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Abstract 
	  

Associations between Circulating Endothelial Progenitor Cells  
and Renal Function 

 
By Chenchen Yu 

 
 

Objective: Decreased number and function of circulating endothelial progenitor cells 
(EPCs) have been reported in patients with chronic kidney disease (CKD). However, 
there is little information about the associations between circulating EPC levels and renal 
function as measured by Glomerular Filtration Rate (GFR) in patients with some type of 
coronary heart disease (CHD). We propose to obtain a summary measure of multiple 
circulating EPC types based on principal component analysis, and to investigate the 
associations between EPCs and GFR after adjusting for conventional risk factors.  
 
Methods and Results: A total of 2,145 adult patients were enrolled prior to undergoing 
elective or emergent cardiac catheterization. Measurement of EPC counts by flow 
cytometry was based on the single or combination expression of surface markers on 
CD45med and CD34 cells. Kidney function was measured by GFR using the 
Cockcroft-Gault formula that adjusts for body weight and body mass index. The 
associations between circulating EPCs and GFR were studied using principal component 
scores in multiple linear regression analyses. Statistically significant associations between 
GFR and circulating EPCs were observed in both unadjusted and adjusted analyses, 
indicating improvement in the number of EPCs especially those with certain VEGF cell 
types contribute to an increase in GFR levels. 
 
Conclusions: Age, race, hypertension and diabetes are significant risk factors for CKD. 
EPCs are shown to be significantly associated with the GFR levels in the patients with 
CHD after adjusting for conventional risk factors. EPCs might be considered to be a 
potential therapeutic target for CKD, although more investigations still need to be 
implemented. 
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1. Introduction 
	  
1.1 Chronic Kidney Disease (CKD) 

   CKD has increasingly been recognized as a global health problem affecting over 70 

million people, with more than 1 million of whom receiving a kidney transplant [1]. The 

number of patients affected by CKD has increased substantially worldwide, mainly as a 

consequence of increasing prevalence of CKD risk factors, such as diabetes, 

hypertension, obesity, and cardiovascular disease [2]. Currently, roughly 19 million 

(11%) people in the United States are having some degree of CKD. The number of 

prevalent CKD people will continue to rise due partly to the increase in diabetes and 

hypertension. It is predicted that by 2030, more than 2 million people in the United States 

will need dialysis or transplantation for kidney failure [3]. Complications associated with 

progression of CKD include increased incidence of cardiovascular disease, cognitive 

decline, hyperlipidemia, anemia and metabolic bone disease [4]. Specifically according to 

the National Health and Nutrition Examination Surveys (NHANES) III database, the 

prevalence of the complications of CKD increases with disease progression [5].   

   In addition, the progressive nature of CKD and the consequent end-stage renal 

disease (ESRD), i.e., kidney failure, would lead to a considerable decline in patient 

health-related quality of life, a substantial burden on global health care resources as well 

as burgeoning costs due to its comorbid conditions. Renal replacement therapy (dialysis 

or transplantation) is necessary for patients with ESRD. The limited treatment options for 

ESRD, however, are costly and sometimes ineffective. As such, CKD imposes significant 

financial costs to the overall health care system together with significant burden on health 

care teams (patients, clinicians, and payers) [6]. 
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1.2 Glomerular Filtration Rate (GFR) 

   Accurate measurement of kidney function is critical to the prevention, detection, 

evaluation, and treatment of CKD. General recommendations for evaluating kidney 

function for people at increased risk include measuring urine albumin (proteinuria) to 

assess kidney damage and estimating GFR based on the level of serum creatinine. 

Although it cannot be measured directly, GFR is widely accepted as the best indicator of 

overall kidney function and therefore it forms the basis of definition and classification 

system for CKD [7]. Normal values of GFR that need to be adjusted for age, sex and 

body size are considered to be above 130 milliliters per minute (mL/min). CKD is 

defined clinically as a GFR below 60 mL/min or the presence of kidney damage for three 

or more months [8]. The level of GFR and its decline rate over time are vital to the 

detection of kidney disease, understanding its severity, as well as making informed 

decisions about prevention, diagnosis, prognosis, and treatment.  

   At advanced stages of kidney disease, i.e., Stage 5 with a GFR of 15 mL/min or less, 

the kidneys have lost almost all their ability to function effectively, and eventually 

dialysis or a kidney transplant is required. Thus, accurate and early detection of CKD are 

critical in order to appropriately intervene to slow down or reverse the disease 

progression.  

 

1.3 Current Treatment and Prevention Strategies for CKD 

   Treatment of CKD aims to slow the progression to ESRD and to reduce 

complications. Namely, treatment of CKD can slow its progression to ESRD. However, 

the therapies remain limited. Blood pressure control using angiotensin-converting 
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enzyme (ACE) inhibitors or angiotensin II receptor blockers (ARBs) has shown 

promising results [9]. Glycemic control in diabetes also has been shown to minimize the 

progression [10]. A number of metabolic disturbances of CKD (e.g., acidosis, 

hyperphosphatemia, vitamin D deficiency) may be useful therapeutic targets, but their 

effectiveness has not been determined [5, 11]. While drugs targeting treatment of CKD 

are at various stages of development [11], there are no proven effective therapies. In 

addition, the timing of when to begin existing treatments and properly educating patients 

about their disease remain major practical barriers to better outcomes. 

