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Abstract 

Multiresolution Methods for Convolutional Neural Networks 

By Evan Scope Crafts 

 Convolutional neural networks (CNNs) are widely used for speech, image, and video 

recognition due to their state of the art performance. However, little theory exists for designing 

CNNs and CNNs typically depend explicitly on the resolution of the input data. The CNN is a 

nested function comprised of a series of non-linear transformations parameterized by initially 

randomized convolution operators that are optimized to interpolate and extrapolate from data. 

A new interpretation of the CNN relates the convolution operators acting on image data to a 

linear combination of differential operators which yields a continuous understanding of CNNs. 

Multigrid methods are used to efficiently solve partial differential equations (PDEs), which are 

equations that relate multiple variables and their partial derivatives, using a family of fine and 

coarse grids. The continuous understanding of CNNs provides a way to implement multigrid 

methods on the convolution operators of a CNN. This can be used to efficiently handle image 

data of different resolutions and to train on computationally cheaper lower resolutions. The 

effectiveness of multigrid methods on a residual neural network architecture (ResNet), a neural 

network with added stability in the component functions, has been demonstrated previously. 

This thesis analyzes the effectiveness of multigrid methods on variations of a classical CNN. The 

experiments here show that on a classical CNN multigrid methods can suffer from overfitting 

without careful implementation due to the difficult nature of the optimization problem. 
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Chapter 1

Introduction

Over the last ten to fifteen years, a machine learning technique that learns re-
lationships from data called deep neural networks (DNNs) has risen to promi-
nence in the field of artificial intelligence. The origins of the neural network
date back to the 1950’s and 1960’s when computer scientists first attempted
to create computational models based off the human brain. However, for a
long period of time lack of access to data and limited computational power
meant that neural networks were largely ignored in the computer science com-
munity. This began to change in 1990 with the publication of ”Handwritten
Digit Recognition with a Back-Propagation Network”, which introduced the
concept of the convolutional neural network (CNN) for the first time [10]. A
CNN is a special type of DNN that utilizes convolution operators to reduce
computational cost and recognize spacial structure within input data. As
computational power and access to large data sets continued to increase into
the 2000s, the CNN rose to prominence due to its state of the art performance
on canonical image recognition tasks and soon became a widely used method
for related tasks such as text and speech recognition. However, learning these
relationships is a very difficult optimization problem and the success of the
CNN has belied the difficulty of constructing effective networks that both
optimize and generalize well.

When a CNN is created it is generally designed for input data of a specific
resolution. While this methodology is suitable for testing on canonical data
sets, most real-world data can have varying resolutions. A possible solution
to this problem comes from a connection made in recent years between the
structure of a common type of deep neural networks, residual neural networks
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1.1 Contributions and Outline 2

(ResNets), and the structure of a discretized differential equation, which has
created a novel way to analyze the stability of neural networks [6]. In par-
ticular, this methodology establishes a connection between the CNN and the
partial differential equation (PDE), an equation that relates multiple vari-
ables and their partial derivatives [15].

Multigrid methods are a family of techniques for numerically analyzing
PDEs on a family of fine and coarse grids, which connect well with the varying
resolutions of real-world input data [5]. While the methods described here
have applicability to a wide variety of input data with spatial structure,
this thesis focuses on image data. Image data is a grid discretization of
an image, which is a continuous function f : R2 → R. In [7] multigrid
methods are implemented on a ResNet CNN trained on image data and its
effectiveness is shown in that context. This thesis analyzes the performance
of multigrid methods on variations of a basic (non Res-Net) CNN architecture
and examines many of the factors that can effect multigrid performance.

1.1 Contributions and Outline

In this paper I show that various network architectures and optimization
choices can effect the performance of multigrid methods. In chapter two I
provide a mathematical formulation of the neural network framework and
the PDE interpretation of the neural network. In chapter three I discuss the
methodology used. In chapter four I discuss the numerical results from these
experiments. These include:

• Application of multigrid methods to a basic CNN framework using the
MNIST data set (section 4.2)

• Analysis of the effect of pooling on multigrid performance (section 4.3)

• How optimization methods effect performance (section 4.4)

Finally, in chapter five I discuss the importance of these results to the machine
learning community.



Chapter 2

Background

To understand the connection between neural networks and differential equa-
tions that this thesis is based on it is imperative to have a mathematical de-
scription of the deep neural network and the connected optimization problem.
In this chapter I first present the generalized neural network optimization
problem and expand on this to describe the specific structure of the CNN
and ResNet. I then show how this problem statement leads to a connection
between neural networks and differential equations and how this connection
can be used to address stability issues in neural networks. Finally, I provide
the motivation for the introduction of multigrid methods and give a theoret-
ical background on their relevance to the goal of functional multiresolution
neural networks.

2.1 Neural Networks: An Introduction

The abstract goal of a neural network is to learn a function from an input
space X ⊂ Rk to an output space Y ⊂ Rl. Given an x ∈ X, we would like to
learn a function f such that there is a high probability that the output f(x)
is equal to the desired output y. To prevent route overfitting to the data, we
restrict f to be part of a class of functions H. In short, we seek a function f
that is a solution to

min
f∈H

J(f), where J(f) = min
f∈H

E(1(f(x) 6= y)), (2.1)

where E is the expected value and 1 is the indicator function [4]. In prac-
tice, however, it is impossible to know the desired output y for every x ∈ X.

