,	and	

O3.	

Figure	 S2.	Bivariate	 exposure	 response	 functions	 for	 each	 pollutant	 presented	 on	 x-axis	

when	pollutant	on	y-axis	was	fixed	at	25%	(red	line),	50%	(green	line),	and	75%	(blue	line)	

percentile	respectively,	and	other	pollutants	were	fixed	at	their	median.	
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Supplementary	Materials		

Our	treatment	of	kernel-machine	regression	and	variable	selection	follows	Bobb	et	al.	
(2015).	

Overview	of	kernel-machine	regression	

We	assume	that	the	 interaction	function	 	lies	 in	a	 function	space	 	generated	

by	a	positive	definite	kernel	function	 .	A	kernel	function	 	takes	two	

arguments:	 ,	which	represents	the	vector	of	pollutant	components	for	one	

individual,	and	 ,	the	vector	of	pollutant	components	for	a	second	individual.	

From	 Mercer’s	 theorem	 (Cristianini	 and	 Shawe-Taylor,	 2000),	 under	 some	 regularity	

conditions,	 a	 kernel	 function	 implicitly	 specifies	 a	 unique	 function	 space	 spanned	 by	 a	

particular	set	of	orthogonal	basis	 function	(features)	 .	Therefore,	any	 	

can	be	 represented	using	 some	 set	 of	 coefficients	 	as	 	(the	primal	

representation).	Alternatively,	 	can	also	be	represented	using	a	kernel	function	 	as	

	for	 some	 set	 of	 coefficients	 	(the	 dual	 representation).	 For	 a	

multidimensional	 ,	 it	 is	 more	 convenient	 to	 specify	 	using	 the	 dual	 representation,	

because	explicit	basis	functions	might	be	complicated	to	specify	and	the	number	of	features	

might	be	high	or	even	infinite.	

Examples	 of	 this	 correspondence	 include	 the	 1st	 polynomial	 kernel	 (linear	 kernel):	

	with	 basis	 functions	 ;	 the	 2nd	

polynomial	 kernel	 (quadratic	 kernel):	 	with	 basis	

functions	 ;	 and	 the	 Gaussian	 kernel:	
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,	which	 generates	 the	 function	 space	 spanned	 by	 radial	

basis	functions	and	 	is	the	length-scale	parameter.	BKMR	focuses	on	the	Gaussian	kernel,	

which	represents	a	nonparametric	model	with	a	high	degree	of	smoothness	(i.e.	 infinitely	

differentiable)	 that	 can	 incorporate	more	 general	 types	 of	 nonlinearity.	 Liu	 et	 al.	 (2007)	

argued	defining		 ,	Equation	(1)	with	 	specified	in	the	dual	form	can	be	expressed	

as	a	linear	mixed	model:	

									(2)	

							

where	 	is	the	regularization	parameter,	and	 	has	 	element	as	 .	

	

Assessing	Variable	Importance	using	Posterior	Inclusion	Probability	(PIP)		

We	further	performed	variable	selection	to	provide	the	posterior	inclusion	probabilities	(PIP)	

for	 pollutant	 components,	 and	 variables	with	 a	 PIP	 greater	 than	 0.5	 are	 considered	 as	 a	

meaningful	predictor	(Barbieri	and	Berger,	2004).	To	perform	variable	selection	within	a	

Bayesian	 paradigm	 using	 the	 Gaussian	 kernel,	 one	 can	 borrow	 the	 idea	 of	 Automatic	

Relevance	 Determination	 (ARD),	 which	 means	 that	 the	 kernel	 has	 one	 length-scale	 per	

variable.	 They	 define	 the	 augmented	 Gaussian	 kernel	 function	 as		

,	 where	 ,	 and	 	to	 be	 the	 	matrix	with	

	element	 to	 be	 .	 Assuming	 a	 “slab-and-spike”	 prior	 on	 the	 auxiliary	

parameters	 ,	

						(3)	
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where	 	is	 a	 pdf	 with	 support	 on	 	and	 	is	 the	 density	 with	 point	 mass	 at	 .	 The	

posterior	mean	of	the	indicator	 	has	the	natural	interpretation	as	the	posterior	probability	

that	 component	 	is	 an	 important	 component	 of	 the	 mixture,	 or	 the	 posterior	 inclusion	

probability	(PIP)	of	component	 .	

Supplementary	Figures	

	

Figure S1. Graphical display of the pairwise correlation coefficients between PM2.5, 

NO2, and O3. 
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Figure	S2.	Bivariate	exposure	response	functions	for	each	pollutant	presented	on	x-
axis	when	pollutant	on	y-axis	was	fixed	at	25%	(red	line),	50%	(green	line),	and	75%	
(blue	line)	percentile	respectively,	and	other	pollutants	were	fixed	at	their	median. 
 
	

	