   Therapy of CKD is usually conducted at an asymptomatic condition detected only by 

laboratory testing because of the slowly developing symptoms of chronically kidney 

failure, which is made more difficult as it usually stands for a late attempt at prevention. 

In other words, to some extent main risk factors associated with ESRD (i.e., 

hypertension, diabetes) could be prevented by primary preventative measures such as 

exercise, diet, and weight control. Also, after either hypertension or diabetes is 

diagnosed, renal complications can be alleviated by further prevention efforts targeted at 

blood pressure and glycemic control. Thus, treatment of CKD often represents an 

example of advanced prevention in populations who have failed the first line of 

prevention but who are still relatively asymptomatic. These features make CKD 

prevention and treatment a challenging task in practice.  

 

1.4 Endothelial Progenitor Cells 

   Endothelial progenitor cells (EPCs) have attracted considerable attention due to their 

therapeutic potential for many diseases, such as myocardial infarction and cardiovascular 
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disease [2, 12]. Besides reproduction and migration, as immature primitive bone marrow 

(BW) cells, EPCs also have the capacity to undergo differentiation towards various 

mature endothelial cells [13]. EPCs were first identified in adult human peripheral blood 

in 1997 and were initially described by Asahara et al. –“human peripheral blood cells 

that differentiate into mature endothelial cells and form new blood vessels in vivo” [14].  

Contrary to the theory of angiogenesis, the discovery of EPCs shows that vessel networks 

are not necessary for the formation of new blood vessels, because hematopoietic stem 

cells can differentiate into cells that are capable of vessel formation [15]. Since this 

discovery, intense experimental and clinical investigation has been conducted for the 

subject of pathophysiological role and therapeutic application of adult EPCs. 

Experimental studies have showed that EPCs are of great importance in maintaining the 

endothelial integrity and hemostasis. In majority of studies, strong associations have been 

found between circulating EPCs and cardiovascular risk [2]; the number of circulating 

EPCs has also been showed an inverse association with cardiovascular risk factors and 

vascular function [16].  

   Meanwhile, several studies have been conducted to explore the role of EPCs in CKD 

and their therapeutic prospective in regenerative medicine [17-20]. Patients with CKD are 

at a high risk for atherosclerotic cardiovascular disease (CVD) with varying degrees of 

endothelium dysfunction. It is showed in animal models of CKD that adult EPCs have the 

capacity to reduce proteinuria and improve GFR [20]. Various diseases including CKD 

are reported to be associated with decreased level and dysfunction of EPCs [21, 22], 

which suggests that EPCs may indicate the cardiovascular health condition including 

kidney function. However, in recent experiments and clinical trials, EPCs have been 
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shown to have limitations in reproducing ischemic tissues, and thus may be partially 

responsible for the increased morbidity of patients with cardiovascular risk factors [23]. It 

has been shown for patients with CKD Stage 5 receiving hemodialysis therapy that a low 

level of circulating CD34 cells predict independently both cardiovascular diseases and 

all-cause death [24]. Most available experimental and clinical data are consistent with the 

idea of decreased number and impaired functions of EPCs in patients with CKD, which 

may trigger reparative processes and put more pressure on the cardiovascular system 

[23].  

 

1.5 Study Goals 

   The purpose of this study is to investigate the associations between circulating EPCs 

and renal function in totally 2,145 adult patients (aged 18 years or older) with or without 

active cardiovascular disease enrolled into the study prior to undergoing elective or 

emergent cardiac catheterization across three Emory Healthcare sites, between 2008 and 

2014. We used data from the Emory Cardiovascular Biobank database [25], which was 

established to investigate the genetic basis of oxidative stress, vascular dysfunction, 

cardiovascular disease and stroke.  

   Using the Biobank data, we aim to obtain a summary measure of multiple circulating 

EPC types based on principal component analysis, and to investigate the associations 

between EPCs and GFR after adjusting for conventional risk factors.  