3
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Instead of minimizing over the entire domain space, a technique called su-
pervised learning is often used, where the related problem of finding the
minimizing function over a set of examples {(xi, yi)}ni=1 called the training
data is solved. This related problem is formulated as minimizing the empir-
ical risk

min
f∈H

Jn(f), where Jn(f) = min
f∈H

n∑
i=1

1(f(xi) 6= yi). (2.2)

The fact that we are solving a related empirical optimization problem
and not the actual problem creates difficulties when choosing the family of
functions H. We would like H to be a family that is easy to optimize over,
i.e. it is easy to find the function f that solves the problem given in (2.2).
In this context easy means that we can choose an optimization method that
will reach a local minimum of the function with high probability, and that
the computational complexity of doing this is low. We would also like to
choose H so that we arrive at a low value of Jn(f), and so that the value
of J(f)− Jn(f) is low, although in practice this last value cannot be known
exactly. However, the value of J(f) can be approximated by using a different
set of examples {(xi, yi)}mi=1 called the validation data. By ensuring that the
value of Jn(f) over the validation data is low as well we can know with high
probability that the true value J(f) is also low.

The defining feature of the neural network is the choice of H. Instead
of choosing a large class of functions which might be extremely difficult or
impossible to optimize over, H is restricted to a series of nested functions
with further restrictions on the nested functions themselves [4]. The nested
functions in a neural network are called layers and take the form of affine
with a point-wise linearity subsequently applied. The linear transformations
are parameterized by initially randomized weights, θ, which are optimized
over. The composition of the network layers is the function from the input
space to another euclidean space known as a feature space, g : X → Rnf .

In the applications considered here the output of the function, g(x, θ),
must undergo further transformations to be mapped into the Y space and
become a classification prediction. To accomplish this the output undergoes
a final affine transformation , Rnf → Rl, and then is subject to a final
activation function σs : Rl → Y . A common choice for σs is the softmax
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function. These structural decisions reformulate the objective function from
(2.2) to

min
θ,w

J(θ, w), where J(θ, w) =
1

n

n∑
i=1

l(σs(g(xi, θ), w), yi), (2.3)

and l : Rl × Rl → R measures the error in classification and w is the clas-
sification weights, the weights of the final affine transformation. Often a
regularizing term R(θ, w) is added to prevent overfitting to the empirical
data and ensure Jn(f) − J(f) remains small. The structure of the neural
network is determined by the choice of nested transformations that comprise
f , as well as the choice of activation and objective function. In (2.2) the
indicator function was used for l. However, the indicator function is not dif-
ferentiable, which makes the optimization problem much harder. To remedy
this, l is chosen from the class of differentiable distance metrics. A common
choice is the cross-entropy function.

In practice, almost all of the optimization methods used to train neural
networks rely on a technique called backpropagation which was conceived
in [14]. Backpropagation uses the chain rule to differentiate the objective
function with respect to theta and w. The prototypical and most commonly
used optimization method is the stochastic gradient method (SGD). SGD
is an iterative method that utilizes random samples from the training data
to update both theta and w in the negative of the direction of the negative
gradient from those samples,

θk+1 = θk − αk∇lik(θk) (2.4)

and
wk+1 = wk − αk∇lik(wk), (2.5)

where αk is a scalar sequence known as the learning rate. In practice, it
has been shown that for many classification problems SGD will converge to
a local minima, although the reasoning behind its performance is not well
understood.

2.2 Network Structure

The choice and composite structure of the layers that comprise g funda-
mentally impact the stability and accuracy of the the model. Two major
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developments in this area, the CNN and the ResNet, are in large part re-
sponsible for the current dominance of neural networks at tasks such as image
and speech recognition. Each nested function in the neural network is called
a layer. Broadly, we can define the neural network nonlinear operator (the
layer) using notation from [6] and [8] as being of the form

F (θ, x) = K2(θ2)σ(K1(θ1)x+ B(θ3)) (2.6)

where x is the input to the layer. The σ : Rnf → Rnf here is a point-wise
non-linearity referred to as the activation function. Common choices for the
function include the tanh function and the rectified linear unit (ReLU), which
is defined as σ(x) = max(x, 0). The B(θ3) term is a point-wise bias. Finally,
the K1(θ1) and the K2(θ2) terms are the all-important linear transformations.

Before the advent of the CNN many networks were fully connected. This
meant that any element in the input of a layer can communicate with any el-
ement in the output. In practice this often took the form of operators where
K2(θ2) is the identity mapping and K1(θ1) is a dense linear transformation
where every element of the output is a linear combination of all elements in
the input. However, the obvious advantage of fast communication in a fully
connected network was coupled with the disadvantage of ignoring any spa-
tial structure found in the input data. Many common classification problems,
such as image, speech, and text recognition, have inherent spacial structure.
Further, in networks with many layers this can result in millions and mil-
lions of weights, making the optimization process more difficult and costly.
The authors of [10] were the first to propose a solution to this with their
introduction of the CNN. In a CNN, each K1(θ1) is a convolution operator
parameterized by a small matrix called the kernel of the transformation.

To go from individual layers to a full neural network, a description of how
the layers connect to each other is needed. Before the advent of the residual
neural network, or ResNet, most networks were comprised of a series of layers
in the form of

xi,j+1 = F (θj, xi,j) for j = 0, 1, 2, . . . , N − 1, (2.7)

where xi,j denotes the ith example propagated to layer j and the initial layer
xi,0 is the input data. Information propagates forward through the network
until it reaches the last layer and undergoes the final linear transformation
and subsequent classification. As the number of layers in neural networks
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began to increase over time, however, problems in the formulation given
in (2.7) began to arise. Adding more layers to a neural network did not
always result in increased classification accuracy; in fact, in practice adding
additional layers to the network could actually decrease the the effectiveness
of the network. The writers of [8] and [9] were the first to realize that a
simple reformulation of (2.7) would result in increased stability; they defined
the forward propagation as

xi,j+1 = xj + F (θj, xi,j) for j = 0, 1, 2, . . . , N − 1. (2.8)

The theoretical motivation for this was straightforward. The xi,j term tries
to ensure that new additional layers will only increase the performance of the
the network because at worst the F (θj, xi,j) term can just be driven to zero.
For simplicity sake it is assumed that all of the network layers lie in the same
feature space, Rnf . The input data x ∈ X is mapped into the feature space
by a linear transformation, x0 = Lx, where L can be either fixed or learned.

By combining this formulation with convolutional layers, the creators of
the ResNet were able to build Deep Residual CNNs that achieved state of
the art performance on one of the canonical data sets in image recognition,
ImageNet. Since then Deep Residual CNNs have become the workhouse
behind the best performances on speech, image, and text recognition, among
other challenges. However, this dominance belies how little is actually known
about the why and how of neural network construction.

2.3 A New Interpretation: The Kernel as a

Differential Operator

Despite the success of the ResNet and the CNN, major questions still remain
about the structure and stability of the neural network. Given a classifica-
tion problem, it is often unclear which neural network structure and coupled
optimization method will lead to stable forward propagation and high classi-
fication accuracy. Numerous results have helped to illustrate different aspects
of this problem, including the development of adversarial examples and ex-
aminations of the generally non-convex loss landscape [16, 3, 12]. Even given
a suitable structure, often many hyper-parameters must still be manually
tuned. In addition, neural networks lack adaptability - they are designed
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for input data of a specific resolution. While this might not be an issue on
canonical data sets, real world data is of varying resolutions and would require
interpolation to be used on one network. This interpolation can remove valu-
able information from the input data, such as smoothness properties. These
factors combine to show the utility and necessity of a new perspective on the
dynamics of a neural network.

The authors of [7] were the first, to the author’s knowledge, to propose
a connection between the forward propagation in a ResNet and the Euler
discretization of an ordinary differential equation (ODE). The forward prop-
agation equation for the ResNet ((2.8)) can be easily generalized to

xi,j+1 = xi,j + hF (θj, xi,j) for j = 0, 1, 2, . . . , N − 1 (2.9)

where h is a scalar with h = 1 in the original formulation of the ResNet.
This equation is equivalent to

xi,j+1 − xi,j
h

= F (θj, xi,j) for j = 0, 1, 2, . . . , N − 1.

The h can be interpreted here as a step size in a finite difference approxi-
mation of the change x with respect to an artificial time variable t. If x is
changing sufficiently slowly then the ResNet step size of h = 1 will work well,
but if x is changing too rapidly this will create instability. The weights, θj, at
each layer can also be understood as a discretization of a continuous function
θ(t). Taking the limit as h→ 0 gives the related continuous problem

dx

dt
(t) = F (θ(t), x(t)), x0 = Lx

for t ∈ [0, T ], where T corresponds to the output layer.

The ODE interpretation of the ResNet gives new flexibility and insight
into the design of neural network layers and their connections. One common
problem encountered in neural networks is the phenomenon of exploding
and vanishing gradients where some weights increase exponentially, creating
instability in both the forward and backward propagation [1]. The ODE
formulation provides new tools for solving this problem. First, the Euler
discretization is only a first-order method and is not very stable, so replacing
it with more stable methods such as ones in the Runge-Kutta family might
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add stability. Second, the step size h can be decreased as needed. Finally,
restrictions can be put on the K1 and K2 operators to increase stability.

With an ordinary ResNet the way the input data changes in the network
can be understood as the discretization of an ODE with an artificial time
variable t. The ResNet CNN imposes additional restrictions on the changes in
the input data through the network because in each layer the transformation
is spatially limited by the size of the kernel. This leads to an understanding
of the ResNet CNN as a discretization of a PDE with a time variable t and
m spatial variables, where m equals the dimension of the input data [15].
This is best illustrated using a one-dimensional example where the input,
like image data, is the discretization of a function on on a grid. Consider a
function g(u) : R → R that is discretized on a grid [0,1] with k cell-centers
and mesh size h = 1/k. This results in a vector g = [g(u1), . . . , g(uk)]

T where
ui = (i − 1

2
)h for i = 1, 2, . . . , k. Now let K1(θ1) ∈ Rk×k be a convolution

operator on g that is parameterized by a kernel in R3. By taking the action
of the kernel on the discretized input data and applying a basis change, we
arrive at a finite difference operator on the g,

K1(θ1)g =
[
θ1 θ2 θ3

]
∗ g

= (
β1

4

[
1 2 1

]
+
β2

2h

[
−1 0 1

]
+
β3

h2

[
−1 2 1

]
) ∗ g,

where β1, β2, β3 are given by1
4
−1
2h

−1
h2

1
2

0 2
1
4

1
2h

1
h2

β1

β2

β3

 =

θ1

θ2

θ3

 .
Taking the limit as h→ 0 gives

K1(θ1) = β1(θ1) + β2(θ2)∂u + β3(θ3)∂2
u. (2.10)

These terms correspond to reaction convection and diffusion, respectively.
The finite difference approximations used to illustrate this are not unique.
Choosing any linearly independent finite difference operators for the corre-
sponding terms in (2.10) will yield the same result. Importantly, this result
can be extended to higher dimensions with relative ease. If our function is
now g(u) : R2 → R2, as is the case with the image data being considered
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in this thesis, and the kernel θ1 is now in R9, the equation corresponding to
(2.10) will be

K1(θ) =β1(θ) + β2(θ)∂u + β3(θ)∂v

+β4(θ)∂u∂v + β5(θ)∂2
u + β6(θ)∂2

v

+β7(θ)∂2
u∂v + β8(θ)∂u∂

2
v + β9(θ)∂2

u∂
2
v .