 

1.6 Significance 

   The findings from the Emory Biobank database will contribute significantly to the 

limited existing literature concerning the role of EPC in CKD. Given that accurate and 
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early detection of CKD, along with appropriate aggressive interventions, may help retard 

the disease progression. Early targeted pharmacological therapy via improvement in EPC 

numbers could become a potential effective treatment option for CKD. In this study, we 

provide the insight on the emerging role of EPCs as biomarkers of CKD. We also explore 

the possibility in the field of EPC-based early detection, intervention and therapy, to halt 

and slow down the progression of kidney disease. 
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2. Methods 
	  
2.1 Study Population 

   Study patients were recruited from the Emory Cardiology Biobank [25]. A total of 

2,145 adults (aged 18 years and older) were enrolled prior to undergoing elective or 

emergent cardiac catheterization across three Emory Healthcare sites, between 2008 and 

2014. Twelve (0.6%) patients were excluded because of extreme values of EPC counts, 

leaving 2,133 patients for analysis. Patients were interviewed to collect information on 

demographic characteristic, medical history including family history of disease, 

medication usage, health behaviors, psychological factors, and neuropsychological 

functioning. Furthermore, medical record information was collected if patients were 

recruited from a clinical or hospital site. Risk factors for cardiovascular disease (e.g. 

hypertension, hyperlipidemia, and diabetes) were determined by physician diagnosis 

and/or treatment. Smoking was classified as ‘non-smoker’ or ‘ever smoked’ if there was a 

lifetime history of smoking at least 100 cigarettes [16].  

   Two cohorts were collected under the same protocol, with identical sampling 

strategies and collection methods but different enrollment times and EPC quantification 

methodology. Cohort 1 (n=1,286) was enrolled between 2008 and 2012, whereas cohort 2 

(n=859) was enrolled between 2013 and 2014. Cohort 1 was our primary analysis 

population. After excluding outliers, 1,280 patients were used for analysis. Cohort 2 was 

used in this study as a validation dataset. The study was approved by the Institutional 

Review Board at Emory University, Atlanta, GA, USA. All patients provided written 

informed consent at the time of enrollment [17].  
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2.2 Measurement of Kidney Function 

   Glomerular filtration rate (GFR) refers to the filtration rate of the functioning 

nephrons in the kidney, which cannot be measured directly. The gold standard for the 

measurement of GFR is the urinary or plasma clearance of an ideal filtration marker, such 

as inulin, iothalamate or iohexol [18]. However, this method is complicated and is not 

used in clinical practice. Instead, serum levels of endogenous filtration markers, such as 

creatinine, along with urinary measurements in some cases, have traditionally been used 

to estimate GFR. However, serum creatinine alone is not an adequate marker of kidney 

function.  

   The estimation of GFR via creatinine clearance (Ccr), on the other hand, provides a 

quick and simple way to evaluate kidney function, which is useful for screening and 

detecting early kidney damage as well as monitoring kidney function. In this study, we 

calculated GFR using the Cockcroft-Gault formula: 

CCr={((140-age) × weight)/(72 SCr)} × 0.85 if female 

                   CCr={((140-age) × weight)/(72 SCr)} if male 

where CCr is expressed in milliliters per minute, age in years, weight in kilograms, and 

serum creatinine (SCr) in milligrams per deciliter. CCr may over-estimate GFR by 10-20% 

but remains the standard for drug dosing adjustments. The Cockcroft-Gault formula was 

developed in 1976 using data from 249 men with CCr from approximately 30 to 130 

mL/min [19]. The original formula does not adjust for body surface area. 

   The Cockcroft-Gault equation remains the gold standard for eGFR after almost 40 

years, despite inaccuracies that arise from variations in body composition among patients. 

In this study, we performed adjustments to the Cockcroft-Gault equation by body weight 
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and body mass index (BMI) as recommended by Brown et. al [26] and Winter et. al [27], 

since the original formula appears to become less accurate in weight extremes 

(underweight and particularly overweight/obesity). The algorithm for the adjusted 

Cockcroft-Gault equation is listed as follows: 

• Underweight (BMI < 18.5): Weight uses actual body weight  

• Normal Weight (BMI 18.5 - 22.9): Weight uses ideal body weight (IBW) 

• Overweight/Obese (BMI ≥ 23): Weight uses adjusted body weight (ABW)  

Here, the formula of IBW and ABW are: 

• IBW for men = 50 + (2.3 * (Height in inches - 60)) 

• IBW for women = 45.5 + (2.3 * (Height in inches - 60)) 

• ABW = IBW + 0.4 * (Actual Body Weight - IBW)    

   Another recently developed formula for calculating eGFR – the CKD-Epidemiology 

Collaboration (CKD-EPI) equation [28]– has been commonly used in kidney studies. The 

CKD-EPI equation was developed based on subjects with normal renal function in 2009 

[20]. Since all participants of our study were patients undergoing elective or emergent 

cardiac catheterization, it is likely that they had impaired kidney function. Given that the 

Cockcroft-Gault equation was developed based on men with and without CKD, it is 

appropriate to use this equation to calculate eGFR in our study. 

 

2.3 Circulating EPC Counts 

   Measurements of the circulating EPCs by flow cytometry were performed by 

technicians masked to the study data. Before the quantification, circulating EPCs were 

identified based on the single or in combination expression of CD34+, CD133+, 
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CXCR4+ and VEGF2+ surface markers on arterial blood mononuclear cells that 

enumerated as CD45med and CD34 cells. We measured circulating numbers of CD34+, 

CD133+, VEGF2+ and CXCR4+, dual positive CD34+/VEGF2+, CD34+/CD133+, 

CD34+/CXCR4+, CD34+/VEGF2+, CD133+/VEGF2+, CD133+/CXCR4+ and 

CXCR4+/VEGF2+ and triple positive CD34+/CD133+/CXCR4+, 

CD34+/CD133+/VEGFR2+ and CD34+/VEGF2+/CXCR4+ cell populations [25].  