Thus, ResNet CNNs can be interpreted as discretized PDEs where the input
data changes slowly through “time” as defined by the artificial variable t.
This is illustrated in figure 2.1 which shows an image datum, the handwritten
digit two, being propagated through a CNN. The first layer applies three
separate convolutions to expand the width, or number of channels, of the
network to three, and then there is a pooling layer to reduce image resolution
and a final convolution layer. Importantly, the datum changes slowly over
time. The next section discusses a new technique for neural networks that is
made possible by this connection.

Figure 2.1: The handwritten digit changes slowly through “time” as it is
propagated

2.4 Introducing Multigrid Methods

The connection between the ResNet CNN and PDEs means that the methods
from PDE analysis can be applied to ResNet CNNs to make them adaptable
to data of different resolutions as well as work on increased accuracy, stability
and speed of training. To illustrate this consider a PDE discretization on a
grid Ωh ∈ Rk×l resulting in the system of linear equations

Au = f. (2.11)

Suppose this system has a unique solution and let v be the computed ap-
proximation. The error is a vector defined as

e = u− v. (2.12)
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Common iterative relaxation schemes, such as Gauss-Seidel and Jacobi, quickly
eliminate high-frequency modes of the error but are powerless against the
low-frequency modes that stubbornly remain. To remove the low-frequency
modes, a family of methods called multigrid methods are often used. Multi-
grid is a very broad field but the focus here is on some basic details and
methods as shown in [5]. Multigrid methods are based on the observation
that error components that appear to be smooth on a fine grid will become
oscillatory on a coarser grid. They provide algorithms for interpolating so-
lutions between the fine grid, Ωh, and a coarser grid, Ω2h, so that both the
smooth and oscillatory components of the error can be removed.

The multigrid algorithms used to transfer solutions between fine and
coarse grids can be used to transfer the weights in a ResNet CNN to match
the resolution of the given input data. The benefits of this are not limited
to just increased adaptability to data of different resolutions. Removing the
the low-frequency modes of the error could result in increased accuracy and
stability. In addition, the Ω2h grid can be used to obtain a better initial
guess for the iterative relaxation scheme on the Ωh grid. Since the matrix
operations involved in both the forward and back propagation through a
neural network are roughly four times cheaper when the input resolution is
cut in half, this has obvious computational advantages as well. This thesis
investigates the effectiveness of multigrid methods at these goals on classical
CNNs. In the next chapter, the experimental setting for the experiments is
set and the multigrid implementation details are explicated.



Chapter 3

Proposed Method

This chapter details the implementation of the experiments conducted to in-
vestigate the performance of multigrid methods on neural networks. Instead
of analyzing performance on a variety of data sets, the experiments here
are all based on a single canonical data set known as MNIST [11]. MNIST
consists of over 60, 000 examples of image data in R28x28 that have already
been normalized and centered. While other data sets such as CIFAR-10 and
ImageNet represent greater classification challenges, the decision to just use
MNIST was made because this allows greater focus on the multigrid methods
themselves instead of factors like preprocessing time and computational cost.
This chapter first discusses the issue at the core of this thesis, the implemen-
tation of multigrid methods on CNNs. Then, the construction of the CNN
used for testing is detailed, as well as decisions made regarding the training
process and other factors.

3.1 Multigrid Implementation

In this section a procedure for the transfer of network weights between a CNN
designed to handle input data of resolution R28×28 and a CNN designed to
handle data of a different resolution. This procedure has two components.
The first defines a procedure for the transfer of the network convolution
weights θ. In other words, we consider the output of a linear transformation
in the first network

ah = Kh
1(θh)xh, (3.1)

12
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where xh ∈ Rnf is the input to a layer in a feature space of a given resolution
and Kh

1(θh) is a linear transformation from this feature space parameter-
ized by a convolution stencil θh. We then consider the output of the linear
transformation

a2h = K2h
1 (θ2h)x2h (3.2)

where x2h is the input to a layer in a feature space of a different resolution 2h
and K2h

1 (θ2h) is a linear transformation in this feature space parameterized
by a different convolution stencil θ2h. We seek to to define two operators, a
restriction operator r : θh →θ2h and a corresponding prolongation operator
p : θ2h →θh. These operators are referred to collectively as the transfer
operators and we wish to define them so that the output of the two linear
transformations will be the “same” in a sense that will be defined later.
The second component defines a procedure for the transfer of the linear
classifier weights w. As is standard in multigrid methodology, to be able to
do this we first have to define the input resolutions being considered and
the corresponding CNNs with linear transformations in different euclidean
spaces. We then provide transfer methods for the weights of the two networks.

3.1.1 Defining the Fine and Coarse Grids

A fundamental component of any multigrid method is a family fine and coarse
grids. For simplicity sake the family of fine and coarse grids is restricted
to only two grids. The first grid, Ωh, corresponds to weights in the CNN
designed for input data from MNIST with the provided resolution R28×28.
While the image data in MNIST is all of the same resolution, input data of
a different resolution can be obtained by interpolating the image data to a
different resolution. Interpolating the image data to a resolution finer than
the one provided would not provide any more information and would increase
computational cost, so the natural choice is to interpolate the image data to a
coarser grid. The interpolation to the coarser grid is done using a restriction
matrix R. We define a corresponding interpolation to the finer image data
by a prolongation matrix P such that the relationships

x2h = Rxh and xh = Px2h (3.3)

hold. Thus, the grid Ωh is defined as the fine grid and the coarse grid, Ω2h,
corresponds to the weights in a CNN designed for input data of R14×14. The
number of layers and structure in the two corresponding CNNs will be the
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same, but the linear transformations in the CNN corresponding to the coarse
input data will all take place in a feature space with half the resolution of
the corresponding linear transformation in the CNN used for the fine input
data. Using a coarse grid corresponding to input data with twice the spac-
ing between the discretization points is a near universal practice because it
makes the interpolation more straightforward and there is no advantage to
using grids with spacing ratios other than two [5].

3.1.2 Interpolation Of Network Weights

There are two major families of multigrid methods, geometric (or standard)
multigrid, and Algebraic Multigrid (AMG). In the geometric case the input
data x corresponds to points at known spatial locations, and the operators
R and P on the weights parameterizing the linear transformation would be
based on the geometric relationships between the points. With AMG, the
input data does not have a strict geometric interpretation. Instead, the op-
erators are determined by the structure of the linear transformation itself.
Geometric multigrid would seem like the more natural choice for this prob-
lem because image data does have known spatial structure. However, the
transfer operators used in geometric multigrid are most effective as the spac-
ing between the interpolation points goes to zero. Given the low resolution
of MNIST data geometric multigrid may perform poorly so this thesis uses
transfer operators from AMG.

Consider the outputs of a linear transformations in the CNN for the fine
image data and the output of a linear transformations in the CNN for the
coarse image data, along with the prolongation and restriction matrices P
and R between the two feature spaces. We define the transfer operators so
that

K2h
1 (θ2h)x2h = RKh

1(θh)Px2h. (3.4)

In other words, the transfer operators are defined so that the linear trans-
formation applied to the coarse image data is equal to the restriction of the
linear transformation applied to the prolongated fine image data. This result
implies that

K2h
1 (θ2h) = RKh

1(θh)P, (3.5)
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which is the Galerkin condition for the construction of the coarse-grid op-
erator [5]. Here, of course, θh is the fine scale convolution stencil of size
nk × nk. Since R and P are linear transformations and the unknown is θ2h,
a classic result multigrid theory says that coarse mesh stencil will also be of
size nk×nk, so the coarse stencil can be determined with n2

k equations [5, 7].
The same methodology can also be used to define the transfer operators from
θ2h to θh. There is no multigrid interpretation for the bias terms so these are
not changed in the methodology.

3.1.3 Interpolation Of Classifier Weights

The interpolation of the classifier weights can no longer use the Galerkin
condition. This is because the classifier weights are not parameterized by
convolution stencils, and, more importantly, and are not mapping between
feature spaces of different resolutions. Instead, the classifier weights of the
coarse and fine networks are mappings from different feature spaces to the
same discreet classification space so multigrid conditions do not have meaning
in this setting. We can get around this dilemma by simply applying the
prolongation or restriction matrix to go from coarse-to-fine classifier weights
or fine to coarse, respectively. However, one adjustment does need to be
made. Consider the mapping Rn×n → R from the output of one of the kth
network channel, g(xi, θ)k, to the jth element of the discreet classification
space by the classifier weights. This is a discreet version of of the continuous
operation

yi,j =

∫
Ω

g(xi, θ)k · wk,j.

When this operation is discretized using the coarse network output it becomes
the Riemann sum

y2h
i,j =

1

n2

n∑
i=1

n∑
i=1

g(xi, θ)k · wk,j

but the corresponding Riemann sum from the fine network output is

yhi,j =
1

4n2

2n∑
i=1

2n∑
i=1

g(xi, θ)k · wk,j

so we multiply the classifier weights four when going from coarse-to-fine and
divide by four when going from fine to coarse.
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Importantly, the mapping from the coarse classifier weight space to the
fine classifier weight space, or vice versa, requires the classifier weights to be
piece-wise smooth. More specifically, each mapping from a network channel
output to an element of the discreet classification space must be smooth or
the interpolation will not be useful.

3.1.4 Choice of Prolongation and Restriction Matrices

There are many ways to choose the interpolation operators R and P as
the most important component of the multigrid methods is the Galerkin
condition. Here, we revert back to the geometric interpretation of the image
data. First, the restriction operator R takes two by two blocks from an
input in the fine space and simply averages them to return the corresponding
element of the output in the coarse space. The prolongation operator acts
slightly differently by performing a weighted averaging of elements from the
coarse input to return the elements of the fine output.