 

2.4 Statistical Analysis 

2.4.1 Descriptive Analysis 

   Patient characteristics are summarized as mean ± standard deviation (SD) for 

continuous variables if they follow an approximately normal distribution or as median 

(interquartile range) if they are highly skewed. Categorical variables are summarized as a 

number (percentage). The distributions of all EPC counts were right skewed. 

Log-transformations (natural log [cell counts + 0.5 * the minimum detectable value for 

EPC counts (0.005)]) was applied to reduce heteroskedasticity and to help stabilize 

estimation.  

2.4.2 Univariate Analysis 

   Spearman correlation coefficients between GFR and the 14 EPC types, as well as the 

correlations among all 14 EPCs, were calculated in the target study population. We found 

that all EPC types were highly correlated with each other (Table S1 in the Supplementary 

Materials). In order to reduce the dimension of variables and to avoid repeated testing for 

the association between GFR and each EPC, we apply principal component analysis to 

the 13 highly correlated EPCs. 
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2.4.3 Principal Component Analysis 

   Principal component analysis (PCA) is a widely used multivariate statistical method 

[29, 30]. The objective of PCA is to reduce the dimension of variables and transform 

them into a new set of summary variables, which retain the maximum possible variance 

of the original set. The new variables, called principal components (PCs), are 

uncorrelated linear combinations of the original data and are ordered by the fraction of 

the total information each retains. Coefficients in the PCs, which indicate the percent 

contribution of corresponding variables, are called loadings. The general form for the 

formula to compute a score value (cki) for ith observation in kth PC using PCA is: 

𝑐!" = 𝑡!!𝑥!! + 𝑡!!𝑥!! +⋯+ 𝑡!"𝑥!" 

where  𝑐!"   is the standardized score value of ith observation in kth PC; i is the number of 

observation; k is the number of selected PC number; p is the number of independent 

variables; 𝑥!" is the value of pth variable of ith observation; and 𝑡!" is the standardized 

weight of the pth variable in kth PCs. 

	   	   	   Before performing PCA, we standardized the data to make all the log-transformed 

EPC counts with mean 0 and SD 1. PCA was performed on the 13 EPCs to explore their 

relative contributes to GFR. The first PC (PC1) and the second PC (PC2) were selected 

for multiple linear regression analysis. PC1 and PC2 explained 61% and 28% of all the 

variance, respectively. The scree plot (Figure 1) is also a useful visual aid for determining 

an appropriate number of PCs to select. The scree plot graphs the eigenvalue against the 

component number. The "elbow" in the scree plot suggests the appropriate number of 

components, which is also two. Therefore, we retained the first two PCs, which together 

explained 89% of the variability in the data. 
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2.4.4 Multiple Linear Regression Analysis  

   The potential confounding covariates that we considered were age, gender, race, BMI, 

low-density lipoprotein (LDL), triglycerides (TRIG), high-density lipoprotein (HDL), 

systolic blood pressure (SBP), smoking, hypertension (HTN), diabetes (DM) and 

hyperlipidemia (HLD). Multiple linear regression of GFR on the PC scores and all the 

covariates was performed using a backward variable section procedure with a specific 

p-value (0.05) to identify significant predictors of GFR. The first two PCs were retained 

in the model during the variable selection process. Non-significant variables were 

removed from the model by the backward elimination method. Finally we obtained 

model 1 as follows:  

Model 1   E (GFR) =  β  ! +   β! ∗ PC1+   β! ∗ PC2+   β! ∗ age+   β! ∗ BMI+   

                                    β! ∗ LDL  +   β! ∗𝑀𝑎𝑙𝑒 +   β! ∗ African  American+ 

                                          β! ∗ Smoking+ β! ∗ HTN+   β!" ∗   DM+   β!! ∗ HLD 

   Next, interactions were explored between PC1, PC2 and age, gender, race, and 

diabetes, to test for heterogeneity. Using partial F-statistics test for interaction terms, first 

we added the interaction term Age*PC2 into model 1 because of its smallest p-value 

(0.0037) among all the significant terms. After that, we continued the process until all 

significant terms were included. Finally, we added DM*PC2 to the model. The final 

model is: 

Model 2   E (GFR) =  β  ! +   β! ∗ PC1+   β! ∗ PC2+   β! ∗ age+   β! ∗ BMI+   

                                    β! ∗ LDL  +   β! ∗𝑀𝑎𝑙𝑒 +   β! ∗ African  American+ 

                                                β! ∗ Smoking+ β! ∗ HTN+   β!" ∗   DM+   β!! ∗ HLD+ 

β!" ∗ Age ∗ PC2+ β!" ∗ DM ∗ PC2                           
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2.4.5 Validation of Results 

   We repeated the analysis using Model 2 in cohort 2 to evaluate whether the findings 

are consistent with cohort 1. Specifically, PC scores for PC1 and PC2 were calculated 

using the standardized weights from the PCA results of cohort 1. 