3.2 Network Frameworks and Optimization

Methods

Variations of one CNN framework are used for the experiments in this thesis.
The construction and training of this network as well as the multigrid im-
plementation is all done in Matlab using the Meganet package from Xtrac-
tOpen [2]. This framework is a basic CNN consisting of two to three network
layers. The first layer is a convolutional layer that takes the MNIST data as
its input and expands the network width from one to thirty-two. Although
this terminology was introduced in chapter two, network width is defined
more rigorously here as the number of outputs of the layer. Using the layer
notation as previously defined, this means that the layer

F (θ, x) = K2(θ2)σ(K1(θ1)x+ B(θ3)) (3.6)

has only one x input (corresponding to one MNIST image datum) but ob-
tains thirty-two outputs by applying thirty-two distinct convolutions to the
input. Here, and in all the convolution layers, the K2(θ2) term is the iden-
tity and the K1(θ1) term is a sparse circulant matrix parameterized by the
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three-by-three convolution kernel θ1. The bias term is zero.

In some of the variations of the network architecture the next layer is a
special type of network layer called a pooling layer. A pooling layer has no
trainable weights and does not apply a linear transformation to the data.
Instead, it just “pools”, or interpolates, the elements of the inputs to the
layer to reduce their resolution. The pooling layer here utilizes a two-by-two
filter with stride two. Stride refers to the space between each sample, so a
two-by-two filter with stride two samples separate four pixel blocks of the
input and returns one output for each block. As a result, the output of the
pooling layer will have half the resolution of the input. The rationale behind
the use of this pooling layer is that it will reduce the number of trainable pa-
rameters later in the network, which reduces computational complexity and
helps to prevent over-fitting. There are several types of pooling layers but the
one utilized here averages the pixels under consideration to return the output.

The final layer of the basic CNN is another convolutional layer similar to
the first layer, but its input has width thirty-two and its output has width
sixty-four.

3.2.1 Regularization and Optimization

To train the CNN, the network and classifier weights are first initialized ran-
domly using a normal distribution. Then, the network and classifier weights
are optimized. There are two optimization methods that are used in the
thesis to solve the optimization problem, SGD and the CG-Steihaug inexact
newton method.

The first optimization method, SGD, is a procedure defined in (2.4) and
(2.5). The mini-batch, defined as the number of random samples used to
compute the gradient in each iteration, is set at 32. The learning rate used
here is the scalar sequence

αk =
.003√
.5× e

where here e is the current epoch and one epoch is defined as one pass through
all of the training data sampled without replacement.
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CG-Steihaug is also an iterative optimization method. In CG-Steihaug,
each iteration k finds an approximate solution to

min
p∈Rn

mk(p) = lk + (∇lk)Tp+
1

2
pT (∇2lk)p subject to ‖p‖ ≤ ∆k, (3.7)

where l is the objective function, p is the solution and the step taken, and
∆k is a scalar that defines the ball known as the trust region [13]. The use
of a trust region tries to ensure that the step taken is in a region where the
gradient and hessian still provide good approximations of the true nature of
the objective function.

The CNN also utilizes regularization in the optimization methods, i.e.
the objective function (2.3) has a regularization term R(θ, w) added. The
regularizing term can be split into two parts; R(θ, w) = R(θ) + R(w). The
regularization method used for both terms is Tikonov regularization. The
Tikonov regularization used here for the theta weights is defined as

R(θ) = .5α‖B× θ‖2,

where α = 2−3 is a scalar and B is the identity operator. This implementa-
tion penalizes large network weight values which can create instability and
exploding or vanishing gradients.

Without regularization the trained weights are not smooth and interpo-
lation will be unsuccessful. The R(w) term is designed to penalize non-
smoothness in the classifier weights to meet the condition given in section
3.1.3. Thus we define

R(w) = .5α‖B× w‖2

where α = 2−5 for the network for the fine MNIST data and α = 4 · 2−5 for
the network for the coarse MNIST data because of the Riemann sum coeffi-
cients discussed in 3.1.3. Instead of the identity operator B now computes a
fine difference approximation of the gradient. This will penalize non-smooth
classifier weights. However, for this regularization to be effective the clas-
sifier weights must be initialized smoothly as well. To implement this, the
initially randomly generated classifier weights are restricted to the domain
[−.2, .2] and then subject to a discrete cosine transform. In the discrete co-
sine space the variance of the classifier weights is reduced and the weights
are then transformed back to euclidean space. Figure 3.1 shows twenty (10
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x 2) random coarse network weight blocks. They are highly unsmooth when
initialized randomly but become smooth after the variance has been reduced.

Figure 3.1: Smoothing of Randomly Initialized Classifier Weights



Chapter 4

Numerical Experiments

In this chapter several numerical experiments covering the performance of
multigrid methods on several variations of the CNN are explicated and the
results are analyzed. In addition to numerical results, data visualizations are
used to help interpret the performance. In section 4.1 the general structure
of the numerical experiments conducted is discussed. Section 4.2 covers the
baseline performance of multigrid on the network. Sections 4.3 covers the
effects of pooling on multigrid performance. Finally, section 4.4 looks at how
different optimization methods effects performance and convergence.

4.1 Experiments Run

The general structure of the numerical experiments here is as follows. First,
the coarse network is trained on 40,000 examples of coarse MNIST data.
Then, these weight values are stored and multigrid methods are applied to
both the network and classifier weights. This process creates two networks
for classifying the fine resolution data with the same structure but different
weight values. The first network has the network weights with the multigrid
method applied and with the prolongated classifier weights and is referred
to as the fine network with multigrid. The second network has the network
weights without the multigrid method applied and is referred to as the fine
network without multigrid. It also uses the prolongated classifier weights be-
cause the size of the classifier weight matrix is dependent on the size of the
network output. For comparison, the fine network is also trained on newly

20
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initialized weights, a process referred to as new initialization.

Next, the three networks are all subsequently retrained on 10,000 exam-
ples of fine MNIST data. The objective function values on the fine data for
both networks are computed. The networks are subsequently retrained on
the fine data and objective function values, validation loss, runtimes, and
other parameters are analyzed. This process is referred to as coarse-to-fine
training and forms the core of this thesis.

4.2 Baseline Results

To understand how factors like pooling, choice of activation function, and op-
timization methods effect multigrid performance, a baseline result is needed
to compare with. For this baseline a pooling layer is not used and the ReLU
function as the activation function. Twenty epochs of SGD are used to train
on the coarse image data and then SGD is used again to retrain on the fine
data. The performance of multigrid on the fine data is compared with trans-
ferring the weights and training from randomly initialized weights.

Twenty trials of this coarse-to-fine training process were run and the sum-
mary statistics are displayed in table 4.1. The “Initial” column show clas-
sification accuracy on both the fine training data and fine validation data
after the first epoch of retraining, while the “ReTrain” column shows these
statistics after ten epochs of SGD. The first row shows results when retrain-
ing starts from initially randomized weights, the second row shows results
when the weights were transferred, and the third row has the performance
of multigrid.

Table 4.1: Baseline Performance of Coarse-to-Fine Training

Initial ReTrain
Training Type Training Validation Training Validation

New 88.4 85.0 96.4 91.9
Transfer 97.9 93.5 99.4 94.6
Multigrid 97.5 62.9 99.9 63.6
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Both transferring the weights and just using multigrid show significant ad-
vantages over new training from an optimization prospective. Both method-
ologies perform very well on the training data after just one epoch of SGD
and converge to better local minimum after the ten epochs, with multigrid
performing the best, as shown in the convergence plot in figure 4.1.

Figure 4.1: Convergence of Multigrid

This plot uses one of the twenty trials and demonstrates multigrid’s per-
formance advantage. Training error for the twenty epochs of coarse training
is shown as well as training error for the ten epochs of retraining. However,
multigrid methods overfit the data and converge to a local minimum that
generalizes very poorly. To gain insight into why this is true the smooth-
ness of the weight values that the original coarse network has trained, the
loss landscapes of the fine networks, and visualize image data propagated
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through the fine networks are analyzed.

One possible reason for the poor generalization performance of multigrid
could be related to the smoothness of the classifier weights after the coarse
training. If regularization is not effective, than the classifier weight interpo-
lation will not be effective. However, in figure 4.2, which shows 100 random
blocks of the classifier weights after coarse training, the classifier weights are
piece-wise smooth.

Figure 4.2: Classifier Weights after Training

Another possible reason for multigrid’s poor generalization could be re-
lated to the position of the weight values in the loss landscape. The loss
landscape can show how the objective function changes as the network and
classifier weights are perturbed. However, since there are tens of thousands
of weight values in even the relatively simple networks used here, the high
dimensionality of the loss landscape makes straight-forward visualization im-
possible. To get around this issue, methodology explicated in [12] that vi-
sualizes the loss landscape by plotting the objective function values in two
random normalized directions is utilized.
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The results of this visualization for a single instance of the coarse-to-fine
training are displayed in figure 4.3. The top left quadrant shows the objec-
tive function values where the point (0, 0) is the minimum that the original
coarse training reach reached. The top right shows the same plot using the
point that the network with transferred weights starts retraining from, and
the bottom plot uses the weights after multigrid is applied as the central
point. Importantly, the loss landscape near the minimum that the coarse
training reached is not highly convex. Unsurprisingly, transferring or apply-
ing multigrid to the weights results in a loss landscape that is non-convex.
Interestingly, however, the loss landscape for the transferred weights is much
less sensitive to perturbations in the weight values than the multigrid net-
work is and, gives a clear descent direction as a linear combination of the
two random directions. The multigrid network is highly sensitive to pertur-
bations and has less clear of a descent direction.

Figure 4.3: Perturbations in the Loss Landscape
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To gain addition insight into the generalization gap and difference in
performance, image data propagated through the network frameworks is vi-
sualized. Figure 4.4 visualizes image data propagated through a random
channel of the fine network with three weight configurations. The first row
shows results using weights trained from new initialization, the second row
row uses weights from the fine network with multigrid after retraining, and
the third row uses weights from the fine network without multigrid after
retraining. Training from new initialization does not generate recognizable
image data. However, the propagated image data in the third row is slightly
more clear and recognizable than the difficult to recognize propagated data
in the second row. Transferring the weights and retraining generates clearer
propagated data than multigrid and retraining.

Figure 4.4: Propagation of Two Random Inputs using Coarse-to-Fine training

4.3 Pooling

This section details how the use of pooling can affect multigrid performance.
In the multigrid context considered here, multigrid methods prove some-
what effective at preventing overfitting. Whereas in the previous section the
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multigrid generalization gap was extremely large, pooling succeeds in par-
tially closing this gap.

Table 4.2 shows the summary statistics for twenty trials of coarse-to-fine
training using the same methodology and format as table 4.1. The only
difference here is the network utilizes a pooling layer between the first and
second convolution layers. Crucially, the generalization gap for multigrid
here, while still extant, is much smaller than it was in table 4.1. Again,
multigrid performs the best from an optimization perspective.