2.4.6 Handling Missing Data  

   We assumed that our data were missing completely at random (MCAR) and used 

available case analysis [32]. As such, the sample size for analysis was not consistent 

across models. Table 1 lists the total number of available cases for each variable in both 

cohorts. The percentage of missing data in cohort 1 varied from 1% (age) to 27% (total 

cholesterol). A total of 1,001 patients were used in the multiple linear regression analyses 

(Table 3 and Table 4).  
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3. Results 
	  
3.1 Patient Characteristics 

	   	   	   Baseline patient characteristics of both the 1,260 subjects in cohort 1 and the 853 

subjects in cohort 2 are shown in Table 1. In cohort 1, 803 (63.5%) were males while 662 

(36.5%) were female. Patient ages ranged from 18 to 91 years old with a mean age of 

64.4 years. Race was divided into three categories, 891 (70.4%) whites, 297 (23.5%) 

blacks and 77 (6.1%) other patients. The average BMI was 28.9 km/m2 ranging between 

13.7 km/m2 to 58.4 km/m2. Among them, 148 (14%) patients were smokers, 496 (41%) 

had diabetes and 1053 (84%) were diagnosed with hypertension. The distribution of GFR 

appears to be slightly skewed, ranging from 3.5 to 251.5 mL/min with an average of 69.7 

mL/min and a standard deviation of 32.1. Patients in cohort 2 were comparable to cohort 

1.	   	  

	  

3.2 Principal Component Analysis (PCA) 

   Figure 2 shows the standardized weights for all the 13 EPCs of both PC1 and PC2, 

indicating that all EPCs were positively correlated with PC1 but 7 of them were 

negatively correlated with PC2. Moreover, all 13 EPCs had a similar positive loading for 

PC1. However, in PC2 6 EPCs with VEGF cell type had similar positive loadings, 

whereas the other 7 without VEGF cell type had negative loadings. Since PC2 is 

significantly negative associated with GFR with consideration of interaction (Table 4), 

those EPCs without VEGF cell type contributed positively for GFR. Thus, CD34/CD133, 

CD34/CD133/CD45, CD34/CD45, CD34/CDCR4, CD34/CXCR4/CD133, 

CD34/CXCR4/CD133/CD45 and CD34/CXCR4/CD45 contribute positively to GFR, 
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indicating generally GFR level would increase with an increase in those 7 types of EPCs.  

  

3.3 Associations between Circulating EPCs and GFR 

   Pairwise correlational analysis (Table 2) indicates that all 13 EPCs except 

CD34/CD146/CD45 are significantly associated with GFR (p < 0.001) and the two PCs 

are also significantly correlated with GFR (p < 0.001 for PC1 and p = 0.03 for PC2).  

   Without considering interactions, increased PC1 was found to be significantly 

associated with higher GFR (p = 0.02) after adjusting for all the other covariates.  Age, 

race, hypertension, and diabetes were significant independent risk factors for GFR (Table 

3). Specifically, GFR was estimated to decrease 1.16 (95% CI = [-1.30, -1.02]) mL/min 

annually holding all other variables constant. Compared with non-African Americans, 

African Americans had a significantly lower GFR level by 15.78 (95% CI = [11.76, 

19.81]) mL/min on average. GFR of those who have hypertension or diabetes were 

significantly lower by 6.24 (95% CI = [0.92, 11.59]) mL/min and 4.06 (95% CI = [0.65, 

7.47]) mL/min, respectively. On the other hand, a higher level of HDL was found to be 

significantly beneficial for GFR and GFR would be increased by 4.47 (95% CI = [0, 

0.09]) mL/min with 1 mg/dl higher of HDL (Table 3).  

   Table 4 displays the results of the interaction analysis. PC1 was found to be 

significant and be positively associated with GFR (p = 0.05); PC2 was negatively 

associated with GFR (p=0.01) for patients without DM but positively correlated with 

GFR for those with DM. Risk factors and the parameter estimates are consistent with 

Model 1 (Table 4). The interaction terms are significant between age and PC2 (p < 0.01) 

as well as between DM and PC2 (p = 0.02), indicating that the effect of PC2 on GFR is 
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dependent on age and DM status.   

   Figure 3 shows plots of GFR and PC2 separately in age groups of <45, 45-60, 

and >60 years and among patients with and without diabetes. In patients without diabetes, 

patients younger than 45 years had more PC2-related decline in GFR compared to those 

in age group 45-60. Similar patterns were observed for the age group between 45 and 60 

years compared to those older than 60, indicating that increased EPCs with VEGF cell 

type is associated with decline in GFR -- especially in young patients. Among patients 

with diabetes, an increase in PC2 is associated with a decrease in GFR in patients less 

than 45 years old, indicating that an elevated level of EPCs with VEGF cell type may 

contribute to impaired kidney function (or vice versa) in the younger diabetic population. 

In contrast, individuals with diabetes in the other two age groups displayed a modest 

PC2-related increase in GFR, showing that their renal function was not worse with a 

higher level of EPCs with VEGF cell type.   

 

3.4 Validation Analysis 

   Table S4 shows the parameter estimates from model 2 using data from cohort 2. The 

results indicate that both PC1 and PC2 were not significantly associated with GFR after 

adjusting for potential covariates and the direction of association between GFR and PCs 

was opposite from what was obtained in cohort 1. Nevertheless, the risk factors from 

cohort 2 were consistent with the findings in cohort 1.  
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4. Discussion 
	  
4.1 Results 

   To the best of our knowledge, this is the first study using a large sample to show that 

decreased circulating EPC level is associated with impaired kidney function in patients 

undergoing cardiac catheterization. More importantly, we applied principal component 

analysis to EPC data metrics to reduce their dimensionality in order to bypass adjustment 

procedure associated with multiple testing for individual EPC. We found that all these 13 

types of EPCs, as well as the first two principal components, were strongly associated 

with GFR, even after adjusting for conventional risk factors for CVD and other potential 

confounders. All the 13 EPCs contributed to PC1 with a similar positive loading, 

determining an approximately equal variance explained by PC1. On the other hand, 6 of 

these 13 EPCs with the VEGF+ cell type had a comparable positive loading for PC2, 

whereas the other 7 types without the VEGF+ cell type showed negative loadings for 

PC2. Moreover, higher levels of circulating EPCs without VEGF+ may contribute to 

improved kidney function in younger patients regardless of diabetic status, whereas EPCs 

with VEGF+ might be considered as potential therapeutic targets for older patients with 

diabetes.  

   Our study shows consistent findings with previous studies regarding the associations 

between EPCs and kidney function as well as significant risk factors for CKD [17-20]. A 

cross-sectional study enrolling 50 patients with varying degree of CKD indicated that 

EPC number and function decrease with advancing CKD [17]. Decreased circulating 

EPC level has also found in hypertensive patients with nephropathy through a 

cross-sectional study enrolling 125 patients with essential hypertension [18]. Additionally, 
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our recent studies had demonstrated patients who develop contract-induced nephropathy 

have decreased EPC level [19]. Compared to these studies, this study has several 

strengths including, but not limited to, a different study population, a considerably larger 

sample size, the use of EPC subtypes, the use of GFR as a measurement of renal function, 

and advanced statistical analysis methods.  

   In this study, we provide the insights on the emerging role of EPCs as biomarkers of 

CKD in patients with coronary heart disease (CHD). We demonstrate that the 

contributions of EPC profiles to kidney function may depend on patient’s age and 

diabetic status. Further research can be done to validate these findings. Nevertheless, the 

findings from this study will provide the basis to explore the possibility of detection and 

intervention of kidney disease based on EPC profiles.   

 

4.2 Limitations 

   The cross-sectional design of our study precludes definitive conclusions regarding the 

causal associations between EPCs and GFR. Including individuals only in the Atlanta 

area, the target population (cohort 1) may not be generalizable representative patients. It 

is of great importance to assess whether the results from this study could be replicated in 

a nationally diverse population. Furthermore, all the individuals in this study are patients 

with CKD with an average age of 65 ranging from 18 to 91 years old, so these findings 

may not be applicable to people with normal kidney function. The dataset included 

mostly white and black individuals (94%); therefore, these results may not be applicable 

to all ethnicities. Additionally, the final regression model, only 1,001 available patients 

are included automatically by SAS, excluding all patients with missing values under the 
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assumption of MCAR [32]. However, whether this assumption is fully satisfied in our 

population needs further investigation. Also, the potential confounding covariates used in 

the regression analyses are based on previous studies and might not account for some 

important variables that also effect the associations between GFR and EPCs. Finally, 

EPC counts were measured by different technicians between the two cohorts and hence 

may not be comparable without calibration. As a result, a direct validation using the 

second cohort as conducted in this work may not be ideal. 

 

4.3 Future Research 

   It would be beneficial to conduct a longitudinal study to explore potential causal 

relationships between EPCs and GFR, i.e., to identify whether EPCs can predict changes 

in GFR. Furthermore, a clinical trial that provides CKD patients with EPC supplements 

could help answer important questions regarding how GFR changes as the levels of EPCs 

are boosted, namely, whether kidney repairs occur with a growth of EPC counts, and 

whether higher levels of EPCs could prevent further kidney impairment. To strengthen 

the generalizability of the results, future studies should target enrolling patients both 

nationally or worldwide with various health conditions (especially healthy people) from 

different racial groups. Lastly, given that the technology for measuring EPC counts is 

relatively new and has changed and matured over time, future research should address the 

issue of reproducibility for EPC measurements.  