Table 4.2: The Effect of Pooling on Multigrid Performance

Initial ReTrain
Training Type Training Validation Training Validation

New 91.1 89.0 97.0 93.2
Transfer 96.7 91.5 98.3 92.8
Multigrid 96.8 84.1 99.8 88.0

The loss landscape of the network with pooling has similar properties to
the loss landscape of the network without pooling. Figure 4.5 shows how
perturbations affect the objective function in the same format as figure 4.3.
Results here are similiar in that the transferred weights are much more re-
silient to perturbations than the multigrid weights. One possibly crucial
difference is that the loss landscape appears to be more convex around the
minimum reached by the coarse training.

The propagation of random inputs displayed in figure 4.6 also lends some
insight as to why pooling causes better performance. The propagated image
data in the last column are all more clear than the propagated image data
from the network without pooling. The propagated data from the network
with multigrid is recognizable as an eight and a three and contains many of
the crucial curves that define the number three.
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Figure 4.5: The Pooling Loss Landscape

4.4 Optimization Methods

In this section the effect of changing the optimization method for the re-
training process is analyzed. The network with multigrid weights in the last
two sections has weight values that do not generalize well before retraining.
Retraining with SGD is only partially effective at closing this generalization
gap, so here the CG-Steihaug method described in (3.7) is used to see if it is
effective at closing this gap.

The results show that CG-Steihaug actually performs worse than just re-
training with SGD. Table 4.3 shows results when the retraining process first
trains the classifier for five epochs of CG-Steihaug while holding the network
weights fixed. Then, both the classifier and network weights are trained for
ten epochs of SGD. Training the classifier beforehand results in overfitting
on the multigrid weights.
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Figure 4.6: Propagation and Pooling

Table 4.3: Training the classifier using CG-Steihaug

Classifier Training Network Training
Training Type Initial After —Initial After

Training Val. Val. Training Val. Val.
New 32.5 34.1 75.3 91.1 89.0 92.2

Transfer 94.4 82.1 92.9 99.1 94.0 93.8
Multigrid 85.2 34.1 38.3 97.6 60.3 62.4

In Table 4.4 the classifier weights and then both the network and classi-
fier weights are trained using CG-Steihaug. The performance in both cases
is very poor; in particular training just using CG-Steihaug is very ineffective
and results in a generalization gap even when starting from new initializa-
tion. These results emphasize the difficulty of the learning problem and the
difficulty of converging to a local minimum that generalizes well.
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Table 4.4: Training the Classifier and Network with CG-Steihaug

Classifier Training Network Training
Training Type Initial After —Initial After

Training Val. Val. Training Val. Val.
New 51.8 50.3 76.6 91.9 77.1 79.5

Transfer 92.8 81.5 91.4 99.7 91.7 92.4
Multigrid 85.2 32.6 35.9 97.2 42.4 50.8



Chapter 5

Summary and Conclusion

The results of the experiments run in this manuscript illustrate important
properties the neural network learning problem and of the MNIST data set,
as well as some of the difficulties to consider when implementing multigrid
methods in the neural network context. The goal of the learning process, to
converge to a good local minimum with low training error and strong gener-
alization, is extremely difficult given the non-convex loss landscape and the
problems with generalization. The experiments here show how convergence
to a good local minimum is far from guaranteed and is heavily dependent
on network architecture decisions and optimization methods. In addition,
MNIST data is low-resolution and piece-wise constant. These properties
makes the application of multigrid methods difficult, as discontinuities can
slow down the convergence rate of algebraic multigrid or result in complete
failure to converge [5]. The neural network setting here, and the addition
of complications like point-wise biases terms that cannot be easily addressed
with multigrid methods, further hurts the performance.

In the numerical experiments here the benefits of pooling and other mea-
sures that prevent overfitting when applying multigrid methods can be seen.
This is because in the coarse-to-fine setting considered here the properties
of the minimum reached by the coarse training are of crucial importance
to multigrid performance. In addition, the effectiveness of retraining after
multigrid is heavily dependent on the choice of optimization method.

Future directions of research in this field build off the limitations of this
work. Many of these limitations are related to the very limited context of
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these experiments. These future directions include the following:

• testing the performance of multigrid methods on other data sets, in-
cluding video data

• using a wider variety of network architectures and optimization meth-
ods

• testing fine-to-coarse training and joint training (training on both the
coarse and fine data at the same time)

• Using geometric instead of algebraic multigrid (particularly on higher-
resolution data sets)

This thesis allowed me to incorporate different applied math fields in-
cluding optimization methods, PDEs, and multigrid. In addition, I gained
experience with computational aspects such as Matlab coding and GPU
computation. The results show the importance of careful consideration of
optimization methods and network architectures when implementing multi-
grid methods. It also shows that in certain situations simply transferring the
weights from a coarse trained network can result in increased performance
on the desired resolution. More experimentation is needed to determine the
specific context and architectures where multigrid is most effective and where
it fails.





Appendix A

Main Notation

Rn n-dimensional Euclidean space
Ω ⊂ Rd domain
Ωh domain of the fine grid
Ω2h domain of the coarse grid
Jn objective function
R regularizing term
X input space, e.g. input to a layer
xi input data
xi,j data propogated to layer j
H a class of functions
f, g functions
l loss function
σ activation function
1 the indicator function
θ network weights
w classifier weights
nf dimension of feature space
α, h scalars
t time
L,B linear transformations
Kn(θn) a linear transformation parameterized by convolution stencil
F network layer
P prolongation matrix
R restriction matrix
r, p transfer operators
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Appendix B

Abbreviations

DNN Deep Neural Network
CNN Convolutional Neural Network
ODE Ordinary Differential Equation
PDE Partial Differential Equation
ResNet Residual Neural Network
SGD Stochastic Gradient Descent
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