 
4.4 Conclusions  

   Our results suggest that EPCs were significantly associated with GFR in patients with 

CHD after adjusting for conventional risk factors for CVD and other potential 
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confounders. EPCs may be considered to be a new treatment target for CKD, although 

more investigations are still needed. In addition, age, race, hypertension and diabetes 

were shown to be significant risk factors for GFR. 
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Table 1. Summary Characteristics of the Study Population	  

	   	   	   	   	  Characteristics	   Cohort	  1	  (N=1,280)	   Cohort	  2	  (N=853)	  

	   	   	   	   	  
	  

N	   Mean	  ±	  SD	   N	   Mean	  ±	  SD	  

Age	  (year)	   1266	   64.4	  ±	  13.2	   825	   64.7	  ±	  13.2	  

Weight	  (kg)	   1260	   84.9	  ±	  19.9	   823	   87.0	  ±	  20.5	  

Body	  mass	  index	  (kg/m2)	   1260	   28.9	  ±	  6.1	   823	   29.8	  ±	  6.3	  

High-‐density	  lipoprotein	  (mg/dL)	   1196	   43.1	  ±	  14.8	   691	   46.8	  ±	  14.2	  

Total	  cholesterol	  (mg/dl)	   934	   160.6	  ±	  44.1	   588	   163.0	  ±	  44.0	  

Systolic	  blood	  pressure	  (mm	  Hg)	   1234	   139.1	  ±	  22.7	   577	   140.0	  ±	  24.2	  

Glomerular	  filtration	  rate	  (mL/min)	   1252	   69.7	  ±	  32.1	   762	   68.5	  ±	  31.7	  

	   	  
Median	  (Q1,	  Q3)	  

	  

Median	  (Q1,	  Q3)	  

Creatinine	  (mg/dL)	   1257	   1.0	  (0.9,	  1.3)	   769	   1.0	  (0.9,	  1.4)	  

Low-‐density	  lipoprotein	  (mg/dL)	   1186	   85.5	  (65.0,	  113.0)	   675	   83.0	  (64.0,	  107.0)	  

Triglycerides	  (mg/dL)	   1194	   118.0	  (79.0,	  177.0)	   690	   111.0	  (76.0,	  166.0)	  

	   	  
n	  (%)	  

	  

n	  (%)	  

Sex	  -‐	  Male	   1265	   803	  (63.5)	   832	   525	  (63.1)	  

Race	   1265	  

	  

832	  

	  	   	   	   	   White	  

	  

891	  (70.4)	  

	  

618	  (74.3)	  

	   	   	   	   Black	  

	  

297	  (23.5)	  

	  

182	  (21.9)	  

	   	   	   	   Other	  

	  

77	  (6.1)	  

	  

32	  (3.8)	  

Smoker	   1057	   148	  (14.0)	   309	   38	  (12.3)	  

Hypertension	   1248	   1053	  (84.4)	   342	   237	  (69.3)	  

Diabetes	   1208	   496	  (41.1)	   342	   131	  (38.3)	  

Hyperlipidemia	   1247	   903	  (72.4)	   342	   237	  (69.3)	  
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Table 2. Correlations between Glomerular Filtration Rate and Endothelial  
       Progenitor Cells in Cohort 1 
 

Cell	  Type	   Spearman	  Correlation	  
Coefficient	   P-‐value	  

CD34/CD45	   0.197	   <.001	  

CD34/CD133/CD45	   0.193	   <.001	  

CD34/VEGF/CD45	   0.132	   <.001	  

CD34/CXCR4/CD45	   0.192	   <.001	  

CD34/CD146/CD45	   -‐0.052	   0.06	  

CD34/VEGF/CD133/CD45	   0.099	   <.001	  

CD34/CXCR4/VEGF/CD45	   0.134	   <.001	  

CD34/CXCR4/CD133/CD45	   0.190	   <.001	  

CD34/CD133	   0.203	   <.001	  

CD34/VEGF	   0.145	   <.001	  

CD34/VEGF/CD133	   0.113	   <.001	  

CD34/CXCR4	   0.197	   <.001	  

CD34/CXCR4/VEGF	   0.148	   <.001	  

CD34/CXCR4/CD133	   0.201	   <.001	  

PC1	   0.218	   <.001	  

PC2	   -‐0.061	   0.031	  
PC1	  =	  Principal	  Component	  1;	  PC2	  =	  Principal	  Component	  2.	   	  
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Figure 1. Scree Plot of Principal Component Analysis  
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Figure 2. Eigenvectors for 13 Endothelial Progenitor Cells Corresponding to the First           
        (upper panel) and the Second (lower panel) Principal Components  
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Table 3. Results of Model Fitting Without Interaction Terms for Cohort 1 (n=1,001) 
	  

Variable	  
Parameter	  
Estimate	  

Standard	  
Error	   95%	  CI	   p-‐value	  

PC1	   0.72	   0.32	   (0.09,	  1.34)	   0.02	  

PC2	   -‐0.20	   0.46	   (-‐1.10,	  0.71)	   0.67	  

Age	   -‐1.16	   0.07	   (-‐1.30,	  -‐1.02)	   <.0001	  

BMI	   1.33	   0.14	   (1.05,	  1.62)	   <.0001	  

Low-‐density	  
lipoprotein	  

0.04	   0.02	   (0,	  0.09)	   0.04	  

Male	   9.78	   1.76	   (6.33,	  13.23)	   <.0001	  

African	   	  
American	  

-‐15.78	   2.05	   (-‐19.81,	  -‐11.76)	   <.0001	  

Smoking	   7.11	   2.44	   (2.33,	  11.90)	   <.01	  

Hypertension	   -‐6.24	   2.71	   (-‐11.59,	  -‐0.92)	   0.02	  

Diabetes	   -‐4.06	   1.74	   (-‐7.47,	  -‐0.65)	   0.02	  

High-‐density	  
lipoprotein	  

4.47	   2.07	   (0.41,	  8.53)	   0.03	  

PC1	  =	  Principal	  Component	  1;	  PC2	  =	  Principal	  Component	  2;	  CI	  =	  Confidence	  Interval;	  BMI	  =	  Body	  Mass	  Index.	   	  
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Table 4. Results of Model Fitting With Interaction Terms for Cohort 1 (n=1,001) 
	  

Variable	  
Parameter	  
Estimate	  

Standard	  
Error	   95%	  CI	   p-‐value	  

PC1	   0.63	   0.32	   (0.01,	  1.26)	   0.05	  

PC2	   -‐1.56	   0.62	   (-‐2.77,	  -‐0.35)	   0.01	  

Age	   -‐1.19	   0.07	   (-‐1.33,	  -‐1.05)	   <.0001	  

BMI	   1.34	   0.14	   (1.06,	  1.62)	   <.0001	  

Low-‐density	  
lipoprotein	  

0.04	   0.02	   (0,	  0.09)	   0.03	  

Male	   9.98	   1.75	   (6.55,	  13.41)	   <.0001	  

African	   	  
American	  

-‐16.11	   2.05	   (-‐20.12,	  -‐12.11)	   <.0001	  

Smoking	   7.34	   2.43	   (2.58,	  12.10)	   <.01	  

Hypertension	   -‐6.30	   2.70	   (-‐11.59,	  -‐1.01)	   0.02	  

Diabetes	   -‐4.53	   1.75	   (-‐7.96,	  -‐1.10)	   0.01	  

High-‐density	  
lipoprotein	  

4.73	   2.06	   (0.69,	  8.77)	   0.02	  

Age*PC2	   0.10	   0.04	   (0.03,	  0.17)	   <.01	  

Diabetes*PC2	   2.23	   0.92	   (0.42,	  4.03)	   0.02	  
PC1	  =	  Principal	  Component	  1;	  PC2	  =	  Principal	  Component	  2;	  CI	  =	  Confidence	  Interval;	  BMI	  =	  Body	  Mass	  Index.	  
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Figure 3. Interactions Between Principal Component 2 and Diabetes/Age 
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Table S4. Results of Model Fitting With Interaction Terms for Cohort 2 (n=263) 
	  

Variable	  
Parameter	  
Estimate	  

Standard	  
Error	   95%	  CI	   p-‐value	  

PC1	   -‐0.29	   0.69	   (-‐1.64,	  1.06)	   0.68	  

PC2	   0.04	   1.02	   (-‐1.96,	  2.04)	   0.97	  

Age	   -‐1.76	   0.50	   (-‐2.74,	  -‐0.78)	   <.001	  

BMI	   1.12	   0.29	   (0.55,	  1.69)	   <.001	  

Low-‐density	  
lipoprotein	  

-‐0.01	   0.04	   (-‐0.09,	  0.07)	   0.85	  

Male	   9.28	   3.44	   (2.54,	  16.02)	   <.01	  

African	   	  
American	  

-‐13.36	   4.57	   (-‐22.32,	  -‐4.40)	   <.01	  

Smoking	   13.85	   5.44	   (3.19,	  24.51)	   0.01	  

Hypertension	   -‐4.54	   3.79	   (-‐11.97,	  2.89)	   0.23	  

Diabetes	   -‐1.46	   13.96	   (-‐28.82,	  25.90)	   0.92	  

High-‐density	  
lipoprotein	  

0.70	   3.85	   (-‐6.85,	  8.25)	   0.86	  

Age*PC2	   -‐0.07	   0.06	   (-‐0.19,	  0.05)	   0.27	  

Diabetes*PC2	   1.10	   1.76	   (-‐2.35,	  4.55)	   0.53	  
PC1	  =	  Principal	  Component	  1;	  PC2	  =	  Principal	  Component	  2;	  CI	  =	  Confidence	  Interval;	  BMI	  =	  Body	  Mass	  Index.	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
 
	  


